Dirac Gauginos in Low Scale Supersymmetry Breaking
Goodsell, Mark D
2014-01-01
It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy -- with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.
Dirac gauginos in low scale supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Goodsell, Mark D., E-mail: mark.goodsell@lpthe.jussieu.fr [Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHE, F-75005, Paris (France); CNRS, UMR 7589, LPTHE, F-75005, Paris (France); Tziveloglou, Pantelis, E-mail: pantelis.tziveloglou@vub.ac.be [Theoretische Natuurkunde and IIHE, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium)
2014-12-15
It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry.
Indian Academy of Sciences (India)
Emilian Dudas
2009-01-01
We review the various mechanisms of supersymmetry breaking and its trans-mission to the observable sector. We argue that hybrid models where gauge dominates over gravity mediation, but gravity provides the main contributions to the Higgs sector masses and the neutralino mass, are able to combine the advantages and reduce the disadvantages of the two transmission mechanisms.
Low-scale Inflation and Supersymmetry Breaking in Racetrack Models
Allahverdi, Rouzbeh; Sinha, Kuver
2009-01-01
In many moduli stabilization schemes in string theory, the scale of inflation appears to be of the same order as the scale of supersymmetry breaking. For low-scale supersymmetry breaking, therefore, the scale of inflation should also be low, unless this correlation is avoided in specific models. We explore such a low-scale inflationary scenario in a racetrack model with a single modulus in type IIB string theory. Inflation occurs near a point of inflection in the K\\"ahler modulus potential. Obtaining acceptable cosmological density perturbations leads to the introduction of magnetized D7-branes sourcing non-perturbative superpotentials. The gravitino mass, m_{3/2}, is chosen to be around 30 TeV, so that gravitinos that are produced in the inflaton decay do not affect big-bang nucleosynthesis. Supersymmetry is communicated to the visible sector by a mixture of anomaly and modulus mediation. We find that the two sources contribute equally to the gaugino masses, while scalar masses are decided mainly by anomaly ...
ATLAS diboson excess from low scale supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Petersson, Christoffer [Department of Fundamental Physics, Chalmers University of Technology,412 96 Göteborg (Sweden); Physique Théorique et Mathématique, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); International Solvay Institutes,1050 Brussels (Belgium); Torre, Riccardo [Dipartimento di Fisica e Astronomia, Università di Padova and INFN Sezione di Padova,Via Marzolo 8, I-35131 Padova (Italy)
2016-01-18
We provide an interpretation of the recent ATLAS diboson excess in terms of a class of supersymmetric models in which the scale of supersymmetry (SUSY) breaking is in the few TeV range. The particle responsible for the excess is the scalar superpartner of the Goldstone fermion associated with SUSY breaking, the sgoldstino. This scalar couples strongly to the Standard Model vector bosons and weakly to the fermions, with all coupling strengths determined by ratios of soft SUSY breaking parameters over the SUSY breaking scale. Explaining the ATLAS excess selects particular relations and ranges for the gaugino masses, while imposing no constraints on the other superpartner masses. Moreover, this signal hypothesis predicts a rate in the Zγ final state that is expected to be observable at the LHC Run II already with a few fb{sup −1} of integrated luminosity.
Low Scale Supersymmetry Breaking and its LHC Signatures
Dudas, Emilian; Tziveloglou, Pantelis
2013-01-01
We study the most general extension of the MSSM Lagrangian that includes scenarios in which supersymmetry is spontaneously broken at a low scale f. The spurion that parametrizes supersymmetry breaking in the MSSM is promoted to a dynamical superfield involving the goldstino, with (and without) its scalar superpartner, the sgoldstino. The low energy effective Lagrangian is written as an expansion in terms of m_{SUSY}/sqrt{f}, where m_{SUSY} is the induced supersymmetry breaking scale, and contains, in addition to the usual MSSM Lagrangian with the soft terms, couplings involving the component fields of the goldstino superfield and the MSSM fields. This Lagrangian can provide significant corrections to the usual couplings in the Standard Model and the MSSM. We study how these new corrections affect the Higgs couplings to gauge bosons and fermions, and how LHC bounds can be used in order to constrain f. We also discuss that, from the effective field theory point of view, the couplings of the goldstino interactio...
Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale
Björkeroth, Fredrik; King, Stephen F.; Schmitz, Kai; Yanagida, Tsutomu T.
2017-03-01
We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O (10-8). The origin of such a small mass splitting is explained by considering supersymmetry (SUSY) breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (s)neutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2 ≥ O (100) TeV.
Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale
Directory of Open Access Journals (Sweden)
Fredrik Björkeroth
2017-03-01
Full Text Available We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O(10−8. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (sneutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2≥O(100 TeV.
Leptogenesis after Chaotic Sneutrino Inflation and the Supersymmetry Breaking Scale
Björkeroth, Fredrik; Schmitz, Kai; Yanagida, Tsutomu T
2016-01-01
We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry $ \\eta_B $ in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as $ \\mathcal{O}(10^{-8}) $. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY) breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass $ m_{3/2} $ to cancel the cosmological constant. This yields additional terms in the (s)neutrino mass matrices, lifting the degeneracy and linking $ \\eta_B $ to the SUSY breaking scale. We find that achieving the correct bary...
Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity
Energy Technology Data Exchange (ETDEWEB)
Farakos, Fotis [Dipartimento di Fisica “Galileo Galilei”, Universita di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Racco, Davide; Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)
2016-06-21
We consider the minimal three-form N=1 supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.
Scanning of the Supersymmetry Breaking Scale and the Gravitino Mass in Supergravity
Farakos, Fotis; Racco, Davide; Riotto, Antonio
2016-01-01
We consider the minimal three-form ${\\cal N}=1$ supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.
Single sector supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Luty, Markus A.; Terning, John
1999-03-18
We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses.
Dynamical Supersymmetry Breaking
Shadmi, Y; Shadmi, Yael; Shirman, Yuri
2000-01-01
Supersymmetry is one of the most plausible and theoretically motivated frameworks for extending the Standard Model. However, any supersymmetry in Nature must be a broken symmetry. Dynamical supersymmetry breaking (DSB) is an attractive idea for incorporating supersymmetry into a successful description of Nature. The study of DSB has recently enjoyed dramatic progress, fueled by advances in our understanding of the dynamics of supersymmetric field theories. These advances have allowed for direct analysis of DSB in strongly coupled theories, and for the discovery of new DSB theories, some of which contradict early criteria for DSB. We review these criteria, emphasizing recently discovered exceptions. We also describe, through many examples, various techniques for directly establishing DSB by studying the infrared theory, including both older techniques in regions of weak coupling, and new techniques in regions of strong coupling. Finally, we present a list of representative DSB models, their main properties, an...
String Mediated Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Brodie, John H
2001-07-25
We consider the 3+1 visible sector to live on a Hanany-Witten D-brane construction in type IIA string theory. The messenger sector consists of stretched strings from the visible brane to a hidden D6-brane in the extra spatial dimensions. In the open string channel supersymmetry is broken by gauge mediation while in the closed string channel supersymmetry is broken by gravity mediation. Hence, we call this kind of mediation ''string mediation''. We propose an extension of the Dimopoulos-Georgi theorem to brane models: only detached probe branes can break supersymmetry without generating a tachyon. Fermion masses are generated at one loop if the branes break a sufficient amount of the ten dimensional Lorentz group while scalar potentials are generated if there is a force between the visible brane and the hidden brane. Scalars can be lifted at two loops through a combination of brane bending and brane forces. We find a large class of stable non-supersymmetric brane configurations of ten dimensional string theory.
Supersymmetry breaking with extra dimensions
Indian Academy of Sciences (India)
Fabio Zwirner
2004-02-01
This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems.
Natural X-ray lines from the low scale supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Kang, Zhaofeng, E-mail: zhaofengkang@gmail.com [Center for High-Energy Physics, Peking University, Beijing 100871 (China); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Ko, P., E-mail: pko@kias.re.kr [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Li, Tianjun, E-mail: tli@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Yandong, E-mail: ydliu@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-03-06
In the supersymmetric models with low scale supersymmetry (SUSY) breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I) a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM) candidate; (II) the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s). A highly supersymmetric dark sector may readily provide such kind of system; (III) the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.
Dynamical Supersymmetry Breaking Why and How
Poppitz, E R
1998-01-01
This theoretical review is intended to give non-theorists a flavor of the ideas driving the current efforts to experimentally find supersymmetry. We discuss the main reasons behind the expectation that supersymmetry may be "just around the corner" and may be discovered in the near future. We use simple quantum-mechanical examples to illustrate the concept---and the power---of supersymmetry, the possible ways to break supersymmetry, and the dynamical generation of small scales. We then describe how this theoretical machinery helps shape our perception of what physics beyond the electroweak scale might be.
Corpuscular Breaking of Supersymmetry
Dvali, Gia
2014-01-01
Are topological solitons elementary or composites? We answer this question by drawing up a corpuscular formalism in which solitons are coherent states of quantum constituents. This naturally leads to a functional integral representation, in which the classical saddle point is reached as the most probable distribution of corpuscles in the $\\hbar = 0$ limit and where quantum corpuscular corrections correspond to excursions away from such a distribution that occur only for finite $\\hbar$. Several striking features come up. Topological charge emerges as a collective flow of quantum numbers carried by individual corpuscles. Moreover, the corpuscular corrections are not reducible to any known form of quantum corrections, such as loop expansions in the coupling constant $\\hbar g^2$ or semiclassical $e^{-1/\\hbar g^2}$ effects. Corpuscular corrections are stronger and appear already at order $\\sqrt{\\hbar g^2}$. In SUSY theories quantum corpuscular corrections generically break supersymmetry. We show that a domain wall...
Improved single sector supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Luty, Markus A.; Terning, John
1998-12-09
Building on recent work by N. Arkani-Hamed and the present authors, we construct realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single strongly-coupled sector. The most important improvement compared to earlier models is that the second-generation composite states correspond to dimension-2 ''meson'' operators in the ultraviolet. This leads to a higher scale for flavor physics, and gives a completely natural suppression of flavor-changing neutral currents. We also construct models in which the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. These models provide an interesting and viable alternative to gravity- and gauge-mediated models. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation squark and slepton masses. We also analyze large classes of models that give rise to both compositeness and supersymmetry breaking, based on gauge theories with confining, fixed-point, or free-magnetic dynamics.
Natural X-ray lines from the low scale supersymmetry breaking
Directory of Open Access Journals (Sweden)
Zhaofeng Kang
2015-03-01
Full Text Available In the supersymmetric models with low scale supersymmetry (SUSY breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM candidate; (II the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s. A highly supersymmetric dark sector may readily provide such kind of system; (III the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.
Dynamical (Super)Symmetry Breaking
Murayama, H
2001-01-01
Dynamical Symmetry Breaking (DSB) is a concept theorists rely on very often in the discussions of strong dynamics, model building, and hierarchy problems. In this talk, I will discuss why this is such a permeating concept among theorists and how they are used in understanding physics. I also briefly review recent progress in using dynamical symmetry breaking to construct models of supersymmetry breaking and fermion masses.
Inflationary implications of supersymmetry breaking
Borghese, Andrea; Roest, Diederik; Zavala, Ivonne
2013-01-01
We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll paramet
Variations on supersymmetry breaking and neutrino spectra
Energy Technology Data Exchange (ETDEWEB)
Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.
2000-12-11
The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra.
Dynamical determination of the unification scale by gauge-mediated supersymmetry breaking
1998-01-01
We propose a mechanism for generating the GUT scale dynamically from the Planck scale. The idea is that the GUT scale is fixed by the vacuum expectation value of a "GUT modulus" field whose potential is exactly flat in the supersymmetric limit. If supersymmetry is broken by gauge mediation, a potential for the GUT modulus is generated at 2 loops, and slopes away from the origin for a wide range of parameters. This potential is stabilized by Planck-suppressed operators in the Kahler potential,...
Metastable Supersymmetry Breaking and Minimal Gauge Mediation on Branes
Halyo, Edi
2010-01-01
We construct a model with D5 branes wrapped on a deformed and resolved $A_6$ singularity which realizes metastable supersymmetry breaking and minimal gauge mediation. Supersymmetry is broken at tree level by the F--term of singlet which also obtains a VEV as required in gauge mediation. Three nodes of the singularity are used to break supersymmetry whereas the other three realize gauge mediation. The supersymmetry breaking scale is suppressed due to brane instanton effects which are computed using a geometric transition.
Unconventional supersymmetry and its breaking
Energy Technology Data Exchange (ETDEWEB)
Alvarez, Pedro D., E-mail: alvarez@physics.ox.ac.uk [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford (United Kingdom); Pais, Pablo, E-mail: pais@cecs.cl [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile); Zanelli, Jorge, E-mail: z@cecs.cl [Centro de Estudios Científicos (CECS), Av. Arturo Prat 514, Valdivia (Chile); Universidad Andrés Bello, Av. República 440, Santiago (Chile)
2014-07-30
We present a gauge theory for a superalgebra that includes an internal gauge (G) and local Lorentz (so(1,D−1)) algebras. These two symmetries are connected by fermionic supercharges. The field content of the system includes a (non-)abelian gauge potential A, a spin-1/2 Dirac spinor ψ, the Lorentz connection ω{sup ab}, and the vielbein e{sub μ}{sup a}. The connection one-form A is in the adjoint representation of G, while ψ is in the fundamental. In contrast to standard supersymmetry and supergravity, the metric is not a fundamental field and is in the center of the superalgebra: it is not only invariant under the internal gauge group, G, and under Lorentz transformations, SO(1,D−1), but is also invariant under supersymmetry. The distinctive features of this theory that mark the difference with standard supersymmetries are: i) the number of fermionic and bosonic states is not necessarily the same; ii) there are no superpartners with equal mass; iii) although this supersymmetry originates in a local gauge theory and gravity is included, there is no gravitino; iv) fermions acquire mass from their coupling to the background or from higher order self-couplings, while bosons remain massless. In odd dimensions, the Chern–Simons (CS) form provides an action that is (quasi-)invariant under the entire superalgebra. In even dimensions, the Yang–Mills (YM) form is the only natural option and the symmetry breaks down to G⊗SO(1,D−1). In four dimensions, the construction follows the Townsend–Mac Dowell–Mansouri approach, starting with an osp(4|2)∼usp(2,2|1) connection. Due to the absence of osp(4|2)-invariant traces in four dimensions, the resulting Lagrangian is only invariant under u(1)⊕so(3,1), which includes a Nambu–Jona-Lasinio (NJL) term. In this case, the Lagrangian depends on a single dimensionful parameter that fixes Newton's constant, the cosmological constant and the NJL coupling.
Supersymmetry breaking made easy, viable, and generic
Murayama, Hitoshi
2007-01-01
The kind of supersymmetry that can be discovered at the LHC must be very much flavor-blind, which used to require very special intelligently designed models of supersymmetry breaking. This led to the pessimism for some in the community that it is not likely for the LHC to discover supersymmetry. I point out that this is not so, because a garden-variety supersymmetric theories actually can do this job.
Dirac neutrino masses from generalized supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Demir, D.A. [Izmir Institute of Technology, IZTECH, Izmir (Turkey). Dept. of Physics]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Everett, L.L. [University of Wisconsin, Madison, WI (United States), Dept. of Physics; Langacker, P. [Institute for Advanced Study, Princeton, NJ (United States). School of Natural Sciences
2007-12-15
We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1){sup '}), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)
Dynamical supersymmetry breaking and unification of couplings
Dubovsky, S L; Troitsky, S V
1997-01-01
We consider the possibility of unification of the Supersymmetric Standard Model gauge groups with those of the dynamical supersymmetry breaking (DSB) sector in theories with gauge mediated supersymmetry breaking. We find constraints on the DSB gauge group beta function that come from unification of the gauge coupling constants of the two sectors. These constraints are satisfied by a fairly wide class of models. We discuss possible unification scenarios in the context of a simple model.
Large-field inflation and supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, Wilfried; Wieck, Clemens [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Dudas, Emilian; Heurtier, Lucien [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Ecole Polytechnique, Palaiseau (France). CPht
2014-07-15
Large-field inflation is an interesting and predictive scenario. Its non-trivial embedding in supergravity was intensively studied in the recent literature, whereas its interplay with supersymmetry breaking has been less thoroughly investigated. We consider the minimal viable model of chaotic inflation in supergravity containing a stabilizer field, and add a Polonyi field. Furthermore, we study two possible extensions of the minimal setup. We show that there are various constraints: first of all, it is very hard to couple an O'Raifeartaigh sector with the inflaton sector, the simplest viable option being to couple them only through gravity. Second, even in the simplest model the gravitino mass is bounded from above parametrically by the inflaton mass. Therefore, high-scale supersymmetry breaking is hard to implement in a chaotic inflation setup. As a separate comment we analyze the simplest chaotic inflation construction without a stabilizer field, together with a supersymmetrically stabilized Kaehler modulus. Without a modulus, the potential of such a model is unbounded from below. We show that a heavy modulus cannot solve this problem.
Supersymmetry Breaking due to Moduli Stabilization in String Theory
Linde, Andrei; Olive, Keith A
2011-01-01
We consider the phenomenological consequences of fixing compactification moduli. In the simplest KKLT constructions, stabilization of internal dimensions is rather soft: weak scale masses for moduli are generated, and are of order m_\\sigma ~ m_{3/2}. As a consequence one obtains a pattern of soft supersymmetry breaking masses found in gravity and/or anomaly mediated supersymmetry breaking (AMSB) models. These models may lead to destabilization of internal dimensions in the early universe, unless the Hubble constant during inflation is very small. Fortunately, strong stabilization of compactified dimensions can be achieved by a proper choice of the superpotential (e.g in the KL model with a racetrack superpotential). This allows for a solution of the cosmological moduli problem and for a successful implementation of inflation in supergravity. We show that strong moduli stabilization leads a very distinct pattern of soft supersymmetry breaking masses. In general, we find that soft scalar masses remain of order ...
Supersymmetry breaking in the Nambu - Jona-Lasinio approach
Peschanski, R; Peschanski, R; Savoy, C A
1995-01-01
Gaugino condensation in the hidden sector of supergravity models is described within a Nambu-Jona-Lasinio type of approach by minimization of a one-loop scalar potential. The essential ingredients of the mechanism are auxiliary superfields whose v.e.v. generate gaugino condensation and supersymmetry breaking, introduced through Lagrange multipliers. For phenomenologically acceptable values of the gauge couplings, gaugino condensation is disfavoured in this approach. For completeness, it is shown that supersymmetry breaking would occur for a stronger coupling, but at a scale inconsistent with the expectations.
Bulk gauge fields in warped space and localized supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Chacko, Z.; Ponton, Eduardo
2003-11-01
We consider five dimensional supersymmetric warped scenarios in which the Standard Model quark and lepton fields are localized on the ultraviolet brane, while the Standard Model gauge fields propagate in the bulk. Supersymmetry is assumed to be broken on the infrared brane. The relative sizes of supersymmetry breaking effects are found to depend on the hierarchy between the infrared scale and the weak scale. If the infrared scale is much larger than the weak scale the leading supersymmetry breaking effect on the visible brane is given by gaugino mediation. The gaugino masses at the weak scale are proportional to the square of the corresponding gauge coupling, while the dominant contribution to the scalar masses arises from logarithmically enhanced radiative effects involving the gaugino mass that are cutoff at the infrared scale. While the LSP is the gravitino, the NLSP which is the stau is stable on collider time scales. If however the infrared scale is close to the weak scale then the effects of hard supersymmetry breaking operators on the scalar masses can become comparable to those from gaugino mediation. These operators alter the relative strengths of the couplings of gauge bosons and gauginos to matter, and give loop contributions to the scalar masses that are also cutoff at the infrared scale. The gaugino masses, while exhibiting a more complicated dependence on the corresponding gauge coupling, remain hierarchical and become proportional to the corresponding gauge coupling in the limit of strong supersymmetry breaking. The scalar masses are finite and a loop factor smaller than the gaugino masses. The LSP remains the gravitino.
Kinematic dynamo, supersymmetry breaking, and chaos
Ovchinnikov, Igor V.; Enßlin, Torsten A.
2016-04-01
The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry, and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as the stochastic generalization of the concept of dynamical chaos. As this supersymmetry breaking happens in both the diffusive and the nondiffusive cases, the necessity of the underlying SDE being chaotic is given in either case. The observed exponentially growing and oscillating KD modes prove physically that dynamical spectra of the STS evolution operator that break the topological supersymmetry exist with both real and complex ground state eigenvalues. Finally, we comment on the nonexistence of dynamos for scalar quantities.
Small extra dimensions from the interplay of gauge and supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Catena, R. [International School for Advanced Studies, Trieste (Italy); Schmidt-Hoberg, K. [Technische Univ., Muenchen (Germany). Physik-Department
2008-03-15
Higher-dimensional theories provide a promising framework for unified extensions of the supersymmetric standard model. Compactifications to four dimensions often lead to U(1) symmetries beyond the standard model gauge group, whose breaking scale is classically undetermined. Without supersymmetry breaking, this is also the case for the size of the compact dimensions. Fayet-Iliopoulos terms generically fix the scale M of gauge symmetry breaking. The interplay with supersymmetry breaking can then stabilize the compact dimensions at a size 1/M, much smaller than the inverse supersymmetry breaking scale 1/{mu}. We illustrate this mechanism with an SO(10) model in six dimensions, compactified on an orbifold. (orig.)
Low-energy supersymmetry breaking and fermion mass hierarchies
Gherghetta, Tony; Poppitz, E R; Gherghetta, Tony; Jungman, Gerard; Poppitz, Erich
1995-01-01
In models with low-energy supersymmetry breaking, an anomalous Abelian horizontal gauge symmetry can simultaneously explain the fermion mass hierarchy and the values of the \\mu and B terms. We construct an explicit model where the anomaly is cancelled by the Green-Schwarz mechanism at the string scale. We show that with our charge assignments, the breaking of the horizontal symmetry generates the correct order of magnitude and correct hierarchy for all Yukawa couplings.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Feng, Jonathan L. [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Moroi, Takeo [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States)
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.
Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking
Feng, Jonathan L.; Moroi, Takeo
2000-05-01
We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.
Metastable spontaneous breaking of N = 2 supersymmetry
Légeret, Benoît; Scrucca, Claudio A.; Smyth, Paul
2013-05-01
We show that contrary to the common lore it is possible to spontaneously break N = 2 supersymmetry even in simple theories without constant Fayet-Iliopoulos terms. We consider the most general N = 2 supersymmetric theory with one hypermultiplet and one vector multiplet without Fayet-Iliopoulos terms, and show that metastable supersymmetry breaking vacua can arise if both the hyper-Kähler and the special-Kähler geometries are suitably curved. We then also prove that while all the scalars can be massive, the lightest one is always lighter than the vector boson. Finally, we argue that these results also directly imply that metastable de Sitter vacua can exist in N = 2 supergravity theories with Abelian gaugings and no Fayet-Iliopoulos terms, again contrary to common lore, at least if the cosmological constant is sufficiently large.
Metastable spontaneous breaking of N=2 supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Légeret, Benoît; Scrucca, Claudio A., E-mail: claudio.scrucca@epfl.ch; Smyth, Paul
2013-05-24
We show that contrary to the common lore it is possible to spontaneously break N=2 supersymmetry even in simple theories without constant Fayet–Iliopoulos terms. We consider the most general N=2 supersymmetric theory with one hypermultiplet and one vector multiplet without Fayet–Iliopoulos terms, and show that metastable supersymmetry breaking vacua can arise if both the hyper-Kähler and the special-Kähler geometries are suitably curved. We then also prove that while all the scalars can be massive, the lightest one is always lighter than the vector boson. Finally, we argue that these results also directly imply that metastable de Sitter vacua can exist in N=2 supergravity theories with Abelian gaugings and no Fayet–Iliopoulos terms, again contrary to common lore, at least if the cosmological constant is sufficiently large.
Generalized geometry and partial supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Triendl, Hagen Mathias
2010-08-15
This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)
Mediation of supersymmetry breaking in extra dimensions
Scrucca, C A
2004-01-01
I review the mechanisms of supersymmetry breaking mediation that occur in sequestered models, where the visible and the hidden sectors are separated by an extra dimension and communicate only via gravitational interactions. By locality, soft breaking terms are forbidden at the classical level and reliably computable within an effective field theory approach at the quantum level. I present a self-contained discussion of these radiative gravitational effects and the resulting pattern of soft masses, and give an overview of realistic model building based on this set-up. I consider both flat and warped extra dimensions, as well as the possibility that there be localized kinetic terms for the gravitational fields.
Chiral Gauge Dynamics and Dynamical Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U.
2009-05-07
We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I = 3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S{sup 1} x R{sup 3}, and show that the infrared behavior of this theory is an interacting CFT at small S{sup 1}. We argue that this continues to hold at large S{sup 1}, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S{sup 1} x R{sup 3}--which were previously obtained by using symmetry and holomorphy--and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a 'magnetic bion', whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional antiferromagnets.
Tree Level Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Nardecchia, Marco, E-mail: marco.nardecchia@sissa.it [SISSA/ISAS and INFN, I-34013 Trieste (Italy)
2010-11-01
We propose a new scheme in which supersymmetry breaking is communicated to the MSSM sfermions by GUT gauge interactions at the tree level. The (positive) contribution of MSSM fields to Str(M{sup 2}) is automatically compensated by a (negative) contribution from heavy fields. Sfermion masses are flavour universal, thus solving the supersymmetric flavour problem. In the simplest SO(10) embedding, the ratio of different sfermion masses is predicted and differs from mSugra and other schemes, thus making this framework testable at the LHC. Gaugino masses are generated at the loop level but enhanced by model dependent factors.
Dynamical supersymmetry breaking on magnetized tori and orbifolds
Directory of Open Access Journals (Sweden)
Hiroyuki Abe
2016-10-01
Full Text Available We construct several dynamical supersymmetry breaking (DSB models within a single ten-dimensional supersymmetric Yang–Mills (SYM theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU(NC SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.
Dynamical supersymmetry breaking on magnetized tori and orbifolds
Abe, Hiroyuki; Kobayashi, Tatsuo; Sumita, Keigo
2016-10-01
We construct several dynamical supersymmetry breaking (DSB) models within a single ten-dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU (NC) SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.
Dynamical supersymmetry breaking on magnetized tori and orbifolds
Abe, Hiroyuki; Sumita, Keigo
2016-01-01
We construct several dynamical supersymmetry breaking (DSB) models within a single ten-dimensional supersymmetric Yang-Mills (SYM) theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of $SU(N_C)$ SYM theory with $N_F$ flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.
D-branes, Supersymmetry Breaking, and Neutrinos
Seo, Jihye
2010-01-01
This thesis studies meta- and exactly stable supersymmetry breaking mechanisms in heterotic and type IIB string theories and constructs an F-theory Grand Unified Theory model for neutrino physics in which neutrino mass is determined by the supersymmetry breaking mechanism. Focussing attention on heterotic string theory compactified on a 4-torus, stability of non-supersymmetric states is studied. A non-supersymmetric state with robust stability is constructed, and its exact stability is proven in a large region of moduli space of T^4 against all the possible decay mechanisms allowed by charge conservation. Using string-string duality, the results are interpreted in terms of Dirichlet-branes in type IIA string theory compactified on an orbifold limit of a K3 surface. In type IIB string theory, metastable and exactly stable non-supersymmetric systems are constructed using D-branes and Calabi-Yau geometry. Branes and anti-branes wrap rigid and separate 2-spheres inside a non-compact Calabi-Yau three-fold: supersy...
Mechanisms of supersymmetry breaking in the minimal supersymmetric standard model
Indian Academy of Sciences (India)
Probir Roy
2003-02-01
We provide a bird’s eyeview of current ideas on supersymmetry breaking mechanisms in the MSSM. The essentials of gauge, gravity, anomaly and gaugino/higgsino mediation mechanisms are covered brieﬂy and the phenomenology of the associated models is touched upon. A few statement are also made on braneworld supersymmetry breaking.
Mediation of Supersymmetry Breaking via Anti-Generation Fields
Ito, M
2000-01-01
In the context of the weakly coupled heterotic string, we propose a new model of mediating supersymmetry breaking. The breakdown of supersymmetry in the hidden sector is transmitted to anti-generation fields via gravitational interactions. Subsequent transmission of the breaking to the MSSM sector occurs via gauge interactions. It is shown that the mass spectra of superparticles are phenomenologically viable.
Kinematic Dynamo, Supersymmetry Breaking, and Chaos
Ovchinnikov, Igor V
2015-01-01
The kinematic dynamo (KD) describes the growth of magnetic fields generated by the flow of a conducting medium in the limit of vanishing backaction of the fields onto the flow. The KD is therefore an important model system for understanding astrophysical magnetism. Here, the mathematical correspondence between the KD and a specific stochastic differential equation (SDE) viewed from the perspective of the supersymmetric theory of stochastics (STS) is discussed. The STS is a novel, approximation-free framework to investigate SDEs. The correspondence reported here permits insights from the STS to be applied to the theory of KD and vice versa. It was previously known that the fast KD in the idealistic limit of no magnetic diffusion requires chaotic flows. The KD-STS correspondence shows that this is also true for the diffusive KD. From the STS perspective, the KD possesses a topological supersymmetry and the dynamo effect can be viewed as its spontaneous breakdown. This supersymmetry breaking can be regarded as t...
Gravitino condensation, supersymmetry breaking and inflation
Houston, N
2015-01-01
Motivated by dualistic considerations of the reality of quark condensation in quantum chromodynamics, and the connections of supergravity to the exotic physics of string and M-theory, in this thesis we investigate the dynamical breaking of local supersymmetry via gravitino condensation. We firstly demonstrate non-perturbative gravitino mass generation via this mechanism in flat spacetime, and from this derive the condensate mode wavefunction renormalisation. By then calculating the full canonically normalised one-loop effective potential for the condensate mode about a de Sitter background, we demonstrate that, contrary to claims in the literature, this process may both occur and function in a phenomenologically viable manner. In particular, we find that outside of certain unfortunate gauge choices, the stability of the condensate is intimately tied via gravitational degrees of freedom to the sign of the tree-level cosmological constant. Furthermore, we find that the energy density liberated may provide the n...
On Supersymmetry Breaking in String Theory and its Realization in Brane Worlds
Mayr, Peter
2001-01-01
We use string duality to describe instanton induced spontaneous supersymmetry breaking in string compactifications with additional background fields. Dynamical supersymmetry breaking by space-time instantons in the heterotic string theory is mapped to a tree level breaking in the type II string which can be explicitly calculated by geometric methods. It is argued that the instanton corrections resurrect the no-go theorem on partial supersymmetry breaking. The point particle limit describes the non-perturbative scalar potential of a SYM theory localized on a hypersurface of space-time. The N=0 vacuum displays condensation of magnetic monopoles and confinement. The supersymmetry breaking scale is determined by $M_{str}$, which can be in the TeV range, and the geometry transverse to the gauge theory.
Unified models of the QCD axion and supersymmetry breaking
Directory of Open Access Journals (Sweden)
Keisuke Harigaya
2017-08-01
Full Text Available Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei–Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.
A Supersymmetric Composite Model with Dynamical Supersymmetry Breaking
Kitazawa, N; Kitazawa, Noriaki; Okada, Nobuchika
1997-01-01
We present a supersymmetric composite model with dynamical supersymmetry breaking. The model is based on the gauge group $SU(2)_S \\times SU(2)_H \\times SU(3)_c \\times SU(2)_L \\times U(1)_Y$. Supersymmetry is dynamically broken by the non-perturbative effect of the $SU(2)_S$ `supercolor' interaction. The large top Yukawa coupling is naturally generated by the $SU(2)_H$ `hypercolor' interaction as recently proposed by Nelson and Strassler. The supersymmetry breaking is mediated to the standard model sector by a new mechanism. The electroweak symmetry breaking is caused by the radiative correction due to the large top Yukawa coupling with the supersymmetry breaking. This is the `radiative breaking scenario', which originates from the dynamics of the supercolor and hypercolor gauge interactions.
Anomalous U(1) as a mediator of Supersymmetry Breaking
Dvali, Gia; Dvali, Gia; Pomarol, Alex
1996-01-01
We point out that an anomalous gauge U(1) symmetry is a natural candida= te for being the mediator and messenger of supersymmetry breaking. It facilitate= s dynamical supersymmetry breaking even in the flat limit. Soft masses are induced by both gravity and the U(1) gauge interactions giving an unusual= mass hierarchy in the sparticle spectrum which suppresses flavor violations. T= his scenario does not suffer from the Polonyi problem.
Majorana Fermions, Supersymmetry Breaking, and Born-Infeld Theory
Ferrara, Sergio; Yeranyan, Armen
2015-01-01
This review is devoted to highlight some aspects of the relevance of Majorana fermions in rigid supersymmetry breaking in four spacetime dimensions. After introducing some basic facts on spinors, and on their symmetries and reality properties, we consider Goldstino actions describing partial breaking of rigid supersymmetry, then focussing on Born-Infeld non-linear theory, its duality symmetry, and its supersymmetric extensions, also including multi-field generalizations exhibiting doubly self-duality.
Wiese, Kay Joerg
2004-01-01
In this article, we study an elastic manifold in quenched disorder in the limit of zero temperature. Naively it is equivalent to a free theory with elasticity in Fourier-space proportional to k^4 instead of k^2, i.e. a model without disorder in two space-dimensions less. This phenomenon, called dimensional reduction, is most elegantly obtained using supersymmetry. However, scaling arguments suggest, and functional renormalization shows that dimensional reduction breaks down beyond the Larkin ...
An extension for direct gauge mediation of metastable supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Fuqiang, Xu; Jin Min, Yang [Institute of Theoretical Physics, Academia Sinica - Beijing (China)
2009-03-15
We study the direct mediation of metastable supersymmetry breaking by a {phi}{sup 2}-deformation to the ISS (Intriligator, Seiberg and Shih) model and extend it by splitting both Tr{phi} and Tr{phi}{sup 2} terms in the superpotential and gauging the flavor symmetry. We find that with such an extension enough-long-lived metastable vacua can be obtained and the proper gaugino masses can be generated. Also, this allows for constructing a kind of models which can avoid the Landau pole problem. Especially, in our metastable vacua there exist a large region for the parameter m{sub 3} which can satisfy the phenomenology requirements and allow for a low SUSY-breaking scale (h{mu}{sub 2} {approx} 100 TeV). (authors)
$\\mu$ term and supersymmetry breaking from six dimensional theory
Adachi, Yuki; Yamashita, Toshifumi
2014-01-01
We propose a new next-to-minimal supersymmetric standard model (NMSSM) which is on a six-dimensional spacetime compactified on a $T^2/Z_3$ orbifold. In this model, three gauge singlet fields $N, S_1$ and $S_2$ in addition to the minimal supersymmetric standard model (MSSM) fields are introduced. These fields are localized at some fixed points except for the singlet $N$ and the gauge fields. The $\\mu$ parameter is provided from the vacuum expectation value (vev) of $N$. The $F$ terms get vevs simultaneously, and the gauginos mediate the supersymmetry breaking to the MSSM sector. Both of these parameters are strongly suppressed due to the profile of $N$. Thus these parameters induced from those of the order of the so-called GUT scale can become close to the electroweak scale without unnatural fine tuning.
Inverse Supersymmetry Breaking in S1 × R3
Directory of Open Access Journals (Sweden)
Vasilis Oikonomou
2010-03-01
Full Text Available In this paper, we study the influence of hard supersymmetry breaking terms in a N = 1, d = 4 supersymmetric model, in S1 × R3 spacetime topology. It is shown that when the radius of the compact dimension is large supersymmetry is unbroken, and dynamically breaks as the radius decreases. We point out that this resembles the inverse symmetry breaking of continuous symmetries at finite temperature (however, in the case of supersymmetry, the role of the temperature is played by the compact dimension’s radius. Furthermore, we also find a universality in the dependence of the critical length Lc as a function of a coupling g3, after comparing all cases.
Supergravity and Supersymmetry Breaking in Four and Five Dimensions
Ellis, Jonathan Richard; Pokorski, Stefan; Thomas, S; Ellis, John; Lalak, Zygmunt; Pokorski, Stefan; Thomas, Steven
1999-01-01
We discuss supersymmetry breaking in the field-theoretical limit of the strongly-coupled heterotic string compactified on a Calabi-Yau manifold, from the different perspectives of four and five dimensions. The former applies to light degrees of freedom below the threshold for five-dimensional Kaluza-Klein excitations, whereas the five-dimensional perspective is also valid up to the Calabi-Yau scale. We show how, in the latter case, two gauge sectors separated in the fifth dimension are combined to form a consistent four-dimensional supergravity. In the lowest order of the $\\kappa^{2/3}$ expansion, we show how a four-dimensional supergravity with gauge kinetic function $f_{1,2}=S$ is reproduced, and we show how higher-order terms give rise to four-dimensional operators that differ in the two gauge sectors. In the four-dimensional approach, supersymmetry is seen to be broken when condensates form on one or both walls, and the goldstino may have a non-zero dilatino component. As in the five-dimensional approach,...
Supergravity and supersymmetry breaking in four and five dimensions
Ellis, Jonathan Richard; Pokorski, Stefan; Thomas, S
1999-01-01
We discuss supersymmetry breaking in the field-theoretical limit of the strongly coupled heterotic string compactified on a Calabi-Yau manifold, from the different perspectives of four and five dimensions. The former applies to light degrees of freedom below the threshold for five-dimensional Kaluza-Klein excitations, whereas the five-dimensional perspective is also valid up to the Calabi-Yau scale. We show how, in the latter case, two gauge sectors separated in the fifth dimension are combined to form a consistent four- dimensional supergravity. In the lowest order of the kappa /sup 2/3/ expansion, we show how a four-dimensional supergravity with gauge kinetic function f/sub 1,2/=S is reproduced, and we show how higher- order terms give rise to four-dimensional operators that differ in the two gauge sectors. In the four-dimensional approach, supersymmetry is seen to be broken when condensates form on one or both walls, and the goldstino may have a non-zero dilatino component. As in the five-dimensional appro...
Supersymmetry breaking effects by analytic continuation into superspace
Rattazzi, Riccardo
1999-01-01
I consider theories where supersymmetry breaking is communicated by renormalizable interactions and generated by the vacuum expectation value of a chiral superfield X=M+ theta /sup 2/F. I show that soft terms for the observable fields can be obtained by continuing the renormalization group and the matching procedure into superspace. The superspectrum is just determined by anomalous dimensions and beta functions, with no need to further compute any Feynman diagrams. This method greatly simplifies calculations that are rather involved if performed in components. For illustration I reproduce known results for theories with gauge mediated supersymmetry breaking. I then use the method to obtain new results of phenomenological importance. (15 refs).
Supersymmetry Breaking by the Right-Handed Tau Neutrino
Halyo, Edi
2011-01-01
We describe supersymmetry breaking by the F-term of a heavy right-handed tau neutrino with a VEV. Due to the the tau neutrino Yukawa coupling, the neutralino, chargino and scalar mass matrices and the weak currents are modified. In addition, there are new cubic and quartic scalar and trilinear R parity violating interactions. For large $\\tan \\beta$ these effects may be quite large. The scenario requires low energy supersymmetry breaking with generic values of $F \\sim 10^{10}$~GeV.
Holomorphic Bisectional Curvatures, Supersymmetry Breaking, and Affleck-Dine Baryogenesis
Dutta, Bhaskar
2012-01-01
Working in $D=4, N=1$ supergravity, we utilize relations between holomorphic sectional and bisectional curvatures of Kahler manifolds to constrain Affleck-Dine baryogenesis. We show the following No-Go result: Affleck-Dine baryogenesis cannot be performed if the holomorphic sectional curvature at the origin is isotropic in tangent space; as a special case, this rules out spaces of constant holomorphic sectional curvature (defined in the above sense) and in particular maximally symmetric coset spaces. We also investigate scenarios where inflationary supersymmetry breaking is identified with the supersymmetry breaking responsible for mass splitting in the visible sector, using conditions of sequestering to constrain manifolds where inflation can be performed.
'Dynamical Supersymmetry Breaking, with Flavor'
Energy Technology Data Exchange (ETDEWEB)
Craig, Nathaniel; Essig, Rouven; /Stanford U., Phys. Dept. /SLAC; Franco, Sebastian; Kachru, Shamit; /Santa Barbara, KITP /UC, Santa Barbara; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC /Santa Barbara, KITP /UC, Santa Barbara
2010-08-26
We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of Standard Model fermion masses and mixings is obtained by identifying the various generations with composites of different dimension in the ultraviolet. These 'single-sector' supersymmetry breaking models give rise to various spectra of soft masses which are, in many cases, quite distinct from what is commonly found in models of gauge or gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the first and second generation sparticles have masses of order 20 TeV, while the stop mass is a few TeV. In other cases, all sparticles obtain masses of order a few TeV predominantly from gauge mediation, even though the first two generations are composite.
Spontaneous supersymmetry breaking on the lattice
Energy Technology Data Exchange (ETDEWEB)
Wenger, Urs [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2013-07-01
We discuss various strategies for regularising supersymmetric quantum field theories on a space-time lattice. In general, simulations of lattice models with spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We discuss a novel approach which evades this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. Then we present exact results on the spectrum and the Witten index for N=2 supersymmetric quantum mechanics and results from simulations of the spontaneously broken N=1 Wess-Zumino model.
Strongly Coupled Semi-Direct Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Ibe, M.; /SLAC; Izawa, K.-I.; /Kyoto U., Yukawa Inst., Kyoto /Tokyo U., IPMU; Nakai, Y.; /Kyoto U., Yukawa Inst., Kyoto
2011-09-13
Supersymmetry (SUSY) is expected to be a crucial ingredient of basic laws in Nature. It is an attractive possibility that SUSY is broken at low energy within the experimental reach in the near future. Among others, low-energy dynamics with gauge mediation between a hidden sector of SUSY breaking and the visible sector of SUSY standard model may be phenomenologically viable. In particular, the gauge interactions are flavor blind, so that the unwanted flavor-changing processes are naturally suppressed. Strongly coupled semi-direct gauge mediation models of supersymmetry breaking through massive mediators with standard model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard model gaugino masses for a small mediator mass without breaking the standard model symmetries.
Diagnosis of Supersymmetry Breaking Mediation Schemes by Mass Reconstruction at the LHC
Dutta, Bhaskar; Krislock, Abram; Sinha, Kuver; Wang, Kechen
2011-01-01
If supersymmetry is discovered at the LHC, the next question will be the determination of the underlying model. While this may be challenging or even intractable, a more optimistic question is whether we can understand the main contours of any particular paradigm of the mediation of supersymmetry breaking. The determination of superpartner masses through endpoint measurements of kinematic observables arising from cascade decays is a powerful diagnostic tool. In particular, the determination of the gaugino sector has the potential to discriminate between certain mediation schemes (not all schemes, and not between different UV realizations of a given scheme). We reconstruct gaugino masses, choosing a model where anomaly contributions to supersymmetry breaking are important (KKLT compactification), and find the gaugino unification scale. Moreover, reconstruction of other superpartner masses allows us to solve for the parameters defining the UV model. The analysis is performed in the stop and stau coannihilation ...
Supersymmetry at the electroweak scale
Chankowski, P H
1996-01-01
The simplest interpretation of the global success of the Standard Model is that new physics decouples well above the electroweak scale. Supersymmetric extension of the Standard Model offers the possibility of light chargino and the right-handed stop (with masses below $M_Z$), and still maintaining the successful predictions of the Standard Model. The value of $R_b$ can then be enhanced up to $\\sim 0.218$ (the Standard Model value is $\\sim 0.216$). Light chargino and stop give important contribution to rare processes such as $b\\rightarrow s \\gamma$, $\\overline K^0-K^0$ and $\\overline B^0-B^0$ mixing but consistency with experimental results is maintained in a large region of the parameter space. The exotic four-jet events reported by ALEPH (if confirmed) may constitute a signal for supersymmetry with such a light spectrum and with explicitly broken $R-$parity. Their interpretation as pair production of charginos with $m_C\\sim 60$ GeV, with subsequent decay $C\\rightarrow \\tilde t_R b \\rightarrow dsb$ (where $m_...
Energy Technology Data Exchange (ETDEWEB)
Murayama, Hitoshi
1994-06-01
The author reviews phenomenologically interesting aspects of supersymmetry. First he points out that the discovery of the positron can be regarded as a historic analogue to the would-be discovery of supersymmetry. Second he reviews the recent topics on the unification of the gauge coupling constants, m{sub b}-M{sub {tau}} relation, proton decay, and baryogenesis. The author also briefly discusses the recent proposals to solve the problem of flavor changing neutral currents. Finally he argues that the measurements of supersymmetry parameters may probe the physics at the Planck scale.
Gauge mediated supersymmetry breaking and neutrino anomalies
Joshipura, A S; Joshipura, Anjan S.; Vempati, Sudhir K.
1999-01-01
Supersymmetric standard model with softly broken lepton symmetry provides a suitable framework to accommodate the solar and atmospheric neutrino anomalies. This model contains a natural explanation for large mixing and hierarchal masses without fine tuning of the parameters. Neutrino spectrum is particularly constrained in the minimal messenger model (MMM) of gauge mediated SUSY breaking, since all SUSY breaking effects are controlled in MMM by a single parameter. We study the structure of neutrino masses and mixing both in MMM and in simple extensions of it in the context of solar and atmospheric neutrino anomalies.
Extracting Supersymmetry-Breaking Effects from Wave-Function Renormalization
Giudice, Gian Francesco
1998-01-01
We show that in theories in which supersymmetry breaking is communicated by renormalizable perturbative interactions, it is possible to extract the soft terms for the observable fields from wave-function renormalization. Therefore all the information about soft terms can be obtained from anomalous dimensions and beta functions, with no need to further compute any Feynman diagram. This method greatly simplifies calculations which are rather involved if performed in terms of component fields. For illustrative purposes we reproduce known results of theories with gauge-mediated supersymmetry breaking. We then use our method to obtain new results of phenomenological importance. We calculate the next-to-leading correction to the Higgs mass parameters, the two-loop soft terms induced by messenger-matter superpotential couplings, and the soft terms generated by messengers belonging to vector supermultiplets.
A Gravity Dual of Metastable Dynamical Supersymmetry Breaking
DeWolfe, Oliver; Mulligan, Michael
2008-01-01
Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to anti-D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M) x SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.
Note on moduli stabilization, supersymmetry breaking and axiverse
Energy Technology Data Exchange (ETDEWEB)
Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics
2011-06-15
We study properties of moduli stabilization in the four dimensional N=1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. nontachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. Furthermore we study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets. (orig.)
A Model of Direct Gauge Mediation of Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Murayama, H. [Theoretical Physics Group, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)]|[Department of Physics, University of California, Berkeley, California 94720 (United States)
1997-07-01
We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m{sup 2}{sub {tilde q}} , m{sup 2}{sub {tilde l}} due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m{sup 2}{sub {tilde q}} and m{sup 2}{sub {tilde l}} can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. {copyright} {ital 1997} {ital The American Physical Society}
A Gravity Dual of Metastable Dynamical Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
DeWolfe, Oliver; /Colorado U.; Kachru, Shamit; Mulligan, Michael; /Stanford U., Phys. Dept. /SLAC
2008-02-04
Metastable, supersymmetry-breaking configurations can be created in flux geometries by placing antibranes in warped throats. Via gauge/gravity duality, such configurations should have an interpretation as supersymmetry-breaking states in the dual field theory. In this paper, we perturbatively determine the asymptotic supergravity solutions corresponding to D3-brane probes placed at the tip of the cascading warped deformed conifold geometry, which is dual to an SU(N+M) x SU(N) gauge theory. The backreaction of the antibranes has the effect of introducing imaginary anti-self-dual flux, squashing the compact part of the space and forcing the dilaton to run. Using the generalization of holographic renormalization to cascading geometries, we determine the expectation values of operators in the dual field theory in terms of the asymptotic values of the supergravity fields.
Supersymmetry Breaking and the Cosmological Constant
Banks, T
2014-01-01
I review three attempts to explain the small value of the cosmological constant, and their connection to SUSY breaking. They are The String Landscape, Supersymmetric Large Extra Dimensions (SLED), and the Holographic Space-time Formalism invented by Fischler and myself.
Observations on the partial breaking of N=2 rigid supersymmetry
Directory of Open Access Journals (Sweden)
Laura Andrianopoli
2015-05-01
Full Text Available We study the partial breaking of N=2 rigid supersymmetry for a generic rigid special geometry of n abelian vector multiplets in the presence of Fayet–Iliopoulos terms induced by the hyper-Kähler momentum map. By exhibiting the symplectic structure of the problem we give invariant conditions for the breaking to occur, which rely on a quartic invariant of the Fayet–Iliopoulos charges as well as on a modification of the N=2 rigid symmetry algebra by a vector central charge.
Supersymmetry Breaking, Gauge Mediation, and the LHC
Energy Technology Data Exchange (ETDEWEB)
Shih, David [Rutgers Univ., New Brunswick, NJ (United States)
2015-04-14
Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called "General Gauge Mediation" (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.
A New Venue of Spontaneous Supersymmetry Breaking in Supergravity
Guendelman, Eduardo; Pacheva, Svetlana; Vasihoun, Mahary
2015-01-01
We present a qualitatively new mechanism for dynamical spontaneous breakdown of supersymmetry in supergravity. Specifically, we construct a modified formulation of standard minimal N=1 supergravity as well as of anti-de Sitter supergravity in terms of a non-Riemannian spacetime volume-form (generally covariant integration measure density). The new supergravity formalism naturally triggers the appearance of a dynamically generated cosmological constant as an arbitrary integration constant which signifies spontaneous (dynamical) breaking of supersymmetry. Applying the new formalism to anti-de Sitter supergravity allows us to appropriately choose the above mentioned arbitrary integration constant so as to obtain simultaneously a very small effective observable cosmological constant as well as a large physical gravitino mass as required by modern cosmological scenarios for slowly expanding universe of the present epoch.
Gaugino condensation, duality and supersymmetry breaking
Quevedo, Fernando
1995-01-01
The status of gaugino condensation in low-energy string theory is reviewed. Emphasis is given to the determination of the efective action below condensation scale in terms of the 2PI and Wilson actions. We illustrate how the different perturbative duality symmetries survive this simple nonperturbative phenomenon, providing evidence for the believe that these are exact nonperturbative symmetries of string theory. Consistency with T duality lifts the moduli degeneracy. The B_{\\mu\
Li, Tianjun; Nanopoulos, Dimitri V.
2011-10-01
In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) × U(1) X or Pati-Salam SU(4) C × SU(2) L × SU(2) R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) × U(1) X models, and the Pati-Salam SU(4) C × SU(2) L × SU(2) R models. In the deflected AMSB, we also define the new indices for the gaugino mass relations, and calculate them as well. Using these gaugino mass relations and their indices, we may probe the messenger fields at intermediate scale in the GMSB and deflected AMSB, determine the supersymmetry breaking mediation mechanisms, and distinguish the four-dimensional GUTs, orbifold GUTs, and F-theory GUTs.
Soft Supersymmetry Breaking in Anisotropic LARGE Volume Compactifications
Angus, Stephen
2014-01-01
We study soft supersymmetry breaking terms for anisotropic LARGE volume compactifications, where the bulk volume is set by a fibration with one small four-cycle and one large two-cycle. We consider scenarios where D7s wrap either a blow-up cycle or the small fibre cycle. Chiral matter can arise either from modes parallel or perpendicular to the brane. We compute soft terms for this matter and find that for the case where the D7 brane wraps the fibre cycle the scalar masses can be parametrically different, allowing a possible splitting of third-generation soft terms.
Gauge/gravity Duality and MetastableDynamical Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit
2006-10-24
We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua.
6D supergravity. Warped solution and gravity mediated supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Luedeling, C.
2006-07-15
We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)
The early universe with high-scale supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)
2015-08-15
A small tensor-to-scalar ratio r may lead to distinctive phenomenology of high-scale supersymmetry. Assuming the same origin of SUSY breaking between the inflation and visible sector, we show model independent features. The simplest hybrid inflation, together with a new linear term for the inflaton field which is induced by a large gravitino mass, is shown to be consistent with all experimental data for r of order 10{sup -5}. For superpartner masses far above the weak scale we find that the reheating temperature after inflation might be below the value required by thermal leptogenesis if the inflaton decays to its products perturbatively, but above it if the decay is non-perturbatively instead. Remarkably, the gravitino overproduction can be evaded in such high-scale supersymmetry because of the kinematically blocking effect. (orig.)
Supersymmetry in a sector of Higgsless electroweak symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Knochel, Alexander Karl
2009-05-11
In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the
Brane to brane gravity mediation of supersymmetry breaking
Rattazzi, Riccardo; Strumia, A; Rattazzi, Riccardo; Scrucca, Claudio A.; Strumia, Alessandro
2003-01-01
We extend the results of Mirabelli and Peskin to supergravity. We study the compactification on S_1/Z_2 of Zucker's off-shell formulation of 5D supergravity and its coupling to matter at the fixed points. We clarify some issues related to the off-shell description of supersymmetry breaking a la Scherk-Schwarz (here employed only as a technical tool) discussing how to deal with singular gravitino wave functions. We then consider `visible' and `hidden' chiral superfields localized at the two different fixed points and communicating only through 5D supergravity. We compute the one-loop corrections that mix the two sectors and the radion superfield. Locality in 5D ensures the calculability of these effects, which transmit supersymmetry breaking from the hidden to the visible sector. In the minimal set-up visible-sector scalars get a universal squared mass m_0^2 < 0. In general (e.g. in presence of a sizable gravitational kinetic term localized on the hidden brane) the radion-mediated contribution to m_0^2 can ...
A Definitive Signal of Multiple Supersymmetry Breaking at the LHC
Cheung, Clifford; Nomura, Yasunori; Thaler, Jesse
2010-01-01
If the lightest observable-sector supersymmetric particle (LOSP) is charged and long-lived, then it may be possible to indirectly measure the Planck mass at the LHC and provide a spectacular confirmation of supergravity as a symmetry of nature. Unfortunately, this proposal is only feasible if the gravitino is heavy enough to be measured at colliders, and this condition is in direct conflict with constraints from big bang nucleosynthesis (BBN). In this work, we show that the BBN bound can be naturally evaded in the presence of multiple sectors which independently break supersymmetry, since there is a new decay channel of the LOSP to a goldstino. Certain regions of parameter space allow for a direct measurement of LOSP decays into both the goldstino and the gravitino at the LHC. If the goldstino/gravitino mass ratio is measured to be 2, as suggested by theory, then this would provide dramatic verification of the existence of multiple supersymmetry breaking and sequestering. A variety of consistent cosmological ...
Supersymmetry Breaking on Gauged Non-Abelian Vortices
Konishi, Kenichi; Vinci, Walter
2012-01-01
There are a large number of systems characterized by a completely broken gauge symmetry, but with an unbroken global color-flavor diagonal symmetry, i.e., systems in the so-called color-flavor locked phase. If the gauge symmetry breaking supports vortices, the latter develop non-Abelian orientational zero-modes and become non-Abelian vortices, a subject of intense study in the last several years. In this paper we consider the effects of weakly gauging the full exact global flavor symmetry in such systems, deriving an effective description of the light excitations in the presence of a vortex. Surprising consequences are shown to follow. The fluctuations of the vortex orientational modes get diffused to bulk modes through tunneling processes. When our model is embedded in a supersymmetric theory, the vortex is still 1/2 BPS saturated, but the vortex effective action breaks supersymmetry.
Indirect Probes of Supersymmetry Breaking in Multi-Km3 Neutrino Telescopes
Albuquerque, Ivone Freire M
2012-01-01
Recently it has been shown that fluorescence telescopes with a large field of view can indirectly probe the scale of supersymmetry breaking. Here we show that depending on their ability to fight a large background, multi-Km3 volume neutrino telescopes might independently probe a similar breaking scale region, which lies between \\sim 10^5 and \\sim 5 x 10^6 GeV. The scenarios we consider have the gravitino as the lightest supersymmetric particle, and the next to lightest (NLSP) is a long lived slepton. Indirect probes complement a proposal that demonstrates that 1 Km3 telescopes can directly probe this breaking scale. A high energy flux of neutrinos might interact in the Earth producing NLSPs which decay into taus. We estimate the rate of taus, taking into account the regeneration process, and the rate of secondary muons, which are produced in tau decays, in multi-km3 detectors.
Closed superstrings in magnetic field instabilities and supersymmetry breaking
Tseytlin, Arkady A
1995-01-01
We consider a 2-parameter class of solvable closed superstring models which `interpolate' between Kaluza-Klein and dilatonic Melvin magnetic flux tube backgrounds. The spectrum of string states has similarities with Landau spectrum for a charged particle in a uniform magnetic field. The presence of spin-dependent `gyromagnetic' interaction implies breaking of supersymmetry and possible existence (for certain values of magnetic parameters) of tachyonic instabilities. We study in detail the simplest example of the Kaluza-Klein Melvin model describing a superstring moving in flat but non-trivial 10-d space containing a 3-d factor which is a `twisted' product of a 2-plane and an internal circle. We also discuss the compact version of this model constructed by `twisting' the product of the two groups in SU(2) x U(1) WZNW theory without changing the local geometry (and thus the central charge). We explain how the supersymmetry is broken by continuous `magnetic' twist parameters and comment on possible implications ...
Constraints on finite soft supersymmetry-breaking terms
Energy Technology Data Exchange (ETDEWEB)
Kobayashi, T. [High Energy Accel. Res. Organ., Tokyo (Japan). Inst. of Particle and Nucl. Studies; Kubo, J. [Department of Physics, Kanazawa University, Kanazawa 920-1192 (Japan); Mondragon, M. [Instituto de Fisica, UNAM, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-10115 Berlin (Germany)
1998-02-02
Requiring the soft supersymmetry-breaking (SSB) parameters in finite gauge-Yukawa unified models to be finite up to and including two-loop order, we derive a two-loop sum rule for the soft scalar masses. It is shown that this sum rule coincides with that of a certain class of string models in which the massive string states are organized into N=4 supermultiplets. We investigate the SSB sector of two finite SU(5) models. Using the sum rule which allows non-universality of the SSB terms and requiring that the lightest superparticle particle is neutral, we constrain the parameter space of the SSB sector in each model. (orig.). 50 refs.
Multilepton signals of gauge mediated supersymmetry breaking at the LHC
Energy Technology Data Exchange (ETDEWEB)
D' Hondt, Jorgen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); De Causmaecker, Karen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg (France); Mariotti, Alberto [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE (United Kingdom); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Petersson, Christoffer [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium); Department of Fundamental Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Redigolo, Diego [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium)
2014-04-04
We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consists of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS Collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.
Multilepton signals of gauge mediated supersymmetry breaking at the LHC
D'Hondt, Jorgen; Fuks, Benjamin; Mariotti, Alberto; Mawatari, Kentarou; Petersson, Christoffer; Redigolo, Diego
2014-01-01
We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consists of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.
Supersymmetry breaking metastable vacua in runaway quiver gauge theories
Garcia-Etxebarria, Inaki; Uranga, Angel M
2007-01-01
In this paper we consider quiver gauge theories with fractional branes whose infrared dynamics removes the classical supersymmetric vacua (DSB branes). We show that addition of flavors to these theories (via additional non-compact branes) leads to local meta-stable supersymmetry breaking minima, closely related to those of SQCD with massive flavors. We simplify the study of the one-loop lifting of the accidental classical flat directions by direct computation of the pseudomoduli masses via Feynman diagrams. This new approach allows to obtain analytic results for all these theories. This work extends the results for the $dP_1$ theory in hep-th/0607218. The new approach allows to generalize the computation to general examples of DSB branes, and for arbitrary values of the superpotential couplings.
Spontaneous supersymmetry breaking in the two-dimensional N=1 Wess-Zumino model
Steinhauer, Kyle
2014-01-01
We study the phase diagram of the two-dimensional N=1 Wess-Zumino model on the lattice using Wilson fermions and the fermion loop formulation. We give a complete nonperturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase we observe the emergence of the Goldstino particle.
Spontaneous supersymmetry breaking in the 2d N=1 Wess-Zumino model
Baumgartner, David; Wenger, Urs
2013-01-01
We study the phase diagram of the two-dimensional N=1 Wess-Zumino model using Wilson fermions and the fermion loop formulation. We give a complete non-perturbative determination of the ground state structure in the continuum and infinite volume limit. We also present a determination of the particle spectrum in the supersymmetric phase, in the supersymmetry broken phase and across the supersymmetry breaking phase transition. In the supersymmetry broken phase we observe the emergence of the Goldstino particle.
The wave function of the universe and spontaneous breaking of supersymmetry
Obregón, O; Socorro, J; Tkach, V I
1998-01-01
In this work we define a scalar product ``weighted'' with the scalar factor $R$ and show how to find a normalized wave function for the supersymmetric quantum FRW cosmological model using the idea of supersymmetry breaking selection rules under local n=2 conformal supersymmetry. We also calculate the expectation value of the scalar factor R in this model and its corresponding behaviour.
Tera Scale Remnants of Unification and Supersymmetry at Planck Scale
Kawamura, Yoshiharu
2013-01-01
We predict new particles at the Tera scale based on the assumptions that the standard model gauge interactions are unified around the gravitational scale with a big desert and new particles originate from hypermultiplets as remnants of supersymmetry, and propose a theoretical framework at the Tera scale and beyond, that has predictability.
Large trilinear $A_t$ soft supersymmetry breaking coupling from 5D MSSM
Abdalgabar, Ammar
2015-01-01
The possibility of generating a large trilinear $A_t$ soft supersymmetry breaking coupling at low energies through renormalisation group evolution in the 5D MSSM is investigated. Using the power law running in five dimensions and a compactification scale in the 10-$10^3$ TeV range, to show that gluino mass may drive a large enough $A_t$ to reproduce the measured Higgs mass and have a light stop superpartner below $\\sim 1$ TeV as preferred by the fine tuning argument for the Higgs mass.
A Gauge Mediation Model of Dynamical Supersymmetry Breaking without Color Instability
Nomura, Y; Yanagida, T; Nomura, Yasunori
1998-01-01
We construct a gauge mediation model of dynamical supersymmetry breaking (DSB) based on a vector-like gauge theory, in which there is a unique color-preserving true vacuum. The DSB scale $\\Lambda$ turns out to be as high as $\\Lambda \\simeq 10^{8-9} GeV$, since the transmission of the DSB effects to the standard model sector is completed through much higher loops. This model is perfectly natural and phenomenologically consistent. We also stress that the dangerous D-term problem for the messenger U(1)_m is automatically solved by a charge conjugation symmetry in the vector-like gauge theory.
Supersymmetry Breaking through Boundary Conditions Associated with the $U(1)_{R}$
Takenaga, K
1998-01-01
The effects of boundary conditions imposed on the fields for the compactified space directions to the supersymmetric theories are discussed. The boundary conditions can be taken to be periodic up to the degrees of freedom of localized $U(1)_{R}$ transformations. The boundary condition breaks the supersymmetry to yield universal soft supersymmetry breaking terms. The 4-dimensional supersymmetric QED with one flavour and the pure supersymmetric QCD are studied as toy models when one of the space coordinates is compactified on $S^1$.
Li, Tianjun
2010-01-01
In Grand Unified Theories (GUTs) from orbifold and various string constructions the generic vector-like particles do not need to form complete SU(5) or SO(10) representations. To realize them concretely, we present orbifold SU(5) models, orbifold SO(10) models where the gauge symmetry can be broken down to flipped SU(5) X U(1)_X or Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R gauge symmetries, and F-theory SU(5) models. Interestingly, these vector-like particles can be at the TeV-scale so that the lightest CP-even Higgs boson mass can be lifted, or play the messenger fields in the Gauge Mediated Supersymmetry Breaking (GMSB). Considering GMSB, ultraviolet insensitive Anomaly Mediated Supersymmetry Breaking (AMSB), and the deflected AMSB, we study the general gaugino mass relations and their indices, which are valid from the GUT scale to the electroweak scale at one loop, in the SU(5) models, the flipped SU(5) X U(1)_X models, and the Pati-Salam SU(4)_C X SU(2)_L X SU(2)_R models. In the deflected AMSB, we also defi...
Varying the Universality of Supersymmetry-Breaking Contributions to MSSM Higgs Boson Masses
Ellis, Jonathan Richard; Sandick, Pearl
2008-01-01
We consider the minimal supersymmetric extension of the Standard Model (MSSM) with varying amounts of non-universality in the soft supersymmetry-breaking contributions to the Higgs scalar masses. In addition to the constrained MSSM (CMSSM) in which these are universal with the soft supersymmetry-breaking contributions to the squark and slepton masses at the input GUT scale, we consider scenarios in which both the Higgs scalar masses are non-universal by the same amount (NUHM1), and scenarios in which they are independently non-universal (NUHM2). We show how the NUHM1 scenarios generalize the (m_{1/2}, m_0) planes of the CMSSM by allowing either mu or m_A to take different (fixed) values and we also show how the NUHM1 scenarios are embedded as special cases of the more general NUHM2 scenarios. Generalizing from the CMSSM, we find regions of the NUHM1 parameter space that are excluded because the LSP is a selectron. We also find new regions where the neutralino relic density falls within the range preferred by ...
Low-Energy Brane-World Effective Actions and Partial Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Klein, Matthias
2003-03-18
As part of a programme for the general study of the low-energy implications of supersymmetry breaking in brane-world scenarios, we study the nonlinear realization of supersymmetry which occurs when breaking N = 2 to N = 1 supergravity. We consider three explicit realizations of this supersymmetry breaking pattern, which correspond to breaking by one brane, by one antibrane or by two (or more) parallel branes. We derive the minimal field content, the effective action and supersymmetry transformation rules for the resulting N = 1 theory perturbatively in powers of {kappa} = 1/M{sub Planck}. We show that the way the massive gravitino and spin-1 fields assemble into N = 1 multiplets implies the existence of direct brane-brane contact interactions at order {Omicron}({kappa}). This result is contrary to the {Omicron}({kappa}{sup 2}) predicted by the sequestering scenario but in agreement with recent work of Anisimov et al. Our low-energy approach is model independent and is a first step towards determining the low-energy implications of more realistic brane models which completely break all supersymmetries.
Fuks, Benjamin; Klasen, Michael
2011-01-01
In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.
Phenomenology of anomaly-mediated supersymmetry-breaking scenarios with nonminimal flavor violation
Fuks, Benjamin; Herrmann, Björn; Klasen, Michael
2012-07-01
In minimal anomaly-mediated supersymmetry-breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to nonminimal flavor-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry-breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavor-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of nonminimal flavor violation in anomaly-mediated supersymmetry-breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1
2011-12-15
In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.
Analysis on a Nambu--Jona-Lasinio Model of Dynamical Supersymmetry Breaking
Cheng, Yifan; Faisel, Gaber; Kong, Otto C W
2016-01-01
This is a report on our newly proposed model of dynamical supersymmetry breaking with some details of the analysis involved. The model in the simplest version has only a chiral superfield (multiplet), with a strong four-superfield interaction in the K\\"ahler potential that induces a real two-superfield composite with vacuum condensate. The latter has supersymmetry breaking parts, which we show to bear nontrivial solution following basically a standard nonperturbative analysis for a Nambu--Jona-Lasinio type model on a superfield setting. The real composite superfield has a spin one component but is otherwise quite unconventional. We discuss also the parallel analysis for the effective theory with the composite. Plausible vacuum solutions are illustrated and analyzed. The supersymmetry breaking solutions have generated soft mass(es) for the scalar avoiding the vanishing supertrace condition for the squared-masses of the superfield components. We also present some analysis of the resulted low energy effective th...
Sequestered String Models: Supersymmetry Breaking and Cosmological Applications
Muia, Francesco
2016-01-01
In the present thesis I studied the phenomenology arising from a class of string models called sequestered compactifications, which were born with the aim of getting low-energy SUSY from strings. This is not an easy task if combined with cosmological constraints, since the mechanism of moduli stabilization fixes both the scale of supersymmetric particles and the scale of moduli, which tend to be of the same order. However, if on the one hand supersymmetric particles with TeV mass are desired in order to address the hierarchy problem, on the other hand the cosmological moduli problem requires the moduli to be heavier than 100 TeV. The specific setup of sequestered compactifications makes this hierarchy achievable, at least in principle: as in these models the visible sector is located on a stack of D3-branes at singularities, a physical separation between the visible degrees of freedom and the SUSY-breaking sources takes place. Such decoupling translates into a hierarchy between the scale of SUSY-breaking and ...
Fuks, Benjamin; Herrmann, Björn; Klasen, Michael
2009-03-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Fuks, B; Klasen, M
2008-01-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79106 Freiburg im Breisgau (Germany); Herrmann, Bjoern [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr
2009-03-21
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Supersymmetry breaking on the lattice: the N=1 Wess-Zumino model
Baumgartner, David; Wenger, Urs
2011-01-01
We discuss spontaneous supersymmetry breaking in the N=1 Wess-Zumino model in two dimensions on the lattice using Wilson fermions and the fermion loop formulation. In that formulation the fermion sign problem related to the vanishing of the Witten index can be circumvented and the model can be simulated very efficiently using the recently introduced open fermion string algorithm. We present first results for the supersymmetry breaking phase transition and sketch the preliminary determination of a renormalised critical coupling in the continuum limit.
Supersymmetry breaking and gauge mediation in models with a generic superpotential
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro [Los Alamos National Laboratory; Ookouchi, Yutaka [CANADA
2008-01-01
In this note, we present a transparent scheme for finding or creating a (meta)stable vacuum in general supersymmetric models. We derive general conditions for having a supersymmetry breaking vacuum by connecting different models by a coordinate transformation, which is an application of the method used in [16]. In particular, we find that there can be a metastable supersymmetry breaking vacuum in models with the canonical Kahler potential and a generic superpotential. For example, the Wess-Zumino model coupled to the messenger fields possesses a metastable vacuum if coefficients of the superpotential terms satisfy certain inequalities.
Indirect Probes of Supersymmetry Breaking in the JEM-EUSO Observatory
Albuquerque, Ivone F M
2012-01-01
In this paper we propose indirect probes of the scale of supersymmetry breaking, through observations in the Extreme Universe Space Observatory onboard Japanese Experiment Module (JEM-EUSO). We consider scenarios where the lightest supersymmetric particle is the gravitino, and the next to lightest (NLSP) is a long lived slepton. We demonstrate that JEM-EUSO will be able to probe models where the NLSP decays, therefore probing supersymmetric breaking scales below $5 \\times 10^6$ GeV. The observatory field of view will be large enough to detect a few tens of events per year, depending on its energy threshold. This is complementary to a previous proposal (Albuquerque et al., 2004) where it was shown that 1 Km$^3$ neutrino telescopes can directly probe this scale. NLSPs will be produced by the interaction of high energy neutrinos in the Earth. Here we investigate scenarios where they subsequently decay, either in the atmosphere after escaping the Earth or right before leaving the Earth, producing taus. These can ...
Supersymmetry breaking as a new source for the generalized uncertainty principle
Faizal, Mir
2016-06-01
In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee-Wick field theories.
Energy Technology Data Exchange (ETDEWEB)
Krivoshchekov, V.L.; Slavnov, A.A.; Chekhov, L.O.
1988-01-01
An effective meson action is constructed for supersymmetric quantum chromodynamics (SUSY-QCD) in the framework of the 1/N expansion. It is shown that there is no dynamical spontaneous breaking of the supersymmetry. The explicit expression obtained for the low-energy action with allowance for the anomaly is the supersymmetric generalization of the Weinberg-Wess-Zumino-Witten action.
Note on Mediation of Supersymmetry Breaking from Closed to Open Strings
Antoniadis, Ignatios; Antoniadis, Ignatios; Taylor, Tomasz R.
2005-01-01
We discuss the mediation of supersymmetry breaking from closed to open strings, extending and improving previous analysis of the authors in Nucl. Phys. B 695 (2004) 103 [hep-th/0403293]. In the general case, we find the absence of anomaly mediation around any perturbative string vacuum. When supersymmetry is broken by Scherk-Schwarz boundary conditions along a compactification interval perpendicular to a stack of D-branes, the gaugino acquires a mass at two loops that behaves as $m_{1/2}\\sim g^4 m_{3/2}^3$ in string units, where $m_{3/2}$ is the gravitino mass and $g$ is the gauge coupling.
Partial ${\\cal N}=2 \\to {\\cal N}=1$ supersymmetry breaking and gravity deformed chiral rings
David, J R; Narain, K S; David, Justin R.; Gava, Edi
2004-01-01
We present a derivation of the chiral ring relations, arising in ${\\cal N}=1$ gauge theories in the presence of (anti-)self-dual background gravitational field $G_{\\alpha\\beta\\gamma}$ and graviphoton field strength $F_{\\alpha\\beta}$. These were previously considered in the literature in order to prove the relation between gravitational F-terms in the gauge theory and coefficients of the topological expansion of the related matrix integral. We consider the spontaneous breaking of ${\\cal N} =2$ to ${\\cal N} =1$ supergravity coupled to vector- and hyper-multiplets, and take a rigid limit which keeps a non-trivial $G_{\\alpha\\beta\\gamma}$ and $F_{\\alpha\\beta}$ with a finite supersymmetry breaking scale. We derive the resulting effective, global, ${\\cal N}=1$ theory and show that the chiral ring relations are just a consequence of the standard ${\\cal N}=2$ supergravity Bianchi identities . We can also obtain models with matter in different representations and in particular quiver theories. We also show that, in the...
Six-dimensional origin of gravity mediated brane to brane supersymmetry breaking
Diamandis, G A; Kouroumalou, P; Lahanas, A B
2013-01-01
Four dimensional supergravities may be the right framework to describe particle physics at low energies. Its connection to the underlying string theory can be implemented through higher dimensional supergravities which bear special characteristics. Their reduction to four dimensions breaks supersymmetry whose magnitude depends both on the compactifying manifold and the mechanism that generates the breaking. In particular compactifications, notably on a $S_1/Z_2$ orbifold, the breaking of supersymmetry occuring on a hidden brane, residing at one end of $S_1/Z_2$, is communicated to the visible brane which lies at the other end, via gravitational interactions propagating in the bulk. This scenario has been exemplified in the framework of the $N=2$, $D=5$ supergravity. In this note, motivated by the recent developments in the field, related to the six-dimensional description of the supergravity theory, we study the $N=2$, $D=5$ supergravity theory as originating from a $D=6$ supergravity which, in addition to th...
New Supersoft Supersymmetry Breaking Operators and a Solution to the $\\mu$ Problem
Nelson, Ann E
2015-01-01
We propose the framework, "generalized supersoft supersymmetry breaking." "Supersoft" models, with D-type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and CP problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, $\\mu$) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T-parameter. In this work we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new $\\mu$-term can give unequal masses to ...
Brane induced supersymmetry breaking and de Sitter supergravity
Energy Technology Data Exchange (ETDEWEB)
Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)
2016-02-12
We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.
Perturbative and Non-Perturbative Partial Supersymmetry Breaking $N=4 \\to N=2 \\to N=1$
Kiritsis, Elias B
1997-01-01
We show the existence of a supersymmetry breaking mechanism in string theory, where N=4 supersymmetry is broken spontaneously to N=2 and N=1 with moduli dependent gravitino masses. The spectrum of the spontaneously broken theory with lower supersymmetry is in one-to-one correspondence with the spectrum of the heterotic N=4 string. The mass splitting of the N=4 spectrum depends on the compactification moduli as well as the three R-symmetry charges. In the large moduli limit a restoration of the N=4 supersymmetry is obtained. As expected the graviphotons and some of the gauge bosons become massive in N=1 vacua. At some special points of the moduli space some of the N=4 states with non-zero winding numbers and with spin 0 and {1/2} become massless chiral superfields of the unbroken N=1 supersymmetry. Such vaccua have a dual type II description, in which there are magnetically charged states with spin 0 and {1/2} that become massless. The heterotic-type II duality suggests some novel non-perturbative transitions ...
θ13 and the Higgs Mass from High Scale Supersymmetry
Institute of Scientific and Technical Information of China (English)
LIU Chun; ZHAO Zhen-Hua
2013-01-01
In the framework in which supersymmetry is used for understanding fermion masses rather than stabilizing the electroweak scale,we elaborate on the phenomenological analysis for the neutrino physics.A relatively large sin θ13(∽)0.13 is naturally obtained.The model further predicts vanishingly small CP violation in neutrino oscillations.While the high scale supersymmetry generically results in a Higgs mass of about 141 GeV,our model reduces this mass to 126 GeV via introducing SU(2)L triplet fields which make the electroweak vacuum metastable (with a safe lifetime) and also contribute to neutrino masses.
Supersymmetry breaking, conserved charges and stability in N=1 Super KdV
Restuccia, A
2012-01-01
We analyse the non-abelian algebra and the supersymmetric cohomology associated to the local and non-local conserved charges of N=1 SKdV under Poisson brackets. We then consider the breaking of the supersymmetry and obtain an integrable model in terms of Clifford algebra valued fields. We discuss the remaining conserved charges of the new system and the stability of the solitonic solutions.
Gauge/gravity duality and meta-stable dynamical supersymmetry breaking
Argurio, R; Franco, S; Kachru, S; Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit
2007-01-01
We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua.
Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry
Energy Technology Data Exchange (ETDEWEB)
Choi, Kiwoon, E-mail: kchoi@kaist.ac.kr [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)
2010-11-01
There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.
Generalized Supersoft Supersymmetry Breaking and a Solution to the μ Problem
Nelson, Ann E.; Roy, Tuhin S.
2015-05-01
We propose the framework generalized supersoft supersymmetry breaking. "Supersoft" models, with D -type supersymmetry breaking and heavy Dirac gauginos, are considerably less constrained by the LHC searches than the well studied MSSM. These models also ameliorate the supersymmetric flavor and C P problems. However, previously considered mechanisms for obtaining a natural size Higgsino mass parameter (namely, μ ) in supersoft models have been relatively complicated and contrived. Obtaining a 125 GeV for the mass of the lightest Higgs boson has also been difficult. Additional issues with the supersoft scenario arise from the fact that these models contain new scalars in the adjoint representation of the standard model, which may obtain negative squared-masses, breaking color and generating too large a T parameter. In this Letter, we introduce new operators into supersoft models which can potentially solve all these issues. A novel feature of this framework is that the new μ term can give unequal masses to the up and down type Higgs fields, and the Higgsinos can be much heavier than the Higgs boson without fine-tuning. However, unequal Higgs and Higgsino masses also remove some attractive features of supersoft supersymmetry.
Vacuum stability and supersymmetry at high scales with two Higgs doublets
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Buchmueller, W.; Voigt, A.; Weiglein, G. [DESY Hamburg (Germany); Bruemmer, F. [Montpellier Univ. (France). Lab. Univers et Particules de Montpellier
2016-02-15
We investigate the stability of the electroweak vacuum for two-Higgs doublet models with a supersymmetric UV completion. The supersymmetry breaking scale is taken to be of the order of the grand unification scale. We first study the case where all superpartners decouple at this scale. We show that contrary to the Standard Model with one Higgs doublet, matching to the supersymmetric UV completion is possible if the low-scale model contains two Higgs doublets. In this case vacuum stability and experimental constraints point towards low values of tanβ
Supersymmetry and R-symmetry Breaking in Meta-stable Vacua at Finite Temperature and Density
Arai, Masato; Sasaki, Shin
2014-01-01
We study a meta-stable supersymmetry-breaking vacuum in a generalized O'Raifeartaigh model at finite temperature and chemical potentials. Fields in the generalized O'Raifeartaigh model possess different R-charges to realize R-symmetry breaking. Accordingly, at finite density and temperature, the chemical potentials have to be introduced in a non-uniform way. Based on the formulation elaborated in our previous work we study the one-loop thermal effective potential including the chemical potentials in the generalized O'Raifeartaigh model. We perform the numerical analysis and find that the R-symmetry breaking vacua, which exist at zero temperature and zero chemical potential, are destabilized for some parameter regions. In addition, we find that there are parameter regions where new R-symmetry breaking vacua are realized even at high temperature by the finite density effects.
Choi, Kiwoon; Hwang, Kyuwan; Song, Wan Young
2002-04-01
In supersymmetric models with nonzero Majorana neutrino mass, the sneutrino and antisneutrino mix, which may lead to same-sign dilepton signals in future collider experiments. We point out that the anomaly-mediated supersymmetry breaking scenario has a good potential to provide an observable rate of such signals for the neutrino masses suggested by the atmospheric and solar neutrino oscillations. It is noted also that the sneutrino-antisneutrino mixing can provide much stronger information on some combinations of the neutrino masses and mixing angles than the neutrino experiments.
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wells, James D. [CERN, Geneva (Switzerland)
2012-08-01
We investigate the implications of models that achieve a Standard Model-like Higgs boson of mass near 125 GeV by introducing additional TeV-scale supermultiplets in the vector-like 10+\\bar{10} representation of SU(5), within the context of gauge-mediated supersymmetry breaking. We study the resulting mass spectrum of superpartners, comparing and contrasting to the usual gauge-mediated and CMSSM scenarios, and discuss implications for LHC supersymmetry searches. This approach implies that exotic vector-like fermions t'_{1,2}, b',and \\tau' should be within the reach of the LHC. We discuss the masses, the couplings to electroweak bosons, and the decay branching ratios of the exotic fermions, with and without various unification assumptions for the mass and mixing parameters. We comment on LHC prospects for discovery of the exotic fermion states, both for decays that are prompt and non-prompt on detector-crossing time scales.
D-foam-induced flavor condensates and breaking of supersymmetry in free Wess-Zumino fluids
Mavromatos, N E; Tarantino, W
2011-01-01
Recently {[}N. E. Mavromatos and S. Sarkar, New J. Phys. 10, 073009 (2008); N. E. Mavromatos, S. Sarkar, and W. Tarantino, Phys. Rev. D 80, 084046 (2009)], we argued that a particular model of string-inspired quantum space-time foam (D-foam) may induce oscillations and mixing among flavored particles. As a result, rather than the mass-eigenstate vacuum, the correct ground state to describe the underlying dynamics is the flavor vacuum, proposed some time ago by Blasone and Vitiello as a description of quantum field theories with mixing. At the microscopic level, the breaking of target-space supersymmetry is induced in our space-time foam model by the relative transverse motion of brane defects. Motivated by these results, we show that the flavor vacuum, introduced through an inequivalent representation of the canonical (anti-) commutation relations, provides a vehicle for the breaking of supersymmetry at a low-energy effective field-theory level; on considering the flavor-vacuum expectation value of the energy...
Search for Supersymmetry with Gauge-Mediated Breaking in Diphoton Events at D0
Abazov, V M; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Agram, J L; Ahmed, S N; Ahn, S H; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Åsman, B; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Beaudette, F; Begel, M; Beri, S B; Bernardi, G; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Binder, M; Bischoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Bloch, D; Blumenschein, U; Böhnlein, A; Bolton, T; Bonamy, P; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystrický, J; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Chopra, S; Christiansen, T; Christofek, L; Claes, D; Clark, A R; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Del Signore, K; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisk, H E; Fleuret, F; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Geurkov, G; Ginther, G; Goldmann, K S; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Graham, G; Grannis, P D; Greder, S; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Grivaz, J F; Groer, L S; Grünendahl, S; Grünewald, M W; Gu, W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggerty, H; Hagopian, S L; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Hanlet, P; Harder, K; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Hu, Y; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kouchner, A; Kuznetsov, O; Kozelov, A V; Kozminski, J; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Kuznetsov, V E; Lager, S; Lahrichi, N; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Lobo, L; Lobodenko, A A; Lokajícek, M; Lounis, A; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L H; Luo, C; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Magnan, A M; Maity, M; Mal, P K; Malik, S; Malyshev, V L; Manankov, V; Mao, H S; Maravin, Y; Marshall, T; Martens, M; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Meng, X; Merkin, M; Merritt, K W B; Meyer, A; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mitrevski, J; Mokhov, N V; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M A; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Olivier, B; Oshima, N; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L K; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pope, B G; Popkov, E; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Shabalina, E; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Slattery, P F; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Stanton, N R; Stark, J; Steele, J; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tuchming, B; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vlimant, J R; Von Törne, E; Vreeswijk, M; Vu-Anh, T; Wahl, H D; Walker, R; Wallace, N; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wu, Z; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhou, Z; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A
2004-01-01
We report the results of a search for supersymmetry (SUSY) with gauge-mediated breaking in the missing transverse energy distribution of inclusive diphoton events using 263 pb$^{-1}$ of data collected by the D0 experiment at the Fermilab Tevatron Collider in 2002--2004. No excess is observed above the background expected from standard model processes, and lower limits on the masses of the lightest neutralino and chargino of about 108 and 195 GeV, respectively, are set at the 95% confidence level. These are the most stringent limits to date for models with gauge-mediated SUSY breaking with a short-lived neutralino as the next-lightest SUSY particle.
On the Role of Space-Time Foam in Breaking Supersymmetry via the Barbero-Immirzi Parameter
Ellis, John
2011-01-01
We discuss how: (i) a dilaton/axion superfield can play the role of a Barbero-Immirzi field in four-dimensional conformal quantum supergravity theories, (ii) a fermionic component of such a dilaton/axion superfield may play the role of a Goldstino in the low-energy effective action obtained from a superstring theory with F-type global supersymmetry breaking, (iii) this global supersymmetry breaking is communicated to the gravitational sector via the supergravity coupling of the Goldstino, and (iv) such a scenario may be realized explicitly in a D-foam model with D-particle defects fluctuating stochastically.
The Supersymmetry Soft-breaking Lagrangian Where Experiment and String Theory Meet
Kane, G L
2000-01-01
After an introduction recalling that we expect low energy supersymmetry to be part of our description of nature because of considerable indirect evidence and successful predictions, and a discussion of the essential role of data for formulating and testing string theory, these lectures focus on the role of the supersymmetry soft-breaking Lagrangian in connecting experiment and string theory. How to measure tan$\\beta$ and the soft parameters is examined via a number of applications, and the difficulty of measuring tan$\\beta$ at hadron colliders is explained. In each case the important role of soft phases is made explicit, and the true number of parameters is counted. Applications include the chargino and neutralino sectors, the Higgs sector and how its results change when phases are included, measuring the (relative) gluino phase, CP violation in K and B systems and whether all CP violation can be due to soft phases, how to learn if the LSP is the cold dark matter of the universe, and baryogenesis. It is empha...
The 750 GeV diphoton excess as a first light on supersymmetry breaking
Casas, J. A.; Espinosa, J. R.; Moreno, J. M.
2016-08-01
One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Γ ≃ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.
The 750 GeV diphoton excess as a first light on supersymmetry breaking
Directory of Open Access Journals (Sweden)
J.A. Casas
2016-08-01
Full Text Available One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Γ≃45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.
The 750 GeV Diphoton Excess as a First Light on Supersymmetry Breaking
Casas, J A; Moreno, J M
2015-01-01
One of the most exciting explanations advanced for the recent diphoton excess found by ATLAS and CMS is in terms of sgoldstino decays: a signal of low-energy supersymmetry-breaking scenarios. The sgoldstino, a scalar, couples directly to gluons and photons, with strength related to gaugino masses, that can be of the right magnitude to explain the excess. However, fitting the suggested resonance width, Gamma ~ 45 GeV, is not so easy. In this paper we explore efficient possibilities to enhance the sgoldstino width, via the decay into two Higgses, two Higgsinos and through mixing between the sgoldstino and the Higgs boson. In addition, we present an alternative and more efficient mechanism to generate a mass splitting between the scalar and pseudoscalar components of the sgoldstino, which has been suggested as an interesting alternative explanation to the apparent width of the resonance.
Rajagopalan, Shibi
2010-01-01
In this thesis we examine three different models in the MSSM context, all of which have significant supergravity anomaly contributions to their soft masses. These models are the so-called Minimal, Hypercharged, and Gaugino Anomaly Mediated Supersymmetry Breaking models. We explore some of the string theoretical motivations for these models and proceed by understanding how they would appear at the Large Hadron Collider (LHC). Our major results include calculating the LHC reach for each model's parameter space and prescribing a method for distinguishing the models after the collection of 100 fb^-1 at sqrt{s}=14 TeV. AMSB models are notorious for predicting too low a dark matter relic density. To counter this argument we explore several proposed mechanisms for $non$-$thermal$ dark matter production that act to augment abundances from the usual thermal calculations. Interestingly, we find that future direct detection dark matter experiments potentially have a much better reach than the LHC for these models.
Dynamical Supersymmetry Breaking versus Run-away behavior in Supersymmetric Gauge Theories
Shirman, Yu
1996-01-01
We consider Dynamical Supersymmetry Breaking (DSB) in models with classical flat directions. We analyze a number of examples, and develop a systematic approach to determine if classical flat directions are stabilized in the full quantum theory, or lead to run-away behavior. In some cases pseudo-flat directions remain even at the quantum level before taking into account corrections to the Kähler potential. We show that in certain limits these corrections are calculable. In particular, we find that in the Intriligator-Thomas $SU(2)$ and its generalizations, a potential for moduli is generated. Moreover, there is a region of the parameter space where Kähler potential corrections lead to calculable (local) minima at large but finite distance from the origin.
de Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications
Buchmuller, Wilfried; Dierigl, Markus; Ruehle, Fabian; Schweizer, Julian
2016-07-01
We consider six-dimensional supergravity with Abelian bulk flux compactified on an orbifold. The effective low-energy action can be expressed in terms of N =1 chiral moduli superfields with a gauged shift symmetry. The D -term potential contains two Fayet-Iliopoulos terms which are induced by the flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The Green-Schwarz term also leads to a correction of the gauge kinetic function which turns out to be crucial for the existence of Minkowski and de Sitter vacua. Moduli stabilization is achieved by the interplay of the D -term and a nonperturbative superpotential. Varying the gauge coupling and the superpotential parameters, the scale of the extra dimensions can range from the GUT scale down to the TeV scale. Supersymmetry is broken by F - and D -terms, and the scale of gravitino, moduli, and modulini masses is determined by the size of the compact dimensions.
Energy Technology Data Exchange (ETDEWEB)
Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics
1997-12-01
Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.
Energy Technology Data Exchange (ETDEWEB)
Faraggi, A.E. [Univ. of Florida, Gainesville, FL (United States). Dept. of Physics; Pati, J.C. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics
1997-12-01
Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m {approx} 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1){sub A}, compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1){sub A} is the cyclic permutation symmetry that characterizes the Z{sub 2} x Z{sub 2} orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1){sub A} leads to squark degeneracy, those of the family dependent U(1)`s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential.
Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry
Choi, Kiwoon; Im, Sang Hui
2016-01-01
We discuss a scheme to implement the relaxion solution to the hierarchy problem with multiple axions, and present a UV-completed model realizing the scheme. All of the N axions in our model are periodic with a similar decay constant f well below the Planck scale. In the limit N ≫ 1, the relaxion ϕ corresponds to an exponentially long multi-helical flat direction which is shaped by a series of mass mixing between nearby axions in the compact field space of N axions. With the length of flat direction given by Δ ϕ = 2 πf eff ˜ e ξN f for ξ = O(1) , both the scalar potential driving the evolution of φ during the inflationary epoch and the ϕ-dependent Higgs boson mass vary with an exponentially large periodicity of O{f}_{eff}) , while the back reaction potential stabilizing the relaxion has a periodicity of O(f) . A natural UV completion of our scheme can be found in high scale or (mini) split supersymmetry (SUSY) scenario with the axion scales generated by SUSY breaking as f˜ √{m_{SUSY}{M}_{ast }} , where the soft SUSY breaking scalar mass m SUSY can be well above the weak scale, and the fundamental scale M * can be identified as the Planck scale or the GUT scale.
Supersymmetry Parameter Analysis
Kalinowski, Jan
2002-01-01
Supersymmetric particles can be produced copiously at future colliders. From the high-precision data taken at e+e- linear colliders, TESLA in particular, and combined with results from LHC, and CLIC later, the low-energy parameters of the supersymmetric model can be determined. Evolving the parameters from the low-energy scale to the high-scale by means of renormalization group techniques the fundamental supersymmetry parameters at the high scale, GUT or Planck, can be reconstructed to reveal the origin of supersymmetry breaking.
Self-Dual Tensors and Partial Supersymmetry Breaking in Five Dimensions
Grimm, Thomas W
2014-01-01
We study spontaneous supersymmetry breaking of five-dimensional supergravity theories from sixteen to eight supercharges in Minkowski vacua. This N=4 to N=2 breaking is induced by Abelian gaugings that require the introduction of self-dual tensor fields accompanying the vectors in the gravity multiplet and vector multiplets. These tensor fields have first-order kinetic terms and can become massive by a Stueckelberg-like mechanism. We identify the general class of N=2 vacua and show how the N=4 spectrum splits into massless and massive N=2 multiplets. In particular, we find a massive gravitino multiplet, containing two complex massive tensors, and a number of massive tensor multiplets and hypermultiplets. We determine the resulting N=2 effective action for the massless multiplets obtained by integrating out massive fields. We show that the metric and Chern-Simons terms of the vectors are corrected at one-loop by massive tensors as well as spin-1/2 and spin-3/2 fermions. These contributions are independent of t...
Muon g -2 in gauge mediated supersymmetry breaking models with adjoint messengers
Gogoladze, Ilia; Ün, Cem Salih
2017-02-01
We explored the sparticle mass spectrum in light of the muon g -2 anomaly and the little hierarchy problem in a class of the gauge mediated supersymmetry breaking model. Here, the messenger fields transform in the adjoint representation of the Standard Model gauge symmetry. To avoid unacceptably light right-handed slepton masses, the Standard Model is supplemented by the additional U (1 )B-L gauge symmetry. A nonzero U (1 )B-L D term makes the right-handed slepton masses compatible with the current experimental bounds. We show that in the framework of Λ3muon g -2 anomaly and the observed 125 GeV Higgs boson mass can be simultaneously accommodated. The slepton masses in this case are predicted to lie in the few hundred GeV range, which can be tested at the LHC. Despite the heavy colored sparticle spectrum, the little hierarchy problem in this model can be ameliorated, and the electroweak fine-tuning parameter can be as low as 10 or so.
Supersymmetry and Large Scale Left-Right Symmetry
Aulakh, Charanjit S; Rasin, A; Senjanovic, G; Aulakh, Charanjit S.; Melfo, Alejandra; Rasin, Andrija; Senjanovic, Goran
1998-01-01
We present a systematic study of the construction of large scale supersymmetric left-right theories, by utilizing holomorphic invariants to characterize flat directions, both at the renormalizable and the non-renormalizable level. We show that the low energy limit of the minimal supersymmetric Left-Right models is the supersymmetric standard model with an exact R-parity. Whereas in the renormalizable version the scale of parity breaking is undetermined, in the non-renormalizable one it must be bigger than about $10^{10} - 10^{12}$ GeV. The precise nature of the see-saw mechanism differs in the two versions, and we discuss it at length. In both versions of the theory a number of Higgs scalars and fermions with masses much below the $B-L$ and $SU(2)_R$ breaking scales is predicted. For a reasonable choice of parameters, either charged or doubly-charged such particles may be accesible to experiment.
de Sitter vacua and supersymmetry breaking in six-dimensional flux compactifications
Buchmuller, Wilfried; Ruehle, Fabian; Schweizer, Julian
2016-01-01
We consider six-dimensional supergravity with Abelian bulk flux compactified on an orbifold. The effective low-energy action can be expressed in terms of N=1 chiral moduli superfields with a gauged shift symmetry. The D-term potential contains two Fayet-Iliopoulos terms which are induced by the flux and by the Green-Schwarz term canceling the gauge anomalies, respectively. The Green-Schwarz term also leads to a correction of the gauge kinetic function which turns out to be crucial for the existence of Minkowski and de Sitter vacua. Moduli stabilization is achieved by the interplay of the D-term and a nonperturbative superpotential. Varying the gauge coupling and the superpotential parameters, the scale of the extra dimensions can range from the GUT scale down to the TeV scale. Supersymmetry is broken by F- and D-terms, and the scale of gravitino, moduli, and modulini masses is determined by the size of the compact dimensions.
Volume modulus inflation and a low scale of SUSY breaking
Badziak, M
2008-01-01
The relation between the Hubble constant and the scale of supersymmetry breaking is investigated in models of inflation dominated by a string modulus. Usually in this kind of models the gravitino mass is of the same order of magnitude as the Hubble constant which is not desirable from the phenomenological point of view. It is shown that slow-roll saddle point inflation may be compatible with a low scale of supersymmetry breaking only if some corrections to the lowest order Kahler potential are taken into account. However, choosing an appropriate Kahler potential is not enough. There are also conditions for the superpotential, and e.g. the popular racetrack superpotential turns out to be not suitable. A model is proposed in which slow-roll inflation and a light gravitino are compatible. It is based on a superpotential with a triple gaugino condensation and the Kahler potential with the leading string corrections. The problem of fine tuning and experimental constraints are discussed for that model.
BUDS 2013
2014-01-01
This is the seventh volume in a series on the general topics of supersymmetry, supergravity, black objects (including black holes), and the attractor mechanism. The present volume is based on lectures held in March 2013 at the INFN-Laboratori Nazionali di Frascati during the Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity Workshop (BUDS 2013), organized by Stefano Bellucci, with the participation of prestigious speakers including P. Aschieri, E. Bergshoeff, M. Cederwall, T. Dennen, P. Di Vecchia, S. Ferrara, R. Kallosh, A. Karlsson, M. Koehn, B. Ovrut, A. Van Proeyen, G. Ruppeiner. Special attention is devoted to discussing topics related to the cancellation of ultraviolet divergences in extended supergravity and Born-Infeld-like actions. All talks were followed by extensive discussions and subsequent reworking of the various contributions, a feature which is reflected in the unique "flavor" of this volume.
The Early Universe with High-Scale Supersymmetry
Zheng, Sibo
2014-01-01
The large tensor-to-scalar ratio reported by BICEP2 collaboration may lead to distinctive phenomenology of high-energy scale. Assuming the same origin of SUSY breaking between inflation and MSSM, we show model independent features in such high-scale SUSY. The simplest hybrid inflation, together with a new linear term for inflaton field which is induced by large gravitino mass, is excluded by BICEP2 data. For superpartner masses far above electroweak scale we estimate the reheating temperature $T_R$ after inflation. We find that $T_R$ might be beneath the value required by thermal leptogenesis if inflaton decays to its products perturbatively, but above it if non-perturbatively instead. Due to kinematically blocking effect the gravitino overproduction can be also evaded in high-scale SUSY.
Simplified R-Symmetry Breaking and Low-Scale Gauge Mediation
Evans, Jason L; Sudano, Matthew; Yanagida, Tsutomu T
2011-01-01
We argue that some of the difficulties in constructing realistic models of low-scale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.
The Higgs mass and the scale of SUSY breaking in the NMSSM
Zarate, Lucila
2016-07-01
In this letter we study the Higgs mass in the NMSSM with supersymmetry breaking at high scales M SS. With the Standard Model as the effective low energy theory, the computation of the Higgs mass relies on the matching condition of the quartic coupling λ at M SS. In the MSSM, the latter is fixed to a semi-positive value and, thus, sets an upper bound on the SUSY-breaking scale near M SS ≃ 1010 GeV. In the NMSSM, λ( M SS) receives an additional contribution induced by the singlet which allows for negative values of λ( M SS). In turn, for the measured value of the Higgs mass we find that M SS can take any value up to the GUT scale. Furthermore, the choice of universal soft terms favors SUSY-breaking scales close to the GUT scale.
The Higgs mass and the scale of SUSY breaking in the NMSSM
Zarate, Lucila
2016-01-01
In this letter we study the Higgs mass in the NMSSM with supersymmetry breaking at high scales $M_{SS}$. With the Standard Model as the effective low energy theory, the computation of the Higgs mass relies on the matching condition of the quartic coupling $\\lambda$ at $M_{SS}$. In the MSSM, the latter is fixed to a semi-positive value and, thus, sets an upper bound on the SUSY-breaking scale near $M_{SS}\\simeq 10^{10}\\text{GeV}$. In the NMSSM, $\\lambda(M_{SS})$ receives an additional contribution induced by the singlet which allows for negative values of $\\lambda(M_{SS})$. In turn, for the measured value of the Higgs mass we find that $M_{SS}$ can take any value up to the GUT scale. Furthermore, the choice of universal soft terms favors SUSY-breaking scales close to the GUT scale.
Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S
2010-01-08
We present the results of a search for supersymmetry with gauge-mediated breaking and chi(1)(0) --> gammaG in the gammagamma + missing transverse energy final state. In 2.6+/-0.2 fb(-1) of pp collisions at square root(s) = 1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4+/-0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149 GeV/c2 on the chi(1)(0) mass at tau(chi(1)(0)) < 1 ns. We also exclude regions in the chi(1)(0) mass-lifetime plane for tau(chi(1)(0)) approximately < 2 ns.
Type 1 2HDM as Effective Theory of Supersymmetry
Institute of Scientific and Technical Information of China (English)
邵华
2012-01-01
It is generally believed that the low energy effective theory of the minimal supersymmetric standard model is the type 2 two Higgs doublet model. We will show that the type 1 two Higge doublet model can also be as the effective of supersymmetry in a specific ease with high scale supersymmetry breaking and gauge mediation. If the other electroweak doublet obtain the vacuum expectation value after the electroweak symmetry breaking, the Higgs spectrum is quite different. A remarkable feature is that the physical Higgs boson mass can be 125 GeV unlike in the ordinary models with high scale supersymmetry in which the Higgs mass is generally around 140 GeV.
Natural Supersymmetry in Warped Space
Heidenreich, Ben
2014-01-01
We explore the possibility of solving the hierarchy problem by combining the paradigms of supersymmetry and compositeness. Both paradigms are under pressure from the results of the Large Hadron Collider (LHC), and combining them allows both a higher confinement scale -- due to effective supersymmetry in the low energy theory -- and heavier superpartners -- due to the composite nature of the Higgs boson -- without sacrificing naturalness. The supersymmetric Randall-Sundrum model provides a concrete example where calculations are possible, and we pursue a realistic model in this context. With a few assumptions, we are led to a model with bulk fermions, a left-right gauge symmetry in the bulk, and supersymmetry breaking on the UV brane. The first two generations of squarks are decoupled, reducing LHC signatures but also leading to quadratic divergences at two loops. The model predicts light $W'$ and $Z'$ gauge bosons, and present LHC constraints on exotic gauge bosons imply a high confinement scale and mild tuni...
Low-ℓ CMB from string-scale SUSY breaking?
Sagnotti, A.
2017-01-01
Models of inflation are instructive playgrounds for supersymmetry (SUSY) breaking in Supergravity and String Theory. In particular, combinations of branes and orientifolds that are not mutually BPS can lead to brane SUSY breaking, a phenomenon where nonlinear realizations are accompanied, in tachyon-free vacua, by the emergence of steep exponential potentials. When combined with milder terms, these exponentials can lead to slow-roll after a fast ascent and a turning point. This leaves behind distinctive patterns of scalar perturbations, where pre-inflationary peaks can lie well apart from an almost scale invariant profile. I review recent attempts to connect these power spectra to the low-ℓ cosmic microwave background (CMB), and a corresponding one-parameter extension of Lambda cold dark matter (ΛCDM) with a low-frequency cut Δ. A detailed likelihood analysis led to Δ = (0.351 ± 0.114) × 10-3Mpc-1, at 99.4% confidence level, in an extended Galactic mask with fsky = 39%, to be compared with a nearby value at 88.5% in the standard Planck 2015 mask with fsky = 94%. In these scenarios, one would be confronted, in the CMB, with relics of an epoch of deceleration that preceded the onset of slow-roll.
Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields
Hernández-Ortíz, S.; Murguía, G.; Raya, A.
2012-01-01
Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one.
Supersymmetry from Typicality: TeV-Scale Gauginos and PeV-Scale Squarks and Sleptons
Nomura, Yasunori; Shirai, Satoshi
2014-09-01
We argue that under a set of simple assumptions the multiverse leads to low-energy supersymmetry with the spectrum often called spread or minisplit supersymmetry: the gauginos are in the TeV region with the other superpartners 2 or 3 orders of magnitude heavier. We present a particularly simple realization of supersymmetric grand unified theory using this idea.
Using rates to measure mixed modulus-anomaly mediated supersymmetry breaking at the LHC
Conley, J A; Glaser, L; Kraemer, M; Tattersall, J
2011-01-01
If SUSY is discovered at the LHC, the task will immediately turn to determining the model of SUSY breaking. Here, we employ a Mixed Modulus-Anomaly Mediated SUSY Breaking (MMAMSB) model with very similar LHC phenomenology to the more conventionally studied Constrained Minimal SUSY Model (CMSSM) and minimal Anomaly Mediated SUSY Breaking (mAMSB) models. We then study whether the models can be distinguished and measured. If we only fit to the various mass edges and mass end-points from cascade decay chains that are normally studied, a unique determination and measurement of the model is problematic without substantial amounts of LHC data. However, if event rate information is included, we can quickly distinguish and measure the correct SUSY model and exclude alternatives.
Supersymmetry breaking and Nambu-Goldstone fermions in an extended Nicolai model
Sannomiya, Noriaki; Nakayama, Yu
2016-01-01
We study a model of interacting spinless fermions in a one dimensional lattice with supersymmetry (SUSY). The Hamiltonian is given by the anti-commutator of two supercharges $Q$ and $Q^\\dagger$, each of which is comprised solely of fermion operators and possesses one adjustable parameter $g$. When the parameter $g$ vanishes, the model is identical to the one studied by Nicolai [H. Nicolai, J. Phys. A: Math. Gen. \\textbf{9}, 1497 (1976)], where the zero-energy ground state is exponentially degenerate. On the other hand, in the large-$g$ limit the model reduces to the free-fermion chain with a four-fold degenerate ground state. We show that for finite chains SUSY is spontaneously broken when $g > 0$. We also rigorously prove that for sufficiently large $g$ the ground-state energy density is nonvanishing in the infinite-volume limit. We further analyze the nature of the low-energy excitations by employing various techniques such as rigorous inequalities, exact numerical diagonalization, and renormalization group...
Neutralino Phenomenology at LEP2 in Supersymmetry with Bilinear Breaking of R-parity
Bartl, Alfred; Restrepo, D A; Romão, J C; Valle, José W F
2001-01-01
We discuss the phenomenology of the lightest neutralino in models where an effective bilinear term in the superpotential parametrizes the explicit breaking of R-parity. We consider supergravity scenarios where the lightest supersymmetric particle (LSP) is the lightest neutralino and which can be explored at LEP2. We present a detailed study of the LSP decay properties and general features of the corresponding signals expected at LEP2.
Directory of Open Access Journals (Sweden)
Ion C. Baianu
2009-04-01
Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.
Supersymmetry in Elementary Particle Physics
Energy Technology Data Exchange (ETDEWEB)
Peskin, Michael E.; /SLAC
2008-02-05
These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.
Cosmological constant in SUGRA models with Planck scale SUSY breaking and degenerate vacua
Froggatt, C D; Nielsen, H B; Thomas, A W
2014-01-01
We argue that the measured value of the cosmological constant, as well as the small values of quartic Higgs self--coupling and the corresponding beta function at the Planck scale, which can be obtained by extrapolating the Standard Model (SM) couplings to high energies, can originate from supergravity (SUGRA) models with degenerate vacua. This scenario is realised if there are at least three exactly degenerate vacua. In the first vacuum, associated with the physical one, local supersymmetry (SUSY) is broken near the Planck scale while the breakdown of the SU(2)_W\\times U(1)_Y symmetry takes place at the electroweak (EW) scale. In the second vacuum local SUSY breaking is induced by gaugino condensation at a scale which is just slightly lower than \\Lambda_{QCD} in the physical vacuum. Finally, in the third vacuum local SUSY and EW symmetry are broken near the Planck scale.
Unified Maximally Natural Supersymmetry
Huang, Junwu
2016-01-01
Maximally Natural Supersymmetry, an unusual weak-scale supersymmetric extension of the Standard Model based upon the inherently higher-dimensional mechanism of Scherk-Schwarz supersymmetry breaking (SSSB), possesses remarkably good fine tuning given present LHC limits. Here we construct a version with precision $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ unification: $\\sin^2 \\theta_W(M_Z) \\simeq 0.231$ is predicted to $\\pm 2\\%$ by unifying $SU(2)_{\\rm L} \\times U(1)_{\\rm Y} $ into a 5D $SU(3)_{\\rm EW}$ theory at a Kaluza-Klein scale of $1/R_5 \\sim 4.4\\,{\\rm TeV}$, where SSSB is simultaneously realised. Full unification with $SU(3)_{\\rm C}$ is accommodated by extending the 5D theory to a $N=4$ supersymmetric $SU(6)$ gauge theory on a 6D rectangular orbifold at $1/R_6 \\sim 40 \\,{\\rm TeV}$. TeV-scale states beyond the SM include exotic charged fermions implied by $SU(3)_{\\rm EW}$ with masses lighter than $\\sim 1.2\\,{\\rm TeV}$, and squarks in the mass range $1.4\\,{\\rm TeV} - 2.3\\,{\\rm TeV}$, providing distinct signature...
An attractor for natural supersymmetry
Cohen, Timothy; Hook, Anson; Torroba, Gonzalo
2012-12-01
We propose an attractor mechanism which generates the more minimal supersymmetric standard model from a broad class of supersymmetry breaking boundary conditions. The hierarchies in the fermion masses and mixings are produced by the same dynamics and a natural weak scale results from gaugino mediation. These features arise from augmenting the standard model with a new SU(3) gauge group under which only the third generation quarks are charged. The theory flows to a strongly interacting fixed point which induces a negative anomalous dimension for the third generation quarks and a positive anomalous dimension for the Higgs. As a result, a split-family natural spectrum and the flavor hierarchies are dynamically generated.
BOOK REVIEW: Modern Supersymmetry
Kulish, Petr P.
2006-12-01
We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad
Acosta, D; Affolder, T; Akimoto, T; Albrow, M G; Ambrose, D; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Arguin, J F; Artikov, A; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W; Barbaro-Galtieri, A; Barker, G J; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bellettini, G; Bellinger, J; Ben-Haim, E; Benjamin, D; Beretvas, A; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, D; Boudreau, J; Bourov, S; Bromberg, C; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canepa, A; Casarsa, M; Carlsmith, D; Carron, S; Carosi, R; Cavalli-Sforza, M; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Chu, M L; Chuang, S; Chung, J Y; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Clark, D; Coca, M; Connolly, A; Convery, M; Conway, J; Cooper, B; Cordelli, M; Cortiana, G; Cranshaw, J; Cuevas-Maestro, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; De Barbaro, P; De Cecco, S; De Lentdecker, G; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; Donega, M; Donini, J; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Flanagan, G; Flaugher, B; Flores-Castillo, L R; Foland, A; Forrester, S; Foster, G W; Franklin, M; Freeman, J C; Frisch, H; Fujii, Y; Furic, I; Gajjar, A; Gallas, A; Galyardt, J; Gallinaro, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D W; Gerchtein, E; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, D; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Griffiths, M; Grosso-Pilcher, C; Grundler, U; Günther, M; Guimarães da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Hayward, H; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Huang, Y; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jeon, E J; Jones, M; Joo, K K; Jun, S; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kobayashi, H; Koehn, P; Kong, D J; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T; Lee, J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loreti, M; Loverre, P F; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, M; Martin, A; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; NcNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Mohr, B; Moore, R; Morello, M; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Napora, R; Naumov, D V; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A S; Nigmanov, T; Nodulman, L; Norniella, O; Österberg, K; Ogawa, T; Oh, S H; Oh, Y D; Ohsugi, T; Okusawa, T; Oldeman, R G C; Orava, R; Orejudos, W; Pagliarone, C; Palencia, E; Paoletti, R; Papadimitriou, V; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Plager, C; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Rusu, V; Ruiz, A; Ryan, D; Saarikko, H; Sabik, S; Safonov, A; Saint-Denis, R; Sakumoto, W K; Salamanna, G; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Siket, M; Sill, A; Sinervo, P; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smirnov, D; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Squillacioti, P; Stadie, H; Stelzer, B; Stelzer--, O; Chilton; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A C; Tafirout, R; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tanaka, M; Tanaka, R; Tanimoto, N; Tapprogge, Stefan; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tollefson, K; Tomura, T; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, A W; Varganov, A; Vataga, E; Vejcik, S; Velev, G V; Veszpremi, V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Vollrath, I; Volobuev, I P; Von der Mey, M; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wallny, R; Walter, T; Yamashita, T; Yamamoto, K; Wan, Z; Wang, M J; Wang, S M; Warburton, A; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Wester, W C; Whitehouse, B; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S
2004-01-01
We present the results of a search for anomalous production of diphoton events with large missing transverse energy using the Collider Detector at Fermilab. In 202 $\\invpb$ of $\\ppbar$ collisions at $\\sqrt{s}=1.96$ TeV we observe no candidate events, with an expected standard model background of $0.27\\pm0.07({\\rm stat})\\pm0.10({\\rm syst})$ events. The results exclude a lightest chargino of mass less than 167 GeV/$c^2$, and lightest neutralino of mass less than 93 GeV/$c^2$ at 95% C.L. in a gauge--mediated supersymmetry-- breaking model with a light gravitino.
Realizing the relaxion from multiple axions and its UV completion with high scale supersymmetry
Choi, Kiwoon
2015-01-01
We discuss a scheme to implement the relaxion solution to the hierarchy problem with multiple axions, and present a UV-completed model realizing the scheme. All of the $N$ axions in our model are periodic with a similar decay constant $f$ well below the Planck scale. In the limit $N\\gg 1$, the relaxion $\\phi$ corresponds to an exponentially long multi-helical flat direction which is shaped by a series of mass mixing between nearby axions in the compact field space of $N$ axions. With the length of flat direction given by $\\Delta \\phi =2\\pi f_{\\rm eff} \\sim e^{\\xi N} f$ for $\\xi={\\cal O}(1)$, both the scalar potential driving the evolution of $\\phi$ during the inflationary epoch and the $\\phi$-dependent Higgs boson mass vary with an exponentially large periodicity of ${\\cal O}(f_{\\rm eff})$, while the back reaction potential stabilizing the relaxion has a periodicity of ${\\cal O}( f)$. A natural UV completion of our scheme can be found in high scale or (mini) split supersymmetry (SUSY) scenario with the axion ...
Supersymmetry and String Theory
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi-Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang-Mills theory; References; Index.
Azuma, Yuya
A search for long-lived charginos in anomaly-mediated supersymmetry breaking (AMSB) mod- els is performed using 4.7 fb 1 data of pp collisions at p s = 7 TeV with the ATLAS detector. In the AMSB models, the wino is the lightest gaugino and the lightest chargino and neutralino (as the lightest supersymmetric particle) are dominantly composed of the charged and neutral winos, respectively. Furthermore, the masses of the charged and neutral winos are highly de- generate, which results in a significant lifetime of the chargino. The lightest chargino decays into a neutralino and a soft charged pion. Due to the mass degeneracy, the momentum of the pion originating from the chargino decay is too soft to be reconstructed in collider experiments. The neutralino escapes detection, therefore, the decaying chargino could be identified as a high- momentum track breaking up in the tracking volume ( disappearing track ). In this dissertation, a method for detecting such chargino tracks is newly developed. The tran- sition r...
Ovchinnikov, Igor V.; Schwartz, Robert N.; Wang, Kang L.
2016-03-01
The concept of deterministic dynamical chaos has a long history and is well established by now. Nevertheless, its field theoretic essence and its stochastic generalization have been revealed only very recently. Within the newly found supersymmetric theory of stochastics (STS), all stochastic differential equations (SDEs) possess topological or de Rahm supersymmetry and stochastic chaos is the phenomenon of its spontaneous breakdown. Even though the STS is free of approximations and thus is technically solid, it is still missing a firm interpretational basis in order to be physically sound. Here, we make a few important steps toward the construction of the interpretational foundation for the STS. In particular, we discuss that one way to understand why the ground states of chaotic SDEs are conditional (not total) probability distributions, is that some of the variables have infinite memory of initial conditions and thus are not “thermalized”, i.e., cannot be described by the initial-conditions-independent probability distributions. As a result, the definitive assumption of physical statistics that the ground state is a steady-state total probability distribution is not valid for chaotic SDEs.
A Supersymmetry Model of Leptons
Liu, C
2005-01-01
If supersymmetry (SUSY) is not for stabilizing the electroweak energy scale, what is it used for in particle physics? We propose that it is for flavor problems. A cyclic family symmetry is introduced. Under the family symmetry, only the $\\tau$-lepton is massive due to the vacuum expectation value (VEV) of the Higgs field. This symmetry is broken by a sneutrino VEV which results in the muon mass. The comparatively large sneutrino VEV does not result in a large neutrino mass due to requiring heavy gauginos. SUSY breaks at a high scale $\\sim 10^{13}$ GeV. The electroweak energy scale is unnaturally small. No additional global symmetry, like the R-parity, is imposed. Other aspects of the model are discussed.
Supersymmetry for Fermion Masses
Institute of Scientific and Technical Information of China (English)
LIU Chun
2007-01-01
It is proposed that supersymmetry (SUSY) may be used to understand fermion mass hierarchies. A family symmetry Z3L is introduced, which is the cyclic symmetry among the three generation SU(2) doublets. SUSY breaks at a high energy scale ～ 1011 GeV. The electroweak energy scale ～ 100 GeV is unnaturally small. No additional global symmetry, like the R-parity, is imposed. The Yukawa couplings and R-parity violating couplings all take their natural values, which are (&)(100 ～ 10-2). Under the family symmetry, only the third generation charged fermions get their masses. This family symmetry is broken in the soft SUSY breaking terms, which result in a hierarchical pattern of the fermion masses. It turns out that for the charged leptons, the τ mass is fromthe Higgs vacuum expectation value (VEV)and the sneutrino VEVs, the muon mass is due to the sneutrino VEVs, and the electron gains its mass due to both Z3L and SUSY breaking. The large neutrino mixing are produced with neutralinos playing the partial role of right-handed neutrinos. |Ve3|, which is for ve-vτ mixing, is expected to be about 0.1. For the quarks, the third generation masses are from the Higgs VEVs, the second generation masses are from quantum corrections, and the down quark mass due to the sneutrino VEVs. It explains mc/ms, ms/me, md ＞ mu, and so on. Other aspects of the model are discussed.
Supersymmetry from the Top Down
Dine, Michael
2011-01-01
If supersymmetry turns out to be a symmetry of nature at low energies, the first order of business to measure the soft breaking parameters. But one will also want to understand the symmetry, and its breaking, more microscopically. Two aspects of this problem constitute the focus of these lectures. First, what sorts of dynamics might account for supersymmetry breaking, and its manifestation at low energies. Second, how might these features fit into string theory (or whatever might be the underlying theory in the ultraviolet). The last few years have seen a much improved understanding of the first set of questions, and at least a possible pathway to address the second.
Simplified R-symmetry breaking and low-scale gauge mediation
Evans, Jason L.; Ibe, Masahiro; Sudano, Matthew; Yanagida, Tsutomu T.
2012-03-01
We argue that some of the difficulties in constructing realistic models of lowscale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.
Ferrara, S
2015-01-01
Theories with elementary scalar degrees of freedom seem nowadays required for simple descriptions of the Standard Model and of the Early Universe. It is then natural to embed theories of inflation in supergravity, also in view of their possible ultraviolet completion in String Theory. After some general remarks on inflation in supergravity, we describe examples of minimal inflaton dynamics which are compatible with recent observations, including higher-curvature ones inspired by the Starobinsky model. We also discuss different scenarios for supersymmetry breaking during and after inflation, which include a revived role for non-linear realizations. In this spirit, we conclude with a discussion of the link, in four dimensions, between "brane supersymmetry breaking" and the super--Higgs effect in supergravity.
Graphical Methods for Data Presentation: Full Scale Breaks, Dot Charts, and Multi-based Logging.
Cleveland, William S.
Experimentation with graphical methods for data presentation is important for improving graphical communication in science. Several graphical methods are discussed including full scale breaks, dot charts, and multibased logging. Full scale breaks are suggested as replacements for partial scale breaks since partial scale breaks can fail to provide…
Status of Supersymmetry: Foundations and Applications
Ferrara, Sergio
2011-01-01
We review some aspects of the foundations of supersymmetry as a conjectural invariance of the Laws of Nature. This symmetry bypasses the Coleman-Mandula Theorem by enlarging the fundamental space -time symmetries to the Superworld. Application of supersymmetry to particle physics requires its spontaneous breaking, as it happens for the electroweak symmetry of the Standard Model.
Supersymmetry searches in ATLAS
Kuwertz, Emma Sian; The ATLAS collaboration
2015-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, including those those tagged as originating from b-quark decays, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. An overview of the constraints on supersymmetry from the run1 results is presented, as well as sensitivity projections for the data that will be collected in 2015.
Ughetto, Michael; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles, with focus on those obtained using proton-proton collisions at a centre of mass energy of 13 TeV.
Supersymmetry and noncommutative geometry
Beenakker, Wim; Suijlekom, Walter D van
2016-01-01
In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed. Noncommutative geometry has seen remarkable applications in high energy physics, viz. the geometrical interpretation of the Standard Model, however such a question has not been answered in a conclusive way so far. The book starts with a systematic analysis of the possibilities for so-called almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry, but also have a supersymmetric action. An approach is proposed in which the basic `building blocks' of potentially supersymmetric theories and the demands for their action to be supersymmetric are identified. It is then described how a novel kind of soft supersymmetry breaking Lagrangian arises naturally from the spectral action. Finally, the above formalism is applied to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model. This book is ...
Energy Technology Data Exchange (ETDEWEB)
Agashe, Kaustubh [Univ. of California, Berkeley, CA (United States)
1998-05-01
In this thesis, the author argues that the supersymmetric Standard Model, while avoiding the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine tuning in some (other) sector of the theory. For example, Baryon and Lepton number violating operators are allowed which lead to proton decay and flavor changing neutral currents. He studies some of the constraints from the latter in this thesis. He has to impose an R-parity for the theory to be both natural and viable. In the absence of flavor symmetries, the supersymmetry breaking masses for the squarks and sleptons lead to too large flavor changing neutral currents. He shows that two of the solutions to this problem, gauge mediation of supersymmetry breaking and making the scalars of the first two generations heavier than a few TeV, reintroduce fine tuning in electroweak symmetry breaking. He also constructs a model of low energy gauge mediation with a non-minimal messenger sector which improves the fine tuning and also generates required Higgs mass terms. He shows that this model can be derived from a Grand Unified Theory despite the non-minimal spectrum.
Enhanced Higgs Mass in Compact Supersymmetry
Tobioka, Kohsaku; Murayama, Hitoshi
2015-01-01
The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with $|A_t|\\sim 2m_{\\tilde{t}}$ which radiatively raises the Higgs mass. While the zero mode contributions of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50 %. This is mainly because the top quark wave function is pushed out from the brane, which makes the top Yukawa couplin...
Enhanced Higgs mass in Compact Supersymmetry
Tobioka, Kohsaku; Kitano, Ryuichiro; Murayama, Hitoshi
2016-04-01
The current LHC results make weak scale supersymmetry difficult due to relatively heavy mass of the discovered Higgs boson and the null results of new particle searches. Geometrical supersymmetry breaking from extra dimensions, Scherk-Schwarz mechanism, is possible to accommodate such situations. A concrete example, the Compact Supersymmetry model, has a compressed spectrum ameliorating the LHC bounds and large mixing in the top and scalar top quark sector with |{A}_t|˜ 2{m}_{tilde{t}} which radiatively raises the Higgs mass. While the zero mode contribution of the model has been considered, in this paper we calculate the Kaluza-Klein tower effect to the Higgs mass. Although such contributions are naively expected to be as small as a percent level for 10 TeV Kaluza-Klein modes, we find the effect significantly enhances the radiative correction to the Higgs quartic coupling by from 10 to 50%. This is mainly because the top quark wave function is pushed out from the brane, which makes the top mass depend on higher powers in the Higgs field. As a result the Higgs mass is enhanced up to 15 GeV from the previous calculation. We also show the whole parameter space is testable at the LHC run II.
Energy Technology Data Exchange (ETDEWEB)
Brennan, E.C. (ed.)
1985-07-01
Some lectures in these proceedings examine the theoretical basis for supersymmetry, recent developments in theories with compact dimensions, and experimental searches for supersymmetric signatures. Technologies are explored for obtaining very high energy electron-positron colliding beams. Separate abstracts were prepared for 35 papers in these conference proceedings. (LEW)
Cosmological aspects of gauge mediated supersymmetry breakdown
Dalianis, Ioannis
2011-01-01
In this thesis, we study the details of some fundamental cosmological problems of the gauge mediated supersymmetry breakdown and we probe the supersymmetry breaking sector by cosmological arguments. We manifest that problems like the metastable vacuum selection and the gravitino overproduction in the reheated early universe are naturally absent in the most general class of gauge mediation models without including additional ingredients or assumptions. We also find that the gravitino can generically account for the bulk dark matter of the universe. Cosmological implications of a stringy UV-completion of the supersymmetry breaking sector have been also considered.
Kimura, Tetsuji; Noumi, Toshifumi; Yamaguchi, Masahide
2016-01-01
We construct $\\mathcal{N}=1$ supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of K\\"ahler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.
Electroweak breaking and Dark Matter from the common scale
Energy Technology Data Exchange (ETDEWEB)
Benić, Sanjin; Radovčić, Branimir
2014-05-01
We propose a classically scale invariant extension of the Standard Model where the electroweak symmetry breaking and the mass of the Dark Matter particle come from the common scale. We introduce U(1){sub X} gauge symmetry and X-charged scalar Φ and Majorana fermion N. Scale invariance is broken via Coleman–Weinberg mechanism providing the vacuum expectation value of the scalar Φ. Stability of the dark matter candidate N is guaranteed by a remnant Z{sub 2} symmetry. The Higgs boson mass and the mass of the Dark Matter particle have a common origin, the vacuum expectation value of Φ. Dark matter relic abundance is determined by annihilation NN→ΦΦ. We scan the parameter space of the model and find the mass of the dark matter particle in the range from 500 GeV to a few TeV.
Electroweak breaking and Dark Matter from the common scale
Radovcic, Branimir
2014-01-01
We propose a classically scale invariant extension of the Standard Model where the electroweak symmetry breaking and the mass of the Dark Matter particle come from the common scale. We introduce $U(1)_X$ gauge symmetry and $X$-charged scalar $\\Phi$ and Majorana fermion $N$. Scale invariance is broken via Coleman-Weinberg mechanism providing the vacuum expectation value of the scalar $\\Phi$. Stability of the dark matter candidate $N$ is guaranteed by a remnant $Z_2$ symmetry. The Higgs boson mass and the mass of the Dark Matter particle have a common origin, the vacuum expectation value of $\\Phi$. Dark matter relic abundance is determined by annihilation $NN \\to \\Phi\\Phi$. We scan the parameter space of the model and find the mass of the dark matter particle in the range from 500 GeV to a few TeV.
Natural Supersymmetry from Extra Dimensions
Delgado, Antonio; Nardini, Germano; Quiros, Mariano
2016-01-01
We show that natural supersymmetry can be embedded in a five-dimensional theory with supersymmetry breaking \\`a la Scherk-Schwarz (SS). There is no 'gluino-sucks' problem for stops localized in the four-dimensional brane and gluinos propagating in the full five-dimensional bulk, and sub-TeV stops are easily accommodated. The $\\mu / B_\\mu$ problem is absent as well; the SS breaking generates a Higgsino Dirac mass and no bilinear Higgs mass parameter in the superpotential is required. Moreover, for non-maximal SS twists leading to $\\tan \\beta \\simeq 1$, the Higgs spectrum is naturally split, in agreement with LHC data. The 125-GeV Higgs mass and radiative electroweak symmetry breaking can be accommodated by minimally extending the Higgs sector with $Y=0$ $SU(2)_L$ triplets.
Academic training: Introduction to Supersymmetry
2007-01-01
2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 February, from 11:00 to 12:00 Main Auditorium, bldg. 500 Introduction to Supersymmetry D. Kaplan, Johns Hopkins University, Baltimore, USA In these lectures, I will introduce supersymmetry as an extension to spacetime symmetries both formally and physically. I will present motivations for why we think supersymmetry may exist in the real world, and may manifest itself at the LHC. I will describe the current set of models of softly broken supersymmetry at the electroweak scale and the parts that make them exciting and the parts that make people sick. I will then cover the phenomenology of the various models - the spectra and some of the best studied collider signals. Finally, I will describe the phenomenology of the full supersymmetric parameter space in general terms and discuss this collider signals not covered by the classic models.
Supersymmetry searches in ATLAS
Torro Pastor, Emma; The ATLAS collaboration
2016-01-01
Weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
Supersymmetry Searches in ATLAS
AUTHOR|(INSPIRE)INSPIRE-00237280; The ATLAS collaboration
2015-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures.
Measuring supersymmetry at the large hadron collider
Indian Academy of Sciences (India)
B C Allanach
2003-02-01
The large hadron collider (LHC) should have the ability to detect supersymmetric particles if low-energy supersymmetry solves the hierarchy problem. Studies of the LHC detection reach, and the ability to measure properties of supersymmetric particles are currently underway. We highlight some of these, such as the reach in minimal supergravity space and correlation with a ﬁne-tuning parameter, precision measurements of edge variables, anomaly- or gauge-mediated supersymmetry breaking. Supersymmetry with baryon-number violation seems at ﬁrst glance more difﬁcult to detect, but proves to be possible by using leptons from cascade decays.
Black Holes versus Supersymmetry at the LHC
Roy, Arunava; Cavaglia, Marco
2007-11-01
Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. In this paper we assess the distinguishability of supersymmetry and black hole events at the LHC. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our analysis shows that supersymmetry and black hole events at the Large Hadron Collider can be easily discriminated.
Natural Supersymmetry and Unification in Five Dimensions
Abdalgabar, Ammar; Deandrea, Aldo; McGarrie, Moritz
2015-01-01
We explore unification and natural supersymmetry in a five dimensional extension of the standard model in which the extra dimension may be large, of the order of 1-10 TeV. Power law running generates a TeV scale A_ term allowing for the observed 125 GeV Higgs and allowing for stop masses below 2 TeV, compatible with a natural SUSY spectrum. We supply the full one-loop RGEs for various models and use metastability to give a prediction that the gluino mass should be lighter than 3.5 TeV for A_t <= 2.5 TeV, for such a compactification scale, with brane localised 3rd generation matter. We discuss why models in which the 1st and 2nd generation of matter fields are located in the bulk are likely to be ruled out. We also look at electroweak symmetry breaking in these models.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare
2013-01-01
A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in pp collisions at $\\sqrt{s}$ = 7 TeV using 4.7 fb$^{-1}$ of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained.
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste
2012-04-27
In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in pp collisions at sqrt(s) = 7 TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb^-1 collected with the ATLAS detector in 2011. The pT spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with m_3/2 0, a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95% confidence level.
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare
2013-01-01
A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in pp collisions at $\\sqrt{s}$ = 7 TeV using 4.7 fb$^{-1}$ of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained.
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerqueira, Augusto Santiago; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; do Vale, Maria Aline Barros; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Fopma, Johan; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernandez, Carlos Medina; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2012-01-01
In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in pp collisions at sqrt(s) = 7 TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb^-1 collected with the ATLAS detector in 2011. The pT spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with m_3/2 0, a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95% confidence level.
On the Veltman Condition, the Hierarchy Problem and High-Scale Supersymmetry
Masina, Isabella
2013-01-01
In this paper we have considered the possibility that the Standard Model, and its minimal extension with the addition of singlets, merges with a high-scale supersymmetric theory at a scale satisfying the Veltman condition and therefore with no sensitivity to the cutoff. The matching of the Standard Model is achieved at Planckian scales. In its complex singlet extension the matching scale depends on the strength of the coupling between the singlet and Higgs fields. For order one values of the coupling, still in the perturbative region, the matching scale can be located in the TeV ballpark. Even in the absence of quadratic divergences there remains a finite adjustment of the parameters in the high-energy theory which should guarantee that the Higgs and the singlets in the low-energy theory are kept light. This fine-tuning (unrelated to quadratic divergences) is the entire responsibility of the ultraviolet theory and remains as the missing ingredient to provide a full solution to the hierarchy problem.
Gauge Mediation of Exact Scale Breaking and Logarithmic Higgs Potentials
Abel, Steven
2013-01-01
We present a gauge mediation principle for theories where exact UV scale invariance is broken in a hidden sector. The relevant configurations are those in which the visible sector and a hidden sector emanate from a scale invariant pair of UV theories that communicate only via gauge interactions. We compute the relevant operators of the Higgs sector (which arise at two and three loops). The potential contains logarithmic mass-squared terms which lead to three different low energy configurations. In the first the Higgs sector is the same as that of the usual Standard Model, with the negative Higgs mass-squared arising naturally from radiative corrections. The second has dominant logarithmic mass-squared terms for the Higgs, allowing the electroweak symmetry breaking minimum to be at zero vacuum energy or metastable. In the third configuration the effective potential has negligible quartic term, and yet electroweak symmetry is broken radiatively by a "running-Higgs-mass-squared". The phenomenology of the two new...
Split supersymmetry in brane models
Indian Academy of Sciences (India)
Ignatios Antoniadis
2006-11-01
Type-I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with sin2 W = 3/8 at the com-pactification scale of GUT ≃ 2 × 1016 GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.
Split Supersymmetry in String Theory
Antoniadis, Ignatios
2006-01-01
Type I string theory in the presence of internal magnetic fields provides a concrete realization of split supersymmetry. To lowest order, gauginos are massless while squarks and sleptons are superheavy. For weak magnetic fields, the correct Standard Model spectrum guarantees gauge coupling unification with \\sin^2{\\theta_W}=3/8 at the compactification scale of M_{\\rm GUT}\\simeq 2 \\times 10^{16} GeV. I discuss mechanisms for generating gaugino and higgsino masses at the TeV scale, as well as generalizations to models with split extended supersymmetry in the gauge sector.
Precise Higgs mass calculations in (non-)minimal supersymmetry at both high and low scales
Athron, Peter; Steudtner, Tom; Stöckinger, Dominik; Voigt, Alexander
2016-01-01
We present FlexibleEFTHiggs, a method for calculating the SM-like Higgs pole mass in SUSY (and even non-SUSY) models, which combines an effective field theory approach with a diagrammatic calculation. It thus achieves an all order resummation of leading and subleading logarithms together with the inclusion of all non-logarithmic 1-loop contributions. We implement this method into FlexibleSUSY and study its properties in the MSSM, NMSSM, E6SSM and MRSSM. In the MSSM, it correctly interpolates between the known results of effective field theory calculations in the literature for a high SUSY scale and fixed-order calculations in the full theory for a sub-TeV SUSY scale. We compare our MSSM results to those from public codes and identify the origin of the most significant deviations between the DR-bar programs. We then perform a similar comparison in the remaining three non-minimal models. For all four models we estimate the theoretical uncertainty of FlexibleEFTHiggs and the fixed-order DR-bar programs thereby f...
Symmetries and their breakings at microscopic and cosmic scales
Huo, Ran
We organize several research projects in the author's Ph.D. career which are distinct in nature into this thesis, in the view of symmetry fulfillments and breakings. Some broken gauge symmetry may give a massive neutral gauge boson Z', and this Z' may be the mediator between the SM and the dark matter sector, forming the dark portal. We consider the scenario of a leptophobic light Z' vector boson as the mediator, and study the prospect of searching for it at the 8 TeV Large Hadron Collider (LHC). To improve the reach in the low mass region, we perform a detailed study of the processes that the Z' is produced in association with jet, photon, W+/- and Z 0. We show that in the region where the mass of Z' is between 80 and 400 GeV, the constraint from associated production can be comparable or even stronger than the known monojet and dijet constraints. We study an extension of the Minimal Supersymmetric Standard Model with a gauge group SU(2)1 ⊗ SU(2) 2 breaking to SU(2)L. The extra wino has an enhanced gauge coupling to the SM-like Higgs boson and, if light, has a relevant impact on the weak scale phenomenology. Compared with the MSSM case, the low energy Higgs quartic coupling is modified both by extra D-term corrections and by a modification of its renormalization group evolution from high energies. At low values of tan beta, the latter effect may be dominant. This leads to interesting regions of parameter space in which the model can accommodate a 125 GeV Higgs with relatively light third generation squarks and an increased h → gammagamma decay branching ratio, while still satisfying the constraints from electroweak precision data and Higgs vacuum stability. We also study some toy model towards electroweak baryogenesis, which in the wino-higgsino case can be fulfilled as the above gauge extension of the MSSM model. The fermionic component have a mixing through vector like mass terms, through which the Higgs diphoton decay branching ratio can be tuned, and
Prospects for Supersymmetry at the LHC & Beyond
AUTHOR|(CDS)2108556
2015-01-01
Run 1 of the LHC has provided three new motivations for supersymmetry: the need to stabilize the electroweak vacuum, the mass of the Higgs boson, and the fact that its couplings are Standard Model-like (so far). The prospects for discovering (and measuring) supersymmetry during future runs of the LHC are discussed in the frameworks of the constrained MSSM (CMSSM), models with non-universal soft supersymmetry-breaking contributions to Higgs masses (NUHM1,2) and the phenomenological MSSM with 10 arbitrary soft supersymmetry-breaking parameters (pMSSM10). In addition to the classic searches for missing transverse energy, searches for long-lived charged sparticles may also be promising. If supersymmetry does show up at the LHC, there are good prospects for measurements of the spectrum that can be compared with the indirect indications from other experiments. On the other hand, a higher-energy future circular proton-proton collider may be the best option for discovering supersymmetry if it does not appear at the L...
Diffusion, intermittency and scaling in wave breaking turbulence
Redondo, J. M.; Mosso, C.; Marino, R.
2009-04-01
Measurements of 3D turbulent velocity have been made near the coast for a variety of weather conditions in the wave breaking zone, and these values have been compared with flume measurements at a 100m long wave tank. There is a strong dependence of the integral lenthscales with the Wave Reynolds number as well as with the position and the wind, quantified through the friction velocity from wind profiles measured at the coastline. Earlier results have been published in Bezerra et al. (1998) and Rodriguez et al(1999). Several effects are important and give several decades of variation of eddy diffusivities measured near the coastline (between 0.0001 and 2 m2s-1)Inman et al.(1971), Zeitler(1976). Measurements of electromagnetic and ADV velocity measurements of the Coastal wave generated turbulence are compared in order to invest the scaling and intermittency of the turbulence produced by wave breaking. The velocity measurements were performed with an array of electromagnetic sensors that could be placed along the coastline in a stainless steel sledge. Rodriguez et al.(1994,1999) showed a parabolic shape of cross-shore diffusivity values but present analysis also shows the crosshore dependence of the intermittency as well as changes in the spectral slopes. Bezerra M.O., Diez M., Medeiros C., Rodriguez A., Bahia E. Sanchez-Arcilla A. y Redondo J.M. (1998) Study on the influence of waves on coastal diffusion using image analysis Applied Scientific Research. 59, 191-204. Rodriguez A., Sanchez-Arcilla A., Redondo J.M and C. Mosso (1999) Macroturbulence measurements with electromagnetic and ultrasonic sensors: a comparison under high-turbulent flows. Experiments in Fluids, 27, 31-42. Inman, D. L.; Tait, R.J.; Nordstrom, C.E. (1971). Mixing in the surf zone. Journal of Geophysical Research, vol 76, n° 15, 3493 - 3514. Zeidler, R. B. (1976) Coastal dispersion of pollutants, Journal of the Waterways Harbors and Coastal Engineering Division, 235 - 254 p. Rodriguez, A.; Bahia
Supersymmetry searches in ATLAS
Meloni, Federico; The ATLAS collaboration
2015-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches involved final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. Sensitivity projections for the data that will be collected in 2015 are also presented.
Supersymmetry searches in ATLAS
Meloni, Federico; The ATLAS collaboration
2015-01-01
This document summarises recent ATLAS results for searches for supersymmetric particles using LHC proton-proton collision data. Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. We consider both R-Parity conserving and R-Parity violating SUSY scenarios. The searches involve final states including jets, missing transverse momentum, light leptons, taus or photons, as well as long-lived particle signatures. Sensitivity projections for the data that will be collected in 2015 are also presented.
Anomalous breaking of anisotropic scaling symmetry in the quantum lifshitz model
Baggio, M.; de Boer, J.; Holsheimer, K.
2012-01-01
In this note we investigate the anomalous breaking of anisotropic scaling symmetry (t, x) → (λ z t, λ x) in a non-relativistic field theory with dynamical exponent z = 2. On general grounds, one can show that there exist two possible "central charges" which characterize the breaking of scale invaria
Soflty broken supersymmetry and the fine-tuning problem
Energy Technology Data Exchange (ETDEWEB)
Foda, O.E.
1984-02-20
The supersymmetry of the simple Wess-Zumino model is broken, in the tree-approximation, by adding all possible parity-even(mass)-dimension 2 and 3 terms. The model is then renormalized using BPHZ and the normal product algorithm, such that supersymmetry is only softly broken (in the original sense of Schroer and Symanzik). We show that, within the above renormalization scheme, none of the added breaking terms give rise to technical fine-tuning problems (defined in the sense of Gildener) in larger models, with scalar multiplets and hierarchy of mass scales, which is in contrast to what we obtain via analytic schemes such as dimensional renormalization, or supersymmetry extension of which. The discrepancy (which can be shown to persist in more general models) originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Emphasizing that the issue is purely technical (as opposed to physical) in origin, and that all physical properties are scheme-independent (as they should be), we conclude that the technical fine-tuning problem, in the specific sense used in this paper, being scheme dependent, is not a well-defined issue within the context of renormalized perturbation theory. 30 references.
Energy Technology Data Exchange (ETDEWEB)
Labonne, B
2007-01-15
Supersymmetry is an interesting extension of the Standard Model. Hence, its formal and phenomenological aspects need to be understood before establishing it as realized in Nature. Supersymmetry offers a natural dark matter candidate. To check this hypothesis, a crucial point would be the indirect detection of neutralino annihilation products. Among annihilation channels, the one with a Z boson and a Higgs scalar, is of interest because of the hard spectrum it yields. However, the spectra needs to be weighted by branching ratios.The Zh channel is then known to be suppressed. We notice that the deeper broken the supersymmetry, the stronger the suppression. Thus the channel suppression has to be understood in terms of gauge independence of different diagrams involved, and high energy unitarity. A key element of the suppression for this channel is the Z boson polarization, which comes from the initial Majorana particles at rest. Finally, we investigate the role of polarization in the WW channel. Here, polarization does not suppress the channel but modifies the shape of the decay products spectra. This could be important from an experimental point of view. On a more formal side, we point out different kinds of representations of the (0,1/2) multiplet in superspace. First we focus on a new kind of superfield called X. Next we present a duality in 4 dimensions, before showing its extension to superspace. Without supersymmetry, this duality links a 3-form to a constant. In superspace, we find that the duality links a 3-form superfield to the new X superfield. It is essential to understand that some components of the 3-form and the X superfield seem to help supersymmetry breaking. Finally we try to transmit this breaking to usual chiral superfields. (author)
Deconstruction, Holography and Emergent Supersymmetry
Nakai, Yuichiro
2014-01-01
We study a gauge theory in a 5D warped space via the dimensional deconstruction that a higher dimensional gauge theory is constructed from a moose of 4D gauge groups. By the AdS/CFT correspondence, a 5D warped gauge theory is dual to a 4D conformal field theory (CFT) with a global symmetry. As far as physics of the gauge theory, we obtain the one-to-one correspondence between each component of a moose of gauge groups and that of a CFT. We formulate a supersymmetric extension of deconstruction and explore the framework of natural supersymmetry in a 5D warped space -- the supersymmetric Randall-Sundrum model with the IR-brane localized Higgs and bulk fermions -- via the gauge moose. In this model, a supersymmetry breaking source is located at the end of the moose corresponding to the UV brane and the first two generations of squarks are decoupled. With left-right gauge symmetries in the bulk of the moose, we demonstrate realization of accidental or emergent supersymmetry of the Higgs sector in comparison with t...
Unraveling supersymmetry at future colliders
Indian Academy of Sciences (India)
Xerxes Tata
2004-02-01
After a quick review of the current limits on sparticle masses, we outline the prospects for their discovery at future colliders. We then proceed to discuss how precision measurements of sparticle masses can provide information about how SM suprpartners acquire their masses. Finally, we examine how we can proceed to establish whether or not any new physics discovered in the future is supersymmetry, and describe how we might zero in on the framework of SUSY breaking. In this connection, we review sparticle mass measurements at future colliders, and point out that some capabilities of experiments at $e^{+}e^{-}$ linear colliders may have been over-stated in the literture.
Break Lines, Published in 2000, 1:1200 (1in=100ft) scale, Brown County, WI.
NSGIC GIS Inventory (aka Ramona) — This Break Lines dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Orthoimagery information as of 2000. Data by this publisher are...
Break Lines, Published in 2008, 1:1200 (1in=100ft) scale, City of Rome.
NSGIC GIS Inventory (aka Ramona) — This Break Lines dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Other information as of 2008. Data by this publisher are often...
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Supersymmetry in Elementary Particle Physics
Peskin, Michael E.
2008-01-01
These lectures, presented at the 2006 TASI summer school, give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions...
Supersymmetry, Naturalness, and Signatures at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro; Nomura, Yasunori
2006-02-21
Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large {Alpha} term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low energy spectra that do not lead to severe .ne-tuning. Characteristic features of these spectra are: a large {Alpha} term for the top squarks, small top squark masses, moderately large tan {beta}, and a small {mu} parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC--the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry breaking, which are relevant in a model without fine-tuning.
Supersymmetry, Naturalness, and Signatures at the LHC
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro; Nomura, Yasunori
2006-02-10
Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tan {beta}, and a small {mu} parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC--the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry breaking, which are relevant in a model without fine-tuning.
Electroweak Supersymmetry with an Approximate U(1)_PQ
Energy Technology Data Exchange (ETDEWEB)
Hall, L.J.; Watari, T.
2004-05-12
A predictive framework for supersymmetry at the TeV scale is presented, which incorporates the Ciafaloni-Pomarol mechanism for the dynamical determination of the \\mu parameter of the MSSM. It is replaced by (\\lambda S), where S is a singlet field, and the axion becomes a heavy pseudoscalar, G, by adding a mass, m_G, by hand. The explicit breaking of Peccei-Quinn (PQ) symmetry is assumed to be sufficiently weak at the TeV scale that the only observable consequence is the mass m_G. Three models for the explicit PQ breaking are given; but the utility of this framework is that the predictions for all physics at the electroweak scale are independent of the particular model for PQ breaking. Our framework leads to a theory similar to the MSSM, except that \\mu is predicted by the Ciafaloni-Pomarol relation, and there are light, weakly-coupled states in the spectrum. The production and cascade decay of superpartners at colliders occurs as in the MSSM, except that there is one extra stage of the cascade chain, with the next-to-LSP decaying to its"superpartner" and \\tilde{s}, dramatically altering the collider signatures for supersymmetry. The framework is compatible with terrestrial experiments and astrophysical observations for a wide range of m_G and. If G is as light as possible, 300 keV< m_G< 3 MeV, it can have interesting effects on the radiation energy density during the cosmological eras of nucleosynthesis and acoustic oscillation, leading to predictions for N_{\
Natural inflation and low energy supersymmetry
Directory of Open Access Journals (Sweden)
Rolf Kappl
2015-06-01
Full Text Available Natural (axionic inflation provides a well-motivated and predictive scheme for the description of the early universe. It leads to sizeable primordial tensor modes and thus a high mass scale of the inflationary potential. Naïvely this seems to be at odds with low (TeV scale supersymmetry, especially when embedded in superstring theory. We show that low scale supersymmetry is compatible with natural (high scale inflation. The mechanism requires the presence of two axions that are provided through the moduli of string theory.
Nomura, Yasunori
2014-01-01
We argue that under a set of simple assumptions the multiverse leads to low energy supersymmetry with the spectrum often called spread or mini-split supersymmetry: the gauginos are in the TeV region with the other superpartners two or three orders of magnitude heavier. We present a particularly simple realization of supersymmetric grand unified theory using this idea.
Noncommutative Nonlinear Supersymmetry
Nishino, H; Nishino, Hitoshi; Rajpoot, Subhash
2002-01-01
We present noncommutative nonlinear supersymmetric theories. The first example is a non-polynomial Akulov-Volkov-type lagrangian with noncommutative nonlinear global supersymmetry in arbitrary space-time dimensions. The second example is the generalization of this lagrangian to Dirac-Born-Infeld lagrangian with nonlinear supersymmetry realized in dimensions D=2,3,4 and 6 (mod 8).
Quantum Extended Supersymmetries
Grigore, D R; Grigore, Dan Radu; Scharf, Gunter
2003-01-01
We analyse some quantum multiplets associated with extended supersymmetries. We study in detail the general form of the causal (anti)commutation relations. The condition of positivity of the scalar product imposes severe restrictions on the (quantum) model. It is problematic if one can find out quantum extensions of the standard model with extended supersymmetries.
Stealth Supersymmetry Simplified
Fan, JiJi; Pinner, David; Reece, Matthew; Ruderman, Joshua T
2015-01-01
In Stealth Supersymmetry, bounds on superpartners from direct searches can be notably weaker than in standard supersymmetric scenarios, due to suppressed missing energy. We present a set of simplified models of Stealth Supersymmetry that motivate 13 TeV LHC searches. We focus on simplified models within the Natural Supersymmetry framework, in which the gluino, stop, and Higgsino are assumed to be lighter than other superpartners. Our simplified models exhibit novel decay patterns that differ significantly from topologies of the Minimal Supersymmetric Standard Model, with and without $R$-parity. We determine limits on stops and gluinos from searches at the 8 TeV LHC. Existing searches constitute a powerful probe of Stealth Supersymmetry gluinos with certain topologies. However, we identify simplified models where the gluino can be considerably lighter than 1 TeV. Stops are significantly less constrained in Stealth Supersymmetry than the MSSM, and we have identified novel stop decay topologies that are complete...
Electroweak Symmetry Breaking via UV Insensitive Anomaly Mediation
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro; Kribs, Graham D.; Murayama, Hitoshi
2004-02-19
Anomaly mediation solves the supersymmetric flavor and CP problems. This is because the superconformal anomaly dictates that supersymmetry breaking is transmitted through nearly flavor-blind infrared physics that is highly predictive and UV insensitive. Slepton mass squareds, however, are predicted to be negative. This can be solved by adding D-terms for U(1)_Y and U(1)_{B-L} while retaining the UV insensitivity. In this paper we consider electroweak symmetry breaking via UV insensitive anomaly mediation in several models. For the MSSM we find a stable vacuum when tanbeta< 1, but in this region the top Yukawa coupling blows up only slightly above the supersymmetry breaking scale. For the NMSSM, we find a stable electroweak breaking vacuum but with a chargino that is too light. Replacing the cubic singlet term in the NMSSM superpotential with a term linear in the singlet wefind a stable vacuum and viable spectrum. Most of the parameter region with correct vacua requires a large superpotential coupling, precisely what is expected in the"Fat Higgs'" model in which the superpotential is generated dynamically. We have therefore found the first viable UV complete, UV insensitive supersymmetry breaking model that solves the flavor and CP problems automatically: the Fat Higgs model with UV insensitive anomaly mediation. Moreover, the cosmological gravitino problem is naturally solved, opening up the possibility of realistic thermal leptogenesis.
The Status of Supersymmetry after the LHC Run 1
Bechtle, Philip; Sander, Christian
2015-01-01
Supersymmetry (SUSY) is a complete and renormalisable candidate for an extension of the Standard Model. At an energy scale not too far above the electroweak scale it would solve the hierarchy problem of the SM Higgs boson, dynamically explain electroweak symmetry breaking, and provide a dark-matter candidate. Since it doubles the Standard Model degrees of freedom, SUSY predicts a large number of additional particles, whose properties and effects on precision measurements can be explicitly predicted in a given SUSY model. In this review the motivation for SUSY is outlined, the various searches strategies for SUSY particles at the LHC are described, and the status of SUSY in global analyses after the LHC Run 1 is summarized.
Two-measure approach to breaking scale-invariance in a standard-model extension
Directory of Open Access Journals (Sweden)
Eduardo I. Guendelman
2017-02-01
Full Text Available We introduce Weyl's scale-invariance as an additional global symmetry in the standard model of electroweak interactions. A natural consequence is the introduction of general relativity coupled to scalar fields à la Dirac, that includes the Higgs doublet and a singlet σ-field required for implementing global scale-invariance. We introduce a mechanism for ‘spontaneous breaking’ of scale-invariance by introducing a coupling of the σ-field to a new metric-independent measure Φ defined in terms of four scalars ϕi (i = 1, 2, 3, 4. Global scale-invariance is regained by combining it with internal diffeomorphism of these four scalars. We show that once the global scale-invariance is broken, the phenomenon (a generates Newton's gravitational constant GN and (b triggers spontaneous symmetry breaking in the normal manner resulting in masses for the conventional fermions and bosons. In the absence of fine-tuning the scale at which the scale-symmetry breaks can be of order Planck mass. If right-handed neutrinos are also introduced, their absence at present energy scales is attributed to their mass terms tied to the scale where scale-invariance breaks.
Constraining the $SU(2)_R$ breaking scale in naturally R-parity conserving supersymmetric models
Huitu, K; Puolamäki, K
1997-01-01
We obtain an upper bound on the right-handed breaking scale in naturally R-parity conserving general left-right supersymmetric models. This translates into an upper bound on the right-handed gauge boson mass, $m_{W_R}\\lsim M_{SUSY}$, where $M_{SUSY}$ is the scale of SUSY breaking. This bound is independent of any assumptions for the couplings of the model, and follows from $SU(3)_c$ and $U(1)_{em}$ gauge invariance of the ground state of the theory.
The heterotic string yields natural supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Krippendorf, Sven, E-mail: krippendorf@th.physik.uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Nilles, Hans Peter, E-mail: nilles@th.physik.uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universitaet Bonn, Nussallee 12, 53115 Bonn (Germany); Ratz, Michael, E-mail: michael.ratz@tum.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany); Winkler, Martin Wolfgang, E-mail: martin.winkler@tum.de [Physik-Department T30, Technische Universitaet Muenchen, James-Franck-Strasse, 85748 Garching (Germany)
2012-05-30
The most promising MSSM candidates of the heterotic string reveal some distinctive properties. These include gauge-top unification, a specific solution to the {mu}-problem and mirage pattern for the gaugino masses. The location of the top- and the Higgs-multiplets in extra dimensions differs significantly from that of the other quarks and leptons leading to a characteristic signature of suppressed soft breaking terms, reminiscent of a scheme known as natural supersymmetry.
Massive Gravity with N=1 local Supersymmetry
Malaeb, Ola
2013-01-01
A consistent theory of massive gravity, where the graviton acquires mass by spontaneously breaking diffeomorphism invariance, is now well established. We supersymmetrize this construction using N =1 fields. Coupling to N = 1 supergravity is done by applying the rules of tensor calculus to construct an action invariant under local N = 1 supersymmetry. The supersymmetric action is shown, at the quadratic level, to be free of ghosts and have as its spectrum a massive graviton, two gravitinos with different masses, and a massive vector.
Superworld without Supersymmetry
Chakdar, Shreyashi; Nandi, S
2015-01-01
It is a possibility that the superworld (supersymmetric partners of our world) does exist without supersymmetry. The two worlds are being distinguished by an unbroken discrete $Z_2$ symmetry (similar to R-parity in supersymmetry). We lose the solution to the hierarchy problem. However, such a scenario has several motivations. For example, the lightest neutral superworld particle will be a candidate for dark matter. The other being, as in supersymmetry, it is possible to achieve gauge coupling unification. One major difference with the supersymmetric theory is that such a theory is much more general since it is not constrained by supersymmetry. For example, some of the gauge couplings connecting the Standard Model particles with the superpartners now become free Yukawa couplings. As a result, the final state signals as well as the limits on the superworld particles can be modified both qualitatively and quantitatively. The reach for these superworld particles at the Large Hadron Collider (LHC) can be much high...
A new dynamics of electroweak symmetry breaking with classically scale invariance
Haba, Naoyuki; Kitazawa, Noriaki; Yamaguchi, Yuya
2015-01-01
We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu-Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu-Goldstone bosons, and show they can decay fast enough without cosmological problems. We further evaluate the energy dependences of the couplings between elementary fields perturbatively, and find that our model is the first one which realizes the flatland scenario with the dimensional transmutation by the strong coupling dynam...
A new dynamics of electroweak symmetry breaking with classically scale invariance
Directory of Open Access Journals (Sweden)
Naoyuki Haba
2016-04-01
Full Text Available We propose a new dynamics of the electroweak symmetry breaking in a classically scale invariant version of the standard model. The scale invariance is broken by the condensations of additional fermions under a strong coupling dynamics. The electroweak symmetry breaking is triggered by negative mass squared of the elementary Higgs doublet, which is dynamically generated through the bosonic seesaw mechanism. We introduce a real pseudo-scalar singlet field interacting with additional fermions and Higgs doublet in order to avoid massless Nambu–Goldstone bosons from the chiral symmetry breaking in a strong coupling sector. We investigate the mass spectra and decay rates of these pseudo-Nambu–Goldstone bosons, and show they can decay fast enough without cosmological problems. We further show that our model can make the electroweak vacuum stable.
Supersymmetry Searches with ATLAS
Hill, Ewan; The ATLAS collaboration
2015-01-01
Supersymmetry is one of the best motivated and studied theories of physics beyond the Standard Model. This talk summarises recent ATLAS results on searches for supersymmetric particles. Weak and strong production Supersymmetry scenarios are considered, along with direct production of third generation supersymmtric particles. The searches involve final states including jets, missing transverse momentum, leptons, and long lived particles. Sensitivity projections for the 13 TeV data are also presented.
Dark matter in gravity mediated supersymmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Wells, J.D.
1997-05-01
In R parity conserving supersymmetric theories, the lightest superpartner (LSP) is stable. The LSPs may comprise a large fraction of the energy density of the current universe, which would lead to dramatic astrophysical consequences. In this talk, he discusses some of the main points they have learned about supersymmetric models from relic abundance considerations of the LSP.
Higher Curvature Supergravity, Supersymmetry Breaking and Inflation
Ferrara, Sergio
2014-01-01
In these lectures, after a short introduction to cosmology, we discuss the supergravity embedding of higher curvature models of inflation. The supergravity description of such models is presented for the two different formulations of minimal supergravity.
On Setting Limits for Supersymmetry
Simeon, Paul; Toback, David
2004-10-01
When searching for new particles two separate production mechanisms from the same theory may produce the same final state. For example, in gauge mediated supersymmetry breaking with \\chi^0_1arrow γ tildeG at least two production mechanisms, \\chi^0_1\\chi^±1 and \\chi^0_2\\chi^±_1, can cascade to produce events with two photons and missing transverse energy. If there is no discovery one wants to set the best possible limits. While it seems obvious that the goal is to find the lowest possible cross section limit, one should be careful and focus on excluding the largest amount of parameter space for a theory. We show that the combined cross section limit from both (or all) production mechanisms that produce the same final state is the most sensitive way to attempt to exclude a theory.
Ultra-large distance modification of gravity from Lorentz symmetry breaking at the Planck scale
Gorbunov, D S
2005-01-01
We present an extension of the Randall--Sundrum model in which, due to spontaneous Lorentz symmetry breaking, graviton mixes with bulk vector fields and becomes quasilocalized. The masses of KK modes comprising the four-dimensional graviton are naturally exponentially small. This allows to push the Lorentz breaking scale to as high as a few tenth of the Planck mass. The model does not contain ghosts or tachyons and does not exhibit the van Dam--Veltman--Zakharov discontinuity. The gravitational attraction between static point masses becomes gradually weaker with increasing of separation and gets replaced by repulsion (antigravity) at exponentially large distances.
Dark Energy density in models with Split Supersymmetry and degenerate vacua
Froggatt, C; Nielsen, H B
2011-01-01
The breakdown of global symmetries, which protect a zero value for the cosmological constant in supergravity (SUGRA) models, may lead to a set of degenerate vacua with broken and unbroken supersymmetry (SUSY) whose vacuum energy densities vanish in the leading approximation. Assuming the degeneracy of vacua with broken and unbroken SUSY originating in the hidden sector, we estimate the value of the cosmological constant. We argue that the observed value of the dark energy density can be reproduced in the Split-SUSY scenario if the SUSY breaking scale is of order of 10^{10} GeV.
Nonuniversal gaugino masses and seminatural supersymmetry in view of the Higgs boson discovery
Energy Technology Data Exchange (ETDEWEB)
Martin, Stephen P. [Santa Barbara, KITP
2014-02-20
I consider models with non-universal gaugino masses at the gauge coupling unification scale, taking into account the Higgs boson discovery. Viable regions of parameter space are mapped and studied in the case of non-universality following from an F-term in a linear combination of singlet and adjoint representations of SU(5). I consider, in particular, "semi-natural" models that have small \\mu, with gaugino masses dominating the supersymmetry breaking terms at high energies. Higgsino-like particles are then much lighter than all other superpartners, and the prospects for discovery at the Large Hadron Collider can be extremely challenging.
Super no-scale models in string theory
Kounnas, Costas; Partouche, Hervé
2016-12-01
We consider "super no-scale models" in the framework of the heterotic string, where the N = 4 , 2 , 1 → 0 spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk-Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum energy is exponentially suppressed, provided the supersymmetry breaking scale is small, m3/2 ≪Mstring. We show that the "super no-scale string models" under consideration are free of Hagedorn-like tachyonic singularities, even when the supersymmetry breaking scale is large, m3/2 ≃Mstring. The vacuum energy decreases monotonically and converges exponentially to zero, when m3/2 varies from Mstring to 0. We also show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by the 1-loop effective potential, while those corresponding to non-asymptotically free gauge groups lead to instabilities and condense. The Wilson lines of the conformal gauge symmetries remain massless. When stable, the stringy super no-scale models admit low energy effective actions, where decoupling gravity yields theories in flat spacetime, with softly broken supersymmetry.
Cosmological constant, supersymmetry, nonassociativity, and big numbers
Energy Technology Data Exchange (ETDEWEB)
Dzhunushaliev, Vladimir [KazNU, Department of Theoretical and Nuclear Physics, Almaty (Kazakhstan); IETP, Al-Farabi KazNU, Almaty (Kazakhstan)
2015-02-01
The nonassociative generalization of supersymmetry is considered. It is shown that the associator of four supersymmetry generators has the coefficient ∝ ℎ/l{sub 0}{sup 2} where l0 is some characteristic length. Two cases are considered: (a) l{sub 0}{sup -2} coincides with the cosmological constant; (b) l{sub 0} is the classical radius of the electron. It is also shown that the scaled constant is of the order of 10{sup -120} for the first case and 10{sup -30} for the second case. The possible manifestation and smallness of nonassociativity is discussed. (orig.)
Supersymmetry versus black holes at the LHC
Roy, Arunava
2007-01-01
Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but powerful method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show the measure of the dilepton invariant mass provides a strong signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.
Supersymmetry Versus Black Holes at the Lhc
Roy, Arunava; Cavaglià, Marco
Supersymmetry and extra dimensions are the two most promising candidates for new physics at the TeV scale. Supersymmetric particles or extra-dimensional effects could soon be observed at the Large Hadron Collider. We propose a simple but effective method to discriminate the two models: the analysis of isolated leptons with high transverse momentum. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET, the latter providing the mass spectrum. Our results show that the measure of the dilepton invariant mass provides a promising signature to differentiate supersymmetry and black hole events at the Large Hadron Collider. Analysis of event-shape variables and multilepton events complement and strengthen this conclusion.
Experimental Status of Supersymmetry after the LHC Run-I
Autermann, Christian
2016-01-01
The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb^-1 and 20 fb^-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.
Experimental status of supersymmetry after the LHC Run-I
Autermann, Christian
2016-09-01
The ATLAS and CMS experiments at the Large Hadron Collider (LHC) at CERN have searched for signals of new physics, in particular for supersymmetry. The data collected until 2012 at center-of-mass energies of 7 and 8 TeV and integrated luminosities of 5 fb-1 and 20 fb-1, respectively, agree with the expectation from standard model processes. Constraints on supersymmetry have been calculated and interpreted in different models. Limits on supersymmetry particle masses at the TeV scale have been derived and interpreted generally in the context of simplified model spectra. The constrained minimal supersymmetric standard model is disfavored by the experimental results. Natural supersymmetry scenarios with low supersymmetry particle masses remain possible in multiple regions, for example in those with compressed spectra, that are difficult to access experimentally. The upgraded LHC operating at √{ s } = 13 TeV is gaining sensitivity to the remaining unexplored SUSY parameter space.
Inflation and reheating in theories with spontaneous scale invariance symmetry breaking
Rinaldi, Massimiliano; Vanzo, Luciano
2016-07-01
We study a scale-invariant model of quadratic gravity with a nonminimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with nearly the same observational predictions of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations and the usual Einstein-Hilbert action is recovered. The oscillations around the fixed point can reheat the Universe in various ways, and we study in detail some of these possibilities.
Inflation and reheating in theories with spontaneous scale invariance symmetry breaking
Rinaldi, Massimiliano
2015-01-01
We study a scale-invariant model of quadratic gravity with a non-minimally coupled scalar field. We focus on cosmological solutions and find that scale invariance is spontaneously broken and a mass scale naturally emerges. Before the symmetry breaking, the Universe undergoes an inflationary expansion with the same characteristics of Starobinsky's model. At the end of inflation, the Hubble parameter and the scalar field converge to a stable fixed point through damped oscillations that are responsible for the reheating of the Universe via parametric amplification of other matter fields.
Report of the Supersymmetry Theory Subgroup
Energy Technology Data Exchange (ETDEWEB)
Wells, James D
2003-05-23
We provide a mini-guide to some of the possible manifestations of weak-scale supersymmetry. For each of six scenarios we provide: a brief description of the theoretical underpinnings, the adjustable parameters, a qualitative description of the associated phenomenology at future colliders, and comments on how to simulate each scenario with existing event generators.
Report of the Supersymmetry Theory Subgroup
Energy Technology Data Exchange (ETDEWEB)
Amundson, J. [Wisconsin Univ., Madison, WI (United States); Anderson, G. [Fermi National Accelerator Lab., Batavia, IL (United States); Baer, H. [Florida State Univ., Tallahassee, FL (United States)] [and others
1996-09-17
We provide a mini-guide to some or the possible manifestations of weak scale supersymmetry. For each of six scenarios we provide: a brief description of the theoretical underpinnings, the adjustable parameters, a qualitative description of the associated phenomenology at future colliders, comments on how to simulate each scenario with existing event generators,
Linking natural supersymmetry to flavour physics
Energy Technology Data Exchange (ETDEWEB)
Dudas, Emilian [Centre de Physique Théorique, École Polytechnique, CNRS,Palaiseau (France); Gersdorff, Gero von [ICTP South American Institute for Fundamental Research,Instituto de Fisica Teorica, Sao Paulo State University,Sao Paulo (Brazil); Pokorski, Stefan [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Warsaw (Poland); Ziegler, Robert [TUM-IAS and Physik Department, Technische Universität München,Munich (Germany)
2014-01-22
With the aim of linking natural supersymmetry to flavour physics, a model is proposed based on a family symmetry G×U(1), where G is a discrete nonabelian subgroup of SU(2), with both F-term and (abelian) D-term supersymmetry breaking. A good fit to the fermion masses and mixing is obtained with the same U(1) charges for the left- and right- handed quarks of the first two families and the right-handed bottom quark, and with zero charge for the left-handed top-bottom doublet and the the right handed top. The model shows an interesting indirect correlation between the correct prediction for the V{sub ub}/V{sub cb} ratio and large right-handed rotations in the (s,b) sector, required to diagonalise the Yukawa matrix. For the squarks, one obtains almost degenerate first two generations. The main source of the FCNC and CP violation effects is the splitting between the first two families and the right-handed sbottom determined by the relative size of F-term and D-term supersymmetry breaking. The presence of the large right-handed rotation implies that the bounds on the masses of the first two families of squarks and the right handed sbottom are in a few to a few tens TeV range. The picture that emerges is light stops and left handed sbottom and much heavier other squarks.
Why supersymmetry? Physics beyond the standard model
Indian Academy of Sciences (India)
ROMESH K KAUL
2016-09-01
The Naturalness Principle as a requirement that the heavy mass scales decouple from the physics of light mass scales is reviewed. In quantum field theories containing {\\em elementary} scalar fields, such as the StandardModel of electroweak interactions containing the Higgs particle, mass of the scalar field is not a natural parameter as it receives large radiative corrections. How supersymmetry solves this Naturalness Problem is outlined. Thereare also other contexts where the presence of elementary scalar fields generically spoils the high–low mass scales decoupling in the quantum theory. As an example of this, the non-decoupling of possible Planck scale violationof Lorentz invariance due to quantum gravity effects from the physics at low scales in theories with elementary scalar fields such as the Higgs field is described. Here again supersymmetry provides a mechanism for ensuringthat the decoupling of heavy–light mass scales is maintained.
Division algebras and supersymmetry
Baez, John C
2009-01-01
Supersymmetry is deeply related to division algebras. Nonabelian Yang--Mills fields minimally coupled to massless spinors are supersymmetric if and only if the dimension of spacetime is 3, 4, 6 or 10. The same is true for the Green--Schwarz superstring. In both cases, supersymmetry relies on the vanishing of a certain trilinear expression involving a spinor field. The reason for this, in turn, is the existence of normed division algebras in dimensions 1, 2, 4 and 8: the real numbers, complex numbers, quaternions and octonions. Here we provide a self-contained account of how this works.
Supersymmetry for mathematicians
Varadarajan, V S
2004-01-01
Supersymmetry has been the object of study by theoretical physicists since the early 1970's. In recent years it has attracted the interest of mathematicians because of its novelty, and because of significance, both in mathematics and physics, of the main issues it raises. This book presents the foundations of supersymmetry to the mathematically minded reader in a cogent and self-contained manner. It begins with a brief introduction to the physical foundations of the theory, especially the classification of relativistic particles and their wave equations, such as the equations of Dirac and Weyl
Supersymmetry Parameter Analysis : SPA Convention and Project
Aguilar-Saavedra, J A; Allanach, Benjamin C; Arnowitt, R; Baer, H A; Bagger, J A; Balázs, C; Barger, V; Barnett, M; Bartl, Alfred; Battaglia, M; Bechtle, P; Belyaev, A; Berger, E L; Blair, G; Boos, E; Bélanger, G; Carena, M S; Choi, S Y; Deppisch, F; Desch, Klaus; Djouadi, A; Dutta, B; Dutta, S; Díaz, M A; Eberl, H; Ellis, Jonathan Richard; Erler, Jens; Fraas, H; Freitas, A; Fritzsche, T; Godbole, Rohini M; Gounaris, George J; Guasch, J; Gunion, J F; Haba, N; Haber, Howard E; Hagiwara, K; Han, L; Han, T; He, H J; Heinemeyer, S; Hesselbach, S; Hidaka, K; Hinchliffe, Ian; Hirsch, M; Hohenwarter-Sodek, K; Hollik, W; Hou, W S; Hurth, Tobias; Jack, I; Jiang, Y; Jones, D R T; Kalinowski, Jan; Kamon, T; Kane, G; Kang, S K; Kernreiter, T; Kilian, W; Kim, C S; King, S F; Kittel, O; Klasen, M; Kneur, J L; Kovarik, K; Kraml, Sabine; Krämer, M; Lafaye, R; Langacker, P; Logan, H E; Ma, W G; Majerotto, Walter; Martyn, H U; Matchev, K; Miller, D J; Mondragon, M; Moortgat-Pick, G; Moretti, S; Mori, T; Moultaka, G; Muanza, S; Mukhopadhyaya, B; Mühlleitner, M M; Nauenberg, U; Nojiri, M M; Nomura, D; Nowak, H; Okada, N; Olive, Keith A; Oller, W; Peskin, M; Plehn, T; Polesello, G; Porod, Werner; Quevedo, Fernando; Rainwater, D L; Reuter, J; Richardson, P; Rolbiecki, K; de Roeck, A; Weber, Ch.
2006-01-01
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e- linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the d...
Supersymmetry - When Theory Inspires Experimental Searches
AUTHOR|(CDS)2070740
2014-01-01
We review, in the first part of this work, many pioneering works on supersymmetry and organize these results to show how supersymmetric quantum field theories arise from spin-statistics, N{\\oe}ther and a series of no-go theorems. We then introduce the so-called superspace formalism dedicated to the natural construction of supersymmetric Lagrangians and detail the most popular mechanisms leading to soft supersymmetry breaking. As an application, we describe the building of the Minimal Supersymmetric Standard Model and investigate current experimental limits on the parameter space of its most constrained versions. To this aim, we use various flavor, electroweak precision, cosmology and collider data. We then perform several phenomenological excursions beyond this minimal setup and probe effects due to non-minimal flavor violation in the squark sector, revisiting various constraints arising from indirect searches for superpartners. Next, we use several interfaced high-energy physics tools, including the FeynRule...
Searches for Supersymmetry at the Tevatron
Meyer, A; Abolins, M; Acharya, B S; Adams, D L; Adams, M; Adams, T; Agelou, M; Abazov, V M; Agram, J L; Ahmed, S N; Ahn, S H; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anderson, S; Andrieu, B; Arnoud, Y; Askew, A; Åsman, B; Autermann, C; Avila, C; Babukhadia, L; Bacon, Trevor C; Baden, A; Baffioni, S; Baldin, B Yu; Balm, P W; Banerjee, S; Barberis, E; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Bean, A; Beauceron, S; Beaudette, F; Begel, M; Beri, S B; Bernardi, G; Bertram, I; Besançon, M; Besson, A; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Bhattacharjee, M; Binder, M; Bischoff, A; Black, K M; Blackler, I; Blazey, G; Blekman, F; Bloch, D; Blumenschein, U; Böhnlein, A; Bolton, T; Bonamy, P; Borcherding, F; Borissov, G; Bos, K; Bose, T; Boswell, C; Brandt, A; Briskin, G; Brock, R; Brooijmans, G; Bross, A; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burnett, T H; Busato, E; Butler, J M; Bystrický, J; Canelli, F; Carvalho, W; Casey, B C K; Casey, D; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chandra, A; Chapin, D; Charles, F; Cheu, E; Chevalier, L; Cho, D K; Choi, S; Chopra, S; Christiansen, T; Christofek, L; Claes, D; Clark, A R; Clément, C; Coadou, Y; Colling, D J; Coney, L; Connolly, B; Cooper, W E; Coppage, D; Corcoran, M; Coss, J; Cothenet, A; Cousinou, M C; Crepe-Renaudin, S; Cristetiu, M; Cummings, M A C; Cutts, D; Da Motta, H; Davies, B; Davies, G; Davis, G A; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Dean, S; Del Signore, K; Déliot, F; Delsart, P A; Demarteau, M; Demina, R; Demine, P; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dong, H; Doulas, S; Duflot, L; Dugad, S R; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Edwards, T; Ellison, J; Elmsheuser, J; Eltzroth, J T; Elvira, V D; Eno, S; Ermolov, P; Eroshin, O V; Estrada, J; Evans, D; Evans, H; Evdokimov, A; Evdokimov, V N; Fast, J; Fatakia, S N; Fein, D; Feligioni, L; Ferbel, T; Fiedler, F; Filthaut, F; Fisk, H E; Fleuret, F; Fortner, M; Fox, H; Freeman, W; Fu, S; Fuess, S; Galea, C F; Gallas, E; Galyaev, E; Gao, M; García, C; García-Bellido, A; Gardner, J; Gavrilov, V; Gelé, D; Gelhaus, R; Genser, K; Gerber, C E; Gershtein, Yu; Geurkov, G; Ginther, G; Goldmann, K S; Golling, T; Gómez, B; Gounder, K; Goussiou, A; Graham, G; Grannis, P D; Greder, S; Green, J A; Greenlee, H; Greenwood, Z D; Gregores, E M; Grinstein, S; Grivaz, J F; Groer, L S; Grünendahl, S; Grünewald, M W; Gu, W; Gurzhev, S N; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haggerty, H; Hagopian, S L; Hall, I; Hall, R E; Han, C; Han, L; Hanagaki, K; Hanlet, P; Harder, K; Hauptman, J M; Hauser, R; Hays, C; Hays, J; Hebert, C; Hedin, D; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hohlfeld, M; Hong, S J; Hooper, R; Hou, S; Hu, Y; Huang, J; Huang, Y; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jain, V; Jakobs, K; Jenkins, A; Jesik, R; Jiang, Y; Johns, K; Johnson, M; Johnson, P; Jonckheere, A; Jonsson, P; Jöstlein, H; Juste, A; Kado, M; Käfer, D; Kahl, W; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J; Karmanov, D; Kasper, J; Kau, D; Ke, Z; Kehoe, R; Kermiche, S; Kesisoglou, S; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Kim, K H; Klima, B; Klute, M; Kohli, J M; Kopal, M; Korablev, V; Kotcher, J; Kothari, B; Kotwal, A V; Koubarovsky, A; Kouchner, A; Kuznetsov, O; Kozelov, A V; Kozminski, J; Krane, J; Krishnaswamy, M R; Krzywdzinski, S; Kubantsev, M A; Kuleshov, S; Kulik, Y; Kunori, S; Kupco, A; Kurca, T; Kuznetsov, V E; Lager, S; Lahrichi, N; Landsberg, G L; Lazoflores, J; Le Bihan, A C; Lebrun, P; Lee, S W; Lee, W M; Leflat, A; Leggett, C; Lehner, F; Leonidopoulos, C; Lewis, P; Li, J; Li, Q Z; Li, X; Lima, J G R; Lincoln, D; Linn, S L; Linnemann, J T; Lipton, R; Lobo, L; Lobodenko, A A; Lokajícek, M; Lounis, A; Lü, J; Lubatti, H J; Lucotte, A; Lueking, L H; Luo, C; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Magnan, A M; Maity, M; Mal, P K; Malik, S; Malyshev, V L; Manankov, V; Mao, H S; Maravin, Y; Marshall, T; Martens, M; Martin, M I; Mattingly, S E K; Mayorov, A A; McCarthy, R; McCroskey, R; McMahon, T; Meder, D; Melanson, H L; Melnitchouk, A S; Meng, X; Merkin, M; Merritt, K W B; Miao, C; Miettinen, H; Mihalcea, D; Mishra, C S; Mitrevski, J; Mokhov, N V; Molina, J; Mondal, N K; Montgomery, H E; Moore, R W; Mostafa, M A; Muanza, G S; Mulders, M; Mutaf, Y D; Nagy, E; Nang, F; Narain, M; Narasimham, V S; Naumann, N A; Neal, H A; Negret, J P; Nelson, S; Neustroev, P; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; Nurse, E; O'Dell, V; O'Neil, D C; Oguri, V; Oliveira, N; Olivier, B; Oshima, N; Oteroy-Garzon, G J; Padley, P; Papageorgiou, K; Parashar, N; Park, J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Perea, P M; Pérez, E; Peters, O; Petroff, P; Petteni, M; Phaf, L K; Piegaia, R; Podesta-Lerma, P L M; Podstavkov, V M; Pope, B G; Popkov, E; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Przybycien, M B; Qian, J; Quadt, A; Quinn, B; Rani, K J; Rapidis, P A; Ratoff, P N; Reay, N W; Renardy, J F; Reucroft, S; Rha, J; Ridel, M; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Royon, C; Rubinov, P; Ruchti, R; Sabirov, B M; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schamberger, R D; Schellman, H; Schieferdecker, P; Schmitt, C; Schukin, A; Schwartzman, A; Schwienhorst, R; Sen-Gupta, S; Shabalina, E; Shary, V; Shephard, W D; Shpakov, D; Sidwell, R A; Simák, V; Sirotenko, V I; Skow, D; Slattery, P F; Smith, R P; Smolek, K; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Song, X; Song, Y; Sonnenschein, L; Sopczak, A; Sorin, V; Sosebee, M; Soustruznik, K; Souza, M; Stanton, N R; Stark, J; Steele, J; Steinbruck, G; Stevenson, K; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strang, M A; Strauss, M; Ströhmer, R; Strovink, M; Stutte, L; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tentindo-Repond, S; Thomas, E; Thooris, B; Tomoto, M; Toole, T; Torborg, J; Towers, S; Trefzger, T; Trincaz-Duvoid, S; Trippe, T G; Tuchming, B; Turcot, A S; Tuts, P M; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vlimant, J R; Von Törne, E; Vreeswijk, M; Vu-Anh, T; Wahl, H D; Walker, R; Wallace, N; Wang, Z M; Warchol, J; Warsinsky, M; Watts, G; Wayne, M; Weber, M; Weerts, H; Wegner, M; White, A; White, V; Whiteson, D; Wicke, D; Wijngaarden, D A; Wilson, G W; Wimpenny, S J; Wittlin, J; Wlodek, T; Wobisch, M; Womersley, J; Wood, D R; Wu, Z; Wyatt, T R; Xu, Q; Xuan, N; Yamada, R; Yasuda, T; Yatsunenko, Y A; Yen, Y; Yip, K; Youn, S W; Yu, J; Yurkewicz, A; Zabi, A; Zatserklyaniy, A; Zdrazil, M; Zeitnitz, C; Zhang, B; Zhang, D; Zhang, X; Zhao, T; Zhao, Z; Zheng, H; Zhou, B; Zhou, Z; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zitoun, R; Zutshi, V; Zverev, E G; Zylberstejn, A; Meyer, Arnd
2004-01-01
Both Tevatron experiments, D0 and CDF, have searched for signs of Supersymmetry in the present Run II data sample, using integrated luminosities of up to 260/pb collected in ppbar collisions at a center-of-mass energy of 1.96TeV. In these proceedings, new results are presented in the search for squarks and gluinos in the jets and missing transverse energy final state, associated production of charginos and neutralinos with multilepton final states, search for the rare decay B_s->mumu, searches allowing R-parity violation (muons+jets, multileptons), and searches in the gauge mediated supersymmetry breaking framework with the final state of two photons and missing transverse energy. In the absence of any significant deviation from Standard Model expectations, limits on the presence of new physics are set, which in many cases are the most stringent to date.
Complex scaling method for three- and four-body scattering above the break-up thresholds
Lazauskas, Rimantas
2012-01-01
A formalism based on the complex-scaling method is presented to solve the few particle scattering problem in configuration space using bound state techniques with trivial boundary conditions. Several applications to A=3,4 systems are presented to demonstrate the efficiency of the method in computing elastic as well as break-up reactions with Hamiltonians including both short and long-range interaction.
Model building and phenomenology in supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Kim Jong Soo
2008-09-15
Supersymmetry (SUSY) stabilizes the hierarchy between the electroweak scale and the scale of grand unified theories (GUT) or the Planck scale. The simplest supersymmetric extension of the SM, the minimal supersymmetric SM (MSSM) solves several phenomenological problems, e. g. the gauge couplings unify and the lightest supersymmetric particle (LSP) is a dark matter candidate. In this thesis, Jarlskog invariants, squark pair production at the LHC and massive neutrinos are discussed in the framework of the MSSM and its extensions. (orig.)
Ion-scale spectral break of solar wind turbulence at high and low beta.
Chen, C H K; Leung, L; Boldyrev, S; Maruca, B A; Bale, S D
2014-11-28
The power spectrum of magnetic fluctuations in the solar wind at 1 AU displays a break between two power laws in the range of spacecraft-frame frequencies 0.1 to 1 Hz. These frequencies correspond to spatial scales in the plasma frame near the proton gyroradius ρi and proton inertial length di. At 1 AU it is difficult to determine which of these is associated with the break, since [Formula: see text] and the perpendicular ion plasma beta is typically β⊥i∼1. To address this, several exceptional intervals with β⊥i≪1 and β⊥i≫1 were investigated, during which these scales were well separated. It was found that for β⊥i≪1 the break occurs at di and for β⊥i≫1 at ρi, i.e., the larger of the two scales. Possible explanations for these results are discussed, including Alfvén wave dispersion, damping, and current sheets.
Supersymmetry in singular spaces
Bergshoeff, E; Kallosh, R; Van Proeyen, A
2000-01-01
We develop the concept of supersymmetry in singular spaces, apply it in an example for 3-branes in D = 5 and comment on 8-branes in D = 10. The new construction has an interpretation that the brane is a sink for the flux and requires adding to the standard supergravity a (D - 1)-form field and a sup
Supersymmetry in singular spaces
Bergshoeff, E; Kallosh, R; Van Proeyen, A
2000-01-01
We develop the concept of supersymmetry in singular spaces, apply it in an example for 3-branes in D = 5 and comment on 8-branes in D = 10. The new construction has an interpretation that the brane is a sink for the flux and requires adding to the standard supergravity a (D - 1)-form field and a
Supersymmetry in Singular Spaces
Bergshoeff, E. A.; Kallosh, R.; Proeyen, A. van
2000-01-01
Published in: J. High Energy Phys. 10 (2000) 033 citations recorded in [Science Citation Index] Abstract: We develop the concept of supersymmetry in singular spaces, apply it in an example for 3-branes in D=5 and comment on 8-branes in D=10. The new construction has an interpretation that the brane
Superworld without supersymmetry
Directory of Open Access Journals (Sweden)
Shreyashi Chakdar
2016-03-01
Full Text Available It is a possibility that the superworld (supersymmetric partners of our world does exist without supersymmetry. The two worlds are being distinguished by an unbroken discrete Z2 symmetry (similar to R-parity in supersymmetry. We lose the solution to the hierarchy problem. However, such a scenario has several motivations. For example, the lightest neutral superworld particle will be a candidate for dark matter. The other being, as in supersymmetry, it is possible to achieve gauge coupling unification. One major difference with the supersymmetric theory is that such a theory is much more general since it is not constrained by supersymmetry. For example, some of the gauge couplings connecting the Standard Model particles with the superpartners now become free Yukawa couplings. As a result, the final state signals as well as the limits on the superworld particles can be modified both qualitatively and quantitatively. The reach for these superworld particles at the Large Hadron Collider (LHC can be much higher than the superpartners, leading to the increased possibility of discovering new physics at the LHC.
Superworld without supersymmetry
Chakdar, Shreyashi; Ghosh, Kirtiman; Nandi, S.
2016-03-01
It is a possibility that the superworld (supersymmetric partners of our world) does exist without supersymmetry. The two worlds are being distinguished by an unbroken discrete Z2 symmetry (similar to R-parity in supersymmetry). We lose the solution to the hierarchy problem. However, such a scenario has several motivations. For example, the lightest neutral superworld particle will be a candidate for dark matter. The other being, as in supersymmetry, it is possible to achieve gauge coupling unification. One major difference with the supersymmetric theory is that such a theory is much more general since it is not constrained by supersymmetry. For example, some of the gauge couplings connecting the Standard Model particles with the superpartners now become free Yukawa couplings. As a result, the final state signals as well as the limits on the superworld particles can be modified both qualitatively and quantitatively. The reach for these superworld particles at the Large Hadron Collider (LHC) can be much higher than the superpartners, leading to the increased possibility of discovering new physics at the LHC.
Ventura, Andrea; The ATLAS collaboration
2017-01-01
New and recents results on Supersymmetry searches are shown for the ATLAS and the CMS experiments. Analyses with about 36 fb^-1 are considered for searches concerning light squarks and gluinos, direct pair production of 3rd generation squarks, electroweak production of charginos, neutralinos, sleptons, R-parity violating scenarios and long-lived particles.
Precision measurements in supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Feng, Johnathan Lee [Stanford Univ., CA (United States)
1995-05-01
Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.
Doran, C F; Gates, S J, Jr; Hübsch, T; Iga, K M; Landweber, G D
2008-01-01
We explain how the redefinitions of supermultiplet component fields, comprising what we call "frame shifts", can be used in conjuction with the graphical technology of multiplet Adkinras to render manifest the reducibility of off-shell representations of supersymmetry. This technology speaks to possibility of organizing multiplet constraints in a way which complements and extends the possibilities afforded by superspace methods.
Selection of Multifractal Scaling Breaks and Separation of Geochemical and Geophysical Anomaly
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Spatially superimposed multiple processes such as multiplicative cascade processes often generate multifractal measures possessing so-called self-similarity or self-affinity that can be described by power-law type of functions within certain scale ranges. The multifractalities can be estimated by applying multifractal modeling to the measures reflecting the characteristics of the physical processes such as the element concentration values analyzed in rock and soil samples and caused by the underlying mineralization processes and the other geological processes. The local and regional geological processes may result in geochemical patterns with distinct multifractalities as well as variable scaling ranges. Separation of these multifractal measures on the basis of both the distinct multifractalities and the scaling ranges will be significant for both theoretical studies of multifractal modeling and its applications. Multifractal scaling breaks have been observed from various multifractal patterns. This paper introduces a technique for separating multifractal measures on the basis of scaling breaks. It has been demonstrated that the method is effective for decomposing geochemical and geophysical anomalies required for mineral exploration. A dataset containing the element concentration values of potassium and phosphorus in soil samples was employed for demonstrating the application of the method for studying the fertilizer and yield optimization in agriculture.
Particle physics and cosmology with high-scale SUSY breaking in five-dimensional supergravity models
Otsuka, Hajime
2015-01-01
We discuss a high-scale SUSY breaking scenario with the wino dark matter in the five-dimensional supergravity model on $S^1/Z_2$. The extra U(1) symmetries broken by the orbifold projection control the flavor structure of soft SUSY-breaking parameters as well as the Yukawa couplings, and a scalar component of the one of moduli multiplets, which arise from extra-dimensional components of the U(1) vector multiplets, induces the slow-roll inflation. Because of the supersymmetric moduli stabilization as well as the moduli inflation, it is found that the correct dark matter relic abundance is non-thermally generated by the gravitino decaying into the wino.
Flavor symmetry breaking and scaling for improved staggered actions in quenched QCD
Cheng, M; Jung, C; Karsch, F; Mawhinney, R D; Petreczky, P; Petrov, K V
2006-01-01
We present a study of the flavor symmetry breaking in the pion spectrum for various improved staggered fermion actions. To study the effects of link fattening and tadpole improvement, we use three different variants of the p4 action - p4fat3, p4fat7, and p4fat7tad. These are compared to Asqtad and also to naive staggered. To study the pattern of symmetry breaking, we measure all 15 meson masses in the 4-flavor staggered theory. The measurements are done on a quenched gauge background, generated using a one-loop improved Symanzik action with $\\beta=10/g^2 = 7.40, 7.75,$ and 8.00, corresponding to lattice spacings of approximately a = .31 fm., .21 fm., and .14 fm. We also study how the lattice scale set by the $\\rho$ mass on each of these ensembles compares to one set by the static quark potential.
A Note on Modulus-dominated SUSY-breaking
Maxin, James A; Nanopoulos, D V
2009-01-01
In models where supersymmetry-breaking is dominated by the Kahler moduli and/or the universal dilaton, the B-parameter at the unification scale should be consistent with the value of tan(beta) at the electroweak scale determined by minimization of the Higgs potential triggering REWSB. We study such models employing a self-consistent determination of the B-parameter. In particular, we study the viability of a generic model, as well as M-theory and Type IIB flux compactifications with modulus-dominated supersymmetric soft-terms from the GUT scale, M_{GUT}=2x10^{16}GeV.
Z' mass limits and the naturalness of supersymmetry
Athron, P; Williams, A G
2015-01-01
The discovery of a 125 GeV Higgs boson and rising lower bounds on the masses of superpartners have lead to concerns that supersymmetric models are now fine tuned. Large stop masses, required for a 125 GeV Higgs, feed into the electroweak symmetry breaking conditions through renormalisation group equations forcing one to fine tune these parameters to obtain the correct electroweak vacuum expectation value. Nonetheless this fine tuning depends crucially on our assumptions about the supersymmetry breaking scale. At the same time $U(1)$ extensions provide the most compelling solution to the $\\mu$-problem, which is also a naturalness issue, and allow the tree level Higgs mass to be raised substantially above $M_Z$. These very well motivated supersymmetric models predict a new $Z'$ boson which could be discovered at the LHC and the naturalness of the model requires that the $Z'$ boson mass should not be too far above the TeV scale. Moreover this fine tuning appears at the tree level, making it less dependent on ass...
A Composite Model of Quarks with the `Effective Supersymmetry'
Okada, N.
1998-04-01
We present a composite model of quarks with `effective supersymmetry'. The model is based on the gauge group (SU(2)S × SU(2)M) × (SU(2)U × SU(2)C × SU(2)T) × SU(5)SM , where SU(5)SM is the standard model gauge group. In the dynamical supersymmetry breaking sector based on the gauge group SU(2)S × SU(2)M , supersymmetry is dynamically broken. The preon sector is constructed by the model proposed by Nelson and Strassler. The fermion mass hierarchy among the up-type quarks originates from the SU(2)U × SU(2)C × SU(2)T gauge dynamics. The supersymmetry breaking is mediated to the minimal supersymmetric standard model sector by the `preon' superfields which compose the quarks in the first two generations. To obtain an experimentally acceptable mass spectrum, the scalar quarks in the first two generations need masses of order 10 TeV, while the other superpartners need masses less than 1 TeV. Therefore, the mass spectrum in our model is one example of the `effective supersymmetry' model proposed by Cohen, Kaplan and Nelson.
A Composite Model of Quarks with the "Effective Supersymmetry"
Okada, N
1998-01-01
We present a composite model of quarks with the `effective supersymmetry'. The model is based on the gauge group $(SU(2)_S \\times SU(2)_M) \\times (SU(2)_U standard model gauge group. In the dynamical supersymmetry breaking sector based on the gauge group $ SU(2)_S \\times SU(2)_M $, the supersymmetry is dynamically broken. The preon sector is constructed by the model proposed by Nelson and Strassler. The fermion mass hierarchy among the up-type quarks originates from the $ SU(2)_U \\times SU(2)_C \\times SU(2)_T $ gauge dynamics. The supersymmetry breaking is mediated to the minimal supersymmetric standard model sector by the `preon' superfields which compose the quarks in the first two generations. To obtain the experimentally acceptable mass spectrum, the scalar quarks in the first two generations have masses of order 10 TeV, while the other superpartners have masses of order 100 GeV. Therefore, the mass spectrum in our model is one of the type of the `effective supersymmetry' model proposed by Cohen, Kaplan a...
Finding the Higgs Boson through Supersymmetry
De Campos, F; Magro, M B; Restrepo, D; Valle, J W F
2008-01-01
The study of displaced vertices containing two b--jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.
Intersecting branes, SUSY breaking and the 2 TeV excess at the LHC
Blumenhagen, Ralph
2016-01-01
Intersecting D-brane models in string theory can naturally support the gauge and matter content of left-right symmetric extensions of the Standard Model with gauge symmetry SU(3) c × SU(2) L × SU(2) R × U(1) B- L . Considering such models as candidates for explaining the 2 TeV excesses seen in Run-1 by both ATLAS and CMS, the minimal possible scale of supersymmetry breaking is determined by the requirement of precise one-loop gauge coupling unification. For the vector-like, bifundamental and (anti-)symmetric Higgs content of such brane configurations, this comes out fairly universally at around 19 TeV. For the SU(2) R gauge coupling one finds values 0.48 < g R ( M R ) < 0.6. Threshold corrections can potentially lower the scale of supersymmetry breaking.
Intersecting Branes, SUSY Breaking and the 2TeV Excess at the LHC
Blumenhagen, Ralph
2015-01-01
Intersecting D-brane models in string theory can naturally support the gauge and matter content of left-right symmetric extensions of the Standard Model with gauge symmetry SU(3)_c x SU(2)_L x SU(2)_R x U(1)_{B-L}. Considering such models as candidates for explaining the 2TeV excesses seen in Run-1 by both ATLAS and CMS, the minimal possible scale of supersymmetry breaking is determined by the requirement of precise one-loop gauge coupling unification. For the vector-like, bifundamental and (anti-)symmetric Higgs content of such brane configurations, this comes out fairly universally at around 19TeV. For the SU(2)_R gauge coupling one finds values 0.48
Supersymmetry and cosmic censorship
Energy Technology Data Exchange (ETDEWEB)
Ortin, T. [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C. U. Cantoblanco, 28049 Madrid (Spain)
2007-05-15
We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We show that the requirement of global supersymmetry implies the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, for which there is no microscopic interpretation in String Theory. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M= vertical stroke q vertical stroke, which fails to be everywhere supersymmetric. There are, nevertheless, everywhere supersymmetric solutions with global angular momentum and non-trivial scalar fields. We also present similar preliminary results in N=1, d=5 supergravity coupled to vector multiplets. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
Supersymmetry, supergravity, and unification
Nath, Pran
2017-01-01
This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.
Dimensional Enhancement via Supersymmetry
Faux, M G; Landweber, G D
2009-01-01
We explain how the representation theory associated with supersymmetry in diverse dimensions is encoded within the representation theory of supersymmetry in one time-like dimension. This is enabled by algebraic criteria, derived, exhibited, and utilized in this paper, which indicate which subset of one-dimensional supersymmetric models describe "shadows" of higher-dimensional models. This formalism delineates that minority of one-dimensional supersymmetric models which can "enhance" to accommodate extra dimensions. As a consistency test, we use our formalism to reproduce well-known conclusions about supersymmetric field theories using one-dimensional reasoning exclusively. And we introduce the notion of "phantoms" which usefully accommodate higher-dimensional gauge invariance in the context of shadow multiplets in supersymmetric quantum mechanics.
Supersymmetry, supercurrent, and scale invariance
Energy Technology Data Exchange (ETDEWEB)
Piguet, Olivier [Universidade Catolica de Petropolis, RJ (Brazil). Inst. de Fisica]|[Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Del Cima, Oswaldo M. (colab.)
1996-11-01
The aim of the present lectures is to give an introduction to the renormalization of supersymmetric gauge theories in 4-dimensional space-time. This will include the analysis of the ultraviolet divergences, and much emphasis will be put on the so-called `ultraviolet finite` models. Examples of the latter might be relevant as realistic `grand unified theories` of the particle interactions. 67 refs.
Supersymmetry searches with ATLAS: overview and latest results
CERN. Geneva
2013-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. The ATLAS experiment searches for signs of supersymmetry in a large variety of signatures involving events with abnormal production of missing transverse momentum, jets, leptons, photons, third generation fermions, gauge bosons or massive long-lived particles. The talk presents the latest results obtained in these searches.
Supersymmetry: Experimental Status
Ulmer, Keith A
2016-01-01
This talk presents results from the CMS and ATLAS Collaborations from searches for physics beyond the Standard Model motivated by supersymmetry from Run 1 of the LHC. Representative searches are described to illustrate the diverse nature of the search program in both background estimation techniques and final state topologies. The status of preparation for Run 2 searches at 13 TeV is also presented.
Ho, Chiu Man; Okada, Nobuchika
2014-01-01
Supersymmetry does not dictate the way we should quantize the fields in the supermultiplets, and so we have the freedom to quantize the Standard Model (SM) particles and their superpartners differently. We propose a generalized quantization scheme under which a particle can only appear off-shell, while its contributions to quantum corrections are exactly the same as those in the usual quantum field theory. We apply this quantization scheme solely to the sparticles in the $R$-parity preserving...
Qian, Hong; Ao, Ping; Tu, Yuhai; Wang, Jin
2016-11-01
By integrating four lines of thoughts: symmetry breaking originally advanced by Anderson, bifurcation from nonlinear dynamical systems, Landau's phenomenological theory of phase transition, and the mechanism of emergent rare events first studied by Kramers, we introduce a possible framework for understanding mesoscopic dynamics that links (i) fast microscopic (lower level) motions, (ii) movements within each basin-of-attraction at the mid-level, and (iii) higher-level rare transitions between neighboring basins, which have slow rates that decrease exponentially with the size of the system. In this mesoscopic framework, the fast dynamics is represented by a rapidly varying stochastic process and the mid-level by a nonlinear dynamics. Multiple attractors arise as emergent properties of the nonlinear systems. The interplay between the stochastic element and nonlinearity, the essence of Kramers' theory, leads to successive jump-like transitions among different basins. We argue each transition is a dynamic symmetry breaking, with the potential of exhibiting Thom-Zeeman catastrophe as well as phase transition with the breakdown of ergodicity (e.g., cell differentiation). The slow-time dynamics of the nonlinear mesoscopic system is not deterministic, rather it is a discrete stochastic jump process. The existence of these discrete states and the Markov transitions among them are both emergent phenomena. This emergent stochastic jump dynamics then serves as the stochastic element for the nonlinear dynamics of a higher level aggregates on an even larger spatial and slower time scales (e.g., evolution). This description captures the hierarchical structure outlined by Anderson and illustrates two distinct types of limit of a mesoscopic dynamics: A long-time ensemble thermodynamics in terms of time t → ∞ followed by the size of the system N → ∞ , and a short-time trajectory steady state with N → ∞ followed by t → ∞ . With these limits, symmetry breaking and cusp
Two-measure theory with third-rank antisymmetric tensor for local scale symmetry breaking
Guendelman, Eduardo; Nishino, Hitoshi; Rajpoot, Subhash
2017-03-01
We present a new mechanism of local scale symmetry breaking based on the scalar density Φ ≡(1 /3 !)ɛμ ν ρ σ∂μAν ρ σ≡(1 /4 !)ɛμ ν ρ σFμν ρ σ (0 ) with an independent third-rank tensor Aμ ν ρ , which replaces the scalar density Φ ≡ɛμ ν ρ σɛa b c d(∂μφa)(∂νφb)(∂ρφc)(∂σφd) used in "two-measure theory." We apply this function both to globally and locally scale-invariant systems. For local scale invariance, we modify Fμν ρ σ (0 ) by a certain Chern-Simons term, based on the recently developed tensor-hierarchy formulation. For a locally scale-invariant system with multiple scalars, the minimum value of the potential is realized at exactly zero value, while local scale invariance is broken by some nonzero vacuum expectation values: ∃⟨σi⟩≠0 , ∃⟨Fm n r s⟩=f0ɛm n r s≠0 . For these values, the cosmological constant is maintained to be zero, despite the broken local scale invariance.
The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry
Energy Technology Data Exchange (ETDEWEB)
Hinterbichler, Kurt; Khoury, Justin, E-mail: kurthi@physics.upenn.edu, E-mail: jkhoury@sas.upenn.edu [Center for Particle Cosmology, Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)
2012-04-01
We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential accelerated expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expectation values, and encompasses existing incarnations of this idea, specifically the U(1) model of Rubakov and the Galileon Genesis scenario. Its essential features depend only on the symmetry breaking pattern and not on the details of the underlying lagrangian. It makes generic observational predictions that make it potentially distinguishable from standard inflation, in particular significant non-gaussianities and the absence of primordial gravitational waves.
The Pseudo-Conformal Universe: Scale Invariance from Spontaneous Breaking of Conformal Symmetry
Hinterbichler, Kurt
2011-01-01
We present a novel theory of the very early universe which addresses the traditional horizon and flatness problems of big bang cosmology and predicts a scale invariant spectrum of perturbations. Unlike inflation, this scenario requires no exponential superluminal expansion of space-time. Instead, the early universe is described by a conformal field theory minimally coupled to gravity. The conformal fields develop a time-dependent expectation value which breaks the flat space so(4,2) conformal symmetry down to so(4,1), the symmetries of de Sitter, giving perturbations a scale invariant spectrum. The solution is an attractor, at least in the case of a single time-dependent field. Meanwhile, the metric background remains approximately flat but slowly contracts, which makes the universe increasingly flat, homogeneous and isotropic, akin to the smoothing mechanism of ekpyrotic cosmology. Our scenario is very general, requiring only a conformal field theory capable of developing the appropriate time-dependent expec...
Do scale-invariant fluctuations imply the breaking of de Sitter invariance?
Energy Technology Data Exchange (ETDEWEB)
Youssef, A., E-mail: youssef@mathematik.hu-berlin.de [Institut fuer Mathematik und Institut fuer Physik, Humboldt-Universitaet zu Berlin, Johann von Neumann-Haus, Rudower Chaussee 25, 12489 Berlin (Germany)
2013-01-08
The quantization of the massless minimally coupled (mmc) scalar field in de Sitter spacetime is known to be a non-trivial problem due to the appearance of strong infrared (IR) effects. In particular, the scale-invariance of the CMB power-spectrum - certainly one of the most successful predictions of modern cosmology - is widely believed to be inconsistent with a de Sitter invariant mmc two-point function. Using a Cesaro-summability technique to properly define an otherwise divergent Fourier transform, we show in this Letter that de Sitter symmetry breaking is not a necessary consequence of the scale-invariant fluctuation spectrum. We also generalize our result to the tachyonic scalar fields, i.e. the discrete series of representations of the de Sitter group, that suffer from similar strong IR effects.
Radiatively induced breaking of conformal symmetry in a superpotential
Arbuzov, A. B.; Cirilo-Lombardo, D. J.
2016-07-01
Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.
Radiatively Induced Breaking of Conformal Symmetry in a Superpotential
Arbuzov, A B
2015-01-01
Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman-Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.
Radiatively induced breaking of conformal symmetry in a superpotential
Energy Technology Data Exchange (ETDEWEB)
Arbuzov, A.B. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Department of Higher Mathematics, Dubna State University, 141982 Dubna (Russian Federation); Cirilo-Lombardo, D.J., E-mail: diego777jcl@gmail.com [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); National Institute of Plasma Physics (INFIP-CONICET), Department of Physics, FCEyN, Universidad de Buenos Aires, Buenos Aires 1428 (Argentina)
2016-07-10
Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.
Searches for supersymmetry at CMS
Energy Technology Data Exchange (ETDEWEB)
Collaboration: F. Giordano on behalf of the CMS Collaboration
2017-11-15
Among the most promising prospects for a theory of physics beyond the standard model is supersymmetry. In this talk, the latest results from the CMS experiment at the LHC on searches for supersymmetry produced through strong production and electroweak production channels are presented using 20/fb of data from the 8 TeV LHC run, with particular focus on gluino and stop searches.
The Super-Natural Supersymmetry and Its Classic Example: M-Theory Inspired NMSSM
Li, Tianjun; Wang, Xiao-Chuan
2015-01-01
We briefly review the super-natural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the Minimal Supersymmetric Standard model (MSSM), the Next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for super-natural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on $S^1/Z_2$. In these scenarios, SUSY is broken by one and only one $F$-term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the K\\"ahler potential and superpotential from Calabi-Yau compactification of M-theory on $S^1/Z_2$. Thus, as predicted by super-natural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are r...
Benhenni, Amine; Moultaka, Gilbert; Bailly, Sean
2011-01-01
We consider no-scale inspired supergravity scenarios, where the gravitino mass and related soft supersymmetry-breaking parameters are determined dynamically by radiative corrections to an essentially flat tree-level potential in the supersymmetry breaking hidden sector. We examine the theoretical and phenomenological viability of such a mechanism, when including up-to-date calculations of the low energy sparticle spectrum and taking into account the latest LHC results and other experimental constraints. We (re)emphasize the role of the scale-dependent vacuum energy contribution to the effective potential, in obtaining realistic no-scale electroweak minima, examining carefully the impact of boundary conditions and of variants of the minimization procedure. We also discuss and implement the B_0 (soft breaking Higgs mixing parameter) input boundary condition at high scale, therefore fixing tan beta(B_0) at low scales. For general high scale boundary conditions with non-vanishing B_0, m_0..., our analysis provide...
The Discovery of Supersymmetry
Directory of Open Access Journals (Sweden)
Riva Francesco
2013-11-01
Full Text Available Recent LHC searches have provided strong evidence for the Higgs, a boson whose gauge quantum numbers coincide with those of a SM fermion, the neutrino. This raises the question of whether Higgs and neutrino can be related by supersymmetry. I will show explicitly the implications of models where the Higgs is the sneutrino: from a theoretical point of view an R-symmetry, acting as lepton number, is necessary; on the experimental side, squarks exhibit novel decays into quarks and leptons, allowing to differentiate these scenarios from the ordinary MSSM.
Dimensional Enhancement via Supersymmetry
Directory of Open Access Journals (Sweden)
M. G. Faux
2011-01-01
of supersymmetry in one time-like dimension. This is enabled by algebraic criteria, derived, exhibited, and utilized in this paper, which indicate which subset of one-dimensional supersymmetric models describes “shadows” of higher-dimensional models. This formalism delineates that minority of one-dimensional supersymmetric models which can “enhance” to accommodate extra dimensions. As a consistency test, we use our formalism to reproduce well-known conclusions about supersymmetric field theories using one-dimensional reasoning exclusively. And we introduce the notion of “phantoms” which usefully accommodate higher-dimensional gauge invariance in the context of shadow multiplets in supersymmetric quantum mechanics.
Supersymmetry and chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Walker, Michael Luke [Dept. of Physics and Applied Physics and College of Natural Sciences, Kyung-Hee University, KyongGi, Yong-In 449-701 (Korea, Republic of)]. E-mail: m.walker@aip.org.au
2004-12-01
We dispute the nonperturbative non-renormalisation theorem stating that mass cannot be spontaneously generated in supersymmetric QED. Our analysis, which requires no truncation and is fully gauge and supersymmetry consistent, finds instead that there is no reason for the mass corrections to be exactly zero. We concede that an achiral solution is yet to be found. We also extend a long-standing perturbative result, that the effective potential is zero to all orders of perturbation theory, to the nonperturbative regime for arbitrary numbers of flavours. (author)
Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2007-01-01
Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...
Super no-scale models in string theory
Kounnas, Costas
2016-01-01
We consider "super no-scale models" in the framework of the heterotic string, where the N=4,2,1 --> 0 spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk-Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum energy is exponentially suppressed, provided the supersymmetry breaking scale is small, m_{3/2} << M_{string}. We show that the "super no-scale string models" under consideration are free of Hagedorn-like tachyonic singularities, even when the supersymmetry breaking scale is large, m_{3/2} ~ M_{string}. The vacuum energy decreases monotonically and converges exponentially to zero, when m_{3/2} varies from M_{string} to 0. We also show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by the 1-loop effective potential, while those corresponding to non-asymtoticall...
Generalised universality of gauge thresholds in heterotic vacua with and without supersymmetry
Directory of Open Access Journals (Sweden)
Carlo Angelantonj
2015-11-01
Full Text Available We study one-loop quantum corrections to gauge couplings in heterotic vacua with spontaneous supersymmetry breaking. Although in non-supersymmetric constructions these corrections are not protected and are typically model dependent, we show how a universal behaviour of threshold differences, typical of supersymmetric vacua, may still persist. We formulate specific conditions on the way supersymmetry should be broken for this to occur. Our analysis implies a generalised notion of threshold universality even in the case of unbroken supersymmetry, whenever extra charged massless states appear at enhancement points in the bulk of moduli space. Several examples with universality, including non-supersymmetric chiral models in four dimensions, are presented.
Generalised universality of gauge thresholds in heterotic vacua with and without supersymmetry
Angelantonj, Carlo; Tsulaia, Mirian
2015-01-01
We study one-loop quantum corrections to gauge couplings in heterotic vacua with spontaneous supersymmetry breaking. Although in non-supersymmetric constructions these corrections are not protected and are typically model dependent, we show how a universal behaviour of threshold differences, typical of supersymmetric vacua, may still persist. We formulate specific conditions on the way supersymmetry should be broken for this to occur. Our analysis implies a generalised notion of threshold universality even in the case of unbroken supersymmetry, whenever extra charged massless states appear at enhancement points in the bulk of moduli space. Several examples with universality, including non-supersymmetric chiral models in four dimensions, are presented.
Holographic renormalization and supersymmetry
Genolini, Pietro Benetti; Cassani, Davide; Martelli, Dario; Sparks, James
2017-02-01
Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N = 2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.
Phenomenological consequences of supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Hinchliffe, I.; Littenberg, L.
1982-01-01
This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6.
Symmetry breaking: The standard model and superstrings
Energy Technology Data Exchange (ETDEWEB)
Gaillard, M.K.
1988-08-31
The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g/sup 2/ = (..sqrt..2G/sub F/)/sup /minus/1/ approx. = 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10/sup 3/)GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs.
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendel, Markus; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert
2013-07-16
A search for production of supersymmetric particles in final states containing jets, missing transverse momentum, and at least one hadronically decaying tau lepton is presented. The data were recorded by the ATLAS experiment in $\\sqrt{s}$ = 7 TeV proton-proton collisions at the Large Hadron Collider. No excess above the Standard Model background expectation was observed in 2.05 fb-1 of data. The results are interpreted in the context of gauge mediated supersymmetry breaking models with $M_{mess}$ = 250 TeV, $N_5$ = 3, $\\mu$ > 0, and Cgrav = 1. The production of supersymmetric particles is excluded at 95% C.L. up to a supersymmetry breaking scale Lambda = 30 Tev, independent of tan(beta), and up to $\\Lambda$ = 43 TeV for large tan$\\beta$.
Testing split supersymmetry with inflation
Craig, Nathaniel; Green, Daniel
2014-07-01
Split supersymmetry (SUSY) — in which SUSY is relevant to our universe but largely inaccessible at current accelerators — has become increasingly plausible given the absence of new physics at the LHC, the success of gauge coupling unification, and the observed Higgs mass. Indirect probes of split SUSY such as electric dipole moments (EDMs) and flavor violation offer hope for further evidence but are ultimately limited in their reach. Inflation offers an alternate window into SUSY through the direct production of superpartners during inflation. These particles are capable of leaving imprints in future cosmological probes of primordial non-gaussianity. Given the recent observations of BICEP2, the scale of inflation is likely high enough to probe the full range of split SUSY scenarios and therefore offers a unique advantage over low energy probes. The key observable for future experiments is equilateral non-gaussianity, which will be probed by both cosmic microwave background (CMB) and large scale structure (LSS) surveys. In the event of a detection, we forecast our ability to find evidence for superpartners through the scaling behavior in the squeezed limit of the bispectrum.
A low Fermi scale from a simple gaugino-scalar mass relation
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F. [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2013-11-15
In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The {mu} parameter is generated independently of supersymmetry breaking, however the {mu} problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.
Low-scale supergravity inflation with R-symmetry
Germán, G; Mondragón, M N
2000-01-01
We study a supergravity model of inflation with R-symmetry and a single scalar field, the inflaton, slowly rolling away from the origin. The scales of inflation can be as low as the supersymmetry breaking scale of 10^10 GeV or even the electroweak scale of 10^3 GeV which could be relevant in the context of theories with submillimiter dimensions. Exact analytical solutions are presented and a comparison with related models is given.
van der Zanden, J.; van der A, D. A.; Hurther, D.; Cáceres, I.; O'Donoghue, T.; Ribberink, J. S.
2016-08-01
Detailed measurements are presented of velocities and turbulence under a large-scale regular plunging breaking wave in a wave flume. Measurements were obtained at 12 cross-shore locations around a mobile medium-sand breaker bar. They focused particularly on the dynamics of the wave bottom boundary layer (WBL) and near-bed turbulent kinetic energy (TKE), measured with an Acoustic Concentration and Velocity Profiler (ACVP). The breaking process and outer flow hydrodynamics are in agreement with previous laboratory and field observations of plunging waves, including a strong undertow in the bar trough region. The WBL thickness matches with previous studies at locations offshore from the bar crest, but it increases near the breaking-wave plunge point. This relates possibly to breaking-induced TKE or to the diverging flow at the shoreward slope of the bar. Outer flow TKE is dominated by wave breaking and exhibits strong spatial variation with largest TKE above the breaker bar crest. Below the plunge point, breaking-induced turbulence invades the WBL during both crest and trough half cycle. This results in an increase in the time-averaged TKE in the WBL (with a factor 3) and an increase in peak onshore and offshore near-bed Reynolds stresses (with a factor 2) from shoaling to breaking region. A fraction of locally produced TKE is advected offshore over a distance of a few meters to shoaling locations during the wave trough phase, and travels back onshore during the crest half cycle. The results imply that breaking-induced turbulence, for large-scale conditions, may significantly affect near-bed sediment transport processes.
Black holes in an expanding universe and supersymmetry
Directory of Open Access Journals (Sweden)
Dietmar Klemm
2016-02-01
Full Text Available This paper analyzes the supersymmetric solutions to five and six-dimensional minimal (ungauged supergravities for which the bilinear Killing vector constructed from the Killing spinor is null. We focus on the spacetimes which admit an additional SO(1,1 boost symmetry. Upon the toroidal dimensional reduction along the Killing vector corresponding to the boost, we show that the solution in the ungauged case describes a charged, nonextremal black hole in a Friedmann–Lemaître–Robertson–Walker (FLRW universe with an expansion driven by a massless scalar field. For the gauged case, the solution corresponds to a charged, nonextremal black hole embedded conformally into a Kantowski–Sachs universe. It turns out that these dimensional reductions break supersymmetry since the bilinear Killing vector and the Killing vector corresponding to the boost fail to commute. This represents a new mechanism of supersymmetry breaking that has not been considered in the literature before.
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
Cohen, Timothy; Larkoski, Andrew J
2016-01-01
Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with supersymmetry (SUSY). Explicitly, the effective theory for $\\mathcal{N} = 1$ SUSY Yang-Mills is constructed and shown to be consistent. For contrast, arguments are given that chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model, are incompatible with the collinear expansion. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance -- given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence between SUSY and SCET requires exploring two novel formalisms: collinear fermions a...
Supersymmetry : the ultimate hierarchy of matter? Exhibition LEPFest 2000
2000-01-01
The concept of "Supersymmetry", SUSY for short, promises a solution to the 'hierarchy' problem: the mystery of the enormous ratio between the electroweak scale (at 100-300 GeV), defined by the masses of the W and Z particles, and possibly the Higgs particle, and the Planck scale (10 19 GeV), when gravitational effects become comparable to the other forces.
Collider interplay for supersymmetry, Higgs and Dark matter
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, O.; Citron, M.; Vries, K. de [Imperial College, High Energy Physics Group, Blackett Lab., London (United Kingdom); Ellis, J. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); CERN, Physics Department, Geneva 23 (Switzerland); Guha, S. [CERN, Physics Department, Geneva 23 (Switzerland); BITS Pilani, Goa (India); Marrouche, J. [Imperial College, High Energy Physics Group, Blackett Lab., London (United Kingdom); CERN, Physics Department, Geneva 23 (Switzerland); Olive, K.A.; Zheng, Jiaming [Univ. of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2015-10-15
We discuss the potential impacts on the CMSSM of future LHC runs and possible e{sup +}e{sup -} and higher-energy proton-proton colliders, considering searches for supersymmetry via E{sub T} events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via E{sub T} searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m{sub 0}, m{sub 1/2} and A{sub 0} of the CMSSM. Slepton measurements at CLIC would enable m{sub 0} and m{sub 1/2} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precision electroweak and Higgs measurements with a future circular e{sup +}e{sup -} collider (FCC-ee, also known as TLEP) combined with LHCmeasurements would provide tests of the CMSSM at the loop level. If supersymmetry is not discovered at the LHC, it is likely to lie somewhere along a focus-point, stopcoannihilation strip or direct-channel A/H resonance funnel. We discuss the prospects for discovering supersymmetry along these strips at a future circular proton-proton collider such as FCC-hh. Illustrative benchmark points on these strips indicate that also in this case FCC-ee could provide tests of the CMSSM at the loop level. (orig.)
Supernatural supersymmetry and its classic example: M-theory inspired NMSSM
Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan
2016-06-01
We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.
A subtle sign of supersymmetry?
Cho, A
2001-01-01
In experiments conducted by HEAT in 94/95 in the upper atomosphere, more positrons were detected than expected. Last year a revamped detector confirmed the excess. Physicists Gordon Kane and Lian-Tao think this could be evidence of supersymmetry. They postulate the extra positrons come from rare collisions between the lightest particle predicted by supersymmetry and its antimatter partner (1/2 page).
Maximal supersymmetry and B-mode targets
Kallosh, Renata; Linde, Andrei; Wrase, Timm; Yamada, Yusuke
2017-04-01
Extending the work of Ferrara and one of the authors [1], we present dynamical cosmological models of α-attractors with plateau potentials for 3 α = 1, 2, 3, 4, 5, 6, 7. These models are motivated by geometric properties of maximally supersymmetric theories: M-theory, superstring theory, and maximal N = 8 supergravity. After a consistent truncation of maximal to minimal supersymmetry in a seven-disk geometry, we perform a two-step procedure: 1) we introduce a superpotential, which stabilizes the moduli of the seven-disk geometry in a supersymmetric minimum, 2) we add a cosmological sector with a nilpotent stabilizer, which breaks supersymmetry spontaneously and leads to a desirable class of cosmological attractor models. These models with n s consistent with observational data, and with tensor-to-scalar ratio r ≈ 10-2 - 10-3, provide natural targets for future B-mode searches. We relate the issue of stability of inflationary trajectories in these models to tessellations of a hyperbolic geometry.
Discriminative phenomenological features of scale invariant models for electroweak symmetry breaking
Directory of Open Access Journals (Sweden)
Katsuya Hashino
2016-01-01
Full Text Available Classical scale invariance (CSI may be one of the solutions for the hierarchy problem. Realistic models for electroweak symmetry breaking based on CSI require extended scalar sectors without mass terms, and the electroweak symmetry is broken dynamically at the quantum level by the Coleman–Weinberg mechanism. We discuss discriminative features of these models. First, using the experimental value of the mass of the discovered Higgs boson h(125, we obtain an upper bound on the mass of the lightest additional scalar boson (≃543 GeV, which does not depend on its isospin and hypercharge. Second, a discriminative prediction on the Higgs-photon–photon coupling is given as a function of the number of charged scalar bosons, by which we can narrow down possible models using current and future data for the di-photon decay of h(125. Finally, for the triple Higgs boson coupling a large deviation (∼+70% from the SM prediction is universally predicted, which is independent of masses, quantum numbers and even the number of additional scalars. These models based on CSI can be well tested at LHC Run II and at future lepton colliders.
Supersymmetry Without Prejudice at the 7 TeV LHC
Conley, John A; Hewett, JoAnne L; Le, My Phuong; Rizzo, Thomas G
2011-01-01
We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for ~71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S>5 for 1 fb^{-1} of integrated luminosity. We then examine the model chara...
Yukawa CFTs and Emergent Supersymmetry
Fei, Lin; Klebanov, Igor R; Tarnopolsky, Grigory
2016-01-01
We study conformal field theories with Yukawa interactions in dimensions between 2 and 4; they provide UV completions of the Nambu-Jona-Lasinio and Gross-Neveu models which have four-fermion interactions. We compute the sphere free energy and certain operator scaling dimensions using dimensional continuation. In the Gross-Neveu CFT with $N$ fermion degrees of freedom we obtain the first few terms in the $4-\\epsilon$ expansion using the Gross-Neveu-Yukawa model, and the first few terms in the $2+\\epsilon$ expansion using the four-fermion interaction. We then apply Pade approximants to produce estimates in $d=3$. For $N=1$, which corresponds to one 2-component Majorana fermion, it has been suggested that the Yukawa theory flows to a ${\\cal N}=1$ supersymmetric CFT. We provide new evidence that the $4-\\epsilon$ expansion of the $N=1$ Gross-Neveu-Yukawa model respects the supersymmetry. Our extrapolations to $d=3$ appear to be in good agreement with the available results obtained using the numerical conformal boo...
Gauged flavor, supersymmetry and grand unification
Mohapatra, Rabindra N.
2012-07-01
I review a recent work on gauged flavor with left-right symmetry, where all masses and all Yukawa couplings owe their origin to spontaneous flavor symmetry breaking. This is suggested as a precursor to a full understanding of flavor of quarks and leptons. An essential ingredient of this approach is the existence of heavy vector-like fermions, which is the home of flavor, which subsequently gets transmitted to the familiar quarks and leptons via the seesaw mechanism. I then discuss implications of extending this idea to include supersymmetry and finally speculate on a possible grand unified model based on the gauge group SU(5)L×SU(5)R which provides a group theoretic origin for the vector-like fermions.
Gauged Flavor, Supersymmetry and Grand Unification
Mohapatra, Rabindra N
2012-01-01
I review a recent work on gauged flavor with left-right symmetry, where all masses and all Yukawa couplings owe their origin to spontaneous flavor symmetry breaking. This is suggested as a precursor to a full understanding of flavor of quarks and leptons. An essential ingredient of this approach is the existence of heavy vector-like fermions, which is the home of flavor, which subsequently gets transmitted to the familiar quarks and leptons via the seesaw mechanism. I then discuss implications of extending this idea to include supersymmetry and finally speculate on a possible grand unified model based on the gauge group $SU(5)_L\\times SU(5)_R$ which provides a group theoretic origin for the vector-like fermions.
Collider Interplay for Supersymmetry, Higgs and Dark Matter
Buchmueller, O; Ellis, J; Guha, S; Marrouche, J; Olive, K A; de Vries, K; Zheng, Jiaming
2015-01-01
We discuss the potential impacts on the CMSSM of future LHC runs and possible electron-positron and higher-energy proton-proton colliders, considering searches for supersymmetry via MET events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via MET searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m_0, m_{1/2} and A_0 of the CMSSM. Slepton measurements at CLIC would enable m_0 and m_{1/2} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precisi...
Explicitly Broken Supersymmetry with Exactly Massless Moduli
Dong, Xi; Zhao, Yue
2014-01-01
There is an avatar of the little hierarchy problem of the MSSM in 3-dimensional supersymmetry. We propose a solution to this problem in AdS$_3$ based on the AdS/CFT correspondence. The bulk theory is a supergravity theory in which U(1) $\\times$ U(1) R-symmetry is gauged by Chern-Simons fields. The bulk theory is deformed by a boundary term quadratic in the gauge fields. It breaks SUSY completely and sources an exactly marginal operator in the dual CFT. SUSY breaking is communicated by gauge interactions to bulk scalar fields and their spinor superpartners. Since the R-charges of scalar and spinor differ, this generates a SUSY breaking shift of their masses. The Ward identity facilitates the calculation of these mass shifts to any desired order in the strength of the deformation. Moduli fields are massless $R$-neutral bulk scalars with vanishing potential in the undeformed theory. These properties are maintained to all orders in the deformation despite the fact that moduli couple in the bulk to loops of R-char...
Searches for Supersymmetry with the ATLAS Experiment
Lee, Lawrence; The ATLAS collaboration
2017-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarises recent ATLAS results for searches for supersymmetric (SUSY) particles. Weak and strong production in both R-Parity conserving and R-Parity violating SUSY scenarios are considered. The searches used proton-proton collisions at sqrt{s} = 13 TeV, and involved final states including jets, missing transverse momentum, light leptons as well as long-lived particle signatures.
Living Dangerously with Low-Energy Supersymmetry
Giudice, Gian Francesco
2006-01-01
We stress that the lack of direct evidence for supersymmetry forces the soft mass parameters to lie very close to the critical line separating the broken and unbroken phases of the electroweak gauge symmetry. We argue that the level of criticality, or fine-tuning, that is needed to escape the present collider bounds can be quantitatively accounted for by assuming that the overall scale of the soft terms is an environmental quantity. Under fairly general assumptions, vacuum-selection considerations force a little hierarchy in the ratio between m_Z^2 and the supersymmetric particle square masses, with a most probable value equal to a one-loop factor.
Supersymmetry, Duality And Holonomy
Wen, W
2005-01-01
In this thesis, I study various aspects of solutions to eleven-dimensional supergravity and its descendents. The former is at one corner of the moduli space of M-theory. While it is not clear how to formulate M-theory; it is equally interesting to see how far we can proceed from this low energy window. First of all, various techniques are applied to construct supergravity solutions preserving partial supersymmetry. A seven-dimensional membrane solution in the gauged supergravity is constructed by lifting a self-dual string in six dimensions, and its supersymmetric property is explored in certain detail. Then fractional BPS solutions from Sn × Sn reduction of six and ten-dimensional supergravities are constructed via the method of G-structures. The form of the solutions is totally determined by Laplace equations with specified boundary conditions. Secondly, the concept of duality is realized in two aspects. A certain type of *-theory, obtained from time-like T-dualization of the usual string and M-t...
Flowering to bloom of PeV scale supersymmetric left–right symmetric models
Indian Academy of Sciences (India)
Urjit A Yajnik; Anishnu Sarkar; Sasmita Mishra; Debasish Borah
2016-02-01
Unified models incorporating right-handed neutrino in a symmetric way generically possess parity symmetry. If this is broken spontaneously, it results in the formation of domain walls in the early Universe, whose persistence is unwanted. A generic mechanism for the destabilization of such walls is a small pressure difference signalled by difference in free energy across the walls. It is interesting to explore the possibility of such effects in conjunction with the effects that break supersymmetry in a phenomenologically acceptable way. This possibility when realized in the context of several scenarios of supersymmetry breaking, leads to an upper bound on the scale of spontaneous parity breaking, often much lower than the GUT scale. In the left–right symmetric models studied, the upper bound is no higher than 1011 GeV but a scale as low as 105 GeV is acceptable.
Directory of Open Access Journals (Sweden)
Fei Wang
2016-08-01
Full Text Available We propose to interpret the 750 GeV diphoton excess in deflected anomaly mediation supersymmetry breaking scenarios, which can naturally predict couplings between a singlet field and vector-like messengers. The CP-even scalar component (S of the singlet field can serve as the 750 GeV resonance. The messenger scale, which is of order the gravitino scale, can be as light as Fϕ∼O(10 TeV when the messenger species NF and the deflection parameter d are moderately large. Such messengers can induce the large loop decay process S→γγ. Our results show that such a scenario can successfully accommodate the 125 GeV Higgs boson, the 750 GeV diphoton excess and the muon g−2 without conflicting with the LHC constraints. We also comment on the possible explanations in the gauge mediation supersymmetry breaking scenario.
A Second Supersymmetry in Thermo Field Dynamics
Arsiwalla, Xerxes D.
2003-01-01
This article is an extension of the work done in \\cite{partha} by R. Parthasarathy and R. Sridhar. There they consider supersymmetry in an enlarged thermal system (in a thermo field dynamic formulation) and show that this supersymmetry is not broken at finite temperature. Here we show, using an SU(1,1) R-symmetry, that this system obeys a second supersymmetry. In addition, we proceed to see that this new supersymmetry also remains unbroken at finite temperatures.
Supersymmetry : the ultimate hierarchy of matter ? Conference MT17
2001-01-01
The concept of "Supersymmetry", SUSY for short, promises a solution to the hierarchy problem. SUSY enlarges the space-time symmetry of physical laws, by connecting the realms of particles and fields. It predicts a variety of new species of particles at the energy scale around 1 TeV - waiting to be discovered at the LHC.
Cohen, Timothy; Elor, Gilly; Larkoski, Andrew J.
2017-03-01
Soft-Collinear Effective Theory (SCET) is a framework for modeling the infrared structure of theories whose long distance behavior is dominated by soft and collinear divergences. This paper demonstrates that SCET can be made compatible with super-symmetry (SUSY). Explicitly, the effective Lagrangian for N=1 SUSY Yang-Mills is cconstructed and shown to be a complete description for the infrared of this model. For contrast, we also construct the effective Lagrangian for chiral SUSY theories with Yukawa couplings, specifically the single flavor Wess-Zumino model. Only a subset of the infrared divergences are reproduced by the Lagrangian — to account for the complete low energy description requires the inclusion of local operators. SCET is formulated by expanding fields along a light-like direction and then subsequently integrating out degrees-of-freedom that are away from the light-cone. Defining the theory with respect to a specific frame obfuscates Lorentz invariance — given that SUSY is a space-time symmetry, this presents a possible obstruction. The cleanest language with which to expose the congruence be-tween SUSY and SCET requires exploring two novel formalisms: collinear fermions as two-component Weyl spinors, and SCET in light-cone gauge. By expressing SUSY Yang-Mills in "collinear superspace", a slice of superspace derived by integrating out half the fermionic coordinates, the light-cone gauge SUSY SCET theory can be written in terms of superfields. As a byproduct, bootstrapping up to the full theory yields the first algorithmic approach for determining the SUSY Yang-Mills on-shell superspace action. This work paves the way toward discovering the effective theory for the collinear limit of N=4 SUSY Yang-Mills.
A Geometric Formulation of Supersymmetry
Freedman, Daniel Z; Van Proeyen, Antoine
2016-01-01
The scalar fields of supersymmetric models are coordinates of a geometric space. We propose a formulation of supersymmetry that is covariant with respect to reparametrizations of this target space. Employing chiral multiplets as an example, we introduce modified supersymmetry variations and redefined auxiliary fields that transform covariantly under reparametrizations. The resulting action and transformation laws are manifestly covariant and highlight the geometric structure of the supersymmetric theory. The covariant methods are developed first for general theories (not necessarily supersymmetric) whose scalar fields are coordinates of a Riemannian target space.
Naturalizing supersymmetry with a two-field relaxion mechanism
Evans, Jason L.; Gherghetta, Tony; Nagata, Natsumi; Thomas, Zachary
2016-09-01
We present a supersymmetric version of a two-field relaxion model that naturalizes tuned versions of supersymmetry. This arises from a relaxion mechanism that does not depend on QCD dynamics and where the relaxion potential barrier height is controlled by a second axion-like field. During the cosmological evolution, the relaxion rolls with a nonzero value that breaks supersymmetry and scans the soft supersymmetric mass terms. Electroweak symmetry is broken after the soft masses become of order the supersymmetric Higgs mass term and causes the relaxion to stop rolling for superpartner masses up to ˜ 109 GeV. This can explain the tuning in supersymmetric models, including split-SUSY models, while preserving the QCD axion solution to the strong CP problem. Besides predicting two very weakly-coupled axion-like particles, the supersymmetric spectrum may contain an extra Goldstino, which could be a viable dark matter candidate.
Naturalizing Supersymmetry with a Two-Field Relaxion Mechanism
Evans, Jason L; Nagata, Natsumi; Thomas, Zachary
2016-01-01
We present a supersymmetric version of a two-field relaxion model that naturalizes tuned versions of supersymmetry. This arises from a relaxion mechanism that does not depend on QCD dynamics and where the relaxion potential barrier height is controlled by a second axion-like field. During the cosmological evolution, the relaxion rolls with a nonzero value that breaks supersymmetry and scans the soft supersymmetric mass terms. Electroweak symmetry is broken after the soft masses become of order the supersymmetric Higgs mass term and causes the relaxion to stop rolling for superpartner masses up to $\\sim 10^9$ GeV. This can explain the tuning in supersymmetric models, including split-SUSY models, while preserving the QCD axion solution to the strong CP problem. Besides predicting two very weakly-coupled axion-like particles, the supersymmetric spectrum may contain an extra Goldstino, which could be a viable dark matter candidate.
Tasting the SU(5) nature of supersymmetry at the LHC
Energy Technology Data Exchange (ETDEWEB)
Fichet, Sylvain [ICTP South American Institute for Fundamental Research, Instituto de Fisica Teorica,São Paulo State University,São Paulo (Brazil); International Institute of Physics, UFRN,Av. Odilon Gomes de Lima, 1722 Capim Macio, 59078-400 Natal-RN (Brazil); Herrmann, Björn; Stoll, Yannick [LAPTh, Université de Savoie, CNRS,9 Chemin de Bellevue, B.P. 110, F-74941 Annecy-le-Vieux (France)
2015-05-19
We elaborate on a recently found SU(5) relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale SU(5) tests realizable at the LHC. These SU(5) tests appear as relations among observables involving either flavour violation or chirality flip in the up-(s)quark sector. The power of these tests is systematically evaluated using a frequentist, p-value based criterion. SU(5) tests in the Heavy supersymmetry (SUSY), Natural supersymmetry and Top-charm supersymmetry spectra are investigated. The latter scenario features light stops and scharms and is well-motivated from various five-dimensional constructions. A variety of SU(5) tests is obtained, involving techniques of top polarimetry, charm-tagging, or Higgs detection from SUSY cascade decays. We find that O(10) to O(100) events are needed to obtain 50% of relative precision at 3σ significance for all of these tests. In addition, we propose a set of precision measurements in ultraperipheral collisions in order to search for the flavour-changing dipole operators of Heavy supersymmetry.
Supersymmetry Without Prejudice
CERN. Geneva
2009-01-01
We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a conventional thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.
Supersymmetry Without Prejudice
Berger, C F; Hewett, J L; Rizzo, T G
2009-01-01
We begin an exploration of the physics associated with the general CP-conserving MSSM with Minimal Flavor Violation, the pMSSM. The 19 soft SUSY breaking parameters in this scenario are chosen so as to satisfy all existing experimental and theoretical constraints assuming that the WIMP is a thermal relic, ie, the lightest neutralino. We scan this parameter space twice using both flat and log priors for the soft SUSY breaking mass parameters and compare the results which yield similar conclusions. Detailed constraints from both LEP and the Tevatron searches play a particularly important role in obtaining our final model samples. We find that the pMSSM leads to a much broader set of predictions for the properties of the SUSY partners as well as for a number of experimental observables than those found in any of the conventional SUSY breaking scenarios such as mSUGRA. This set of models can easily lead to atypical expectations for SUSY signals at the LHC.
Neutrino-induced Electroweak Symmetry Breaking in Supersymmetric SO(10) Unification
Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi
2006-01-01
The radiative electroweak symmetry breaking, the unification of third-generation Yukawa couplings, and flavor-changing rare decay are investigated in two types of supersymmetric SO(10) scenarios taking into account of the effects of neutrino physics, i.e. the observed large generation mixing and tiny mass scale. The first scenario is minimal, including right-handed neutrinos at intermediate scale with the unification of third-generation Yukawa couplings. Another is the case that the large mixing of atmospheric neutrinos originates from the charged-lepton sector. Under the SO(10)-motivated boundary conditions for supersymmetry-breaking parameters, typical low-energy particle spectrum is discussed and the parameter space is identified which satisfies the conditions for successful radiative electroweak symmetry breaking and the experimental mass bounds of superparticles. In particular, the predictions of the bottom quark mass and the b \\to s gamma branching ratio are fully analyzed. In both two scenarios, new ty...
Large Scale Experiments on the Interaction of a Caisson Breakwater with Breaking Waves
DEFF Research Database (Denmark)
Stagonas, Dimitris; Marzeddu, Andrea; Buccino, Mariano;
2014-01-01
Tests looking at the interaction of a caisson breakwater with steep, breaking waves are outlined here. 4 different wave generation methodologies were employed allowing for experiments with regular, irregular, focused and tailored made waves. The emphasis, however, is given in tests with focused...... waves, which resulted in impulsive conditions at the face of the caisson. Amongst our objectives was to look at the mechanisms occurring when a wave breaks at the structure and to investigate the validity of tactile pressure sensors. As such, for all experiments, pressure, force and surface elevation...
Large Scale Experiments on the Interaction of a Caisson Breakwater with Breaking Waves
DEFF Research Database (Denmark)
Stagonas, Dimitris; Marzeddu, Andrea; Buccino, Mariano
2014-01-01
Tests looking at the interaction of a caisson breakwater with steep, breaking waves are outlined here. 4 different wave generation methodologies were employed allowing for experiments with regular, irregular, focused and tailored made waves. The emphasis, however, is given in tests with focused w...
Supersymmetry Without (Too Much) Prejudice
Rizzo, Thomas G
2009-01-01
We have recently completed a detailed scan of the 19-dimensional parameter space of the phenomenological MSSM, i.e., the CP-conserving MSSM assuming Minimal Flavor Violation(MFV) with the first two sfermion generations degenerate. We found a large set of parameter space points that satisfied all of the existing experimental and theoretical constraints. This analysis allows us to examine the general features of the MSSM without reference to any particular SUSY breaking scenario or any other assumptions about physics at higher scales. This study opens up new possibilities for SUSY phenomenology both at colliders and in astrophysical observations.
Supersymmetry Without (Too Much) Prejudice
Rizzo, Thomas G.
2010-02-01
We have recently completed a detailed scan of the 19-dimensional parameter space of the phenomenological MSSM, i.e., the CP-conserving MSSM assuming Minimal Flavor Violation(MFV) with the firs two sfermion generations degenerate. We found a large set of parameter space points that satisfie all of the existing experimental and theoretical constraints. This analysis allows us to examine the general features of the MSSM without reference to any particular SUSY breaking scenario or any other assumptions about physics at higher scales. This study opens up new possibilities for SUSY phenomenology both at colliders and in astrophysical observations.
Split Dirac Supersymmetry: An Ultraviolet Completion of Higgsino Dark Matter
Energy Technology Data Exchange (ETDEWEB)
Fox, Patrick J. [Fermilab; Kribs, Graham D. [Oregon U.; Martin, Adam [Notre Dame U.
2014-10-07
Motivated by the observation that the Higgs quartic coupling runs to zero at an intermediate scale, we propose a new framework for models of split supersymmetry, in which gauginos acquire intermediate scale Dirac masses of $\\sim 10^{8-11}$ GeV. Scalar masses arise from one-loop finite contributions as well as direct gravity-mediated contributions. Like split supersymmetry, one Higgs doublet is fine-tuned to be light. The scale at which the Dirac gauginos are introduced to make the Higgs quartic zero is the same as is necessary for gauge coupling unification. Thus, gauge coupling unification persists (nontrivially, due to adjoint multiplets), though with a somewhat higher unification scale $\\gtrsim 10^{17}$ GeV. The $\\mu$-term is naturally at the weak scale, and provides an opportunity for experimental verification. We present two manifestations of Split Dirac Supersymmetry. In the "Pure Dirac" model, the lightest Higgsino must decay through R-parity violating couplings, leading to an array of interesting signals in colliders. In the "Hypercharge Impure" model, the bino acquires a Majorana mass that is one-loop suppressed compared with the Dirac gluino and wino. This leads to weak scale Higgsino dark matter whose overall mass scale, as well as the mass splitting between the neutral components, is naturally generated from the same UV dynamics. We outline the challenges to discovering pseudo-Dirac Higgsino dark matter in collider and dark matter detection experiments.
Energy Technology Data Exchange (ETDEWEB)
Bruno, R.; Trenchi, L., E-mail: roberto.bruno@iaps.inaf.it [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, 00133 Roma (Italy)
2014-06-01
We investigate the radial dependence of the spectral break separating the inertial from the dissipation range in power density spectra of interplanetary magnetic field fluctuations, between 0.42 and 5.3 AU, during radial alignments between MESSENGER and WIND for the inner heliosphere and between WIND and ULYSSES for the outer heliosphere. We found that the spectral break moves to higher and higher frequencies as the heliocentric distance decreases. The radial dependence of the corresponding wavenumber is of the kind κ {sub b} ∼ R {sup –1.08}, in good agreement with that of the wavenumber derived from the linear resonance condition for proton cyclotron damping. These results support conclusions from previous studies which suggest that a cyclotron-resonant dissipation mechanism must participate in the spectral cascade together with other possible kinetic noncyclotron-resonant mechanisms.
Radiative PQ Breaking and the Higgs Boson Mass
D'Eramo, Francesco; Pappadopulo, Duccio
2015-01-01
The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed v...
NSGIC GIS Inventory (aka Ramona) — This Break Lines dataset, published at 1:1200 (1in=100ft) scale, was produced all or in part from Orthoimagery information as of 2005. It is described as '2004/2005...
Abel, S A; Jaeckel, J; Khoze, V V; Abel, Steven A.; Chu, Chong-Sun; Jaeckel, Joerg; Khoze, Valentin V.
2007-01-01
Supersymmetry breaking in a metastable vacuum is re-examined in a cosmological context. It is shown that thermal effects generically drive the Universe to the metastable minimum even if it begins in the supersymmetry-preserving one. This is a generic feature of the ISS models of metastable supersymmetry breaking due to the fact that SUSY preserving vacua contain fewer light degrees of freedom than the metastable ground state at the origin. These models of metastable SUSY breaking are thus placed on an equal footing with the more usual dynamical SUSY breaking scenarios.
Q-ball dark matter and baryogenesis in high-scale inflation
Directory of Open Access Journals (Sweden)
Shinta Kasuya
2014-12-01
Full Text Available We investigate the scenario that one flat direction creates baryon asymmetry of the universe, while Q balls from another direction can be the dark matter in the gauge-mediated supersymmetry breaking for high-scale inflation. Isocurvature fluctuations are suppressed by the fact that the Affleck–Dine field stays at around the Planck scale during inflation. We find that the dark matter Q balls can be detected in IceCube-like experiments in the future.
Supersymmetry Parameter Analysis: SPA Convention andProject
Energy Technology Data Exchange (ETDEWEB)
Aguilar-Saavedra, J.A.; Ali, A.; Allanach, B.C.; Arnowitt, R.; Baer, H.A.; Bagger, J.A.; Balazs, C.; Barger, V.; Barnett, M.; Bartl, A.; Battaglia, M.; Bechtle, P.; Belanger, G.; Belyaev, A.; Berger, E.L.; Blair, G.; Boos, E.; Carena, M.; Choi, S.Y.; Deppisch, F.; De Roeck, A.; /Lisbon, IST /DESY /Cambridge U., DAMTP /Texas A-M /Florida State
2005-12-02
High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e{sup +}e{sup -} linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the desired precision. We take here an initial step of testing the SPA scheme by applying the techniques involved to a specific supersymmetry reference point.
Simulations of a supersymmetry inspired model on a fuzzy sphere
Energy Technology Data Exchange (ETDEWEB)
Volkholz, J. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Bietenholz, W. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-11-15
We present a numerical study of a two dimensional model of the Wess-Zumino type. We formulate this model on a sphere, where the fields are expanded in spherical harmonics. The sphere becomes fuzzy by a truncation in the angular momenta. This leads to a finite set of degrees of freedom without explicitly breaking the space symmetries. The corresponding field theory is expressed in terms of a matrix model, which can be simulated. We present first numerical results for the phase structure of a variant of this model on a fuzzy sphere. The prospect to restore exact supersymmetry in certain limits is under investigation. (orig.)
The Fermi scale as a focus point of high-scale gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F.; Buchmueller, W.
2012-01-15
We consider the minimal supersymmetric Standard Model with large scalar and gaugino mass terms at the GUT scale, which are generated predominantly by gauge-mediated supersymmetry breaking. For certain ratios of GUT-scale masses, determined by the messenger indices, large radiative corrections lead to a small electroweak scale in a way which resembles the well-known focus point mechanism. The Fermi scale, the gravitino mass and the higgsino masses are of comparable size. For a Higgs mass of about 124 GeV all other superparticles have masses outside the reach of the LHC. (orig.)
The Fermi scale as a focus point of high-scale gauge mediation
Brümmer, F.; Buchmüller, W.
2012-05-01
We consider the minimal supersymmetric Standard Model with large scalar and gaugino mass terms at the GUT scale, which are generated predominantly by gauge-mediated supersymmetry breaking. For certain ratios of GUT-scale masses, determined by the messenger indices, large radiative corrections lead to a small electroweak scale in a way which resembles the well-known focus point mechanism. The Fermi scale, the gravitino mass and the higgsino masses are of comparable size. For a Higgs mass of about 124 GeV all other superparticles have masses outside the reach of the LHC.
The Fermi scale as a focus point of high-scale gauge mediation
Brümmer, Felix
2012-01-01
We consider the minimal supersymmetric Standard Model with large scalar and gaugino mass terms at the GUT scale, which are generated predominantly by gauge-mediated supersymmetry breaking. For certain ratios of GUT-scale masses, determined by the messenger indices, large radiative corrections lead to a small electroweak scale in a way which resembles the well-known focus point mechanism. The Fermi scale, the gravitino mass and the higgsino masses are of comparable size. For a Higgs mass of about 124 GeV all other superparticles have masses outside the reach of the LHC.
Supersymmetry Without Prejudice at the 7 TeV LHC
Energy Technology Data Exchange (ETDEWEB)
Conley, John A.; /Bonn U.; Gainer, James S.; /Argonne /Northwestern U.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC
2011-08-12
We investigate the model independent nature of the Supersymmetry search strategies at the 7 TeV LHC. To this end, we study the missing-transverse-energy-based searches developed by the ATLAS Collaboration that were essentially designed for mSUGRA. We simulate the signals for {approx} 71k models in the 19-dimensional parameter space of the pMSSM. These models have been found to satisfy existing experimental and theoretical constraints and provide insight into general features of the MSSM without reference to a particular SUSY breaking scenario or any other assumptions at the GUT scale. Using backgrounds generated by ATLAS, we find that imprecise knowledge of these estimated backgrounds is a limiting factor in the potential discovery of these models and that some channels become systematics-limited at larger luminosities. As this systematic error is varied between 20-100%, roughly half to 90% of this model sample is observable with significance S {ge} 5 for 1 fb{sup -1} of integrated luminosity. We then examine the model characteristics for the cases which cannot be discovered and find several contributing factors. We find that a blanket statement that squarks and gluinos are excluded with masses below a specific value cannot be made. We next explore possible modifications to the kinematic cuts in these analyses that may improve the pMSSM model coverage. Lastly, we examine the implications of a null search at the 7 TeV LHC in terms of the degree of fine-tuning that would be present in this model set and for sparticle production at the 500 GeV and 1 TeV Linear Collider.
Search for supersymmetry with diphotons in pp collisions at 13 TeV at CMS
Xie, Si
2016-01-01
We present results on searches for supersymmetry with photons in the final state using pp collision at a center of mass energy of 13 TeV collisions with the CMS experiment. Results for searches for excesses at high missing transverse energy in the diphoton and single photon final states are shown, as well as a search for anomalous Higgs boson production in the diphoton decay channel. We interpret the results in terms of limits on the production cross section for simplified models of gluino-pair and sbottom-pair production as well as chargino-neutralinoproduction in the gauge mediation supersymmetry breaking scenario.
N=2 Super-Born-Infeld from Partially Broken N=3 Supersymmetry in d=4
De Castro, A; Restuccia, A
2004-01-01
We employ the non-linear realization techniques to relate the N=1 chiral, and the N=2 vector multiplets to the Goldstone spin 1/2 superfield arising from partial supersymmetry breaking of N=2 and N=3 respectively. In both cases, we obtain a family of non-linear transformation laws realizing an extra supersymmetry, giving rise to a set of invariant Lagrangians. In the N=2 case, we find an invariant action which is the low energy limit of the supersymmetric Born-Infeld theory expected to describe a D3-brane in six dimensions.
Event shape variables in supersymmetry searches at 7 TeV LHC
Indian Academy of Sciences (India)
Dipan Sngupta
2012-11-01
Supersymmetry (SUSY) signatures are probed at the Large Hadron Collider with 7 TeV energy in the framework of CMSSM with a new set of cuts based on event shapes and jet energy scales. It is showed that with our cuts, it is possible to probe a large portion of CMSSM parameter space in situations, where the SUSY cascade decay chain produces hard multijets + missing energy. We also extend our analysis to include other supersymmetries which produce hard multijets + missing energy.
Flavors of Supersymmetry Beyond Vanilla
Evans, Jared A
2015-01-01
This review surveys the territory of supersymmetry beyond the vanilla MSSM. With a viewpoint guided by electroweak naturalness, the review focuses on constructions that weaken or bypass current LHC constraints. Models of SUSY containing Dirac gluinos, compressed spectra, flavor-violating squarks, R-parity violation, stealth sectors, exotic detector objects, and more are discussed. In addition to presenting ways of hiding SUSY, these models highlight a few opportunities to improve LHC coverage.
Supersymmetry in mathematics and physics
Energy Technology Data Exchange (ETDEWEB)
Ferrara, Sergio [CERN, Geneve (Switzerland). Div. Theorie; Fioresi, Rita [Bologna Univ. (Italy). Dept. of Mathematics; Varadarajan, V.S. (eds.) [UCLA, Los Angeles, CA (United States). Dept. of Mathematics
2011-07-01
Supersymmetry was created by the physicists in the 1970's to give a unified treatment of fermions and bosons, the basic constituents of matter. Since then its mathematical structure has been recognized as that of a new development in geometry, and mathematicians have busied themselves with exploring this aspect. This volume collects recent advances in this field, both from a physical and a mathematical point of view, with an accent on a rigorous treatment of the various questions raised. (orig.)
N=2→0 super no-scale models and moduli quantum stability
Directory of Open Access Journals (Sweden)
Costas Kounnas
2017-06-01
Full Text Available We consider a class of heterotic N=2→0 super no-scale Z2-orbifold models. An appropriate stringy Scherk–Schwarz supersymmetry breaking induces tree level masses to all massless bosons of the twisted hypermultiplets and therefore stabilizes all twisted moduli. At high supersymmetry breaking scale, the tachyons that occur in the N=4→0 parent theories are projected out, and no Hagedorn-like instability takes place in the N=2→0 models (for small enough marginal deformations. At low supersymmetry breaking scale, the stability of the untwisted moduli is studied at the quantum level by taking into account both untwisted and twisted contributions to the 1-loop effective potential. The latter depends on the specific branch of the gauge theory along which the background can be deformed. We derive its expression in terms of all classical marginal deformations in the pure Coulomb phase, and in some mixed Coulomb/Higgs phases. In this class of models, the super no-scale condition requires having at the massless level equal numbers of untwisted bosonic and twisted fermionic degrees of freedom. Finally, we show that N=1→0 super no-scale models are obtained by implementing a second Z2 orbifold twist on N=2→0 super no-scale Z2-orbifold models.
Semi-Hopf Algebra and Supersymmetry
Gunara, Bobby Eka
1999-01-01
We define a semi-Hopf algebra which is more general than a Hopf algebra. Then we construct the supersymmetry algebra via the adjoint action on this semi-Hopf algebra. As a result we have a supersymmetry theory with quantum gauge group, i.e., quantised enveloping algebra of a simple Lie algebra. For the example, we construct the Lagrangian N=1 and N=2 supersymmetry.
Long-term trends in synoptic-scale Rossby wave-breaking and the jet strength at tropopause levels
Isotta, F.; Martius, O.; Sprenger, M.; Schwierz, C.
2009-04-01
Breaking synoptic-scale Rossby waves are frequent features of the upper troposphere and lower stratosphere (UTLS) which affect both global- and regional-scale dynamics. Furthermore, they directly influence ozone distribution through meridional transport of ozone-rich air towards the south and ozone-poor air towards the north. Here, trends in the frequency of these breaking waves are assessed by analysing a 44-year climatology (1958-2002) of potential vorticity (PV) streamers on isentropic surfaces from 310 to 350 K. These streamers are viewed as breaking Rossby waves. Two complementary techniques are used to analyse the trends. First, linear trends are computed using the least-squares regression technique. Statistically significant linear trends are found to vary in location and magnitude between isentropic levels and the four seasons. In winter significant trends are detected in the eastern Pacific between 340 and 350 K. A positive trend of stratospheric streamers in the Tropics is related to an increase of total column ozone, whereas the positive trend of tropospheric streamers in the mid-latitudes is associated with a decrease of total ozone. Secondly, a nonlinear trend analysis is performed using the seasonal-trend decomposition procedure based on Loess (STL). With this technique, the low-frequency variability of the time series is analysed during the 44-year period. For instance, over the eastern Atlantic on 350 K, a phase of decreasing PV streamer frequencies in the 1950s and 1960s is followed by a positive streamer tendency after the 1970s. Additionally, trends of the zonal wind are investigated. One prominent outcome of this analysis is the observation that equatorial easterlies over the Atlantic are weakening. A dynamically meaningful link exists between the trends observed in both wind velocity and PV streamers.
Supersymmetry in Open Superstring Field Theory
Erler, Theodore
2016-01-01
We realize the 16 unbroken supersymmetries on a BPS D-brane as invariances of the action of the corresponding open superstring field theory. We work in the small Hilbert space approach, where a symmetry of the action translates into a symmetry of the associated cyclic $A_\\infty$ structure. We compute the supersymmetry algebra, being careful to disentangle the components which produce a translation, a gauge transformation, and a symmetry transformation which vanishes on-shell. Via the minimal model theorem, we illustrate how supersymmetry of the action implies supersymmetry of the tree level open string scattering amplitudes.
Supersymmetry of RS bulk and brane
Bergshoeff, E A; Van Proeyen, A; Bergshoeff, Eric; Kallosh, Renata; Proeyen, Antoine Van
2001-01-01
We review the construction of actions with supersymmetry on spaces with a domain wall. The latter objects act as sources inducing a jump in the gauge coupling constant. Despite these singularities, supersymmetry can be formulated, maintaining its role as a square root of translations in this singular space. The setup is designed for the application in five dimensions related to the Randall-Sundrum (RS) scenario. The space has two domain walls. We discuss the solutions of the theory with fixed scalars and full preserved supersymmetry, in which case one of the branes can be pushed to infinity, and solutions where half of the supersymmetries are preserved.
Energy Technology Data Exchange (ETDEWEB)
Kennedy, Doerthe
2012-08-15
In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two {tau} leptons using 2 fb{sup -1} of proton-proton collision data recorded at {radical}(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale {Lambda} independent of the ratio of tan{beta}. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.
Physics Beyond the Standard Model: Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Nojiri, M.M.; /KEK, Tsukuba /Tsukuba, Graduate U. Adv. Studies /Tokyo U.; Plehn, T.; /Edinburgh U.; Polesello, G.; /INFN, Pavia; Alexander, John M.; /Edinburgh U.; Allanach, B.C.; /Cambridge U.; Barr, Alan J.; /Oxford U.; Benakli, K.; /Paris U., VI-VII; Boudjema, F.; /Annecy, LAPTH; Freitas, A.; /Zurich U.; Gwenlan, C.; /University Coll. London; Jager, S.; /CERN /LPSC, Grenoble
2008-02-01
This collection of studies on new physics at the LHC constitutes the report of the supersymmetry working group at the Workshop 'Physics at TeV Colliders', Les Houches, France, 2007. They cover the wide spectrum of phenomenology in the LHC era, from alternative models and signatures to the extraction of relevant observables, the study of the MSSM parameter space and finally to the interplay of LHC observations with additional data expected on a similar time scale. The special feature of this collection is that while not each of the studies is explicitly performed together by theoretical and experimental LHC physicists, all of them were inspired by and discussed in this particular environment.
Spread Supersymmetry with widetilde{W} LSP: gluino and dark matter signals
Hall, Lawrence J.; Nomura, Yasunori; Shirai, Satoshi
2013-01-01
The discovery of a Higgs boson near 125 GeV, together with the absence of LHC signals for supersymmetry or direct detection signals of dark matter, motivate further study of a particular theory of split supersymmetry. In arguably the theoretically simplest implementation of split, the superpartner spectrum is spread over several decades. The squarks and sleptons are heavier than the gravitino and Higgsinos by a factor M Pl /M *, where M * is the mediation scale of supersymmetry breaking and is high, between unified and Planck scales. On the other hand the gaugino masses are 1-loop smaller than the gravitino and Higgsino masses, arising from both anomaly mediation and a Higgsino loop. Wino dark matter arises from three sources: gravitino production by scattering at high temperatures, gravitino production from squark decays, and thermal freeze-out. For reheating temperatures larger than the squark mass, these conspire to require that the squarks are lighter than about 104 TeV, while collider limits on gaugino masses require squarks to be heavier than about 100 TeV. Whether winos constitute all or just a fraction of the dark matter, a large fraction of the allowed parameter space has the gluino within reach of the LHC with 0.1 mm events with cascades via {{widetilde{W}}^{± }} lead to disappearing charged tracks with c{tau_{{{{{widetilde{W}}}^{± }}}}} ˜ 10 cm. The squarks and sleptons are predicted to be just heavy enough to solve the supersymmetric flavor and CP problems. Thus gluino decay modes may typically violate flavor and involve heavy quarks: [ {overline{t}( {t,c,u} )+overline{b}( {b,s,d} )} ]{{widetilde{W}}^0} and [ {overline{t}( {b,s,d} )+( {overline{t},overline{c},overline{u}} )b} ]{{widetilde{W}}^{± }} . The electron electric dipole moment is expected to be of order 10-29 e cm, two orders of magnitude below the current limit. The AMS-02 search for cosmic ray antiprotons will probe an interesting region of parameter space.
Implications of the partial width Z --> bb for supersymmetry searches and model-building
Wells, J D; Kane, G L; James D Wells; Chris Kolda
1994-01-01
Assuming that the actual values of the top quark mass at FNAL and of the ratio of partial widths Z->bb/Z->hadrons at LEP are within their current one-sigma reported ranges, we present a No-Lose Theorem for superpartner searches at LEP II and an upgraded Tevatron. We impose only two theoretical assumptions: the Lagrangian is that of the Minimal Supersymmetric Standard Model with arbitrary soft-breaking terms, and all couplings remain perturbative up to scales of order 10^16 GeV; there are no assumptions about the soft SUSY breaking parameters, proton decay, cosmology, etc. In particular, if the LEP and FNAL values hold up and supersymmetry is responsible for the discrepancy with the SM prediction of the partial width of Z->bb, then we must have charginos and/or top squarks observable at the upgraded machines. Furthermore, little deviation from the SM is predicted within "super-unified" SUSY. Finally, it appears to be extremely difficult to find any unified MSSM model, regardless of the form of soft SUSY breaki...
Cosmological selection of multi-TeV supersymmetry
Directory of Open Access Journals (Sweden)
Keisuke Harigaya
2015-10-01
Full Text Available We discuss a possible answer to the fundamental question of why nature would actually prefer low-scale supersymmetry, but end up with a supersymmetry scale that is not completely natural. This question is inevitable if we postulate that low-energy supersymmetry is indeed realized in nature, despite the null observation of superparticles below a TeV at the Large Hadron Collider. As we argue in this paper, superparticles masses in the multi-TeV range can, in fact, be reconciled with the concept of naturalness by means of a cosmological selection effect—a selection effect based on the assumption of an exact discrete R-symmetry that is spontaneously broken by gaugino condensation in a pure supersymmetric Yang–Mills theory. In such theories, the dynamical scale of the Yang–Mills gauge interactions is required to be higher than the inflationary Hubble scale, in order to avoid the formation of domain walls. This results in a lower limit on the superparticle masses and leads us to conclude that, according to the idea of naturalness, the most probable range of superparticle masses is potentially located at the multi-TeV, if the inflationary Hubble rate is of O(1014 GeV. Our argument can be partially tested by future measurements of the tensor fraction in the Cosmic Microwave Background fluctuations.
Searching for Supersymmetry with the ATLAS detector
White, Martin J
2006-01-01
This thesis presents a new method by which one may use data from the ATLAS detector of the Large Hadron Collider at CERN to measure the parameters of the theory of supersymmetry (SUSY). The technique uses a Markov Chain Monte Carlo sampling algorithm to combine measurements of exclusive variables, in the form of kinematic endpoints that arise in the invariant mass distributions of leptons and jets given out in sparticle decay chains, with inclusive data, in the form of the cross-section of events passing a missing transverse energy cut. This improves the precision of sparticle mass measurements (beyond that obtained using exclusive data alone), whilst also enabling experimental uncertainties to be handled in an intuitive fashion. The method is demonstrated on an mSUGRA benchmark model, and is also used to constrain a model with a greater number of parameters. Throughout, an attempt is made to break some of the unrealistic assumptions that characterise current SUSY search techniques, and to this end it is succ...
Supersymmetry Without Prejudice at the LHC
Conley, John A; Hewett, JoAnne L; Le, My Phuong; Rizzo, Thomas G
2010-01-01
The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters, $\\sim 100$, in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC ($\\sqrt s=14$ TeV, 1 fb$^{-1}$) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard MET and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of $\\sim 71$k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 MET analyses as closely as possible, we explore all of these $\\sim 71$k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then s...
Scaling analysis of the thermal-hydraulic test facility for the large break LOCA of KNGR
Energy Technology Data Exchange (ETDEWEB)
Yun, Byong Jo; Kwon, Tae Soon; Song, Chul Hwa; Euh, Dong Jin; Chu, In Cheol; Cho, Hyoung Kyu; Park, Jong Kyun
2001-03-01
Korea Next Generation Reactor(KNGR) adopts a Direct Vessel Injection (DVI) system instead of conventional Cold Leg Injection (CLI) system. In this report, a scaling analysis for the steam-water test facility of KNGR with DVI under reflood phase of Loss of Coolant Accident(LBLOCA) is carried out. The major objectives of the test facility are to clarify the thermal hydraulics phenomena in the upper downcomer region and to provide experimental data for evaluating or validating relevant thermal hydraulic models and correlations of the best estimate codes. The test facility should be designed based on the appropriate scaling law so that the same thermal hydraulics phenomena is happened as in the case of prototype. For these, the investigations of previous scaling laws are carried out. And, in the present study, a new scaling approach, named the modified linear scaling, is developed for the design of a scaled-down experimental facility. Its velocity is scaled by a Wallis-type parameter and an aspect ratio of experimental facility is preserved with that of a prototype. The test facility is designed primarily by a volume scaling law and the area ratio of test facility is set to be 1/24.3. However, additional DVI nozzles are also installed at the elevation which is determined by the modified linear scaling law. It is for the scaling analysis of ECC bypass fraction. The cold leg, hot leg and DVI nozzles are additionally attached in the upper annulus downcomer region so that the UPTF counterpart test is possible.
Aerosol cluster impact and break-up : II. Atomic and Cluster Scale Models.
Energy Technology Data Exchange (ETDEWEB)
Lechman, Jeremy B.; Takato, Yoichi (State University of New York at Buffalo, Buffalo, NY)
2010-09-01
Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area of interest for a number of processes in chemical, pharmaceutical, and powder manufacturing as well as in steam-tube rupture in nuclear power plants. Developing predictive capabilities for these applications involves coupled phenomena on multiple length and timescales from the process macroscopic scale ({approx}1m) to the multi-cluster interaction scale (1mm-0.1m) to the single cluster scale ({approx}1000 - 10000 particles) to the particle scale (10nm-10{micro}m) interactions, and on down to the sub-particle, atomic scale interactions. The focus of this report is on the single cluster scale; although work directed toward developing better models of particle-particle interactions by considering sub-particle scale interactions and phenomena is also described. In particular, results of mesoscale (i.e., particle to single cluster scale) discrete element method (DEM) simulations for aerosol cluster impact with rigid walls are presented. The particle-particle interaction model is based on JKR adhesion theory and is implemented as an enhancement to the granular package in the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Additionally, as mentioned, results from atomistic classical molecular dynamics simulations are also described as a means of developing higher fidelity models of particle-particle interactions. Ultimately, the results from these and other studies at various scales must be collated to provide systems level models with accurate 'sub-grid' information for design, analysis and control of the underlying systems processes.
Violent breaking wave impacts. Part 3. Effects of scale and aeration
DEFF Research Database (Denmark)
Bredmose, Henrik; Bullock, G. N.; Hogg, A. J.
2015-01-01
. The Bagnold-Mitsuyasu scaling law for the compression of an air pocket by a piston of incompressible water is rederived and generalised to 3D air pockets of arbitrary shape. Numerical results for wall pressure, force and impulse are then presented for a flip-through impact, a low-aeration impact and a high......-aeration impact, for nine scales and five levels of initial aeration. Two of these impact types trap a pocket of air at the wall. Among the findings of the paper is that for fixed initial aeration, impact pressures from the flip-through impact broadly follow Froude scaling. This is also the case for the two...
Searching for supersymmetry scalelessly
Energy Technology Data Exchange (ETDEWEB)
Schlaffer, M. [DESY, Hamburg (Germany); Weizmann Institute of Science, Department of Particle Physics and Astrophysics, Rehovot (Israel); Spannowsky, M. [Durham University, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); Weiler, A. [Technische Universitaet Muenchen, Physik Department T75, Garching (Germany)
2016-08-15
In this paper we propose a scale invariant search strategy for hadronic top or bottom plus missing energy final states. We present a method which shows flat efficiencies and background rejection factors over broad ranges of parameters and masses. The resulting search can easily be recast into a limit on alternative models. We show the strength of the method in a natural SUSY setup where stop and sbottom squarks are pair produced and decay into hadronically decaying top quarks or bottom quarks and higgsinos. (orig.)
Searching for supersymmetry scalelessly
Schlaffer, Matthias; Weiler, Andreas
2016-01-01
In this paper we propose a scale invariant search strategy for hadronic top or bottom plus missing energy final states. We present a method which shows flat efficiencies and background rejection factors over broad ranges of parameters and masses. The resulting search can be easily recast into a limit on alternative models. We show the strength of the method in a natural SUSY setup where stop and sbottom squarks are pair produced and decay into hadronically decaying top quarks or bottom quarks and higgsinos.
Energy Technology Data Exchange (ETDEWEB)
Ibe, Masahiro; Kitano, Ryuichiro; /SLAC /Stanford U., Phys. Dept.
2007-06-06
We find that there is no supersymmetric flavor/CP problem, {mu}-problem, cosmological moduli/gravitino problem or dimension four/five proton decay problem in a class of supersymmetric theories with O(1) GeV gravitino mass. The cosmic abundance of the nonthermally produced gravitinos naturally explains the dark matter component of the universe. A mild hierarchy between the mass scale of supersymmetric particles and electroweak scale is predicted, consistent with the null result of a search for the Higgs boson at the LEP-II experiments. A relation to the strong CP problem is addressed. We propose a parametrization of the model for the purpose of collider studies. The scalar tau lepton is the next to lightest supersymmetric particle in a theoretically favored region of the parameter space. The lifetime of the scalar tau is of O(1000) seconds with which it is regarded as a charged stable particle in collider experiments. We discuss characteristic signatures and a strategy for confirmation of this class of theories at the LHC experiments.
A light neutralino in hybrid models of supersymmetry breaking
Dudas, Emilian; Parmentier, Jeanne; 10.1016
2008-01-01
We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides mu and B mu parameters in the TeV range.
Metastable Supersymmetry Breaking Vacua on Abelian Brane Models
Halyo, Edi
2009-01-01
We construct Abelian brane models with metastable vacua which are obtained from deformations of ${\\cal N}=2$ supersymmetric brane configurations. One such model lives on a D4 brane stretched between two displaced and rotated NS5 branes. Another one lives on a D5 brane wrapped on a deformed and fibered $A_2$ singularity.
Topics in supersymmetry breaking and gauge/gravity dualities
Peters, Vanessa Lynn
This design-based study was the first empirical investigation of a new model of learning and instruction called Knowledge Community and Inquiry (KCI). In KCI, students are engaged as a learning community as they work on scaffolded inquiry activities that target specific science learning objectives. Although community-oriented approaches have been successful at the elementary level, there has been relatively little uptake of such methods at the secondary school level -- particularly in science. The pedagogical framework of KCI addresses the challenges of community models by blending established inquiry based approaches with community-oriented pedagogy. This dissertation tested the validity of KCI by designing, implementing, and empirically evaluating a curriculum based on the KCI model. This was achieved through curriculum trials involving two separate cohorts of grade-ten biology students (n = 102; n = 112). The first implementation consisted of a two-week physiology lesson that engaged students in co-authoring wiki artifacts about human system diseases, which students then used as a resource for solving medical case studies. The second implementation, an eight-week lesson on Canada's biodiversity, was a deeper application of the model, and focused on students' collaborative processes during the construction of their wiki-based knowledge repository. In both cases, the curriculum was evaluated according to its design, enactment, and learning outputs, as evidenced by students' knowledge artifacts and performance on the final exam. Technology scaffolds ensured that students focused on the physiology and biodiversity science curriculum expectations. Analyses of the data revealed that KCI engaged students in collaborative learning processes that were characteristic of a knowledge community. Additionally, final exam scores demonstrated increased learning performance when compared to those from previous years where students did not participate in KCI. The findings from this research provide the first empirical support for KCI, and demonstrate its potential for engaging secondary science students in the kinds of collaborative inquiry processes of authentic knowledge communities. This dissertation provides insight into the conditions necessary for such engagement, and contributes design recommendations for blending knowledge community and inquiry in secondary school science curriculum.
Tasting the SU(5) nature of supersymmetry at the LHC
Fichet, Sylvain; Stoll, Yannick
2015-01-01
We elaborate on a recently found SU(5) relation confined to the up-(s)quark flavour space, that remains immune to large quantum corrections up to the TeV scale. We investigate the possibilities opened by this new window on the GUT scale in order to find TeV-scale SU(5) tests realizable at the LHC. These SU(5) tests appear as relations among observables involving either flavour violation or chirality flip in the up-(s)quark sector. The power of these tests is systematically evaluated using a frequentist, p-value based criterion. SU(5) tests in the Heavy supersymmetry (SUSY), Natural supersymmetry and Top-charm supersymmetry spectra are investigated. The latter scenario features light stops and scharms and is well-motivated from various five-dimensional constructions. A variety of SU(5) tests is obtained, involving techniques of top polarimetry, charm-tagging, or Higgs detection from SUSY cascade decays. We find that O(10) to O(100) events are needed to obtain 50% of relative precision at 3-sigma significance f...
Supersymmetry With Prejudice: Fitting the Wrong Model to LHC Data
Allanach, B C
2011-01-01
We critically examine interpretations of hypothetical supersymmetric LHC signals, fitting to alternative wrong models of supersymmetry breaking. The signals we consider are some of the most constraining on the sparticle spectrum: invariant mass distributions with edges and end-points from the golden cascade decay chain \\tilde{q}_L -> q \\chi_2^0 (-> \\tilde{l}^{\\pm} l^{\\mp} q) -> \\chi_1^0 l^+ l^- q. We assume a CMSSM point to be the `correct' one, and fit the signals instead to minimal gauge mediated supersymmetry breaking models (mGMSB) with a neutralino quasi-stable lightest supersymmetric particle, minimal anomaly mediation (mAMSB) and large volume string compactification models (LVS). mAMSB and LVS can be unambiguously discriminated against the CMSSM for the parameter point assumed and 1 inverse femtobarn of LHC data at 14 TeV. However, mGMSB would not be discriminated on the basis of the kinematic end-points alone, and would require further, more detailed investigation. The best-fit points of mGMSB and CMS...
Supersymmetry with prejudice: Fitting the wrong model to LHC data
Allanach, B. C.; Dolan, Matthew J.
2012-09-01
We critically examine interpretations of hypothetical supersymmetric LHC signals, fitting to alternative wrong models of supersymmetry breaking. The signals we consider are some of the most constraining on the sparticle spectrum: invariant mass distributions with edges and endpoints from the golden decay chain q˜→qχ20(→l˜±l∓q)→χ10l+l-q. We assume a constrained minimal supersymmetric standard model (CMSSM) point to be the ‘correct’ one, but fit the signals instead with minimal gauge mediated supersymmetry breaking models (mGMSB) with a neutralino quasistable lightest supersymmetric particle, minimal anomaly mediation and large volume string compactification models. Minimal anomaly mediation and large volume scenario can be unambiguously discriminated against the CMSSM for the assumed signal and 1fb-1 of LHC data at s=14TeV. However, mGMSB would not be discriminated on the basis of the kinematic endpoints alone. The best-fit point spectra of mGMSB and CMSSM look remarkably similar, making experimental discrimination at the LHC based on the edges or Higgs properties difficult. However, using rate information for the golden chain should provide the additional separation required.
On the stability of multi-scale models of dynamical symmetry breaking from holography
Faedo, Anton F; Schofield, Daniel
2013-01-01
We consider two classes of backgrounds of Type IIB supergravity obtained by wrapping D5-branes on a two-cycle inside the conifold. The field theory dual exhibits confinement and, in addition, a region in which the dynamics is walking, at least in the weak sense that the running of the coupling is anomalously slow. We introduce quenched matter in the fundamental, modelled by probe D7-branes which wrap an internal three-dimensional manifold and lie at the equator of the transverse two-sphere. In the space spanned by the remaining internal angle and the radial coordinate the branes admit two embeddings. The first one is U-shaped: the branes merge at some finite value of the radius. The second one is disconnected and extends along the entire radial direction at fixed angular separation. We interpret these two configurations as corresponding to chiral-symmetry breaking and preserving phases, respectively. We present a simple diagnostic tool to examine the classical stability of the embedding, based on the concavit...
Perspectives on Higgs Boson and Supersymmetry
Nath, Pran
2013-01-01
We review the recent discovery of the Higgs like particle at $\\sim 125$ GeV and its implications for particle physics models. Specifically the implications of the relatively high Higgs mass for the discovery of supersymmetry are discussed. Several related topics such as naturalness and supersymmetry, dark matter and unification are also discussed.
Supersymmetry Projection Rules on Exotic Branes
Kimura, Tetsuji
2016-01-01
We study the supersymmetry projection rules on exotic branes in type II string theories and M-theory. They justify the validity of the exotic duality between standard branes and exotic branes of codimension two. By virtue of the supersymmetry projection rules on various branes, we can apply the exotic duality to a system which involves multiple non-parallel branes.
Diffeomorphism Invariant Theories and Vector Supersymmetry
Piguet, O
2000-01-01
Einstein gravity in the Palatini first order formalism is shown to possess a vector supersymmetry of the type encountered in the topological gauge theories. A peculiar feature of the gravitationel theory is the link of this vector supersymmetry with the field equation of motion of the Faddeev-Popov ghost associated to diffeomorphism invariance.
Quantum gravity via supersymmetry and holography
Elvang, Henriette; Horowitz, Gary T.
2013-01-01
We review the approach to quantum gravity based on supersymmetry, strings, and holography. This includes a survey of black holes in higher-dimensions, supersymmetry and supergravity, as well as string theory, black hole microstates, and the gauge/gravity duality. This presentation will appear as a chapter in "General Relativity and Gravitation: A Centennial Perspective", to be published by Cambridge University Press.
Gaugino Anomaly Mediated SUSY Breaking: phenomenology and prospects for the LHC
Baer, Howard; Givens, Kevin; Rajagopalan, Shibi; Summy, Heaya
2010-01-01
We examine the supersymmetry phenomenology of a novel scenario of supersymmetry (SUSY) breaking which we call Gaugino Anomaly Mediation, or inoAMSB. This is suggested by recent work on the phenomenology of flux compactified type IIB string theory. The essential features of this scenario are that the gaugino masses are of the anomaly-mediated SUSY breaking (AMSB) form, while scalar and trilinear soft SUSY breaking terms are highly suppressed. Renormalization group effects yield an allowable sparticle mass spectrum, while at the same time avoiding charged LSPs; the latter are common in models with negligible soft scalar masses, such as no-scale or gaugino mediation models. Since scalar and trilinear soft terms are highly suppressed, the SUSY induced flavor and CP-violating processes are also suppressed. The lightest SUSY particle is the neutral wino, while the heaviest is the gluino. In this model, there should be a strong multi-jet +etmiss signal from squark pair production at the LHC. We find a 100 fb^{-1} re...
Supersymmetry in random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Kieburg, Mario
2010-05-04
I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)
A Simple Model of Low-scale Direct Gauge Mediation
Csáki, C; Terning, J; Cs\\'aki, Csaba; Shirman, Yuri; Terning, John
2007-01-01
We construct a calculable model of low-energy direct gauge mediation making use of the metastable supersymmetry breaking vacua recently discovered by Intriligator, Seiberg and Shih. The standard model gauge group is a subgroup of the global symmetries of the SUSY breaking sector and messengers play an essential role in dynamical SUSY breaking: they are composites of a confining gauge theory, and the holomorphic scalar messenger mass appears as a consequence of the confining dynamics. The SUSY breaking scale is around 100 TeV nevertheless the model is calculable. The minimal non-renormalizable coupling of the Higgs to the DSB sector leads in a simple way to a mu-term, while the B-term arises at two-loop order resulting in a moderately large tan beta. A novel feature of this class of models is that some particles from the dynamical SUSY breaking sector may be accessible at the LHC.
Supersymmetry results at the Tevatron
Energy Technology Data Exchange (ETDEWEB)
Manca, Giulia; /Liverpool U.
2005-05-01
The Run II physics programme of the Tevatron is proceeding with more than 300 pb{sup -1} of analysis quality data, collected at a center-of-mass energy of 1.96 TeV. Searches for supersymmetric particles are starting to set new limits, improving over the LEP and Run I results and exploring new regions of parameter space. They present recent results in Supersymmetry with the upgraded CDF and D0 detectors and give some prospects for the future of these searches.
Phillips, Patrick J.; Rui, Xue; Georgescu, Alexandru B.; Disa, Ankit S.; Longo, Paolo; Okunishi, Eiji; Walker, Fred; Ahn, Charles H.; Ismail-Beigi, Sohrab; Klie, Robert F.
2017-05-01
Epitaxial strain, layer confinement, and inversion symmetry breaking have emerged as powerful new approaches to control the electronic and atomic-scale structural properties of complex metal oxides. Trivalent rare-earth (RE) nickelate R E NiO3 heterostructures have been shown to be exemplars since the orbital occupancy, degeneracy, and, consequently, electronic/magnetic properties can be altered as a function of epitaxial strain, layer thickness, and superlattice structure. One recent example is the tricomponent LaTiO3-LaNiO3-LaAlO3 superlattice which exhibits charge transfer and orbital polarization as the result of its interfacial dipole electric field. A crucial step towards control of these parameters for future electronic and magnetic device applications is to develop an understanding of both the magnitude and range of the octahedral network's response towards interfacial strain and electric fields. An approach that provides atomic-scale resolution and sensitivity towards the local octahedral distortions and orbital occupancy is therefore required. Here, we employ atomic-resolution imaging coupled with electron spectroscopies and first-principles theory to examine the role of interfacial charge transfer and symmetry breaking in a tricomponent nickelate superlattice system. We find that nearly complete charge transfer occurs between the LaTiO3 and LaNiO3 layers, resulting in a mixed Ni2 +/Ni3 + valence state. We further demonstrate that this charge transfer is highly localized with a range of about 1 unit cell within the LaNiO3 layers. We also show how Wannier-function-based electron counting provides a simple physical picture of the electron distribution that connects directly with formal valence charges. The results presented here provide important feedback to synthesis efforts aimed at stabilizing new electronic phases that are not accessible by conventional bulk or epitaxial film approaches.
Optical Conductivity of Topological Surface States with Emergent Supersymmetry
Witczak-Krempa, William; Maciejko, Joseph
2016-03-01
Topological states of electrons present new avenues to explore the rich phenomenology of correlated quantum matter. Topological insulators (TIs) in particular offer an experimental setting to study novel quantum critical points (QCPs) of massless Dirac fermions, which exist on the sample's surface. Here, we obtain exact results for the zero- and finite-temperature optical conductivity at the semimetal-superconductor QCP for these topological surface states. This strongly interacting QCP is described by a scale invariant theory with emergent supersymmetry, which is a unique symmetry mixing bosons and fermions. We show that supersymmetry implies exact relations between the optical conductivity and two otherwise unrelated properties: the shear viscosity and the entanglement entropy. We discuss experimental considerations for the observation of these signatures in TIs.
Energy Technology Data Exchange (ETDEWEB)
Markoff, Sera; Silva, Catia V. [Anton Pannekoek Institute for Astronomy, University of Amsterdam, 1098 XH Amsterdam (Netherlands); Nowak, Michael A. [Massachusetts Institute of Technology, Kavli Institute for Astrophysics, Cambridge, MA 02139 (United States); Gallo, Elena; Plotkin, Richard M. [Department of Astronomy, University of Michigan, Ann Arbor, MI 48109-1042 (United States); Hynes, Robert [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Wilms, Jörn [Dr. Karl Remeis-Sternwarte and ECAP, Universität Erlangen-Nürnberg, D-96049 Bamberg (Germany); Maitra, Dipankar [Department of Physics and Astronomy, Wheaton College, Norton, MA 02766 (United States); Drappeau, Samia, E-mail: S.B.Markoff@uva.nl, E-mail: C.V.DeJesusSilva@uva.nl, E-mail: mnowak@space.mit.edu, E-mail: egallo@umich.edu, E-mail: rih@redstick.phys.lsu.edu, E-mail: joern.wilms@sternwarte.uni-erlangen.de, E-mail: maitra_dipankar@wheatoncollege.edu, E-mail: samia.drappeau@irap.omp.eu [CNRS, IRAP, BP 44346, F-31028 Toulouse cedex 4 (France)
2015-10-20
Over the past decade, evidence has mounted that several aspects of black hole (BH) accretion physics proceed in a mass-invariant way. One of the best examples of this scaling is the empirical “fundamental plane of BH accretion” relation linking mass, radio, and X-ray luminosity over eight orders of magnitude in BH mass. The currently favored theoretical interpretation of this relation is that the physics governing power output in weakly accreting BHs depends more on relative accretion rate than on mass. In order to test this theory, we explore whether a mass-invariant approach can simultaneously explain the broadband spectral energy distributions from two BHs at opposite ends of the mass scale but that are at similar Eddington accretion fractions. We find that the same model, with the same value of several fitted physical parameters expressed in mass-scaling units to enforce self-similarity, can provide a good description of two data sets from V404 Cyg and M81*, a stellar and supermassive BH, respectively. Furthermore, only one of several potential emission scenarios for the X-ray band is successful, suggesting it is the dominant process driving the fundamental plane relation at this accretion rate. This approach thus holds promise for breaking current degeneracies in the interpretation of BH high-energy spectra and for constructing better prescriptions of BH accretion for use in various local and cosmological feedback applications.
Low-scale gravity mediation in warped extra dimension and collider phenomenology on hidden sector
Indian Academy of Sciences (India)
H Itoh; N Okada; T Yamashita
2007-11-01
We propose a new scenario of gravity-mediated supersymmetry breaking (gravity mediation) in a supersymmetric Randall-Sundrum model, where the gravity mediation takes place at a low scale due to the warped metric. We investigate collider phenomenology involving the hidden sector field, and find a possibility that the hidden sector field can be produced at the LHC and the ILC. The hidden sector may no longer be hidden.
Probing the Scale of New Physics by Advanced LIGO/VIRGO
Dev, P S Bhupal
2016-01-01
We show that if the new physics beyond the Standard Model is associated with a first-order phase transition around $10^7$ GeV, the energy density stored in the resulting stochastic gravitational waves and the corresponding peak frequency are within the projected final sensitivity of the advanced LIGO/VIRGO detectors. We discuss some possible new physics scenarios that could arise at such energies, and in particular, the consequences for Peccei-Quinn and supersymmetry breaking scales.
Supersymmetry, attractors and cosmic censorship
Energy Technology Data Exchange (ETDEWEB)
Bellorin, Jorge [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: jorge.bellorin@uam.es; Meessen, Patrick [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: patrick.meessen@cern.ch; Ortin, Tomas [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: tomas.ortin@cern.ch
2007-01-29
We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in string theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2, d=4 theories based on the explicit knowledge of the most general solutions in the timelike class.
SUSY breaking with D term and gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Ogasahara, Atsushi [Department of Physics, Kyoto University, Kyoto 606-8502 (Japan)
2012-07-27
We classify supersymmetry breaking models with the F- and U(1) D-term potentials. In addition to the classification in our previous paper [1], we consider the other class where the F-term potential shows runaway behaviors. It is shown that the runaway in the F-term potential can be uplifted by the D-term effect, and supersymmetry breaking is realized. The vacuum in this class has no pseudomoduli and is useful for gauge mediation because gaugino masses are generated at the one-loop order. We provide such an example without the Fayet-Iliopoulous term.
No-scale μ -term hybrid inflation
Wu, Lina; Hu, Shan; Li, Tianjun
2017-03-01
To solve the fine-tuning problem in μ -term hybrid inflation, we will realize the supersymmetry scenario with the TeV-scale supersymmetric particles and intermediate-scale gravitino from anomaly mediation, which can be consistent with the WMAP and Planck experiments. Moreover, we for the first time propose the μ -term hybrid inflation in no-scale supergravity. With four scenarios for the SU(3)_C× SU(2)_L× SU(2)_R× U(1)_{B-L} model, we show that the correct scalar spectral index n_s can be obtained, while the tensor-to-scalar ratio r is predicted to be tiny, about 10^{-10}-10^{-8}. Also, the SU(2)_R× U(1)_{B-L} symmetry breaking scale is around 10^{14} GeV, and all the supersymmetric particles except gravitino are around the TeV scale, while the gravitino mass is around 109-10^{10} GeV. Considering the complete potential terms linear in S, we for the first time show that the tadpole term, which is the key for such kind of inflationary models to be consistent with the observed scalar spectral index, vanishes after inflation. Thus, to obtain the μ term, we need to generate the supersymmetry breaking soft term A^{S Φ Φ '}_{κ } κ S Φ Φ ' due to A^{S Φ Φ '}_{κ }=0 in no-scale supergravity, where Φ and Φ ' are vector-like Higgs fields at high energy. We show that the proper A^{S Φ Φ '}_{κ } κ S Φ Φ ' term can be obtained in the M-theory inspired no-scale supergravity. We also point out that A^{S Φ Φ '}_{κ } around 700 GeV can be generated via the renormalization group equation running from string scale. We briefly comment on the supersymmetry phenomenological consequences as well.
Sigma(770) Resonance and the Breaking of Scale and Chiral Symmetry in Effective QCD
Svec, M
2002-01-01
CERN measurements of pi(-)p->pi(-)pi(+)n on polarized target at 17.2 GeV/c enable experimental determination of partial wave production amplitudes below 1080 MeV. The measured S-wave transversity amplitudes provide evidence for a narrow scalar resonance sigma(770). The assumption of analyticity of production amplitudes in dipion mass allows to determine S-wave helicity amplitudes S_0 and S_1. The amplitude S_1 is related to pi(-)pi(+)->pi(-)pi(+) scattering. There are four "down" solutions (1, 1bar), (2, 1bar), (1, 2bar) and (2, 2bar) selected by unitarity in pipi scattering. Ellis-Lanik relation between the mass m_sigma and partial width Gamma(sigma->pi(-)pi(+)) derived from an effective QCD theory with broken scale and chiral symmetry selects solutions (1, 1bar) and (1, 2bar) and imparts the sigma(770) resonance with a dilaton-gluonium interpretation. Weinberg's mended symmetry selects solutions (1, 1bar) and (2, 1bar). The combin ed solution (1, 1bar) has m_sigma=769 +/- 13 MeV and Gamma_sigma=154 +/- 22 M...
The small-scale dynamo: Breaking universality at high Mach numbers
Schleicher, Dominik R G; Federrath, Christoph; Bovino, Stefano; Schmidt, Wolfram
2013-01-01
(Abridged) The small-scale dynamo may play a substantial role in magnetizing the Universe under a large range of conditions, including subsonic turbulence at low Mach numbers, highly supersonic turbulence at high Mach numbers and a large range of magnetic Prandtl numbers Pm, i.e. the ratio of kinetic viscosity to magnetic resistivity. Low Mach numbers may in particular lead to the well-known, incompressible Kolmogorov turbulence, while for high Mach numbers, we are in the highly compressible regime, thus close to Burgers turbulence. In this study, we explore whether in this large range of conditions, a universal behavior can be expected. Our starting point are previous investigations in the kinematic regime. Here, analytic studies based on the Kazantsev model have shown that the behavior of the dynamo depends significantly on Pm and the type of turbulence, and numerical simulations indicate a strong dependence of the growth rate on the Mach number of the flow. Once the magnetic field saturates on the current ...
Supersymmetry without prejudice at the LHC
Conley, John A.; Gainer, James S.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.
2011-07-01
The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC (sqrt{s}=14 TeV, 1 fb-1) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of ˜71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all (two-thirds) of the pMSSM model points are discovered with a significance S>5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.
Supersymmetry Without Prejudice at the LHC
Energy Technology Data Exchange (ETDEWEB)
Conley, John A.; /Bonn U.; Gainer, James S.; /Argonne /Northwestern U.; Hewett, JoAnne L.; Le, My Phuong; Rizzo, Thomas G.; /SLAC
2011-08-19
The discovery and exploration of Supersymmetry in a model-independent fashion will be a daunting task due to the large number of soft-breaking parameters in the MSSM. In this paper, we explore the capability of the ATLAS detector at the LHC ({radical}s = 14 TeV, 1 fb{sup -1}) to find SUSY within the 19-dimensional pMSSM subspace of the MSSM using their standard transverse missing energy and long-lived particle searches that were essentially designed for mSUGRA. To this end, we employ a set of {approx} 71k previously generated model points in the 19-dimensional parameter space that satisfy all of the existing experimental and theoretical constraints. Employing ATLAS-generated SM backgrounds and following their approach in each of 11 missing energy analyses as closely as possible, we explore all of these 71k model points for a possible SUSY signal. To test our analysis procedure, we first verify that we faithfully reproduce the published ATLAS results for the signal distributions for their benchmark mSUGRA model points. We then show that, requiring all sparticle masses to lie below 1(3) TeV, almost all(two-thirds) of the pMSSM model points are discovered with a significance S > 5 in at least one of these 11 analyses assuming a 50% systematic error on the SM background. If this systematic error can be reduced to only 20% then this parameter space coverage is increased. These results are indicative that the ATLAS SUSY search strategy is robust under a broad class of Supersymmetric models. We then explore in detail the properties of the kinematically accessible model points which remain unobservable by these search analyses in order to ascertain problematic cases which may arise in general SUSY searches.
Search for supersymmetry at CDF
Energy Technology Data Exchange (ETDEWEB)
CDF Collaboration
1994-05-01
We have conducted a search for trilepton events from supersymmetry (SUSY) in p{bar p} collisions at {radical}s = 1.8 TeV. In the Supersymmetric Standard Model (MSSM), trilepton events are expected from chargino-neutralino ({tilde {chi}}{sub 1}{sup {plus_minus}}{tilde {chi}}{sub 2}{sup {minus}0}) pair production, with subsequent decay into leptons. In all possible combinations of electron and muon channels in 19 pb{sup {minus}1} data, we observe no events which pass our trilepton selection criteria. Employing the GUT hypothesis within the framework of the MSSM, our preliminary excludes M({tilde {chi}}{sub 1}{sup {plus_minus}}) <46 GeV/c{sup 2} c{sup 2} for {minus}500 < {mu} < {minus}400 GeV, 2.0 < tan({beta}) < 15.0, and M({tilde q}) = 1.2 {times} M({tilde g}).
Towards a resolution of certain dilemmas in preon dynamics through local supersymmetry
Pati, Jogesh C.; Cveti, Mirjam; Sharatchandra, H. S.
1987-03-01
A resolution of one of the major dilemmas of preon dynamics, i.e., why (mq,ml)<<(1/r0)≡Λ0, is provided. In a class of models, supersymmetry (SUSY) in its local rather than global form permits a breaking of SUSY and also a generation of composite-fermion masses, but both with a severe damping by powers of (Λ0/MPlanck).
Light moduli in almost no-scale models
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, Wilfried; Moeller, Jan; Schmidt, Jonas
2009-09-15
We discuss the stabilization of the compact dimension for a class of five-dimensional orbifold supergravity models. Supersymmetry is broken by the superpotential on a boundary. Classically, the size L of the fifth dimension is undetermined, with or without supersymmetry breaking, and the effective potential is of no-scale type. The size L is fixed by quantum corrections to the Kaehler potential, the Casimir energy and Fayet-Iliopoulos (FI) terms localized at the boundaries. For an FI scale of order M{sub GUT}, as in heterotic string compactifications with anomalous U(1) symmetries, one obtains L{proportional_to}1/M{sub GUT}. A small mass is predicted for the scalar fluctuation associated with the fifth dimension, m{sub {rho}}
Torsion and Supersymmetry in Omega-background
Ito, Katsushi; Sasaki, Shin
2012-01-01
We study the dimensional reduction of ten-dimensional super Yang-Mills theory in curved backgrounds with torsion. We examine the parallel spinor conditions and the constraints for the torsion parameters which preserve supersymmetry and gauge symmetry in four dimensions. In particular we examine the ten-dimensional Omega-background with the torsion which is identified with the R-symmetry Wilson line gauge fields. After the dimensional reduction, we obtain the Omega-deformed N=4 super Yang-Mills theory. Solving the parallel spinor conditions and the torsion constraints, we classify the deformed supersymmetry associated with the topological twist of N=4 supersymmetry. We also study deformed supersymmetries in the Nekrasov-Shatashvili limit.
The gluino-glue particle and relevant scales for the simulations of supersymmetric Yang-Mills theory
Bergner, Georg; Münster, Gernot; Sandbrink, Dirk; Özugurel, Umut D
2012-01-01
Supersymmetric Yang-Mills theory is in several respects different from QCD and pure Yang-Mills theory. Therefore, a reinvestigation of the scales, at which finite size effects and lattice artifacts become relevant, is necessary. Both, finite size effects and lattice artifacts, induce a breaking of supersymmetry. In view of the unexpected mass gap between bosonic and fermionic particles an estimation of these effects is essential.
Supersymmetry: Early Roots That Did Not Grow
Directory of Open Access Journals (Sweden)
Cecilia Jarlskog
2015-01-01
Full Text Available This paper is about early roots of supersymmetry, as found in the literature from 1940s and early 1950s. There were models where the power of “partners” in alleviating divergences in quantum field theory was recognized. However, other currently known remarkable features of supersymmetry, such as its role in the extension of the Poincaré group, were not known. There were, of course, no supersymmetric nonabelian quantum field theories in those days.
Supersymmetry protected topological phases of isostatic lattices and kagome antiferromagnets
Lawler, Michael J.
2016-10-01
I generalize the theory of phonon topological band structures of isostatic lattices to frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs and its connection to local constraints satisfied by ground states. The Witten index of the SUSY model demands the Maxwell-Calladine index of mechanical structures. "Spontaneous supersymmetry breaking" is identified as the need to gap all modes in the bulk to create the topological isostatic lattice state. Since ground states of magnetic systems also satisfy local constraint conditions (such as the vanishing of the total spin on a triangle), I identify a similar SUSY structure for many common models of antiferromagnets including the square, triangluar, kagome, pyrochlore nearest-neighbor antiferromagnets, and the J2=J1/2 square-lattice antiferromagnet. Remarkably, the kagome family of antiferromagnets is the analog of topological isostatic lattices among this collection of models. Thus, a solid-state realization of the theory of phonon topological band structure may be found in frustrated magnetic materials.
Supersymmetry, the flavour puzzle and rare B decays
Energy Technology Data Exchange (ETDEWEB)
Straub, David Michael
2010-07-14
The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B {yields} K{sup *}l{sup +}l{sup -} decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b{yields}s{nu}anti {nu} decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)
Flavor from the double tetrahedral group without supersymmetry
Carone, Christopher D; Vasquez, Savannah
2016-01-01
We consider a class of flavor models proposed by Aranda, Carone and Lebed, relaxing the assumption of supersymmetry and allowing the flavor scale to float anywhere between the weak and Planck scales. We perform global fits to the charged fermion masses and CKM angles, and consider the dependence of the results on the unknown mass scale of the flavor sector. We find that the typical Yukawa textures in these models provide a good description of the data over a wide range of flavor scales, with a preference for those that approach the lower bounds allowed by flavor-changing-neutral-current constraints. Nevertheless, the possibility that the flavor scale and Planck scale are identified remains viable. We present models that demonstrate how the assumed textures can arise most simply in a non-supersymmetric framework.
Supersymmetry and string theory beyond the standard model
Dine, Michael
2015-01-01
The past decade has witnessed dramatic developments in the fields of experimental and theoretical particle physics and cosmology. This fully updated second edition is a comprehensive introduction to these recent developments and brings this self-contained textbook right up to date. Brand new material for this edition includes the groundbreaking Higgs discovery, results of the WMAP and Planck experiments. Extensive discussion of theories of dynamical electroweak symmetry breaking and a new chapter on the landscape, as well as a completely rewritten coda on future directions gives readers a modern perspective on this developing field. A focus on three principle areas: supersymmetry, string theory, and astrophysics and cosmology provide the structure for this book which will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password-protected solutions will be available to lecturers at www.cambrid...
Stop searches in flavourful supersymmetry
Crivellin, Andreas; Tunstall, Lewis C.
2016-01-01
Natural realisations of supersymmetry require light stops ${\\tilde t}_1$, making them a prime target of LHC searches for physics beyond the Standard Model. Depending on the kinematic region, the main search channels are ${\\tilde t_1}\\to t \\tilde \\chi^0_1$, ${\\tilde t_1}\\to W b \\tilde \\chi^0_1$ and ${\\tilde t_1}\\to c \\tilde \\chi^0_1$. We first examine the interplay of these decay modes with ${\\tilde c_1}\\to c \\tilde \\chi^0_1$ in a model-independent fashion, revealing the existence of large regions in parameter space which are excluded for any ${\\tilde t_1}\\to c \\tilde \\chi^0_1$ branching ratio. This effect is then illustrated for scenarios with stop-scharm mixing in the right-handed sector, where it has previously been observed that the stop mass limits can be significantly weakened for large mixing. Our analysis shows that once the LHC bounds from ${\\tilde c_1}\\to c \\tilde \\chi^0_1$ searches are taken into account, non-zero stop-scharm mixing leads only to a modest increase in the allowed regions of parameter...
Stop searches in flavourful supersymmetry
Crivellin, Andreas; Haisch, Ulrich; Tunstall, Lewis C.
2016-09-01
Natural realisations of supersymmetry require light stops {tilde{t}}_1 , making them a prime target of LHC searches for physics beyond the Standard Model. Depending on the kinematic region, the main search channels are {tilde{t}}_1to t{tilde{χ}}_1^0 , {tilde{t}}_1to W b{tilde{χ}}_1^0 and {tilde{t}}_1to c{tilde{χ}}_1^0 . We first examine the interplay of these decay modes with {tilde{c}}_1to c{tilde{χ}}_1^0 in a model-independent fashion, revealing that a large parameter space region with stop mass values {m_{tilde{t}}}{_1} up to 530 GeV is excluded for any {tilde{t}}_1to c{tilde{χ}}_1^0 branching ratio by LHC Run I data. The impact of {tilde{c}}_1to c{tilde{χ}}_1^0 decays is further illustrated for scenarios with stop-scharm mixing in the right-handed sector, where it has previously been observed that the stop mass limits can be significantly weakened for large mixing. Our analysis shows that once the {tilde{c}}_1to c{tilde{χ}}_1^0 bounds are taken into account, non-zero stop-scharm mixing can lead to an increase in the allowed parameter space by at most 35%, with large areas excluded for arbitrary mixing.
Dynamical Contents of Unconventional Supersymmetry
Guevara, Alfredo; Zanelli, Jorge
2016-01-01
The Dirac Hamiltonian formalism is applied to a system in $(2+1)$-dimensions consisting of a Dirac field $\\psi$ minimally coupled to Chern-Simons $U(1)$ and $SO(2,1)$ connections, $A$ and $\\omega$, respectively. This theory is connected to a supersymmetric Chern-Simons form in which the gravitino has been projected out (unconventional supersymmetry) and, in the case of a flat background, corresponds to the low energy limit of graphene. The separation between first-class and second-class constraints is performed explicitly, and both the field equations and gauge symmetries of the Lagrangian formalism are fully recovered. The degrees of freedom of the theory in generic sectors shows that the propagating states correspond to fermionic modes in the background determined by the geometry of the graphene sheet and the nondynamical electromagnetic field. This is shown for the following canonical sectors: i) a conformally invariant generic description where the spinor field and the dreibein are locally rescaled; ii) a...
Supersymmetry as a cosmic censor
Kallosh, Renata E; Ortín, Tomas; Peet, A W; Van Proeyen, A; Kallosh, Renata; Linde, Andrei; Ort\\'in, Tom\\'as; Peet, Amanda; Proeyen, Antoine Van
1992-01-01
In supersymmetric theories the mass of any state is bounded below by the values of some of its charges. The corresponding bounds in case of Schwarzschild and Reissner-Nordstr\\"om black holes are known to coincide with the requirement that naked singularities be absent. Here we investigate charged dilaton black holes in this context. We show that the extreme solutions saturate the supersymmetry bound of $N=4\\ d=4$ supergravity, or dimensionally reduced superstring theory. Specifically, we have shown that extreme dilaton black holes, with electric and magnetic charges, admit super-covariantly constant spinors. The supersymmetric positivity bound for dilaton black holes, $M \\geq \\frac{1}{\\sqrt 2}(|Q|+|P|)$, takes care of the absence of naked singularities of the dilaton black holes and is, in this sense, equivalent to the cosmic censorship condition. The temperature, entropy and singularity are discussed. The Euclidean action (entropy) of the extreme black hole is given by $2\\pi |PQ|$. We argue that this result,...
Dynamical contents of unconventional supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Guevara, Alfredo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Pais, Pablo [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile); Physique Théorique et Mathématique,Université Libre de Bruxelles and International Solvay Institutes,Campus Plaine C.P. 231, B-1050 Bruxelles (Belgium); Zanelli, Jorge [Centro de Estudios Científicos (CECs),Av. Arturo Prat 514, Valdivia (Chile)
2016-08-11
The Dirac Hamiltonian formalism is applied to a system in (2+1)-dimensions consisting of a Dirac field ψ minimally coupled to Chern-Simons U(1) and SO(2,1) connections, A and ω, respectively. This theory is connected to a supersymmetric Chern-Simons form in which the gravitino has been projected out (unconventional supersymmetry) and, in the case of a flat background, corresponds to the low energy limit of graphene. The separation between first-class and second-class constraints is performed explicitly, and both the field equations and gauge symmetries of the Lagrangian formalism are fully recovered. The degrees of freedom of the theory in generic sectors shows that the propagating states correspond to fermionic modes in the background determined by the geometry of the graphene sheet and the nondynamical electromagnetic field. This is shown for the following canonical sectors: i) a conformally invariant generic description where the spinor field and the dreibein are locally rescaled; ii) a specific configuration for the Dirac fermion consistent with its spin, where Weyl symmetry is exchanged by time reparametrizations; iii) the vacuum sector ψ=0, which is of interest for perturbation theory. For the latter the analysis is adapted to the case of manifolds with boundary, and the corresponding Dirac brackets together with the centrally extended charge algebra are found. Finally, the SU(2) generalization of the gauge group is briefly treated, yielding analogous conclusions for the degrees of freedom.
Study of constrained minimal supersymmetry
Kane, G L; Roszkowski, Leszek; Wells, J D; Chris Kolda; Leszek Roszkowski; James D Wells
1994-01-01
Taking seriously phenomenological indications for supersymmetry, we have made a detailed study of unified minimal SUSY, including effects at the few percent level in a consistent fashion. We report here a general analysis without choosing a particular unification gauge group. We find that the encouraging SUSY unification results of recent years do survive the challenge of a more complete and accurate analysis. Taking into account effects at the 5-10% level leads to several improvements of previous results, and allows us to sharpen our predictions for SUSY in the light of unification. We perform a thorough study of the parameter space. The results form a well-defined basis for comparing the physics potential of different facilities. Very little of the acceptable parameter space has been excluded by LEP or FNAL so far, but a significant fraction can be covered when these accelerators are upgraded. A number of initial applications to the understanding of the SUSY spectrum, detectability of SUSY at LEP II or FNAL...
Yukawa-unified natural supersymmetry
Baer, Howard; Kulkarni, Suchita
2012-01-01
Previous work on t-b-\\tau Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m_h\\sim125 GeV. As Yukawa unification requires large tan\\beta\\sim50, while EWFT requires rather light third generation squarks and low \\mu\\sim100-250 GeV, B-physics constraints from BR(B\\to X_s\\gamma) and BR(B_s\\to \\mu+\\mu-) can be severe. We are able to find models with EWFT \\Delta\\lesssim 50-100 (better than 1-2% EWFT) and with Yukawa unification as low as R_yuk\\sim1.3 (30% unification) if B-physics constraints are imposed. This may be improved to R_yuk\\sim1.2 if additional small flavor violating terms conspire to improve accord with B-constraints. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be a...
Comments on the spontaneous symmetry breaking in supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Sorba, P.; Stora, R. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)
1984-08-30
The role of the complex extension of the symmetry group in supersymmetric theories is revisited. We prove, in particular, that if symmetry breaking occurs at an extremum of the superpotential, then supersymmetry will be preserved if and only if the complex stabilizer of the vacuum is the complexified of its maximal compact part.
Recent results on searches for R-parity conserving supersymmetry at the ATLAS experiment
Klimek, P; The ATLAS collaboration
2014-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. This talk summarizes recent ATLAS results on searches for R-Parity conserving supersymmetric models. Promptly decaying squarks, gluinos, charginos and neutralinos are searched for in events characterized by missing transverse momentum, possibly jets and/or light leptons, taus or photons.
On Anomaly Mediated SUSY Breaking
de Alwis, S P
2008-01-01
A discrepancy between the Anomaly Mediated Supersymmetry Breaking (AMSB) gaugino mass calculated from the work of Kaplunovsky and Louis (hep-th/9402005) (KL) and other calculations in the literature is explained, and it is argued that the KL expression is the correct one relevant to the Wilsonian action. Furthermore it is argued that the AMSB contribution to the squark and slepton masses should be replaced by the contribution pointed out by Dine and Seiberg (DS) which has nothing to do with Weyl anomalies. This is not in general equivalent to the AMSB expression, and it is shown that there are models in which the usual AMSB expression would vanish but the DS one is non-zero. In fact the latter has aspects of both AMSB and gauge mediated SUSY breaking. In particular like the latter, it gives positive squared masses for sleptons.
Gravitinos and hidden supersymmetry at the LHC
Energy Technology Data Exchange (ETDEWEB)
Bobrovskyi, Sergei
2012-08-15
We investigate phenomenological consequences of locally supersymmetric extensions of the Standard Model consistent with primordial nucleosynthesis, leptogenesis and dark matter constraints. An unequivocal prediction of local supersymmetry is the existence of the gravitino, the spin-3/2 superpartner of the graviton. Due to its extremely weak couplings, decays involving the gravitino in the initial or the final state may cause problems in the early universe. One class of models solving the gravitino problem makes the gravitino either the heaviest or the lightest supersymmetric particle (LSP), while predicting a higgsino-like neutralino as the LSP or the next-to-lightest superparticle (NLSP), respectively. In both cases the LHC phenomenology is determined by the higgsino states. The mass degeneracy between the charged and neutral states, together with very heavy colored states, prevent an early discovery at the LHC, especially if one demands a lightest Higgs mass compatible with the recent LHC signal excess. Another class of models, in which the gravitino is also a dark matter candidate, introduces a small violation of R-parity to render the cosmology consistent. In this case, the phenomenology at the LHC is determined by the R-parity violating decays of the NLSP which can be a bino-like or a higgsino-like neutralino or a stau. Using a novel approach to describing bilinear R-parity violation, we compute decay rates of the gravitino and the possible NLSP. Due to a connection between the gravitino and neutralino decay widths, we can predict the neutralino NLSP decay length at the LHC directly from the recent Fermi-LAT results for decaying dark matter searches. The decays of the NLSP in the detectors distort the missing transverse energy (MET) signature, which complicates the searches relying on it, while creating a new secondary vertex signature. We conclude that for gluino and squark masses accessible at the LHC, searches based on secondary vertices can probe values of
Constraints on supersymmetry with light third family from LHC data
Desai, Nishita
2011-01-01
We present a re-interpretation of the recent ATLAS limits on supersymmetry in channels with jets (with and without b-tags) and missing energy, in the context of light third family squarks, while the first two squark families are inaccessible at the 7 TeV run of the Large Hadron Collider (LHC). In contrast to interpretations in terms of the high-scale based constrained minimal supersymmetric standard model (CMSSM), we primarily use the low-scale parametrisation of the phenomenological MSSM (pMSSM), and translate the limits in terms of physical masses of the third family squarks. Side by side, we also investigate the limits in terms of high-scale scalar non-universality, both with and without low-mass sleptons. Our conclusion is that the limits based on 0-lepton channels are not altered by the mass-scale of sleptons, and can be considered more or less model-independent.
Lagrangian supersymmetries depending on derivatives. Global analysis and cohomology
Giachetta, G; Sardanashvily, G
2004-01-01
Lagrangian contact supersymmetries (depending on derivatives of arbitrary order) are treated in very general setting. The cohomology of the variational bicomplex on an arbitrary graded manifold and the iterated cohomology of a generic nilpotent contact supersymmetry are computed. In particular, the first variational formula and conservation laws for Lagrangian systems on graded manifolds using contact supersymmetries are obtained.
Yukawa-unified natural supersymmetry
Baer, Howard; Kraml, Sabine; Kulkarni, Suchita
2012-12-01
Previous work on t - b - τ Yukawa-unified supersymmetry, as expected from SUSY GUT theories based on the gauge group SO(10), tended to have exceedingly large electroweak fine-tuning (EWFT). Here, we examine supersymmetric models where we simultaneously require low EWFT ("natural SUSY") and a high degree of Yukawa coupling unification, along with a light Higgs scalar with m h 125 GeV. As Yukawa unification requires large tan β 50, while EWFT requires rather light third generation squarks and low μ ≈ 100 - 250 GeV, B-physics constraints from BR( B → X s γ) and BR( B s → μ + μ -) can be severe. We are able to find models with EWFT Δ ≲ 50 - 100 (better than 1-2% EWFT) and with Yukawa unification as low as R yuk 1.2 (20% unification). The unification is lessened to R yuk 1.3 when B-physics constraints are imposed. We present several Yukawa-unified natural SUSY (YUNS) benchmark points. LHC searches will be able to access gluinos in the lower 1 - 2 TeV portion of their predicted mass range although much of YUNS parameter space may lie beyond LHC14 reach. If heavy Higgs bosons can be accessed at a high rate, then the rare H, A → μ + μ - decay might allow a determination of tan β 50 as predicted by YUNS models. Finally, the predicted light higgsinos should be accessible to a linear e + e - collider with sqrt{s}˜ 0.5 TeV.
Generalised supersymmetry and p-brane actions
Hewson, S F
1997-01-01
We investigate the most general N=1 graded extension of the Poincare algebra, and find the corresponding supersymmetry transformations and the associated superspaces. We find that the supersymmetry for which {Q,Q}=P is not special, and in fact must be treated democratically with a whole class of supersymmetries. We show that there are two distinct types of grading, and a new class of general spinors is defined. The associated superspaces are shown to be either of the usual type, or flat with no torsion. p-branes are discussed in these general superspaces and twelve dimensions emerges as maximal. New types of brane are discovered which could explain many features of the standard p-brane theories.
Supersymmetry on a space-time lattice
Energy Technology Data Exchange (ETDEWEB)
Kaestner, Tobias
2008-10-28
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
Magnetic Fixed Points and Emergent Supersymmetry
Antipin, Oleg; Pica, Claudio; Sannino, Francesco
2011-01-01
We establish the existence of fixed points for certain gauge theories candidate to be magnetic duals of QCD with one adjoint Weyl fermion. In the perturbative regime of the magnetic theory the existence of a very large number of fixed points is unveiled. We classify them by analyzing their basin of attraction. The existence of several nonsupersymmetric fixed points for the magnetic gauge theory lends further support towards the existence of gauge-gauge duality beyond supersymmetry. We also discover that among these very many fixed points there are supersymmetric ones emerging from a generic nonsupersymmetric renormalization group flow. We therefore conclude that supersymmetry naturally emerges as a fixed point theory from a nonsupersymmetric Lagrangian without the need for fine-tuning of the bare couplings. Our results suggest that supersymmetry can be viewed as an emergent phenomenon in field theory. In particular there should be no need for fine-tuning the bare couplings when performing Lattice simulations ...
Pure gravity mediation and spontaneous B–L breaking from strong dynamics
Directory of Open Access Journals (Sweden)
Kaladi S. Babu
2016-04-01
Full Text Available In pure gravity mediation (PGM, the most minimal scheme for the mediation of supersymmetry (SUSY breaking to the visible sector, soft masses for the standard model gauginos are generated at one loop rather than via direct couplings to the SUSY-breaking field. In any concrete implementation of PGM, the SUSY-breaking field is therefore required to carry nonzero charge under some global or local symmetry. As we point out in this note, a prime candidate for such a symmetry might be B–L, the Abelian gauge symmetry associated with the difference between baryon number B and lepton number L. The F-term of the SUSY-breaking field then not only breaks SUSY, but also B–L, which relates the respective spontaneous breaking of SUSY and B–L at a fundamental level. As a particularly interesting consequence, we find that the heavy Majorana neutrino mass scale ends up being tied to the gravitino mass, ΛN∼m3/2. Assuming nonthermal leptogenesis to be responsible for the generation of the baryon asymmetry of the universe, this connection may then explain why SUSY necessarily needs to be broken at a rather high energy scale, so that m3/2≳1000 TeV in accord with the concept of PGM. We illustrate our idea by means of a minimal model of dynamical SUSY breaking, in which B–L is identified as a weakly gauged flavor symmetry. We also discuss the effect of the B–L gauge dynamics on the superparticle mass spectrum as well as the resulting constraints on the parameter space of our model. In particular, we comment on the role of the B–L D-term.
Supersymmetry and integrability in planar mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Assis, Leonardo P.G. de; Helayel-Neto, Jose A. [Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil)]. E-mail: lpgassis@cbpf.br; helayel@cbpf.br; Paschoal, Ricardo C. [Centro de Tecnologia da Industria Quimica e/ Textil (SENAI/CETIQT), Rio de Janeiro, RJ (Brazil)]. E-mail: paschoal@cbpf.br
2005-05-15
We present an N = 2-supersymmetric mechanical system whose bosonic sector, with two degrees of freedom, stems from the reduction of an SU(2) Yang-Mills theory with the assumption of spatially homogeneous field configurations and a particular Ansatz imposed on the gauge potentials in the dimensional reduction procedure. The Painleve test is adopted to discuss integrability and we focus on the role of supersymmetry and parity invariance in two space dimensions for the attainment of integrable or chaotic models. Our conclusion is that the relationships among the parameters imposed by supersymmetry seem to drastically reduce the number of possibilities for integrable interaction potentials of the mechanical system under consideration. (author)
Peculiar Quantum Phase Transitions and Hidden Supersymmetry in a Lipkin-Meshkov-Glick Model
Institute of Scientific and Technical Information of China (English)
CHEN Gang; LIANG Jiu-Qing
2009-01-01
In this paper we theoretically report an unconventional quantum phase transition of a simple Lipkin-Meshkov-Glick model: an interacting collective spin system without external magnetic field. It is shown that this model with integer-spin can exhibit a first-order quantum phase transition between different disordered phases, and more intriguingly, possesses a hidden supersymmetry at the critical point. However, for half-integer spin we predict another first-order quantum phase transition between two different long-range-ordered phases with a vanishing energy gap, which is induced by the destructive topological quantum interference between the intanton and anti-instanton tunneling paths and accompanies spontaneously breaking of supersymmetry at the same critical point. We also show that, when the total spin-value varies from half-integer to integer this model can exhibit an abrupt variation of Berry phase from π to zero.
Calabi-Yau black holes and enhancement of supersymmetry in five dimensions
Chamseddine, A. H.; Sabra, W. A.
1999-08-01
BPS electric and magnetic black hole solutions which break half of supersymmetry in the theory of N=2 five-dimensional supergravity are discussed. For models which arise as compactifications of M-theory on a Calabi-Yau manifold, these solutions correspond, respectively, to the two and five branes wrapping around the homology cycles of the Calabi-Yau compact space. The electric solutions are reviewed and the magnetic solutions are constructed. The near-horizon physics of these solutions is examined and in particular the phenomenon of the enhancement of supersymmetry. The solutions for the supersymmetric Killing spinor of the near horizon geometry, identified as AdS3xS2 and AdS2xS3 are also given.
Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Knünz, Valentin; König, Axel; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Schöfbeck, Robert; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Luyckx, Sten; Ochesanu, Silvia; Rougny, Romain; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Keaveney, James; Lowette, Steven; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Van Parijs, Isis; Barria, Patrizia; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Dobur, Didar; Fasanella, Giuseppe; Favart, Laurent; Gay, Arnaud; Grebenyuk, Anastasia; Lenzi, Thomas; Léonard, Alexandre; Maerschalk, Thierry; Marinov, Andrey; Perniè, Luca; Randle-conde, Aidan; Reis, Thomas; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Crucy, Shannon; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Poyraz, Deniz; Ryckbosch, Dirk; Salva Diblen, Sinem; Sigamani, Michael; Strobbe, Nadja; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Mertens, Alexandre; Nuttens, Claude; Perrini, Lucia; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Beliy, Nikita; Hammad, Gregory Habib; Aldá Júnior, Walter Luiz; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Dos Reis Martins, Thiago; Hensel, Carsten; Mora Herrera, Clemencia; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; De Souza Santos, Angelo; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Genchev, Vladimir; Hadjiiska, Roumyana; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Plestina, Roko; Romeo, Francesco; Shaheen, Sarmad Masood; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Zou, Wei; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Bodlak, Martin; Finger, Miroslav; Finger Jr, Michael; Aly, Reham; El-khateeb, Esraa; Elkafrawy, Tamer
2016-06-10
A search for supersymmetry involving events with at least one photon, one electron or muon, and large missing transverse momentum has been performed by the CMS experiment. The data sample corresponds to an integrated luminosity of 19.7 fb$^{-1}$ of pp collisions at $\\sqrt{s}=$ 8 TeV, produced at the CERN LHC. No excess of events is observed beyond expectations from standard model processes. The result of the search is interpreted in the context of a general model of gauge-mediated supersymmetry breaking, where the charged and neutral winos are the next-to-lightest supersymmetric particles. Within this model, winos with a mass up to 360 GeV are excluded at the 95% confidence level. Two simplified models inspired by gauge-mediated supersymmetry breaking are also examined, and used to derive upper limits on the production cross sections of specific supersymmetric processes.
Doubling Up on Supersymmetry in the Higgs Sector
Ellis, John; Sanz, Verónica
2016-01-01
We explore the possibility that physics at the TeV scale possesses approximate $N = 2$ supersymmetry, which is reduced to the $N=1$ minimal supersymmetric extension of the Standard Model (MSSM) at the electroweak scale. This doubling of supersymmetry modifies the Higgs sector of the theory, with consequences for the masses, mixings and couplings of the MSSM Higgs bosons, whose phenomenological consequences we explore in this paper. The mass of the lightest neutral Higgs boson $h$ is independent of $\\tan \\beta$ at the tree level, and the decoupling limit is realized whatever the values of the heavy Higgs boson masses. Radiative corrections to the top quark and stop squarks dominate over those due to particles in $N=2$ gauge multiplets. We assume that these radiative corrections fix $m_h \\simeq 125$ GeV, whatever the masses of the other neutral Higgs bosons $H, A$, a scenario that we term the $h$2MSSM. Since the $H, A$ bosons decouple from the $W$ and $Z$ bosons in the $h$2MSSM at tree level, only the LHC const...
Franci, Luca; Matteini, Lorenzo; Verdini, Andrea; Hellinger, Petr
2016-01-01
We investigate properties of the ion-scale spectral break of solar wind turbulence by means of two-dimensional high-resolution hybrid particle-in-cell simulations. We impose an initial ambient magnetic field perpendicular to the simulation box and add a spectrum of in-plane, large-scale, magnetic and kinetic fluctuations. We perform a set of simulations with different values of the plasma beta, distributed over three orders of magnitude, from 0.01 to 10. In all the cases, once turbulence is fully developed, we observe a power-law spectrum of the fluctuating magnetic field on large scales (in the inertial range) with a spectral index close to -5/3, while in the sub-ion range we observe another power-law spectrum with a spectral index systematically varying with $\\beta$ (from around -3.6 for small values to around -2.9 for large ones). The two ranges are separated by a spectral break around ion scales. The length scale at which this transition occurs is found to be proportional to the ion inertial length, $d_i$...
Supersymmetry Searches in Dilepton Final States with the ATLAS Experiment
Lungwitz, Matthias
One of the main goals of the ATLAS experiment at the Large Hadr on Collider (LHC) at CERN in Geneva is the search for new physics beyond the Standa rd Model. In 2011, proton- proton collisions were performed at the LHC at a center of mas s energy of 7 TeV and an in- tegrated luminosity of 4 . 7 fb − 1 was recorded. This dataset can be tested for one of the most promising theories beyond limits achieved thus far: supers ymmetry. Final states in supersym- metry events at the LHC contain highly energetic jets and siz eable missing transverse energy. The additional requirement of events with highly energetic leptons simplifies the control of the backgrounds. This work presents results of a search for supe rsymmetry in the inclusive dilepton channel. Special emphasis is put on the search within the Gau ge-Mediated Symmetry Breaking (GMSB) scenario in which the supersymmetry breaking is medi ated via gauge fields. Statis- tically independent Control Regions for the dominant Stand ard Model backgrounds as well as ...
Stationary axion/dilaton solutions and supersymmetry
Bergshoeff, E. A.; Kallosh, R.; Ortín, Tomas
1996-01-01
We present a new set of supersymmetric stationary solutions of pure N = 4, d = 4 supergravity (and, hence, of low-energy effective string theory) that generalize (and include) the Israel-Wilson-Pejes solutions of Einstein-Maxwell theory. All solutions have 1/4 of the supersymmetries unbroken and som
Testing supersymmetry at the next linear collider
Energy Technology Data Exchange (ETDEWEB)
Feng, J.L.
1994-09-01
If new particles are discovered, it will be important to determine if they are the supersymmetric partners of standard model bosons and fermions. Supersymmetry predicts relations among the couplings and masses of these particles. The authors discuss the prospects for testing these relations at a future e{sup +}e{sup {minus}} linear collider with measurements that exploit the availability of polarized beams.
Supersymmetry in the Fractional Quantum Hall Regime
Sagi, Eran
2016-01-01
Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this manuscript we propose a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form $\
Playing with the enveloping algebra of supersymmetry
Cattaruzza, E.; Gozzi, E.
2016-10-01
In this paper, we show how to obtain from a scalar superfield its first component via a similarity transformation. We prove that in D = 4 the generators of this similarity transformation live in the enveloping algebra of supersymmetry while for D = 1 they belong to the basic algebra.
New strings with world-sheet supersymmetry
Nichols, A; Savvidy, G K
2004-01-01
We suggest a new model of string theory with world-sheet supersymmetry. It possesses an additional global fermionic symmetry which is similar in many ways to BRST symmetry. The spectrum consists of massless states of Rarita-Schwinger fields describing infinite tower of half-integer spins.
Singularity development and supersymmetry in holography
Buchel, Alex
2017-08-01
We study the effects of supersymmetry on singularity development scenario in holography presented in [1] (BBL). We argue that the singularity persists in a supersymmetric extension of the BBL model. The challenge remains to find a string theory embedding of the singularity mechanism.
Coupled SU(3)-structures and Supersymmetry
Fino, Anna
2015-01-01
We review coupled ${\\rm SU}(3)$-structures, also known in the literature as restricted half-flat structures, in relation to supersymmetry. In particular, we study special classes of examples admitting such structures and the behaviour of flows of ${\\rm SU}(3)$-structures with respect to the coupled condition.
Playing with the enveloping algebra of supersymmetry
Cattaruzza, E
2016-01-01
In this paper we show how to obtain from a scalar superfield its first component via a similarity transformation. We prove that in D=4 the generators of this similarity transformation live in the enveloping algebra of supersymmetry while for D=1 they belong to the basic algebra.
A low Fermi scale from a simple gaugino-scalar mass relation
Brümmer, Felix
2014-01-01
In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The mu parameter is generated independently of supersymmetry breaking, however the mu problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we will argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.
A low Fermi scale from a simple gaugino-scalar mass relation
Brümmer, F.; Buchmüller, W.
2014-03-01
In supersymmetric extensions of the Standard Model, the Fermi scale of electroweak symmetry breaking is determined by the pattern of supersymmetry breaking. We present an example, motivated by a higher-dimensional GUT model, where a particular mass relation between the gauginos, third-generation squarks and Higgs fields of the MSSM leads to a Fermi scale smaller than the soft mass scale. This is in agreement with the measured Higgs boson mass. The μ parameter is generated independently of supersymmetry breaking, however the μ problem becomes less acute due to the little hierarchy between the soft mass scale and the Fermi scale as we will argue. The resulting superparticle mass spectra depend on the localization of quark and lepton fields in higher dimensions. In one case, the squarks of the first two generations as well as the gauginos and higgsinos can be in the range of the LHC. Alternatively, only the higgsinos may be accessible at colliders. The lightest superparticle is the gravitino.
Dynamical Electroweak Symmetry Breaking in String Models with D-branes
Kitazawa, Noriaki
2009-01-01
The possibility of dynamical electroweak symmetry breaking by strong coupling gauge interaction in models with D-branes in String Theory is examined. Instead of elementary scalar Higgs doublet fields, the gauge symmetry with strong coupling (technicolor) is introduced. As the first step of this direction, a toy model, which is not fully realistic, is concretely analyzed in some detail. The model consists of D-branes and anti-D-branes at orbifold singularities in (T^2 x T^2 x T^2)/Z_3 which preserves supersymmetry. Supersymmetry is broken through the brane supersymmetry breaking. It is pointed out that the problem of large S parameter in dynamical electroweak symmetry breaking scenario may be solved by natural existence of kinetic term mixings between hypercharge U(1) gauge boson and massive anomalous U(1) gauge bosons. The problems to be solved toward constructing more realistic models are clarified in the analysis.
Photons, missing energy and the quest for supersymmetry at the LHC
Energy Technology Data Exchange (ETDEWEB)
Gebbert, Ulla
2012-03-15
In this thesis a search for supersymmetry in events with at least one photon, jets and missing transverse energy (E{sub T}) in an integrated luminosity of 4.32 fb{sup -1} of pp collisions at {radical}(s)=7 TeV is presented. The data is recorded by the CMS detector in 2011. Final states with photons are expected in models with gauge mediated supersymmetry breaking, where the lightest supersymmetric particle is the gravitino. The gravitino leaves the detector without energy deposition and thus leads to missing transverse momentum in the event. E{sub T} is crucial to distinguish the signal from the Standard Model events and is reconstructed from all energy deposits in the detector. Due to the non-linearity of the response in the calorimeter, additional corrections are required. In this thesis, a data driven technique to determine the correction for unclustered energy deposits, using the transverse momentum balance between a Z boson and the hadronic recoil, is presented. For the search for supersymmetry the E{sub T} distribution measured in data is compared to the expected Standard Model distribution. For this purpose the main Standard Model background processes from QCD multi- and photon-jet or electro-weak processes are modelled using data events. No excess over the Standard Model expectation is observed. Exclusion limits at the 95% CL are set and interpreted in the GMSB parameter space.
Lawler, Michael
I generalize the theory of phonon topological band structures of isostatic lattices to highly frustrated antiferromagnets. I achieve this with a discovery of a many-body supersymmetry (SUSY) in the phonon problem of balls and springs which also applies to geometrically frustrated magnets. The Witten index of the SUSY model, when restricted to the single body problem (meaningful for linearized phonons), is then shown to be the Calladine-Kane-Lubensky index of mechanical structures that forms the cornerstone of the phonon topological band structure theory. ``Spontaneous supersymmetry breaking'' is then identified as the need to gap all modes in the bulk to create the topological state. The many-body SUSY formulation shows that the topology is not restricted to a band structure problem but extends to systems of coupled bosons and fermions that are in principle also realizable in solid state systems. The analogus supersymmetry of the magnon problem turns out to be particularly useful for highly frustrated magnets with the kagome family of antiferromagnets an analog of topological isostatic lattices. Thus, a solid state realization of the theory of phonon topological band structure may be found in highly frustrated magnets. However, our results show that this topology is protected not
Vacuum stability and radiative electroweak symmetry breaking in an SO(10) dark matter model
Mambrini, Yann; Nagata, Natsumi; Olive, Keith A.; Zheng, Jiaming
2016-06-01
Vacuum stability in the Standard Model is problematic as the Higgs quartic self-coupling runs negative at a renormalization scale of about 1010 GeV . We consider a nonsupersymmetric SO(10) grand unification model for which gauge coupling unification is made possible through an intermediate scale gauge group, Gint=SU (3 )C⊗SU (2 )L⊗SU (2 )R⊗U (1 )B -L . Gint is broken by the vacuum expectation value of a 126 of SO(10) which not only provides for neutrino masses through the seesaw mechanism but also preserves a discrete Z2 that can account for the stability of a dark matter candidate, here taken to be the Standard Model singlet component of a bosonic 16 . We show that in addition to these features the model insures the positivity of the Higgs quartic coupling through its interactions to the dark matter multiplet and 126 . We also show that the Higgs mass squared runs negative, triggering electroweak symmetry breaking. Thus, the vacuum stability is achieved along with radiative electroweak symmetry breaking and captures two more important elements of supersymmetric models without low-energy supersymmetry. The conditions for perturbativity of quartic couplings and for radiative electroweak symmetry breaking lead to tight upper and lower limits on the dark matter mass, respectively, and this dark matter mass region (1.35-2 TeV) can be probed in future direct detection experiments.
Radiative PQ breaking and the Higgs boson mass
D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio
2015-06-01
The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ˜ 5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.
Radiative PQ breaking and the Higgs boson mass
Energy Technology Data Exchange (ETDEWEB)
D’Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio [Berkeley Center for Theoretical Physics, Department of Physics, and Theoretical Physics Group, Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States)
2015-06-17
The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ∼5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.
B-L assisted anomaly mediation and the radiative B-L symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Kikuchi, Tatsuru [Theory Division, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: tatsuru@post.kek.jp; Kubo, Takayuki [Theory Division, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Graduate University for Advanced Studies, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan)], E-mail: kubotaka@post.kek.jp
2008-10-30
Anomaly mediated supersymmetry breaking implemented in the minimal supersymmetric standard model (MSSM) is known to suffer from the tachyonic slepton problem leading to breakdown of electric charge conservation. We show however that when MSSM is extended to explain small neutrino masses by gauging the B-L symmetry, the slepton masses can be positive due to the Z{sup '} mediation contributions. We obtain various soft supersymmetry breaking mass spectra, which are different from those obtained in the conventional anomaly mediation scenario. Then there would be a distinct signature of this scenario at the LHC.
Deconstructing zero: resurgence, supersymmetry and complex saddles
Dunne, Gerald V.; Ünsal, Mithat
2016-12-01
We explain how a vanishing, or truncated, perturbative expansion, such as often arises in semi-classically tractable supersymmetric theories, can nevertheless be related to fluctuations about non-perturbative sectors via resurgence. We also demonstrate that, in the same class of theories, the vanishing of the ground state energy (unbroken supersymmetry) can be attributed to the cancellation between a real saddle and a complex saddle (with hidden topological angle π), and positivity of the ground state energy (broken supersymmetry) can be interpreted as the dominance of complex saddles. In either case, despite the fact that the ground state energy is zero to all orders in perturbation theory, all orders of fluctuations around non-perturbative saddles are encoded in the perturbative E ( N, g). We illustrate these ideas with examples from supersymmetric quantum mechanics and quantum field theory.
Deconstructing zero: resurgence, supersymmetry and complex saddles
Dunne, Gerald V
2016-01-01
We explain how a vanishing, or truncated, perturbative expansion, such as often arises in semi-classically tractable supersymmetric theories, can nevertheless be related to fluctuations about non-perturbative sectors via resurgence. We also demonstrate that, in the same class of theories, the vanishing of the ground state energy (unbroken supersymmetry) can be attributed to the cancellation between a real saddle and a complex saddle (with hidden topological angle pi), and positivity of the ground state energy (broken supersymmetry) can be interpreted as the dominance of complex saddles. In either case, despite the fact that the ground state energy is zero to all orders in perturbation theory, all orders of fluctuations around non-perturbative saddles are encoded in the perturbative E(N, g). We illustrate these ideas with examples from supersymmetric quantum mechanics and quantum field theory.
Computation of neutrino masses in R-parity violating supersymmetry: SOFTSUSY3.2
Allanach, B. C.; Kom, C. H.; Hanussek, M.
2012-03-01
The program SOFTSUSY can calculate tree-level neutrino masses in the R-parity violating minimal supersymmetric standard model (MSSM) with real couplings. At tree-level, only one neutrino acquires a mass, in contradiction with neutrino oscillation data. Here, we describe an extension to the SOFTSUSY program which includes one-loop R-parity violating effects' contributions to neutrino masses and mixing. Including the one-loop effects refines the radiative electroweak symmetry breaking calculation, and may result in up to three massive, mixed neutrinos. This paper serves as a manual to the neutrino mass prediction mode of the program, detailing the approximations and conventions used. Program summaryProgram title: SOFTSUSY Catalogue identifier: ADPM_v3_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v3_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU General Public License version 3 No. of lines in distributed program, including test data, etc.: 93 291 No. of bytes in distributed program, including test data, etc.: 1 288 618 Distribution format: tar.gz Programming language: C++, Fortran Computer: Personal computer Operating system: Tested on Linux 4.x Word size: 32 bits Classification: 11.1, 11.6 Catalogue identifier of previous version: ADPM_v2_0 Journal reference of previous version: Comput. Phys. Comm. 181 (2010) 232 Does the new version supersede the previous version?: Yes Nature of problem: Calculation of neutrino masses and the neutrino mixing matrix at one-loop level in the R-parity violating minimal supersymmetric standard model. The solution to the renormalisation group equations must be consistent with a high or weak-scale boundary condition on supersymmetry breaking parameters and R-parity violating parameters, as well as a weak-scale boundary condition on gauge couplings, Yukawa couplings and the Higgs potential parameters. Solution method: Nested iterative algorithm
The return of the King: No-Scale F-SU(5
Directory of Open Access Journals (Sweden)
Tianjun Li
2017-01-01
Full Text Available We revisit the viable parameter space in No-Scale F-SU(5, examining the Grand Unified Theory within the context of the prevailing gluino mass limits established by the LHC. The satisfaction of both the No-Scale boundary condition and the experimentally measured Standard Model (SM like Higgs boson mass requires a lower limit on the gluino mass in the model space of about 1.9 TeV, which maybe not coincidentally is the current LHC supersymmetry search bound. This offers a plausible explanation as to why a supersymmetry signal has thus far not been observed at the LHC. On the contrary, since the vector-like flippon particles are relatively heavy due to the strict condition that the supersymmetry breaking soft term Bμ must vanish at the unification scale, we also cannot address the recently vanished 750 GeV diphoton resonance at the 13 TeV LHC. Therefore, No-Scale F-SU(5 returns as a King after the spurious 750 GeV diphoton excess was gone with the wind.
The Return of the King: No-Scale ${\\cal F}$-$SU(5)$
Li, Tianjun; Nanopoulos, Dimitri V
2016-01-01
We revisit the viable parameter space in No-Scale ${\\cal F}$-$SU(5)$, examining the Grand Unified Theory within the context of the prevailing gluino mass limits established by the LHC. The satisfaction of both the No-Scale boundary condition and the experimentally measured Standard Model (SM) like Higgs boson mass requires a lower limit on the gluino mass in the model space of about 1.9 TeV, which maybe not coincidentally is the current LHC supersymmetry search bound. This offers a plausible explanation as to why a supersymmetry signal has thus far not been observed at the LHC. On the contrary, since the vector-like flippon particles are relatively heavy due to the strict condition that the supersymmetry breaking soft term $B_{\\mu}$ must vanish at the unification scale, we also cannot address the recently vanished 750 GeV diphoton resonance at the 13 TeV LHC. Therefore, No-Scale ${\\cal F}$-$SU(5)$ returns as a King after the spurious 750 GeV diphoton excess was gone with the wind.
The return of the King: No-Scale F-SU(5)
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.
2017-01-01
We revisit the viable parameter space in No-Scale F- SU (5), examining the Grand Unified Theory within the context of the prevailing gluino mass limits established by the LHC. The satisfaction of both the No-Scale boundary condition and the experimentally measured Standard Model (SM) like Higgs boson mass requires a lower limit on the gluino mass in the model space of about 1.9 TeV, which maybe not coincidentally is the current LHC supersymmetry search bound. This offers a plausible explanation as to why a supersymmetry signal has thus far not been observed at the LHC. On the contrary, since the vector-like flippon particles are relatively heavy due to the strict condition that the supersymmetry breaking soft term Bμ must vanish at the unification scale, we also cannot address the recently vanished 750 GeV diphoton resonance at the 13 TeV LHC. Therefore, No-Scale F- SU (5) returns as a King after the spurious 750 GeV diphoton excess was gone with the wind.
Residual Local Supersymmetry and the Soft Gravitino
Avery, Steven G.; Schwab, Burkhard U. W.
2016-04-01
We show that there exists an infinite tower of fermionic symmetries in pure d =4 , N =1 supergravity on an asymptotically flat background. The Ward identities associated with these symmetries are equivalent to the soft limit of the gravitino and to the statement of supersymmetry at every angle. Additionally, we show that these charges commute into charges associated with the (unextended) Bondi-Metzner-Sachs (BMS) group, providing a supersymmetrization of the BMS translations.
Superstring gravitational wave backgrounds with spacetime supersymmetry
Kiritsis, Elias B; Lüst, Dieter; Kiritsis, E; Kounnas, C; Lüst, D
1994-01-01
We analyse the stringy gravitational wave background based on the current algebra E.sup(c).sub(2). We determine its exact spectrum and construct the modular invariant vacuum energy. The corresponding N=1 extension is also constructed. The algebra is again mapped to free bosons and fermions and we show that this background has N=4 (N=2) unbroken spacetime supersymmetry in the type II (heterotic case).
Supersymmetry search via gauge boson fusion
Indian Academy of Sciences (India)
Anindya Datta
2003-02-01
We propose a novel method for the search of supersymmetry, especially for the electroweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ﬁnd the signals of EW gauginos in supersymmetric theories where the canonical search strategies for these particles fail.
Discriminating Supersymmetry and Black Holes at the Large Hadron Collider
Roy, Arunava; Cavaglia, Marco
2008-04-01
We assess the distinguishability between supersymmetry and black hole events at the Large Hadron Collider. Black hole events are simulated with the CATFISH black hole generator. Supersymmetry simulations use a combination of PYTHIA and ISAJET. Our study, based on event shape variables, visible and missing momenta, and analysis of dilepton events, shows that supersymmetry and black hole events at the LHC can be easily discriminated.
Supersymmetry Parameter Analysis: SPA Convention and Project
Energy Technology Data Exchange (ETDEWEB)
Hinchliffe, I.; et al.
2005-05-05
High-precision analyses of supersymmetry parameters aim atreconstructing the fundamental supersymmetric theory and its breakingmechanism. A well defined theoretical framework is needed whenhigher-order corrections are included. We propose such a scheme,Supersymmetry Parameter Analysis SPA, based on a consistent set ofconventions and input parameters. A repository for computer programs isprovided which connect parameters in different schemes and relate theLagrangian parameters to physical observables at LHC and high energy e+e-linear collider experiments, i.e., masses, mixings, decay widths andproduction cross sections for supersymmetric particles. In addition,programs for calculating high-precision low energy observables, thedensity of cold dark matter (CDM) in the universe as well as the crosssections for CDM search experiments are included. The SPA scheme stillrequires extended efforts on both the theoretical and experimental sidebefore data can be evaluated in the future at the level of the desiredprecision. We take here an initial step of testing the SPA scheme byapplying the techniques involved to a specific supersymmetry referencepoint.
Rencontres de Moriond EW 2012: Addressing symmetry breaking and mass hierarchy
Pauline Gagnon
2012-01-01
Last Friday at the Moriond conference in La Thuile in Italy, Lisa Randall from Harvard University reminded the audience how all fields are related: electroweak symmetry breaking must take into account flavour physics for example. Every good model should address this intrinsic connection. Despite many expectations, no signs for supersymmetry (SUSY) of any type has been found to date. So Lisa Randall worked with Csaba Csaki and John Terning to explore alternatives and developed a version of supersymmetry built on the Minimal Composite Supersymmetry Standard Model (MCSSM) that Csaki, Shirman, and Terning had developed, incorporating a strongly interacting theory with compositeness that addresses among other things the fact that the top quark is so much heavier than all other quarks. Randall and collaborators showed that this model, when supersymmetry is incorporated, naturally accommodates both a Higgs boson around 125 GeV and a light stop, the supersymmetric partner to the top quark. &a...
Scales and hierarchies in warped compactifications and brane worlds
De Wolfe, O; Wolfe, Oliver De; Giddings, Steven B.
2003-01-01
Warped compactifications with branes provide a new approach to the hierarchy problem and generate a diversity of four-dimensional thresholds. We investigate the relationships between these scales, which fall into two classes. Geometrical scales, such as thresholds for Kaluza-Klein, excited string, and black hole production, are generically determined soley by the spacetime geometry. Dynamical scales, notably the scale of supersymmetry breaking and moduli masses, depend on other details of the model. We illustrate these relationships in a class of solutions of type IIB string theory with imaginary self-dual fluxes. After identifying the geometrical scales and the resulting hierarchy, we determine the gravitino and moduli masses through explicit dimensional reduction, and estimate their value to be near the four-dimensional Planck scale. In the process we obtain expressions for the superpotential and Kahler potential, including the effects of warping. We identify matter living on certain branes to be effectivel...
Institute of Scientific and Technical Information of China (English)
MATTHEW PLOWRIGHT; GWYNN GUILFORD
2008-01-01
@@ Resolutions are not natural - otherwise you wouldn't have to "resolve" to execute them. This year, instead of planning how to commit to a slew of unattainable goals, why not prepare for breaking your resolutions the right way?
Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare
2012-01-01
A search for supersymmetry (SUSY) in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton, with zero or one additional light lepton (e/mu), has been performed using 4.7 fb-1 of proton-proton collision data at sqrt(s) = 7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95% confidence level visible cross-section upper limit for new phenomena is set. In the framework of gauge-mediated SUSY-breaking models, lower limits on the mass scale Lambda are set at 54 TeV in the regions where the stau is the next-to-lightest SUSY particle (tan(beta) > 20). These limits provide the most stringent tests to date of GMSB models in a large part of the parameter space considered.
Krupovnickas, T
2004-01-01
The Standard Model (SM) describes almost all the particle physics experiments with a high accuracy. However, the SM has a lot of conceptual problems (spontaneous symmetry breaking is introduced by hand, the Higgs boson mass has to be very finely fine-tuned, there is no explanation for the number of generations or particle quantum numbers, there are at least 19 arbitrary model parameters). Therefore, it is reasonable to search for theories solving some or all of the problems that the SM has. One class of such theories is based on an assumption that at some large energy scale Nature chooses the maximal possible space-time symmetry, called supersymmetry (SUSY). Once the theory is constructed, it has to be tested against the experiment. This thesis explores various collider signals in the framework of minimal Supergravity model (mSUGRA) and gaugino mediated SUSY breaking model (inoMSB). We calculate whether the signal predicted by these models could be detected at the Fermilab Tevatron and at the CERN LHC hadroni...
Neutrino masses from SUSY breaking in radiative seesaw models
Energy Technology Data Exchange (ETDEWEB)
Figueiredo, Antonio J.R. [University of Lisbon, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisbon (Portugal)
2015-03-01
Radiatively generated neutrino masses (m{sub ν}) are proportional to supersymmetry (SUSY) breaking, as a result of the SUSY non-renormalisation theorem. In this work, we investigate the space of SUSY radiative seesaw models with regard to their dependence on SUSY breaking (SUSY). In addition to contributions from sources of SUSY that are involved in electroweak symmetry breaking (SUSY{sub EWSB} contributions), and which are manifest from left angle F{sub H}{sup †} right angle = μ left angle anti H right angle ≠ 0 and left angle D right angle = g sum {sub H} left angle H{sup †} x {sub H} H right angle ≠ 0, radiatively generated m{sub ν} can also receive contributions from SUSY sources that are unrelated to EWSB (SUSY{sub EWS} contributions). We point out that recent literature overlooks pure-SUSY{sub EWSB} contributions (∝ μ/M) that can arise at the same order of perturbation theory as the leading order contribution from SUSY{sub EWS}. We show that there exist realistic radiative seesaw models in which the leading order contribution to m{sub ν} is proportional to SUSY{sub EWS}. To our knowledge no model with such a feature exists in the literature. We give a complete description of the simplest model topologies and their leading dependence on SUSY. We show that in one-loop realisations LLHH operators are suppressed by at least μ m{sub soft}/M{sup 3} or m{sub soft}{sup 2}/M{sup 3}. We construct a model example based on a oneloop type-II seesaw. An interesting aspect of these models lies in the fact that the scale of soft-SUSY effects generating the leading order m{sub ν} can be quite small without conflicting with lower limits on the mass of new particles. (orig.)
De Sitter Uplift with Dynamical Susy Breaking
Retolaza, Ander
2015-01-01
We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family $SU(5)$ DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.
De Sitter uplift with Dynamical Susy Breaking
Retolaza, Ander; Uranga, Angel
2016-04-01
We propose the use of D-brane realizations of Dynamical Supersymmetry Breaking (DSB) gauge sectors as sources of uplift in compactifications with moduli stabilization onto de Sitter vacua. This construction is fairly different from the introduction of anti D-branes, yet allows for tunably small contributions to the vacuum energy via their embedding into warped throats. The idea is explicitly exemplified by the embedding of the 1-family SU(5) DSB model in a local warped throat with fluxes, which we discuss in detail in terms of orientifolds of dimer diagrams.
Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H
2011-05-27
A search for supersymmetry in the context of general gauge-mediated breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS experiment at the LHC. The search is performed by using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for general gauge-mediated supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Khalil, Shaaban; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Tonutti, Manfred; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Karafasoulis, Konstantinos; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Schmitt, Michael; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pakhotin, Yuriy; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc
2011-01-01
A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.
Search for supersymmetry with the ATLAS detector in fully hadronic final states
Nagai, Koichi; The ATLAS collaboration
2016-01-01
Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. The increased centre of mass energy of LHC run 2 has largely extended the sensitivity of searches for the quark and gluon supersymmetric partners well beyond the limits placed by run 1 analyses. This talk reports the results of the dedicated ATLAS searches in fully hadronic final states, using 3.2 fb$^{-1}$ of 13 TeV proton proton collisions.
Kharb, P.; Shastri, P; Gabuzda, D. C.
2005-01-01
We present images showing the first detections of polarization on parsec scales in the nuclei of four Fanaroff-Riley type I (low-luminosity) radio galaxies. Observations with Very Long Baseline Interferometry at \\lambda 3.6cm reveal the presence of ordered magnetic fields within ~1650 Schwarzchild radii of the putative central supermassive black hole. The relatively high fractional polarization in the pc-scale jets of these galaxies is consistent with the standard scheme unifying low-luminosi...
Anatomy of new SUSY breaking holographic RG flows
Argurio, Riccardo; Redigolo, Diego
2014-01-01
We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1)_R symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1)_F symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are sponta...
Constrained Superfields and Standard Realization of Nonlinear Supersymmetry
Luo, Hui; Zheng, Sibo
2009-01-01
A constrained superfield formalism has been proposed recently to analyze the low energy physics related to Goldstinos. We prove that this formalism can be reformulated in the language of standard realization of nonlinear supersymmetry. New relations have been uncovered in the standard realization of nonlinear supersymmetry.
Erice lectures on "The status of local supersymmetry"
Duff, M.J.
2004-01-01
In the first lecture we review the current status of local supersymmetry. In the second lecture we focus on D=11 supergravity as the low-energy limit of M-theory and pose the questions: (1) What are the D=11 symmetries? (2) How many supersymmetries can M-theory vacua preserve?
Search for electroweak production of supersymmetry at CMS
Liu, Miaoyuan
2017-01-01
We report on searches for supersymmetry via pair production of partners of electroweak gauge and Higgs bosons. The searches use proton-proton collision data recorded in 2016 by the CMS experiment at the LHC. The results are interpreted in terms of several simplified models of supersymmetry.
Classical Analog of Extended Phase Space SUSY and Its Breaking
Gagik Ter-Kazarian
2013-01-01
We derive the classical analog of the extended phase space quantum mechanics of the particle with odd degrees of freedom which gives rise to (N=2)-realization of supersymmetry (SUSY) algebra. By means of an iterative procedure, we find the approximate groundstate solutions to the extended Schr\\"{o}dinger-like equation and use these solutions further to calculate the parameters which measure the breaking of extended SUSY such as the groundstate energy. Consequently, we calculate a more practic...
Froggatt, C; Nielsen, H B; Thomas, A
2015-01-01
We argue that the exact degeneracy of vacua in N=1 supergravity can shed light on the smallness of the cosmological constant. The presence of such vacua, which are degenerate to very high accuracy, may also result in small values of the quartic Higgs coupling and its beta function at the Planck scale in the phase in which we live.