WorldWideScience

Sample records for supersymmetry breaking occurs

  1. Dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Affleck, I.

    1985-03-01

    Supersymmetry, and in particular, dynamical supersymmetry breaking, offers the hope of a natural solution of the gauge hierarchy problem in grand unification. I briefly review recent work on dynamical supersymmetry breaking in four-dimensional Higgs theories and its application to grand unified model building

  2. Duality after supersymmetry breaking

    International Nuclear Information System (INIS)

    Shadmi, Yael; Cheng, Hsin-Chia

    1998-05-01

    Starting with two supersymmetric dual theories, we imagine adding a chiral perturbation that breaks supersymmetry dynamically. At low energy we then get two theories with soft supersymmetry-breaking terms that are generated dynamically. With a canonical Kaehler potential, some of the scalars of the ''magnetic'' theory typically have negative mass-squared, and the vector-like symmetry is broken. Since for large supersymmetry breaking the ''electric'' theory becomes ordinary QCD, the two theories are then incompatible. For small supersymmetry breaking, if duality still holds, the magnetic theory analysis implies specific patterns of chiral symmetry breaking in supersymmetric QCD with small soft masses

  3. Dual descriptions of supersymmetry breaking

    International Nuclear Information System (INIS)

    Intrilligator, K.; Thomas, S.

    1996-08-01

    Dynamical supersymmetry breaking is considered in models which admit descriptions in terms of electric, confined, or magnetic degrees of freedom in various limits. In this way, a variety of seemingly different theories which break supersymmetry are actually interrelated by confinement or duality. Specific examples are given in which there are two dual descriptions of the supersymmetry breaking ground state

  4. Supersymmetry breaking with extra dimensions

    International Nuclear Information System (INIS)

    Zwirner, Fabio

    2004-01-01

    This talk reviews some aspects of supersymmetry breaking in the presence of extra dimensions. The first part is a general introduction, recalling the motivations for supersymmetry and extra dimensions, as well as some unsolved problems of four-dimensional models of supersymmetry breaking. The central part is a more focused introduction to a mechanism for (super)symmetry breaking, proposed first by Scherk and Schwarz, where extra dimensions play a crucial role. The last part is devoted to the description of some recent results and of some open problems. (author)

  5. Supersymmetry breaking from superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1990-05-01

    The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a classical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated. 26 refs

  6. Supersymmetry breaking from superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.; Lawrence Berkeley Lab., CA; California Univ., Berkeley

    1990-01-01

    The gauge hierarchy problem is briefly reviewed and a class of effective field theories obtained from superstrings is described. These are characterized by a clasical symmetry, related to the space-time duality of string theory, that is responsible for the suppression of observable supersymmetry breaking effects. At the quantum level, the symmetry is broken by anomalies that provide the seed of observable supersymmetry breaking, and an acceptably large gauge hierarchy may be generated

  7. Supersymmetry Breaking through Transparent Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Schmaltz, Martin

    1999-11-23

    We propose a new framework for mediating supersymmetry breaking through an extra dimension. It predicts positive scalar masses and solves the supersymmetric flavor problem. Supersymmetry breaks on a ''source'' brane that is spatially separated from a parallel brane on which the standard model matter fields and their superpartners live. The gauge and gaugino fields propagate in the bulk, the latter receiving a supersymmetry breaking mass from direct couplings to the source brane. Scalar masses are suppressed at the high scale but are generated via the renormalization group. We briefly discuss the spectrum and collider signals for a range of compactification scales.

  8. Dirac neutrino masses from generalized supersymmetry breaking

    International Nuclear Information System (INIS)

    Demir, D.A.; Everett, L.L.; Langacker, P.

    2007-12-01

    We demonstrate that Dirac neutrino masses in the experimentally preferred range are generated within supersymmetric gauge extensions of the Standard Model with a generalized supersymmetry breaking sector. If the usual superpotential Yukawa couplings are forbidden by the additional gauge symmetry (such as a U(1) ' ), effective Dirac mass terms involving the ''wrong Higgs'' field can arise either at tree level due to hard supersymmetry breaking fermion Yukawa couplings, or at one-loop due to nonanalytic or ''nonholomorphic'' soft supersymmetry breaking trilinear scalar couplings. As both of these operators are naturally suppressed in generic models of supersymmetry breaking, the resulting neutrino masses are naturally in the sub-eV range. The neutrino magnetic and electric dipole moments resulting from the radiative mechanism also vanish at one-loop order. (orig.)

  9. The experimental investigation of supersymmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1996-04-01

    If Nature is supersymmetric at the weak interaction scale, what can we hope to learn from experiments on supersymmetric particles? The most mysterious aspect of phenomenological supersymmetry is the mechanism of spontaneous supersymmetry breaking. This mechanism ties the observable pattern of supersymmetric particle masses to aspects of the underlying unified theory at very small distance scales. In this article, I will discuss a systematic experimental program to determine the mechanism of supersymmetry breaking. Both pp and e + e - colliders of the next generation play an essential role

  10. The scale of supersymmetry breaking as a free parameter

    International Nuclear Information System (INIS)

    Polonsky, N.

    2001-01-01

    While supersymmetric extensions of the Standard Model can be fully described in terms of explicitly broken global supersymmetry, this description is only effective. Once related to spontaneous breaking in a more fundamental theory, the effective parameters translate to functions of two distinct scales, the scale of spontaneous supersymmetry breaking and the scale of its mediation to the standard-model fields. The scale dependence will be written explicitly and the full spectrum of supersymmetry breaking operators which emerges will be explored. It will be shown that, contrary to common lore, scale-dependent operators can play an important role in determining the phenomenology. For example, theories with low-energy supersymmetry breaking, such as gauge mediation, may correspond to a scalar potential which is quite different than in theories with high-energy supersymmetry breaking, such as gravity mediation. As a concrete example, the Higgs mass prediction will be discussed in some detail and its upper bound will be shown to be sensitive to the supersymmetry breaking scale

  11. More dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Csaki, C.; Randall, L.; Skiba, W.

    1996-01-01

    In this paper we introduce a new class of theories which dynamically break supersymmetry based on the gauge group SU(n) x SU(3) x U(1) for even n. These theories are interesting in that no dynamical superpotential is generated in the absence of perturbations. For the example SU(4) x SU(3) x U(1) we explicitly demonstrate that all flat directions can be lifted through a renormalizable superpotential and that supersymmetry is dynamically broken. We derive the exact superpotential for this theory, which exhibits new and interesting dynamical phenomena. For example, modifications to classical constraints can be field dependent. We also consider the generalization to SU(n) x SU(3) x U(1) models (with even n>4). We present a renormalizable superpotential which lifts all flat directions. Because SU(3) is not confining in the absence of perturbations, the analysis of supersymmetry breaking is very different in these theories from the n=4 example. When the SU(n) gauge group confines, the Yukawa couplings drive the SU(3) theory into a regime with a dynamically generated superpotential. By considering a simplified version of these theories we argue that supersymmetry is probably broken. (orig.)

  12. Moduli/inflaton mixing with supersymmetry breaking field

    Energy Technology Data Exchange (ETDEWEB)

    Endo, M.; Takahashi, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Inst. for Cosmic Ray Research; Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics

    2006-05-15

    A heavy scalar field such as moduli or an inflaton generally mixes with a field responsible for the supersymmetry breaking. We study the scalar decay into the standard model particles and their superpartners, gravitinos, and the supersymmetry breaking sector, particularly paying attention to decay modes that proceed via the mixing between the scalar and the supersymmetry breaking field. The impacts of the new decay processes on cosmological scenarios are also discussed; the modulus field generically produces too much gravitinos, and most of the inflation models tend to result in too high reheating temperature and/or gravitino overproduction. (Orig.)

  13. New models of gauge- and gravity-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Poppitz, E.; Trivedi, S.P.

    1997-01-01

    We show that supersymmetry breaking in a class of theories with SU(N)xSU(N-2) gauge symmetry can be studied in a calculable σ model. We use the σ model to show that the supersymmetry-breaking vacuum in these theories leaves a large subgroup of flavor symmetries intact, and to calculate the masses of the low-lying states. By embedding the standard model gauge groups in the unbroken flavor symmetry group we construct a class of models in which supersymmetry breaking is communicated by both gravitational and gauge interactions. One distinguishing feature of these models is that the messenger fields, responsible for the gauge-mediated communication of supersymmetry breaking, are an integral part of the supersymmetry-breaking sector. We also show how, by lowering the scale that suppresses the nonrenormalizable operators, a class of purely gauge-mediated models with a combined supersymmetry-breaking-cum-messenger sector can be built. We briefly discuss the phenomenological features of the models we construct. copyright 1997 The American Physical Society

  14. Sparticle spectrum and constraints in anomaly mediated supersymmetry breaking models

    International Nuclear Information System (INIS)

    Huitu, K.; Laamanen, J.; Pandita, P.N.

    2002-01-01

    We study in detail the particle spectrum in anomaly mediated supersymmetry breaking models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. We investigate the minimal anomaly mediated supersymmetry breaking models, gaugino assisted supersymmetry breaking models, as well as models with additional residual nondecoupling D-term contributions due to an extra U(1) gauge symmetry at a high energy scale. We derive sum rules for the sparticle masses in these models which can help in differentiating between them. We also obtain the sparticle spectrum numerically, and compare and contrast the results so obtained for the different types of anomaly mediated supersymmetry breaking models

  15. On the soft supersymmetry-breaking parameters in gauge-mediated models

    International Nuclear Information System (INIS)

    Wagner, C.E.M.

    1998-01-01

    Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavor changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate tan β regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymmetry-breaking parameters is obtained for arbitrary boundary conditions of the scalar and gaugino mass parameters at high energies. (orig.)

  16. U(1) mediation of flux supersymmetry breaking

    Science.gov (United States)

    Grimm, Thomas W.; Klemm, Albrecht

    2008-10-01

    We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with Script N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kähler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.

  17. U(1) mediation of flux supersymmetry breaking

    International Nuclear Information System (INIS)

    Grimm, Thomas W.; Klemm, Albrecht

    2008-01-01

    We study the mediation of supersymmetry breaking triggered by background fluxes in Type II string compactifications with N = 1 supersymmetry. The mediation arises due to an U(1) vector multiplet coupling to both a hidden supersymmetry breaking flux sector and a visible D-brane sector. The required internal manifolds can be constructed by non-Kaehler resolutions of singular Calabi-Yau manifolds. The effective action encoding the U(1) coupling is then determined in terms of the global topological properties of the internal space. We investigate suitable local geometries for the hidden and visible sector in detail. This includes a systematic study of orientifold symmetries of del Pezzo surfaces realized in compact geometries after geometric transition. We construct compact examples admitting the key properties to realize flux supersymmetry breaking and U(1) mediation. Their toric realization allows us to analyze the geometry of curve classes and confirm the topological connection between the hidden and visible sector.

  18. Phenomenology of flavor-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Kaplan, D. Elazzar; Kribs, Graham D.

    2000-01-01

    The phenomenology of a new economical supersymmetric model that utilizes dynamical supersymmetry breaking and gauge mediation for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of supersymmetry breaking through a messenger sector and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate flavor changing neutral current bounds since their mass scale, consistent with ''effective supersymmetry,'' is of order 10 TeV. We define and advocate a ''minimal flavor-mediated model'' (MFMM), recently introduced in the literature, which successfully accommodates the small flavor-breaking parameters of the standard model using order 1 couplings and ratios of flavon field VEVs. The mediation of supersymmetry breaking occurs via two-loop logarithm-enhanced gauge-mediated contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parametrized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. Full two-loop renormalization group evolution is performed, correctly taking into account the negative two-loop gauge contributions from heavy first and second generations. Electroweak symmetry is radiatively broken with the value of μ determined by matching to the Z mass. The weak scale spectrum is generally rather heavy, except for the lightest Higgs boson, the lightest stau, the lightest chargino, the lightest two neutralinos, and of course a very light gravitino. The next-to-lightest sparticle always has a decay length that is larger than the scale of a detector, and is either the lightest stau

  19. On the Soft Supersymmetry Breaking Parameters in Gauge-Mediated Models

    CERN Document Server

    Wagner, C E M

    1998-01-01

    Gauge mediation of supersymmetry breaking in the observable sector is an attractive idea, which naturally alleviates the flavour changing neutral current problem of supersymmetric theories. Quite generally, however, the number and quantum number of the messengers are not known; nor is their characteristic mass scale determined by the theory. Using the recently proposed method to extract supersymmetry-breaking parameters from wave-function renormalization, we derived general formulae for the soft supersymmetry-breaking parameters in the observable sector, valid in the small and moderate $\\tan\\beta$ regimes, for the case of split messengers. The full leading-order effects of top Yukawa and gauge couplings on the soft supersymmetry-breaking parameters are included. We give a simple interpretation of the general formulae in terms of the renormalization group evolution of the soft supersymmetry-breaking parameters. As a by-product of this analysis, the one-loop renormalization group evolution of the soft supersymm...

  20. New mechanisms of gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Randall, L.

    1997-01-01

    New mechanisms for the communication of supersymmetry breaking via gauge interactions are introduced. These models do not require complicated dynamics to induce a non-vanishing F term for a singlet. The first class of models communicates supersymmetry breaking to the visible sector through a ''mediator'' field that transforms under both a messenger gauge group of the dynamical supersymmetry breaking sector and the standard model gauge group. This model has a distinctive phenomenology; in particular, the scalar superpartners should be heavier than the gaugino superpartners by at least an order of magnitude. The second class of models has a phenomenology more similar to the ''standard'' messenger sectors. A singlet is incorporated, but the model does not require complicated mechanisms to generate a singlet F term. The role of the singlet is to couple fields from the dynamical symmetry breaking sector to fields transforming under the standard model gauge group. We also mention a potential solution to the μ problem. (orig.)

  1. Unified models of the QCD axion and supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2017-08-01

    Full Text Available Similarities between the gauge meditation of supersymmetry breaking and the QCD axion model suggest that they originate from the same dynamics. We present a class of models where supersymmetry and the Peccei–Quinn symmetry are simultaneously broken. The messengers that mediate the effects of these symmetry breakings to the Standard Model are identical. Since the axion resides in the supersymmetry breaking sector, the saxion and the axino are heavy. We show constraints on the axion decay constant and the gravitino mass.

  2. Anomaly mediated supersymmetry breaking in four dimensions, naturally

    International Nuclear Information System (INIS)

    Luty, Markus A.; Sundrum, Raman

    2003-01-01

    We present a simple four-dimensional model in which anomaly mediated supersymmetry breaking naturally dominates. The central ingredient is that the hidden sector is near a strongly coupled infrared fixed point for several decades of energy below the Planck scale. Strong renormalization effects then sequester the hidden sector from the visible sector. Supersymmetry is broken dynamically and requires no small input parameters. The model provides a natural and economical explanation of the hierarchy between the supersymmetry-breaking scale and the Planck scale, while allowing anomaly mediation to address the phenomenological challenges posed by weak scale supersymmetry. In particular, flavor-changing neutral currents are naturally near their experimental limits

  3. Supersymmetry breaking at finite temperature

    International Nuclear Information System (INIS)

    Kratzert, K.

    2002-11-01

    The mechanism of supersymmetry breaking at finite temperature is still only partly understood. Though it has been proven that temperature always breaks supersymmetry, the spontaneous nature of this breaking remains unclear, in particular the role of the Goldstone fermion. The aim of this work is to unify two existing approaches to the subject. From a hydrodynamic point of view, it has been argued under very general assumptions that in any supersymmetric quantum field theory at finite temperature there should exist a massless fermionic collective excitation, named phonino because of the analogy to the phonon. In the framework of a self-consistent resummed perturbation theory, it is shown for the example of the Wess-Zumino model that this mode fits very well into the quantum field theoretical framework pursued by earlier works. Interpreted as a bound state of boson and fermion, it contributes to the supersymmetric Ward-Takahashi identities in a way showing that supersymmetry is indeed broken spontaneously with the phonino playing the role of the Goldstone fermion. The second part of the work addresses the case of supersymmetric quantum electrodynamics. It is shown that also here the phonino exists and must be interpreted as the Goldstone mode. This knowledge allows a generalization to a wider class of models. (orig.)

  4. Spontaneous breaking of supersymmetry and gauge invariance in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Sohnius, M. (European Organization for Nuclear Research, Geneva (Switzerland)); West, P. (King' s Coll., London (UK). Dept. of Mathematics)

    1982-08-09

    Using the new minimal auxillary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed.

  5. Dynamical supersymmetry breaking and gauge anomalies

    International Nuclear Information System (INIS)

    Zhang, H.

    1991-01-01

    Some aspects of supersymmetric gauge theories are discussed. It is shown that dynamical supersymmetry breaking does not occur in supersymmetric QED in higher dimensions. The cancellation of both local (perturbative) and global (non-perturbative) gauge anomalies are also discussed in supersymmetric gauge theories. We argue that there is no dynamical supersymmetry breaking in higher dimensions in any supersymmetric gauge theories free of gauge anomalies. It is also shown that for supersymmetric gauge theories in higher dimensions with a compact connected simple gauge group, when the local anomaly-free condition is satisfied, there can be at most a possible Z 2 global gauge anomaly in extended supersymmetric SO(10) (or spin (10)) gauge theories in D=10 dimensions containing additional Weyl fermions in a spinor representation of SO(10) (or spin (10)). In four dimensions with local anomaly-free condition satisfied, the only possible global gauge anomalies in supersymmetric gauge theories are Z 2 global gauge anomalies for extended supersymmetric SP(2N) (N=rank) gauge theories containing additional Weyl fermions in a representation of SP(2N) with an odd 2nd-order Dynkin index. (orig.)

  6. Dynamical supersymmetry breaking on magnetized tori and orbifolds

    Directory of Open Access Journals (Sweden)

    Hiroyuki Abe

    2016-10-01

    Full Text Available We construct several dynamical supersymmetry breaking (DSB models within a single ten-dimensional supersymmetric Yang–Mills (SYM theory, compactified on magnetized tori with or without orbifolding. We study the case that the supersymmetry breaking is triggered by a strong dynamics of SU(NC SYM theory with NF flavors contained in the four-dimensional effective theory. We show several configurations of magnetic fluxes and orbifolds, those potentially yield, below the compactification scale, the field contents and couplings required for triggering DSB. We especially find a class of self-complete DSB models on orbifolds, where all the extra fields are eliminated by the orbifold projection and DSB successfully occurs within the given framework. Comments on some perspectives for associating the obtained DSB models with the other sectors, such as the visible sector and another hidden sector for, e.g., stabilizing moduli, are also given.

  7. Spontaneous breaking of supersymmetry and gauge invariance in supergravity

    International Nuclear Information System (INIS)

    Sohnius, M.; West, P.

    1982-01-01

    Using the new minimal auxillary fields of N = 1 supergravity it is found possible to construct a model of local supersymmetry which spontaneously breaks both supersymmetry and gauge invariance. The status of the cosmological constant resulting from this breaking is discussed. (orig.)

  8. Supersymmetry breaking by gaugino condensation

    International Nuclear Information System (INIS)

    Casas, J.A.

    1991-01-01

    We briefly review the status and some of the recent work on supersymmetry breaking by gaugino condensation effects in the context of superstring theories. This issue is intimately related to the structure of the effective potential coming from superstrings. Minimization of this not only allows to find the scale of supersymmetry breaking, but also to determine dynamically other fundamental parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. In a multiple condensate scenario these get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. Some directions for future work are examined too. (author). 23 refs

  9. Explicit Supersymmetry Breaking on Boundaries of Warped Extra Dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Lawrence J.; Nomura, Yasunori; Okui, Takemichi; Oliver, Steven J.

    2003-02-25

    Explicit supersymmetry breaking is studied in higher dimensional theories by having boundaries respect only a subgroup of the bulk symmetry. If the boundary symmetry is the maximal subgroup allowed by the boundary conditions imposed on the fields, then the symmetry can be consistently gauged; otherwise gauging leads to an inconsistent theory. In a warped fifth dimension, an explicit breaking of all bulk supersymmetries by the boundaries is found to be inconsistent with gauging; unlike the case of flat 5D, complete supersymmetry breaking by boundary conditions is not consistent with supergravity. Despite this result, the low energy effective theory resulting from boundary supersymmetry breaking becomes consistent in the limit where gravity decouples, and such models are explored in the hope that some way of successfully incorporating gravity can be found. A warped constrained standard model leads to a theory with one Higgs boson with mass expected close to the experimental limit. A unified theory in a warped fifth dimension is studied with boundary breaking of both SU(5) gauge symmetry and supersymmetry. The usual supersymmetric predictionfor gauge coupling unification holds even though the TeV spectrum is quite unlike the MSSM. Such a theory may unify matter and Higgs in the same SU(5) hypermultiplet.

  10. Why is the supersymmetry breaking scale unnaturally high?

    Energy Technology Data Exchange (ETDEWEB)

    Feldstein, Brian, E-mail: bfeldste@gmail.com [Kavli IPMU, University of Tokyo, Kashiwa, 277-8583 (Japan); Yanagida, Tsutomu T. [Kavli IPMU, University of Tokyo, Kashiwa, 277-8583 (Japan)

    2013-03-13

    Evidence is mounting that natural supersymmetry at the weak scale is not realized in nature. On the other hand, string theory suggests that supersymmetry may be present at some energy scale, and gauge coupling unification implies that energy scale may be relatively low. A puzzling question is then why nature would prefer a low, but not completely natural supersymmetry breaking scale. Here we offer one possible explanation, which simultaneously addresses also the strong CP and μ problems. We introduce an axion, and suppose that the Peccei–Quinn and supersymmetry breaking scales are connected. If we further assume that R-parity is not conserved, then the axion is required to be dark matter, and the Peccei–Quinn/supersymmetry breaking scale is required to be at least ∼10{sup 12} GeV. Gravity mediation then yields scalar superpartners with masses of at least ∼100 TeV. The gauginos are likely to obtain loop-factor suppressed masses through anomaly mediation and higgsino threshold corrections, and thus may be accessible at the LHC. The axion should be probed at phase II of the ADMX experiment, and signs of R-parity violation may be seen in the properties of the gauginos.

  11. Local models of Gauge Mediated Supersymmetry Breaking in String Theory

    CERN Document Server

    Garcia-Etxebarria, I; Uranga, Angel M; Garcia-Etxebarria, Inaki; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We describe local Calabi-Yau geometries with two isolated singularities at which systems of D3- and D7-branes are located, leading to chiral sectors corresponding to a semi-realistic visible sector and a hidden sector with dynamical supersymmetry breaking. We provide explicit models with a 3-family MSSM-like visible sector, and a hidden sector breaking supersymmetry at a meta-stable minimum. For singularities separated by a distance smaller than the string scale, this construction leads to a simple realization of gauge mediated supersymmetry breaking in string theory. The models are simple enough to allow the explicit computation of the massive messenger sector, using dimer techniques for branes at singularities. The local character of the configurations makes manifest the UV insensitivity of the supersymmetry breaking mediation.

  12. A geometric hierarchy for the supersymmetry breaking scale

    International Nuclear Information System (INIS)

    Oakley, C.; Ross, G.G.

    1983-01-01

    F type supersymmetry breaking through O'Raifeartaigh-Fayet (Nucl. Phys.; B96:331 (1975) and Phys. Lett.; 580:67 (1975)) potentials is considered. It is shown how a class of models gives rise to a supersymmetry breaking scale reduced relative to the fundamental scale M of the potential by powers of (M/Msub(Planck)). The role of R invariance in such potentials is discussed. (author)

  13. Composite quarks and leptons from dynamical supersymmetry breaking without messengers

    International Nuclear Information System (INIS)

    Arkani-Hamed, N.; Luty, M.A.; Terning, J.

    1998-01-01

    We present new theories of dynamical supersymmetry breaking in which the strong interactions that break supersymmetry also give rise to composite quarks and leptons with naturally small Yukawa couplings. In these models, supersymmetry breaking is communicated directly to the composite fields without open-quotes messengerclose quotes interactions. The compositeness scale can be anywhere between 10thinspTeV and the Planck scale. These models can naturally solve the supersymmetric flavor problem, and generically predict sfermion mass unification independent from gauge unification. copyright 1998 The American Physical Society

  14. The issue of supersymmetry breaking in strings

    International Nuclear Information System (INIS)

    Binetruy, P.

    1989-12-01

    We discuss the central role that supersymmetry plays in string models, both in spacetime and at the level of the string world-sheet. The problems associated with supersymmetry-breaking are reviewed together with some of the attempts to solve them, in the string as well as the field theory approach

  15. Supersymmetry without supersymmetry

    International Nuclear Information System (INIS)

    Goh, Hock-Seng; Ng, Siew-Phang; Luty, Markus A.

    2005-01-01

    We investigate the possibility that supersymmetry is not a fundamental symmetry of nature, but emerges as an accidental approximate global symmetry at low energies. This can occur if the visible sector is non-supersymmetric at high scales, but flows toward a strongly-coupled superconformal fixed point at low energies; or, alternatively, if the visible sector is localized near the infrared brane of a warped higher-dimensional spacetime with supersymmetry broken only on the UV brane. These two scenarios are related by the AdS/CFT correspondence. In order for supersymmetry to solve the hierarchy problem, the conformal symmetry must be broken below 10 11 GeV. Accelerated unification can naturally explain the observed gauge coupling unification by physics below the conformal breaking scale. In this framework, there is no gravitino and no reason for the existence of gravitational moduli, thus eliminating the cosmological problems associated with these particles. No special dynamics is required to break supersymmetry; rather, supersymmetry is broken at observable energies because the fixed point is never reached. In 4D language, this can be due to irrelevant supersymmetry breaking operators with approximately equal dimensions. In 5D language, the size of the extra dimension is stabilized by massive bulk fields. No small input parameters are required to generate a large hierarchy. Supersymmetry can be broken in the visible sector either through direct mediation or by the F term of the modulus associated with the breaking of conformal invariance. (author)

  16. Small extra dimensions from the interplay of gauge and supersymmetry breaking

    International Nuclear Information System (INIS)

    Buchmueller, W.; Catena, R.; Schmidt-Hoberg, K.

    2008-03-01

    Higher-dimensional theories provide a promising framework for unified extensions of the supersymmetric standard model. Compactifications to four dimensions often lead to U(1) symmetries beyond the standard model gauge group, whose breaking scale is classically undetermined. Without supersymmetry breaking, this is also the case for the size of the compact dimensions. Fayet-Iliopoulos terms generically fix the scale M of gauge symmetry breaking. The interplay with supersymmetry breaking can then stabilize the compact dimensions at a size 1/M, much smaller than the inverse supersymmetry breaking scale 1/μ. We illustrate this mechanism with an SO(10) model in six dimensions, compactified on an orbifold. (orig.)

  17. Soft supersymmetry breaking in KKLT flux compactification

    International Nuclear Information System (INIS)

    Choi, K.; Falkowski, A.; Nilles, H.P.; Olechowski, M.

    2005-01-01

    We examine the structure of soft supersymmetry breaking terms in KKLT models of flux compactification with low energy supersymmetry. Moduli are stabilized by fluxes and nonperturbative dynamics while a de Sitter vacuum is obtained by adding supersymmetry breaking anti-branes. We discuss the characteristic pattern of mass scales in such a set-up as well as some features of 4D N=1 supergravity breakdown by anti-branes. Anomaly mediation is found to always give an important contribution and one can easily arrange for flavor-independent soft terms. In its most attractive realization, the modulus mediation is comparable to the anomaly mediation, yielding a quite distinctive sparticle spectrum. In addition, the axion component of the modulus/dilaton superfield dynamically cancels the relative CP phase between the contributions of anomaly and modulus mediation, thereby avoiding dangerous SUSY CP violation

  18. Nonstandard Supersymmetry Breaking and Dirac Gaugino Masses without Supersoftness

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Northern Illinois U.

    2015-08-05

    I consider models in which nonstandard supersymmetry-breaking terms, including Dirac gaugino masses, arise from F-term breaking mediated by operators with a 1/M3 suppression. In these models, the supersoft properties found in the case of D-term breaking are absent in general, but can be obtained as a special case that is a fixed point of the renormalization group equations. The μ term is replaced by three distinct supersymmetry-breaking parameters, decoupling the Higgs scalar potential from the Higgsino masses. Both holomorphic and nonholomorphic scalar cubic interactions with minimal flavor violation are induced in the supersymmetric Standard Model Lagrangian.

  19. Inflationary implications of supersymmetry breaking

    NARCIS (Netherlands)

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne

    2013-01-01

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll

  20. 'Dynamical Supersymmetry Breaking, with Flavor'

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; Essig, Rouven; /Stanford U., Phys. Dept. /SLAC; Franco, Sebastian; Kachru, Shamit; /Santa Barbara, KITP /UC, Santa Barbara; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We explore calculable models with low-energy supersymmetry where the flavor hierarchy is generated by quark and lepton compositeness, and where the composites emerge from the same sector that dynamically breaks supersymmetry. The observed pattern of Standard Model fermion masses and mixings is obtained by identifying the various generations with composites of different dimension in the ultraviolet. These 'single-sector' supersymmetry breaking models give rise to various spectra of soft masses which are, in many cases, quite distinct from what is commonly found in models of gauge or gravity mediation. In typical models which satisfy all flavor-changing neutral current constraints, both the first and second generation sparticles have masses of order 20 TeV, while the stop mass is a few TeV. In other cases, all sparticles obtain masses of order a few TeV predominantly from gauge mediation, even though the first two generations are composite.

  1. Anomalous U(1) as a mediator of Supersymmetry Breaking

    CERN Document Server

    Dvali, Gia; Dvali, Gia; Pomarol, Alex

    1996-01-01

    We point out that an anomalous gauge U(1) symmetry is a natural candida= te for being the mediator and messenger of supersymmetry breaking. It facilitate= s dynamical supersymmetry breaking even in the flat limit. Soft masses are induced by both gravity and the U(1) gauge interactions giving an unusual= mass hierarchy in the sparticle spectrum which suppresses flavor violations. T= his scenario does not suffer from the Polonyi problem.

  2. Strongly coupled semidirect mediation of supersymmetry breaking

    International Nuclear Information System (INIS)

    Ibe, M.; Izawa, K.-I.; Nakai, Y.

    2009-01-01

    Strongly coupled semidirect gauge mediation models of supersymmetry breaking through massive mediators with standard-model charges are investigated by means of composite degrees of freedom. Sizable mediation is realized to generate the standard-model gaugino masses for a small mediator mass without breaking the standard-model symmetries.

  3. Metastable Supersymmetry Breaking in a Cooling Universe

    International Nuclear Information System (INIS)

    Kaplunovsky, Vadim S.

    2007-01-01

    I put metastable supersymmetry breaking in a cosmological context. I argue that under reasonable assumptions, the cooling down early Universe favors metastable SUSY-breaking vacua over the stable supersymmetric vacua. To illustrate the general argument, I analyze the early-Universe history of the Intriligator-Seiberg-Shih model

  4. CP violation and supersymmetry-breaking in superstring models

    International Nuclear Information System (INIS)

    Dent, T.E.

    2000-09-01

    In this thesis I discuss aspects of the phenomenology of heterotic string, theory, using low-energy effective supergravity models. I investigate the origin of CP violation, the implications for low-energy physics of the modular invariance of the theory, supersymmetry-breaking via gaugino condensation in a hidden sector, and the interplay between these topics. I review the theory of CP violation and the problem of CP violation in supersymmetry phenomenology. In a scenario where the origin of CP violation lies in the compactification of the extra dimensions of string theory, I present simple models which include a duality symmetry acting on the compactification modulus and on observable fields. I show how the structure of the theory affects CP-violating observables, and discuss the effect of such a symmetry on low-energy physics in general. I present a detailed investigation of supersymmetry-breaking by gaugino condensation in supergravity, in particular as applied to the stabilisation of string moduli. For hidden sectors with or without matter I calculate corrections to the usual formulae for the scalar potential and soft supersymmetry-breaking terms. I discuss the phenomenological implications of these corrections and show that they may affect the value of the compactification modulus. and consequently the prospects for predictions of CP violation in string models. (author)

  5. Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Farakos, Fotis [Dipartimento di Fisica “Galileo Galilei”, Universita di Padova,Via Marzolo 8, 35131 Padova (Italy); INFN, Sezione di Padova,Via Marzolo 8, 35131 Padova (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Racco, Davide; Riotto, Antonio [Department of Theoretical Physics and Center for Astroparticle Physics (CAP),24 quai E. Ansermet, CH-1211 Geneva 4 (Switzerland)

    2016-06-21

    We consider the minimal three-form N=1 supergravity coupled to nilpotent three-form chiral superfields. The supersymmetry breaking is sourced by the three-forms of the chiral multiplets, while the value of the gravitino mass is controlled by the three-form of the supergravity multiplet. The three-forms can nucleate membranes which scan both the supersymmetry breaking scale and the gravitino mass. The peculiar supergravity feature that the cosmological constant is the sum of a positive contribution from the supersymmetry breaking scale and a negative contribution from the gravitino mass makes the cosmological constant jump. This can lead to a phenomenologically allowed small value of the cosmological constant even though the supersymmetry breaking scale and the gravitino mass are dynamically large.

  6. Variations on minimal gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Dine, M.; Nir, Y.; Shirman, Y.

    1997-01-01

    We study various modifications to the minimal models of gauge-mediated supersymmetry breaking. We argue that, under reasonable assumptions, the structure of the messenger sector is rather restricted. We investigate the effects of possible mixing between messenger and ordinary squark and slepton fields and, in particular, violation of universality. We show that acceptable values for the μ and B parameters can naturally arise from discrete, possibly horizontal, symmetries. We claim that in models where the supersymmetry-breaking parameters A and B vanish at the tree level, tanβ could be large without fine-tuning. We explain how the supersymmetric CP problem is solved in such models. copyright 1997 The American Physical Society

  7. Phenomenology of GUT-less Supersymmetry Breaking

    CERN Document Server

    Ellis, Jonathan Richard; Sandick, Pearl

    2007-01-01

    We study models in which supersymmetry breaking appears at an intermediate scale, M_{in}, below the GUT scale. We assume that the soft supersymmetry-breaking parameters of the MSSM are universal at M_{in}, and analyze the morphology of the constraints from cosmology and collider experiments on the allowed regions of parameter space as M_{in} is reduced from the GUT scale. We present separate analyses of the (m_{1/2},m_0) planes for tan(beta)=10 and tan(beta)=50, as well as a discussion of non-zero trilinear couplings, A_0. Specific scenarios where the gaugino and scalar masses appear to be universal below the GUT scale have been found in mirage-mediation models, which we also address here. We demand that the lightest neutralino be the LSP, and that the relic neutralino density not conflict with measurements by WMAP and other observations. At moderate values of M_{in}, we find that the allowed regions of the (m_{1/2},m_0) plane are squeezed by the requirements of electroweak symmetry breaking and that the ligh...

  8. Transmission of supersymmetry breaking from a four-dimensional boundary

    International Nuclear Information System (INIS)

    Mirabelli, E.A.; Peskin, M.E.

    1998-01-01

    In the strong-coupling limit of the heterotic string theory constructed by Horava and Witten, an 11-dimensional supergravity theory is coupled to matter multiplets confined to 10-dimensional mirror planes. This structure suggests that realistic unification models are obtained, after compactification of 6 dimensions, as theories of 5-dimensional supergravity in an interval, coupling to matter fields on 4-dimensional walls. Supersymmetry breaking may be communicated from one boundary to another by the 5-dimensional fields. In this paper, we study a toy model of this communication in which 5-dimensional super-Yang-Mills theory in the bulk couples to chiral multiplets on the walls. Using the auxiliary fields of the Yang-Mills multiplet, we find a simple algorithm for coupling the bulk and boundary fields. We demonstrate two different mechanisms for generating soft supersymmetry breaking terms in the boundary theory. We also compute the Casimir energy generated by supersymmetry breaking. copyright 1998 The American Physical Society

  9. Single sector supersymmetry breaking

    International Nuclear Information System (INIS)

    Luty, Markus A.; Terning, John

    1999-01-01

    We review recent work on realistic models that break supersymmetry dynamically and give rise to composite quarks and leptons, all in a single sector. These models have a completely natural suppression of flavor-changing neutral currents, and the hierarchy of Yukawa couplings is explained by the dimensionality of composite states. The generic signatures are unification of scalar masses with different quantum numbers at the compositeness scale, and lighter gaugino, Higgsino, and third-generation sfermion masses

  10. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    Science.gov (United States)

    Feng, Jonathan L.; Moroi, Takeo

    2000-05-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: Maux, m0, tan β, and sgn(μ). The renormalization group equations exhibit a novel ``focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b-->sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron.

  11. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Moroi, Takeo

    2000-01-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M aux , m 0 , tan β, and sgn(μ). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b→sγ, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society

  12. Supernatural supersymmetry: Phenomenological implications of anomaly-mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jonathan L. [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States); Moroi, Takeo [School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 (United States)

    2000-05-01

    We discuss the phenomenology of supersymmetric models in which supersymmetry breaking terms are induced by the super-Weyl anomaly. Such a scenario is envisioned to arise when supersymmetry breaking takes place in another world, i.e., on another brane. We review the anomaly-mediated framework and study in detail the minimal anomaly-mediated model parametrized by only 3+1 parameters: M{sub aux}, m{sub 0}, tan {beta}, and sgn({mu}). The renormalization group equations exhibit a novel ''focus point'' (as opposed to fixed point) behavior, which allows squark and slepton masses far above their usual naturalness bounds. We present the superparticle spectrum and highlight several implications for high energy colliders. Three lightest supersymmetric particle (LSP) candidates exist: the W-ino, the stau, and the tau sneutrino. For the W-ino LSP scenario, light W-ino triplets with the smallest possible mass splittings are preferred; such W-inos are within reach of run II Fermilab Tevatron searches. Finally, we study a variety of sensitive low energy probes, including b{yields}s{gamma}, the anomalous magnetic moment of the muon, and the electric dipole moments of the electron and neutron. (c) 2000 The American Physical Society.

  13. Supersymmetry breaking in 4D string theory

    International Nuclear Information System (INIS)

    De la Macorra, A.; Ross, G.G.

    1995-01-01

    We construct a (locally supersymmetric) four-fermion effective lagrangian description of the strong binding effects responsible for the formation of a gaugino condensate, extending the analysis to include the multiple moduli of orbifold compactification. Using this to estimate the binding we find that supersymmetry is broken and a phenomenologically realistic value for the gravitino mass and gauge coupling constant at the unification scale with only one gaugino condensate may be obtained. The main source for supersymmetry breaking is the VEV of the auxiliary field of the dilaton h s (i.e. h S >>h T , where T are moduli fields). By studying the scalar potential we find either that the vacuum expectation values of the moduli have a common value related to the vacuum expectation value of the dilaton or that they take the values of the dual invariant points. A squeezed orbifold can thus naturally be obtained, allowing for the possibility of minimal string unification. We include chiral matter fields and derive the scalar potential up to one-loop level. The one-loop potential is responsible for stabilising the scalar potential for vanishing vacuum expectation values of the chiral matter fields. We then calculate the soft supersymmetry breaking parameters in the visible sector. Finally we show that with a suitable choice of superpotential it is possible to cancel the cosmological constant while having supersymmetry broken. ((orig.))

  14. Fractional Branes and Dynamical Supersymmetry Breaking

    CERN Document Server

    Franco, S; Saad, F; Uranga, Angel M; Franco, Sebastian; Hanany, Amihay; Saad, Fouad; Uranga, Angel M.

    2006-01-01

    We study the dynamics of fractional branes at toric singularities, including cones over del Pezzo surfaces and the recently constructed Y^{p,q} theories. We find that generically the field theories on such fractional branes show dynamical supersymmetry breaking, due to the appearance of non-perturbative superpotentials. In special cases, one recovers the known cases of supersymmetric infrared behaviors, associated to SYM confinement (mapped to complex deformations of the dual geometries, in the gauge/string correspondence sense) or N=2 fractional branes. In the supersymmetry breaking cases, when the dynamics of closed string moduli at the singularity is included, the theories show a runaway behavior (involving moduli such as FI terms or equivalently dibaryonic operators), rather than stable non-supersymmetric minima. We comment on the implications of this gauge theory behavior for the infrared smoothing of the dual warped throat solutions with 3-form fluxes, describing duality cascades ending in such field th...

  15. Low Scale Supersymmetry Breaking and its LHC Signatures

    CERN Document Server

    Dudas, Emilian; Tziveloglou, Pantelis

    2013-01-01

    We study the most general extension of the MSSM Lagrangian that includes scenarios in which supersymmetry is spontaneously broken at a low scale f. The spurion that parametrizes supersymmetry breaking in the MSSM is promoted to a dynamical superfield involving the goldstino, with (and without) its scalar superpartner, the sgoldstino. The low energy effective Lagrangian is written as an expansion in terms of m_{SUSY}/sqrt{f}, where m_{SUSY} is the induced supersymmetry breaking scale, and contains, in addition to the usual MSSM Lagrangian with the soft terms, couplings involving the component fields of the goldstino superfield and the MSSM fields. This Lagrangian can provide significant corrections to the usual couplings in the Standard Model and the MSSM. We study how these new corrections affect the Higgs couplings to gauge bosons and fermions, and how LHC bounds can be used in order to constrain f. We also discuss that, from the effective field theory point of view, the couplings of the goldstino interactio...

  16. Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil); Dias, G S; Leal, F J.L. [Instituto Federal de Educacao, Ciencia e Tecnologia do Espirito Santo (IFES), Vitoria, ES (Brazil); Durand, L G; Helayel-Neto, Jose Abdalla; Spalenza, W [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Grupo de Fisica Teorica Jose Leite Lopes (GFT-JLL), Petropolis, RJ (Brazil)

    2011-07-01

    Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)

  17. Imprints of supersymmetry in the Lorentz-symmetry breaking of Gauge Theories

    International Nuclear Information System (INIS)

    Belich, H.; Dias, G.S.; Leal, F.J.L.; Durand, L.G.; Helayel-Neto, Jose Abdalla; Spalenza, W.

    2011-01-01

    Full text: The breaking of Lorentz symmetry that may take place at very high energies opens up a venue for the discussion of the interplay between the violations of supersymmetry and relativistic symmetry. Recently, there have appeared in the literature models which propose a residual (non-relativistic) supersymmetry after Lorentz symmetry has been broken in a Horava gravity scenario. We here propose an N=1-supersymmetric Abelian gauge model which realises the breaking of Lorentz invariance by means of a CPT-even term. Our attempt assumes the point of view that supersymmetry and Lorentz symmetry are broken down at the same scale. If this is the case, the fermionic sector of the supermultiplets that accomplish the breaking of the symmetries into consideration may give rise to condensates that play an important role in the photon and photino dispersion relations. Contemporarily, they may also point to a more fundamental origin for the (bosonic) tensors usually associated to the backgrounds that parametrize Lorentz-symmetry breaking. We also highlight that, by studying the the violation of Lorentz symmetry in connection with supersymmetry, we find out that the Myers-Pospelov Electrodynamics, proposed on the basis of an analysis of the set of dimension-five operators, naturally appears in the bosonic sector of our model. Also, as a result of the interconnection between the supersymmetry and Lorentz-symmetry breakings, the photino-photino and photon-photino mixings that correspond to the supersymmetric completion of the Myers-Pospelov purely photonic terms come out. Finally, we present some comments on the possible modifications the supersymmetric fermions may introduce in the dispersion relations for particles at (high) energies close to the scale where supersymmetry and Lorentz symmetry are broken. (author)

  18. Phenomenology of anomaly-mediated supersymmetry breaking scenarios with non-minimal flavour violation

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1

    2011-12-15

    In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.

  19. Variations on supersymmetry breaking and neutrino spectra

    International Nuclear Information System (INIS)

    Borzumati, F.; Hamaguchi, K.; Nomura, Y.; Yanagida, T.

    2000-01-01

    The problem of generating light neutrinos within supersymmetric models is discussed. It is shown that the hierarchy of scales induced by supersymmetry breaking can give rise to suppression factors of the correct order of magnitude to produce experimentally allowed neutrino spectra

  20. Search for SUSY in gauge mediated and anomaly mediated supersymmetry breaking models

    International Nuclear Information System (INIS)

    Nunnnemann, Thomas

    2004-01-01

    In this note, recent results on the search for Gauge Mediated Supersymmetry Breaking (GMSB) and Anomaly Mediated Supersymmetry Breaking (AMSB) at the LEP and Tevatron colliders are summarized. We report on DOe's search for GMSB in di-photon events with large missing transverse energy and discuss the sensitivity of similar searches based on future Tevatron integrated luminosities. (orig.)

  1. Note on moduli stabilization, supersymmetry breaking and axiverse

    Energy Technology Data Exchange (ETDEWEB)

    Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kobayashi, Tatsuo [Kyoto Univ. (Japan). Dept. of Physics

    2011-06-15

    We study properties of moduli stabilization in the four dimensional N=1 supergravity theory with heavy moduli and would-be saxion-axion multiplets including light string-theoretic axions. We give general formulation for the scenario that heavy moduli and saxions are stabilized while axions remain light, assuming that moduli are stabilized near the supersymmetric solution. One can find stable vacuum, i.e. nontachyonic saxions, in the non-supersymmetric Minkowski vacua. We also discuss the cases, where the moduli are coupled to the supersymmetry breaking sector and/or moduli have contributions to supersymmetry breaking. Furthermore we study the models with axions originating from matter-like fields. Our analysis on moduli stabilization is applicable even if there are not light axion multiplets. (orig.)

  2. Large-field inflation and supersymmetry breaking

    International Nuclear Information System (INIS)

    Buchmueller, Wilfried; Wieck, Clemens; Dudas, Emilian; Heurtier, Lucien; Ecole Polytechnique, Palaiseau

    2014-07-01

    Large-field inflation is an interesting and predictive scenario. Its non-trivial embedding in supergravity was intensively studied in the recent literature, whereas its interplay with supersymmetry breaking has been less thoroughly investigated. We consider the minimal viable model of chaotic inflation in supergravity containing a stabilizer field, and add a Polonyi field. Furthermore, we study two possible extensions of the minimal setup. We show that there are various constraints: first of all, it is very hard to couple an O'Raifeartaigh sector with the inflaton sector, the simplest viable option being to couple them only through gravity. Second, even in the simplest model the gravitino mass is bounded from above parametrically by the inflaton mass. Therefore, high-scale supersymmetry breaking is hard to implement in a chaotic inflation setup. As a separate comment we analyze the simplest chaotic inflation construction without a stabilizer field, together with a supersymmetrically stabilized Kaehler modulus. Without a modulus, the potential of such a model is unbounded from below. We show that a heavy modulus cannot solve this problem.

  3. Moduli stabilization and supersymmetry breaking in deflected mirage mediation

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. In some cases, this results in a gluino LSP and light stops; in other regions of parameter space, the LSP can be a well-tempered neutralino. We demonstrate explicitly that competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by addressing the stabilization of the gauge singlet field which is responsible for the masses of the messenger fields. For viable stabilization mechanisms, the relation between the gauge and anomaly contributions is identical in most cases to that of deflected anomaly mediation, despite the presence of the Kaehler modulus. Turning to TeV scale phenomenology, we analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra. The approach sets the stage for studies of such mixed scenarios of supersymmetry breaking at the LHC.

  4. Selecting a model of supersymmetry breaking mediation

    International Nuclear Information System (INIS)

    AbdusSalam, S. S.; Allanach, B. C.; Dolan, M. J.; Feroz, F.; Hobson, M. P.

    2009-01-01

    We study the problem of selecting between different mechanisms of supersymmetry breaking in the minimal supersymmetric standard model using current data. We evaluate the Bayesian evidence of four supersymmetry breaking scenarios: mSUGRA, mGMSB, mAMSB, and moduli mediation. The results show a strong dependence on the dark matter assumption. Using the inferred cosmological relic density as an upper bound, minimal anomaly mediation is at least moderately favored over the CMSSM. Our fits also indicate that evidence for a positive sign of the μ parameter is moderate at best. We present constraints on the anomaly and gauge mediated parameter spaces and some previously unexplored aspects of the dark matter phenomenology of the moduli mediation scenario. We use sparticle searches, indirect observables and dark matter observables in the global fit and quantify robustness with respect to prior choice. We quantify how much information is contained within each constraint.

  5. Deflected Mirage Mediation: A Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Kim, Ian-Woo

    2008-01-01

    We present a model of supersymmetry breaking in which the contributions from gravity/modulus, anomaly, and gauge mediation are all comparable. We term this scenario 'deflected mirage mediation', which is a generalization of the KKLT-motivated mirage mediation scenario to include gauge mediated contributions. These contributions deflect the gaugino mass unification scale and alter the pattern of soft parameters at low energies. Competitive gauge-mediated terms can naturally appear within phenomenological models based on the KKLT setup by the stabilization of the gauge singlet field responsible for the masses of the messenger fields. We analyze the renormalization group evolution of the supersymmetry breaking terms and the resulting low energy mass spectra.

  6. Gauged Supergravities and Spontaneous Supersymmetry Breaking from the Double Copy Construction

    Science.gov (United States)

    Chiodaroli, M.; Günaydin, M.; Johansson, H.; Roiban, R.

    2018-04-01

    Supergravities with gauged R symmetry and Minkowski vacua allow for spontaneous supersymmetry breaking and, as such, provide a framework for building supergravity models of phenomenological relevance. In this Letter, we initiate the study of double copy constructions for these supergravities. We argue that, on general grounds, we expect their scattering amplitudes to be described by a double copy of the type (spontaneously broken gauge theory)⊗ (gauge theory with broken supersymmetry). We present a simple realization in which the resulting supergravity has U (1 )R gauge symmetry, spontaneously broken N =2 supersymmetry, and massive gravitini. This is the first instance of a double copy construction of a gauged supergravity and of a theory with spontaneously broken supersymmetry. The construction extends in a straightforward manner to a large family of gauged Yang-Mills-Einstein supergravity theories with or without spontaneous gauge-symmetry breaking.

  7. Dynamical Compactification as a Mechanism of Spontaneous Supersymmetry Breaking

    CERN Document Server

    Dvali, Gia

    1997-01-01

    Supersymmetry breaking and compactification of extra space-time dimensions may have a common dynamical origin if our universe is spontaneously generated in the form of a four-dimensional topological or non-topological defect in higher dimensional space-time. Within such an approach the conventional particles are zero modes trapped in the core of the defect. In many cases solutions of this type spontaneously break all supersymmetries of the original theory, so that the low-energy observer from ``our'' universe inside the core would not detect supersymmetry. Since the extra dimensions are not compact but, rather, inaccessible to low-energy observers, the usual infinite tower of the Kaluza-Klein excitations does not exist. Production of superpartners at the energy scale of SUSY restoration will be accompanied by four-momentum non-conservation. (Depending on the nature of the solution at hand, the non-conservation may either happen above some threshold energy or be continuous). In either case, the door to extra d...

  8. Partial breaking of N = 1, D = 10 supersymmetry

    International Nuclear Information System (INIS)

    Bellucci, S.

    1999-01-01

    In this paper is described the spontaneous partial breaking of N =1, D =10 supersymmetry to N = (1, 0), d = 6 and its dimensionally-reduced versions in the framework of nonlinear realizations. The basic Goldstone superfield is N = (1, 0), d = 6 hyper multiplet superfield satisfying a nonlinear generalization of the standard hyper multiplet constraint. It is here interpreted the generalized constraint as the manifestly world volume supersymmetric form of equations of motion of the type 1 super 5-brane in D 10. The related issues here addressed are a possible existence of brane extension of off-shell hyper multiplet actions, the possibility to utilize vector N = (1, 0), d =6 supermultiplet as the Goldstone one, and the description of 1/4 breaking of N =1, D = 11 supersymmetry

  9. Cornering gauge-mediated supersymmetry breaking with quasistable sleptons at the Fermilab Tevatron

    International Nuclear Information System (INIS)

    Martin, S.P.; Wells, J.D.

    1999-01-01

    There are many theoretical reasons why heavy quasistable charged particles might exist. Pair production of such particles at the Fermilab Tevatron can produce highly ionizing tracks or fake muons. In gauge-mediated supersymmetry breaking, sparticle production can lead to events with a pair of quasistable sleptons, a significant fraction of which will have the same electric charge. Depending on the production mechanism and the decay chain, they may also be accompanied by additional energetic leptons. We study the relative importance of the resulting signals for the Tevatron run II. The relative fraction of same-sign tracks to other background-free signals is an important diagnostic tool in gauge-mediated supersymmetry breaking that may provide information about mass splittings, tanβ, and the number of messengers communicating supersymmetry breaking. copyright 1999 The American Physical Society

  10. Supergravity and supersymmetry breaking in four and five dimensions

    International Nuclear Information System (INIS)

    Ellis, John; Lalak, Zygmunt; Pokorski, Stefan; Thomas, Steven

    1999-01-01

    We discuss supersymmetry breaking in the field-theoretical limit of the strongly coupled heterotic string compactified on a Calabi-Yau manifold, from the different perspectives of four and five dimensions. The former applies to light degrees of freedom below the threshold for five-dimensional Kaluza-Klein excitations, whereas the five-dimensional perspective is also valid up to the Calabi-Yau scale. We show how, in the latter case, two gauge sectors separated in the fifth dimension are combined to form a consistent four-dimensional supergravity. In the lowest order of the κ 2/3 expansion, we show how a four-dimensional supergravity with gauge kinetic function f 1,2 =S is reproduced, and we show how higher-order terms give rise to four-dimensional operators that differ in the two gauge sectors. In the four-dimensional approach, supersymmetry is seen to be broken when condensates form on one or both walls, and the goldstino may have a non-zero dilatino component. As in the five-dimensional approach, the Lagrangian is not a perfect square, and we have not identified a vacuum with broken supersymmetry and zero vacuum energy. We derive soft supersymmetry-breaking terms for non-standard perturbative embeddings, that are relevant in more general situations such as type I/type IIB orientifold models

  11. Gravity mediated supersymmetry breaking in six dimensions

    International Nuclear Information System (INIS)

    Falkowski, Adam; Lee, Hyun Min; Luedeling, Christoph

    2005-01-01

    We study gravity mediated supersymmetry breaking in four-dimensional effective theories derived from six-dimensional brane-world supergravity. Using the Noether method we construct a locally supersymmetric action for a bulk-brane system consisting of the minimal six-dimensional supergravity coupled to vector and chiral multiplets located at four-dimensional branes. Couplings of the bulk moduli to the brane are uniquely fixed, in particular, they are flavour universal. We compactify this system on T 2 /Z 2 and derive the four-dimensional effective supergravity. The tree-level effective Kaehler potential is not of the sequestered form, therefore gravity mediation may occur at tree-level. We identify one scenario of moduli stabilization in which the soft scalar masses squared are positive

  12. Supersymmetry breaking and composite extra dimensions

    International Nuclear Information System (INIS)

    Luty, Markus A.; Sundrum, Raman

    2002-01-01

    We study supergravity models in four dimensions where the hidden sector is superconformal and strongly coupled over several decades of energy below the Planck scale, before undergoing spontaneous breakdown of scale invariance and supersymmetry. We show that large anomalous dimensions can suppress Kaehler contact terms between the hidden and visible sectors, leading to models in which the hidden sector is 'sequestered' and anomaly-mediated supersymmetry breaking can naturally dominate, thus solving the supersymmetric flavor problem. We construct simple, explicit models of the hidden sector based on supersymmetric QCD in the conformal window. The present approach can be usefully interpreted as having an extra dimension responsible for sequestering replaced by the many states of a (spontaneously broken) strongly coupled superconformal hidden sector, as dictated by the anti-de Sitter conformal field theory correspondence

  13. A Model of Direct Gauge Mediation of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Murayama, H.

    1997-01-01

    We present the first phenomenologically viable model of gauge meditation of supersymmetry breaking without a messenger sector or gauge singlet fields. The standard model gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, it can preserve perturbative gauge unification thanks to the inverted hierarchy mechanism. There is no dangerous negative contribution to m 2 q , m 2 l due to two-loop renormalization group equation. The potentially nonuniversal supergravity contribution to m 2 q and m 2 l can be suppressed enough. The model is completely chiral, and one does not need to forbid mass terms for the messenger fields by hand. Cosmology of the model is briefly discussed. copyright 1997 The American Physical Society

  14. Supergravity and upper bound on scale of supersymmetry breaking

    International Nuclear Information System (INIS)

    Kim, J.E.; Nishino, H.

    1983-09-01

    In locally supersymmetric grand unified models we show rather a model independent upper bound 3x10 11 GeV for the scale of supersymmetry breaking, which is derived by considering SU(2)xU(1) breaking at electro-weak mass scale. This bound necessarily implies the existence of new particles (superpartners) below 10 4 GeV. (author)

  15. Gauge-mediated supersymmetry breaking: introduction, review and update

    International Nuclear Information System (INIS)

    Kolda, C.

    1998-01-01

    Recent progress in the gauge-mediated supersymmetry breaking is reviewed, with emphasis on the theoretical problems which gauge-mediated models are so successful at solving, as well as the problems which are endemic to the models themselves and still beguile theorists today. (orig.)

  16. Gauge-mediated supersymmetry breaking in string compactifications

    International Nuclear Information System (INIS)

    Diaconescu, Duiliu-Emanuel; Florea, Bogdan; Kachru, Shamit; Svrcek, Peter

    2006-01-01

    We provide string theory examples where a toy model of a SUSY GUT or the MSSM is embedded in a compactification along with a gauge sector which dynamically breaks supersymmetry. We argue that by changing microscopic details of the model (such as precise choices of flux), one can arrange for the dominant mediation mechanism transmitting SUSY breaking to the Standard Model to be either gravity mediation or gauge mediation. Systematic improvement of such examples may lead to top-down models incorporating a solution to the SUSY flavor problem

  17. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Knochel, Alexander Karl

    2009-05-11

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m{sub {chi}{sup +}}{approx}100.. 110 GeV, the dark matter relic density points to LSP masses of around m{sub {chi}}{approx}90 GeV. At the LHC, the

  18. Supersymmetry in a sector of Higgsless electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Knochel, Alexander Karl

    2009-01-01

    In this thesis we have investigated phenomenological implications which arise for cosmology and collider physics when the electroweak symmetry breaking sector of warped higgsless models is extended to include warped supersymmetry with conserved R parity. The goal was to find the simplest supersymmetric extension of these models which still has a realistic light spectrum including a viable dark matter candidate. To accomplish this, we have used the same mechanism which is already at work for symmetry breaking in the electroweak sector to break supersymmetry as well, namely symmetry breaking by boundary conditions. While supersymmetry in five dimensions contains four supercharges and is therefore directly related to 4D N=2 supersymmetry, half of them are broken by the background leaving us with ordinary N=1 theory in the massless sector after Kaluza-Klein expansion. We thus use boundary conditions to model the effects of a breaking mechanism for the remaining two supercharges. The simplest viable scenario to investigate is a supersymmetric bulk and IR brane without supersymmetry on the UV brane. Even though parts of the light spectrum are effectively projected out by this mechanism, we retain the rich phenomenology of complete N=2 supermultiplets in the Kaluza-Klein sector. While the light supersymmetric spectrum consists of electroweak gauginos which get their O(100 GeV) masses from IR brane electroweak symmetry breaking, the light gluinos and squarks are projected out on the UV brane. The neutralinos, as mass eigenstates of the neutral bino-wino sector, are automatically the lightest gauginos, making them LSP dark matter candidates with a relic density that can be brought to agreement withWMAP measurements without extensive tuning of parameters. For chargino masses close to the experimental lower bounds at around m χ + ∼100.. 110 GeV, the dark matter relic density points to LSP masses of around m χ ∼90 GeV. At the LHC, the standard particle content of our

  19. Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses

    International Nuclear Information System (INIS)

    Annibale, Alessia; Gualdi, Giulia; Cavagna, Andrea

    2004-01-01

    The structure of states of the perturbed p-spin spherical spin-glass is analysed. At low enough free energy, metastable states have a supersymmetric structure, while at higher free energies the supersymmetry is broken. The transition between the supersymmetric and the supersymmetry-breaking phase is triggered by a change in the stability of states

  20. Models for inflation with a low supersymmetry-breaking scale

    International Nuclear Information System (INIS)

    Binetruy, P.; California Univ., Santa Barbara; Mahajan, S.; California Univ., Berkeley

    1986-01-01

    We present models where the same scalar field is reponsible for inflation and for the breaking of supersymmetry. The scale of supersymmetry breaking is related to the slope of the potential in the plateau region described by the scalar field during the slow rollover, and the gravitino mass can therefore be kept as small as Msub(W), the mass of the weak gauge boson. We show that such a result is stable under radiative corrections. We describe the inflationary scenario corresponding to the simplest of these models and show that no major problem arises, except for a violation of the thermal constraint (stabilization of the field in the plateau region at high temperature). We discuss the possibility of introducing a second scalar field to satisfy this constraint. (orig.)

  1. Inflationary implications of supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Borghese, Andrea; Roest, Diederik; Zavala, Ivonne [Centre for Theoretical Physics, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands)

    2013-07-23

    We discuss a general bound on the possibility to realise inflation in any minimal supergravity with F-terms. The derivation crucially depends on the sGoldstini, the scalar field directions that are singled out by spontaneous supersymmetry breaking. The resulting bound involves both slow-roll parameters and the geometry of the Kähler manifold of the chiral scalars. We analyse the inflationary implications of this bound, and in particular discuss to what extent the requirements of single field and slow-roll can both be met in F-term inflation.

  2. Generalized messengers of supersymmetry breaking and the sparticle mass spectrum

    International Nuclear Information System (INIS)

    Martin, S.P.

    1997-01-01

    We investigate the sparticle spectrum in models of gauge-mediated supersymmetry breaking. In these models, supersymmetry is spontaneously broken at an energy scale only a few orders of magnitude above the electroweak scale. The breakdown of supersymmetry is communicated to the standard model particles and their superpartners by open-quotes messengerclose quotes fields through their ordinary gauge interactions. We study the effects of a messenger sector in which the supersymmetry-violating F-term contributions to messenger scalar masses are comparable to the supersymmetry-preserving ones. We also argue that it is not particularly natural to restrict attention to models in which the messenger fields lie in complete SU(5) ground unified theory multiplets, and we identify a much larger class of viable models. Remarkably, however, we find that the superpartner mass parameters in these models are still subject to many significant contraints. copyright 1997 The American Physical Society

  3. Dirac gauginos in low scale supersymmetry breaking

    International Nuclear Information System (INIS)

    Goodsell, Mark D.; Tziveloglou, Pantelis

    2014-01-01

    It has been claimed that Dirac gaugino masses are necessary for realistic models of low-scale supersymmetry breaking, and yet very little attention has been paid to the phenomenology of a light gravitino when gauginos have Dirac masses. We begin to address this deficit by investigating the couplings and phenomenology of the gravitino in the effective Lagrangian approach. We pay particular attention to the phenomenology of the scalar octets, where new decay channels open up. This leads us to propose a new simplified effective scenario including only light gluinos, sgluons and gravitinos, allowing the squarks to be heavy – with the possible exception of the third generation. Finally, we comment on the application of our results to Fake Split Supersymmetry

  4. Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion

    Science.gov (United States)

    Sannomiya, Noriaki; Katsura, Hosho; Nakayama, Yu

    2017-03-01

    We introduce a lattice fermion model in one spatial dimension with supersymmetry (SUSY) but without particle number conservation. The Hamiltonian is defined as the anticommutator of two nilpotent supercharges Q and Q†. Each supercharge is built solely from spinless fermion operators and depends on a parameter g . The system is strongly interacting for small g , and in the extreme limit g =0 , the number of zero-energy ground states grows exponentially with the system size. By contrast, in the large-g limit, the system is noninteracting and SUSY is broken spontaneously. We study the model for modest values of g and show that under certain conditions spontaneous SUSY breaking occurs in both finite and infinite chains. We analyze the low-energy excitations both analytically and numerically. Our analysis suggests that the Nambu-Goldstone fermions accompanying the spontaneous SUSY breaking have cubic dispersion at low energies.

  5. A new signature for gauge mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Dicus, D.A.; Dutta, B.; Nandi, S.; Oklahoma State Univ., Stillwater, OK

    1997-01-01

    In theories with gauge mediated supersymmetry breaking, the scalar tau, (τ 1 ) is the lightest superpartner for a large range of the parameter space. At the large electron positron collider (LEP 2) this scenario can give rise to events with four τ leptons and large missing energy. Two of the τ's (coming from the decays of τ 1 's) will have large energy and transverse momentum, and can have similar sign electrical charges. Such events are very different from the usual photonic events that have been widely studied, and could be a very distinct signal for the discovery of supersymmetry. 20 refs., 2 figs., 3 tabs

  6. Primordial cosmological inflation versus local supersymmetry breaking in SUSY GUTs coupled to N = 1 supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Ramon-Medrano, M.

    1984-01-01

    We present a model for a SUSY GUT coupled to N=1 supergravity in which local supersymmetry breaks down in the gauge singlet sector. The constraints for the model to be physically acceptable are incompatible with inflation. The simultaneous breaking of local supersymmetry and gauge symmetry is proposed as a good prospect for inflation. (orig.)

  7. Ward identities of local supersymmetry and spontaneous breaking of extended supergravity

    International Nuclear Information System (INIS)

    Cecotti, S.; Girardello, L.; Porrati, M.

    1985-01-01

    It is a general agreement that any extended supergravity theory, in order to lead to a viable model with acceptable phenomenological implications, should admit spontaneous breaking to N = 1 local supersymmetry in a Minkowski background. It is then important to understand the possible patterns of partial breaking of extended local supersymmetry. These patterns strongly depend on the theory being formulated directly in 4-D or in higher-D. In general, the higher-D theories lead to partial breaking in 4-D anti-de Sitter spaces. Examples are known with partial breaking in flat space. They result respectively from a generalized dimensional reduction of the N = 1 theory in 11-D or from the spontaneous compactification of the 10-D low-energy theory from the superstring theory and of a 6-D Maxwell-Einstein supergravity model. We will comment later on this example. In this paper we will discuss some considerations which apply to theories formulated in 4-D

  8. Mixed Mediation of Supersymmetry Breaking in Models with Anomalous U(1) Gauge Symmetry

    International Nuclear Information System (INIS)

    Choi, Kiwoon

    2010-01-01

    There can be various built-in sources of supersymmetry breaking in models with anomalous U(1) gauge symmetry, e.g. the U(1) D-term, the F-components of the modulus superfield required for the Green-Schwarz anomaly cancellation mechanism and the chiral matter superfields required to cancel the Fayet-Iliopoulos term, and finally the supergravity auxiliary component which can be parameterized by the F-component of chiral compensator. The relative strength between these supersymmetry breaking sources depends crucially on the characteristics of D-flat direction and also on how the D-flat direction is stabilized at a vacuum with nearly vanishing cosmological constant. We examine the possible pattern of the mediation of supersymmetry breaking in models with anomalous U(1) gauge symmetry, and find that various different mixed mediation scenarios can be realized, including the mirage mediation which corresponds to a mixed modulus-anomaly mediation, D-term domination giving a split sparticle spectrum, and also a mixed gauge-D-term mediation scenario.

  9. The soft supersymmetry breaking in D=5 supergravity compactified on S_1/Z_2 orbifolds

    CERN Document Server

    Diamandis, G A; Kouroumalou, P; Lahanas, A B

    2010-01-01

    We study the origin of the supersymmetry breaking induced by the mediation of gravity and the radion multiplet from the hidden to the visible brane in the context of the N=2, D=5 supergravity compactified on S_1/Z_2 orbifolds. The soft supersymmetry breaking terms for scalar masses, trilinear scalar couplings and gaugino masses are calculated to leading order in the five dimensional Newton's constant k_5^2 and the gravitino mass m_{3/2}. These are finite and non-vanishing, with the scalar soft masses be non-tachyonic, and are all expressed in terms of the gravitino mass and the length scale R of the fifth dimension. The soft supersymmetry breaking parameters are thus correlated and the phenomenological implications are discussed.

  10. Dynamically warped theory space and collective supersymmetry breaking

    International Nuclear Information System (INIS)

    Carone, Christopher D.; Erlich, Joshua; Glover, Brian

    2005-01-01

    We study deconstructed gauge theories in which a warp factor emerges dynamically. We present nonsupersymmetric models in which the potential for the link fields has translational invariance, broken only by boundary effects that trigger an exponential profile of vacuum expectation values. The spectrum of physical states deviates exponentially from that of the continuum for large masses; we discuss the effects of such exponential towers on gauge coupling unification. We also present a supersymmetric example in which a warp factor is driven by Fayet-Iliopoulos terms. The model is peculiar in that it possesses a global supersymmetry that remains unbroken despite nonvanishing D-terms. Inclusion of gravity and/or additional messenger fields leads to the collective breaking of supersymmetry and to unusual phenomenology

  11. Nilpotent chiral superfield in N=2 supergravity and partial rigid supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M. [School of Physics M013, The University of Western Australia,35 Stirling Highway, Crawley W.A. 6009 (Australia); Tartaglino-Mazzucchelli, Gabriele [Instituut voor Theoretische Fysica, KU Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2016-03-15

    In the framework of N=2 conformal supergravity in four dimensions, we introduce a nilpotent chiral superfield suitable for the description of partial supersymmetry breaking in maximally supersymmetric spacetimes. As an application, we construct Maxwell-Goldstone multiplet actions for partial N=2→N=1 supersymmetry breaking on ℝ×S{sup 3}, AdS{sub 3}×S{sup 1} (or its covering AdS{sub 3}×ℝ), and a pp-wave spacetime. In each of these cases, the action coincides with a unique curved-superspace extension of the N=1 supersymmetric Born-Infeld action, which is singled out by the requirement of U(1) duality invariance.

  12. Inflation from supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. [UMR CNRS 7589 Sorbonne Universites, UPMC Paris 6, LPTHE, Paris (France); University of Bern, Albert Einstein Center, Institute for Theoretical Physics, Bern (Switzerland); Chatrabhuti, A.; Isono, H.; Knoops, R. [Chulalongkorn University, Department of Physics, Faculty of Science, Pathumwan, Bangkok (Thailand)

    2017-11-15

    We explore the possibility that inflation is driven by supersymmetry breaking with the superpartner of the goldstino (sgoldstino) playing the role of the inflaton. Moreover, we impose an R-symmetry that allows one to satisfy easily the slow-roll conditions, avoiding the so-called η-problem, and leads to two different classes of small-field inflation models; they are characterised by an inflationary plateau around the maximum of the scalar potential, where R-symmetry is either restored or spontaneously broken, with the inflaton rolling down to a minimum describing the present phase of our Universe. To avoid the Goldstone boson and be left with a single (real) scalar field (the inflaton), R-symmetry is gauged with the corresponding gauge boson becoming massive. This framework generalises a model studied recently by the present authors, with the inflaton identified by the string dilaton and R-symmetry together with supersymmetry restored at weak coupling, at infinity of the dilaton potential. The presence of the D-term allows a tuning of the vacuum energy at the minimum. The proposed models agree with cosmological observations and predict a tensor-to-scalar ratio of primordial perturbations 10{sup -9}

  13. Building models of gauge-mediated supersymmetry breaking without a messenger sector

    International Nuclear Information System (INIS)

    Arkani-Hamed, N.; Murayama, H.; March-Russell, J.

    1998-01-01

    We propose a general scheme for constructing models in which the Standard Model (SM) gauge interactions are the mediators of supersymmetry breaking to the fields in the supersymmetric SM, but where the SM gauge groups couple directly to the sector which breaks supersymmetry dynamically. Despite the direct coupling, the models preserve perturbative unification of the SM gauge coupling constants. Furthermore, the supergravity contributions to the squark and slepton masses can be naturally small, typically being much less than 1% of the gauge-mediated (GM) contributions. Both of these goals can be achieved without need of a fine-tuning or a very small coupling constant. This scheme requires run-away directions at the renormalizable level which are only lifted by non-renormalizable terms in the superpotential. To study the proposed scheme in practice, we develop a modified class of models based on SU(N) x SU(N-1) which allows us to gauge an SU(N-2) global symmetry. However, we point out a new problem which can exist in models where the dynamical supersymmetry breaking sector and the ordinary sector are directly coupled - the two-loop renormalization group has contributions which can induce negative (mass) 2 for the squarks and sleptons. We clarify the origin of the problem and argue that it is likely to be surmountable. We give a recipe for a successful model. (orig.)

  14. Natural Heavy Supersymmetry

    CERN Document Server

    Batell, Brian; McCullough, Matthew

    2015-01-01

    We study how, as a result of the scanning of supersymmetry breaking during the cosmological evolution, a relaxation mechanism can naturally determine a hierarchy between the weak scale and the masses of supersymmetric particles. Supersymmetry breaking is determined by QCD instanton effects, in an extremely minimal setup in which a single field drives the relaxation and breaks supersymmetry. Since gauginos are lighter than the other supersymmetric particles by a one-loop factor, the theory is a realisation of Split Supersymmetry free from the naturalness problem.

  15. Calculating the anomalous supersymmetry breaking in super Yang-Mills theories with local coupling

    International Nuclear Information System (INIS)

    Kraus, E.

    2002-01-01

    Supersymmetric Yang-Mills theories with local gauge coupling have a new type of anomalous breaking, which appears as a breaking of supersymmetry in the Wess-Zumino gauge. The anomalous breaking generates the two-loop order of the gauge β function in terms of the one-loop β function and the anomaly coefficient. We determine the anomaly coefficient in the Wess-Zumino gauge by solving the relevant supersymmetry identities. For this purpose we use a background gauge and show that the anomaly coefficient is uniquely determined by convergent one-loop integrals. When evaluating the one-loop diagrams in the background gauge, it is seen that the anomaly coefficient is determined by the Feynman-gauge value of the one-loop vertex function to G μν G-tilde μν at vanishing momenta

  16. Direct gauge mediation of uplifted metastable supersymmetry breaking in supergravity

    International Nuclear Information System (INIS)

    Maru, Nobuhito

    2010-01-01

    We propose a direct gauge mediation model based on an uplifted metastable supersymmetry (SUSY) breaking coupled to supergravity. A constant superpotential plays an essential role to fix the moduli as well as breaking SUSY and R symmetry and the cancellation of the cosmological constant. Gaugino masses are generated at leading order of SUSY breaking scale, and comparable to the sfermion masses as in the ordinary gauge mediation. The Landau pole problem for QCD coupling can be easily solved since more than half of messengers become superheavy, which are heavier than the grand unified theory (GUT) scale.

  17. Gauge coupling unification in heterotic string models with gauge mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Anandakrishnan, Archana; Raby, Stuart

    2011-01-01

    We calculate the weak scale minimal supersymmetric standard model spectrum starting from a heterotic string theory compactified on an anisotropic orbifold. Supersymmetry breaking is mediated by vectorlike exotics that arise naturally in heterotic string theories. The messengers that mediate supersymmetry breaking come in incomplete grand unified theory (GUT) multiplets and give rise to nonuniversal gaugino masses at the GUT scale. Models with nonuniversal gaugino masses at the GUT scale have the attractive feature of allowing for precision gauge coupling unification at the GUT scale with negligible contributions from threshold corrections near the unification scale. The unique features of this minimally supersymmetric standard model spectrum are light gluinos and also large mass differences between the lightest and the next-to-lightest neutralinos and charginos which could lead to interesting signatures at the colliders.

  18. Solution to the strong CP problem with gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Kong, O.C.; Wright, B.D.

    1998-01-01

    We demonstrate that a certain class of low scale supersymmetric open-quotes Nelson-Barrclose quotes type models can solve the strong and supersymmetric CP problems, while at the same time generating sufficient weak CP violation in the K 0 -bar K 0 system. In order to prevent one-loop corrections to bar θ which violate bounds coming from the neutron electric dipole moment (EDM), one needs a scheme for the soft supersymmetry breaking parameters which can naturally give sufficient squark degeneracies and proportionality of trilinear soft supersymmetry-breaking parameters to Yukawa couplings. We show that a gauge-mediated supersymmetry breaking sector can provide the needed degeneracy and proportionality, though that proves to be a problem for generic Nelson-Barr models. The workable model we consider here has the Nelson-Barr mass texture enforced by a gauge symmetry; one also expects a new U(1) gauge superfield with mass in the TeV range. The resulting model is predictive. We predict a measureable neutron EDM and the existence of extra vector-like quark superfields which can be discovered at the CERN Large Hadron Collider. Because the 3x3 Cabbibo-Kobayashi-Maskawa matrix is approximately real, the model also predicts a flat unitarity triangle and the absence of substantial CP violation in the B system at future B factories. We discuss the general issues pertaining to the construction of such a workable model and how they lead to the successful strategy. A detailed renormalization group study is then used to establish the feasibility of the model considered. copyright 1998 The American Physical Society

  19. Supersymmetry breaking through confining and dual theory gauge dynamics

    International Nuclear Information System (INIS)

    Csaki, C.; Massachusetts Inst. of Tech., Cambridge, MA; Randall, L.; Massachusetts Inst. of Tech., Cambridge, MA; Skiba, W.; Massachusetts Inst. of Tech., Cambridge, MA; Leigh, R.G.

    1997-01-01

    We show that theories in the confining, free magnetic, and conformal phases can break supersymmetry through dynamical effects. To illustrate this, we present theories based on the gauge groups SU(n) x SU(4) x U(1) and SU(n) x SU(5) x U(1) with the field content obtained by decomposing an SU(m) theory with an antisymmetric tensor and m - 4 antifundamentals. (orig.)

  20. Searches for Gauge-Mediated Supersymmetry Breaking Signatures with the ATLAS Detector at the LHC

    CERN Document Server

    Mann, Alexander; The ATLAS collaboration

    2018-01-01

    Gauge mediated breaking of supersymmetry predicts that the lightest supersymmetric particle is the gravitino. A variety of experimental signatures is predicted, depending on the nature and the lifetime of the next to lightest supersymmetric particle. The talk presents recent results from ATLAS searches for supersymmetry with photons, Z or Higgs bosons in the final state, which target GMSB / GGM models.

  1. Combined gauge-mediated and anomaly-mediated supersymmetry breaking and conformal sequestering

    International Nuclear Information System (INIS)

    Sundrum, Raman

    2005-01-01

    Anomaly-mediated supersymmetry breaking in the context of 4D conformally sequestered models is combined with Poppitz-Trivedi D-type gauge-mediation. The implementation of the two mediation mechanisms naturally leads to visible soft masses at the same scale so that they can cooperatively solve the μ and flavor problems of weak scale supersymmetry, as well as the tachyonic-slepton problem of pure anomaly-mediation. The tools are developed in a modular fashion for more readily fitting into the general program of optimizing supersymmetric dynamics in hunting for the most attractive weak scale phenomenologies combined with Planck-scale plausibility

  2. Gauge/gravity duality and meta-stable dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Bertolini, Matteo; Franco, Sebastian; Kachru, Shamit

    2007-01-01

    We engineer a class of quiver gauge theories with several interesting features by studying D-branes at a simple Calabi-Yau singularity. At weak 't Hooft coupling we argue using field theory techniques that these theories admit both supersymmetric vacua and meta-stable non-supersymmetric vacua, though the arguments indicating the existence of the supersymmetry breaking states are not decisive. At strong 't Hooft coupling we find simple candidate gravity dual descriptions for both sets of vacua

  3. What if supersymmetry breaking unifies beyond the GUT scale?

    International Nuclear Information System (INIS)

    Ellis, John; Mustafayev, Azar; Olive, Keith A.

    2010-01-01

    We study models in which soft supersymmetry-breaking parameters of the MSSM become universal at some unification scale, M in , above the GUT scale, M GUT . We assume that the scalar masses and gaugino masses have common values, m 0 and m 1/2 respectively, at M in . We use the renormalisation-group equations of the minimal supersymmetric SU(5) GUT to evaluate their evolutions down to M GUT , studying their dependences on the unknown parameters of the SU(5) superpotential. After displaying some generic examples of the evolutions of the soft supersymmetry-breaking parameters, we discuss the effects on physical sparticle masses in some specific examples. We note, for example, that near-degeneracy between the lightest neutralino and the lighter stau is progressively disfavoured as M in increases. This has the consequence, as we show in (m 1/2 ,m 0 ) planes for several different values of tan β, that the stau-coannihilation region shrinks as M in increases, and we delineate the regions of the (M in , tan β) plane where it is absent altogether. Moreover, as M in increases, the focus-point region recedes to larger values of m 0 for any fixed tan β and m 1/2 . We conclude that the regions of the (m 1/2 ,m 0 ) plane that are commonly favoured in phenomenological analyses tend to disappear at large M in . (orig.)

  4. Supersymmetry Breaking as a new source for the Generalized Uncertainty Principle

    OpenAIRE

    Faizal, Mir

    2016-01-01

    In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee–Wick field theories.

  5. Supersymmetry breaking as a new source for the generalized uncertainty principle

    Energy Technology Data Exchange (ETDEWEB)

    Faizal, Mir, E-mail: mirfaizalmir@gmail.com

    2016-06-10

    In this letter, we will demonstrate that the breaking of supersymmetry by a non-anticommutative deformation can be used to generate the generalized uncertainty principle. We will analyze the physical reasons for this observation, in the framework of string theory. We also discuss the relation between the generalized uncertainty principle and the Lee–Wick field theories.

  6. Higgs as a pseudo-Goldstone boson, the mu problem and gauge-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Kaminska, Anna; Lavignac, Stephane

    2011-01-01

    We study the interplay between the spontaneous breaking of a global symmetry of the Higgs sector and gauge-mediated supersymmetry breaking, in the framework of a supersymmetric model with global SU(3) symmetry. In addition to solving the supersymmetric flavor problem and alleviating the little hierarchy problem, this scenario automatically triggers the breaking of the global symmetry and provides an elegant solution to the μ/Bμ problem of gauge mediation. We study in detail the processes of global symmetry and electroweak symmetry breaking, including the contributions of the top/stop and gauge-Higgs sectors to the one-loop effective potential of the pseudo-Goldstone Higgs boson. While the joint effect of supersymmetry and of the global symmetry allows in principle the electroweak symmetry to be broken with little fine-tuning, the simplest version of the model fails to bring the Higgs mass above the LEP bound due to a suppressed tree-level quartic coupling. To cure this problem, we consider the possibility of additional SU(3)-breaking contributions to the Higgs potential, which results in a moderate fine-tuning. The model predicts a rather low messenger scale, a small tan β value, a light Higgs boson with Standard Model-like properties, and heavy higgsinos. (orig.)

  7. A novel class of string models with Scherk-Schwarz supersymmetry breaking

    CERN Document Server

    Scrucca, Claudio A; Scrucca, Claudio A.; Serone, Marco

    2001-01-01

    A new type of four-dimensional string vacua with Scherk--Schwarz supersymmetry breaking is considered. The construction involves Z_N x Z_M' freely acting orbifolds, defined in terms of rotations and translations in the internal space. Tachyons are either absent or limited to a given region of the tree-level moduli space. Particular attention is devoted to an interesting Z_3 x Z_3' heterotic example.

  8. Exploring non-holomorphic soft terms in the framework of gauge mediated supersymmetry breaking

    Science.gov (United States)

    Chattopadhyay, Utpal; Das, Debottam; Mukherjee, Samadrita

    2018-01-01

    It is known that in the absence of a gauge singlet field, a specific class of supersymmetry (SUSY) breaking non-holomorphic (NH) terms can be soft breaking in nature so that they may be considered along with the Minimal Supersymmetric Standard Model (MSSM) and beyond. There have been studies related to these terms in minimal supergravity based models. Consideration of an F-type SUSY breaking scenario in the hidden sector with two chiral superfields however showed Planck scale suppression of such terms. In an unbiased point of view for the sources of SUSY breaking, the NH terms in a phenomenological MSSM (pMSSM) type of analysis showed a possibility of a large SUSY contribution to muon g - 2, a reasonable amount of corrections to the Higgs boson mass and a drastic reduction of the electroweak fine-tuning for a higgsino dominated {\\tilde{χ}}_1^0 in some regions of parameter space. We first investigate here the effects of the NH terms in a low scale SUSY breaking scenario. In our analysis with minimal gauge mediated supersymmetry breaking (mGMSB) we probe how far the results can be compared with the previous pMSSM plus NH terms based study. We particularly analyze the Higgs, stop and the electroweakino sectors focusing on a higgsino dominated {\\tilde{χ}}_1^0 and {\\tilde{χ}}_1^{± } , a feature typically different from what appears in mGMSB. The effect of a limited degree of RG evolutions and vanishing of the trilinear coupling terms at the messenger scale can be overcome by choosing a non-minimal GMSB scenario, such as one with a matter-messenger interaction.

  9. Gravity mediated supersymmetry breaking in six dimensions

    International Nuclear Information System (INIS)

    Falkowski, A.; Lee, H.M.; Luedeling, C.

    2005-04-01

    We study gravity mediated supersymmetry breaking in four-dimensional effective theories derived from six-dimensional brane-world supergravities. Using the Noether method we construct a locally supersymmetric action for a bulk-brane system consisting of the minimal six-dimensional supergravity coupled to vector and chiral multiplets located at four-dimensional branes. We compactify this system on T 2 /Z 2 and derive the four-dimensional effective supergravity. Most interestingly, sequestering of the matter living on different branes is not explicit in the tree-level Kaehler potential (but of course the action obtained from this Kaehler potential is consistent with higher dimensional locality). As a consequence, the features of gravity mediation are different than in five-dimensional models. We identify one scenario of moduli stabilization that yields positive gravity mediated soft scalar masses squared. (orig.)

  10. Flavour violation in gauge-mediated supersymmetry breaking models: Experimental constraints and phenomenology at the LHC

    International Nuclear Information System (INIS)

    Fuks, Benjamin; Herrmann, Bjoern; Klasen, Michael

    2009-01-01

    We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied

  11. A Signature of Inflation from Dynamical Supersymmetry Breaking

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1998-01-01

    In models of cosmological inflation motivated by dynamical supersymmetry breaking, the potential driving inflation may be characterized by inverse powers of a scalar field. These models produce observables similar to those typical of the hybrid inflation scenario: negligible production of tensor (gravitational wave) modes, and a blue scalar spectral index. In this short note, we show that, unlike standard hybrid inflation models, dynamical supersymmetric inflation (DSI) predicts a measurable deviation from a power-law spectrum of fluctuations, with a variation in the scalar spectral index $|dn / d(\\ln k)|$ may be as large as 0.05. DSI can be observationally distinguished from other hybrid models with cosmic microwave background measurements of the planned sensitivity of the ESA's Planck Surveyor.

  12. Deflected Mirage Mediation: A Phenomenological Framework for Generalized Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Everett, Lisa L.; Kim, Ian-Woo; Ouyang, Peter; Zurek, Kathryn M.

    2008-01-01

    We present a general phenomenological framework for dialing between gravity mediation, gauge mediation, and anomaly mediation. The approach is motivated from recent developments in moduli stabilization, which suggest that gravity mediated terms can be effectively loop suppressed and thus comparable to gauge and anomaly mediated terms. The gauginos exhibit a mirage unification behavior at a ''deflected'' scale, and gluinos are often the lightest colored sparticles. The approach provides a rich setting in which to explore generalized supersymmetry breaking at the CERN Large Hadron Collider

  13. From hybrid to quadratic inflation with high-scale supersymmetry breaking

    Directory of Open Access Journals (Sweden)

    Constantinos Pallis

    2014-09-01

    Full Text Available Motivated by the reported discovery of inflationary gravity waves by the Bicep2 experiment, we propose an inflationary scenario in supergravity, based on the standard superpotential used in hybrid inflation. The new model yields a tensor-to-scalar ratio r≃0.14 and scalar spectral index ns≃0.964, corresponding to quadratic (chaotic inflation. The important new ingredients are the high-scale, (1.6–10⋅1013 GeV, soft supersymmetry breaking mass for the gauge singlet inflaton field and a shift symmetry imposed on the Kähler potential. The end of inflation is accompanied, as in the earlier hybrid inflation models, by the breaking of a gauge symmetry at (1.2–7.1⋅1016 GeV, comparable to the grand-unification scale.

  14. TeV scale resonant leptogenesis from supersymmetry breaking

    International Nuclear Information System (INIS)

    Hambye, Thomas; March-Russell, John; West, Stephen M.

    2004-01-01

    We propose a model of TeV-scale resonant leptogenesis based upon recent models of the generation of light neutrino masses from supersymmetry-breaking effects with TeV-scale right-handed (rhd) neutrinos, N i . The model leads to naturally large cosmological lepton asymmetries via the resonant behaviour of the one-loop self-energy contribution to N i decay. Our model addresses the primary problems of previous phenomenological studies of low-energy leptogenesis: a rational for TeV-scale rhd neutrinos with small Yukawa couplings so that the out-of equilibrium condition for N i decay is satisfied; the origin of the tiny, but non-zero mass splitting required between at least two N i masses; and the necessary non-trivial breaking of flavour symmetries in the rhd neutrino sector. The low mass-scale of the rhd neutrinos and their super partners, and the TeV-scale A-terms automatically contained within the model offer opportunities for partial direct experimental tests of this leptogenesis mechanism at future colliders. (author)

  15. Topological sources of soliton mass and supersymmetry breaking

    Science.gov (United States)

    Haas, Patrick A.

    2018-06-01

    We derive the Smarr formulae for two five-dimensional solutions of supergravity, which are asymptotically ; in particular, one has a magnetic ‘bolt’ in its center, and one is a two-center solution. We show for both spacetimes that supersymmetry—and so the BPS-bound—is broken by the holonomy and how each topological feature of a space-like hypersurface enters Smarr’s mass formula, with emphasis on the ones that give rise to the stated violation of the BPS-bound. In this light, we question if any violating extra-mass term in a spacetime with such asymptotics is only evident in the ADM mass while the Komar mass per se ‘tries’ to preserve BPS. Finally, we derive the cohomological fluxes for each situation and examine in a more general fashion how the breaking of supersymmetry—and so the BPS-bound violation—is associated with their topologies. In the second (and more complicated) scenario, we especially focus on the compact cycle linking the centers, and the contribution of non-vanishing bulk terms in the mass formula to the breaking of supersymmetry.

  16. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Luedeling, C

    2006-07-15

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  17. 6D supergravity. Warped solution and gravity mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Luedeling, C.

    2006-07-01

    We consider compactified six-dimensional gauged supergravity and find the general warped solution with four-dimensional maximal symmetry. Important features of the solution such as the number and position of singularities are determined by a free holomorphic function. Furthermore, in a particular torus compactification we derive the supergravity coupling of brane fields by the Noether procedure and investigate gravity-mediated supersymmetry breaking. The effective Kaehler potential is not sequestered, yet tree level gravity mediation is absent as long as the superpotential is independent of the radius modulus. (orig.)

  18. Supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1986-01-01

    This book presents a pedagogical introduction of supersymmetry, supergravity and string theories and deals with advanced related topics. Contents: Introduction, The Supersymmetry Algebras; Alternative Approach to the Supersymmetry Algebra; Immediate Consequences of the Supersymmetry Algebra; The Wess-Zumino Model; N = 1 Super QED; N = 1 Super Yang-Mills Theory and the Noether Procedure; Irreducible Representations of Supersymmetry; Simple Supergravity; Invariance of Simple Supergravity; Tensor Calculus of Rigid Supersymmetry; Theories of Extended Rigid Supersymmetry; Local Tensor Calculus and the Coupling of Supergravity to Matter; Superspace; Superspace Formulations of Rigid Supersymmetric Theories; Superspace Formulation of N = 1 Supergravity; N = 1 Super-Feynman Rules; Ultraviolet Properties of the Extended Rigid Supersymmetry Theories; Spontaneous Breaking of Supersymmetry and Realistic Models; Currents in Supersymmetric Theories; Two-Dimensional Supersymmetry Models; Gauge Covariant Formulation of Strings; Appendix A: An Explanation of Our Choices of Conventions; Appendix B: A List of Reviews and Books

  19. Leptogenesis after chaotic sneutrino inflation and the supersymmetry breaking scale

    Directory of Open Access Journals (Sweden)

    Fredrik Björkeroth

    2017-03-01

    Full Text Available We discuss resonant leptogenesis arising from the decays of two nearly-degenerate right-handed neutrinos, identified as the inflaton and stabiliser superfields in a model of chaotic sneutrino inflation. We compare an analytical estimate of the baryon asymmetry ηB in the Boltzmann approximation to a numerical solution of the full density matrix equations, and find that the analytical result fails to capture the correct physics in certain regions of parameter space. The observed baryon asymmetry can be realised for a breaking of the mass degeneracy as small as O(10−8. The origin of such a small mass splitting is explained by considering supersymmetry (SUSY breaking in supergravity, which requires a constant in the superpotential of the order of the gravitino mass m3/2 to cancel the cosmological constant. This yields additional terms in the (sneutrino mass matrices, lifting the degeneracy and linking ηB to the SUSY breaking scale. We find that achieving the correct baryon asymmetry requires a gravitino mass m3/2≥O(100 TeV.

  20. Open-string models with broken supersymmetry

    International Nuclear Information System (INIS)

    Sagnotti, A.

    2002-01-01

    I review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua. (author)

  1. Open-string models with broken supersymmetry

    International Nuclear Information System (INIS)

    Sagnotti, Augusto

    2000-01-01

    We review the salient features of three classes of open-string models with broken supersymmetry. These suffice to exhibit, in relatively simple settings, the two phenomena of 'brane supersymmetry' and 'brane supersymmetry breaking'. In the first class of models, to lowest order supersymmetry is broken both in the closed and in the open sectors. In the second class of models, to lowest order supersymmetry is broken in the closed sector, but is exact in the open sector, at least for the low-lying modes, and often for entire towers of string excitations. Finally, in the third class of models, to lowest order supersymmetry is exact in the closed (bulk) sector, but is broken in the open sector. Brane supersymmetry breaking provides a natural solution to some old difficulties met in the construction of open-string vacua

  2. Supersymmetry breaking and determination of the unification gauge coupling constant in string theories

    International Nuclear Information System (INIS)

    Carlos, B. de; Casas, J.A.; Munoz, C.

    1993-01-01

    We study in a systematic and modular invariant way gaugino condensation in the hidden sector as a potential source of hierarchical supersymmetry breaking and a non-trivial potential for the dilaton S whose real part corresponds to the tree-level gauge coupling constant (Re S∝g gut -2 ). For the case of pure Yang-Mills condensation, we show that no realistic results (in particular no reasonable values for Re S) can emerge, even if the hidden gauge group is not simple. However, in the presence of hidden matter (i.e. the most frequent case) there arises a very interesting class of scenarios with two or more hidden condensing groups for which the dilaton dynamically acquires a reasonable value (Re S∝2) and supersymmetry is broken at the correct scale (m 3/2 ∝10 3 GeV) with no need of fine-tuning. Actually, good values for Re S and m 3/2 are correlated. We make an exhaustive classification of the working possibilities. Remarkably, the results are basically independent from the value of δ GS (the contributions from the Green-Schwarz mechanism). The radius of the compactified space also acquires an expectation value, breaking duality spontaneously. (orig.)

  3. Cornering gauge-mediated supersymmetry breaking with quasi-stable sleptons at the Tevatron

    OpenAIRE

    Martin, Stephen P.; Wells, James D.

    1998-01-01

    There are many theoretical reasons why heavy quasi-stable charged particles might exist. Pair production of such particles at the Tevatron can produce highly ionizing tracks (HITs) or fake muons. In gauge-mediated supersymmetry breaking, sparticle production can lead to events with a pair of quasi-stable sleptons, a significant fraction of which will have the same electric charge. Depending on the production mechanism and the decay chain, they may also be accompanied by additional energetic l...

  4. Supersymmetry and supergravity: Phenomenology and grand unification

    International Nuclear Information System (INIS)

    Arnowitt, R.; Nath, P.

    1993-01-01

    A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field

  5. Sweet Spot Supersymmetry and Composite Messengers

    International Nuclear Information System (INIS)

    Ibe, Masahiro; Kitano, Ryuichiro

    2007-01-01

    Sweet spot supersymmetry is a phenomenologically and cosmologically perfect framework to realize a supersymmetric world at short distance. We discuss a class of dynamical models of supersymmetry breaking and its mediation whose low-energy effective description falls into this framework. Hadron fields in the dynamical models play a role of the messengers of the supersymmetry breaking. As is always true in the models of the sweet spot supersymmetry, the messenger scale is predicted to be 10 5 GeV ∼ mess ∼ 10 GeV. Various values of the effective number of messenger fields N mess are possible depending on the choice of the gauge group

  6. Natural X-ray lines from the low scale supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhaofeng, E-mail: zhaofengkang@gmail.com [Center for High-Energy Physics, Peking University, Beijing 100871 (China); School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Ko, P., E-mail: pko@kias.re.kr [School of Physics, Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Li, Tianjun, E-mail: tli@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Liu, Yandong, E-mail: ydliu@itp.ac.cn [State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2015-03-06

    In the supersymmetric models with low scale supersymmetry (SUSY) breaking where the gravitino mass is around keV, we show that the 3.5 keV X-ray lines can be explained naturally through several different mechanisms: (I) a keV scale dark gaugino plays the role of sterile neutrino in the presence of bilinear R-parity violation. Because the light dark gaugino obtains Majorana mass only via gravity mediation, it is a decaying warm dark matter (DM) candidate; (II) the compressed cold DM states, whose mass degeneracy is broken by gravity mediated SUSY breaking, emit such a line via the heavier one decay into the lighter one plus photon(s). A highly supersymmetric dark sector may readily provide such kind of system; (III) the light axino, whose mass again is around the gravitino mass, decays to neutrino plus gamma in the R-parity violating SUSY. Moreover, we comment on dark radiation from dark gaugino.

  7. Supersymmetry breaking and dynamical determination of superstring parameters

    International Nuclear Information System (INIS)

    Casas, J.A.; Munoz, C.; Ross, G.G.

    1991-01-01

    The characteristics of the effective potentials coming from phenomenologically promising compactified superstring theories are examined, paying special attention to the supersymmetry breaking issue. We briefly review the status and some of the recent work on the subject and present a mechanism for generating the large gauge hierarchy by gaugino condensation effect in the case that the hidden sector possesses more than one condensate. Explicit examples based on orbifold compactification in which this is realized are also given. Minimization of the effective potential not only determines the gauge hierarchy but also fixes other important parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. These get raesonable values which may, in turn, lead to a determination of the family mass hierarchy. (orig.)

  8. Supersymmetry breaking metastable vacua in runaway quiver gauge theories

    CERN Document Server

    Garcia-Etxebarria, Inaki; Uranga, Angel M

    2007-01-01

    In this paper we consider quiver gauge theories with fractional branes whose infrared dynamics removes the classical supersymmetric vacua (DSB branes). We show that addition of flavors to these theories (via additional non-compact branes) leads to local meta-stable supersymmetry breaking minima, closely related to those of SQCD with massive flavors. We simplify the study of the one-loop lifting of the accidental classical flat directions by direct computation of the pseudomoduli masses via Feynman diagrams. This new approach allows to obtain analytic results for all these theories. This work extends the results for the $dP_1$ theory in hep-th/0607218. The new approach allows to generalize the computation to general examples of DSB branes, and for arbitrary values of the superpotential couplings.

  9. Higher derivative operators from Scherk-Schwarz supersymmetry breaking on Τ2/Z2

    International Nuclear Information System (INIS)

    Ghilencea, D.M.

    2005-09-01

    In orbifold compactifications on Τ 2 /Z 2 with Scherk-Schwarz supersymmetry breaking, it is shown that (brane-localised) superpotential interactions and (bulk) gauge interactions generate at one-loop higher derivative counterterms to the mass of the brane (or zero-mode of the bulk) scalar field. These brane-localised operators are generated by integrating out the bulk modes of the initial theory which, although supersymmetric, is nevertheless non-renormalisable. It is argued that such operators, of non-perturbative origin and not protected by non-renormalisation theorems, are generic in orbifold compactifications and play a crucial role in the UV behaviour of the two-point Green function of the scalar field self-energy. Their presence in the action with unknown coefficients prevents one from making predictions about physics at (momentum) scales close to/above the compactification scale(s). Our results extend to the case of two dimensional orbifolds, previous findings for S 1 /Z 2 and S 1 /(Z 2 x Z 2 ') compactifications where brane-localised higher derivative operators are also dynamically generated at loop level, regardless of the details of the supersymmetry breaking mechanism. We stress the importance of these operators for the hierarchy and the cosmological constant problems in compactified theories. (orig.)

  10. Supersymmetry, supergravity and particle physics

    International Nuclear Information System (INIS)

    Nilles, H.P.

    1984-01-01

    We give a short introduction to N=1 supersymmetry and supergravity and review the attempts to construct models in which the breakdown scale of the weak interactions is related to supersymmetry breaking. (orig.)

  11. Supersymmetry Reach of Tevatron Upgrades and LHC in Gauge-mediated Supersymmetry-breaking Models

    CERN Document Server

    Wang, Y

    2002-01-01

    We examine signals for sparticle production at the Fermilab Tevatron and the CERN Large Hadron Collider (LHC) within the framework of gauge mediated supersymmetry breaking models. We divide our analysis into four different model lines, each of which leads to qualitatively different signatures. We identify cuts to enhance the signal above Standard Model backgrounds, and use ISAJET to evaluate the SUSY reach of experiments at the Fermilab Main Injector and at its luminosity upgrades and also at the LHC. We examine the reach of the LHC via the canonical E/ and multilepton channels that have been advocated within the mSUGRA framework. For the model lines that we have examined, we find that the reach is at least as large, and frequently larger, than in the mSUGRA framework. For two of these model lines, we find that the ability to identify b-quarks and τ-leptons with high efficiency and purity is essential for the detection of the signal.

  12. Constraining Anomaly Mediated Supersymmetry Breaking Framework via Ongoing Muon g-2 Experiment at Brookhaven

    CERN Document Server

    Chattopadhyay, U; Roy, S; PH; Chattopadhyay, Utpal; Ghosh, Dilip Kumar; Roy, Sourov

    2000-01-01

    The ongoing high precision E821 Brookhaven National Laboratory experiment on muon g-2 is promising to probe a theory involving supersymmetry. We have studied the constraints on minimal Anomaly Mediated Supersymmetry Breaking (AMSB) model using the current data of muon g-2 from Brookhaven. A scenario of seeing no deviation from the Standard Model is also considered, within $2\\sigma$ limit of the combined error from the Standard Model result and the Brookhaven predicted uncertainty level. The resulting constraint is found to be complementary to what one obtains from $b \\to s+ \\gamma$ bounds within the AMSB scenario, since only a definite sign of $\\mu$ is effectively probed via $b \\to s+ \\gamma$. A few relevant generic features of the model are also described for disallowed regions of the parameter space.

  13. GUT scale and superpartner masses from anomaly mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo; Shadmi, Yael; Shirman, Yuri

    2001-01-01

    We consider models of anomaly-mediated supersymmetry breaking (AMSB) in which the grand unification (GUT) scale is determined by the vacuum expectation value of a chiral superfield. If the anomaly-mediated contributions to the potential are balanced by gravitational-strength interactions, a GUT scale of M Planck /(16π 2 ) can be generated. The GUT threshold also affects superpartner masses, and can easily give rise to realistic predictions if the GUT gauge group is asymptotically free. We give an explicit example of a model with these features, in which the doublet-triplet splitting problem is solved. The resulting superpartner spectrum is very different from that of previously considered AMSB models, with gaugino masses typically unifying at the GUT scale

  14. WIMPless dark matter from non-Abelian hidden sectors with anomaly-mediated supersymmetry breaking

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Shadmi, Yael

    2011-01-01

    In anomaly-mediated supersymmetry breaking models, superpartner masses are proportional to couplings squared. Their hidden sectors therefore naturally contain WIMPless dark matter, particles whose thermal relic abundance is guaranteed to be of the correct size, even though they are not weakly interacting massive particles. We study viable dark matter candidates in WIMPless anomaly-mediated supersymmetry breaking models with non-Abelian hidden sectors and highlight unusual possibilities that emerge in even the simplest models. In one example with a pure SU(N) hidden sector, stable hidden gluinos freeze out with the correct relic density, but have an extremely low, but natural, confinement scale, providing a framework for self-interacting dark matter. In another simple scenario, hidden gluinos freeze out and decay to visible Winos with the correct relic density, and hidden glueballs may either be stable, providing a natural framework for mixed cold-hot dark matter, or may decay, yielding astrophysical signals. Last, we present a model with light hidden pions that may be tested with improved constraints on the number of nonrelativistic degrees of freedom. All of these scenarios are defined by a small number of parameters, are consistent with gauge coupling unification, preserve the beautiful connection between the weak scale and the observed dark matter relic density, and are natural, with relatively light visible superpartners. We conclude with comments on interesting future directions.

  15. Soft masses in theories with supersymmetry breaking by TeV compactification

    International Nuclear Information System (INIS)

    Antoniadis, I.; Dimopoulos, S.; Pomarol, A.; Quiros, M.

    1999-01-01

    We study the sparticle spectroscopy and electroweak breaking of theories where supersymmetry is broken by compactification (Scherk-Schwarz mechanism) at a TeV The evolution of the soft terms above the compactification scale and the resulting sparticle spectrum are very different from those of the usual MSSM and gauge-mediated theories. This is traced to the softness of the Scherk-Schwarz mechanism which leads to scalar sparticle masses that are only logarithmically sensitive to the cutoff starting at two loops. As a result, the mass-squareds of the squarks and sleptons are a loop factor smaller than those of the gauginos. In addition, the mechanism is very predictive and the sparticle spectrum depends on just two new parameters. A significant advantage of this mechanism relative to gauge mediation is that a Higgsino mass μ ∼ M susy is automatically generated when supersymmetry is broken. Our analysis applies equally well to theories where the cutoff is near a TeV or M Pl or some intermediate scale. We also use these observations to show how we may obtain compactification radii which are hierarchically larger than the fundamental cutoff scale

  16. Generalized geometry and partial supersymmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Triendl, Hagen Mathias

    2010-08-15

    This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)

  17. Generalized geometry and partial supersymmetry breaking

    International Nuclear Information System (INIS)

    Triendl, Hagen Mathias

    2010-08-01

    This thesis consists of two parts. In the first part we use the formalism of (exceptional) generalized geometry to derive the scalar field space of SU(2) x SU(2)-structure compactifications. We show that in contrast to SU(3) x SU(3) structures, there is no dynamical SU(2) x SU(2) structure interpolating between an SU(2) structure and an identity structure. Furthermore, we derive the scalar manifold of the low-energy effective action for consistent Kaluza-Klein truncations as expected from N = 4 supergravity. In the second part we then determine the general conditions for the existence of stable Minkowski and AdS N = 1 vacua in spontaneously broken gauged N = 2 supergravities and construct the general solution under the assumption that two appropriate commuting isometries exist in the hypermultiplet sector. Furthermore, we derive the low-energy effective action below the scale of partial supersymmetry breaking and show that it satisfies the constraints of N = 1 supergravity. We then apply the discussion to special quaternionic-Kaehler geometries which appear in the low-energy limit of SU(3) x SU(3)-structure compactifications and construct Killing vectors with the right properties. Finally we discuss the string theory realizations for these solutions. (orig.)

  18. Lower Limits on Soft Supersymmetry-Breaking Scalar Masses

    CERN Document Server

    Ellis, John R.; Olive, Keith A.; Ellis, John; Olive, Keith A.

    2002-01-01

    Working in the context of the CMSSM, we argue that phenomenological constraints now require the universal soft supersymmetry-breaking scalar mass m_0 be non-zero at the input GUT scale. This conclusion is primarily imposed by the LEP lower limit on the Higgs mass and the requirement that the lightest supersymmetric particle not be charged. We find that m_0 > 0 for all tan beta if mu 0 only when tan beta sim 8 and one allows an uncertainty of 3+ GeV in the theoretical calculation of the Higgs mass. Upper limits on flavour-changing neutral interactions in the MSSM squark sector allow substantial violations of non-universality in the m_0 values, even if their magnitudes are comparable to the lower limit we find in the CMSSM. Also, we show that our lower limit on m_0 at the GUT scale in the CMSSM is compatible with the no-scale boundary condition m_0 = 0 at the Planck scale.

  19. Topics in broken supersymmetry

    International Nuclear Information System (INIS)

    Lee, I.H.

    1984-01-01

    Studies on two topics in the framework of broken supersymmetry are presented. Chapter I is a brief introduction in which the motivation and the background of this work are discussed. In Chapter II, the author studies the decay K + → π + γγ in models with spontaneous supersymmetry breaking and find that it is generally suppressed relative to the decay K + → π + anti nu nu of the conventional model, except possibly for a class of models where the scalar quark masses are generated by radiative corrections from a much larger supersymmetry breaking scale. For a small range of scalar quark and photino mass parameters, the cascade decay process K + → π + π 0 → π + γγ will become dominant over the anti nu nu mode. The author also comments on the possibility of probing the neutrino mass through the K + → π + π 0 → π + anti nu nu cascade decay. Chapter III is concerned with the implications of explicit lepton number violating soft operators in a general low energy effective theory with softly broken supersymmetry

  20. Supersymmetry and cosmology

    International Nuclear Information System (INIS)

    Feng, Jonathan L.

    2005-01-01

    Cosmology now provides unambiguous, quantitative evidence for new particle physics. I discuss the implications of cosmology for supersymmetry and vice versa. Topics include: motivations for supersymmetry; supersymmetry breaking; dark energy; freeze out and WIMPs; neutralino dark matter; cosmologically preferred regions of minimal supergravity; direct and indirect detection of neutralinos; the DAMA and HEAT signals; inflation and reheating; gravitino dark matter; Big Bang nucleosynthesis; and the cosmic microwave background. I conclude with speculations about the prospects for a microscopic description of the dark universe, stressing the necessity of diverse experiments on both sides of the particle physics/cosmology interface

  1. Fermion families and soft supersymmetry breaking from flux in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Schweizer, Julian

    2016-10-19

    In this thesis, we study compactifications from six to four dimensions on the orbifold T{sup 2}/Z{sub 2}. By choosing this simple framework, we are able to study effects generically present in compactifications of higher-dimensional theories, while still working in a well-defined and manageable setting, where a detailed examination of all contributions is possible. Progress in understanding effects pertaining to compactification has applications to String Theory and orbifold GUT constructions. We investigate three models. The first is a model of global supersymmetry in six dimensions, where fixed point localised FI terms for a bulk U(1) arise from one-loop diagrams of charged bulk fields. These FI terms generically break supersymmetry and the gauge symmetry. In addition, charged bulk fields induce anomalies in the bulk and at the fixed points. We expand previous work by considering spontaneous gauge symmetry breaking at fixed points as a method to cancel some localised FI terms. We also construct the field content for which all bulk and fixed point anomalies can be cancelled by a Green-Schwarz mechanism. The second model we examine is a 6d supergravity with a U(1) gauge symmetry in which we turn on background flux. While it is known that the flux can help in stabilising the moduli together with a KKLT-type superpotential, we investigate anomaly cancellation in this setup for the first time. From the Green-Schwarz term we can read off one-loop corrections to the gauge kinetic function. They play an important role in finding realistic vacua while complete moduli stabilisation is achieved through a combination of D- and F-terms. While the spectrum and localisation of charged bulk fields were constructed before, on the torus and on an orbifold without Wilson lines, we present the orbifold case with Wilson lines in a consistent manner. The Wilson lines give strong criteria for the (de)localisation of the bulk field. The multiplicity of even and odd parity states also

  2. Multilepton signals of gauge mediated supersymmetry breaking at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    D' Hondt, Jorgen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); De Causmaecker, Karen [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Fuks, Benjamin [Theory Division, Physics Department, CERN, CH-1211 Geneva 23 (Switzerland); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques, Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg (France); Mariotti, Alberto [Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE (United Kingdom); Mawatari, Kentarou [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels (Belgium); International Solvay Institutes, Brussels (Belgium); Petersson, Christoffer [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium); Department of Fundamental Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Redigolo, Diego [International Solvay Institutes, Brussels (Belgium); Physique Théorique et Mathématique, Université Libre de Bruxelles, C.P. 231, B-1050 Brussels (Belgium)

    2014-04-04

    We investigate multilepton LHC signals arising from electroweak processes involving sleptons. We consider the framework of general gauge mediated supersymmetry breaking, focusing on models where the low mass region of the superpartner spectrum consists of the three generations of charged sleptons and the nearly massless gravitino. We demonstrate how such models can provide an explanation for the anomalous four lepton events recently observed by the CMS Collaboration, while satisfying other existing experimental constraints. The best fit to the CMS data is obtained for a selectron/smuon mass of around 145 GeV and a stau mass of around 90 GeV. These models also give rise to final states with more than four leptons, offering alternative channels in which they can be probed and we estimate the corresponding production rates at the LHC.

  3. Supersymmetry and Inflation

    CERN Document Server

    Ferrara, Sergio

    2017-01-01

    Theories with elementary scalar degrees of freedom seem nowadays required for simple descriptions of the Standard Model and of the Early Universe. It is then natural to embed theories of inflation in supergravity, also in view of their possible ultraviolet completion in String Theory. After some general remarks on inflation in supergravity, we describe examples of minimal inflaton dynamics which are compatible with recent observations, including higher-curvature ones inspired by the Starobinsky model. We also discuss different scenarios for supersymmetry breaking during and after inflation, which include a revived role for non-linear realizations. In this spirit, we conclude with a discussion of the link, in four dimensions, between "brane supersymmetry breaking" and the super--Higgs effect in supergravity.

  4. Generalised universality of gauge thresholds in heterotic vacua with and without supersymmetry

    CERN Document Server

    Angelantonj, Carlo; Tsulaia, Mirian

    2015-01-01

    We study one-loop quantum corrections to gauge couplings in heterotic vacua with spontaneous supersymmetry breaking. Although in non-supersymmetric constructions these corrections are not protected and are typically model dependent, we show how a universal behaviour of threshold differences, typical of supersymmetric vacua, may still persist. We formulate specific conditions on the way supersymmetry should be broken for this to occur. Our analysis implies a generalised notion of threshold universality even in the case of unbroken supersymmetry, whenever extra charged massless states appear at enhancement points in the bulk of moduli space. Several examples with universality, including non-supersymmetric chiral models in four dimensions, are presented.

  5. Supersymmetry without the Desert

    International Nuclear Information System (INIS)

    Nomura, Yasunori; Poland, David

    2006-01-01

    Naturalness of electroweak symmetry breaking in weak scale supersymmetric theories may suggest the absence of the conventional supersymmetric desert. We present a simple, realistic framework for supersymmetry in which (most of) the virtues of the supersymmetric desert are naturally reproduced without having a large energy interval above the weak scale. The successful supersymmetric prediction for the low-energy gauge couplings is reproduced due to a gauged R symmetry present in the effective theory at the weak scale. The observable sector superpotential naturally takes the form of the next-to-minimal supersymmetric standard model, but without being subject to the Landau pole constraints up to the conventional unification scale. Supersymmetry breaking masses are generated by the F-term and D-term VEVs of singlet and U(1) R gauge fields, as well as by anomaly mediation, at a scale not far above the weak scale. We study the resulting pattern of supersymmetry breaking masses in detail, and find that it can be quite distinct. We construct classes of explicit models within this framework, based on higher dimensional unified theories with TeV-sized extra dimensions. A similar model based on a non-R symmetry is also presented. These models have a rich phenomenology at the TeV scale, and allow for detailed analyses of, e.g., electroweak symmetry breaking

  6. Cosmology, inflation, and supersymmetry

    International Nuclear Information System (INIS)

    Albrecht, A.; Dimopoulos, S.; Fischler, W.; Kolb, E.W.; Raby, S.; Steinhardt, P.J.

    1982-01-01

    Cosmological consequences of supersymmetric grand unified models based on the Witten-O'Raifeartaigh potential are discussed. In particular we study the development of the phase transition in the spontaneous breaking of supersymmetry. We find that in realistic models where light fields feel supersymmetry breaking only through coupling to massive fields, e.g., the Geometric Hierarchy model, the universe does not inflate or reheat. Thus, the standard cosmological flatness, monopole, and horizon problems remain. In addition, we find that the transition is never completed, in the sense that the universe remains dominated by coherent Higgs field energy, resulting in an apparent matter dominated universe with Ω greater than or equal to 10 30

  7. Naturalness and supersymmetry

    International Nuclear Information System (INIS)

    Agashe, K.; Univ. of California, Berkeley, CA

    1998-05-01

    In this thesis, the author argues that the supersymmetric Standard Model, while avoiding the fine tuning in electroweak symmetry breaking, requires unnaturalness/fine tuning in some (other) sector of the theory. For example, Baryon and Lepton number violating operators are allowed which lead to proton decay and flavor changing neutral currents. He studies some of the constraints from the latter in this thesis. He has to impose an R-parity for the theory to be both natural and viable. In the absence of flavor symmetries, the supersymmetry breaking masses for the squarks and sleptons lead to too large flavor changing neutral currents. He shows that two of the solutions to this problem, gauge mediation of supersymmetry breaking and making the scalars of the first two generations heavier than a few TeV, reintroduce fine tuning in electroweak symmetry breaking. He also constructs a model of low energy gauge mediation with a non-minimal messenger sector which improves the fine tuning and also generates required Higgs mass terms. He shows that this model can be derived from a Grand Unified Theory despite the non-minimal spectrum

  8. INFN-Laboratori Nazionali di Frascati School 2013: Breaking of Supersymmetry and Ultraviolet Divergences in Extended Supergravity

    CERN Document Server

    BUDS 2013

    2014-01-01

    This is the seventh volume in a series on the general topics of supersymmetry, supergravity, black objects (including black holes), and the attractor mechanism. The present volume is based on lectures held in March 2013 at the INFN-Laboratori Nazionali di Frascati during the Breaking of supersymmetry and Ultraviolet Divergences in extended Supergravity Workshop (BUDS 2013), organized by Stefano Bellucci, with the participation of prestigious speakers including P. Aschieri, E. Bergshoeff, M. Cederwall, T. Dennen, P. Di Vecchia, S. Ferrara, R. Kallosh, A. Karlsson, M. Koehn, B. Ovrut, A. Van Proeyen, G. Ruppeiner. Special attention is devoted to discussing topics related to the cancellation of ultraviolet divergences in extended supergravity and Born-Infeld-like actions. All talks were followed by extensive discussions and subsequent reworking of the various contributions, a feature which is reflected in the unique "flavor" of this volume.

  9. Origin and consequence of the supersymmetry breaking: -) phenomenology of neutralinos annihilation in Zh and WW, -) (0,1/2) representation and duality

    International Nuclear Information System (INIS)

    Labonne, B.

    2007-01-01

    Supersymmetry is an interesting extension of the Standard Model. Hence, its formal and phenomenological aspects need to be understood before establishing it as realized in Nature. Supersymmetry offers a natural dark matter candidate. To check this hypothesis, a crucial point would be the indirect detection of neutralino annihilation products. Among annihilation channels, the one with a Z boson and a Higgs scalar, is of interest because of the hard spectrum it yields. However, the spectra needs to be weighted by branching ratios.The Zh channel is then known to be suppressed. We notice that the deeper broken the supersymmetry, the stronger the suppression. Thus the channel suppression has to be understood in terms of gauge independence of different diagrams involved, and high energy unitarity. A key element of the suppression for this channel is the Z boson polarization, which comes from the initial Majorana particles at rest. Finally, we investigate the role of polarization in the WW channel. Here, polarization does not suppress the channel but modifies the shape of the decay products spectra. This could be important from an experimental point of view. On a more formal side, we point out different kinds of representations of the (0,1/2) multiplet in superspace. First we focus on a new kind of superfield called X. Next we present a duality in 4 dimensions, before showing its extension to superspace. Without supersymmetry, this duality links a 3-form to a constant. In superspace, we find that the duality links a 3-form superfield to the new X superfield. It is essential to understand that some components of the 3-form and the X superfield seem to help supersymmetry breaking. Finally we try to transmit this breaking to usual chiral superfields. (author)

  10. Non-minimal and non-universal supersymmetry

    Indian Academy of Sciences (India)

    The motivations for TeV scale supersymmetry (SUSY) [1] remain as good as ever: 1. TeV scale SUSY cancels the ... Terms in the expansion of V then lead to soft SUSY breaking masses in the ... strongest motivation for low energy supersymmetry, and the widespread belief that super- partners should be found before or at ...

  11. Supertrace formulae for nonlinearly realized supersymmetry

    Science.gov (United States)

    Murli, Divyanshu; Yamada, Yusuke

    2018-04-01

    We derive the general supertrace formula for a system with N chiral superfields and one nilpotent chiral superfield in global and local supersymmetry. The nilpotent multiplet is realized by taking the scalar-decoupling limit of a chiral superfield breaking supersymmetry spontaneously. As we show, however, the modified formula is not simply related to the scalar-decoupling limit of the supertrace in linearly-realized supersymmetry. We also show that the supertrace formula reduces to that of a linearly realized supersymmetric theory with a decoupled sGoldstino if the Goldstino is the fermion in the nilpotent multiplet.

  12. Introduction to the supersymmetry theories of particles

    International Nuclear Information System (INIS)

    Fayet, P.

    We present the motivations for a supersymmetry relating bosons and fermions, and we show how the supersymmetry algebra can be naturally introduced. We study supersymmetric field theories: super Yukawa model, and gauge theories. We show how supersymmetry relates massive gauge bosons such as the W +- and Z, and Higgs bosons. We discuss spontaneous supersymmetry breaking, and its special features. We also define a new invariance R, related with a conserved quantum number carried by the supersymmetry generators. We apply these ideas to elementary particles. This leads to new particles such as spin 0 leptons and quarks, photino and gluinos; their properties are discussed in detail. We also introduce gravitation (supergravity) and we study the properties of the gravitino. Finally we comment on supersymmetric grand unified theories [fr

  13. Dynamical SUSY breaking in meta-stable vacua

    International Nuclear Information System (INIS)

    Intriligator, Kenneth; Seiberg, Nathan; Shih, David

    2006-01-01

    Dynamical supersymmetry breaking in a long-lived meta-stable vacuum is a phenomenologically viable possibility. This relatively unexplored avenue leads to many new models of dynamical supersymmetry breaking. Here, we present a surprisingly simple class of models with meta-stable dynamical supersymmetry breaking: N = 1 supersymmetric QCD, with massive flavors. Though these theories are strongly coupled, we definitively demonstrate the existence of meta-stable vacua by using the free-magnetic dual. Model building challenges, such as large flavor symmetries and the absence of an R-symmetry, are easily accommodated in these theories. Their simplicity also suggests that broken supersymmetry is generic in supersymmetric field theory and in the landscape of string vacua

  14. Behavior of supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Midorikawa, Shoichi.

    1984-11-01

    Supersymmetry breaking at finite temperature is investigated by using the real-time formalism. We derive the Ward-Takahashi identities of the composite fields by using the path integral formalism. We also calculate the one-loop correction to fermion and boson masses, and discuss the connection of the perturbative result with that obtained from the effective potential. Our result shows that supersymmetry is broken explicitly even in the real-time formalism. (author)

  15. Dipole mechanism of spontaneous breaking of N = 2 supersymmetry. II. Reformulation and generalization in harmonic superspace

    International Nuclear Information System (INIS)

    Ohta, N.

    1985-01-01

    After elucidating the component structure of N = 2 supersymmetric gauge theories in the harmonic superspace formalism with central charges, we reformulate our previous dipole mechanism of spontaneous breaking of N = 2 supersymmetry free from the Nambu-Goldstone-fermion difficulties in this formalism. This allows a generalization of our previous model of generating finiteness-preserving mass terms for scalar hypermultiplets; we can also obtain the gauge-fermion and scalar mass terms together with specific cubic interactions for scalar fields. The mechanism is equivalent to the so-called spurion method

  16. Spontaneous symmetry breaking and pseudo-Goldstone bosons in supersymmetry theories

    International Nuclear Information System (INIS)

    Capper, D.M.; Ramon Medrano, M.

    1976-01-01

    It is shown, for a certain class of supersymmetric theories, that if supersymmetry is unbroken in the tree approximation then it remains unbroken when the one-loop quantum corrections are included. We use a simple model to illustrate the above theorem and also to demonstrate that at least some of the massless scalars which plague supersymmetry theories are pseudo-Goldstone bosons

  17. Implications of gauge-mediated supersymmetry breaking with vector-like quarks and a ~125 GeV Higgs boson

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Wells, James D. [CERN, Geneva (Switzerland)

    2012-08-01

    We investigate the implications of models that achieve a Standard Model-like Higgs boson of mass near 125 GeV by introducing additional TeV-scale supermultiplets in the vector-like 10+\\bar{10} representation of SU(5), within the context of gauge-mediated supersymmetry breaking. We study the resulting mass spectrum of superpartners, comparing and contrasting to the usual gauge-mediated and CMSSM scenarios, and discuss implications for LHC supersymmetry searches. This approach implies that exotic vector-like fermions t'_{1,2}, b',and \\tau' should be within the reach of the LHC. We discuss the masses, the couplings to electroweak bosons, and the decay branching ratios of the exotic fermions, with and without various unification assumptions for the mass and mixing parameters. We comment on LHC prospects for discovery of the exotic fermion states, both for decays that are prompt and non-prompt on detector-crossing time scales.

  18. Spontaneously broken realization of supersymmetry in supergravity

    International Nuclear Information System (INIS)

    Ferrara, S.; Trieste Univ.

    1979-01-01

    It is shown that if supersymmetry is relevant for the physical world it must be broken either spontaneously or explicitly. Renormalizability and simplicity are in favor of a spontaneous realization of the symmetry breaking. When supersymmetry is spontaneously broken the spinorial analogue of the Goldstone phenomenon occurs, namely massless particles arise in the spectrum of the theory which carry the same quantum numbers of the broken generators Qsup(i) they are N spin 1/2 Goldstone fermions (goldstinos). These particles may be eaten by spin 3/2 gauge particles (gravitinos) when supersymmetry is gauged. It is shown that both the Higgs effect and super Higgs effect have taken place. 8 of the spin 1/2 particles have been eaten by the spin 3/2 particles and 24 of 70 scalars have been eaten by the spin 3/2 particles and 24 of 70 scalars have been eaten by 24 of the 28 vector particles to provide them with mass. The conclusion is that the number of mass relations is, in general, equal to r-1, where r is the rank of the algebra which generates the spectrum

  19. CP violation as a probe of flavor origin in supersymmetry

    International Nuclear Information System (INIS)

    Demir, D.A.; Masiero, A.; Vives, O.

    1999-11-01

    We address the question of the relation between supersymmetry breaking and the origin of flavor in the context of CP violating phenomena. We prove that, in the absence of the Cabibbo-Kobayashi-Maskawa phase, a general Minimal Supersymmetric Standard Model with all possible phases in the soft-breaking terms, but no new flavor structure beyond the usual Yukawa matrices, can never give a sizeable contribution to ε K , ε'/ε or hadronic B 0 CP asymmetries. Observation of supersymmetric contributions to CP asymmetries in B decays would hint at a non-flavor blind mechanism of supersymmetry breaking. (author)

  20. Hierarchical supersymmetry breaking and dynamical determination of compactification parameters by non-perturbative effects

    International Nuclear Information System (INIS)

    Casas, J.A.; Lalak, Z.; Munoz, C.; Ross, G.G.

    1990-01-01

    The characteristics of the effective potentials coming from phenomenologically promising compactified superstring theories are examined, playing special attention to the supersymmetry breaking issue. We find a mechanism for generating the large gauge hierarchy by gaugino condensation effect in the case that the hidden sector possesses more than one condensate. We construct an explicit example based on orbifold compactification in which this is realized. Minimization of the effective potential not only determines the gauge hierarchy but also fixes other important parameters of the theory, in particular the gauge coupling constant at the unification point and the expectation values of the moduli which give the size and shape of the compactified space. These get reasonable values which may, in turn, lead to a determination of the family mass hierarchy. (orig.)

  1. Supersymmetry with Small mu: Connections between Naturalness, DarkMatter, and (Possibly) Flavor

    Energy Technology Data Exchange (ETDEWEB)

    Kitano, Ryuichiro Kitano; Nomura, Yasunori

    2006-06-11

    Weak scale supersymmetric theories often suffer from several naturalness problems: the problems of reproducing the correct scale for electroweak symmetry breaking, the correct abundance for dark matter, and small rates for flavor violating processes. We argue that the first two problems point to particular regions of parameter space in models with weak scale supersymmetry: those with a small {mu} term. This has an interesting implication on direct dark matter detection experiments. We find that, if the signs of the three gaugino mass parameters are all equal, we can obtain a solid lower bound on the spin-independent neutralino-nucleon cross section, {sigma}{sub SI}. In the case that the gaugino masses satisfy the unified mass relations, we obtain {sigma}{sub SI} {approx}> 4 x 10{sup -46} cm{sup 2} (1 x 10{sup -46} cm{sup 2}) for fine-tuning in electroweak symmetry breaking no worse than 10% (5%). We also discuss a possibility that the three problems listed above are all connected to the hierarchy of fermion masses. This occurs if supersymmetry breaking and electroweak symmetry breaking (the Higgs fields) are coupled to matter fields with similar hierarchical structures. The discovery of {mu} {yields} e transition processes in near future experiments is predicted in such a framework.

  2. Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models

    International Nuclear Information System (INIS)

    Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro

    2004-01-01

    We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)

  3. Quadratic contributions of softly broken supersymmetry in the light of loop regularization

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Dong [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China); Wu, Yue-Liang [Chinese Academy of Sciences, Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China); International Centre for Theoretical Physics Asia-Pacific (ICTP-AP), Beijing (China); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing (China)

    2017-09-15

    Loop regularization (LORE) is a novel regularization scheme in modern quantum field theories. It makes no change to the spacetime structure and respects both gauge symmetries and supersymmetry. As a result, LORE should be useful in calculating loop corrections in supersymmetry phenomenology. To further demonstrate its power, in this article we revisit in the light of LORE the old issue of the absence of quadratic contributions (quadratic divergences) in softly broken supersymmetric field theories. It is shown explicitly by Feynman diagrammatic calculations that up to two loops the Wess-Zumino model with soft supersymmetry breaking terms (WZ' model), one of the simplest models with the explicit supersymmetry breaking, is free of quadratic contributions. All the quadratic contributions cancel with each other perfectly, which is consistent with results dictated by the supergraph techniques. (orig.)

  4. Supergraph analysis of the ultraviolet finiteness of gauge supersymmetry

    International Nuclear Information System (INIS)

    Arnowit, R.; Nath, P.

    1979-01-01

    The detailed proof of the ultraviolet finiteness of the S-matrix of gauge supersymmetry for internal symmetry index N >= 2 is presented (where 4N is the number of Fermi coordinates in superspace). The theorem is established to arbitrary loop order in the linearized harmonic gauge when the spontaneous symmetry breaking of gauge supersymmetry preserves global supersymmetry. The asymptotic properties in the deep euclidean region of the tree-approximation propagators are calculated. These enter importantly in the derivation of the theorem. (orig.)

  5. Using of the variational principle for investigation of the supersymmetry models

    International Nuclear Information System (INIS)

    Krasnikov, N.V.

    1985-01-01

    The variational principle is used for investigation of possible spontaneous breaking of supersymmetry. It is shown that if supersymmetry in the generalized Wess-Zumino model is not broken on the classical level, it is neither broken as well with account for quantum corrections

  6. Broken supersymmetries in high energy physics

    International Nuclear Information System (INIS)

    Rajpoot, S.; King's Coll., London; Taylor, J.G.

    1982-06-01

    The renormalisation group analysis of the running coupling constants in the hierarchies of N-extended supersymmetric simple unification schemes is presented. For proton lifetimes of order 10 30 years the scale(s) of supersymmetry breaking are of order 10 12 GeV. In local realisations of such supersymmetries, such high mass-scales lead to gravitinos with masses in the 10 5 GeV range. Gravitinos this massive decay too long before the time of helium synthesis to be of relevance in the early universe. (author)

  7. Supersymmetry in quantum mechanics

    International Nuclear Information System (INIS)

    Lahiri, A.; Roy, P.K.; Bagghi, B.

    1990-01-01

    A pedagogical review on supersymmetry in quantum mechanics is presented which provides a comprehensive coverage of the subject. First, the key ingredients of the quantization of the systems with anticommuting variables are discussed. The supersymmetric Hamiltonian in quantum mechanics is then constructed by emphasizing the role of partner potentials and the superpotentials. The authors also make explicit the mathematical formulation of the Hamiltonian by considering in detail the N = 1 and N = 2 supersymmetric (quantum) mechanics. Supersymmetry is then discussed in the context of one-dimensional problems and the importance of the factorization method is highlighted. They treat in detail the technique of constructing a hierarchy of Hamiltonians employing the so-called 'shape-invariance' of potentials. To make transparent the relationship between supersymmetry and solvable potentials, they also solve several examples. They then go over the formulation of supersymmetry in radial problems, paying a special attention to the Coulomb and isotropic oscillator potentials. They show that the ladder operator technique may be suitable modified in higher dimensions for generating isospectral Hamiltonians. Next, the criteria for the breaking of supersymmetry is considered and their range of applicability is examined by suitably modifying he definition of Witten's index. Finally, the authors perform some numerical calculations for a class of potentials to show how a modified WKB approximation works in supersymmetric cases

  8. Linear collider signal of anomaly mediated supersymmetry breaking model

    International Nuclear Information System (INIS)

    Ghosh Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov

    2001-01-01

    Though the minimal model of anomaly mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a √s = 1 TeV e + e - linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral winolike Lightest Supersymmetric Particle closely degenerate in mass with a winolike chargino. The pair production processes e + e - → e tilde L ± e tilde L ± , e tilde R ± e tilde R ± , e tilde L ± e tilde R ± , ν tilde anti ν tilde, χ tilde 1 0 χ tilde 2 0 , χ tilde 2 0 χ tilde 2 0 are all considered at √s = 1 TeV corresponding to the proposed TESLA linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analysed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices X D (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions. (author)

  9. Supersymmetry and the LHC (Lectures CANCELLED)

    CERN Multimedia

    CERN. Geneva

    2006-01-01

    I will first give a pedagogical motivation for, and introduction to, supersymmetric extensions of the Standard Model. The biggest obstacle that prevents theorists from making clear-cut predictions for the production of superparticles at the LHC is our lack of knowledge of how supersymmetry is broken. I will review the most promising SUSY breaking mechanisms that have been suggested so far, and outline the resulting signatures for LHC experiments. Finally, I will try to make contact with other areas of particle physics and cosmology, where supersymmetry also might play a role.

  10. Electroweak Supersymmetry with an Approximate U(1)_PQ

    Energy Technology Data Exchange (ETDEWEB)

    Hall, L.J.; Watari, T.

    2004-05-12

    A predictive framework for supersymmetry at the TeV scale is presented, which incorporates the Ciafaloni-Pomarol mechanism for the dynamical determination of the \\mu parameter of the MSSM. It is replaced by (\\lambda S), where S is a singlet field, and the axion becomes a heavy pseudoscalar, G, by adding a mass, m_G, by hand. The explicit breaking of Peccei-Quinn (PQ) symmetry is assumed to be sufficiently weak at the TeV scale that the only observable consequence is the mass m_G. Three models for the explicit PQ breaking are given; but the utility of this framework is that the predictions for all physics at the electroweak scale are independent of the particular model for PQ breaking. Our framework leads to a theory similar to the MSSM, except that \\mu is predicted by the Ciafaloni-Pomarol relation, and there are light, weakly-coupled states in the spectrum. The production and cascade decay of superpartners at colliders occurs as in the MSSM, except that there is one extra stage of the cascade chain, with the next-to-LSP decaying to its"superpartner" and \\tilde{s}, dramatically altering the collider signatures for supersymmetry. The framework is compatible with terrestrial experiments and astrophysical observations for a wide range of m_G and. If G is as light as possible, 300 keV< m_G< 3 MeV, it can have interesting effects on the radiation energy density during the cosmological eras of nucleosynthesis and acoustic oscillation, leading to predictions for N_{\

  11. Low scale supersymmetry at the LHC with jet and missing energy signature

    International Nuclear Information System (INIS)

    Demidov, S.V.; Sobolev, I.V.

    2017-03-01

    If supersymmetry is broken at TeV scale, particles from sector responsible for supersymmetry breaking - goldstino and sgoldstinos - can reveal themselves already at the LHC experiments. We discuss bounds on supersymmetry breaking scale from the LHC searches for events with a jet plus missing momentum signature focusing on the case of TeV scale sgoldstinos. We show that contribution of light sgoldstinos to the cross section of of gravitino pair production with a jet can be sizable and the bounds on the gravitino mass can be stronger by up to a factor of 2 as compared to those obtained in the heavy sgoldstino limit. We compare these bounds on parameters of the model to those obtained with the results of ATLAS and CMS searches for dijet resonances.

  12. Supersymmetry and intermediate symmetry breaking in SO(10) superunification

    International Nuclear Information System (INIS)

    Asatryan, H.M.; Ioannisyan, A.N.

    1985-01-01

    A scheme of simultaneous breakdown of intermediate symmetry SO(10) → SU(3)sub(c) x U(1) x SU(2)sub(L) x SU(2)sub(R) and supersymmetry by means of a single scale parameter is suggested. This intermediate symmetry, which is preferable physically, owing to the broken supersymmetry has a minimum lying lower than SU(4) x SU(2)sub(L) x SU(2)sub(R). The intermediate symmetry is broken by the vacuum expectation value of the Higgs superfields. Owing to the quantum corrections the potential minimum turns out to correspond to breakdown of the intermediate symmetry up to the standard group SU(3)sub(c) x SU(2)sub(L) x U(1)sub(y). The value of the Weinberg angle is less than that in the supersymmetric SU(5) model and agrees with the experiment

  13. Supersymmetry restoration in superstring perturbation theory

    International Nuclear Information System (INIS)

    Sen, Ashoke

    2015-01-01

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  14. Supersymmetry restoration in superstring perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Sen, Ashoke [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad 211019 (India)

    2015-12-14

    Superstring perturbation theory based on the 1PI effective theory approach has been useful for addressing the problem of mass renormalization and vacuum shift. We derive Ward identities associated with space-time supersymmetry transformation in this approach. This leads to a proof of the equality of renormalized masses of bosons and fermions and identities relating fermionic amplitudes to bosonic amplitudes after taking into account the effect of mass renormalization. This also relates unbroken supersymmetry to a given order in perturbation theory to absence of tadpoles of massless scalars to higher order. The results are valid at the perturbative vacuum as well as in the shifted vacuum when the latter describes the correct ground state of the theory. We apply this to SO(32) heterotic string theory on Calabi-Yau 3-folds where a one loop Fayet-Iliopoulos term apparently breaks supersymmetry at one loop, but analysis of the low energy effective field theory indicates that there is a nearby vacuum where supersymmetry is restored. We explicitly prove that the perturbative amplitudes of this theory around the shifted vacuum indeed satisfy the Ward identities associated with unbroken supersymmetry. We also test the general arguments by explicitly verifying the equality of bosonic and fermionic masses at one loop order in the shifted vacuum, and the appearance of two loop dilaton tadpole in the perturbative vacuum where supersymmetry is expected to be broken.

  15. SUSY breaking mediation by throat fields

    International Nuclear Information System (INIS)

    Bruemmer, F.; Hebecker, A.; Trapletti, M.

    2006-01-01

    We investigate, in the general framework of KKLT, the mediation of supersymmetry breaking by fields propagating in the strongly warped region of the compactification manifold ('throat fields'). Such fields can couple both to the supersymmetry breaking sector at the IR end of the throat and to the visible sector at the UV end. We model the supersymmetry breaking sector by a chiral superfield which develops an F term vacuum expectation value (also responsible for the uplift). It turns out that the mediation effect of vector multiplets propagating in the throat can compete with modulus-anomaly mediation. Moreover, such vector fields are naturally present as the gauge fields arising from isometries of the throat (most notably the SO(4) isometry of the Klebanov-Strassler solution). Their mediation effect is important in spite of their large 4d mass. The latter is due to the breaking of the throat isometry by the compact manifold at the UV end of the throat. The contribution from heavy chiral superfields is found to be subdominant

  16. Grand unification in higher dimensions with split supersymmetry

    International Nuclear Information System (INIS)

    Schuster, Philip C.

    2006-01-01

    We investigate gauge coupling unification in higher dimensional GUT models with split supersymmetry. We focus on 5d and 6d orbifold GUTs, which permit a simple solution to several problems of 4D GUTs as well as control over GUT scale threshold corrections. In orbifold GUTs, calculable threshold corrections can raise or lower the prediction for α s (M Z ) in a way that depends on the location of Higgs fields. On the other hand, split supersymmetry lowers the prediction for α s (M Z ). Consequently, split supersymmetry changes the preferred location of the Higgs fields in orbifold GUTs. In the simplest models, we find that gauge coupling unification favors higgs doublets that live on the orbifold fixed points instead of in the bulk. In addition, relatively high scales of supersymmetry breaking of 10 10±2 GeV are generically favored

  17. Why supersymmetry? Physics beyond the standard model

    Indian Academy of Sciences (India)

    2016-08-23

    Aug 23, 2016 ... Here again supersymmetry provides a mechanism for ensuring that the decoupling of .... Discussion above then implies that its mass is not protected by any ...... try breaking, Lectures at the Advanced School: From. Strings to ...

  18. Supersymmetry, superfields and supergravity: An introduction

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1986-01-01

    This book is a self-contained introduction to the subject of supersymmetry. The algebras of supersymmetry and the R-symmetry generators are explained using a simple field theory model. The realisations of this algebra on one-particle states and on a supermultiplet of component fields are then discussed. There is a detailed description of the Wess-Zumino model, with discussion of the realisation of R-symmetry and supermultiplets of currents and anomalies. Detailed treatment of the realisation of the algebra on superspace and superfields is applied to the Yang-Mills theory in interaction with matter. The possibility of spontaneously broken symmetries is introduced before non-Abelian supersymmetric gauge theories are constructed. Superfield propagators are derived as the Green functions of the corresponding equations of motion and the power of superfield perturbation theory is illustrated. Finally local supersymmetry and the supergravity Lagrangian are introduced with a discussion of gravity-induced supersymmetry breaking and the super-Higgs effect. Emphasis is placed on developing a physical understanding of the mathematical formalism and numerous problems are included to help develop the reader's understanding

  19. Supersymmetry searches in dilepton final states with the ATLAS experiment

    International Nuclear Information System (INIS)

    Lungwitz, Matthias

    2014-01-01

    One of the main goals of the ATLAS experiment at the Large Hadron Collider (LHC) at CERN in Geneva is the search for new physics beyond the Standard Model. In 2011, proton-proton collisions were performed at the LHC at a center of mass energy of 7 TeV and an integrated luminosity of 4.7 fb -1 was recorded. This dataset can be tested for one of the most promising theories beyond limits achieved thus far: supersymmetry. Final states in supersymmetry events at the LHC contain highly energetic jets and sizeable missing transverse energy. The additional requirement of events with highly energetic leptons simplifies the control of the backgrounds. This work presents results of a search for supersymmetry in the inclusive dilepton channel. Special emphasis is put on the search within the Gauge-Mediated Symmetry Breaking (GMSB) scenario in which the supersymmetry breaking is mediated via gauge fields. Statistically independent Control Regions for the dominant Standard Model backgrounds as well as Signal Regions for a discovery of a possible supersymmetry signal are defined and optimized. A simultaneous fit of the background normalizations in the Control Regions via the profile likelihood method allows for a precise prediction of the backgrounds in the Signal Regions and thus increases the sensitivity to several supersymmetry models. Systematic uncertainties on the background prediction are constrained via the jet multiplicity distribution in the Control Regions driven by data. The observed data are consistent with the Standard Model expectation. New limits within the GMSB and the minimal Supergravity (mSUGRA) scenario as well as for several simplified supersymmetry models are set or extended.

  20. "The Opposite Ends of Supersymmetry and their Implications for the LHC" (3/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    There have been many predictions for the mass patterns of superpartners. In these lectures I discuss two interesting opposite-end approaches to supersymmetry breaking that determine the superpartner masses: zero scalar mass supersymmetry (no scale, gaugino mediation, etc.) and heavy scalar mass supersymmetry (split susy, PeV-scale susy, etc.). We will step through the theory motivations for each scenario, and detail the rich phenomena that each implies for LHC discovery.

  1. "The Opposite Ends of Supersymmetry and their Implications for the LHC" (2/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    There have been many predictions for the mass patterns of superpartners. In these lectures I discuss two interesting opposite-end approaches to supersymmetry breaking that determine the superpartner masses: zero scalar mass supersymmetry (no scale, gaugino mediation, etc.) and heavy scalar mass supersymmetry (split susy, PeV-scale susy, etc.). We will step through the theory motivations for each scenario, and detail the rich phenomena that each implies for LHC discovery.

  2. "The Opposite Ends of Supersymmetry and their Implications for the LHC" (1/3)

    CERN Multimedia

    CERN. Geneva

    2009-01-01

    There have been many predictions for the mass patterns of superpartners. In these lectures I discuss two interesting opposite-end approaches to supersymmetry breaking that determine the superpartner masses: zero scalar mass supersymmetry (no scale, gaugino mediation, etc.) and heavy scalar mass supersymmetry (split susy, PeV-scale susy, etc.). We will step through the theory motivations for each scenario, and detail the rich phenomena that each implies for LHC discovery.

  3. New Developments in Supersymmetry (1/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Introduction to supersymmetric grand unified theories. An introduction to the MSSM and different mechanisms for supersymmetry breaking. Then the details of SU(5) and SO(10) unification, the new gauge sector beyond the standard model, representations of quarks and leptons. Gauge and Yukawa coupling unification and some predictions.

  4. New Developments in Supersymmetry (2/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Introduction to supersymmetric grand unified theories. An introduction to the MSSM and different mechanisms for supersymmetry breaking. Then the details of SU(5) and SO(10) unification, the new gauge sector beyond the standard model, representations of quarks and leptons. Gauge and Yukawa coupling unification and some predictions.

  5. New Developments in Supersymmetry (5/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Introduction to supersymmetric grand unified theories. An introduction to the MSSM and different mechanisms for supersymmetry breaking. Then the details of SU(5) and SO(10) unification, the new gauge sector beyond the standard model, representations of quarks and leptons. Gauge and Yukawa coupling unification and some predictions.

  6. New Developments in Supersymmetry (3/5)

    CERN Multimedia

    CERN. Geneva

    2001-01-01

    Introduction to supersymmetric grand unified theories. An introduction to the MSSM and different mechanisms for supersymmetry breaking. Then the details of SU(5) and SO(10) unification, the new gauge sector beyond the standard model, representations of quarks and leptons. Gauge and Yukawa coupling unification and some predictions.

  7. Sgoldstino-less inflation and low energy SUSY breaking

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo [Physique Théorique et Mathématique and International Solvay Institutes, Université Libre de Bruxelles, CP231, B-1050 Brussels (Belgium); Coone, Dries; Mariotti, Alberto [Theoretische Natuurkunde and IIHE/ELEM, Vrije Universiteit Brussel, and International Solvay Institutes, Pleinlaan 2, B-1050 Brussels (Belgium); Heurtier, Lucien, E-mail: rargurio@ulb.ac.be, E-mail: a.a.coone@rug.nl, E-mail: lucien.heurtier@ulb.ac.be, E-mail: alberto.mariotti@vub.ac.be [Service de Physique Théorique, Université Libre de Bruxelles, CP225, B-1050 Brussels (Belgium)

    2017-07-01

    We assess the range of validity of sgoldstino-less inflation in a scenario of low energy supersymmetry breaking. We first analyze the consistency conditions that an effective theory of the inflaton and goldstino superfields should satisfy in order to be faithfully described by a sgoldstino-less model. Enlarging the scope of previous studies, we investigate the case where the effective field theory cut-off, and hence also the sgoldstino mass, are inflaton-dependent. We then introduce a UV complete model where one can realize successfully sgoldstino-less inflation and gauge mediation of supersymmetry breaking, combining the α-attractor mechanism and a weakly coupled model of spontaneous breaking of supersymmetry. In this class of models we find that, given current limits on superpartner masses, the gravitino mass has a lower bound of the order of the MeV, i.e. we cannot reach very low supersymmetry breaking scales. On the plus side, we recognize that in this framework, one can derive the complete superpartner spectrum as well as compute inflation observables, the reheating temperature, and address the gravitino overabundance problem. We then show that further constraints come from collider results and inflation observables. Their non trivial interplay seems a staple feature of phenomenological studies of supersymmetric inflationary models.

  8. On SUSY breaking and χSB from string duals

    International Nuclear Information System (INIS)

    Gomis, Jaume

    2002-01-01

    We find regular string duals of three-dimensional N=1 SYM with a Chern-Simons interaction at level k for SO and Sp gauge groups. Using the string dual we exactly reproduce the conjectured pattern of supersymmetry breaking proposed by Witten by showing that there is dynamical supersymmetry breaking for k 2h →Z 2 by analyzing the symmetries of the string solution

  9. Collider Interplay for Supersymmetry, Higgs and Dark Matter

    CERN Document Server

    Buchmueller, O.; Ellis, J.; Guha, S.; Marrouche, J.; Olive, K.A.; de Vries, K.; Zheng, Jiaming

    2016-01-01

    We discuss the potential impacts on the CMSSM of future LHC runs and possible electron-positron and higher-energy proton-proton colliders, considering searches for supersymmetry via MET events, precision electroweak physics, Higgs measurements and dark matter searches. We validate and present estimates of the physics reach for exclusion or discovery of supersymmetry via MET searches at the LHC, which should cover the low-mass regions of the CMSSM parameter space favoured in a recent global analysis. As we illustrate with a low-mass benchmark point, a discovery would make possible accurate LHC measurements of sparticle masses using the MT2 variable, which could be combined with cross-section and other measurements to constrain the gluino, squark and stop masses and hence the soft supersymmetry-breaking parameters m_0, m_{1/2} and A_0 of the CMSSM. Slepton measurements at CLIC would enable m_0 and m_{1/2} to be determined with high precision. If supersymmetry is indeed discovered in the low-mass region, precisi...

  10. Unification of SUSY breaking and GUT breaking

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Tatsuo [Department of Physics, Hokkaido University,Sapporo 060-0810 (Japan); Omura, Yuji [Department of Physics, Nagoya University,Nagoya 464-8602 (Japan)

    2015-02-18

    We build explicit supersymmetric unification models where grand unified gauge symmetry breaking and supersymmetry (SUSY) breaking are caused by the same sector. Besides, the SM-charged particles are also predicted by the symmetry breaking sector, and they give the soft SUSY breaking terms through the so-called gauge mediation. We investigate the mass spectrums in an explicit model with SU(5) and additional gauge groups, and discuss its phenomenological aspects. Especially, nonzero A-term and B-term are generated at one-loop level according to the mediation via the vector superfields, so that the electro-weak symmetry breaking and 125 GeV Higgs mass may be achieved by the large B-term and A-term even if the stop mass is around 1 TeV.

  11. Search for supersymmetry with gauge-mediated breaking in diphoton events with missing transverse energy at CDF II.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; d'Errico, M; Di Canto, A; di Giovanni, G P; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Dube, S; Ebina, K; Elagin, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Garosi, P; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Hurwitz, M; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leone, S; Lewis, J D; Lin, C-J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Lovas, L; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramanov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Simonenko, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Suh, J S; Sukhanov, A; Suslov, I; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wolfe, H; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zhang, X; Zheng, Y; Zucchelli, S

    2010-01-08

    We present the results of a search for supersymmetry with gauge-mediated breaking and chi(1)(0) --> gammaG in the gammagamma + missing transverse energy final state. In 2.6+/-0.2 fb(-1) of pp collisions at square root(s) = 1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4+/-0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149 GeV/c2 on the chi(1)(0) mass at tau(chi(1)(0)) < 1 ns. We also exclude regions in the chi(1)(0) mass-lifetime plane for tau(chi(1)(0)) approximately < 2 ns.

  12. Unification and supersymmetry

    International Nuclear Information System (INIS)

    Mohapatra, R.N.

    1991-01-01

    This book deals with some of the latest developments in our attempts to construct a unified theory of the fundamental interactions of nature. Among the topics covered are spontaneous symmetry breaking, grand unified theories, supersymmetry, and supergravity. The book starts with a quick review of elementary particle theory and continues with a discussion of composite quarks, leptons, Higgs bosons, and CP violation; it concludes with consideration of supersymmetric unification schemes, in which bosons and leptons are considered in some sense equivalent. The second edition is updated and corrected and contains new chapters on recent developments

  13. Black holes in an expanding universe and supersymmetry

    Directory of Open Access Journals (Sweden)

    Dietmar Klemm

    2016-02-01

    Full Text Available This paper analyzes the supersymmetric solutions to five and six-dimensional minimal (ungauged supergravities for which the bilinear Killing vector constructed from the Killing spinor is null. We focus on the spacetimes which admit an additional SO(1,1 boost symmetry. Upon the toroidal dimensional reduction along the Killing vector corresponding to the boost, we show that the solution in the ungauged case describes a charged, nonextremal black hole in a Friedmann–Lemaître–Robertson–Walker (FLRW universe with an expansion driven by a massless scalar field. For the gauged case, the solution corresponds to a charged, nonextremal black hole embedded conformally into a Kantowski–Sachs universe. It turns out that these dimensional reductions break supersymmetry since the bilinear Killing vector and the Killing vector corresponding to the boost fail to commute. This represents a new mechanism of supersymmetry breaking that has not been considered in the literature before.

  14. Massive Higher Dimensional Gauge Fields as Messengers of Supersymmetry Breaking

    International Nuclear Information System (INIS)

    Chacko, Z.; Luty, Markus A.; Ponton, Eduardo

    2000-01-01

    We consider theories with one or more compact dimensions with size r > 1/M, where M is the fundamental Planck scale, with the visible and hidden sectors localized on spatially separated 3 -branes''. We show that a bulk U(1) gauge field spontaneously broken on the hidden-sector 3-brane is an attractive candidate for the messenger of supersymmetry breaking. In this scenario scalar mass-squared terms are proportional to U(1) charges, and therefore naturally conserve flavor. Arbitrary flavor violation at the Planck scale gives rise to exponentially suppressed flavor violation at low energies. Gaugino masses can be generated if the standard gauge fields propagate in the bulk; μ and Bμ terms can be generated by the Giudice-Masiero or by the VEV of a singlet in the visible sector. The latter case naturally solves the SUSY CP problem. Realistic phenomenology can be obtained either if all microscopic parameters are order one in units of M, or if the theory is strongly coupled at the scale M. (For the latter case, we estimate parameters by extending n aive dimensional analysis'' to higher-dimension theories with branes.) In either case, the only unexplained hierarchy is the l arge'' size of the extra dimensions in fundamental units, which need only be an order of magnitude. All soft masses are naturally within an order of magnitude of m 3/2 , and trilinear scalar couplings are negligible. Squark and slepton masses can naturally unify even in the absence of grand unification. (author)

  15. Searches for Gauge-Mediated Supersymmetry Breaking Topologies in $e^{+}e^{-}$ collisions at LEP2

    CERN Document Server

    Abbiendi, G.; Akesson, P.F.; Alexander, G.; Anagnostou, G.; Anderson, K.J.; Asai, S.; Axen, D.; Bailey, I.; Barberio, E.; Barillari, T.; Barlow, R.J.; Batley, R.J.; Bechtle, P.; Behnke, T.; Bell, Kenneth Watson; Bell, P.J.; Bella, G.; Bellerive, A.; Benelli, G.; Bethke, S.; Biebel, O.; Boeriu, O.; Bock, P.; Boutemeur, M.; Braibant, S.; Brown, Robert M.; Burckhart, H.J.; Campana, S.; Capiluppi, P.; Carnegie, R.K.; Carter, A.A.; Carter, J.R.; Chang, C.Y.; Charlton, D.G.; Ciocca, C.; Csilling, A.; Cuffiani, M.; Dado, S.; Roeck, A.De; Wolf, E.A.De; Desch, K.; Dienes, B.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Duerdoth, I.P.; Etzion, E.; Fabbri, F.; Ferrari, P.; Fiedler, F.; Fleck, I.; Ford, M.; Frey, A.; Gagnon, P.; Gary, John William; Geich-Gimbel, C.; Giacomelli, G.; Giacomelli, P.; Giunta, Marina; Goldberg, J.; Gross, E.; Grunhaus, J.; Gruwe, M.; Gunther, P.O.; Gupta, A.; Hajdu, C.; Hamann, M.; Hanson, G.G.; Harel, A.; Hauschild, M.; Hawkes, C.M.; Hawkings, R.; Hemingway, R.J.; Herten, G.; Heuer, R.D.; Hill, J.C.; Horvath, D.; Igo-Kemenes, P.; Ishii, K.; Jeremie, H.; Jovanovic, P.; Junk, T.R.; Kanzaki, J.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Keeler, R.K.; Kellogg, R.G.; Kennedy, B.W.; Kluth, S.; Kobayashi, T.; Kobel, M.; Komamiya, S.; Kramer, T.; Krasznahorkay, A.; Krieger, P.; Krogh, J.von; Kuhl, T.; Kupper, M.; Lafferty, G.D.; Landsman, H.; Lanske, D.; Lellouch, D.; Letts, J.; Levinson, L.; Lillich, J.; Lloyd, S.L.; Loebinger, F.K.; Lu, J.; Ludwig, A.; Ludwig, J.; Mader, W.; Marcellini, S.; Martin, A.J.; Mashimo, T.; Mattig, Peter; McKenna, J.; McPherson, R.A.; Meijers, F.; Menges, W.; Merritt, F.S.; Mes, H.; Meyer, Niels T.; Michelini, A.; Mihara, S.; Mikenberg, G.; Miller, D.J.; Mohr, W.; Mori, T.; Mutter, A.; Nagai, K.; Nakamura, I.; Nanjo, H.; Neal, H.A.; Nisius, R.; O'Neale, S.W.; Oh, A.; Oreglia, M.J.; Orito, S.; Pahl, C.; Pasztor, G.; Pater, J.R.; Pilcher, J.E.; Pinfold, J.; Plane, David E.; Pooth, O.; Przybycien, M.; Quadt, A.; Rabbertz, K.; Rembser, C.; Renkel, P.; Roney, J.M.; Rossi, A.M.; Rozen, Y.; Runge, K.; Sachs, K.; Saeki, T.; Sarkisyan, E.K.G.; Schaile, A.D.; Schaile, O.; Scharff-Hansen, P.; Schieck, J.; Schorner-Sadenius, T.; Schroder, Matthias; Schumacher, M.; Seuster, R.; Shears, T.G.; Shen, B.C.; Sherwood, P.; Skuja, A.; Smith, A.M.; Sobie, R.; Soldner-Rembold, S.; Spano, F.; Stahl, A.; Strom, David M.; Strohmer, R.; Tarem, S.; Tasevsky, M.; Teuscher, R.; Thomson, M.A.; Torrence, E.; Toya, D.; Tran, P.; Trigger, I.; Trocsanyi, Z.; Tsur, E.; Turner-Watson, M.F.; Ueda, I.; Ujvari, B.; Vollmer, C.F.; Vannerem, P.; Vertesi, R.; Verzocchi, M.; Voss, H.; Vossebeld, J.; Ward, C.P.; Ward, D.R.; Watkins, P.M.; Watson, A.T.; Watson, N.K.; Wells, P.S.; Wengler, T.; Wermes, N.; Wilson, G.W.; Wilson, J.A.; Wolf, G.; Wyatt, T.R.; Yamashita, S.; Zer-Zion, D.; Zivkovic, Lidija

    2006-01-01

    Searches were performed for topologies predicted by gauge-mediated Supersymmetry breaking models (GMSB). All possible lifetimes of the next-to-lightest SUSY particle (NLSP), either the lightest neutralino or slepton, decaying into the lightest SUSY particle, the gravitino, were considered. No evidence for GMSB signatures was found in the OPAL data sample collected at centre-of-mass energies of sqrt{s}=189-209 GeV at LEP. Limits on the product of the production cross-sections and branching fractions are presented for all search topologies. To test the impact of the searches, a complete scan over the parameters of the minimal model of GMSB was performed. NLSP masses below 53.5 GeV/c^2 in the neutralino NLSP scenario, below 87.4 GeV/c^2 in the stau NLSP scenario and below 91.9 GeV/c^2 in the slepton co-NLSP scenario are excluded at 95% confidence level for all NLSP lifetimes. The scan determines constraints on the universal SUSY mass scale Lambda from the direct SUSY particle searches of Lambda > 40,27,21,17,15 ...

  16. On van der Waals-like forces in spontaneously broken supersymmetries

    International Nuclear Information System (INIS)

    Radescu, E.E.

    1982-12-01

    In spontaneously broken rigid supersymmetry, Goldstone fermion pair exchange should lead to a universal interaction between massive bodies uniquely fixed by the existing low energy theorem. The resulting van der Waals-like potential is shown to be V(r)=Mmπ -3 F -4 r -7 +O(r -8 ), where M,m are the masses of the interacting bodies while √F is the scale of the breaking. The change in the situation when the supersymmetry is promoted to a local one is briefly discussed. (author)

  17. SUSY/non-SUSY duality in U(N gauge model with partially broken N=2 supersymmetry

    Directory of Open Access Journals (Sweden)

    Kazunobu Maruyoshi

    2009-03-01

    Full Text Available We study the vacuum structure of the U(N gauge model with partially broken N=2 supersymmetry. From the analysis of the classical vacua of this model, we point out that in addition to the ordinary N=1 supersymmetric vacua, there are vacua with negative gauge coupling constants, which preserve another N=1 supersymmetry. These latter vacua can be analyzed by using SUSY/non-SUSY duality which is recently proposed by Aganagic, Beem, Seo and Vafa. A dual description of these in UV is U(N gauge theory where the supersymmetry is broken by spurion superfields. Following them, we see that there are supersymmetry preserving vacua as well as supersymmetry breaking vacua of low energy effective theory.

  18. Interplay between grand unification and supersymmetry in SU(5 ...

    Indian Academy of Sciences (India)

    energy MSSM. break the rank, Aulakh and his collaborators [10–12] have showed that R-parity is exact all the way down to low energies. In this case, grand unification tells us something about supersymmetry and even dark matter. In this article ...

  19. AdS Branes from Partial Breaking of Superconformal Symmetries

    International Nuclear Information System (INIS)

    Ivanov, E.A.

    2005-01-01

    It is shown how the static-gauge world-volume superfield actions of diverse superbranes on the AdS d+1 superbackgrounds can be systematically derived from nonlinear realizations of the appropriate AdS supersymmetries. The latter are treated as superconformal symmetries of flat Minkowski superspaces of the bosonic dimension d. Examples include the N = 1 AdS 4 supermembrane, which is associated with the 1/2 partial breaking of the OSp(1|4) supersymmetry down to the N = 1, d = 3 Poincare supersymmetry, and the T-duality related L3-brane on AdS 5 and scalar 3-brane on AdS 5 x S 1 , which are associated with two different patterns of 1/2 breaking of the SU(2, 2|1) supersymmetry. Another (closely related) topic is the AdS/CFT equivalence transformation. It maps the world-volume actions of the codimension-one AdS d+1 (super)branes onto the actions of the appropriate Minkowski (super)conformal field theories in the dimension d

  20. Nonlocal N=1 supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Tetsuji [Research and Education Center for Natural Sciences, Keio University,Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan); Mazumdar, Anupam [Consortium for Fundamental Physics, Physics Department, Lancaster University,Lancaster LA1 4YB (United Kingdom); Kapteyn Astronomical Institute, University of Groningen,9700 AV Groningen (Netherlands); Noumi, Toshifumi [Institute for Advanced Study, Hong Kong University of Science and Technology,Clear Water Bay (Hong Kong); Department of Physics, Kobe University,Kobe 657-8501 (Japan); Yamaguchi, Masahide [Department of Physics, Tokyo Institute of Technology,Tokyo 152-8551 (Japan)

    2016-10-05

    We construct N=1 supersymmetric nonlocal theories in four dimension. We discuss higher derivative extensions of chiral and vector superfields, and write down generic forms of Kähler potential and superpotential up to quadratic order. We derive the condition in which an auxiliary field remains non-dynamical, and the dynamical scalars and fermions are free from the ghost degrees of freedom. We also investigate the nonlocal effects on the supersymmetry breaking and find that supertrace (mass) formula is significantly modified even at the tree level.

  1. Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at √s = 7 TeV with the ATLAS detector

    Czech Academy of Sciences Publication Activity Database

    Aad, G.; Abajyan, T.; Abbott, B.; Böhm, Jan; Chudoba, Jiří; Gallus, Petr; Gunther, Jaroslav; Jakoubek, Tomáš; Juránek, Vojtěch; Kepka, Oldřich; Kupčo, Alexander; Kůs, Vlastimil; Lokajíček, Miloš; Marčišovský, Michal; Mikeštíková, Marcela; Myška, Miroslav; Němeček, Stanislav; Růžička, Pavel; Schovancová, Jaroslava; Šícho, Petr; Staroba, Pavel; Svatoš, Michal; Taševský, Marek; Tic, Tomáš; Valenta, J.; Vrba, Václav; Zeman, Martin

    2013-01-01

    Roč. 2013, č. 1 (2013), s. 1-18 ISSN 1029-8479 R&D Projects: GA MŠk LA08032 Institutional support: RVO:68378271 Keywords : chargino * direct production * supersymmetry * symmetry breaking * scattering * lifetime * ATLAS * CERN LHC Coll * mediation * anomaly Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 6.220, year: 2013

  2. μ-term hybrid inflation and split supersymmetry

    Directory of Open Access Journals (Sweden)

    Nobuchika Okada

    2017-12-01

    Full Text Available We consider μ-term hybrid inflation which, in its minimal format with gravity mediated supersymmetry breaking, leads to split supersymmetry. The MSSM μ-term in this framework is larger than the gravitino mass mG, and successful inflation requires mG (and hence also |μ| ≳5×107 GeV, such that the gravitino decays before the LSP neutralino freezes out. Assuming universal scalar masses of the same order as mG, this leads to split supersymmetry. The LSP wino with mass ≃ 2 TeV is a plausible dark matter candidate, the gluino may be accessible at the LHC, and the MSSM parameter tan⁡β≃1.7 in order to be compatible with the measured Higgs boson mass. The tensor-to-scalar ratio r, a canonical measure of gravity waves, can be as high as 0.001.

  3. Mass splittings within composite Goldstone supermultiplets from broken supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1985-01-01

    The supersymmetric (SUSY) Dashen formulas are modified to include effects of softly broken supersymmetry and are used to compute the mass splittings and differences in decay constants among the various components of a Goldstone supermultiplet. The general results are applied to chiral-symmetry breaking in two-flavor SUSY QCD

  4. Characteristic W-ino signals in a linear collider from anomaly mediated supersymmetry breaking

    Science.gov (United States)

    Ghosh, Dilip Kumar; Kundu, Anirban; Roy, Probir; Roy, Sourov

    2001-12-01

    Though the minimal model of anomaly-mediated supersymmetry breaking has been significantly constrained by recent experimental and theoretical work, there are still allowed regions of the parameter space for moderate to large values of tan β. We show that these regions will be comprehensively probed in a s=1 TeV e+e- linear collider. Diagnostic signals to this end are studied by zeroing in on a unique and distinct feature of a large class of models in this genre: a neutral W-ino-like lightest supersymmetric particle closely degenerate in mass with a W-ino-like chargino. The pair production processes e+e--->e+/-Le-/+L, e+/-Re-/+R, e+/-Le-/+R, ν~νbar, χ~01χ~02, χ~02χ~02 are all considered at s=1 TeV corresponding to the proposed DESY TEV Energy Superconducting Linear Accelerator linear collider in two natural categories of mass ordering in the sparticle spectra. The signals analyzed comprise multiple combinations of fast charged leptons (any of which can act as the trigger) plus displaced vertices XD (any of which can be identified by a heavy ionizing track terminating in the detector) and/or associated soft pions with characteristic momentum distributions.

  5. Natural Higgs mass in supersymmetry from nondecoupling effects.

    Science.gov (United States)

    Lu, Xiaochuan; Murayama, Hitoshi; Ruderman, Joshua T; Tobioka, Kohsaku

    2014-05-16

    The Higgs mass implies fine-tuning for minimal theories of weak-scale supersymmetry (SUSY). Nondecoupling effects can boost the Higgs mass when new states interact with the Higgs boson, but new sources of SUSY breaking that accompany such extensions threaten naturalness. We show that two singlets with a Dirac mass can increase the Higgs mass while maintaining naturalness in the presence of large SUSY breaking in the singlet sector. We explore the modified Higgs phenomenology of this scenario, which we call the "Dirac next-to-minimal supersymmetric standard model."

  6. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  7. Supersymmetry in Elementary Particle Physics

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E.; /SLAC

    2008-02-05

    These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.

  8. Predicting supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-07-15

    We review the result of SUSY parameter fits based on frequentist analyses of experimental constraints from electroweak precision data, (g-2){sub {mu}}, B physics and cosmological data. We investigate the parameters of the constrained MSSM (CMSSM) with universal soft supersymmetry-breaking mass parameters, and a model with common non-universal Higgs mass parameters in the superpotential (NUHM1). Shown are the results for the SUSY and Higgs spectrum of the models. Many sparticle masses are highly correlated in both the CMSSM and NUHM1, and parts of the regions preferred at the 68% C.L. are accessible to early LHC running. The best-fit points could be tested even with 1 fb{sup -1} at {radical}(s)=7 TeV. (orig.)

  9. Bulk Fields and Supersymmetry in a Slice of AdS

    CERN Document Server

    Gherghetta, Tony; Gherghetta, Tony; Pomarol, Alex

    2000-01-01

    Five-dimensional models where the bulk is a slice of AdS have the virtue of solving the hierarchy problem. The electroweak scale is generated by a ``warp'' factor of the induced metric on the brane where the standard model fields live. However, it is not necessary to confine the standard model fields on the brane and we analyze the possibility of having the fields actually living in the slice of AdS. Specifically, we study the behaviour of fermions, gauge bosons and scalars in this geometry and their implications on electroweak physics. These scenarios can provide an explanation of the fermion mass hierarchy by warp factors. We also consider the case of supersymmetry in the bulk, and analyze the conditions on the mass spectrum. Finally, a model is proposed where the warp factor generates a small (TeV) supersymmetry-breaking scale, with the gauge interactions mediating the breaking to the scalar sector.

  10. Lattice Supersymmetry and Order-Disorder Coexistence in the Tricritical Ising Model

    Science.gov (United States)

    O'Brien, Edward; Fendley, Paul

    2018-05-01

    We introduce and analyze a quantum spin or Majorana chain with a tricritical Ising point separating a critical phase from a gapped phase with order-disorder coexistence. We show that supersymmetry is not only an emergent property of the scaling limit but also manifests itself on the lattice. Namely, we find explicit lattice expressions for the supersymmetry generators and currents. Writing the Hamiltonian in terms of these generators allows us to find the ground states exactly at a frustration-free coupling. These confirm the coexistence between two (topologically) ordered ground states and a disordered one in the gapped phase. Deforming the model by including explicit chiral symmetry breaking, we find the phases persist up to an unusual chiral phase transition where the supersymmetry becomes exact even on the lattice.

  11. A family-universal anomalous U(1) in string models as the origin of supersymmetry breaking and squark degeneracy

    International Nuclear Information System (INIS)

    Faraggi, A.E.; Pati, J.C.

    1997-12-01

    Recently a promising mechanism for supersymmetry breaking that utilizes both an anomalous U(1) gauge symmetry and an effective mass term m ∼ 1TeV of certain relevant fields has been proposed. In this paper we examine whether such a mechanism can emerge in superstring derived free fermionic models. We observe that certain three generation string solutions, though not all, lead to an anomalous U(1) which couples universally to all three families. The advantages of this three-family universality of U(1) A , compared to the two-family case, proposed in earlier works, in yielding squark degeneracy, while avoiding radiative breaking of color and charge, are noted. The root cause of the flavor universality of U(1) A is the cyclic permutation symmetry that characterizes the Z 2 x Z 2 orbifold compactification with standard embedding, realized in the free fermionic models by the NAHE set. It is shown that nonrenormalizable terms which contain hidden-sector condensates, generate the required suppression of the relevant mass term m, compared to the Planck scale. While the D-term of the family universal U(1) A leads to squark degeneracy, those of the family dependent U(1)'s, remarkably enough, are found to vanish for the solutions considered, owing to minimization of the potential

  12. Anatomy of new SUSY breaking holographic RG flows

    Energy Technology Data Exchange (ETDEWEB)

    Argurio, Riccardo [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Musso, Daniele [International Center of Theoretical Physics (ICTP),Strada Costiera 11, I 34014 Trieste (Italy); Redigolo, Diego [Physique Théorique et Mathématique andInternational Solvay Institutes, Université Libre de Bruxelles,C.P. 231, 1050 Brussels (Belgium); Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005, Paris (France); CNRS, UMR 7589, LPTHE,F-75005, Paris (France)

    2015-03-17

    We find and thoroughly study new supergravity domain wall solutions which are holographic realizations of supersymmetry breaking strongly coupled gauge theories. We set ourselves in an N=2 gauged supergravity with a minimal content in order to reproduce a dual N=1 effective SCFT which has a U(1){sub R} symmetry, a chiral operator whose components are responsible for triggering the RG flow, and an additional U(1){sub F} symmetry. We present a full three dimensional parameter space of solutions, which generically break supersymmetry. Some known solutions are recovered for specific sets of values of the parameters, with the new solutions interpolating between them. The generic backgrounds being singular, we provide a stability test of their dual theories by showing that there are no tachyonic resonances in the two point correlators. We compute the latter by holographic renormalization. We also carefully analyze the appearance of massless modes, such as the dilaton and the R axion, when the respective symmetries are spontaneously broken, and their lifting when the breaking is explicit. We further comment on the application of such class of backgrounds as archetypes of strongly coupled hidden sectors for gauge mediation of supersymmetry breaking. In particular, we show that it is possible to model in this way all types of hierarchies between the visible sector gaugino and sfermion masses.

  13. Supersymmetry - When Theory Inspires Experimental Searches

    CERN Document Server

    AUTHOR|(CDS)2070740

    2014-01-01

    We review, in the first part of this work, many pioneering works on supersymmetry and organize these results to show how supersymmetric quantum field theories arise from spin-statistics, N{\\oe}ther and a series of no-go theorems. We then introduce the so-called superspace formalism dedicated to the natural construction of supersymmetric Lagrangians and detail the most popular mechanisms leading to soft supersymmetry breaking. As an application, we describe the building of the Minimal Supersymmetric Standard Model and investigate current experimental limits on the parameter space of its most constrained versions. To this aim, we use various flavor, electroweak precision, cosmology and collider data. We then perform several phenomenological excursions beyond this minimal setup and probe effects due to non-minimal flavor violation in the squark sector, revisiting various constraints arising from indirect searches for superpartners. Next, we use several interfaced high-energy physics tools, including the FeynRule...

  14. Brane induced supersymmetry breaking and de Sitter supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Bandos, Igor [Department of Theoretical Physics, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao (Spain); IKERBASQUE, Basque Foundation for Science, 48011 Bilbao (Spain); Martucci, Luca [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Sorokin, Dmitri [I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy); Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); Tonin, Mario [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Università di Padova, Via Marzolo 8, 35131 Padova (Italy); I.N.F.N. Sezione di Padova, Via Marzolo 8, 35131 Padova (Italy)

    2016-02-12

    We obtain a four-dimensional supergravity with spontaneously broken supersymmetry allowing for de Sitter vacua by coupling a superspace action of minimal N=1, D=4 supergravity to a locally supersymmetric generalization of the Volkov-Akulov goldstino action describing the dynamics of a space-filling non-BPS 3-brane in N=1, D=4 superspace. To the quadratic order in the goldstino field the obtained action coincides with earlier constructions of supergravities with nilpotent superfields, while matching the higher-order contributions will require a non-linear redefinition of fields. In the unitary gauge, in which the goldstino field is set to zero, the action coincides with that of Volkov and Soroka. We also show how a nilpotency constraint on a chiral curvature superfield emerges in this formulation.

  15. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Oliveira, M.W. de.

    1986-01-01

    The consequences of the incorporation of finite temperature effects in fields theories are investigated. Particularly, we consider the sypersymmetric non-linear sigma model, calculating the effective potencial in the large N limit. Initially, we present the 1/N expantion formalism and, for the O(N) model of scalar field, we show the impossibility of spontaneous symmetry breaking. Next, we study the same model at finite temperature and in the presence of conserved charges (the O(N) symmetry's generator). We conclude that these conserved charges explicitly break the symmetry. We introduce a calculation method for the thermodynamic potential of the theory in the presence of chemical potentials. We present an introduction to Supersymmetry in the aim of describing some important concepts for the treatment at T>0. We show that Suppersymmetry is broken for any T>0, in opposition to what one expects, by the solution of the Hierachy Problem. (author) [pt

  16. Measuring Gauge-Mediated SuperSymmetry Breaking Parameters at a 500 GeV $e^{+}e^{-}$ Linear Collider

    CERN Document Server

    Ambrosanio, S; Ambrosanio, Sandro; Blair, Grahame A.

    2000-01-01

    We consider the phenomenology of a class of gauge-mediated supersymmetry (SUSY) breaking (GMSB) models at a e+e- Linear Collider (LC) with c.o.m. energy up to 500 GeV. In particular, we refer to a high-luminosity (L ~ 3 x 10^34 cm^-2 s^-1) machine, and use detailed simulation tools for a proposed detector. Among the GMSB-model building options, we define a simple framework and outline its predictions at the LC, under the assumption that no SUSY signal is detected at LEP or Tevatron. Our focus is on the case where a neutralino (N1) is the next-to-lightest SUSY particle (NLSP), for which we determine the relevant regions of the GMSB parameter space. Many observables are calculated and discussed, including production cross sections, NLSP decay widths, branching ratios and distributions, for dominant and rare channels. We sketch how to extract the messenger and electroweak scale model parameters from a spectrum measured via, e.g. threshold-scanning techniques. Several experimental methods to measure the NLSP mass...

  17. Supersymmetry breaking at the end of a cascade of Seiberg dualities

    International Nuclear Information System (INIS)

    Bertolini, M.; Bigazzi, F.; Cotrone, A. L.

    2005-01-01

    We study the IR dynamics of the cascading nonconformal quiver theory on N regular and M fractional D3 branes at the tip of the complex cone over the first del Pezzo surface. The horizon of this cone is the irregular Sasaki-Einstein manifold Y 2,1 . Our analysis shows that at the end of the cascade supersymmetry is dynamically broken

  18. Starobinsky-type Inflation in Dynamical Supergravity Breaking Scenarios

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-27

    In the context of dynamical breaking of local supersymmetry (supergravity), including the Deser-Zumino super-Higgs effect, for the simple but quite representative cases of N=1, D=4 supergravity, we discuss the emergence of Starobinsky-type inflation, due to quantum corrections in the effective action arising from integrating out gravitino fields in their massive phase. This type of inflation may occur after a first-stage small-field inflation that characterises models near the origin of the one-loop effective potential, and it may occur at the non-trivial minima of the latter. Phenomenologically realistic scenarios, compatible with the Planck data, may be expected for the conformal supergravity variants of the basic model.

  19. Probing the BSM physics with CMB precision cosmology: an application to supersymmetry

    Science.gov (United States)

    Dalianis, Ioannis; Watanabe, Yuki

    2018-02-01

    The cosmic history before the BBN is highly determined by the physics that operates beyond the Standard Model (BSM) of particle physics and it is poorly constrained observationally. Ongoing and future precision measurements of the CMB observables can provide us with significant information about the pre-BBN era and hence possibly test the cosmological predictions of different BSM scenarios. Supersymmetry is a particularly motivated BSM theory and it is often the case that different superymmetry breaking schemes require different cosmic histories with specific reheating temperatures or low entropy production in order to be cosmologically viable. In this paper we quantify the effects of the possible alternative cosmic histories on the n s and r CMB observables assuming a generic non-thermal stage after cosmic inflation. We analyze TeV and especially multi-TeV super-symmetry breaking schemes assuming the neutralino and gravitino dark matter scenarios. We complement our analysis considering the Starobinsky R 2 inflation model to exemplify the improved CMB predictions that a unified description of the early universe cosmic evolution yields. Our analysis underlines the importance of the CMB precision measurements that can be viewed, to some extend, as complementary to the laboratory experimental searches for supersymmetry or other BSM theories.

  20. Supersymmetry

    International Nuclear Information System (INIS)

    Murayama, Hitoshi.

    1994-06-01

    The author reviews phenomenologically interesting aspects of supersymmetry. First he points out that the discovery of the positron can be regarded as a historic analogue to the would-be discovery of supersymmetry. Second he reviews the recent topics on the unification of the gauge coupling constants, m b -M τ relation, proton decay, and baryogenesis. The author also briefly discusses the recent proposals to solve the problem of flavor changing neutral currents. Finally he argues that the measurements of supersymmetry parameters may probe the physics at the Planck scale

  1. Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Murayama, Hitoshi

    1994-06-01

    The author reviews phenomenologically interesting aspects of supersymmetry. First he points out that the discovery of the positron can be regarded as a historic analogue to the would-be discovery of supersymmetry. Second he reviews the recent topics on the unification of the gauge coupling constants, m{sub b}-M{sub {tau}} relation, proton decay, and baryogenesis. The author also briefly discusses the recent proposals to solve the problem of flavor changing neutral currents. Finally he argues that the measurements of supersymmetry parameters may probe the physics at the Planck scale.

  2. Non-Abelian flux tubes in N=1 SQCD: Supersizing world-sheet supersymmetry

    International Nuclear Information System (INIS)

    Shifman, M.; Yung, A.

    2005-01-01

    We consider non-Abelian 1/2 Bogomol'nyi-Prasad-Sommerfield (BPS) flux tubes (strings) in a deformed N=2 supersymmetric gauge theory, with mass terms μ 1,2 of the adjoint fields breaking N=2 down to N=1. The main feature of the non-Abelian strings is the occurrence of orientational moduli associated with the possibility of rotations of their color fluxes inside a global SU(N) group. The bulk four-dimensional theory has four supercharges; half-criticality of the non-Abelian strings would imply then N=1 supersymmetry on the world sheet, i.e. two supercharges. In fact, superalgebra of the reduced moduli space has four supercharges. Internal dynamics of the orientational moduli are described by a two-dimensional CP(N-1) model on the string world sheet. We focus mainly on the SU(2) case, i.e. CP(1) world-sheet theory. We show that non-Abelian BPS strings exist for all values of μ 1,2 . The low-energy theory of moduli is indeed CP(1), with four supercharges, in a wide region of breaking parameters μ 1,2 . Only in the limit of very large μ 1,2 , above some critical value does the N=2 world-sheet supersymmetry break down to N=1. We observe 'supersymmetry emergence' for the flux-tube junction (confined monopole): The kink-monopole is half-critical considered from the standpoint of the world-sheet CP(1) model (i.e. two supercharges conserved), while in the bulk N=1 theory there is no monopole central charge at all

  3. Soflty broken supersymmetry and the fine-tuning problem

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1984-02-20

    The supersymmetry of the simple Wess-Zumino model is broken, in the tree-approximation, by adding all possible parity-even(mass)-dimension 2 and 3 terms. The model is then renormalized using BPHZ and the normal product algorithm, such that supersymmetry is only softly broken (in the original sense of Schroer and Symanzik). We show that, within the above renormalization scheme, none of the added breaking terms give rise to technical fine-tuning problems (defined in the sense of Gildener) in larger models, with scalar multiplets and hierarchy of mass scales, which is in contrast to what we obtain via analytic schemes such as dimensional renormalization, or supersymmetry extension of which. The discrepancy (which can be shown to persist in more general models) originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Emphasizing that the issue is purely technical (as opposed to physical) in origin, and that all physical properties are scheme-independent (as they should be), we conclude that the technical fine-tuning problem, in the specific sense used in this paper, being scheme dependent, is not a well-defined issue within the context of renormalized perturbation theory. 30 references.

  4. Soflty broken supersymmetry and the fine-tuning problem

    International Nuclear Information System (INIS)

    Foda, O.E.

    1984-01-01

    The supersymmetry of the simple Wess-Zumino model is broken, in the tree-approximation, by adding all possible parity-even[mass]-dimension 2 and 3 terms. The model is then renormalized using BPHZ and the normal product algorithm, such that supersymmetry is only softly broken (in the original sense of Schroer and Symanzik). We show that, within the above renormalization scheme, none of the added breaking terms give rise to technical fine-tuning problems (defined in the sense of Gildener) in larger models, with scalar multiplets and hierarchy of mass scales, which is in contrast to what we obtain via analytic schemes such as dimensional renormalization, or supersymmetry extension of which. The discrepancy (which can be shown to persist in more general models) originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Emphasizing that the issue is purely technical (as opposed to physical) in origin, and that all physical properties are scheme-independent (as they should be), we conclude that the technical fine-tuning problem, in the specific sense used in this paper, being scheme dependent, is not a well-defined issue within the context of renormalized perturbation theory. (orig.)

  5. Technicolorful Supersymmetry

    International Nuclear Information System (INIS)

    Murayama, Hitoshi

    2003-01-01

    Technicolor achieves electroweak symmetry breaking (EWSB) in an elegant and natural way, while it suffers from severe model building difficulties. I propose to abandon its secondary goal to eliminate scalar bosons in exchange of solving numerous problems using supersymmetry. It helps to understand walking dynamics much better with certain exact results. In the particular model presented here, there is no light elementary Higgs boson and the EWSB is fully dynamical, hence explaining the hierarchy; There is no alignment problem and no light pseudo-Nambu-Goldstone bosons exist; The fermion masses are generated by a ultraviolet-complete renormalizable extended technicolor sector with techni-GIM mechanism and hence the sector is safe from flavor-changing-neutral-current constraints; The ''e + e - '' production of techni-states in the superconformal window is calculable; The electroweak precision observables are (un)fortunately not calculable

  6. Numerical simulations of N=(1,1) 1+1-dimensional super Yang-Mills theory with large supersymmetry breaking

    International Nuclear Information System (INIS)

    Filippov, I.; Pinsky, S.

    2002-01-01

    We consider the N=(1,1) super Yang-Mills (SYM) theory that is obtained by dimensionally reducing SYM theory in 2+1 dimensions to 1+1 dimensions and discuss soft supersymmetry breaking. We discuss the numerical simulation of this theory using supersymmetric discrete light-cone quantization when either the boson or the fermion has a large mass. We compare our result to the pure adjoint fermion theory and pure adjoint boson discrete light-cone quantization calculations of Klebanov, Demeterfi, Bhanot and Kutasov. With a large boson mass we find that it is necessary to add additional operators to the theory to obtain sensible results. When a large fermion mass is added to the theory we find that it is not necessary to add operators to obtain a sensible theory. The theory of the adjoint boson is a theory that has stringy bound states similar to the full SYM theory. We also discuss another theory of adjoint bosons with a spectrum similar to that obtained by Klebanov, Demeterfi, and Bhanot

  7. Spontaneous symmetry breaking in N=3 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Yu.M.

    1986-01-01

    The possibility of the spontaneous symmetry breaking without a cosmological term in N=3 supergravity is investigated. A new, dual version of N=3 supergravity - U(3)-supergravity is constructed. Such a theory is shown to admit a spontaneous supersymmetry breaking without a cosmological term and with three arbitrary scales, including partial super-Higgs effect N=3 → N=2 and N=3 → N=1

  8. Introduction to supersymmetry

    International Nuclear Information System (INIS)

    Freedman, D.Z.

    1981-01-01

    This chapter considers supersymmetry as a symmetry which operates in quantum field theory in a conventional way, but which has the unique power to unify particles of different spin at the global level and to unify gravitation with other forces at the local level. The ''component approach'' is used to discuss supersymmetry field theories. Topics covered include symmetries in relativistic quantum field theory, supersymmetry in quantum field theory, Dirac matrices and Majorana spinors, the supersymmetric Yang-Mills theory, scalar multiplet and auxiliary fields, supergravity, a catalog of N=1 supersymmetric theories, extended supersymmetry algebras, representations of extended supersymmetry, N=4 supersymmetric Yang-Mills theory, and extended supergravity

  9. Supersymmetry and String Theory: Beyond the Standard Model

    International Nuclear Information System (INIS)

    Rocek, Martin

    2007-01-01

    When I was asked to review Michael Dine's new book, 'Supersymmetry and String Theory', I was pleased to have a chance to read a book by such an established authority on how string theory might become testable. The book is most useful as a list of current topics of interest in modern theoretical physics. It gives a succinct summary of a huge variety of subjects, including the standard model, symmetry, Yang-Mills theory, quantization of gauge theories, the phenomenology of the standard model, the renormalization group, lattice gauge theory, effective field theories, anomalies, instantons, solitons, monopoles, dualities, technicolor, supersymmetry, the minimal supersymmetric standard model, dynamical supersymmetry breaking, extended supersymmetry, Seiberg-Witten theory, general relativity, cosmology, inflation, bosonic string theory, the superstring, the heterotic string, string compactifications, the quintic, string dualities, large extra dimensions, and, in the appendices, Goldstone's theorem, path integrals, and exact beta-functions in supersymmetric gauge theories. Its breadth is both its strength and its weakness: it is not (and could not possibly be) either a definitive reference for experts, where the details of thorny technical issues are carefully explored, or a textbook for graduate students, with detailed pedagogical expositions. As such, it complements rather than replaces the much narrower and more focussed String Theory I and II volumes by Polchinski, with their deep insights, as well the two older volumes by Green, Schwarz, and Witten, which develop string theory pedagogically. (book review)

  10. Searches for supersymmetry at the Large Hadron Collider

    CERN Document Server

    Parker, M A

    2000-01-01

    The potential for the general purpose detectors at the LHC, ATLAS and CMS, to discover supersymmetric particles is reviewed. Signals are considered from scenarios based on supergravity and gauge mediated supersymmetry breaking, as well as from models in which R-parity is not conserved. In most cases, supersymmetric particles can be detected if the SUSY mass scale is in the LHC energy range, and the parameters of the underlying model can be determined.

  11. A low energy dynamical SUSY breaking scenario motivated from superstring derived unification

    CERN Document Server

    Faraggi, Alon E.

    1996-01-01

    Recently there has been a resurgence of interest in gauge mediated dynamical supersymmetry breaking scenarios. I investigate how low energy dynamical SUSY breaking may arise from superstring models. In a three generation string derived model I propose that the unbroken hidden non--Abelian gauge group at the string scale is SU(3)_H with matter multiplets. Due to the small gauge content of the hidden gauge group the supersymmetry breaking scale may be consistent with the dynamical SUSY breaking scenarios. The messenger states are obtained in the superstring model from sectors which arise due to the ``Wilson--line'' breaking of the unifying non--Abelian gauge symmetry. An important property of the string motivated messenger states is the absence of superpotential terms with the Standard Model states. The stringy symmetries therefore forbid the flavor changing processes which may arise due to couplings between the messenger sector states and the Standard Model states. Motivated from the problem of string gauge co...

  12. Introduction to supersymmetry and its applications to particle interactions

    International Nuclear Information System (INIS)

    Fayet, P.

    1978-01-01

    The fundamental mechanisms are first studied: spontaneous breaking of gauge invariance and supersymmetry, definition of conserved quantum numbers. Then it is shown how to construct spontaneously broken supersymmetric gauge theories of weak and electromagnetic interactions. Supersymmetry associates a neutrino to the photon; new leptons and Higgs scalars to heavy vector bosons; heavy scalar particles to usual leptons and quarks. The Goldstone neutrino and photon neutrino belong to a new class of leptons, with its own quantum number, R; R-conservation explains why these neutrinos have not yet been observed. Particles with R=0 are those of usual gauge theories, gauge bosons, fermions and Higgs scalars; the others lead to new weak interactions phenomena, where scalars can be exchanged. Finally, it is shown how strong and gravitational interactions can also be included [fr

  13. Supersymmetry breaking in the linear representation of the dilaton

    International Nuclear Information System (INIS)

    Gaida, I.

    1995-01-01

    String effective theories with N=1 supersymmetry in 4 dimensions are subject of the discussion. These theories are effective in the sense, that they are low-energy limits of a given higher dimensional string theory after dimensional reduction and integrating out all heavy modes. At tree level the gauge coupling constant can be expressed by the vacuum expectation value of the dilaton superfield S:g 2 =2 -1 . Throughout this text S+ anti S will be denoted as the chiral representation of the dilaton. It has been shown that there exists a supersymmetric legendre transformation called supersymmetric duality, which transforms S+ anti S into a linear superfield L, where L will be called the linear representation of the dilaton. (orig.)

  14. Supersymmetry Parameter Analysis : SPA Convention and Project

    CERN Document Server

    Aguilar-Saavedra, J A; Allanach, Benjamin C; Arnowitt, R; Baer, H A; Bagger, J A; Balázs, C; Barger, V; Barnett, M; Bartl, Alfred; Battaglia, M; Bechtle, P; Belyaev, A; Berger, E L; Blair, G; Boos, E; Bélanger, G; Carena, M S; Choi, S Y; Deppisch, F; Desch, Klaus; Djouadi, A; Dutta, B; Dutta, S; Díaz, M A; Eberl, H; Ellis, Jonathan Richard; Erler, Jens; Fraas, H; Freitas, A; Fritzsche, T; Godbole, Rohini M; Gounaris, George J; Guasch, J; Gunion, J F; Haba, N; Haber, Howard E; Hagiwara, K; Han, L; Han, T; He, H J; Heinemeyer, S; Hesselbach, S; Hidaka, K; Hinchliffe, Ian; Hirsch, M; Hohenwarter-Sodek, K; Hollik, W; Hou, W S; Hurth, Tobias; Jack, I; Jiang, Y; Jones, D R T; Kalinowski, Jan; Kamon, T; Kane, G; Kang, S K; Kernreiter, T; Kilian, W; Kim, C S; King, S F; Kittel, O; Klasen, M; Kneur, J L; Kovarik, K; Kraml, Sabine; Krämer, M; Lafaye, R; Langacker, P; Logan, H E; Ma, W G; Majerotto, Walter; Martyn, H U; Matchev, K; Miller, D J; Mondragon, M; Moortgat-Pick, G; Moretti, S; Mori, T; Moultaka, G; Muanza, S; Mukhopadhyaya, B; Mühlleitner, M M; Nauenberg, U; Nojiri, M M; Nomura, D; Nowak, H; Okada, N; Olive, Keith A; Oller, W; Peskin, M; Plehn, T; Polesello, G; Porod, Werner; Quevedo, Fernando; Rainwater, D L; Reuter, J; Richardson, P; Rolbiecki, K; de Roeck, A; Weber, Ch.

    2006-01-01

    High-precision analyses of supersymmetry parameters aim at reconstructing the fundamental supersymmetric theory and its breaking mechanism. A well defined theoretical framework is needed when higher-order corrections are included. We propose such a scheme, Supersymmetry Parameter Analysis SPA, based on a consistent set of conventions and input parameters. A repository for computer programs is provided which connect parameters in different schemes and relate the Lagrangian parameters to physical observables at LHC and high energy e+e- linear collider experiments, i.e., masses, mixings, decay widths and production cross sections for supersymmetric particles. In addition, programs for calculating high-precision low energy observables, the density of cold dark matter (CDM) in the universe as well as the cross sections for CDM search experiments are included. The SPA scheme still requires extended efforts on both the theoretical and experimental side before data can be evaluated in the future at the level of the d...

  15. Stochastic field theory and finite-temperature supersymmetry

    International Nuclear Information System (INIS)

    Ghosh, P.; Bandyopadhyay, P.

    1988-01-01

    The finite-temperature behavior of supersymmetry is considered from the viewpoint of stochastic field theory. To this end, it is considered that Nelson's stochastic mechanics may be generalized to the quantization of a Fermi field when the classical analog of such a field is taken to be a scalar nonlocal field where the internal space is anisotropic in nature such that when quantized this gives rise to two internal helicities corresponding to fermion and antifermion. Stochastic field theory at finite temperature is then formulated from stochastic mechanics which incorporates Brownian motion in the external space as well as in the internal space of a particle. It is shown that when the anisotropy of the internal space is suppressed so that the internal time ξ 0 vanishes and the internal space variables are integrated out one has supersymmetry at finite temperature. This result is true for T = 0, also. However, at this phase equilibrium will be destroyed. Thus for a random process van Hove's result involving quantum mechanical operators, i.e., that when supersymmetry remains unbroken at T = 0 it will also remain unbroken at Tnot =0, occurs. However, this formalism indicates that when at T = 0 broken supersymmetry results, supersymmetry may be restored at a critical temperature T/sub c/

  16. Exact Lattice Supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Catterall, Simon; Kaplan, David B.; Unsal, Mithat

    2009-03-31

    We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.

  17. Supersymmetry with prejudice: Fitting the wrong model to LHC data

    Science.gov (United States)

    Allanach, B. C.; Dolan, Matthew J.

    2012-09-01

    We critically examine interpretations of hypothetical supersymmetric LHC signals, fitting to alternative wrong models of supersymmetry breaking. The signals we consider are some of the most constraining on the sparticle spectrum: invariant mass distributions with edges and endpoints from the golden decay chain q˜→qχ20(→l˜±l∓q)→χ10l+l-q. We assume a constrained minimal supersymmetric standard model (CMSSM) point to be the ‘correct’ one, but fit the signals instead with minimal gauge mediated supersymmetry breaking models (mGMSB) with a neutralino quasistable lightest supersymmetric particle, minimal anomaly mediation and large volume string compactification models. Minimal anomaly mediation and large volume scenario can be unambiguously discriminated against the CMSSM for the assumed signal and 1fb-1 of LHC data at s=14TeV. However, mGMSB would not be discriminated on the basis of the kinematic endpoints alone. The best-fit point spectra of mGMSB and CMSSM look remarkably similar, making experimental discrimination at the LHC based on the edges or Higgs properties difficult. However, using rate information for the golden chain should provide the additional separation required.

  18. Introduction to supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1986-01-01

    This book gives views of supersymmetry and supergravity. The contents include; alternative approach to supersymmetry algebra; immediate consequences of supersymmetry algebra; Wess-Zumino model. N=1 Super QED. N=1 super Yang Mills theory and the Noether procedure; irreducible representations of supersymmetry; invariance of simple supergravity and theories of extended rigid supersymmetry

  19. Nucleon EDM from atomic systems and constraints on supersymmetry parameters

    International Nuclear Information System (INIS)

    Oshima, Sachiko; Nihei, Takeshi; Fujita, Takehisa

    2005-01-01

    The nucleon EDM is shown to be directly related to the EDM of atomic systems. From the observed EDM values of the atomic Hg system, the neutron EDM can be extracted, which gives a very stringent constraint on the supersymmetry parameters. It is also shown that the measurement of Nitrogen and Thallium atomic systems should provide important information on the flavor dependence of the quark EDM. We perform numerical analyses on the EDM of neutron, proton and electron in the minimal supersymmetric standard model with CP-violating phases. We demonstrate that the new limit on the neutron EDM extracted from atomic systems excludes a wide parameter region of supersymmetry breaking masses above 1 TeV, while the old limit excludes only a small mass region below 1 TeV. (author)

  20. Low Energy Supersymmetry from the Heterotic String Landscape

    CERN Document Server

    Lebedev, O; Raby, S; Ramos-Sanchez, S; Ratz, M; Vaudrevange, P K S; Wingerter, A; Lebedev, Oleg; Nilles, Hans-Peter; Raby, Stuart; Ramos-Sanchez, Saul; Ratz, Michael; Vaudrevange, Patrick K. S.; Wingerter, Akin

    2007-01-01

    We study possible correlations between properties of the observable and hidden sectors in heterotic string theory. Specifically, we analyze the case of the Z6-II orbifold compactification which produces a significant number of models with the spectrum of the supersymmetric standard model. We find that requiring realistic features does affect the hidden sector such that hidden sector gauge group factors SU(4) and SO(8) are favoured. In the context of gaugino condensation, this implies low energy supersymmetry breaking.

  1. Modern Supersymmetry

    International Nuclear Information System (INIS)

    Kulish, Petr P

    2006-01-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the 'exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincare algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical characteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to 'duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  2. Hamiltonian Monte Carlo study of (1+1)-dimensional models with restricted supersymmetry on the lattice

    International Nuclear Information System (INIS)

    Ranft, J.; Schiller, A.

    1984-01-01

    Lattice versions with restricted suppersymmetry of simple (1+1)-dimensional supersymmetric models are numerically studied using a local hamiltonian Monte Carlo method. The pattern of supersymmetry breaking closely follows the expectations of Bartels and Bronzan obtain in an alternative lattice formulation. (orig.)

  3. Supersymmetry

    CERN Document Server

    Giudice, Gian F

    2015-01-01

    This chapter presents the motivations for low-energy supersymmetry, the construction of realistic models, the various schemes for generating soft terms (gravity mediation, gauge mediation, anomaly mediation, and gaugino mediation), their collider phenomenology, and their implications for dark matter. The subject is well established, and there are excellent reviews and textbooks that fully cover this material, to which the reader is directed for well-organized and exhaustive introductions to supersymmetry.

  4. Indirect Sensitivities to the Scale of Supersymmetry

    CERN Document Server

    Ellis, Jonathan Richard; Olive, Keith A; Weiglein, Georg

    2005-01-01

    Precision measurements, now and at a future linear electron-positron collider (ILC), can provide indirect information about the possible scale of supersymmetry. We illustrate the present-day and possible future ILC sensitivities within the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which there are three independent soft supersymmetry-breaking parameters m_{1/2}, m_0 and A_0. We analyze the present and future sensitivities separately for M_W, sin^2(theta_eff), (g-2)_mu, BR(b -> s gamma), BR(B_s -> mu+ mu-), M_h and Higgs branching ratios. We display the observables as functions of m_{1/2}, fixing m_0 so as to obtain the cold dark matter density allowed by WMAP and other cosmological data for specific values of A_0, tan beta and mu > 0. In a second step, we investigate the combined sensitivity of the currently available precision observables, M_W, sin^2(theta_eff), (g-2)_mu and BR(b -> s gamma), by performing a chi^2 analysis. The current data are in very good agreement with ...

  5. Anomaly-free gauged R-symmetry in local supersymmetry

    International Nuclear Information System (INIS)

    Chamseddine, A.H.; Dreiner, H.

    1996-01-01

    We discuss local R-symmetry as a potentially powerful new model building tool. We first review and clarify that a U(1) R-symmetry can only be gauged in local and not in global supersymmetry. We determine the anomaly-cancellation conditions for the gauged R-symmetry. For the standard superpotential these equations have no solution, independently of how many Standard Model singlets are added to the model. There is also no solution when we increase the number of families and the number of pairs of Higgs doublets. When the Green-Schwarz mechanism is employed to cancel the anomalies, solutions only exist for a large number of singlets. We find many anomaly-free family-independent models with an extra SU(3) c octet chiral superfield. We consider in detail the conditions for an anomaly-free family-dependent U(1) R and find solutions with one, two, three and four extra singlets. Only with three and four extra singlets do we naturally obtain sfermion masses of the order of the weak scale. For these solutions we consider the spontaneous breaking of supersymmetry and the R-symmetry in the context of local supersymmetry. In general the U(1) R gauge group is broken at or close to the Planck scale. We consider the effects of the R-symmetry on baryon- and lepton-number violation in supersymmetry. There is no logical connection between a conserved R-symmetry and a conserved R-parity. For conserved R-symmetry we have models for all possibilities of conserved or broken R-parity. Most models predict dominant effects which could be observed at HERA. (orig.)

  6. String dynamics, spontaneous breaking of supersymmetry, and dual scalar field theory

    International Nuclear Information System (INIS)

    Liu Luxin

    2009-01-01

    The dynamics of a vortex string, which describes the Nambu-Goldstone modes of the spontaneous breakdown of the target space D=4, N=1 supersymmetry and internal U(1) R symmetry to the world sheet ISO(1,1) symmetry, is constructed by using the approach of nonlinear realization. The resulting action describing the low energy oscillations of the string into the covolume (super)space is found to have an invariant synthesis form of the Akulov-Volkov and Nambu-Goto actions. Its dual scalar field action is obtained by means of introducing two vectorial Lagrangian multipliers into the action of the string.

  7. Symmetry breaking in superstring theories: applications in cosmology and particle physics

    International Nuclear Information System (INIS)

    Catelin-Julien, T.

    2008-10-01

    This thesis is devoted to the study of some applications of superstring theory in cosmology and in particle physics. The unifying principle of our work is the stringy spontaneous (super)symmetry breaking mechanism. Our manuscript starts with a general overview of string theory, where the emphasis is put on the aspects that will be important throughout our work. We introduce then our first work, in which we exhibit a new symmetry of the vacua of N = 1 heterotic string theory, exchanging the vectorial and spinorial representations of the grand unified gauge group. In a second part, we consider stringy cosmological evolutions, at non-zero temperature and in the presence of a supersymmetry breaking scale. We also give arguments for a stabilization of the compactification moduli. (author)

  8. CP violation in supersymmetry, Higgs sector and the large hadron ...

    Indian Academy of Sciences (India)

    induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking ... Supersymmetry; CP violation; Higgs sector; large hadron collider. ..... 90 (80.32). > 90 (73.85). > 90 (63.95). Br(tbH+)(%). 4.0–4.2. 4.9–5.1. 4.8–5.11. 4.0–4.3. MH+. < 133.6 (135.1). < 122.7 (124.3). < 113.8 (115.9). < 106.6 (109.7).

  9. Origin and consequence of the supersymmetry breaking: -) phenomenology of neutralinos annihilation in Zh and WW, -) (0,1/2) representation and duality; Origine et manifestation de la brisure de supersymetrie: phenomenologie de l'annihilation de neutralinos en Zh et WW. Representation (0,1/2) et dualite

    Energy Technology Data Exchange (ETDEWEB)

    Labonne, B

    2007-01-15

    Supersymmetry is an interesting extension of the Standard Model. Hence, its formal and phenomenological aspects need to be understood before establishing it as realized in Nature. Supersymmetry offers a natural dark matter candidate. To check this hypothesis, a crucial point would be the indirect detection of neutralino annihilation products. Among annihilation channels, the one with a Z boson and a Higgs scalar, is of interest because of the hard spectrum it yields. However, the spectra needs to be weighted by branching ratios.The Zh channel is then known to be suppressed. We notice that the deeper broken the supersymmetry, the stronger the suppression. Thus the channel suppression has to be understood in terms of gauge independence of different diagrams involved, and high energy unitarity. A key element of the suppression for this channel is the Z boson polarization, which comes from the initial Majorana particles at rest. Finally, we investigate the role of polarization in the WW channel. Here, polarization does not suppress the channel but modifies the shape of the decay products spectra. This could be important from an experimental point of view. On a more formal side, we point out different kinds of representations of the (0,1/2) multiplet in superspace. First we focus on a new kind of superfield called X. Next we present a duality in 4 dimensions, before showing its extension to superspace. Without supersymmetry, this duality links a 3-form to a constant. In superspace, we find that the duality links a 3-form superfield to the new X superfield. It is essential to understand that some components of the 3-form and the X superfield seem to help supersymmetry breaking. Finally we try to transmit this breaking to usual chiral superfields. (author)

  10. arXiv Multiple solutions in supersymmetry and the Higgs

    CERN Document Server

    Allanach, B.C.

    2014-01-01

    Weak-scale supersymmetry is a well motivated, if speculative, theory beyond the Standard Model of particle physics. It solves the thorny issue of the Higgs mass, namely: how can it be stable to quantum corrections, when they are expected to be $10^{15}$ times bigger than its mass? The experimental signal of the theory is the production and measurement of supersymmetric particles in the Large Hadron Collider experiments. No such particles have been seen to date, but hopes are high for the impending run in 2015. Searches for supersymmetric particles can be difficult to interpret. Here, we shall discuss the fact that, even given a well defined model of supersymmetry breaking with few parameters, there can be multiple solutions. These multiple solutions are physically different, and could potentially mean that points in parameter space have been ruled out by interpretations of LHC data when they shouldn't have been. We shall review the multiple solutions and illustrate their existence in a universal model of supe...

  11. Electroweak symmetry breaking: Unitarity, dynamics, and experimental prospects

    International Nuclear Information System (INIS)

    Chanowitz, M.S.

    1988-01-01

    A review of what is known about the unexplained mechanism that breaks the electroweak symmetry and thereby gives mass to the W and Z gauge bosons while leaving the photon massless is given. Symmetry, unitarity, technicolor, supersymmetry, higgs sector dynamics, and experimental status and prospects are discussed

  12. Inflation and gauge mediation in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Nakai, Yuichiro; Sakai, Manabu

    2011-01-01

    We propose a simple high-scale inflationary scenario based on a phenomenologically viable model with direct gauge mediation of low-scale supersymmetry breaking. Hybrid inflation occurs in a hidden supersymmetry breaking sector. Two hierarchical mass scales to reconcile both high-scale inflation and gauge mediation are necessary for the stability of the metastable supersymmetry breaking vacuum. Our scenario is also natural in light of the Landau pole problem of direct gauge mediation. (author)

  13. No-go for tree-level R-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Feihu [University of Electronic Science and Technology of China, School of Physical Electronics, Chengdu (China); Liu, Muyang [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Sun, Zheng [Sichuan University, Center for Theoretical Physics, College of Physical Science and Technology, Chengdu (China); Chinese Academy of Sciences, CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Beijing (China)

    2017-11-15

    We show that in gauge mediation models with tree-level R-symmetry breaking where supersymmetry and R-symmetries are broken by different fields, the gaugino mass either vanishes at one loop or finds a contribution from loop-level R-symmetry breaking. Thus tree-level R-symmetry breaking for phenomenology is either no-go or redundant in the simplest type of models. Including explicit messenger mass terms in the superpotential with a particular R-charge arrangement is helpful to bypass the no-go theorem, and the resulting gaugino mass is suppressed by the messenger mass scale. (orig.)

  14. A supersymmetry model of leptons

    International Nuclear Information System (INIS)

    Liu, Chun

    2005-01-01

    If supersymmetry (SUSY) is not for stabilizing the electroweak energy scale, what is it used for in particle physics? We propose that it is for flavor problems. A cyclic family symmetry is introduced. Under the family symmetry, only the τ-lepton is massive due to the vacuum expectation value (VEV) of the Higgs field. This symmetry is broken by a sneutrino VEV which results in the muon mass. The comparatively large sneutrino VEV does not result in a large neutrino mass due to requiring heavy gauginos. SUSY breaks at a high scale ∼10 13 GeV. The electroweak energy scale is unnaturally small. No additional global symmetry, like the R-parity, is imposed. Other aspects of the model are discussed

  15. Introduction to supersymmetry

    International Nuclear Information System (INIS)

    Schreiber, G.U.

    1987-09-01

    The Dirac equation as a relativistic quantum mechanical equation describing spin-half particles in higher-dimensional space-time is discussed. Clifford algebra in d-dimensional space-time is considered. Also discussed are the discrete symmetries of the Dirac equation, namely: charge conjunction, time reversal and parity or reflection symmetry. The Majorana and Weyl conditions which require the particle wavefunctions to be invariant under particle ↔ antiparticle exchange and left-handed particle ↔ right-handed antiparticle exchange respectively, are investigated. The Poincare group, consisting of the Lorentz group of space rotations, Lorentz boosts and the group of space-time translations, is examined, along with its irreducible representations. The concept of supersymmetry arises out of the generalisation of Lie algebras. An introduction to supersymmetry, as well as the immediate consequences of supersymmetry algebra, is given. Finally, the superspace-superfield approach is introduced. Superspace is a mathematical object which allows a simplification of the formulation of supersymmetry. The advantage of this formulation is that now supersymmetry becomes manifest: it arises naturally just like the Poincare symmetry arises naturally in four-dimensional Minkowski space. 46 refs., 9 figs., 23 tabs

  16. A (critical) overview of electroweak symmetry breaking

    International Nuclear Information System (INIS)

    Csaki, Csaba

    2010-01-01

    This presentation discusses the following points: The standard Higgs, big vs. little hierarchy; Electroweak Symmetry Breaking in supersymmetry and little hierarchy of Minimal Supersymmetric Standard Model (MSSM): Buried Higgs, Bigger quartic (D-terms, Next-to-Minimal Supersymmetric Standard Model (NMSSM), fat Higgs,..); Strong dynamics and related models: Technicolor, Monopole condensate, Warped extra dimensions, Realistic RS, Higgs-less, Composite Higgs, Little Higgs. In summary, we do not understand how Higgs is light and still no trace of new physics. In Supersymmetry (SUSY) it calls for extension of MSSM. In strong dynamics models: electroweak penguin (EWP) usually issue (Warped extra dimension - composite Higgs, Higgs-less, Little Higgs, Technicolor, monopole condensation,..). None of them is fully convincing but LHC should settle these

  17. Spontaneous symmetry breaking in N = 2 supergravity

    International Nuclear Information System (INIS)

    Zinov'ev, Y.M.

    1987-01-01

    A model describing the interaction of N = 2 supergravity with a vector and a linear multiplet is constructed. The model admits the introduction of spontaneous supersymmetry breaking with two arbitrary scales, one of which can be equal to zero, corresponding to the partial super-Higgs effect (N = 2→N = 1). The cosmological term is automatically equal to zero

  18. Supersymmetry Searches in GUT Models with Non-Universal Scalar Masses

    CERN Document Server

    Cannoni, M.; Gómez, M.E.; Lola, S.; Ruiz de Austri, R.

    2016-03-22

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predict the possibility of $\\tilde{t}_1-\\chi$ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing $E_T$...

  19. Rencontres de Moriond EW 2012: Addressing symmetry breaking and mass hierarchy

    CERN Multimedia

    Pauline Gagnon

    2012-01-01

    Last Friday at the Moriond conference in La Thuile in Italy, Lisa Randall from Harvard University reminded the audience how all fields are related: electroweak symmetry breaking must take into account flavour physics for example. Every good model should address this intrinsic connection.   Despite many expectations, no signs for supersymmetry (SUSY) of any type has been found to date. So Lisa Randall worked with Csaba Csaki and John Terning to explore alternatives and developed a version of supersymmetry built on the Minimal Composite Supersymmetry Standard Model (MCSSM) that Csaki, Shirman, and Terning had developed, incorporating a strongly interacting theory with compositeness that addresses among other things the fact that the top quark is so much heavier than all other quarks. Randall and collaborators showed that this model, when supersymmetry is incorporated, naturally accommodates both a Higgs boson around 125 GeV and a light stop, the supersymmetric partner to the top quark. &a...

  20. Lifshitz-sector mediated SUSY breaking

    International Nuclear Information System (INIS)

    Pospelov, Maxim; Tamarit, Carlos

    2014-01-01

    We propose a novel mechanism of SUSY breaking by coupling a Lorentz-invariant supersymmetric matter sector to non-supersymmetric gravitational interactions with Lifshitz scaling. The improved UV properties of Lifshitz propagators moderate the otherwise uncontrollable ultraviolet divergences induced by gravitational loops. This ensures that both the amount of induced Lorentz violation and SUSY breaking in the matter sector are controlled by Λ HL 2 /M P 2 , the ratio of the Hořava-Lifshitz cross-over scale Λ HL to the Planck scale M P . This ratio can be kept very small, providing a novel way of explicitly breaking supersymmetry without reintroducing fine-tuning. We illustrate our idea by considering a model of scalar gravity with Hořava-Lifshitz scaling coupled to a supersymmetric Wess-Zumino matter sector, in which we compute the two-loop SUSY breaking corrections to the masses of the light scalars due to the gravitational interactions and the heavy fields

  1. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  2. Supersymmetry of elementary particles

    International Nuclear Information System (INIS)

    Sardanashvili, G.A.; Zakharov, O.A.

    1986-01-01

    Some difficulties, connected with correct application of supersymmetry mathematical tools in the field and elementary particle theory are pointed out. The role of Grassman algebra in the usual field theory and the role of Lee superalgebra in supertransformations mixing bosons and fermions are shown. Grassman algebra in the theory of supersymmetries plays a role of numerical field. A supersymmetrical model, when indexes {i} of Grassman algebra corresponding to ''color'', and indexes {α} of Lee superalgebra representations - to ''flavor'', is considered. It is marked that the problem of interpretation of Grassman algebra indexes is a key one for the theory of supersymmetries. In particular, it gives no possibility to come from the theory of supersymmetries to the usual field theory, whose indexes of Grassman algebra possess obvious physical meaning

  3. Superworld without supersymmetry

    Directory of Open Access Journals (Sweden)

    Shreyashi Chakdar

    2016-03-01

    Full Text Available It is a possibility that the superworld (supersymmetric partners of our world does exist without supersymmetry. The two worlds are being distinguished by an unbroken discrete Z2 symmetry (similar to R-parity in supersymmetry. We lose the solution to the hierarchy problem. However, such a scenario has several motivations. For example, the lightest neutral superworld particle will be a candidate for dark matter. The other being, as in supersymmetry, it is possible to achieve gauge coupling unification. One major difference with the supersymmetric theory is that such a theory is much more general since it is not constrained by supersymmetry. For example, some of the gauge couplings connecting the Standard Model particles with the superpartners now become free Yukawa couplings. As a result, the final state signals as well as the limits on the superworld particles can be modified both qualitatively and quantitatively. The reach for these superworld particles at the Large Hadron Collider (LHC can be much higher than the superpartners, leading to the increased possibility of discovering new physics at the LHC.

  4. Introduction to supersymmetry

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    In these lectures, I will introduce supersymmetry as an extension to spacetime symmetries both formally and physically. I will present motivations for why we think supersymmetry may exist in the real world, and may manifest itself at the LHC. I will describe the current set of models of softly broken supersymmetry at the electroweak scale and the parts that make them exciting and the parts that make people sick. I will then cover the phenomenology of the various models - the spectra and some of the best studied collider signals. Finally, I will describe the phenomenology of the full supersymmetric parameter space in general terms and discuss this collider signals not covered by the classic models.

  5. Low energy supersymmetry phenomenology

    CERN Document Server

    Baer, H.; Chen, C.H.; Eberl, H.; Feng, J.L.; Fujii, K.; Gunion, John F.; Kamon, T.; Kao, C.; Lopez, J.L.; Majerotto, W.; McIntyre, P.; Munroe, Ray B.; Murayama, H.; Paige, F.; Porod, W.; Sender, J.; Sopczak, A.; Tata, X.; Tsukamoto, T.; White, J.

    1996-01-01

    We summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, we evaluate the capabilities of various e^+e^-, p\\bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, we discuss capabilities of future facilities to dis-entangle the anticipated spectrum of super-particles and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. We comment upon the complementarity of proposed hadron and e^+e^- machines for a comprehensive study of low energy supersymmetry.

  6. Low energy supersymmetry phenomenology

    International Nuclear Information System (INIS)

    Baer, H.; Chen, C.H.; Gunion, J.; Kamon, T.; Lopez, J.L.; Kao, C.

    1995-04-01

    The authors summarize the current status and future prospects for low energy (weak scale) supersymmetry. In particular, they evaluate the capabilities of various e + e - , p bar p and pp colliders to discover evidence for supersymmetric particles. Furthermore, assuming supersymmetry is discovered, they discuss capabilities of future facilities to disentangle the anticipated spectrum of super-particles, and, via precision measurements, to test mass and coupling parameters for comparison with various theoretical expectations. The authors then comment upon the complementarity of proposed hadron and e + e - machines for a comprehensive study of low energy supersymmetry

  7. BOOK REVIEW: Modern Supersymmetry

    Science.gov (United States)

    Kulish, Petr P.

    2006-12-01

    We have spent more than twenty years applying supersymmetry (SUSY) to elementary particle physics and attempting to find an experimental manifestation of this symmetry. Terning's monograph demonstrates the strong influence of SUSY on theoretical elaborations in the field of elementary particles. It gives both an overview of modern supersymmetry in elementary particle physics and calculation techniques. The author, trying to be closer to applications of SUSY in the real world of elementary particles, is also anticipating the importance of supersymmetry for rigorous study of nonperturbative phenomena in quantum field theory. In particular, he presents the `exact' SUSY β function using instanton methods, phenomena of anomalies and dualities. Supersymmetry algebra is introduced by adding two anticommuting spinor generators to Poincaré algebra and by presenting massive and massless supermultiplets of its representations. The author prefers to use mostly the component description of field contents of the theories in question rather than the superfield formalism. Such a style makes the account closer to physical chartacteristics. Relations required by SUSY among β functions of the gauge, Yukawa and quartic interactions are checked by direct calculations as well as to all orders in perturbation theory, thus demonstrating that SUSY survives quantization. A discussion is included of the hierarchy problem of different scales of weak and strong interactions and its possible solution by the minimal supersymmetric standard model. Different SUSY breaking mechanisms are presented corresponding to a realistic phenomenology. The monograph can also be considered as a guide to `duality' relations connecting different SUSY gauge theories, supergravities and superstrings. This is demonstrated referring to the particular properties and characteristics of these theories (field contents, scaling dimensions of appropriate operators etc). In particular, the last chapter deals with the Ad

  8. Algebraic Topology Foundations of Supersymmetry and Symmetry Breaking in Quantum Field Theory and Quantum Gravity: A Review

    Directory of Open Access Journals (Sweden)

    Ion C. Baianu

    2009-04-01

    Full Text Available A novel algebraic topology approach to supersymmetry (SUSY and symmetry breaking in quantum field and quantum gravity theories is presented with a view to developing a wide range of physical applications. These include: controlled nuclear fusion and other nuclear reaction studies in quantum chromodynamics, nonlinear physics at high energy densities, dynamic Jahn-Teller effects, superfluidity, high temperature superconductors, multiple scattering by molecular systems, molecular or atomic paracrystal structures, nanomaterials, ferromagnetism in glassy materials, spin glasses, quantum phase transitions and supergravity. This approach requires a unified conceptual framework that utilizes extended symmetries and quantum groupoid, algebroid and functorial representations of non-Abelian higher dimensional structures pertinent to quantized spacetime topology and state space geometry of quantum operator algebras. Fourier transforms, generalized Fourier-Stieltjes transforms, and duality relations link, respectively, the quantum groups and quantum groupoids with their dual algebraic structures; quantum double constructions are also discussed in this context in relation to quasi-triangular, quasi-Hopf algebras, bialgebroids, Grassmann-Hopf algebras and higher dimensional algebra. On the one hand, this quantum algebraic approach is known to provide solutions to the quantum Yang-Baxter equation. On the other hand, our novel approach to extended quantum symmetries and their associated representations is shown to be relevant to locally covariant general relativity theories that are consistent with either nonlocal quantum field theories or local bosonic (spin models with the extended quantum symmetry of entangled, 'string-net condensed' (ground states.

  9. A realistic extension of gauge-mediated SUSY-breaking model with superconformal hidden sector

    International Nuclear Information System (INIS)

    Asano, Masaki; Hisano, Junji; Okada, Takashi; Sugiyama, Shohei

    2009-01-01

    The sequestering of supersymmetry (SUSY) breaking parameters, which is induced by superconformal hidden sector, is one of the solutions for the μ/B μ problem in gauge-mediated SUSY-breaking scenario. However, it is found that the minimal messenger model does not derive the correct electroweak symmetry breaking. In this Letter we present a model which has the coupling of the messengers with the SO(10) GUT-symmetry breaking Higgs fields. The model is one of the realistic extensions of the gauge mediation model with superconformal hidden sector. It is shown that the extension is applicable for a broad range of conformality breaking scale

  10. Search for Supersymmetry in pp Collisions at $\\sqrt{s}$ = 7 TeV in Events with Two Photons and Missing Transverse Energy

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Haensel, Stephan; Hoch, Michael; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kasieczka, Gregor; Kiesenhofer, Wolfgang; Krammer, Manfred; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Teischinger, Florian; Wagner, Philipp; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Benucci, Leonardo; De Wolf, Eddi A; Janssen, Xavier; Maes, Thomas; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Devroede, Olivier; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Joris; Maes, Michael; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Charaf, Otman; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hammad, Gregory Habib; Hreus, Tomas; Marage, Pierre Edouard; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Adler, Volker; Cimmino, Anna; Costantini, Silvia; Grunewald, Martin; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ryckbosch, Dirk; Thyssen, Filip; Tytgat, Michael; Vanelderen, Lukas; Verwilligen, Piet; Walsh, Sinead; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Caudron, Julien; Ceard, Ludivine; Cortina Gil, Eduardo; De Favereau De Jeneret, Jerome; Delaere, Christophe; Favart, Denis; Giammanco, Andrea; Grégoire, Ghislain; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Ovyn, Severine; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Alves, Gilvan; De Jesus Damiao, Dilson; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Carvalho, Wagner; Melo Da Costa, Eliza; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Silva Do Amaral, Sheila Mara; Sznajder, Andre; Torres Da Silva De Araujo, Felipe; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Darmenov, Nikolay; Dimitrov, Lubomir; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vankov, Ivan; Dimitrov, Anton; Hadjiiska, Roumyana; Karadzhinova, Aneliya; Kozhuharov, Venelin; Litov, Leander; Mateev, Matey; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Zhang, Linlin; Zhu, Bo; Zou, Wei; Cabrera, Andrés; Gomez Moreno, Bernardo; Ocampo Rios, Alberto Andres; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Lelas, Karlo; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Dzelalija, Mile; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Khalil, Shaaban; Mahmoud, Mohammed; Hektor, Andi; Kadastik, Mario; Müntel, Mait; Raidal, Martti; Rebane, Liis; Azzolini, Virginia; Eerola, Paula; Fedi, Giacomo; Czellar, Sandor; Härkönen, Jaakko; Heikkinen, Mika Aatos; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Korpela, Arja; Tuuva, Tuure; Sillou, Daniel; Besancon, Marc; Choudhury, Somnath; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Gentit, François-Xavier; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Marionneau, Matthieu; Millischer, Laurent; Rander, John; Rosowsky, André; Shreyber, Irina; Titov, Maksym; Verrecchia, Patrice; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bianchini, Lorenzo; Bluj, Michal; Broutin, Clementine; Busson, Philippe; Charlot, Claude; Dahms, Torsten; Dobrzynski, Ludwik; Elgammal, Sherif; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Thiebaux, Christophe; Wyslouch, Bolek; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Bodin, David; Brom, Jean-Marie; Cardaci, Marco; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Ferro, Cristina; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Greder, Sebastien; Juillot, Pierre; Karim, Mehdi; Le Bihan, Anne-Catherine; Mikami, Yoshinari; Van Hove, Pierre; Fassi, Farida; Mercier, Damien; Baty, Clement; Beauceron, Stephanie; Beaupere, Nicolas; Bedjidian, Marc; Bondu, Olivier; Boudoul, Gaelle; Boumediene, Djamel; Brun, Hugues; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fay, Jean; Gascon, Susan; Ille, Bernard; Kurca, Tibor; Le Grand, Thomas; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Sordini, Viola; Tosi, Silvano; Tschudi, Yohann; Verdier, Patrice; Lomidze, David; Anagnostou, Georgios; Edelhoff, Matthias; Feld, Lutz; Heracleous, Natalie; Hindrichs, Otto; Jussen, Ruediger; Klein, Katja; Merz, Jennifer; Mohr, Niklas; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Weber, Martin; Wittmer, Bruno; Ata, Metin; Bender, Walter; Dietz-Laursonn, Erik; Erdmann, Martin; Frangenheim, Jens; Hebbeker, Thomas; Hinzmann, Andreas; Hoepfner, Kerstin; Klimkovich, Tatsiana; Klingebiel, Dennis; Kreuzer, Peter; Lanske, Dankfried; Magass, Carsten; Merschmeyer, Markus; Meyer, Arnd; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Steggemann, Jan; Teyssier, Daniel; Tonutti, Manfred; Bontenackels, Michael; Davids, Martina; Duda, Markus; Flügge, Günter; Geenen, Heiko; Giffels, Manuel; Haj Ahmad, Wael; Heydhausen, Dirk; Kress, Thomas; Kuessel, Yvonne; Linn, Alexander; Nowack, Andreas; Perchalla, Lars; Pooth, Oliver; Rennefeld, Jörg; Sauerland, Philip; Stahl, Achim; Thomas, Maarten; Tornier, Daiske; Zoeller, Marc Henning; Aldaya Martin, Maria; Behrenhoff, Wolf; Behrens, Ulf; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Cakir, Altan; Campbell, Alan; Castro, Elena; Dammann, Dirk; Eckerlin, Guenter; Eckstein, Doris; Flossdorf, Alexander; Flucke, Gero; Geiser, Achim; Hauk, Johannes; Jung, Hannes; Kasemann, Matthias; Katkov, Igor; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Knutsson, Albert; Krämer, Mira; Krücker, Dirk; Kuznetsova, Ekaterina; Lange, Wolfgang; Lohmann, Wolfgang; Mankel, Rainer; Marienfeld, Markus; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Olzem, Jan; Pitzl, Daniel; Raspereza, Alexei; Raval, Amita; Rosin, Michele; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Sen, Niladri; Spiridonov, Alexander; Stein, Matthias; Tomaszewska, Justyna; Walsh, Roberval; Wissing, Christoph; Autermann, Christian; Blobel, Volker; Bobrovskyi, Sergei; Draeger, Jula; Enderle, Holger; Gebbert, Ulla; Kaschube, Kolja; Kaussen, Gordon; Klanner, Robert; Lange, Jörn; Mura, Benedikt; Naumann-Emme, Sebastian; Nowak, Friederike; Pietsch, Niklas; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schröder, Matthias; Schum, Torben; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Barth, Christian; Bauer, Julia; Buege, Volker; Chwalek, Thorsten; De Boer, Wim; Dierlamm, Alexander; Dirkes, Guido; Feindt, Michael; Gruschke, Jasmin; Hackstein, Christoph; Hartmann, Frank; Heinrich, Michael; Held, Hauke; Hoffmann, Karl-Heinz; Honc, Simon; Komaragiri, Jyothsna Rani; Kuhr, Thomas; Martschei, Daniel; Mueller, Steffen; Müller, Thomas; Niegel, Martin; Oberst, Oliver; Oehler, Andreas; Ott, Jochen; Peiffer, Thomas; Piparo, Danilo; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Ratnikova, Natalia; Renz, Manuel; Saout, Christophe; Scheurer, Armin; Schieferdecker, Philipp; Schilling, Frank-Peter; Schmanau, Mike; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Troendle, Daniel; Wagner-Kuhr, Jeannine; Weiler, Thomas; Zeise, Manuel; Zhukov, Valery; Ziebarth, Eva Barbara; Daskalakis, Georgios; Geralis, Theodoros; Karafasoulis, Konstantinos; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Manolakos, Ioannis; Markou, Athanasios; Markou, Christos; Mavrommatis, Charalampos; Ntomari, Eleni; Petrakou, Eleni; Gouskos, Loukas; Mertzimekis, Theodoros; Panagiotou, Apostolos; Stiliaris, Efstathios; Evangelou, Ioannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Patras, Vaios; Triantis, Frixos A; Aranyi, Attila; Bencze, Gyorgy; Boldizsar, Laszlo; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Kapusi, Anita; Krajczar, Krisztian; Sikler, Ferenc; Veres, Gabor Istvan; Vesztergombi, Gyorgy; Beni, Noemi; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Veszpremi, Viktor; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Jindal, Monika; Kaur, Manjit; Kohli, Jatinder Mohan; Mehta, Manuk Zubin; Nishu, Nishu; Saini, Lovedeep Kaur; Sharma, Archana; Singh, Anil; Singh, Jas Bir; Singh, Supreet Pal; Ahuja, Sudha; Bhattacharya, Satyaki; Choudhary, Brajesh C; Gupta, Pooja; Jain, Sandhya; Jain, Shilpi; Kumar, Ashok; Ranjan, Kirti; Shivpuri, Ram Krishen; Choudhury, Rajani Kant; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Aziz, Tariq; Guchait, Monoranjan; Gurtu, Atul; Maity, Manas; Majumder, Devdatta; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Saha, Anirban; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Mondal, Naba Kumar; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Hashemi, Majid; Jafari, Abideh; Khakzad, Mohsen; Mohammadi, Abdollah; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Lusito, Letizia; Maggi, Giorgio; Maggi, Marcello; Manna, Norman; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pierro, Giuseppe Antonio; Pompili, Alexis; Pugliese, Gabriella; Romano, Francesco; Roselli, Giuseppe; Selvaggi, Giovanna; Silvestris, Lucia; Trentadue, Raffaello; Tupputi, Salvatore; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Giunta, Marina; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gianni; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Frosali, Simone; Gallo, Elisabetta; Gonzi, Sandro; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Colafranceschi, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Musenich, Riccardo; Benaglia, Andrea; De Guio, Federico; Di Matteo, Leonardo; Ghezzi, Alessio; Malvezzi, Sandra; Martelli, Arabella; Massironi, Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Sala, Silvano; Tabarelli de Fatis, Tommaso; Tancini, Valentina; Buontempo, Salvatore; Carrillo Montoya, Camilo Andres; Cavallo, Nicola; De Cosa, Annapaola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellan, Paolo; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; De Mattia, Marco; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Gasparini, Fabrizio; Gasparini, Ugo; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Mazzucato, Mirco; Meneguzzo, Anna Teresa; Nespolo, Massimo; Perrozzi, Luca; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zumerle, Gianni; Baesso, Paolo; Berzano, Umberto; Ratti, Sergio P; Riccardi, Cristina; Torre, Paola; Vitulo, Paolo; Viviani, Claudio; Biasini, Maurizio; Bilei, Gian Mario; Caponeri, Benedetta; Fanò, Livio; Lariccia, Paolo; Lucaroni, Andrea; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Santocchia, Attilio; Taroni, Silvia; Valdata, Marisa; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; D'Agnolo, Raffaele Tito; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Segneri, Gabriele; Serban, Alin Titus; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Di Marco, Emanuele; Diemoz, Marcella; Franci, Daniele; Grassi, Marco; Longo, Egidio; Nourbakhsh, Shervin; Organtini, Giovanni; Pandolfi, Francesco; Paramatti, Riccardo; Rahatlou, Shahram; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Biino, Cristina; Botta, Cristina; Cartiglia, Nicolo; Castello, Roberto; Costa, Marco; Demaria, Natale; Graziano, Alberto; Mariotti, Chiara; Marone, Matteo; Maselli, Silvia; Migliore, Ernesto; Mila, Giorgia; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Pastrone, Nadia; Pelliccioni, Mario; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Vilela Pereira, Antonio; Belforte, Stefano; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; Montanino, Damiana; Penzo, Aldo; Heo, Seong Gu; Nam, Soon-Kwon; Chang, Sunghyun; Chung, Jin Hyuk; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Park, Hyangkyu; Ro, Sang-Ryul; Son, Dohhee; Son, Dong-Chul; Son, Taejin; Kim, Jaeho; Kim, Jae Yool; Song, Sanghyeon; Choi, Suyong; Hong, Byung-Sik; Jeong, Min-Soo; Jo, Mihee; Kim, Hyunchul; Kim, Ji Hyun; Kim, Tae Jeong; Lee, Kyong Sei; Moon, Dong Ho; Park, Sung Keun; Rhee, Han-Bum; Seo, Eunsung; Shin, Seungsu; Sim, Kwang Souk; Choi, Minkyoo; Kang, Seokon; Kim, Hyunyong; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Bilinskas, Mykolas Jurgis; Grigelionis, Ignas; Janulis, Mindaugas; Martisiute, Dalia; Petrov, Pavel; Sabonis, Tomas; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Sánchez-Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Reyes-Santos, Marco A; Krofcheck, David; Tam, Jason; Butler, Philip H; Doesburg, Robert; Silverwood, Hamish; Ahmad, Muhammad; Ahmed, Ijaz; Asghar, Muhammad Irfan; Hoorani, Hafeez R; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Brona, Grzegorz; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Frueboes, Tomasz; Gokieli, Ryszard; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Almeida, Nuno; Bargassa, Pedrame; David Tinoco Mendes, Andre; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Musella, Pasquale; Nayak, Aruna; Seixas, Joao; Varela, Joao; Afanasiev, Serguei; Belotelov, Ivan; Bunin, Pavel; Golutvin, Igor; Kamenev, Alexey; Karjavin, Vladimir; Kozlov, Guennady; Lanev, Alexander; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Matveev, Viktor; Pashenkov, Anatoli; Toropin, Alexander; Troitsky, Sergey; Epshteyn, Vladimir; Gavrilov, Vladimir; Kaftanov, Vitali; Kossov, Mikhail; Krokhotin, Andrey; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Petrushanko, Sergey; Sarycheva, Ludmila; Savrin, Viktor; Snigirev, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Vinogradov, Alexey; Azhgirey, Igor; Bitioukov, Sergei; Grishin, Viatcheslav; Kachanov, Vassili; Konstantinov, Dmitri; Korablev, Andrey; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Slabospitsky, Sergey; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Krpic, Dragomir; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Arce, Pedro; Battilana, Carlo; Calvo, Enrique; Cepeda, Maria; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Diez Pardos, Carmen; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Puerta Pelayo, Jesus; Redondo, Ignacio; Romero, Luciano; Santaolalla, Javier; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; Codispoti, Giuseppe; de Trocóniz, Jorge F; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Vizan Garcia, Jesus Manuel; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Felcini, Marta; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Jorda, Clara; Lobelle Pardo, Patricia; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Sobron Sanudo, Mar; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Baillon, Paul; Ball, Austin; Barney, David; Bell, Alan James; Benedetti, Daniele; Bernet, Colin; Bialas, Wojciech; Bloch, Philippe; Bocci, Andrea; Bolognesi, Sara; Bona, Marcella; Breuker, Horst; Bunkowski, Karol; Camporesi, Tiziano; Cerminara, Gianluca; Coarasa Perez, Jose Antonio; Curé, Benoît; D'Enterria, David; De Roeck, Albert; Di Guida, Salvatore; Elliott-Peisert, Anna; Frisch, Benjamin; Funk, Wolfgang; Gaddi, Andrea; Gennai, Simone; Georgiou, Georgios; Gerwig, Hubert; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Glege, Frank; Gomez-Reino Garrido, Robert; Gouzevitch, Maxime; Govoni, Pietro; Gowdy, Stephen; Guiducci, Luigi; Hansen, Magnus; Hartl, Christian; Harvey, John; Hegeman, Jeroen; Hegner, Benedikt; Hoffmann, Hans Falk; Honma, Alan; Innocente, Vincenzo; Janot, Patrick; Kaadze, Ketino; Karavakis, Edward; Lecoq, Paul; Lourenco, Carlos; Maki, Tuula; Malberti, Martina; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Maurisset, Aurelie; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moser, Roland; Mozer, Matthias Ulrich; Mulders, Martijn; Nesvold, Erik; Nguyen, Matthew; Orimoto, Toyoko; Orsini, Luciano; Perez, Emmanuelle; Petrilli, Achille; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Polese, Giovanni; Racz, Attila; Rodrigues Antunes, Joao; Rolandi, Gigi; Rommerskirchen, Tanja; Rovelli, Chiara; Rovere, Marco; Sakulin, Hannes; Schäfer, Christoph; Schwick, Christoph; Segoni, Ilaria; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiropulu, Maria; Stoye, Markus; Tropea, Paola; Tsirou, Andromachi; Vichoudis, Paschalis; Voutilainen, Mikko; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Meier, Frank; Renker, Dieter; Rohe, Tilman; Sibille, Jennifer; Starodumov, Andrei; Bortignon, Pierluigi; Caminada, Lea; Chanon, Nicolas; Chen, Zhiling; Cittolin, Sergio; Dissertori, Günther; Dittmar, Michael; Eugster, Jürg; Freudenreich, Klaus; Grab, Christoph; Hervé, Alain; Hintz, Wieland; Lecomte, Pierre; Lustermann, Werner; Marchica, Carmelo; Martinez Ruiz del Arbol, Pablo; Meridiani, Paolo; Milenovic, Predrag; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pape, Luc; Pauss, Felicitas; Punz, Thomas; Rizzi, Andrea; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Sawley, Marie-Christine; Stieger, Benjamin; Tauscher, Ludwig; Thea, Alessandro; Theofilatos, Konstantinos; Treille, Daniel; Urscheler, Christina; Wallny, Rainer; Weber, Matthias; Wehrli, Lukas; Weng, Joanna; Aguiló, Ernest; Amsler, Claude; Chiochia, Vincenzo; De Visscher, Simon; Favaro, Carlotta; Ivova Rikova, Mirena; Millan Mejias, Barbara; Otiougova, Polina; Regenfus, Christian; Robmann, Peter; Schmidt, Alexander; Snoek, Hella; Chang, Yuan-Hann; Chen, Kuan-Hsin; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Liu, Zong-Kai; Lu, Yun-Ju; Mekterovic, Darko; Volpe, Roberta; Wu, Jing-Han; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Lu, Rong-Shyang; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Karaman, Turker; Kayis Topaksu, Aysel; Nart, Alisah; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Uzun, Dilber; Vergili, Latife Nukhet; Vergili, Mehmet; Zorbilmez, Caglar; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yildirim, Eda; Zeyrek, Mehmet; Deliomeroglu, Mehmet; Demir, Durmus; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Levchuk, Leonid; Bostock, Francis; Brooke, James John; Cheng, Teh Lee; Clement, Emyr; Cussans, David; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Hansen, Maria; Hartley, Dominic; Heath, Greg P; Heath, Helen F; Jackson, James; Kreczko, Lukasz; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Ward, Simon; Basso, Lorenzo; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Camanzi, Barbara; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Kennedy, Bruce W; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Ball, Gordon; Ballin, Jamie; Beuselinck, Raymond; Buchmuller, Oliver; Colling, David; Cripps, Nicholas; Cutajar, Michael; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Lyons, Louis; MacEvoy, Barry C; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Papageorgiou, Anastasios; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rompotis, Nikolaos; Rose, Andrew; Ryan, Matthew John; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Tourneur, Stephane; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Wardrope, David; Whyntie, Tom; Barrett, Matthew; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Martin, William; Reid, Ivan; Teodorescu, Liliana; Hatakeyama, Kenichi; Bose, Tulika; Carrera Jarrin, Edgar; Fantasia, Cory; Heister, Arno; St John, Jason; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; Sulak, Lawrence; Avetisyan, Aram; Bhattacharya, Saptaparna; Chou, John Paul; Cutts, David; Ferapontov, Alexey; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Landsberg, Greg; Narain, Meenakshi; Nguyen, Duong; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Tsang, Ka Vang; Breedon, Richard; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Cox, Peter Timothy; Dolen, James; Erbacher, Robin; Friis, Evan; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Liu, Haidong; Maruyama, Sho; Miceli, Tia; Nikolic, Milan; Pellett, Dave; Robles, Jorge; Salur, Sevil; Schwarz, Thomas; Searle, Matthew; Smith, John; Squires, Michael; Tripathi, Mani; Vasquez Sierra, Ricardo; Veelken, Christian; Andreev, Valeri; Arisaka, Katsushi; Cline, David; Cousins, Robert; Deisher, Amanda; Duris, Joseph; Erhan, Samim; Farrell, Chris; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Plager, Charles; Rakness, Gregory; Schlein, Peter; Tucker, Jordan; Valuev, Vyacheslav; Babb, John; Chandra, Avdhesh; Clare, Robert; Ellison, John Anthony; Gary, J William; Giordano, Ferdinando; Hanson, Gail; Jeng, Geng-Yuan; Kao, Shih-Chuan; Liu, Feng; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Nguyen, Harold; Shen, Benjamin C; Stringer, Robert; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Dusinberre, Elizabeth; Evans, David; Golf, Frank; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Mangano, Boris; Padhi, Sanjay; Palmer, Christopher; Petrucciani, Giovanni; Pi, Haifeng; Pieri, Marco; Ranieri, Riccardo; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Bellan, Riccardo; Campagnari, Claudio; D'Alfonso, Mariarosaria; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; Incandela, Joe; Justus, Christopher; Kalavase, Puneeth; Koay, Sue Ann; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Lowette, Steven; Mccoll, Nickolas; Pavlunin, Viktor; Rebassoo, Finn; Ribnik, Jacob; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; Vlimant, Jean-Roch; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Gataullin, Marat; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Rogan, Christopher; Shin, Kyoungha; Timciuc, Vladlen; Traczyk, Piotr; Veverka, Jan; Wilkinson, Richard; Yang, Yong; Zhu, Ren-Yuan; Akgun, Bora; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Jun, Soon Yung; Liu, Yueh-Feng; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Dinardo, Mauro Emanuele; Drell, Brian Robert; Edelmaier, Christopher; Ford, William T; Gaz, Alessandro; Heyburn, Bernadette; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Zang, Shi-Lei; Agostino, Lorenzo; Alexander, James; Cassel, David; Chatterjee, Avishek; Das, Souvik; Eggert, Nicholas; Gibbons, Lawrence Kent; Heltsley, Brian; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Puigh, Darren; Ryd, Anders; Salvati, Emmanuele; Shi, Xin; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Vaughan, Jennifer; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Biselli, Angela; Cirino, Guy; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Atac, Muzaffer; Bakken, Jon Alan; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bloch, Ingo; Borcherding, Frederick; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cooper, William; Eartly, David P; Elvira, Victor Daniel; Esen, Selda; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Green, Dan; Gunthoti, Kranti; Gutsche, Oliver; Hanlon, Jim; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jensen, Hans; Johnson, Marvin; Joshi, Umesh; Khatiwada, Rakshya; Klima, Boaz; Kousouris, Konstantinos; Kunori, Shuichi; Kwan, Simon; Leonidopoulos, Christos; Limon, Peter; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Mason, David; McBride, Patricia; Miao, Ting; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Pordes, Ruth; Prokofyev, Oleg; Saoulidou, Niki; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Tan, Ping; Taylor, Lucas; Tkaczyk, Slawek; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yumiceva, Francisco; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Chen, Mingshui; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Gartner, Joseph; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Matchev, Konstantin; Mitselmakher, Guenakh; Muniz, Lana; Prescott, Craig; Remington, Ronald; Schmitt, Michael Houston; Scurlock, Bobby; Sellers, Paul; Skhirtladze, Nikoloz; Snowball, Matthew; Wang, Dayong; Yelton, John; Zakaria, Mohammed; Ceron, Cristobal; Gaultney, Vanessa; Kramer, Laird; Lebolo, Luis Miguel; Linn, Stephan; Markowitz, Pete; Martinez, German; Mesa, Dalgis; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bandurin, Dmitry; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Gleyzer, Sergei V; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Jenkins, Merrill; Johnson, Kurtis F; Prosper, Harrison; Quertenmont, Loic; Sekmen, Sezen; Veeraraghavan, Venkatesh; Baarmand, Marc M; Dorney, Brian; Guragain, Samir; Hohlmann, Marcus; Kalakhety, Himali; Ralich, Robert; Vodopiyanov, Igor; Adams, Mark Raymond; Anghel, Ioana Maria; Apanasevich, Leonard; Bai, Yuting; Bazterra, Victor Eduardo; Betts, Russell Richard; Callner, Jeremy; Cavanaugh, Richard; Dragoiu, Cosmin; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kunde, Gerd J; Lacroix, Florent; Malek, Magdalena; O'Brien, Christine; Silvestre, Catherine; Smoron, Agata; Strom, Derek; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Duru, Firdevs; Lae, Chung Khim; McCliment, Edward; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Newsom, Charles Ray; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bonato, Alessio; Eskew, Christopher; Fehling, David; Giurgiu, Gavril; Gritsan, Andrei; Hu, Guofan; Maksimovic, Petar; Rappoccio, Salvatore; Swartz, Morris; Tran, Nhan Viet; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Grachov, Oleg; Kenny Iii, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Wood, Jeffrey Scott; Zhukova, Victoria; Barfuss, Anne-fleur; Bolton, Tim; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Shrestha, Shruti; Svintradze, Irakli; Wan, Zongru; Gronberg, Jeffrey; Lange, David; Wright, Douglas; Baden, Drew; Boutemeur, Madjid; Eno, Sarah Catherine; Ferencek, Dinko; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kirn, Malina; Lu, Ying; Mignerey, Alice; Rossato, Kenneth; Rumerio, Paolo; Santanastasio, Francesco; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Twedt, Elizabeth; Alver, Burak; Bauer, Gerry; Bendavid, Joshua; Busza, Wit; Butz, Erik; Cali, Ivan Amos; Chan, Matthew; Dutta, Valentina; Everaerts, Pieter; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hahn, Kristan Allan; Harris, Philip; Kim, Yongsun; Klute, Markus; Lee, Yen-Jie; Li, Wei; Loizides, Constantinos; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Rudolph, Matthew; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Sung, Kevin; Wenger, Edward Allen; Xie, Si; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Cooper, Seth; Cushman, Priscilla; Dahmes, Bryan; De Benedetti, Abraham; Dudero, Phillip Russell; Franzoni, Giovanni; Haupt, Jason; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Rekovic, Vladimir; Rusack, Roger; Sasseville, Michael; Singovsky, Alexander; Cremaldi, Lucien Marcus; Godang, Romulus; Kroeger, Rob; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Bloom, Kenneth; Bose, Suvadeep; Butt, Jamila; Claes, Daniel R; Dominguez, Aaron; Eads, Michael; Keller, Jason; Kelly, Tony; Kravchenko, Ilya; Lazo-Flores, Jose; Malbouisson, Helena; Malik, Sudhir; Snow, Gregory R; Baur, Ulrich; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Shipkowski, Simon Peter; Smith, Kenneth; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Boeriu, Oana; Chasco, Matthew; Reucroft, Steve; Swain, John; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Kubik, Andrew; Odell, Nathaniel; Ofierzynski, Radoslaw Adrian; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Velasco, Mayda; Won, Steven; Antonelli, Louis; Berry, Douglas; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Kolberg, Ted; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Ziegler, Jill; Bylsma, Ben; Durkin, Lloyd Stanley; Gu, Jianhui; Hill, Christopher; Killewald, Phillip; Kotov, Khristian; Ling, Ta-Yung; Rodenburg, Marissa; Williams, Grayson; Adam, Nadia; Berry, Edmund; Elmer, Peter; Gerbaudo, Davide; Halyo, Valerie; Hebda, Philip; Hunt, Adam; Jones, John; Laird, Edward; Lopes Pegna, David; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zuranski, Andrzej; Acosta, Jhon Gabriel; Huang, Xing Tao; Lopez, Angel; Mendez, Hector; Oliveros, Sandra; Ramirez Vargas, Juan Eduardo; Zatserklyaniy, Andriy; Alagoz, Enver; Barnes, Virgil E; Bolla, Gino; Borrello, Laura; Bortoletto, Daniela; Everett, Adam; Garfinkel, Arthur F; Gutay, Laszlo; Hu, Zhen; Jones, Matthew; Koybasi, Ozhan; Kress, Matthew; Laasanen, Alvin T; Leonardo, Nuno; Liu, Chang; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Jindal, Pratima; Parashar, Neeti; Boulahouache, Chaouki; Cuplov, Vesna; Ecklund, Karl Matthew; Geurts, Frank JM; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Chung, Yeon Sei; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Flacher, Henning; Garcia-Bellido, Aran; Goldenzweig, Pablo; Gotra, Yury; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Orbaker, Douglas; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Yan, Ming; Atramentov, Oleksiy; Barker, Anthony; Duggan, Daniel; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Hits, Dmitry; Lath, Amitabh; Panwalkar, Shruti; Patel, Rishi; Richards, Alan; Rose, Keith; Schnetzer, Steve; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Cerizza, Giordano; Hollingsworth, Matthew; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Asaadi, Jonathan; Eusebi, Ricardo; Gilmore, Jason; Gurrola, Alfredo; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Nguyen, Chi Nhan; Osipenkov, Ilya; Pakhotin, Yuriy; Pivarski, James; Safonov, Alexei; Sengupta, Sinjini; Tatarinov, Aysen; Toback, David; Weinberger, Michael; Akchurin, Nural; Bardak, Cemile; Damgov, Jordan; Jeong, Chiyoung; Kovitanggoon, Kittikul; Lee, Sung Won; Roh, Youn; Sill, Alan; Volobouev, Igor; Wigmans, Richard; Yazgan, Efe; Appelt, Eric; Brownson, Eric; Engh, Daniel; Florez, Carlos; Gabella, William; Issah, Michael; Johns, Willard; Kurt, Pelin; Maguire, Charles; Melo, Andrew; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Balazs, Michael; Boutle, Sarah; Cox, Bradley; Francis, Brian; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Yohay, Rachel; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Mattson, Mark; Milstène, Caroline; Sakharov, Alexandre; Anderson, Michael; Bachtis, Michail; Bellinger, James Nugent; Carlsmith, Duncan; Dasu, Sridhara; Efron, Jonathan; Flood, Kevin; Gray, Lindsey; Grogg, Kira Suzanne; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Lazaridis, Christos; Leonard, Jessica; Loveless, Richard; Mohapatra, Ajit; Palmonari, Francesco; Reeder, Don; Ross, Ian; Savin, Alexander; Smith, Wesley H; Swanson, Joshua; Weinberg, Marc

    2011-01-01

    A search for supersymmetry in the context of general gauge-mediated (GGM) breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 inverse picobarns recorded by the CMS experiment at the LHC. The search is performed using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for GGM supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.

  11. Photons, missing energy and the quest for supersymmetry at the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Gebbert, Ulla

    2012-03-15

    In this thesis a search for supersymmetry in events with at least one photon, jets and missing transverse energy (E{sub T}) in an integrated luminosity of 4.32 fb{sup -1} of pp collisions at {radical}(s)=7 TeV is presented. The data is recorded by the CMS detector in 2011. Final states with photons are expected in models with gauge mediated supersymmetry breaking, where the lightest supersymmetric particle is the gravitino. The gravitino leaves the detector without energy deposition and thus leads to missing transverse momentum in the event. E{sub T} is crucial to distinguish the signal from the Standard Model events and is reconstructed from all energy deposits in the detector. Due to the non-linearity of the response in the calorimeter, additional corrections are required. In this thesis, a data driven technique to determine the correction for unclustered energy deposits, using the transverse momentum balance between a Z boson and the hadronic recoil, is presented. For the search for supersymmetry the E{sub T} distribution measured in data is compared to the expected Standard Model distribution. For this purpose the main Standard Model background processes from QCD multi- and photon-jet or electro-weak processes are modelled using data events. No excess over the Standard Model expectation is observed. Exclusion limits at the 95% CL are set and interpreted in the GMSB parameter space.

  12. Spontaneous symmetry breaking in 4-dimensional heterotic string

    International Nuclear Information System (INIS)

    Maharana, J.

    1989-07-01

    The evolution of a 4-dimensional heterotic string is considered in the background of its massless excitations such as graviton, antisymmetric tensor, gauge fields and scalar bosons. The compactified bosonic coordinates are fermionized. The world-sheet supersymmetry requirement enforces Thirring-like four fermion coupling to the background scalar fields. The non-abelian gauge symmetry is exhibited through the Ward identities of the S-matrix elements. The spontaneous symmetry breaking mechanism is exhibited through the broken Ward identities. An effective 4-dimensional action is constructed and the consequence of spontaneous symmetry breaking is envisaged for the effective action. 19 refs

  13. Search for supersymmetry in pp collisions at √7 TeV in events with two photons and missing transverse energy.

    Science.gov (United States)

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kiesenhofer, W; Krammer, M; Liko, D; Mikulec, I; Pernicka, M; Rohringer, H; Schöfbeck, R; Strauss, J; Teischinger, F; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Benucci, L; De Wolf, E A; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Blekman, F; Blyweert, S; D'Hondt, J; Devroede, O; Gonzalez Suarez, R; Kalogeropoulos, A; Maes, J; Maes, M; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Gay, A P R; Hammad, G H; Hreus, T; Marage, P E; Thomas, L; Vander Velde, C; Vanlaer, P; Adler, V; Cimmino, A; Costantini, S; Grunewald, M; Klein, B; Lellouch, J; Marinov, A; McCartin, J; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Walsh, S; Zaganidis, N; Basegmez, S; Bruno, G; Caudron, J; Ceard, L; Cortina Gil, E; De Favereau De Jeneret, J; Delaere, C; Favart, D; Giammanco, A; Grégoire, G; Hollar, J; Lemaitre, V; Liao, J; Militaru, O; Ovyn, S; Pagano, D; Pin, A; Piotrzkowski, K; Schul, N; Beliy, N; Caebergs, T; Daubie, E; Alves, G A; De Jesus Damiao, D; Pol, M E; Souza, M H G; Carvalho, W; Da Costa, E M; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Nogima, H; Oguri, V; Prado Da Silva, W L; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Torres Da Silva De Araujo, F; Dias, F A; Fernandez Perez Tomei, T R; Gregores, E M; Lagana, C; Marinho, F; Mercadante, P G; Novaes, S F; Padula, Sandra S; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Rodozov, M; Stoykova, S; Sultanov, G; Tcholakov, V; Trayanov, R; Vankov, I; Dimitrov, A; Hadjiiska, R; Karadzhinova, A; Kozhuharov, V; Litov, L; Mateev, M; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Jiang, C H; Liang, D; Liang, S; Meng, X; Tao, J; Wang, J; Wang, J; Wang, X; Wang, Z; Xiao, H; Xu, M; Zang, J; Zhang, Z; Ban, Y; Guo, S; Guo, Y; Li, W; Mao, Y; Qian, S J; Teng, H; Zhang, L; Zhu, B; Zou, W; Cabrera, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Sanabria, J C; Godinovic, N; Lelas, D; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Attikis, A; Galanti, M; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Assran, Y; Khalil, S; Mahmoud, M A; Hektor, A; Kadastik, M; Müntel, M; Raidal, M; Rebane, L; Azzolini, V; Eerola, P; Fedi, G; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Sillou, D; Besancon, M; Choudhury, S; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Shreyber, I; Titov, M; Verrecchia, P; Baffioni, S; Beaudette, F; Benhabib, L; Bianchini, L; Bluj, M; Broutin, C; Busson, P; Charlot, C; Dahms, T; Dobrzynski, L; Elgammal, S; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Thiebaux, C; Wyslouch, B; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Bodin, D; Brom, J-M; Cardaci, M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Ferro, C; Fontaine, J-C; Gelé, D; Goerlach, U; Greder, S; Juillot, P; Karim, M; Le Bihan, A-C; Mikami, Y; Van Hove, P; Fassi, F; Mercier, D; Baty, C; Beauceron, S; Beaupere, N; Bedjidian, M; Bondu, O; Boudoul, G; Boumediene, D; Brun, H; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Mirabito, L; Perries, S; Sordini, V; Tosi, S; Tschudi, Y; Verdier, P; Lomidze, D; Anagnostou, G; Edelhoff, M; Feld, L; Heracleous, N; Hindrichs, O; Jussen, R; Klein, K; Merz, J; Mohr, N; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Weber, M; Wittmer, B; Ata, M; Bender, W; Dietz-Laursonn, E; Erdmann, M; Frangenheim, J; Hebbeker, T; Hinzmann, A; Hoepfner, K; Klimkovich, T; Klingebiel, D; Kreuzer, P; Lanske, D; Magass, C; Merschmeyer, M; Meyer, A; Papacz, P; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Steggemann, J; Teyssier, D; Tonutti, M; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Heydhausen, D; Kress, T; Kuessel, Y; Linn, A; Nowack, A; Perchalla, L; Pooth, O; Rennefeld, J; Sauerland, P; Stahl, A; Thomas, M; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrenhoff, W; Behrens, U; Bergholz, M; Bethani, A; Borras, K; Cakir, A; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Eckstein, D; Flossdorf, A; Flucke, G; Geiser, A; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Katsas, P; Kleinwort, C; Kluge, H; Knutsson, A; Krämer, M; Krücker, D; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Olzem, J; Pitzl, D; Raspereza, A; Raval, A; Rosin, M; Schmidt, R; Schoerner-Sadenius, T; Sen, N; Spiridonov, A; Stein, M; Tomaszewska, J; Walsh, R; Wissing, C; Autermann, C; Blobel, V; Bobrovskyi, S; Draeger, J; Enderle, H; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Lange, J; Mura, B; Naumann-Emme, S; Nowak, F; Pietsch, N; Sander, C; Schettler, H; Schleper, P; Schröder, M; Schum, T; Schwandt, J; Stadie, H; Steinbrück, G; Thomsen, J; Barth, C; Bauer, J; Buege, V; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Gruschke, J; Hackstein, C; Hartmann, F; Heinrich, M; Held, H; Hoffmann, K H; Honc, S; Komaragiri, J R; Kuhr, T; Martschei, D; Mueller, S; Müller, Th; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Scheurer, A; Schieferdecker, P; Schilling, F-P; Schmanau, M; Schott, G; Simonis, H J; Stober, F M; Troendle, D; Wagner-Kuhr, J; Weiler, T; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kesisoglou, S; Kyriakis, A; Loukas, D; Manolakos, I; Markou, A; Markou, C; Mavrommatis, C; Ntomari, E; Petrakou, E; Gouskos, L; Mertzimekis, T J; Panagiotou, A; Stiliaris, E; Evangelou, I; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Aranyi, A; Bencze, G; Boldizsar, L; Hajdu, C; Hidas, P; Horvath, D; Kapusi, A; Krajczar, K; Sikler, F; Veres, G I; Vesztergombi, G; Beni, N; Molnar, J; Palinkas, J; Szillasi, Z; Veszpremi, V; Raics, P; Trocsanyi, Z L; Ujvari, B; Bansal, S; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Jindal, M; Kaur, M; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A P; Singh, J B; Singh, S P; Ahuja, S; Bhattacharya, S; Choudhary, B C; Gupta, P; Jain, S; Jain, S; Kumar, A; Ranjan, K; Shivpuri, R K; Choudhury, R K; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Mohanty, G B; Saha, A; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Etesami, S M; Fahim, A; Hashemi, M; Jafari, A; Khakzad, M; Mohammadi, A; Mohammadi Najafabadi, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Abbrescia, M; Barbone, L; Calabria, C; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pierro, G A; Pompili, A; Pugliese, G; Romano, F; Roselli, G; Selvaggi, G; Silvestris, L; Trentadue, R; Tupputi, S; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Capiluppi, P; Castro, A; Cavallo, F R; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giunta, M; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Gonzi, S; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Colafranceschi, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Musenich, R; Benaglia, A; De Guio, F; Di Matteo, L; Ghezzi, A; Malvezzi, S; Martelli, A; Massironi, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Sala, S; Tabarelli de Fatis, T; Tancini, V; Buontempo, S; Carrillo Montoya, C A; Cavallo, N; De Cosa, A; Fabozzi, F; Iorio, A O M; Lista, L; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bellan, P; Bisello, D; Branca, A; Carlin, R; Checchia, P; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Lacaprara, S; Lazzizzera, I; Margoni, M; Mazzucato, M; Meneguzzo, A T; Nespolo, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Ratti, S P; Riccardi, C; Torre, P; Vitulo, P; Viviani, C; Biasini, M; Bilei, G M; Caponeri, B; Fanò, L; Lariccia, P; Lucaroni, A; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Santocchia, A; Taroni, S; Valdata, M; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; D'Agnolo, R T; Dell'orso, R; Fiori, F; Foà, L; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Palla, F; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Barone, L; Cavallari, F; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Grassi, M; Longo, E; Nourbakhsh, S; Organtini, G; Pandolfi, F; Paramatti, R; Rahatlou, S; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Botta, C; Cartiglia, N; Castello, R; Costa, M; Demaria, N; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Obertino, M M; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Sola, V; Solano, A; Staiano, A; Vilela Pereira, A; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Montanino, D; Penzo, A; Heo, S G; Nam, S K; Chang, S; Chung, J; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Park, H; Ro, S R; Son, D; Son, D C; Son, T; Kim, Zero; Kim, J Y; Song, S; Choi, S; Hong, B; Jeong, M S; Jo, M; Kim, H; Kim, J H; Kim, T J; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Seo, E; Shin, S; Sim, K S; Choi, M; Kang, S; Kim, H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, J; Lee, S; Seo, H; Yu, I; Bilinskas, M J; Grigelionis, I; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla-Valdez, H; De la Cruz-Burelo, E; Lopez-Fernandez, R; Magaña Villalba, R; Sánchez-Hernández, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Reyes-Santos, M A; Krofcheck, D; Tam, J; Butler, P H; Doesburg, R; Silverwood, H; Ahmad, M; Ahmed, I; Asghar, M I; Hoorani, H R; Khan, W A; Khurshid, T; Qazi, S; Brona, G; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Frueboes, T; Gokieli, R; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Musella, P; Nayak, A; Seixas, J; Varela, J; Afanasiev, S; Belotelov, I; Bunin, P; Golutvin, I; Kamenev, A; Karjavin, V; Kozlov, G; Lanev, A; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Smirnov, V; Volodko, A; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, A; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Toropin, A; Troitsky, S; Epshteyn, V; Gavrilov, V; Kaftanov, V; Kossov, M; Krokhotin, A; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Rusakov, S V; Vinogradov, A; Azhgirey, I; Bitioukov, S; Grishin, V; Kachanov, V; Konstantinov, D; Korablev, A; Krychkine, V; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Krpic, D; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Arce, P; Battilana, C; Calvo, E; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Colino, N; De la Cruz, B; Delgado Peris, A; Diez Pardos, C; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Puerta Pelayo, J; Redondo, I; Romero, L; Santaolalla, J; Soares, M S; Willmott, C; Albajar, C; Codispoti, G; de Trocóniz, J F; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Vizan Garcia, J M; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Felcini, M; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Baillon, P; Ball, A H; Barney, D; Bell, A J; Benedetti, D; Bernet, C; Bialas, W; Bloch, P; Bocci, A; Bolognesi, S; Bona, M; Breuker, H; Bunkowski, K; Camporesi, T; Cerminara, G; Coarasa Perez, J A; Curé, B; D'Enterria, D; De Roeck, A; Di Guida, S; Elliott-Peisert, A; Frisch, B; Funk, W; Gaddi, A; Gennai, S; Georgiou, G; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Glege, F; Gomez-Reino Garrido, R; Gouzevitch, M; Govoni, P; Gowdy, S; Guiducci, L; Hansen, M; Hartl, C; Harvey, J; Hegeman, J; Hegner, B; Hoffmann, H F; Honma, A; Innocente, V; Janot, P; Kaadze, K; Karavakis, E; Lecoq, P; Lourenço, C; Mäki, T; Malberti, M; Malgeri, L; Mannelli, M; Masetti, L; Maurisset, A; Meijers, F; Mersi, S; Meschi, E; Moser, R; Mozer, M U; Mulders, M; Nesvold, E; Nguyen, M; Orimoto, T; Orsini, L; Perez, E; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Polese, G; Racz, A; Rodrigues Antunes, J; Rolandi, G; Rommerskirchen, T; Rovelli, C; Rovere, M; Sakulin, H; Schäfer, C; Schwick, C; Segoni, I; Sharma, A; Siegrist, P; Simon, M; Sphicas, P; Spiropulu, M; Stoye, M; Tropea, P; Tsirou, A; Vichoudis, P; Voutilainen, M; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Bortignon, P; Caminada, L; Chanon, N; Chen, Z; Cittolin, S; Dissertori, G; Dittmar, M; Eugster, J; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Lustermann, W; Marchica, C; Martinez Ruiz Del Arbol, P; Meridiani, P; Milenovic, P; Moortgat, F; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Rossini, M; Sala, L; Sanchez, A K; Sawley, M-C; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Urscheler, C; Wallny, R; Weber, M; Wehrli, L; Weng, J; Aguiló, E; Amsler, C; Chiochia, V; De Visscher, S; Favaro, C; Ivova Rikova, M; Millan Mejias, B; Otiougova, P; Regenfus, C; Robmann, P; Schmidt, A; Snoek, H; Chang, Y H; Chen, K H; Kuo, C M; Li, S W; Lin, W; Liu, Z K; Lu, Y J; Mekterovic, D; Volpe, R; Wu, J H; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Lu, R-S; Shiu, J G; Tzeng, Y M; Wang, M; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Guler, Y; Gurpinar, E; Hos, I; Kangal, E E; Karaman, T; Kayis Topaksu, A; Nart, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Zorbilmez, C; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yildirim, E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Bostock, F; Brooke, J J; Cheng, T L; Clement, E; Cussans, D; Frazier, R; Goldstein, J; Grimes, M; Hansen, M; Hartley, D; Heath, G P; Heath, H F; Jackson, J; Kreczko, L; Metson, S; Newbold, D M; Nirunpong, K; Poll, A; Senkin, S; Smith, V J; Ward, S; Basso, L; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Kennedy, B W; Olaiya, E; Petyt, D; Radburn-Smith, B C; Shepherd-Themistocleous, C H; Tomalin, I R; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Cutajar, M; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Lyons, L; MacEvoy, B C; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Wardrope, D; Whyntie, T; Barrett, M; Chadwick, M; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Martin, W; Reid, I D; Teodorescu, L; Hatakeyama, K; Bose, T; Carrera Jarrin, E; Fantasia, C; Heister, A; St John, J; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; Sulak, L; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Ferapontov, A; Heintz, U; Jabeen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Segala, M; Sinthuprasith, T; Speer, T; Tsang, K V; Breedon, R; Calderon De la Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Salur, S; Schwarz, T; Searle, M; Smith, J; Squires, M; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Deisher, A; Duris, J; Erhan, S; Farrell, C; Hauser, J; Ignatenko, M; Jarvis, C; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Babb, J; Chandra, A; Clare, R; Ellison, J; Gary, J W; Giordano, F; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Long, O R; Luthra, A; Nguyen, H; Shen, B C; Stringer, R; Sturdy, J; Sumowidagdo, S; Wilken, R; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Dusinberre, E; Evans, D; Golf, F; Holzner, A; Kelley, R; Lebourgeois, M; Letts, J; Mangano, B; Padhi, S; Palmer, C; Petrucciani, G; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Bellan, R; Campagnari, C; D'Alfonso, M; Danielson, T; Flowers, K; Geffert, P; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lowette, S; McColl, N; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Gataullin, M; Ma, Y; Mott, A; Newman, H B; Rogan, C; Shin, K; Timciuc, V; Traczyk, P; Veverka, J; Wilkinson, R; Yang, Y; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Jun, S Y; Liu, Y F; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Edelmaier, C J; Ford, W T; Gaz, A; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Cassel, D; Chatterjee, A; Das, S; Eggert, N; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Nicolas Kaufman, G; Patterson, J R; Puigh, D; Ryd, A; Salvati, E; Shi, X; Sun, W; Teo, W D; Thom, J; Thompson, J; Vaughan, J; Weng, Y; Winstrom, L; Wittich, P; Biselli, A; Cirino, G; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Atac, M; Bakken, J A; Banerjee, S; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Bloch, I; Borcherding, F; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Cooper, W; Eartly, D P; Elvira, V D; Esen, S; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Green, D; Gunthoti, K; Gutsche, O; Hanlon, J; Harris, R M; Hirschauer, J; Hooberman, B; Jensen, H; Johnson, M; Joshi, U; Khatiwada, R; Klima, B; Kousouris, K; Kunori, S; Kwan, S; Leonidopoulos, C; Limon, P; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Mrenna, S; Musienko, Y; Newman-Holmes, C; O'Dell, V; Pordes, R; Prokofyev, O; Saoulidou, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Tan, P; Taylor, L; Tkaczyk, S; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Chen, M; De Gruttola, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fisher, M; Fu, Y; Furic, I K; Gartner, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Matchev, K; Mitselmakher, G; Muniz, L; Prescott, C; Remington, R; Schmitt, M; Scurlock, B; Sellers, P; Skhirtladze, N; Snowball, M; Wang, D; Yelton, J; Zakaria, M; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Mesa, D; Rodriguez, J L; Adams, T; Askew, A; Bandurin, D; Bochenek, J; Chen, J; Diamond, B; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prosper, H; Quertenmont, L; Sekmen, S; Veeraraghavan, V; Baarmand, M M; Dorney, B; Guragain, S; Hohlmann, M; Kalakhety, H; Ralich, R; Vodopiyanov, I; Adams, M R; Anghel, I M; Apanasevich, L; Bai, Y; Bazterra, V E; Betts, R R; Callner, J; Cavanaugh, R; Dragoiu, C; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kunde, G J; Lacroix, F; Malek, M; O'Brien, C; Silvestre, C; Smoron, A; Strom, D; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Duru, F; Lae, C K; McCliment, E; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Eskew, C; Fehling, D; Giurgiu, G; Gritsan, A V; Hu, G; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Grachov, O; Kenny Iii, R P; Murray, M; Noonan, D; Sanders, S; Wood, J S; Zhukova, V; Barfuss, A F; Bolton, T; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Shrestha, S; Svintradze, I; Wan, Z; Gronberg, J; Lange, D; Wright, D; Baden, A; Boutemeur, M; Eno, S C; Ferencek, D; Gomez, J A; Hadley, N J; Kellogg, R G; Kirn, M; Lu, Y; Mignerey, A C; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; Dutta, V; Everaerts, P; Gomez Ceballos, G; Goncharov, M; Hahn, K A; Harris, P; Kim, Y; Klute, M; Lee, Y-J; Li, W; Loizides, C; Luckey, P D; Ma, T; Nahn, S; Paus, C; Ralph, D; Roland, C; Roland, G; Rudolph, M; Stephans, G S F; Stöckli, F; Sumorok, K; Sung, K; Wenger, E A; Xie, S; Yang, M; Yilmaz, Y; Yoon, A S; Zanetti, M; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dudero, P R; Franzoni, G; Haupt, J; Klapoetke, K; Kubota, Y; Mans, J; Rekovic, V; Rusack, R; Sasseville, M; Singovsky, A; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Bloom, K; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Shipkowski, S P; Smith, K; Alverson, G; Barberis, E; Baumgartel, D; Boeriu, O; Chasco, M; Reucroft, S; Swain, J; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Kubik, A; Odell, N; Ofierzynski, R A; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Kolberg, T; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Ziegler, J; Bylsma, B; Durkin, L S; Gu, J; Hill, C; Killewald, P; Kotov, K; Ling, T Y; Rodenburg, M; Williams, G; Adam, N; Berry, E; Elmer, P; Gerbaudo, D; Halyo, V; Hebda, P; Hunt, A; Jones, J; Laird, E; Lopes Pegna, D; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Saka, H; Stickland, D; Tully, C; Werner, J S; Zuranski, A; Acosta, J G; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Zatserklyaniy, A; Alagoz, E; Barnes, V E; Bolla, G; Borrello, L; Bortoletto, D; Everett, A; Garfinkel, A F; Gutay, L; Hu, Z; Jones, M; Koybasi, O; Kress, M; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Shipsey, I; Silvers, D; Svyatkovskiy, A; Yoo, H D; Zablocki, J; Zheng, Y; Jindal, P; Parashar, N; Boulahouache, C; Cuplov, V; Ecklund, K M; Geurts, F J M; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Chung, Y S; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Flacher, H; Garcia-Bellido, A; Goldenzweig, P; Gotra, Y; Han, J; Harel, A; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Yan, M; Atramentov, O; Barker, A; Duggan, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Hits, D; Lath, A; Panwalkar, S; Patel, R; Richards, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Eusebi, R; Gilmore, J; Gurrola, A; Kamon, T; Khotilovich, V; Montalvo, R; Nguyen, C N; Osipenkov, I; Pakhotin, Y; Pivarski, J; Safonov, A; Sengupta, S; Tatarinov, A; Toback, D; Weinberger, M; Akchurin, N; Bardak, C; Damgov, J; Jeong, C; Kovitanggoon, K; Lee, S W; Roh, Y; Sill, A; Volobouev, I; Wigmans, R; Yazgan, E; Appelt, E; Brownson, E; Engh, D; Florez, C; Gabella, W; Issah, M; Johns, W; Kurt, P; Maguire, C; Melo, A; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Balazs, M; Boutle, S; Cox, B; Francis, B; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Yohay, R; Gollapinni, S; Harr, R; Karchin, P E; Lamichhane, P; Mattson, M; Milstène, C; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Dasu, S; Efron, J; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Herndon, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Mohapatra, A; Palmonari, F; Reeder, D; Ross, I; Savin, A; Smith, W H; Swanson, J; Weinberg, M

    2011-05-27

    A search for supersymmetry in the context of general gauge-mediated breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of 36 pb(-1) recorded by the CMS experiment at the LHC. The search is performed by using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for general gauge-mediated supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments. © 2011 CERN, for the CMS Collaboration

  14. Search for direct chargino production in anomaly-mediated supersymmetry breaking models based on a disappearing-track signature in pp collisions at $\\sqrt{s}$=7 TeV with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abbott, Brad; Abdallah, Jalal; Abdel Khalek, Samah; Abdelalim, Ahmed Ali; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Addy, Tetteh; Adelman, Jahred; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Allbrooke, Benedict; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alonso, Francisco; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amelung, Christoph; Ammosov, Vladimir; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angelidakis, Stylianos; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Atkinson, Markus; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Balek, Petr; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertolucci, Federico; Besana, Maria Ilaria; Besjes, Geert-Jan; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bittner, Bernhard; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Bohm, Jan; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borri, Marcello; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Branchini, Paolo; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brelier, Bertrand; Bremer, Johan; Brendlinger, Kurt; Brenner, Richard; Bressler, Shikma; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Bulekov, Oleg; Bundock, Aaron Colin; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byszewski, Marcin; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Cantrill, Robert; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cavaliere, Viviana; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Kevin; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Xin; Chen, Yujiao; Cheng, Yangyang; Cheplakov, Alexander; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Cirkovic, Predrag; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Colas, Jacques; Cole, Stephen; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colombo, Tommaso; Colon, German; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czodrowski, Patrick; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Dassoulas, James; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davignon, Olivier; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lorenzi, Francesco; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; De Zorzi, Guido; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dechenaux, Benjamin; Dedovich, Dmitri; Degenhardt, James; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dinut, Florin; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dotti, Andrea; Dova, Maria-Teresa; Doxiadis, Alexander; Doyle, Tony; Dressnandt, Nandor; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Duda, Dominik; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Duguid, Liam; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edson, William; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Fonseca Martin, Teresa; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Fournier, Daniel; Fowler, Andrew; Fox, Harald; Francavilla, Paolo; Franchini, Matteo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Conrad; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilchriese, Murdock; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Goddard, Jack Robert; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Goldfarb, Steven; Golling, Tobias; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gosdzik, Bjoern; Goshaw, Alfred; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramstad, Eirik; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guest, Daniel; Guicheney, Christophe; Guindon, Stefan; Gul, Umar; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hayward, Helen; Haywood, Stephen; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, John; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Hong, Tae Min; Hooft van Huysduynen, Loek; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huettmann, Antje; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hurwitz, Martina; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jen-La Plante, Imai; Jennens, David; Jenni, Peter; Loevschall-Jensen, Ask Emil; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Joram, Christian; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Jungst, Ralph Markus; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karakostas, Konstantinos; Karnevskiy, Mikhail; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Keener, Paul; Kehoe, Robert; Keil, Markus; Kekelidze, George; Keller, John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kitamura, Takumi; Kittelmann, Thomas; Kiuchi, Kenji; Kladiva, Eduard; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kreiss, Sven; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Mark; Kubota, Takashi; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lambourne, Luke; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larner, Aimee; Lassnig, Mario; Laurelli, Paolo; Lavorini, Vincenzo; Lavrijsen, Wim; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Lepold, Florian; Leroy, Claude; Lessard, Jean-Raphael; Lester, Christopher; Lester, Christopher Michael; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Lulu; Liu, Minghui; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, XinChou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lukas, Wolfgang; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundberg, Olof; Lundquist, Johan; Lungwitz, Matthias; Lynn, David; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Maddocks, Harvey Jonathan; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malaescu, Bogdan; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Mangeard, Pierre-Simon; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany Andreina; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marroquim, Fernando; Marshall, Zach; Martens, Kalen; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian; Martin, Brian Thomas; Martin, Jean-Pierre; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Matricon, Pierre; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maurer, Julien; Maxfield, Stephen; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzaferro, Luca; Mazzanti, Marcello; Mc Donald, Jeffrey; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitrevski, Jovan; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Moles-Valls, Regina; Molfetas, Angelos; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagel, Martin; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Narayan, Rohin; Nash, Michael; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negri, Guido; Negrini, Matteo; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newcomer, Mitchel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Norberg, Scarlet; Nordberg, Markus; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; O'Brien, Brendan Joseph; O'Neil, Dugan; O'Shea, Val; Oakes, Louise Beth; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olchevski, Alexander; Olivares Pino, Sebastian Andres; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panduro Vazquez, William; Pani, Priscilla; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Paredes Hernandez, Daniela; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pashapour, Shabnaz; Pasqualucci, Enrico; Passaggio, Stefano; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Lopez, Sebastian; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Peshekhonov, Vladimir; Peters, Krisztian; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Pinto, Belmiro; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Plotnikova, Elena; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Pohl, David-leon; Pohl, Martin; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Price, Darren; Price, Joe; Price, Lawrence; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przybycien, Mariusz; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radeka, Veljko; Radescu, Voica; Radloff, Peter; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Rauscher, Felix; Rave, Tobias Christian; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Roe, Adam; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romeo, Gaston; Romero Adam, Elena; Rompotis, Nikolaos; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rumyantsev, Leonid; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Rutherfoord, John; Ruzicka, Pavel; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sanchez Martinez, Victoria; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Yuichi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schäfer, Uli; Schaelicke, Andreas; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schultens, Martin Johannes; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciolla, Gabriella; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Seuster, Rolf; Severini, Horst; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simoniello, Rosa; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snyder, Scott; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Solovyev, Victor; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Staude, Arnold; Stavina, Pavel; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tani, Kazutoshi; Tannoury, Nancy; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thong, Wai Meng; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urquijo, Phillip; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valentinetti, Sara; Valero, Alberto; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Berg, Richard; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Vari, Riccardo; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vazquez Schroeder, Tamara; Vegni, Guido; Veillet, Jean-Jacques; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wahrmund, Sebastian; Wakabayashi, Jun; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Walsh, Brian; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Rui; Wang, Song-Ming; Wang, Tan; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watanabe, Ippei; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Michele; Weber, Pavel; Webster, Jordan S; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Wetter, Jeffrey; Weydert, Carole; Whalen, Kathleen; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xu, Chao; Xu, Da; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Liwen; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zanello, Lucia; Zanzi, Daniele; Zaytsev, Alexander; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zibell, Andre; Zieminska, Daria; Zimin, Nikolai; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2013-01-18

    A search for direct chargino production in anomaly-mediated supersymmetry breaking scenarios is performed in pp collisions at $\\sqrt{s}$ = 7 TeV using 4.7 fb$^{-1}$ of data collected with the ATLAS experiment at the LHC. In these models, the lightest chargino is predicted to have a lifetime long enough to be detected in the tracking detectors of collider experiments. This analysis explores such models by searching for chargino decays that result in tracks with few associated hits in the outer region of the tracking system. The transverse-momentum spectrum of candidate tracks is found to be consistent with the expectation from the Standard Model background processes and constraints on chargino properties are obtained.

  15. Radiative gauge symmetry breaking in supersymmetric flipped SU(5)

    Energy Technology Data Exchange (ETDEWEB)

    Drees, M.

    1988-05-19

    The radiative breaking of the SU(5)xU(1) symmetry in the flipped SU(5) model recently proposed by Antoniadis et al. is studied using renormalization group techniques. It is shown that gaugino masses can only be the dominant source of supersymmetry breaking at the Planck scale if the U(1) gaugino mass M/sub 1/ is at least 10 times larger than the SU(5) gaugino mass M/sub 5/. If M/sub 1/ approx. = M/sub 5/ at the Planck scale, non-vanishing trilinear soft breaking terms ('A-terms') are needed already at the Planck scale. In both cases consequences for the sparticle spectrum at the weak scale are discussed.

  16. World-sheet gauge fields in superstrings

    International Nuclear Information System (INIS)

    Porrati, M.; Tomboulis, E.T.

    1989-01-01

    We investigate the introduction of world-sheet 2-dimensional gauge fields in a manner consistent with world-sheet supersymmetry. We obtain the effective string action resulting from the exact integration over the world-sheet gauge fields to show that it generally describes string models with spontaneous breaking of gauge symmetries with continuous breaking parameters. We examine the question of spacetime supersymmetry spontaneous breaking, and show that breaking with continuous, in particular arbitrarily small breaking parameters does not occur; only breaking for discrete values of parameters is possible. (orig.)

  17. Supersymmetry in open superstring field theory

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Theodore [Arnold Sommerfeld Center, Ludwig-Maximilians University,Theresienstrasse 37, 80333 Munich (Germany)

    2017-05-19

    We realize the 16 unbroken supersymmetries on a BPS D-brane as invariances of the action of the corresponding open superstring field theory. We work in the small Hilbert space approach, where a symmetry of the action translates into a symmetry of the associated cyclic A{sub ∞} structure. We compute the supersymmetry algebra, being careful to disentangle the components which produce a translation, a gauge transformation, and a symmetry transformation which vanishes on-shell. Via the minimal model theorem, we illustrate how supersymmetry of the action implies supersymmetry of the tree level open string scattering amplitudes.

  18. Supersymmetry, the flavour puzzle and rare B decays

    International Nuclear Information System (INIS)

    Straub, David Michael

    2010-01-01

    The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B → K * l + l - decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b→sνanti ν decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)

  19. Supersymmetry Breaking, Gauge Mediation, and the LHC

    International Nuclear Information System (INIS)

    Shih, David

    2015-01-01

    Gauge mediated SUSY breaking (GMSB) is a promising class of supersymmetric models that automatically satisfies the precision constraints. Prior work of Meade, Seiberg and Shih in 2008 established the full, model-independent parameter space of GMSB, which they called 'General Gauge Mediation' (GGM). During the first half of 2010-2015, Shih and his collaborators thoroughly explored the parameter space of GGM and established many well-motivated benchmark models for use by the experimentalists at the LHC. Through their work, the current constraints on GGM from LEP, the Tevatron and the LHC were fully elucidated, together with the possible collider signatures of GMSB at the LHC. This ensured that the full discovery potential for GGM could be completely realized at the LHC.

  20. Supersymmetry: Compactification, flavor, and dualities

    Science.gov (United States)

    Heidenreich, Benjamin Jones

    We describe several new research directions in the area of supersymmetry. In the context of low-energy supersymmetry, we show that the assumption of R-parity can be replaced with the minimal flavor violation hypothesis, solving the issue of nucleon decay and the new physics flavor problem in one stroke. The assumption of minimal flavor violation uniquely fixes the form of the baryon number violating vertex, leading to testable predictions. The NLSP is unstable, and decays promptly to jets, evading stringent bounds on vanilla supersymmetry from LHC searches, whereas the gravitino is long-lived, and can be a dark matter component. In the case of a sbottom LSP, neutral mesinos can form and undergo oscillations before decaying, leading to same sign tops, and allowing us to place constraints on the model in this case. We show that this well-motivated phenomenology can be naturally explained by spontaneously breaking a gauged flavor symmetry at a high scale in the presence of additional vector-like quarks, leading to mass mixings which simultaneously generate the flavor structure of the baryon-number violating vertex and the Standard Model Yukawa couplings, explaining their minimal flavor violating structure. We construct a model which is robust against Planck suppressed corrections and which also solves the mu problem. In the context of flux compactifications, we begin a study of the local geometry near a stack of D7 branes supporting a gaugino condensate, an integral component of the KKLT scenario for Kahler moduli stabilization. We obtain an exact solution for the geometry in a certain limit using reasonable assumptions about symmetries, and argue that this solution exhibits BPS domain walls, as expected from field theory arguments. We also begin a larger program of understanding general supersymmetric compactifications of type IIB string theory, reformulating previous results in an SL(2, R ) covariant fashion. Finally, we present extensive evidence for a new class of

  1. Search for supersymmetry with jets, missing transverse momentum, tau leptons and one light lepton at the ATLAS detector

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Desch, Klaus; Schaepe, Steffen; Schultens, Martin [University of Bonn (Germany)

    2015-07-01

    The search for supersymmetric extensions of the Standard Model of particle physics (SUSY) is one of the main objectives in the physics program of the ATLAS experiment at the Large Hadron Collider (LHC). However, there has been no evidence for Supersymmetry during the first data taking period in 2010 and 2012 and stringent exclusion limits could be set in various signal models. For the second run of the LHC improved analysis methods will be important. One possibility to reach better exclusion power is using a multi-bin shape fit approach rather than a simple one-bin exclusion fit. The gain from such binned signal regions has been studied for an analysis using final states with tau leptons and one lighter lepton (electron or muon). The analysis was performed on the full 2012 LHC dataset with an integrated luminosity of 21 fb{sup -1} and the results were interpreted in four different SUSY scenarios: Gauge-Mediated Supersymmetry Breaking (GMSB), Natural Gauge Mediation (NGM), Gravity Mediated Symmetry Breaking (MSUGRA) and Bilinear R-Parity Violation (BRPV).

  2. Supersymmetry at the Tevatron?

    International Nuclear Information System (INIS)

    Lammel, S.

    1998-02-01

    These lectures contain an introduction to the search for supersymmetry at hadron colliders. The Tevatron is one of high-energy physics most sophisticated tools. The high center-of-mass energy of its proton-antiproton collisions makes it an ideal place to search for physics beyond the Standard Model, such as supersymmetry. Two experiments, CDF and D0, completed a long data taking period in summer of 1995, yielding over 100 pb -1 of proton-antiproton interactions. The data recorded by the experiments are still being analyzed. The lectures outline the strategies in the search for supersymmetry at the Tevatron and examine the major analyses in detail. Results obtained by the two experiments are included where available

  3. Supersymmetry and particle physics

    CERN Document Server

    Nilles, Hans Peter

    1995-01-01

    Theoretical and phenomeno-logical properties of supersymmetric extension of the SU (3)x SU (2) x SU (1) standardmodel and its grand unified versions are discussed in detail. We give an introduction to supersymmetry and super-gravity and review attempts to construct models in which the breakdown scale of weak interactions is related to supersymmetry breakdown.

  4. Applied supersymmetry and supergravity

    International Nuclear Information System (INIS)

    Nanopoulos, D.V.

    1986-01-01

    The structure and physical consequences of global and local supersymmetric (SUSY) gauge theories are reviewed. Motivation for SUSY theories, supersymmetry and its physical properties, the observable consequences of SUSY at low energies and super-high energies, physical structure of simple (N=1) supergravity, physics with simple (N=1) supergravity, and the experimental evidence for supersymmetry, are all discussed. (UK)

  5. Supersymmetry: the Next Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, Michael E

    2002-12-16

    I describe the picture by which supersymmetry--the possible symmetry of Nature that converts fermions to bosons and vice versa--accounts for the next stage of physics beyond the Standard Model. I then survey the future experimental program implied by this theory, in which the spectrum of particles associated with supersymmetry will be determined with precision.

  6. Supersymmetry: Current status and future prospects

    International Nuclear Information System (INIS)

    Baer, H.; Barnett, R.M.; Bhattacharya, G.

    1990-11-01

    We review the most recent data from e + e - and p bar p colliders and discuss the resulting constraints on the parameters of the Minimal Supersymmetric Standard Model, and their implications for future supersymmetry searches. We review the patterns of cascade decays of squarks and gluinos and discuss the present status of supersymmetry event generators for hadron colliders. We present the results of detailed simulations of E T and same sign dilepton events from supersymmetry at the Tevatron. Although the E T signal continues to be viable, it is concluded that the same sign dilepton signal may be too small unless squarks and gluinos are approximately degenerate. The E T and the same-sign dilepton signals from supersymmetry and the Standard Model backgrounds at the SSC are also discussed in detail. We also discuss other promising ways of searching for supersymmetry at the SSC including events containing Z degree bosons, and events containing n isolated leptons (n ≥ 3). Finally, we discuss how supersymmetry searches might be modified if the Higgs sectors is more complicated or if R-parity is not conserved due to baryon number violating interactions. 49 refs., 12 figs

  7. Metastable SUSY Breaking, de Sitter Moduli Stabilisation and Kähler Moduli Inflation

    CERN Document Server

    Krippendorf, Sven

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N=1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kahler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kahler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario als...

  8. Restoration of supersymmetric Slavnov-Taylor and Ward identities in presence of soft and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Fischer, I.; Hollik, W.; Roth, M.; Stoeckinger, D.

    2003-12-01

    Supersymmetric Slavnov-Taylor and Ward identities are investigated in presence of soft and spontaneous symmetry breaking. We consider an abelian model where soft supersymmetry breaking yields a mass splitting between electron and selectron and triggers spontaneous symmetry breaking, and we derive corresponding identities that relate the electron and selectron masses with the Yukawa coupling. We demonstrate that the identities are valid in dimensional reduction and invalid in dimensional regularization and compute the necessary symmetry-restoring counterterms. (orig.)

  9. Introduction to supersymmetry in particle and nuclear physics

    International Nuclear Information System (INIS)

    Castanos, O.; Frank, A.; Urrutia, L.

    1981-01-01

    This book constitutes the proceedings of an International School of Supersymmetry held in Mexico City in 1981. Lectures presented include an introduction to supersymmetry (symmetries in relativistic quantum field theory, supersymmetry in quantum field theory, Dirac matrices and Majorana spinors, supersymmetric Yang-Mills theory, scalar multiplet and auxiliary fields, supergravity, N=1 supersymmetric theories, extended supersymmetry algebras, representations of extended supersymmetry, N=4 supersymmetric Yang-Mills theory, extended supergravity), superfields (irreducible representations and chiral superfields, invariants and ''tensor calculus,'' gauge superfield, N=1 supergravity), grand unification with and without supersymmetry (supersymmetric models), Yang-Mills theories with global and local supersymmetry (Higgs and Superhiggs effect in unified field theories), and supergroups and their representations (fermion and Grassmann numbers, supertrace and superdeterminant, harmonic oscillator representation, the Tilde operator, eigenvalues of Casimir operators, branching rules, Kac-Dynkin diagrams and supertableaux)

  10. Supersymmetry

    Indian Academy of Sciences (India)

    article, we shall first present the salient features of one such symn1.etry ... we shall show the power of supersymmetry in tackling ... tary particles must be observed in high-energy collider ..... The concept of supersymmetric partner potentials im-.

  11. Search for anomaly-mediated supersymmetry breaking with the ATLAS detector based on a disappearing-track signature in pp collisions at $\\sqrt{s}$ = 7 TeV

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albert, Justin; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Aubert, Bernard; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beale, Steven; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Sebastian; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benekos, Nektarios; Benhammou, Yan; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertella, Claudia; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Bondioli, Mario; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Buat, Quentin; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Caminada, Lea Michaela; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Curatolo, Maria; Curtis, Chris; Cuthbert, Cameron; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; de Mora, Lee; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Delemontex, Thomas; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dodd, Jeremy; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Fokitis, Manolis; Fonseca Martin, Teresa; Fopma, Johan; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Friedrich, Felix; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordani, MarioPaolo; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Gozpinar, Serdar; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Hall, David; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayashi, Takayasu; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heller, Claudio; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Ilic, Nikolina; Imbault, Didier; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Irles Quiles, Adrian; Isaksson, Charlie; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jansen, Hendrik; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Jovin, Tatjana; Ju, Xiangyang; Jung, Christian; Juranek, Vojtech; Jussel, Patrick; Juste Rozas, Aurelio; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagounis, Michael; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasieczka, Gregor; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Keung, Justin; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Lawrence; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Knecht, Neil; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kraus, Jana; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumnack, Nils; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuze, Masahiro; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lemmer, Boris; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Lorenz, Jeanette; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martin-Haugh, Stewart; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano Moya, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morley, Anthony Keith; Mornacchi, Giuseppe; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Mueller, Timo; Muenstermann, Daniel; Muir, Alex; Munwes, Yonathan; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolics, Katalin; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Paleari, Chiara; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Perus, Antoine; Peshekhonov, Vladimir; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Piec, Sebastian Marcin; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Plamondon, Mathieu; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Joe; Price, Lawrence; Price, Michael John; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Pueschel, Elisa; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randle-Conde, Aidan Sean; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romanov, Victor; Romeo, Gaston; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Anthony; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Christian; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sanchez, Arturo; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandoval, Carlos; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Emmanuel; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Scott, Bill; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shiyakova, Maria; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shrestha, Suyog; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sircar, Anirvan; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skottowe, Hugh Philip; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sosebee, Mark; Soualah, Rachik; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Styles, Nicholas Adam; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Suzuki, Yuta; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teinturier, Marthe; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tudorache, Alexandra; Tudorache, Valentina; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vanadia, Marco; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Virzi, Joseph; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Wastie, Roy; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wong, Wei-Cheng; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wraight, Kenneth; Wright, Catherine; Wright, Michael; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xella, Stefania; Xiao, Meng; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yacoob, Sahal; Yamada, Miho; Yamaguchi, Hiroshi; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamanaka, Takashi; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zabinski, Bartlomiej; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zeman, Martin; Zemla, Andrzej; Zendler, Carolin; Zenin, Oleg; Ženiš, Tibor; Zinonos, Zinonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-04-27

    In models of anomaly-mediated supersymmetry breaking (AMSB), the lightest chargino is predicted to have a lifetime long enough to be detected in collider experiments. This letter explores AMSB scenarios in pp collisions at sqrt(s) = 7 TeV by attempting to identify decaying charginos which result in tracks that appear to have few associated hits in the outer region of the tracking system. The search was based on data corresponding to an integrated luminosity of 1.02 fb^-1 collected with the ATLAS detector in 2011. The pT spectrum of candidate tracks is found to be consistent with the expectation from Standard Model background processes and constraints on the lifetime and the production cross section were obtained. In the minimal AMSB framework with m_3/2 0, a chargino having mass below 92 GeV and a lifetime between 0.5 ns and 2 ns is excluded at 95% confidence level.

  12. Radiatively induced breaking of conformal symmetry in a superpotential

    International Nuclear Information System (INIS)

    Arbuzov, A.B.; Cirilo-Lombardo, D.J.

    2016-01-01

    Radiatively induced symmetry breaking is considered for a toy model with one scalar and one fermion field unified in a superfield. It is shown that the classical quartic self-interaction of the superfield possesses a quantum infrared singularity. Application of the Coleman–Weinberg mechanism for effective potential leads to the appearance of condensates and masses for both scalar and fermion components. That induces a spontaneous breaking of the initial classical symmetries: the supersymmetry and the conformal one. The energy scales for the scalar and fermion condensates appear to be of the same order, while the renormalization scale is many orders of magnitude higher. A possibility to relate the considered toy model to conformal symmetry breaking in the Standard Model is discussed.

  13. Academic training: Introduction to Supersymmetry

    CERN Multimedia

    2007-01-01

    2006-2007 ACADEMIC TRAINING PROGRAMME LECTURE SERIES 12, 13, 14, 15 February, from 11:00 to 12:00 Main Auditorium, bldg. 500 Introduction to Supersymmetry D. Kaplan, Johns Hopkins University, Baltimore, USA In these lectures, I will introduce supersymmetry as an extension to spacetime symmetries both formally and physically. I will present motivations for why we think supersymmetry may exist in the real world, and may manifest itself at the LHC. I will describe the current set of models of softly broken supersymmetry at the electroweak scale and the parts that make them exciting and the parts that make people sick. I will then cover the phenomenology of the various models - the spectra and some of the best studied collider signals. Finally, I will describe the phenomenology of the full supersymmetric parameter space in general terms and discuss this collider signals not covered by the classic models.

  14. Extended supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2000-01-01

    Since the generators of the two SU(2) groups which comprise SO(4) are not Hermitian conjugates of each other, the simplest supersymmetry algebra in four-dimensional Euclidean space more closely resembles the N=2 than the N=1 supersymmetry algebra in four-dimensional Minkowski space. An extended supersymmetry algebra in four-dimensional Euclidean space is considered in this paper; its structure resembles that of N=4 supersymmetry in four-dimensional Minkowski space. The relationship of this algebra to the algebra found by dimensionally reducing the N=1 supersymmetry algebra in ten-dimensional Euclidean space to four-dimensional Euclidean space is examined. The dimensional reduction of N=1 super Yang-Mills theory in ten-dimensional Minkowski space to four-dimensional Euclidean space is also considered

  15. Supersymmetry algebra cohomology. I. Definition and general structure

    International Nuclear Information System (INIS)

    Brandt, Friedemann

    2010-01-01

    This paper concerns standard supersymmetry algebras in diverse dimensions, involving bosonic translational generators and fermionic supersymmetry generators. A cohomology related to these supersymmetry algebras, termed supersymmetry algebra cohomology, and corresponding 'primitive elements' are defined by means of a BRST (Becchi-Rouet-Stora-Tyutin)-type coboundary operator. A method to systematically compute this cohomology is outlined and illustrated by simple examples.

  16. Vacuum state supersymmetry in d=11 supergravity

    International Nuclear Information System (INIS)

    Vasilevich, D.V.

    1987-01-01

    Supersymmetry of vacuum state in d=11 supergravity is considered. Proceeding on sufficiently general assumptions relatively superformation parameter only Freud-Rubin type solutions may possess supersymmetries. To obtain this result no restrictions on the form of superformation parameter, supealgebra of vacuum global supersymmetry and the form of boson fields were imposed

  17. Restoration of supersymmetric Slavnov-Taylor and Ward identities in the presence of soft and spontaneous symmetry breaking

    International Nuclear Information System (INIS)

    Fischer, I.; Hollik, W.; Roth, M.; Stoeckinger, D.

    2004-01-01

    Supersymmetric Slavnov-Taylor and Ward identities are investigated in the presence of soft and spontaneous symmetry breaking. We consider an Abelian model where soft supersymmetry breaking yields a mass splitting between electron and selectron and triggers spontaneous symmetry breaking, and we derive the corresponding identities that relate the electron and selectron masses to the Yukawa coupling. We demonstrate that the identities are valid in dimensional reduction and invalid in dimensional regularization and compute the necessary symmetry-restoring counterterms

  18. On exotic supersymmetries of the φ1,3 deformation of minimal models

    International Nuclear Information System (INIS)

    Kadiri, A.; Saidi, E.H.; Zerouaoui, S.J.; Sedra, M.B.

    1994-07-01

    Using algebraic and field theoretical methods, we study the fractional spin symmetries of the φ 1,3 deformation of minimal models. The particular example of the D=2 three state tricritical Potts model is examined in detail. Various models based on subalgebras and appropriate discrete automorphism groups of the two dimensional fractional spin algebra are obtained. General features such as superspace and superfield representations, the U q (sl 2 ) symmetry, the spontaneous exotic supersymmetry breaking, relations with the N=2 Landau Ginzburg models as well as other things are discussed. (author). 24 refs

  19. Minimal Higgs branch for the breaking of half of the supersymmetries in N=2 supergravity

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo

    1996-01-01

    It is shown that the minimal Higgs sector of a generic N=2 supergravity theory with unbroken N=1 supersymmetry must contain a Higgs hypermultiplet and a vector multiplet. When the multiplets parametrize the quaternionic manifold SO(4,1)/SO(4), and the special Kahler manifold SU(1,1)/U(1), respectively, a vanishing vacuum energy with a sliding massive spin 3/2 multiplet is obtained. Potential applications to N=2 low energy effective actions of superstrings are briefly discussed.

  20. Supersymmetry for mathematicians

    CERN Document Server

    Varadarajan, V S

    2004-01-01

    Supersymmetry has been the object of study by theoretical physicists since the early 1970's. In recent years it has attracted the interest of mathematicians because of its novelty, and because of significance, both in mathematics and physics, of the main issues it raises. This book presents the foundations of supersymmetry to the mathematically minded reader in a cogent and self-contained manner. It begins with a brief introduction to the physical foundations of the theory, especially the classification of relativistic particles and their wave equations, such as the equations of Dirac and Weyl

  1. Supersymmetry, the flavour puzzle and rare B decays

    Energy Technology Data Exchange (ETDEWEB)

    Straub, David Michael

    2010-07-14

    The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B {yields} K{sup *}l{sup +}l{sup -} decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b{yields}s{nu}anti {nu} decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)

  2. Non-linear realization of α0 -extended supersymmetry

    International Nuclear Information System (INIS)

    Nishino, Hitoshi

    2000-01-01

    As generalizations of the original Volkov-Akulov action in four-dimensions, actions are found for all space-time dimensions D invariant under N non-linear realized global supersymmetries. We also give other such actions invariant under the global non-linear supersymmetry. As an interesting consequence, we find a non-linear supersymmetric Born-Infeld action for a non-Abelian gauge group for arbitrary D and N , which coincides with the linearly supersymmetric Born-Infeld action in D=10 at the lowest order. For the gauge group U(N) for M(atrix)-theory, this model has N 2 -extended non-linear supersymmetries, so that its large N limit corresponds to the infinitely many (α 0 ) supersymmetries. We also perform a duality transformation from F μν into its Hodge dual N μ 1 ctdot μD-2 . We next point out that any Chern-Simons action for any (super)groups has the non-linear supersymmetry as a hidden symmetry. Subsequently, we present a superspace formulation for the component results. We further find that as long as superspace supergravity is consistent, this generalized Volkov-Akulov action can further accommodate such curved superspace backgrounds with local supersymmetry, as a super p -brane action with fermionic kappa-symmetry. We further elaborate these results to what we call 'simplified' (Supersymmetry) 2 -models, with both linear and non-linear representations of supersymmetries in superspace at the same time. Our result gives a proof that there is no restriction on D or N for global non-linear supersymmetry. We also see that the non-linear realization of supersymmetry in 'curved' space-time can be interpreted as 'non-perturbative' effect starting with the 'flat' space-time

  3. Supersymmetry in nuclei

    International Nuclear Information System (INIS)

    Jolie, J.

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold 195-196 and Platinum 194 - 195 , it means that the description of these energy levels is simplified and can be made by a common set of quantum numbers. (A.C.)

  4. Left-right gauge symmetry breaking by radiative corrections in supergravity

    International Nuclear Information System (INIS)

    Moxhay, P.; Yamamoto, K.

    1984-01-01

    A supersymmetric SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) gauge theory coupled to N = 1 supergravity is investigated. The scale of left-right gauge symmetry breaking is determined as Msub(R) proportional Msub(P) esup(-1/α) by radiative corrections through the logarithmic evolution of soft supersymmetry breakings. SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) may be embedded in SO(10) grand unification. Cosmological implications intrinsic to the present model are also discussed, which may give a constraint Msub(R) approx.= 10 9-12 GeV. (orig.)

  5. Precision measurements in supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Johnathan Lee [Stanford Univ., CA (United States)

    1995-05-01

    Supersymmetry is a promising framework in which to explore extensions of the standard model. If candidates for supersymmetric particles are found, precision measurements of their properties will then be of paramount importance. The prospects for such measurements and their implications are the subject of this thesis. If charginos are produced at the LEP II collider, they are likely to be one of the few available supersymmetric signals for many years. The author considers the possibility of determining fundamental supersymmetry parameters in such a scenario. The study is complicated by the dependence of observables on a large number of these parameters. He proposes a straightforward procedure for disentangling these dependences and demonstrate its effectiveness by presenting a number of case studies at representative points in parameter space. In addition to determining the properties of supersymmetric particles, precision measurements may also be used to establish that newly-discovered particles are, in fact, supersymmetric. Supersymmetry predicts quantitative relations among the couplings and masses of superparticles. The author discusses tests of such relations at a future e{sup +}e{sup {minus}} linear collider, using measurements that exploit the availability of polarizable beams. Stringent tests of supersymmetry from chargino production are demonstrated in two representative cases, and fermion and neutralino processes are also discussed.

  6. Radiative breaking scenario for the GUT gauge symmetry

    International Nuclear Information System (INIS)

    Fukuyama, T.; Kikuchi, T.

    2006-01-01

    The origin of the grand unified theory (GUT) scale from the top-down perspective is explored. The GUT gauge symmetry is broken by the renormalization group effects, which is an extension of the radiative electroweak symmetry breaking scenario to the GUT models. That is, in the same way as the origin of the electroweak scale, the GUT scale is generated from the Planck scale through the radiative corrections to the soft supersymmetry breaking mass parameters. This mechanism is applied to a perturbative SO(10) GUT model, recently proposed by us. In the SO(10) model, the relation between the GUT scale and the Planck scale can naturally be realized by using order-one coupling constants. (orig.)

  7. Hard and soft supersymmetry breaking for ‘graphinos’ in uniform magnetic fields

    International Nuclear Information System (INIS)

    Hernández-Ortíz, S; Raya, A; Murguía, G

    2012-01-01

    Using irreducible and reducible representations of the Dirac matrices, we study the two- and four-component quantum mechanical supersymmetric (SUSY) theories for ultrarelativistic fermions in (2 + 1) dimensions (‘graphinos’) in a background uniform magnetic field perpendicular to their plane of motion. We then consider ordinary and parity-violating mass terms and identify the former as a soft SUSY breaking term and the latter as the hard SUSY breaking one. (paper)

  8. A possibility for obtaining constraints in extended supersymmetry

    International Nuclear Information System (INIS)

    Hruby, J.

    1980-01-01

    Based on the models, where the central charges appear, an idea is proposed for constructing supersymmetry models where constraints are given automatically. The idea is based on the deep relation between the system of numbers (complex, quaternions, octonions) and supersymmetry. It is shown that the supermodels with topological excitation which are equivalent to the super CP model, the central charges appear due to the 0(2) extended supersymmetry. In 0(2) extended supersymmetry the central charge is proportional to the mass parameter

  9. Spontaneously broken supersymmetry and Poincare invariance

    International Nuclear Information System (INIS)

    Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.

    1983-01-01

    It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra 'A=0' is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi]=0 rather than as an operator equation. It is further argued that this 'weakening' of the algrebra does not alter any of the conclusions about supersymmetry quantum field theories that have been obtained using the original (stronger) form of the algebra. (orig.)

  10. Superspace approach to lattice supersymmetry

    International Nuclear Information System (INIS)

    Kostelecky, V.A.; Rabin, J.M.

    1984-01-01

    We construct a cubic lattice of discrete points in superspace, as well as a discrete subgroup of the supersymmetry group which maps this ''superlattice'' into itself. We discuss the connection between this structure and previous versions of lattice supersymmetry. Our approach clarifies the mathematical problems of formulating supersymmetric lattice field theories and suggests new methods for attacking them

  11. Introduction to supersymmetry and supergravity

    International Nuclear Information System (INIS)

    West, P.

    1990-01-01

    This book discusses two-dimensional supersymmetry algebras, and their irreducible representations as well as rigid and local (supergravity) theories of supersymmetry both in x-space and superspace. These theories include the actions for the superstring and the heterotic string. A discussion on superconformal algebras in two dimensions and an account of super operator product expansion are included

  12. Using reduce in supersymmetry

    International Nuclear Information System (INIS)

    Santos, R.P. dos.

    1987-01-01

    A procedure which allows one to do Supersymmetry calculus in REDUCE is described. Using the concept of an eight-dimensional 'superspace' (spanned by four space-time and four anticommuting coordinates) and of 'superfields' (which represent an entire supermultiplet of particles that transform among themselves), covariant derivatives with respect to supersymmetry are defined. Then, combining the vector facility and LET statement in REDUCE, spinors are simulated in a way to control the algebraic manipulation. (G.D.F.) [pt

  13. Stability and supersymmetry: Models with local gauge symmetry

    International Nuclear Information System (INIS)

    Curtright, T.; Ghandour, G.

    1978-01-01

    Renormalization group analysis is used to show the supersymmetric point in the effective coupling constant space is an unstable fixed point for several model gauge theories. The physical significance of this result is discussed in terms of the stability of the semiclassical ground state. In perturbation theory the supersymmetric point appears to be surrounded by regions in the coupling space representing three classes of theories: class one consists of theories for which the effective potential V has no apparent lower bound for large (pseudo)scalar field expectations; class two theories have lower bounds and radiatively induced absolute minima for V with nonzero field expectations; class three theories apparently have an absolute minimum of V at the origin of field space. Thus radiatively induced breaking of gauge invariance occurs for theories in classes one and two, but perturbatively the class one theories appear to have no ground states. Class three theories have ground states in which all gauge invariance remains intact. For the supersymmetric limits of the models examined the origin is known to be neutrally stable in field space, permitting an ambiguous breakdown of gauge invariance but not supersymmetry. This phenomenon is discussed in some detail. Calculations are performed in both Lorentz covariant and noncovariant gauges with a detailed comparison between gauges of the relevant one-loop diagrams

  14. Supersymmetry in nuclei

    CERN Document Server

    Jolie, J

    2002-01-01

    All the elementary particles that make up matter (as do quarks, electrons, neutrinos....) are fermions, the particles that convey the fundamental interactions (as do photons, gluons, W, Z...) are bosons. Composite particles are either bosons, or fermions according to the number of fermions they contain: if this number is even the particle is a boson, otherwise it is a fermion. According to this rule a proton is a fermion and the He sup 4 atom is a boson. Symmetry plays an important role in the standard model, a symmetry is a transformation that connect bosons with other bosons or fermions with other fermions. Supersymmetry associates a boson with a fermion or a fermion with a boson, in fact supersymmetry connects nuclei that are not generally considered as akin. Supersymmetry has just been observed in low energy levels of Gold sup 1 sup 9 sup 5 sup - sup 1 sup 9 sup 6 and Platinum sup 1 sup 9 sup 4 - sup 1 sup 9 sup 5 , it means that the description of these energy levels is simplified and can be made by a co...

  15. A light neutralino in hybrid models of supersymmetry breaking

    International Nuclear Information System (INIS)

    Dudas, Emilian; Lavignac, Stephane; Parmentier, Jeanne

    2009-01-01

    We show that in gauge mediation models where heavy messenger masses are provided by the adjoint Higgs field of an underlying SU(5) theory, a generalized gauge mediation spectrum arises with the characteristic feature of having a neutralino LSP much lighter than in the standard gauge or gravity mediation schemes. This naturally fits in a hybrid scenario where gravity mediation, while subdominant with respect to gauge mediation, provides μ and Bμ parameters of the appropriate size for electroweak symmetry breaking

  16. Searches for supersymmetry at CMS

    Energy Technology Data Exchange (ETDEWEB)

    Collaboration: F. Giordano on behalf of the CMS Collaboration

    2017-11-15

    Among the most promising prospects for a theory of physics beyond the standard model is supersymmetry. In this talk, the latest results from the CMS experiment at the LHC on searches for supersymmetry produced through strong production and electroweak production channels are presented using 20/fb of data from the 8 TeV LHC run, with particular focus on gluino and stop searches.

  17. Is spontaneous breaking of R-parity feasible in minimal low-energy supergravity

    International Nuclear Information System (INIS)

    Gato, B.; Leon, J.; Perez-Mercader, J.; Quiros, M.

    1985-01-01

    Spontaneous violation of lepton number without breaking Lorentz invariance can, in principle, be incorporated in models with softly broken supersymmetry. We study the situation for minimal low-energy supergravity models coming from a GUT (hence not having hierarchy destabilizing light singlets) and where the SU(2)xU(1) breaking is radiative. It is found that for this type of model, R-parity breaking requires either too heavy a top quark for a realistic superpartner spectrum or too light a superpartner spectrum for a realistic top quark, making the spontaneous violation of lepton number in the third generation incompatible with present experimental data. We do not discard the possibility of having it in a fourth, heavier, generation. (orig.)

  18. Supersymmetry searches in GUT models with non-universal scalar masses

    Energy Technology Data Exchange (ETDEWEB)

    Cannoni, M.; Gómez, M.E. [Departamento de Física Aplicada, Facultad de Ciencias Experimentales, Universidad de Huelva, 21071 Huelva (Spain); Ellis, J. [Theoretical Particle Physics and Cosmology Group, Physics Department, King' s College London, London WC2R 2LS (United Kingdom); Lola, S. [Department of Physics, University of Patras, 26500 Patras (Greece); De Austri, R. Ruiz, E-mail: mirco.cannoni@dfa.uhu.es, E-mail: John.Ellis@cern.ch, E-mail: mario.gomez@dfa.uhu.es, E-mail: magda@physics.upatras.gr, E-mail: rruiz@ific.uv.es [Instituto de Física Corpuscular, IFIC-UV/CSIC, Valencia (Spain)

    2016-03-01

    We study SO(10), SU(5) and flipped SU(5) GUT models with non-universal soft supersymmetry-breaking scalar masses, exploring how they are constrained by LHC supersymmetry searches and cold dark matter experiments, and how they can be probed and distinguished in future experiments. We find characteristic differences between the various GUT scenarios, particularly in the coannihilation region, which is very sensitive to changes of parameters. For example, the flipped SU(5) GUT predicts the possibility of ∼t{sub 1}−χ coannihilation, which is absent in the regions of the SO(10) and SU(5) GUT parameter spaces that we study. We use the relic density predictions in different models to determine upper bounds for the neutralino masses, and we find large differences between different GUT models in the sparticle spectra for the same LSP mass, leading to direct connections of distinctive possible experimental measurements with the structure of the GUT group. We find that future LHC searches for generic missing E{sub T}, charginos and stops will be able to constrain the different GUT models in complementary ways, as will the Xenon 1 ton and Darwin dark matter scattering experiments and future FERMI or CTA γ-ray searches.

  19. Supersymmetry squarks, photinos, and the unveiling of the ultimate laws of nature

    CERN Document Server

    Kane, Gordon L

    2000-01-01

    The next breakthrough in physics, supersymmetry will unite the fundamental forces of nature and revolutionize our understanding of space and time. . For most of human history, man has been trying to discover just how the universe works. The Standard Model of particle physics, which describes the fundamental constituents and forces of nature, has proved a useful explanation, and recent theories attempting to unify these fundamental forces-such as string theory-have been wonderfully encouraging. Experimental proof, however, has always lagged behind theory. Now, thanks to powerful new tools and the dedication of a handful of pioneers at the frontiers of research, we are approaching the next great leap in understanding: supersymmetry. In this groundbreaking work, renowned physicist Gordon Kane takes us inside both the conceptual framework of supersymmetry and the giant particle accelerators-the atom smashers-where this fascinating discovery should occur. After giving us the basics of the Standard Model, Kane expl...

  20. The origin of the hidden supersymmetry

    International Nuclear Information System (INIS)

    Jakubsky, Vit; Nieto, Luis-Miguel; Plyushchay, Mikhail S.

    2010-01-01

    The hidden supersymmetry and related tri-supersymmetric structure of the free particle system, the Dirac delta potential problem and the Aharonov-Bohm effect (planar, bound state, and tubule models) are explained by a special nonlocal unitary transformation, which for the usual N=2 supercharges has a nature of Foldy-Wouthuysen transformation. We show that in general case, the bosonized supersymmetry of nonlocal, parity even systems emerges in the same construction, and explain the origin of the unusual N=2 supersymmetry of electron in three-dimensional parity even magnetic field. The observation extends to include the hidden superconformal symmetry.

  1. On the diversity of gauge mediation: footprints of dynamical SUSY breaking

    International Nuclear Information System (INIS)

    Abel, Steven; Jaeckel, Joerg; Khoze, Valentin V.; Matos, Luis

    2009-01-01

    Recent progress in realising dynamical supersymmetry breaking allows the construction of simple and calculable models of gauge mediation. We discuss the phenomenology of the particularly minimal case in which the mediation is direct, and show that there are generic new and striking predictions. These include new particles with masses comparable to those of the Standard Model superpartners, associated with the pseudo-Goldstone modes of the dynamical SUSY breaking sector. Consequently there is an unavoidable departure from the MSSM. In addition the gaugino masses are typically significantly lighter than the sfermions, and their mass ratios can be different from the pattern dictated by the gauge couplings in standard (i.e. explicit) gauge mediation. We investigate these features in two distinct realisations of the dynamical SUSY breaking sector.

  2. Optimizing the photon selection of the CMS Single-Photon search for Supersymmetry using multivariate analyses

    CERN Document Server

    Lange, Johannes

    2014-01-01

    The purpose of this thesis is to improve the photon selection of the CMS SinglePhoton search for Supersymmetry by using multivariate analyses.The Single-Photon search aims to find Supersymmetry (SUSY) in data taken by theCompact Muon Solenoid (CMS) detector at the Large Hadron Collider located atthe research center CERN. SUSY is an extension of the standard model of particlephysics. The search is designed for a general gauge mediation scenario, which describes the gauge mediated SUSY breaking. The analysis uses final states with jets,at least one photon and missing transverse energy. A data-driven prediction of themultijet background is performed for the analysis. For this purpose, photon candidates have to be classified into two selections.In this thesis the usage of multivariate analyses for the photon candidate classification is studied. The methods used are Fisher Discriminant, Boosted Decision Treesand Artificial Neural Networks. Their performance is evaluated with respect to different aspects impor...

  3. Supersymmetry, Naturalness, and Signatures at the LHC

    International Nuclear Information System (INIS)

    Kitano, Ryuichiro; Nomura, Yasunori

    2006-01-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large Α term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low energy spectra that do not lead to severe .ne-tuning. Characteristic features of these spectra are: a large Α term for the top squarks, small top squark masses, moderately large tan β, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC--the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry breaking, which are relevant in a model without fine-tuning

  4. Searches for supersymmetry at high-energy colliders

    International Nuclear Information System (INIS)

    Feng, Jonathan L.; Grivaz, Jean-Francois; Nachtman, Jane

    2010-01-01

    This review summarizes the state of the art in searches for supersymmetry at colliders on the eve of the Large Hadron Collider era. Supersymmetry is unique among extensions of the standard model in being motivated by naturalness, dark matter, and force unification, both with and without gravity. At the same time, weak-scale supersymmetry encompasses a wide range of experimental signals that are also found in many other frameworks. Motivations for supersymmetry are recalled and the various models and their distinctive features are reviewed. Searches for neutral and charged Higgs bosons and standard-model superpartners at the high energy frontier are summarized comprehensively, considering both canonical and noncanonical supersymmetric models, and including results from the LEP collider at CERN, HERA at DESY, and the Fermilab Tevatron.

  5. Metastable SUSY breaking, de Sitter moduli stabilisation and Kaehler moduli inflation

    International Nuclear Information System (INIS)

    Krippendorf, Sven; Quevedo, Fernando

    2009-01-01

    We study the influence of anomalous U(1) symmetries and their associated D-terms on the vacuum structure of global field theories once they are coupled to N = 1 supergravity and in the context of string compactifications with moduli stabilisation. In particular, we focus on a IIB string motivated construction of the ISS scenario and examine the influence of one additional U(1) symmetry on the vacuum structure. We point out that in the simplest one-Kaehler modulus compactification, the original ISS vacuum gets generically destabilised by a runaway behaviour of the potential in the modulus direction. In more general compactifications with several Kaehler moduli, we find a novel realisation of the LARGE volume scenario with D-term uplifting to de Sitter space and both D-term and F-term supersymmetry breaking. The structure of soft supersymmetry breaking terms is determined in the preferred scenario where the standard model cycle is not stabilised non-perturbatively and found to be flavour universal. Our scenario also provides a purely supersymmetric realisation of Kaehler moduli (blow-up and fibre) inflation, with similar observational properties as the original proposals but without the need to include an extra (non-SUSY) uplifting term.

  6. Natural supersymmetry and unification in five dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Abdalgabar, Ammar [National Institute for Theoretical Physics and School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand,Private Bag 3, Wits, 2050 (South Africa); Department of Physics, Sudan University of Science and Technology,Khartoum, 407 (Sudan); Cornell, Alan S. [National Institute for Theoretical Physics and School of Physics and Mandelstam Institute for Theoretical Physics, University of the Witwatersrand,Private Bag 3, Wits, 2050 (South Africa); Deandrea, Aldo [Université de Lyon,92, rue Pasteur, Lyon, F-69361 (France); IPNL, Université Lyon 1, CNRS/IN2P3,4 rue Fermi, Villeurbanne Cedex, F-69622 (France); Institut Universitaire de France,103 boulevard Saint-Michel, Paris, 75005 (France); McGarrie, Moritz [Faculty of Physics, University of Warsaw,Hoża 69, Warsaw, 00-681 (Poland)

    2016-01-14

    We explore unification and natural supersymmetry in a five dimensional extension of the standard model in which the extra dimension may be large, of the order of 1–10 TeV. Power law running generates a TeV scale A{sub t} term allowing for the observed 125 GeV Higgs and allowing for stop masses below 2 TeV, compatible with a natural SUSY spectrum. We supply the full one-loop RGEs for various models and use metastability to give a prediction that the gluino mass should be lighter than 3.5 TeV for A{sub t}≥−2.5 TeV, for such a compactification scale, with brane localised 3rd generation matter. We also discuss models in which only the 1st and 2nd generation of matter fields are located in the bulk. We also look at electroweak symmetry breaking in these models.

  7. Supersymmetry Searches in Dilepton Final States with the ATLAS Experiment

    CERN Document Server

    Lungwitz, Matthias

    One of the main goals of the ATLAS experiment at the Large Hadr on Collider (LHC) at CERN in Geneva is the search for new physics beyond the Standa rd Model. In 2011, proton- proton collisions were performed at the LHC at a center of mas s energy of 7 TeV and an in- tegrated luminosity of 4 . 7 fb − 1 was recorded. This dataset can be tested for one of the most promising theories beyond limits achieved thus far: supers ymmetry. Final states in supersym- metry events at the LHC contain highly energetic jets and siz eable missing transverse energy. The additional requirement of events with highly energetic leptons simplifies the control of the backgrounds. This work presents results of a search for supe rsymmetry in the inclusive dilepton channel. Special emphasis is put on the search within the Gau ge-Mediated Symmetry Breaking (GMSB) scenario in which the supersymmetry breaking is medi ated via gauge fields. Statis- tically independent Control Regions for the dominant Stand ard Model backgrounds as well as ...

  8. Spontaneous SUSY breaking without R symmetry in supergravity

    Science.gov (United States)

    Maekawa, Nobuhiro; Omura, Yuji; Shigekami, Yoshihiro; Yoshida, Manabu

    2018-03-01

    We discuss spontaneous supersymmetry (SUSY) breaking in a model with an anomalous U (1 )A symmetry. In this model, the size of the each term in the superpotential is controlled by the U (1 )A charge assignment and SUSY is spontaneously broken via the Fayet-Iliopoulos of U (1 )A at the metastable vacuum. In the global SUSY analysis, the gaugino masses become much smaller than the sfermion masses, because an approximate R symmetry appears at the SUSY breaking vacuum. In this paper, we show that gaugino masses can be as large as gravitino mass, taking the supergravity effect into consideration. This is because the R symmetry is not imposed so that the constant term in the superpotential, which is irrelevant to the global SUSY analysis, largely contributes to the soft SUSY breaking terms in the supergravity. As the mediation mechanism, we introduce the contributions of the field not charged under U (1 )A and the moduli field to cancel the anomaly of U (1 )A. We comment on the application of our SUSY breaking scenario to the grand unified theory.

  9. N = (4,4 Supersymmetry and T-Duality

    Directory of Open Access Journals (Sweden)

    Malin Göteman

    2012-10-01

    Full Text Available A sigma model with four-dimensional target space parametrized by chiral and twisted chiral N =(2,2 superfields can be extended to N =(4,4 supersymmetry off-shell, but this is not true for a model of semichiral fields, where the N = (4,4 supersymmetry can only be realized on-shell. The two models can be related to each other by T-duality. In this paper we perform a duality transformation from a chiral and twisted chiral model with off-shell N = (4,4 supersymmetry to a semichiral model. We find that additional non-linear terms must be added to the original transformations to obtain a semichiral model with N =(4,4 supersymmetry, and that the algebra closes on-shell as a direct consequence of the T-duality.

  10. Search for supersymmetry in events with photons and missing transverse energy in pp collisions at 13 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, V.; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V.M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; König, A.; Krätschmer, I.; and others

    2017-06-10

    The results of a search for new physics in final states with photons and missing transverse energy are reported. The study is based on a sample of proton–proton collisions collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb{sup −1}. Final states with two photons and significant missing transverse energy are used to search for supersymmetric particles in models of supersymmetry (SUSY) with general gauge-mediated (GGM) supersymmetry breaking. No excess is observed with respect to the standard model expectation, and the results are used to set limits on gluino pair production and squark pair production in the GGM SUSY framework. Gluino masses below 1.65 TeV and squark masses below 1.37 TeV are excluded at a 95% confidence level.

  11. Search for supersymmetry in events with photons and missing transverse energy in pp collisions at 13 TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Sharma, Archana; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Bakhshiansohi, Hamed; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Ban, Yong; Chen, Geng; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Sculac, Toni; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Susa, Tatjana; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; Mohammed, Yasser; Salama, Elsayed; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Khvedelidze, Arsen; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Albert, Andreas; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hamer, Matthias; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Flügge, Günter; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Müller, Thomas; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Arndt, Till; Asawatangtrakuldee, Chayanit; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Eren, Engin; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kleinwort, Claus; Korol, Ievgen; Krücker, Dirk; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Goldenzweig, Pablo; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Shvetsov, Ivan; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Makovec, Alajos; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Kumari, Priyanka; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Parida, Bibhuti; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Guchait, Monoranjan; Jain, Sandhya; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Sarkar, Tanmay; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Hegde, Vinay; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Verwilligen, Piet; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malberti, Martina; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Fienga, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Longo, Egidio; Margaroli, Fabrizio; Marzocchi, Badder; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Cenna, Francesca; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Lee, Ari; Kim, Hyunchul; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Lee, Haneol; Oh, Sung Bin; Radburn-Smith, Benjamin Charles; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Hwang, Chanwook; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Magaña Villalba, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Oropeza Barrera, Cristina; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Saddique, Asif; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Alexakhin, Vadim; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Karjavin, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Palichik, Vladimir; Perelygin, Victor; Savina, Maria; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Bylinkin, Alexander; Chistov, Ruslan; Danilov, Mikhail; Rusinov, Vladimir; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Blinov, Vladimir; Skovpen, Yuri; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Dordevic, Milos; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Barrio Luna, Mar; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Suárez Andrés, Ignacio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gulhan, Doga; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kieseler, Jan; Kirschenmann, Henning; Knünz, Valentin; Kornmayer, Andreas; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lange, Clemens; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Merlin, Jeremie Alexandre; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuel; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Zucchetta, Alberto; Candelise, Vieri; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Hos, Ilknur; Kangal, Evrim Ersin; Kara, Ozgun; Kiminsu, Ugur; Oglakci, Mehmet; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sunar Cerci, Deniz; Turkcapar, Semra; Zorbakir, Ibrahim Soner; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Di Maria, Riccardo; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; James, Thomas; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Summers, Sioni; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Wright, Jack; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; West, Christopher; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Hogan, Julie Managan; Jesus, Orduna; Kwok, Ka Hei Martin; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Ghiasi Shirazi, Seyyed Mohammad Amin; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Si, Weinan; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Krutelyov, Vyacheslav; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Lawhorn, Jay Mathew; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mcdermott, Kevin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Soffi, Livia; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Zientek, Margaret; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Miaoyuan; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Jung, Kurt; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wang, Hui; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Boren, Samuel; Bowen, James; Bruner, Christopher; Castle, James; Forthomme, Laurent; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Ricci-Tam, Francesca; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Abercrombie, Daniel; Allen, Brandon; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Kravchenko, Ilya; Malta Rodrigues, Alan; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Kumar, Ajay; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Lange, David; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mei, Kelvin; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Miller, David Harry; Neumeister, Norbert; Schulte, Jan-Frederik; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Agapitos, Antonis; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Delannoy, Andrés G; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; De Guio, Federico; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Gurpinar, Emine; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Peltola, Timo; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Woods, Nathaniel

    2017-06-10

    The results of a search for new physics in final states with photons and missing transverse energy are reported. The study is based on a sample of proton-proton collisions collected at a center-of-mass energy of 13 TeV with the CMS detector in 2015, corresponding to an integrated luminosity of 2.3 fb$^{-1}$. Final states with two photons and significant missing transverse energy are used to search for supersymmetric particles in models of supersymmetry (SUSY) with general gauge-mediated (GGM) supersymmetry breaking. No excess is observed with respect to the standard model expectation, and the results are used to set limits on gluino pair production and squark pair production in the GGM SUSY framework. Gluino masses below 1.65 TeV and squark masses below 1.37 TeV are excluded at a 95% confidence level.

  12. Effective quark-diquark supersymmetry an algebraic approach

    International Nuclear Information System (INIS)

    Catto, S.

    1989-01-01

    Effective hadronic supersymmetries and color algebra, where extended Miyazawa U(6/21) supersymmetry between mesons and baryons are derived from QCD under some assumptions and within some approximation, also using a dynamical suppression of color-symmetric states. This shows the hadronic origin of supersymmetry as well as the underlying structure of exceptional algebras to the quark model. Supergroups, and infinite groups like Virasoro algebra, then emerge as useful descriptions of certain properties of the hadronic spectrum. Applications to exotic mesons and baryons are discussed

  13. Signatures of High-Scale Supersymmetry at the LHC

    CERN Multimedia

    CERN. Geneva; Spiropulu, Maria; Treille, D

    2004-01-01

    I will discuss the experimental signatures at the LHC of a novel paradigm-shift away from naturalness, suggested by the cosmological constant problem and the multitude of vacua in string theory. In the new paradigm supersymmetry can be broken near the unification scale, and the only light superparticles are the gauginos and higgsinos, which account for the successful unification of gauge couplings. This framework removes all the phenomenological difficulties of standard SUSY. The mass of the Higgs is in the range 120-160 GeV. Measuring the couplings of the Higgs to the gauginos and higgsinos precicely tests for high-scale SUSY. The gluino is strikingly long lived, and a measurement of its lifetime can determine the SUSY breaking scale. Signatures at the LHC detectors include out-of-time energy depositions, displaced vertices, and intermittent tracks.

  14. Hidden supersymmetry and Fermion number fractionalization

    International Nuclear Information System (INIS)

    Akhoury, R.

    1985-01-01

    This paper discusses how a hidden supersymmetry of the underlying field theories can be used to interpret and to calculate fermion number fractionalization in different dimensions. This is made possible by relating it to a corresponding Witten index of the hidden supersymmetry. The closely related anomalies in odd dimensions are also discussed

  15. Symmetry of wavefunctions in quantum algebras and supersymmetry

    International Nuclear Information System (INIS)

    Zachos, C.K.

    1992-01-01

    The statistics-altering operators η present in the limit q = -1 of multiparticle SU q (2)- invariant subspaces parallel the action of such operators which naturally occur in supersymmetric theories. I illustrate this heuristically by comparison to a toy N = 2 superymmetry algebra, and ask whether there is a supersymmetry structure underlying SU q (2) in that limit. I remark on the relevance of such alternating-symmetry multiplets to the construction of invariant hamiltonians

  16. Nonuniversal gaugino masses and seminatural supersymmetry in view of the Higgs boson discovery

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Stephen P. [Santa Barbara, KITP

    2014-02-20

    I consider models with non-universal gaugino masses at the gauge coupling unification scale, taking into account the Higgs boson discovery. Viable regions of parameter space are mapped and studied in the case of non-universality following from an F-term in a linear combination of singlet and adjoint representations of SU(5). I consider, in particular, "semi-natural" models that have small \\mu, with gaugino masses dominating the supersymmetry breaking terms at high energies. Higgsino-like particles are then much lighter than all other superpartners, and the prospects for discovery at the Large Hadron Collider can be extremely challenging.

  17. Supersymmetry: A decade of development

    International Nuclear Information System (INIS)

    West, P.C.

    1986-01-01

    The discovery of supersymmetry in the early 1970s led to a decade of very active research during which the interest of the theoretical physics community was captured and sustained by the rich structure of the theories. This development has had a fundamental effect on the outlook of modern theoretical physics. In particular, it has considerably increased the understanding of quantum field theory and further encouraged the quest to find a single theory of physics. In this book the leading developments in supersymmetry are explained in a pedagogical way by many of the pioneers of these developments. This book describes the theoretical physics, mathematical physics and high energy physics with an introduction to supersymmetric theories. It is expository and introductory in character, however the range of topics covered is sufficiently wide to be of interest to experienced researchers in supersymmetry

  18. Constraints on string vacua with spacetime supersymmetry

    International Nuclear Information System (INIS)

    Banks, T.; California Univ., Santa Cruz; Dixon, L.J.

    1988-01-01

    We examine the consequences of extended spacetime supersymmetry for classical superstring vacua with four dimensions uncompactified. N=2 spacetime supersymmetry implies that the 'internal' N=1 superconformal algebra with central charge c=6 splits into a piece with c=4 which has N=4 superconformal invariance, and a piece with c=2 which is constructed from two free dimension 1/2 superfields. N=4 spacetime supersymmetry requires that the entire c=6 algebra be represented by six free superfields. Using the world-sheet properties of N=1 spacetime supersymmetric classical vacua, we show that spacetime supersymmetry cannot be continuously broken within a family of classical vacua. Finally, we argue that the effective field theories for classical vacua of superstring theories (whether space time supersymmetric or not) have no continuous global symmetries - all continuous symmetries are gauged. (orig.)

  19. Electroweak symmetry breaking in supersymmetric models with heavy scalar superpartners

    International Nuclear Information System (INIS)

    Chankowski, Piotr H.; Falkowski, Adam; Pokorski, Stefan; Wagner, Jakub

    2004-01-01

    We propose a novel mechanism of electroweak symmetry breaking in supersymmetric models, as the one recently discussed by Birkedal, Chacko and Gaillard, in which the Standard Model Higgs doublet is a pseudo-Goldstone boson of some global symmetry. The Higgs mass parameter is generated at one-loop level by two different, moderately fine-tuned sources of the global symmetry breaking. The mechanism works for scalar superpartner masses of order 10 TeV, but gauginos can be light. The scale at which supersymmetry breaking is mediated to the visible sector has to be low, of order 100 TeV. Fine-tuning in the scalar potential is at least two orders of magnitude smaller than in the MSSM with similar soft scalar masses. The physical Higgs boson mass is (for tanβ >> 1) in the range 120-135 GeV

  20. Fractional supersymmetry through generalized anyonic algebra

    International Nuclear Information System (INIS)

    Douari, Jamila; Abdus Salam International Centre for Theoretical Physics, Trieste; Hassouni, Yassine

    2001-01-01

    The construction of anyonic operators and algebra is generalized by using quons operators. Therefore, the particular version of fractional supersymmetry is constructed on the two-dimensional lattice by associating two generalized anyons of different kinds. The fractional supersymmetry Hamiltonian operator is obtained on the two-dimensional lattice and the quantum algebra U q (sl 2 ) is realized. (author)

  1. Supersymmetry: proceedings

    International Nuclear Information System (INIS)

    Brennan, E.C.

    1985-07-01

    Some lectures in these proceedings examine the theoretical basis for supersymmetry, recent developments in theories with compact dimensions, and experimental searches for supersymmetric signatures. Technologies are explored for obtaining very high energy electron-positron colliding beams. Separate abstracts were prepared for 35 papers in these conference proceedings

  2. Supersymmetry and gravitational duality

    International Nuclear Information System (INIS)

    Argurio, Riccardo; Dehouck, Francois; Houart, Laurent

    2009-01-01

    We study how the supersymmetry algebra copes with gravitational duality. As a playground, we consider a charged Taub-Newman-Unti-Tamburino(NUT) solution of D=4, N=2 supergravity. We find explicitly its Killing spinors, and the projection they obey provides evidence that the dual magnetic momenta necessarily have to appear in the supersymmetry algebra. The existence of such a modification is further supported using an approach based on the Nester form. In the process, we find new expressions for the dual magnetic momenta, including the NUT charge. The same expressions are then rederived using gravitational duality.

  3. The Higgs and Supersymmetry at Run II of the LHC

    Energy Technology Data Exchange (ETDEWEB)

    Shih, David [Rutgers Univ., Piscataway, NJ (United States)

    2016-04-14

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super-symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the "naturalness" or "hierarchy" problem by stabilizing the Higgs mass against otherwise uncontrolled quantum corrections, predicts "grand unification" of the fundamental forces, and provides many potential candidates for dark matter. However, after decades of null results from direct and indirect searches, the viable parameter space for SUSY is increasingly constrained. Also, the discovery of a Standard Model-like Higgs with a mass at 125 GeV places a stringent constraint on SUSY models. In the work supported on this grant, Shih has worked on four different projects motivated by these issues. He has built natural SUSY models that explain the Higgs mass and provide viable dark matter; he has studied the parameter space of "gauge mediated supersymmetry breaking" (GMSB) that satisfies the Higgs mass constraint; he has developed new tools for the precision calculation of flavor and CP observables in general SUSY models; and he has studied new techniques for discovery of supersymmetric partners of the top quark.

  4. The Higgs and Supersymmetry at Run II of the LHC

    International Nuclear Information System (INIS)

    Shih, David

    2016-01-01

    Prof. David Shih was supported by DOE grant DE-SC0013678 from April 2015 to April 2016. His research during this year focused on the phenomenology of super-symmetry (SUSY) and maximizing its future discovery potential at Run II of the LHC. SUSY is one of the most well-motivated frameworks for physics beyond the Standard Model. It solves the 'naturalness' or 'hierarchy' problem by stabilizing the Higgs mass against otherwise uncontrolled quantum corrections, predicts 'grand unification' of the fundamental forces, and provides many potential candidates for dark matter. However, after decades of null results from direct and indirect searches, the viable parameter space for SUSY is increasingly constrained. Also, the discovery of a Standard Model-like Higgs with a mass at 125 GeV places a stringent constraint on SUSY models. In the work supported on this grant, Shih has worked on four different projects motivated by these issues. He has built natural SUSY models that explain the Higgs mass and provide viable dark matter; he has studied the parameter space of 'gauge mediated supersymmetry breaking' (GMSB) that satisfies the Higgs mass constraint; he has developed new tools for the precision calculation of flavor and CP observables in general SUSY models; and he has studied new techniques for discovery of supersymmetric partners of the top quark.

  5. Supersymmetry: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Brennan, E.C. (ed.)

    1985-07-01

    Some lectures in these proceedings examine the theoretical basis for supersymmetry, recent developments in theories with compact dimensions, and experimental searches for supersymmetric signatures. Technologies are explored for obtaining very high energy electron-positron colliding beams. Separate abstracts were prepared for 35 papers in these conference proceedings. (LEW)

  6. Low-scale SUSY breaking and the (s)goldstino physics

    CERN Document Server

    Antoniadis, I.

    2013-01-01

    For a 4D N=1 supersymmetric model with a low SUSY breaking scale (f) and general Kahler potential K(Phi^i,Phi_j^*) and superpotential W(Phi^i) we study, in an effective theory approach, the relation of the goldstino superfield to the (Ferrara-Zumino) superconformal symmetry breaking chiral superfield X. In the presence of more sources of supersymmetry breaking, we verify the conjecture that the goldstino superfield is the (infrared) limit of X for zero-momentum and Lambda->\\infty. (Lambda is the effective cut-off scale). We then study the constraint X^2=0, which in the one-field case is known to decouple a massive sgoldstino and thus provide an effective superfield description of the Akulov-Volkov action for the goldstino. In the presence of additional fields that contribute to SUSY breaking we identify conditions for which X^2=0 remains valid, in the effective theory below a large but finite sgoldstino mass. The conditions ensure that the effective expansion (in 1/Lambda) of the initial Lagrangian is not in ...

  7. Supernatural supersymmetry and its classic example: M-theory inspired NMSSM

    Science.gov (United States)

    Li, Tianjun; Raza, Shabbar; Wang, Xiao-Chuan

    2016-06-01

    We briefly review the supernatural supersymmetry (SUSY), which provides a most promising solution to the SUSY electroweak fine-tuning problem. In particular, we address its subtle issues as well. Unlike the minimal supersymmetric standard model (MSSM), the next to MSSM (NMSSM) can be scale invariant and has no mass parameter in its Lagrangian before SUSY and gauge symmetry breakings. Therefore, the NMSSM is a perfect framework for supernatural SUSY. To give the SUSY breaking soft mass to the singlet, we consider the moduli and dilaton dominant SUSY breaking scenarios in M-theory on S1/Z2. In these scenarios, SUSY is broken by one and only one F term of moduli or dilaton, and the SUSY breaking soft terms can be determined via the Kähler potential and superpotential from Calabi-Yau compactification of M-theory on S1/Z2. Thus, as predicted by supernatural SUSY, the SUSY electroweak fine-tuning measure is of unity order. In the moduli dominant SUSY breaking scenario, the right-handed sleptons are relatively light around 1 TeV, stau can even be as light as 580 GeV and degenerate with the lightest neutralino, chargino masses are larger than 1 TeV, the light stop masses are around 2 TeV or larger, the first two-generation squark masses are about 3 TeV or larger, and gluinos are heavier tha.n squarks. In the dilaton dominant SUSY breaking scenario, the qualitative picture remains the same but we have heavier spectra as compared to the moduli dominant SUSY breaking scenario. In addition to it, we have Higgs H2/A1-resonance solutions for dark matter (DM). In both scenarios, the minimal value of DM relic density is about 0.2. To obtain the observed DM relic density, we can consider the dilution effect from supercritical string cosmology or introduce the axino as the lightest supersymmetric particle.

  8. Supersymmetry, naturalness, and signatures at the CERN LHC

    Science.gov (United States)

    Kitano, Ryuichiro; Nomura, Yasunori

    2006-05-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low-energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tan⁡β, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC—the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry-breaking, which are relevant in a model without fine-tuning.

  9. Supersymmetry, naturalness, and signatures at the CERN LHC

    International Nuclear Information System (INIS)

    Kitano, Ryuichiro; Nomura, Yasunori

    2006-01-01

    Weak scale supersymmetry is often said to be fine-tuned, especially if the matter content is minimal. This is not true if there is a large A term for the top squarks. We present a systematic study on fine-tuning in minimal supersymmetric theories and identify low-energy spectra that do not lead to severe fine-tuning. Characteristic features of these spectra are: a large A term for the top squarks, small top squark masses, moderately large tanβ, and a small μ parameter. There are classes of theories leading to these features, which are discussed. In one class, which allows a complete elimination of fine-tuning, the Higgsinos are the lightest among all the superpartners of the standard model particles, leading to three nearly degenerate neutralino/chargino states. This gives interesting signals at the LHC--the dilepton invariant mass distribution has a very small endpoint and shows a particular shape determined by the Higgsino nature of the two lightest neutralinos. We demonstrate that these signals are indeed useful in realistic analyses by performing Monte Carlo simulations, including detector simulations and background estimations. We also present a method that allows the determination of all the relevant superparticle masses without using input from particular models, despite the limited kinematical information due to short cascades. This allows us to test various possible models, which is demonstrated in the case of a model with mixed moduli-anomaly mediation. We also give a simple derivation of special renormalization group properties associated with moduli mediated supersymmetry-breaking, which are relevant in a model without fine-tuning

  10. Triple M-brane configurations and preserved supersymmetries

    International Nuclear Information System (INIS)

    Golubtsova, A.A.; Ivashchuk, V.D.

    2013-01-01

    We investigate all standard triple composite M-brane intersections defined on products of Ricci-flat manifolds for preserving supersymmetries in eleven-dimensional N=1 supergravity. The explicit formulae for computing the numbers of preserved supersymmetries are obtained, which generalize the relations for topologically trivial flat factor spaces presented in the classification by Bergshoeff et al. We obtain certain examples of configurations preserving some fractions of supersymmetries, e.g. containing such factor spaces as K3, C ⁎ 2 /Z 2 , a four-dimensional pp-wave manifold and the two-dimensional pseudo-Euclidean manifold R ⁎ 1,1 /Z 2

  11. Phenomenology of supersymmetry with scalar sequestering

    International Nuclear Information System (INIS)

    Perez, Gilad; Roy, Tuhin S.; Schmaltz, Martin

    2009-01-01

    The defining feature of scalar sequestering is that the minimal supersymmetric standard model squark and slepton masses as well as all entries of the scalar Higgs mass matrix vanish at some high scale. This ultraviolet boundary condition--scalar masses vanish while gaugino and Higgsino masses are unsuppressed--is independent of the supersymmetry breaking mediation mechanism. It is the result of renormalization group scaling from approximately conformal strong dynamics in the hidden sector. We review the mechanism of scalar sequestering and prove that the same dynamics which suppresses scalar soft masses and the B μ term also drives the Higgs soft masses to -|μ| 2 . Thus the supersymmetric contribution to the Higgs mass matrix from the μ term is exactly canceled by the soft masses. Scalar sequestering has two tell-tale predictions for the superpartner spectrum in addition to the usual gaugino mediation predictions: Higgsinos are much heavier (μ > or approx. TeV) than scalar Higgses (m A ∼few hundred GeV), and third generation scalar masses are enhanced because of new positive contributions from Higgs loops.

  12. Introducing supersymmetry

    International Nuclear Information System (INIS)

    Sohnius, M.F.; Imperial Coll. of Science and Technology, London

    1986-01-01

    A systematic and self-contained introduction to supersymmetric model field theories in flat Minkowskian space and to the techniques used in deriving them is given (including superspace). A general overview of supersymmetry and supergravity is provided in the form of an introduction to the main body of the report. (orig.)

  13. Introducing supersymmetry

    International Nuclear Information System (INIS)

    Sohnius, M.F.; Imperial Coll. of Science and Technology, London

    1985-01-01

    A systematic and self-contained introduction to supersymmetric model field theories in flat Minkowskian space and to the techniques used in deriving them is given (including superspace). A general overview of supersymmetry and supergravity is provided in the form of an introduction to the main body of the report. (orig.)

  14. Nichtlineare Realisierung der globalen (N = 1) Supersymmetrie

    CERN Document Server

    Banzhaf, W

    1985-01-01

    By means of the nonlinear realization of the global supersymmetry it is possible to generalize every Lorentz invariant Lagrangian density to a supersymmetric Lagrangian density whereby supersymmetry is spontaneously broken. The Goldstone particles of supersymmetry to be introduced for this purpose couple to the canonical energy-momentum tensor of the original Lagrangian density as it is said by the low-energy theorem of the nonlinear realization of supersymmetry. The reason for this coupling is studied. It is shown that an additional non-Abelian gauge symmetry of the Lorentz invariant Lagrangian density leads to the coupling to the gauge invariant energy-momentum tensor. The expansion of the nonlinear realization is given to all orders of the coupling constant. A recursive structure results in that sense that a higher order of this expansion arises by coupling to the energy-momentum tensor of the corresponding lower order. The analogy to the general relativity theory suggested by this is studied.

  15. Supersymmetry and string theory beyond the standard model

    CERN Document Server

    Dine, Michael

    2015-01-01

    The past decade has witnessed dramatic developments in the fields of experimental and theoretical particle physics and cosmology. This fully updated second edition is a comprehensive introduction to these recent developments and brings this self-contained textbook right up to date. Brand new material for this edition includes the groundbreaking Higgs discovery, results of the WMAP and Planck experiments. Extensive discussion of theories of dynamical electroweak symmetry breaking and a new chapter on the landscape, as well as a completely rewritten coda on future directions gives readers a modern perspective on this developing field. A focus on three principle areas: supersymmetry, string theory, and astrophysics and cosmology provide the structure for this book which will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password-protected solutions will be available to lecturers at www.cambrid...

  16. 2d orbifolds with exotic supersymmetry

    Science.gov (United States)

    Florakis, Ioannis; García-Etxebarria, Iñaki; Lüst, Dieter; Regalado, Diego

    2018-02-01

    We analyse various two dimensional theories arising from compactification of type II and heterotic string theory on asymmetric orbifolds. We find extra supersymmetry generators arising from twisted sectors, giving rise to exotic supersymmetry algebras. Among others we discover new cases with a large number of supercharges, such as N=(20,8), N=(24,8), N=(32,0), N=(24,24) and N=(48,0).

  17. Signatures of supersymmetry in e+e- collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1986-03-01

    To date a number of searches for evidence for supersymmetry in electron-positron collisions have been made, all with negative results. The techniques used in these searches are reviewed, and their results are examined. The general theoretical and experimental features of supersymmetry are reviewed briefly. 43 refs., 60 figs

  18. Prototype models for particle structure in gauge supersymmetry

    International Nuclear Information System (INIS)

    Nath, P.; Arnowitt, R.

    1981-01-01

    Particle content in prototype models of gauge supersymmetry is examined. The properties of the prototype models which are in common with those of gauge supersymmetries are the initial non-diagonality of the quadratic part of the action, global supersymmetry invariance and the existence of a mass parameter in the quadratic part of the action. The analysis exhibits the particle content of prototype models to consist of normal poles and sets of complex conjugate poles on the physical sheet. Diagonalization of the hamiltonian can be carried out for such systems (in contrast to the prototype model of conformal supergravity where dipole ghosts arose). Essentially the pole structure observed in the prototype models of gauge supersymmetry is the supersymmetric analogue of the Lee-Wick phenomenon where the normal and the complex conjugate poles form global multiplets. (orig.)

  19. Triple M-brane configurations and preserved supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Golubtsova, A.A., E-mail: siedhe@gmail.com [Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198 (Russian Federation); Laboratoire de Univers et Théories (LUTh), Observatoire de Paris, Place Jules Janssen 5, 92190 Meudon (France); Ivashchuk, V.D., E-mail: ivashchuk@mail.ru [Center for Gravitation and Fundamental Metrology, VNIIMS, 46 Ozyornaya Str., Moscow 119361 (Russian Federation); Institute of Gravitation and Cosmology, Peoples' Friendship University of Russia, 6 Miklukho-Maklaya Str., Moscow 117198 (Russian Federation)

    2013-07-21

    We investigate all standard triple composite M-brane intersections defined on products of Ricci-flat manifolds for preserving supersymmetries in eleven-dimensional N=1 supergravity. The explicit formulae for computing the numbers of preserved supersymmetries are obtained, which generalize the relations for topologically trivial flat factor spaces presented in the classification by Bergshoeff et al. We obtain certain examples of configurations preserving some fractions of supersymmetries, e.g. containing such factor spaces as K3, C{sub ⁎}{sup 2}/Z{sub 2}, a four-dimensional pp-wave manifold and the two-dimensional pseudo-Euclidean manifold R{sub ⁎}{sup 1,1}/Z{sub 2}.

  20. Linear versus non-linear supersymmetry, in general

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); INFN - Laboratori Nazionali di Frascati,Via Enrico Fermi 40, I-00044 Frascati (Italy); Department of Physics and Astronomy, UniversityC.L.A.,Los Angeles, CA 90095-1547 (United States); Kallosh, Renata [SITP and Department of Physics, Stanford University,Stanford, California 94305 (United States); Proeyen, Antoine Van [Institute for Theoretical Physics, Katholieke Universiteit Leuven,Celestijnenlaan 200D, B-3001 Leuven (Belgium); Wrase, Timm [Institute for Theoretical Physics, Technische Universität Wien,Wiedner Hauptstr. 8-10, A-1040 Vienna (Austria)

    2016-04-12

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  1. Linear versus non-linear supersymmetry, in general

    International Nuclear Information System (INIS)

    Ferrara, Sergio; Kallosh, Renata; Proeyen, Antoine Van; Wrase, Timm

    2016-01-01

    We study superconformal and supergravity models with constrained superfields. The underlying version of such models with all unconstrained superfields and linearly realized supersymmetry is presented here, in addition to the physical multiplets there are Lagrange multiplier (LM) superfields. Once the equations of motion for the LM superfields are solved, some of the physical superfields become constrained. The linear supersymmetry of the original models becomes non-linearly realized, its exact form can be deduced from the original linear supersymmetry. Known examples of constrained superfields are shown to require the following LM’s: chiral superfields, linear superfields, general complex superfields, some of them are multiplets with a spin.

  2. Supersymmetry for nuclear cluster systems

    International Nuclear Information System (INIS)

    Levai, G.; Cseh, J.; Van Isacker, P.

    2001-01-01

    A supersymmetry scheme is proposed for nuclear cluster systems. The bosonic sector of the superalgebra describes the relative motion of the clusters, while its fermionic sector is associated with their internal structure. An example of core+α configurations is discussed in which the core is a p-shell nucleus and the underlying superalgebra is U(4/12). The α-cluster states of the nuclei 20 Ne and 19 F are analysed and correlations between their spectra, electric quadrupole transitions, and one-nucleon transfer reactions are interpreted in terms of U(4/12) supersymmetry. (author)

  3. Field theories on supermanifolds: general formalism, local supersymmetry, and the limit of global supersymmetry

    International Nuclear Information System (INIS)

    Bruzzo, V.

    1986-01-01

    This paper reports briefly on recent investigations concerning the formulation of field theories on supermanifolds. The usual formulations are unsatisfactory from a mathematical viewpoint, hence, this report. A variational theory for fields on a supermanifold is described where the action is a map between Banach spaces. The relationship between the field theory on the supermanifold and a suitably constructed field theory on space-time is also discussed. On-shell local supersymmetry are examined and the limit of global (rigid) supersymmetry is considered. A specific example is given which shows that the limit reproduces the known results

  4. Dynamical relaxation of the CP phases in next-to-minimal supersymmetry

    International Nuclear Information System (INIS)

    Demir, D.A.

    1999-11-01

    After promoting the phases of the soft masses to dynamical fields corresponding to Goldstone bosons of spontaneously broken global symmetries in the supersymmetry breaking sector, the next-to-minimal supersymmetric model is found to solve the μ problem and the strong CP problem simultaneously with an invisible axion. The domain wall problem persists in the form of axionic domain formation. Relaxation dynamics of the physical CP-violating phases is determined only by the short-distance physics and their relaxation values are not necessarily close to the CP-conserving points. Consequently, the solution of tile supersymmetric CP problem may require heavy enough superpartners and nonminimal flavor structures, where the latter may be also relevant for avoiding the formation of axionic domain walls. (author)

  5. Chiral symmetry breaking is permitted in supersymmetric QED

    International Nuclear Information System (INIS)

    Walker, M.

    2000-01-01

    Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result

  6. Supersymmetry violation in elementary particle-monopole scattering

    International Nuclear Information System (INIS)

    Casher, A.; Shamir, Y.

    1991-10-01

    We show that the scattering of elementary particles on solitons (monopoles, fluxons, etc.) in supersymmetric gauge theories violates the relations dictated by supersymmetry at tree level. The violation arises because of the discrepancy between the spectra of bosonic and fermionic fluctuations and because of the fermionic nature of the supersymmetry generators. (author). 14 refs

  7. The role of supersymmetry phenomenology in particle physics

    International Nuclear Information System (INIS)

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute

  8. The role of supersymmetry phenomenology in particle physics

    OpenAIRE

    Wells, James D.

    2000-01-01

    Supersymmetry phenomenology is an important component of particle physics today. I provide a definition of supersymmetry phenomenology, outline the scope of its activity, and argue its legitimacy. This essay derives from a presentation given at the 2000 SLAC Summer Institute.

  9. Superfiled formulation of Chern-Simons supersymmetry

    International Nuclear Information System (INIS)

    Birmingham, D.; Rakowski, M.

    1989-03-01

    We discuss an extra supersymmetry present in the covariantly quantized Chern-Simons action within the superfield formalism. By introducing scalar superfields we show how the component transformations are naturally reproduced from the superfield transformation. When the superspace is extended to include an additional odd coordinate for the BRST symmetry, the entire theory is described by a single odd scalar superfield. The implications of this supersymmetry for the renormalized theory are also discussed. (author). 9 refs

  10. Solar neutrino masses and mixing from bilinear R-parity broken supersymmetry: Analytical versus numerical results

    Science.gov (United States)

    Díaz, M.; Hirsch, M.; Porod, W.; Romão, J.; Valle, J.

    2003-07-01

    We give an analytical calculation of solar neutrino masses and mixing at one-loop order within bilinear R-parity breaking supersymmetry, and compare our results to the exact numerical calculation. Our method is based on a systematic perturbative expansion of R-parity violating vertices to leading order. We find in general quite good agreement between the approximate and full numerical calculations, but the approximate expressions are much simpler to implement. Our formalism works especially well for the case of the large mixing angle Mikheyev-Smirnov-Wolfenstein solution, now strongly favored by the recent KamLAND reactor neutrino data.

  11. Light higgsino for gauge coupling unification

    Directory of Open Access Journals (Sweden)

    Kwang Sik Jeong

    2017-06-01

    Full Text Available We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  12. Light higgsino for gauge coupling unification

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Kwang Sik, E-mail: ksjeong@pusan.ac.kr

    2017-06-10

    We explore gauge coupling unification and dark matter in high scale supersymmetry where the scale of supersymmetry breaking is much above the weak scale. The gauge couplings unify as precisely as in low energy supersymmetry if the higgsinos, whose mass does not break supersymmetry, are much lighter than those obtaining masses from supersymmetry breaking. The dark matter of the universe can then be explained by the neutral higgsino or the gravitino. High scale supersymmetry with light higgsinos requires a large Higgs mixing parameter for electroweak symmetry breaking to take place. It is thus naturally realized in models where superparticle masses are generated at loop level while the Higgs mixing parameter is induced at tree level, like in anomaly and gauge mediation of supersymmetry breaking.

  13. All partial breakings in ${\\cal N}=2$ supergravity with a single hypermultiplet arXiv

    CERN Document Server

    Antoniadis, Ignatios; Petropoulos, P. Marios; Siampos, Konstantinos

    We consider partial supersymmetry breaking in ${\\cal N}=2$ supergravity coupled to a single vector and a single hypermultiplet. This breaking pattern is in principle possible if the quaternion-K\\"ahler space of the hypermultiplet admits (at least) one pair of commuting isometries. For this class of manifolds, explicit metrics exist and we analyse a generic electro-magnetic (dyonic) gauging of the isometries. An example of partial breaking in Minkowski spacetime has been found long ago by Ferrara, Girardello and Porrati, using the gauging of two translation isometries on $SO(4,1)/SO(4)$. We demonstrate that no other example of partial breaking of ${\\cal N}=2$ supergravity in Minkowski spacetime exists. We also examine partial-breaking vacua in anti-de Sitter spacetime that are much less constrained and exist generically even for electric gaugings. On $SO(4,1)/SO(4)$, we construct the partially-broken solution and its global limit which is the Antoniadis-Partouche-Taylor model.

  14. Modified Dynamical Supergravity Breaking and Off-Diagonal Super-Higgs Effects

    CERN Document Server

    Gheorghiu, Tamara; Vacaru, Sergiu

    2015-01-01

    We argue that generic off-diagonal vacuum and nonvacuum solutions for Einstein manifolds mimic physical effects in modified gravity theories (MGTs) and encode certain models of $f(R,T,...)$, Ho\\vrava type with dynamical Lorentz symmetry breaking, induced effective mass for graviton etc. Our main goal is to investigate the dynamical breaking of local supersymmetry determined by off--diagonal solutions in MGTs encoded as effective Einstein spaces. This includes the Deser-Zumino super--Higgs effect, for instance, for an one--loop potential in a (simple but representative) model of $\\mathcal{N}=1, D=4$ supergravity. We develop and apply a new geometric techniques which allows us to decouple the gravitational field equations and integrate them in very general forms with metrics and vierbein fields depending on all spacetime coordinates via various generating and integration functions and parameters. We study how solutions in MGTs may be related to dynamical generation of a gravitino mass and supergravity breaking.

  15. Spontaneous breaking of N=2 to N=1 in rigid and local supersymmetric theories

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo

    1996-01-01

    We analyze the relation between rigid and local supersymmetric N=2 field theories, when half of the supersymmetries are spontaneously broken. In particular, we show that the recently found partial supersymmety breaking induced by electric and magnetic Fayet-Iliopoulos terms in rigid theories can be obtained by a suitable flat limit of previously constructed N=2 supergravity models with partial super-Higgs in the observable sector.

  16. Vector supersymmetry in topological field theories

    International Nuclear Information System (INIS)

    Gieres, F.; Grimstrup, J.; Pisar, T.; Schweda, M.

    2000-01-01

    We present a simple derivation of vector supersymmetry transformations for topological field theories of Schwarz- and Witten-type. Our method is similar to the derivation of BRST-transformations from the so-called horizontality conditions or Russian formulae. We show that this procedure reproduces in a concise way the known vector supersymmetry transformations of various topological models and we use it to obtain some new transformations of this type for 4d topological YM-theories in different gauges. (author)

  17. On the central charge in 3 D-supersymmetry

    International Nuclear Information System (INIS)

    Colatto, L.P.

    1994-01-01

    A matter self-interacting model with N = 1-supersymmetry in 3 D is discussed in connection with the appearance of a central charge in the algebra of the supersymmetry generators. The result is extended to include gauge fields with a Chern-Simons term. (author)

  18. Supersymmetry and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Ortin, T. [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C. U. Cantoblanco, 28049 Madrid (Spain)

    2007-05-15

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We show that the requirement of global supersymmetry implies the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, for which there is no microscopic interpretation in String Theory. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M= vertical stroke q vertical stroke, which fails to be everywhere supersymmetric. There are, nevertheless, everywhere supersymmetric solutions with global angular momentum and non-trivial scalar fields. We also present similar preliminary results in N=1, d=5 supergravity coupled to vector multiplets. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  19. Fractional supersymmetry and infinite dimensional lie algebras

    International Nuclear Information System (INIS)

    Rausch de Traubenberg, M.

    2001-01-01

    In an earlier work extensions of supersymmetry and super Lie algebras were constructed consistently starting from any representation D of any Lie algebra g. Here it is shown how infinite dimensional Lie algebras appear naturally within the framework of fractional supersymmetry. Using a differential realization of g this infinite dimensional Lie algebra, containing the Lie algebra g as a sub-algebra, is explicitly constructed

  20. A division algebra classification of generalized supersymmetries

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2004-10-01

    Generalized supersymmetries admitting bosonic tensor central charges are classified in accordance with their division algebra properties. Division algebra consistent constraints lead (in the complex and quaternionic cases) to the classes of hermitian and holomorphic generalized supersymmetries. Applications to the analytic continuation of the M-algebra to the Euclidean and the systematic investigation of certain classes of models in generic space-times are briefly mentioned. (author)

  1. Supersymmetry on a space-time lattice

    International Nuclear Information System (INIS)

    Kaestner, Tobias

    2008-01-01

    In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)

  2. Supersymmetry on a space-time lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, Tobias

    2008-10-28

    In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)

  3. Supersymmetry on the noncommutative lattice

    International Nuclear Information System (INIS)

    Nishimura, Jun; Rey, Soo-Jong; Sugino, Fumihiko

    2003-01-01

    Built upon the proposal of Kaplan et al. (heplat{0206109}), we construct noncommutative lattice gauge theory with manifest supersymmetry. We show that such theory is naturally implementable via orbifold conditions generalizing those used by Kaplan et al. We present the prescription in detail and illustrate it for noncommutative gauge theories latticized partially in two dimensions. We point out a deformation freedom in the defining theory by a complex-parameter, reminiscent of discrete torsion in string theory. We show that, in the continuum limit, the supersymmetry is enhanced only at a particular value of the deformation parameter, determined solely by the size of the noncommutativity. (author)

  4. Comments on fake supersymmetry

    International Nuclear Information System (INIS)

    Diaz Dorronsoro, Juan; Truijen, Brecht; Van Riet, Thomas

    2017-01-01

    Flat domain walls and spherical black holes are solutions to coupled second-order ODE’s of the Hamiltonian form. Hamilton–Jacobi theory then implies that first-order flow equations always exist (possibly up to isolated submanifolds). If the first-order equations factorise in a specific way, they take a form that has been named fake supersymmetry. We point out that this factorisation is always possible at zero temperature. We therefore propose a less generic definition of fake supersymmetry, which involves the boundary conditions in a non-trivial way, and we analyse its physical relevance. For instance, attractor flows are necessarily fake supersymmetric in our restricted sense. To illustrate the definition we provide new analytic solutions for axion-dilaton domain walls with fake superpotentials that were argued not to exist. (paper)

  5. Spontaneously broken supersymmetry and Poincare invariance

    International Nuclear Information System (INIS)

    Tata, X.R.; Sudarshan, E.C.G.; Schechter, J.M.

    1982-12-01

    It is argued that the spontaneous breakdown of global supersymmetry is consistent with unbroken Poincare invariance if and only if the supersymmetry algebra A = 0 is understood to mean the invariance of the dynamical variables phi under the transformations generated by the algebra, i.e. [A, phi] = 0 rather than as an operator equation. It is further argued that this weakening of the algebra does not alter any of the conclusions about supersymmetric quantum field theories that have been obtained using the original (stronger) form of the algebra

  6. Electric Dipole Moments in Split Supersymmetry

    CERN Document Server

    Giudice, Gian Francesco

    2006-01-01

    We perform a quantitative study of the neutron and electron electric dipole moments (EDM) in Supersymmetry, in the limit of heavy scalars. The leading contributions arise at two loops. We give the complete analytic result, including a new contribution associated with Z-Higgs exchange, which plays an important and often leading role in the neutron EDM. The predictions for the EDM are typically within the sensitivities of the next generation experiments. We also analyse the correlation between the electron and neutron EDM, which provides a robust test of Split Supersymmetry.

  7. Supersymmetry at high temperatures

    International Nuclear Information System (INIS)

    Das, A.; Kaku, M.

    1978-01-01

    We investigate the properties of Green's functions in a spontaneously broken supersymmetric model at high temperatures. We show that, even at high temperatures, we do not get restoration of supersymmetry, at least in the one-loop approximation

  8. Higher order BLG supersymmetry transformations from 10-dimensional super Yang Mills

    Energy Technology Data Exchange (ETDEWEB)

    Hall, John [Alumnus of Physics Department, Imperial College,South Kensington, London, SW7 2AZ (United Kingdom); Low, Andrew [Physics Department, Wimbledon High School,Mansel Road, London, SW19 4AB (United Kingdom)

    2014-06-26

    We study a Simple Route for constructing the higher order Bagger-Lambert-Gustavsson theory - both supersymmetry transformations and Lagrangian - starting from knowledge of only the 10-dimensional Super Yang Mills Fermion Supersymmetry transformation. We are able to uniquely determine the four-derivative order corrected supersymmetry transformations, to lowest non-trivial order in Fermions, for the most general three-algebra theory. For the special case of Euclidean three-algbera, we reproduce the result presented in arXiv:1207.1208, with significantly less labour. In addition, we apply our method to calculate the quadratic fermion terms in the higher order BLG fermion supersymmetry transformation.

  9. String theory, supersymmetry, unification, and all that

    International Nuclear Information System (INIS)

    Schwarz, J.H.; Seiberg, N.

    1999-01-01

    String theory and supersymmetry are theoretical ideas that go beyond the standard model of particle physics and show promise for unifying all forces. After a brief introduction to supersymmetry, the authors discuss the prospects for its experimental discovery in the near future. They then show how the magic of supersymmetry allows us to solve certain quantum field theories exactly, thus leading to new insights about field theory dynamics related to electric-magnetic duality. The discussion of superstring theory starts with its perturbation expansion, which exhibits new features including open-quotes stringy geometry.close quotes The authors then turn to more recent nonperturbative developments. Using new dualities, all known superstring theories are unified, and their strong-coupling behavior is clarified. A central ingredient is the existence of extended objects called branes. copyright 1999 The American Physical Society

  10. Searches for Supersymmetry

    CERN Document Server

    Ventura, Andrea; The ATLAS collaboration

    2017-01-01

    New and recent results on Supersymmetry searches are shown for the ATLAS and the CMS experiments. Analyses with about 36 fb$^{-1}$ are considered for searches concerning light squarks and gluinos, direct pair production of 3$^{rd}$ generation squarks, electroweak production of charginos, neutralinos, sleptons, R-parity violating scenarios and long-lived particles.

  11. Searches for Supersymmetry

    CERN Document Server

    Ventura, Andrea; The ATLAS collaboration

    2017-01-01

    New and recents results on Supersymmetry searches are shown for the ATLAS and the CMS experiments. Analyses with about 36 fb^-1 are considered for searches concerning light squarks and gluinos, direct pair production of 3rd generation squarks, electroweak production of charginos, neutralinos, sleptons, R-parity violating scenarios and long-lived particles.

  12. Exact coefficients for higher dimensional operators with sixteen supersymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wei-Ming [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); Huang, Yu-tin [Department of Physics and Astronomy, National Taiwan University,Taipei 10617, Taiwan, R.O.C. (China); School of Natural Sciences, Institute for Advanced Study,Princeton, NJ 08540 (United States); Wen, Congkao [INFN Sezione di Roma “Tor Vergata' ,Via della Ricerca Scientifica, 00133 Roma (Italy)

    2015-09-15

    We consider constraints on higher-dimensional operators for supersymmetric effective field theories. In four dimensions with maximal supersymmetry and SU(4) R-symmetry, we demonstrate that the coefficients of abelian operators F{sup n} with MHV helicity configurations must satisfy a recursion relation, and are completely determined by that of F{sup 4}. As the F{sup 4} coefficient is known to be one-loop exact, this allows us to derive exact coefficients for all such operators. We also argue that the results are consistent with the SL(2,Z) duality symmetry. Breaking SU(4) to Sp(4), in anticipation for the Coulomb branch effective action, we again find an infinite class of operators whose coefficients are determined exactly. We also consider three-dimensional N=8 as well as six-dimensional N=(2,0),(1,0) and (1,1) theories. In all cases, we demonstrate that the coefficient of dimension-six operator must be proportional to the square of that of dimension-four.

  13. Supersymmetry, supergravity, and unification

    CERN Document Server

    Nath, Pran

    2017-01-01

    This unique book gives a modern account of particle physics and gravity based on supersymmetry and supergravity, two of the most significant developments in theoretical physics since general relativity. The book begins with a brief overview of the history of unification and then goes into a detailed exposition of both fundamental and phenomenological topics. The topics in fundamental physics include Einstein gravity, Yang-Mills theory, anomalies, the standard model, supersymmetry and supergravity, and the construction of supergravity couplings with matter and gauge fields, as well as computational techniques for SO(10) couplings. The topics of phenomenological interest include implications of supergravity models at colliders, CP violation, and proton stability, as well as topics in cosmology such as inflation, leptogenesis, baryogenesis, and dark matter. The book is intended for graduate students and researchers seeking to master the techniques for building grand unified models.

  14. Observables in topological Yang-Mills theories with extended shift supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Constantinidis, Clisthenis P; Piguet, Olivier [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil); Spalenza, Wesley [Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste (Italy); Centro Brasileiro de Pesquisas Fsicas (CBPF), Rio de Janeiro (Brazil)

    2006-01-01

    We present a complete classification, at the classical level, of the observables of topological Yang-Mills theories with an extended shift supersymmetry of N generators, in any space-time dimension. The observables are defined as the Yang-Mills BRST cohomology classes of shift supersymmetry invariants. These cohomology classes turn out to be solutions of an N-extension of Witten's equivariant cohomology. This work generalizes results known in the case of shift supersymmetry with a single generator. (orig.)

  15. Supersymmetry and Superstring Phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K; Gaillard, Mary K.; Zumino, Bruno

    2008-05-05

    We briefly cover the early history of supersymmetry, describe the relation of SUSY quantum field theories to superstring theories and explain why they are considered a likely tool to describe the phenomenology of high energy particle theory beyond the Standard Model.

  16. Supersymmetry: Early Roots That Did Not Grow

    Directory of Open Access Journals (Sweden)

    Cecilia Jarlskog

    2015-01-01

    Full Text Available This paper is about early roots of supersymmetry, as found in the literature from 1940s and early 1950s. There were models where the power of “partners” in alleviating divergences in quantum field theory was recognized. However, other currently known remarkable features of supersymmetry, such as its role in the extension of the Poincaré group, were not known. There were, of course, no supersymmetric nonabelian quantum field theories in those days.

  17. New origin for approximate symmetries from distant breaking in extra dimensions

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima; Dimopoulos, Savas

    2002-01-01

    The recently proposed theories with TeV-scale quantum gravity do not have the usual ultraviolet desert between ∼10 3 -10 19 GeV where effective field theory ideas apply. Consequently, the success of the desert in explaining approximate symmetries is lost, and theories of flavor, neutrino masses, proton longevity or supersymmetry breaking lose their usual habitat. In this paper we show that these ideas can find a new home in an infrared desert: the large space in the extra dimensions. The main idea is that symmetries are primordially exact on our brane, but are broken at O(1) on distant branes. This breaking is communicated to us in a distance-suppressed way by bulk messengers. We illustrate these ideas in a number of settings: (1) We construct theories for the fermion mass hierarchy which avoid problems with large flavor-changing neutral currents; (2) we reiterate that proton stability can arise if baryon number is gauged in the bulk; (3) we study limits on light gauge fields and scalars in the bulk coming from rare decays, astrophysics and cosmology; (4) we remark that the same ideas can be used to explain small neutrino masses, as well as hierarchical supersymmetry breaking; (5) we construct a theory with bulk technicolor, avoiding the difficulties with extended technicolor. There are also a number of interesting experimental signals of these ideas: (1) attractive or repulsive, isotope dependent sub-millimeter forces ∼10 6 times gravitational strength, from the exchange of light bulk particles; (2) novel Higgs decays to light generation fermions plus bulk scalars; (3) collider production of bulk vector and scalar fields, leading to γ or jet+ missing energy signals as in the case of bulk graviton production, with comparable or larger rates

  18. New origin for approximate symmetries from distant breaking in extra dimensions

    International Nuclear Information System (INIS)

    Arkani-Hamed, Nima

    1998-01-01

    The recently proposed theories with TeV-scale quantum gravity do not have the usual ultraviolet desert between approximately 10 3 -10 19 GeV where effective field theory ideas apply. Consequently, the success of the desert in explaining approximate symmetries is lost, and theories of flavor, neutrino masses, proton longevity or supersymmetry breaking, lose their usual habitat. In this paper we show that these ideas can find a new home in an infrared desert: the large space in the extra dimensions. The main idea is that symmetries are primordially exact on our brane, but are broken at O(1) on distant branes. This breaking is communicated to us in a distance-suppressed way by bulk messengers. We illustrate these ideas in a number of settings: (1) We construct theories for the fermion mass hierarchy which avoid problems with large flavor-changing neutral currents. (2) We re-iterate that proton stability can arise if baryon number is gauged in the bulk. (3) We study limits on light gauge fields and scalars in the bulk coming from rare decays, astrophysics and cosmology. (4) We remark that the same ideas can be used to explain small neutrino masses, as well as hierarchical supersymmetry breaking. (5) We construct a theory with bulk technicolor, avoiding the difficulties with extended technicolor. There are also a number of interesting experimental signals of these ideas: (1) Attractive or repulsive, isotope dependent sub-millimeter forces approximately 10 6 times gravitational strength, from the exchange of light bulk particles. (2) Novel Higgs decays to light generation fermions plus bulk scalars. (3) Collider production of bulk vector and scalar fields, leading to γ or jet+ missing energy signals as in the case of bulk graviton production, with comparable or larger rates

  19. Lightest Higgs boson mass in split supersymmetry with the seesaw mechanism

    International Nuclear Information System (INIS)

    Cao Junjie; Yang Jinmin

    2005-01-01

    In the minimal supersymmetric standard model extended by including right-handed neutrinos with seesaw mechanism, the neutrino Yukaka couplings can be as large as the top-quark Yukawa couplings and thus the neutrino/sneutrino may cause sizable effects in Higgs boson self-energy loops. Our explicit one-loop calculations show that the neutrino/sneutrino effects may have an opposite sign to top/stop effects and thus lighten the lightest Higgs boson. If the soft-breaking mass of the right-handed neutrino is very large (at the order of Majorana mass scale), such as in the split-supersymmetry (SUSY) scenario, the effects can lower the lightest Higgs boson mass by a few tens of GeV. So the Higgs mass bound of about 150 GeV in split-SUSY may be lowered significantly if right-handed neutrinos come into play with seesaw mechanism

  20. Searching for supersymmetry at the LHC

    CERN Multimedia

    CERN. Geneva. Audiovisual Unit; Ridolfi, Giovanni

    2003-01-01

    We will review the general motivations for proposing non-standard descriptions of fundamental interactions. We will give a simple and pedagogical presentation of the theoretical foundations of Supersymmetry, and we will describe the main features of a realistic supersymmetric extension of the Standard Model. We will present the phenomenology expected in several motivated scenarios. We will then review the present status of the experimental searches for Supersymmetry at LEP and Tevatron, and discuss prospects at future machines with emphasis on the LHC. We will outline the search strategies and the analysis methods, and compare the sensitivity and reach of the various machines.

  1. Performance of different searches for supersymmetry with tau leptons at the ATLAS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Bechtle, Philip; Desch, Klaus; Koenig, Philipp; Ricken, Oliver; Schaepe, Steffen; Schultens, Martin [University of Bonn (Germany)

    2016-07-01

    The Standard Model (SM) of particle physics is a successful approach to explain the building blocks of matter and the universe but still incomplete. Run-II of the Large Hadron Collider (LHC) is a bargain to discover physics beyond the SM. Supersymmetry (SUSY) is one of the most promising models of physics beyond the SM amongst many others. The search for tau leptons in the final state is very interesting, since their heavy mass makes their SUSY partners preferred particles in the decay chain. In addition, only a few SM processes can produce multiple tau leptons and large missing transverse energy in the final state. While in Run-I the search for SUSY was mainly focussed on mechanisms for soft supersymmetry breaking such as GMSB, the search in Run-II is aiming for Simplified Model Spectra (SMS). In this talk the motivation and performance of different analyses with two or more tau leptons in the final state with the ATLAS detector is presented. Aspects like acceptance and efficiency, particularly for the SMS, are addressed. The presented analyses will be compared and strengths of each analysis will be stressed as well as any differences. The parametrization of the SMS is tested for the dependence of the efficiency on intrinsic mass relations, to suggest possible extensions of the SMS.

  2. Supersymmetry searches with ATLAS: overview and latest results

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Despite the absence of experimental evidence, weak scale supersymmetry remains one of the best motivated and studied Standard Model extensions. The ATLAS experiment searches for signs of supersymmetry in a large variety of signatures involving events with abnormal production of missing transverse momentum, jets, leptons, photons, third generation fermions, gauge bosons or massive long-lived particles. The talk presents the latest results obtained in these searches.

  3. Supersymmetry and quantum mechanics

    International Nuclear Information System (INIS)

    Cooper, F.; Sukhatme, U.

    1995-01-01

    In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications. Exactly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials, shape invariance and operator transformations. Familiar solvable potentials all have the property of shape invariance. We describe new exactly solvable shape invariant potentials which include the recently discovered self-similar potentials as a special case. The connection between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly nice results for the tunneling rate in a double well potential and for improving large N expansions. We also discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of supersymmetric quantum mechanics. Finally, we discuss structures more general than supersymmetric quantum mechanics such as parasupersymmetric quantum mechanics in which there is a symmetry between a boson and a para-fermion of order p. ((orig.))

  4. Gauging MSSM global symmetries and SUSY breaking in de Sitter vacuum

    CERN Document Server

    Antoniadis, Ignatios

    2016-01-01

    We elaborate on a recent study of a model of supersymmetry breaking we proposed recently, in the presence of a tunable positive cosmological constant, based on a gauged shift symmetry of a string modulus, external to the Standard Model (SM) sector. Here, we identify this symmetry with a global symmetry of the SM and work out the corresponding phenomenology. A particularly attracting possibility is to use a combination of Baryon and Lepton number that contains the known matter parity and guarantees absence of dimension-four and five operators that violate B and L.

  5. Supersymmetry of anti-de Sitter black holes

    International Nuclear Information System (INIS)

    Caldarelli, Marco M.; Klemm, Dietmar

    1999-01-01

    We examine supersymmetry of four-dimensional asymptotically anti-de Sitter (AdS) dyonic black holes in the context of gauged N = 2 supergravity. Our calculations concentrate on black holes with unusual topology and their rotating generalizations, but we also reconsider the spherical rotating dyonic Ker-Newman-AdS black hole, whose supersymmetry properties have previously been investigated by Kostelecky and Perry within another approach. We find that in the case of spherical, toroidal or cylindrical event horizon topology, the black holes must rotate in order to preserve some supersymmetry; the non-rotating supersymmetric configurations representing naked singularities. However, we show that this is no more true for black holes whose event horizons are Riemann surfaces of genus g > 1, where we find a non-rotating extremal solitonic black hole carrying magnetic charge and permitting one Killing spinor. For the non-rotating supersymmetric configurations of various topologies, all Killing spinors are explicitly constructed

  6. Self-isospectrality, mirror symmetry, and exotic nonlinear supersymmetry

    International Nuclear Information System (INIS)

    Plyushchay, Mikhail S.; Nieto, Luis-Miguel

    2010-01-01

    We study supersymmetry of a self-isospectral one-gap Poeschl-Teller system in the light of a mirror symmetry that is based on spatial and shift reflections. The revealed exotic, partially broken, nonlinear supersymmetry admits seven alternatives for a grading operator. One of its local, first order supercharges may be identified as a Hamiltonian of an associated one-gap, nonperiodic Bogoliubov-de Gennes system. The latter possesses a nonlinear supersymmetric structure, in which any of the three nonlocal generators of a Clifford algebra may be chosen as the grading operator. We find that the supersymmetry generators for both systems are the Darboux-dressed integrals of a free spin-1/2 particle in the Schroedinger picture, or of a free massive Dirac particle. Nonlocal Foldy-Wouthuysen transformations are shown to be involved in the supersymmetric structure.

  7. Preons and supersymmetry

    International Nuclear Information System (INIS)

    Pati, J.C.; Salam, A.; Strathdee, J.

    1981-11-01

    An important aspect of preonic theories is the construction of composite fields and the commutation relations amongst them, using preonic fields (with their canonical commutation relations) as input. In this note we shall assume that supersymmetry holds for preonic fields and that it is broken just below the ionization energy for the formation of quarks and leptons as preonic composites

  8. Peaking cladding temperature and break equivalent size of intermediate break loss of coolant accident

    International Nuclear Information System (INIS)

    Luo Bangqi

    2012-01-01

    The analysis results of intermediate break loss of coolant accident for the nuclear power plant of million kw level showed to be as following: (1) At the begin of life, the break occur simultaneity reactor shutdown with L(X)P. it's equivalent break size and peaking cladding temperature is respectively 20 cm and 849℃. (2) At the begin of life, the break occur simultaneity reactor shutdown without loop. the reactor coolant pumps will be stop after reactor shutdown 10 minutes, it's equivalent break size and peaking cladding temperature is respectively 10.5 cm and 921℃. (3) At the bur up of 31 GWd/t(EOC1). the break occur simultaneity reactor shutdown without loop, the reactor coolant pumps will be stop after reactor shutdown 20 minutes, it's equivalent break size and peaking cladding temperature is respectively 8 cm and 1145℃. The above analysis results showed that the peaking cladding temperature of intermediate break loss of coolant accident is not only related with the break equivalent size and core bur up, and is closely related with the stop time of coolant pumps because the coolant pumps would drive the coolant from safety system to produce the seal loop in break loop and affect the core coolant flow, results in the fuel cladding temperature increasing or damaging. Therefore, the break spectrum, burn up spectrum, the stop time of coolant pumps and operator action time will need to detail analysis and provide appropriate operating procedure, otherwise the peaking cladding temperature will exceed 1204℃ and threaten the safety of the reactor core when the intermediate break loss of coolant accident occur in some break equivalent size, burn up, stop pumps time and operator action not appropriate. The pressurizer pressure low signal simultaneity containment pressure higher signal were used as the operator manual close the signal of reactor coolant pumps after reactor shutdown of 20 minutes. have successful solved the operator intervention time from 10 minutes

  9. Phenomenological supersymmetry

    International Nuclear Information System (INIS)

    Zwirner, F.

    1992-01-01

    The motivations for low-energy supersymmetry and the main features of the minimal supersymmetric extension of the Standard Model are reviewed. Possible non-minimal models and the issue of gauge coupling unification are also discussed. Theoretical results relevant for supersymmetric particle searches at present and future accelerators are presented. In particular, recent results on radiative corrections to supersymmetric Higgs boson masses and couplings are summarized, and their implications for experimental searches are discussed in some detail. (author). 87 refs, 9 figs

  10. Universality in radiative corrections for non-supersymmetric heterotic vacua

    CERN Document Server

    Angelantonj, C; Tsulaia, Mirian

    2016-01-01

    Properties of moduli-dependent gauge threshold corrections in non-supersymmetric heterotic vacua are reviewed. In the absence of space-time supersymmetry these amplitudes are no longer protected and receive contributions from the whole tower of string states, BPS and not. Never-theless, the difference of gauge thresholds for non-Abelian gauge groups displays a remarkable universality property, even when supersymmetry is absent. We present a simple heterotic construction that shares this universal behaviour and expose the necessary conditions on the super-symmetry breaking mechanism for universality to occur.

  11. Supersymmetry in singular spaces

    NARCIS (Netherlands)

    Bergshoeff, Eric

    2002-01-01

    We discuss supersymmetry in spaces with a boundary, i.e. singular spaces. In particular, we discuss the situation in ten and five dimensions. In both these cases we review the construction of supersymmetric domain wall actions situated at the boundary. These domain walls act as sources inducing a

  12. Supersymmetry and Mathematics

    International Nuclear Information System (INIS)

    Gieres, F.

    1994-05-01

    We present an introduction to the concepts of supersymmetry by discussing three illustrative cases: (i)supersymmetric quantum mechanics, (ii)Lie superalgebras, and (iii)Quillen's super-connections. The common aspects of these notions are pointed out and applications are indicated. Particularly, the prove of Gauss and Bonnet theorem given by Patodi and the prove of Morse inequalities given by Witten are sketched. (author). 85 refs., 2 figs

  13. Applications of supersymmetry techniques

    International Nuclear Information System (INIS)

    Drigo Filho, E.

    1987-01-01

    Working in arbitrary dimension we generalize the harmonic oscillator and the Coulomb potentials and we study these systems using supersymmetric quantum mechanics. Then, in field theory we contruct BRST using a superfield treatment. We also study the relativistic particle without and with spin showing the supersymmetry of these systems. (author) [pt

  14. Supersymmetry: Theory, Experiment and Cosmology

    International Nuclear Information System (INIS)

    Jones, Tim

    2008-01-01

    This volume presents a comprehensive introduction to supersymmetry, concentrating mainly on the Minimal Supersymmetric Standard Model (MSSM) and its possible embedding in a grand unified theory, but also including material on supergravity, non-perturbative aspects of supersymmetry, string theory and cosmology. There is an excellent self-contained appendix on the standard model which could be read first; other appendices provide introductions to spinor representations of the Lorentz group, superfields, and cosmology, and there is a short appendix listing the MSSM renormalisation group beta-functions. The appendices in fact occupy over a quarter of the volume. Substantial knowledge of quantum field theory is required of the reader; and also a working knowledge of group theory as employed in the construction of particle physics models: while there is some useful material on this in the section on grand unification, an appendix on it might perhaps have been a useful addition. Supersymmetry is introduced via the particle physicist's concern with the hierarchy problem and developed in the component formalism beginning with the Wess-Zumino model and proceeding to supersymmetric gauge theories. The treatment is detailed and authoritative; the author has 25 years of high-level research experience in the area and it shows. The level of presentation is high, and difficult concepts are explained clearly. The examples and associated hints are excellent. One topic I would have liked to see more on is the renormalisation of supersymmetric theories; presentation of the explicit calculation of the anomalous dimension of a chiral superfield (gamma) at one loop for at least the Wess-Zumino model might perhaps have been pedagogically useful. Associated, perhaps, with this omission is an inconsistency in the definition of gamma; the sign of gamma in the treatment in section 8.3.2 clearly differs from its sign in the appendix section E.3. In the text the formalism of supersymmetry is

  15. Supersymmetry and attractors

    International Nuclear Information System (INIS)

    Ferrara, S.; Kallosh, R.

    1996-01-01

    We find a general principle which allows one to compute the area of the horizon of N=2 extremal black holes as an extremum of the central charge. One considers the ADM mass equal to the central charge as a function of electric and magnetic charges and moduli and extremizes this function in the moduli space (a minimum corresponds to a fixed point of attraction). The extremal value of the square of the central charge provides the area of the horizon, which depends only on electric and magnetic charges. The doubling of unbroken supersymmetry at the fixed point of attraction for N=2 black holes near the horizon is derived via conformal flatness of the Bertotti-Robinson-type geometry. These results provide an explicit model-independent expression for the macroscopic Bekenstein-Hawking entropy of N=2 black holes which is manifestly duality invariant. The presence of hypermultiplets in the solution does not affect the area formula. Various examples of the general formula are displayed. We outline the attractor mechanism in N=4,8 supersymmetries and the relation to the N=2 case. The entropy-area formula in five dimensions, recently discussed in the literature, is also seen to be obtained by extremizing the 5d central charge. copyright 1996 The American Physical Society

  16. Holographic renormalization and supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Genolini, Pietro Benetti [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom); Cassani, Davide [LPTHE, Sorbonne Universités UPMC Paris 6 and CNRS, UMR 7589,F-75005, Paris (France); Martelli, Dario [Department of Mathematics, King’s College London,The Strand, London, WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford,Woodstock Road, Oxford OX2 6GG (United Kingdom)

    2017-02-27

    Holographic renormalization is a systematic procedure for regulating divergences in observables in asymptotically locally AdS spacetimes. For dual boundary field theories which are supersymmetric it is natural to ask whether this defines a supersymmetric renormalization scheme. Recent results in localization have brought this question into sharp focus: rigid supersymmetry on a curved boundary requires specific geometric structures, and general arguments imply that BPS observables, such as the partition function, are invariant under certain deformations of these structures. One can then ask if the dual holographic observables are similarly invariant. We study this question in minimal N=2 gauged supergravity in four and five dimensions. In four dimensions we show that holographic renormalization precisely reproduces the expected field theory results. In five dimensions we find that no choice of standard holographic counterterms is compatible with supersymmetry, which leads us to introduce novel finite boundary terms. For a class of solutions satisfying certain topological assumptions we provide some independent tests of these new boundary terms, in particular showing that they reproduce the expected VEVs of conserved charges.

  17. Phenomenological consequences of supersymmetry

    International Nuclear Information System (INIS)

    Hinchliffe, I.; Littenberg, L.

    1982-01-01

    This report deals with the phenomenological consequences of supersymmetric theories, and with the implications of such theories for future high energy machines. It is concerned only with high energy predictions of supersymmetry; low energy consequences (for example in the K/sub o/anti K/sub o/ system) are discussed in the context of future experiments by another group, and will be mentioned briefly only in the context of constraining existing models. However a brief section is included on the implication for proton decay, although detailed experimental questions are not discussed. The report is organized as follows. Section I consists of a brief review of supersymmetry and the salient features of existing supersymmetric models; this section can be ignored by those familiar with such models since it contains nothing new. Section 2 deals with the consequences for nucleon decay of SUSY. The remaining sections then discuss the physics possibilities of various machines; e anti e in Section 3, ep in Section 4, pp (or anti pp) colliders in Section 5 and fixed target hadron machines in Section 6

  18. Entropic information for travelling solitons in Lorentz and CPT breaking systems

    International Nuclear Information System (INIS)

    Correa, R.A.C.; Rocha, Roldão da; Souza Dutra, A. de

    2015-01-01

    In this work we group four research topics apparently disconnected, namely solitons, Lorentz symmetry breaking, supersymmetry, and entropy. Following a recent work (Gleiser and Stamatopoulos, 2012), we show that it is possible to construct in the context of travelling wave solutions a configurational entropy measure in functional space, from the field configurations. Thus, we investigate the existence and properties of travelling solitons in Lorentz and CPT breaking scenarios for a class of models with two interacting scalar fields. Here, we obtain a complete set of exact solutions for the model studied which display both double and single-kink configurations. In fact, such models are very important in applications that include Bloch branes, Skyrmions, Yang–Mills, Q-balls, oscillons and various superstring-motivated theories. We find that the so-called Configurational Entropy (CE) for travelling solitons shows that the best value of parameter responsible to break the Lorentz symmetry is one where the energy density is distributed equally around the origin. In this way, the information-theoretical measure of travelling solitons in Lorentz symmetry violation scenarios opens a new window to probe situations where the parameters responsible for breaking the symmetries are arbitrary. In this case, the CE selects the best value of the parameter in the model

  19. Wess-Zumino model as linear σ-model of spontaneously broken conformal and OSp (1,4)-supersymmetries

    International Nuclear Information System (INIS)

    Ivanov, E.A.

    1979-01-01

    The massless Wess-Zumino model is shown to exhibit the spontaneous breaking of global conformal and orthosymplectic supersymmetries on account of the Fubini-type classical solutions to the equations of motion. The group structure of spontaneously broken phase is studied and its particle spectrum is analyzed. The little group of the ground state is found to be the graded subgroup OSp(1,4) of the conformal supergroup. The symmetry with respect to another OSp(1,4) subgroup (OSp(1,4))Ois broken to (2,3)-symmetry with emergence of massive Goldstone fermion. The superfield Weyl transformation is defined and with its help the model action is rewritten in terms of superspace OSp(1,4)/O(1,3), spinorial extension of anti de Sitter space. In such a representation the spontaneously broken phase admits the standard σ-model interpretation. We also construct the OSp(1,4)-analog of the massive Wess-Zumino model and examine its vacuum structure. An effect of the spontaneous breaking of P- and CP-parities with the strength related to anti de Sitter radius is found

  20. Brane-Higgs-boson phenomenology in five-dimensional warped supersymmetry

    International Nuclear Information System (INIS)

    Bouchart, Charles; Moreau, Gregory; Knochel, Alexander

    2011-01-01

    Constructing supersymmetric extensions of higher-dimensional models can have several motivations; it is, for instance, necessary in the context of string theories. Studying the supersymmetric version of the well-motivated model proposed by Randall and Sundrum, with the Higgs boson localized on the so-called TeV-brane, is not trivial since singularities appear in the Higgs couplings. Those are regularized by the contribution from the exchange of infinite towers of Kaluza-Klein (KK) scalar modes with Dirichlet-Dirichlet boundary conditions. Here we first derive the regularized four-dimensional (4D) effective Higgs couplings and induced sfermion mass matrices. A general method is provided for this regularization, based on the completeness relation. The sfermion masses must be obtained either from integrating out the mentioned KK towers or by treating their mixing effects, depending on the cases. We then use the obtained Higgs couplings and sfermion masses for some phenomenological applications. On one side, we show at the one-loop level how all quadratic divergences in the Higgs mass cancel out for any cutoff, due to 5D supersymmetry (SUSY) and to 5D anomaly cancellation; the analytical way followed here also allows a justification of the infinite KK summation required for the so-called KK regularization in 5D SUSY, which has motivated a rich literature. On the other side, we show that a certain pattern of SUSY breaking in the bulk would allow one to distinguish experimentally the minimal SUSY model a la Randall and Sundrum with bulk matter from the minimal 4D SUSY model, in the scenario where only superpartners were produced at the Large Hadron Collider. In this SUSY-breaking context, two of the discriminating tests developed make use of some different features arising in the squark or slepton mass spectrum. The other distinctive supersymmetric Randall-Sundrum feature is the possibly larger (even dominant) Higgs boson decay branching ratios into sleptons, compared to

  1. Search for supersymmetry in events with at least one photon, one lepton, and large missing transverse momentum in proton--proton collision at a center-of-mass energy of 7 TeV with the ATLAS detector

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    A search for supersymmetry in events with at least one photon, one electron or muon, and large missing transverse momentum has been performed using up to \\integLumie of proton--proton collision data at sqrt{s} = 7 TeV recorded in 2011 with the ATLAS detector. No excess of events was observed above the Standard Model prediction and model-independent exclusion limits for new physics are set. In the context of a generalized model of gauge-mediated supersymmetry breaking with a wino-like next-to-lightest supersymmetric partner, gluino masses below 619 GeV are excluded at 95% CL for any wino mass, and wino masses below 221 GeV are excluded for any gluino mass.

  2. Mass Formulae for Broken Supersymmetry in Curved Space-Time

    CERN Document Server

    Ferrara, Sergio

    2016-01-01

    We derive the mass formulae for ${\\cal N}=1$, $D=4$ matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to de Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing.

  3. Search for gravitinos in R-parity violating supersymmetry at HERA

    Energy Technology Data Exchange (ETDEWEB)

    Horn, C.

    2006-07-15

    In this thesis a search for gravitinos in R{sub P}-violating supersymmetry is presented using data recorded with the ZEUS detector in the years 1996 to 2005, corresponding to an integrated luminosity of 300 pb{sup -1}. Collisions are recorded from e{sup -}p and e{sup +}p scattering at center-of-mass energies of 300 GeV and 318 GeV, using unpolarised as well as polarised lepton beams. Gravitinos are naturally expected in Gauge Mediated Supersymmetry Breaking (GMSB) models where the gravitino is the lightest supersymmetric particle. At HERA gravitinos may result from the GMSB decay of neutralinos ({chi}{sup 0}{yields}{gamma}G) produced in t-channel slepton exchange processes (eq{yields}q'{chi}) via an R{sub P}-violating (R{sub P}) Yukawa coupling {lambda}'{sub ijk}. It was assumed that only one of the R{sub P} couplings {lambda}'{sub 111}, {lambda}'{sub 121}, {lambda}'{sub 112} or {lambda}'{sub 113} is different from zero at a time. To extend the investigated GMSB parameter space, also the two dominant R{sub P}-violating decay channels ({chi}{yields}e{sup {+-}}qq and {chi}{yields}{nu}qq) were taken into account. For the signal-to-background optimisation a dynamic discriminant method was developed. The data was observed to be well described by the expected Standard Model processes and no evidence for the production of supersymmetric particles was found. Limits were calculated for the masses of the left-handed selectron and the lightest neutralino and the variation of these limits was investigated in the entire GMSB parameter space. For some parameter regions, selectron masses of up to 360 GeV and neutralino masses of up to 190 GeV can be excluded at 95% CL. Similar mass limits were found to hold for large regions of GMSB parameter space. (orig.)

  4. Search for gravitinos in R-parity violating supersymmetry at HERA

    International Nuclear Information System (INIS)

    Horn, C.

    2006-07-01

    In this thesis a search for gravitinos in R P -violating supersymmetry is presented using data recorded with the ZEUS detector in the years 1996 to 2005, corresponding to an integrated luminosity of 300 pb -1 . Collisions are recorded from e - p and e + p scattering at center-of-mass energies of 300 GeV and 318 GeV, using unpolarised as well as polarised lepton beams. Gravitinos are naturally expected in Gauge Mediated Supersymmetry Breaking (GMSB) models where the gravitino is the lightest supersymmetric particle. At HERA gravitinos may result from the GMSB decay of neutralinos (χ 0 →γG) produced in t-channel slepton exchange processes (eq→q'χ) via an R P -violating (R P ) Yukawa coupling λ' ijk . It was assumed that only one of the R P couplings λ' 111 , λ' 121 , λ' 112 or λ' 113 is different from zero at a time. To extend the investigated GMSB parameter space, also the two dominant R P -violating decay channels (χ→e ± qq and χ→νqq) were taken into account. For the signal-to-background optimisation a dynamic discriminant method was developed. The data was observed to be well described by the expected Standard Model processes and no evidence for the production of supersymmetric particles was found. Limits were calculated for the masses of the left-handed selectron and the lightest neutralino and the variation of these limits was investigated in the entire GMSB parameter space. For some parameter regions, selectron masses of up to 360 GeV and neutralino masses of up to 190 GeV can be excluded at 95% CL. Similar mass limits were found to hold for large regions of GMSB parameter space. (orig.)

  5. Search for photonic signatures of gauge-mediated supersymmetry in 13 TeV p p collisions with the ATLAS detector

    Science.gov (United States)

    Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adelman, J.; Adersberger, M.; Adye, T.; Affolder, A. A.; Afik, Y.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akatsuka, S.; Åkesson, T. P. A.; Akilli, E.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albicocco, P.; Alconada Verzini, M. J.; Alderweireldt, S.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M. I.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amaral Coutinho, Y.; Ambroz, L.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Anthony, M. T.; Antonelli, M.; Antonov, A.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Araujo Ferraz, V.; Araujo Pereira, R.; Arce, A. T. H.; Ardell, R. E.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Avramidou, R.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Baines, J. T.; Bajic, M.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Banas, E.; Bandyopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M.-S.; Barkeloo, J. T.; Barklow, T.; Barlow, N.; Barnea, R.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Beck, H. C.; Becker, K.; Becker, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beermann, T. A.; Begalli, M.; Begel, M.; Behera, A.; Behr, J. K.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Bergsten, L. J.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernardi, G.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertram, I. A.; Bertsche, C.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Bethani, A.; Bethke, S.; Betti, A.; Bevan, A. J.; Beyer, J.; Bianchi, R. M.; Biebel, O.; Biedermann, D.; Bielski, R.; Bierwagen, K.; Biesuz, N. V.; Biglietti, M.; Billoud, T. R. V.; Bindi, M.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bittrich, C.; Bjergaard, D. M.; Black, J. E.; Black, K. M.; Blair, R. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blumenschein, U.; Blunier, Dr.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boerner, D.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bolz, A. E.; Bomben, M.; Bona, M.; Bonilla, J. S.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozson, A. J.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Braren, F.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Briglin, D. L.; Bristow, T. M.; Britton, D.; Britzger, D.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruni, A.; Bruni, G.; Bruni, L. S.; Bruno, S.; Brunt, Bh; Bruschi, M.; Bruscino, N.; Bryant, P.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Budagov, I. A.; Buehrer, F.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burch, T. J.; Burdin, S.; Burgard, C. D.; Burger, A. M.; Burghgrave, B.; Burka, K.; Burke, S.; Burmeister, I.; Burr, J. T. P.; Büscher, D.; Büscher, V.; Buschmann, E.; Bussey, P.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabras, G.; Cabrera Urbán, S.; Caforio, D.; Cai, H.; Cairo, V. M. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Callea, G.; Caloba, L. P.; Calvente Lopez, S.; Calvet, D.; Calvet, S.; Calvet, T. P.; Calvetti, M.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Camincher, C.; Campana, S.; Campanelli, M.; Camplani, A.; Campoverde, A.; Canale, V.; Cano Bret, M.; Cantero, J.; Cao, T.; Cao, Y.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Carbone, R. M.; Cardarelli, R.; Cardillo, F.; Carli, I.; Carli, T.; Carlino, G.; Carlson, B. T.; Carminati, L.; Carney, R. M. D.; Caron, S.; Carquin, E.; Carrá, S.; Carrillo-Montoya, G. D.; Casadei, D.; Casado, M. P.; Casha, A. F.; Casolino, M.; Casper, D. W.; Castelijn, R.; Castillo Gimenez, V.; Castro, N. F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavallaro, E.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Celebi, E.; Ceradini, F.; Cerda Alberich, L.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chan, S. K.; Chan, W. S.; Chan, Y. L.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Che, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, C.; Chen, H.; Chen, J.; Chen, J.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, H. J.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Cheu, E.; Cheung, K.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chitan, A.; Chiu, I.; Chiu, Y. H.; Chizhov, M. V.; Choi, K.; Chomont, A. R.; Chouridou, S.; Chow, Y. S.; Christodoulou, V.; Chu, M. C.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Cinca, D.; Cindro, V.; Cioarǎ, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Citterio, M.; Clark, A.; Clark, M. R.; Clark, P. J.; Clarke, R. N.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Colasurdo, L.; Cole, B.; Colijn, A. P.; Collot, J.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Constantinescu, S.; Conti, G.; Conventi, F.; Cooper-Sarkar, A. M.; Cormier, F.; Cormier, K. J. R.; Corradi, M.; Corrigan, E. E.; Corriveau, F.; Cortes-Gonzalez, A.; Costa, M. J.; Costanzo, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Crawley, S. J.; Creager, R. A.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cueto, A.; Cuhadar Donszelmann, T.; Cukierman, A. R.; Cummings, J.; Curatolo, M.; Cúth, J.; Czekierda, S.; Czodrowski, P.; D'Amen, G.; D'Auria, S.; D'Eramo, L.; D'Onofrio, M.; da Cunha Sargedas de Sousa, M. J.; da Via, C.; Dabrowski, W.; Dado, T.; Dahbi, S.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Daneri, M. F.; Dang, N. P.; Dann, N. S.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dartsi, O.; Dattagupta, A.; Daubney, T.; Davey, W.; David, C.; Davidek, T.; Davis, D. R.; Davison, P.; Dawe, E.; Dawson, I.; de, K.; de Asmundis, R.; de Benedetti, A.; de Castro, S.; de Cecco, S.; de Groot, N.; de Jong, P.; de la Torre, H.; de Lorenzi, F.; de Maria, A.; de Pedis, D.; de Salvo, A.; de Sanctis, U.; de Santo, A.; de Vasconcelos Corga, K.; de Vivie de Regie, J. B.; Debenedetti, C.; Dedovich, D. V.; Dehghanian, N.; Deigaard, I.; Del Gaudio, M.; Del Peso, J.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; Della Volpe, D.; Delmastro, M.; Delporte, C.; Delsart, P. A.; Demarco, D. A.; Demers, S.; Demichev, M.; Denisov, S. P.; Denysiuk, D.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Dette, K.; Devesa, M. R.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; di Bello, F. A.; di Ciaccio, A.; di Ciaccio, L.; di Clemente, W. K.; di Donato, C.; di Girolamo, A.; di Micco, B.; di Nardo, R.; di Petrillo, K. F.; di Simone, A.; di Sipio, R.; di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Dias Do Vale, T.; Diaz, M. A.; Dickinson, J.; Diehl, E. B.; Dietrich, J.; Díez Cornell, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; Do Vale, M. A. B.; Dobre, M.; Dodsworth, D.; Doglioni, C.; Dolejsi, J.; Dolezal, Z.; Donadelli, M.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dreyer, E.; Dris, M.; Du, Y.; Duarte-Campderros, J.; Dubinin, F.; Dubreuil, A.; Duchovni, E.; Duckeck, G.; Ducourthial, A.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudder, A. Chr.; Duffield, E. M.; Duflot, L.; Dührssen, M.; Dulsen, C.; Dumancic, M.; Dumitriu, A. E.; Duncan, A. K.; Dunford, M.; Duperrin, A.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dutta, B.; Duvnjak, D.; Dyndal, M.; Dziedzic, B. S.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; El Kosseifi, R.; Ellajosyula, V.; Ellert, M.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Ennis, J. S.; Epland, M. B.; Erdmann, J.; Ereditato, A.; Errede, S.; Escalier, M.; Escobar, C.; Esposito, B.; Estrada Pastor, O.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Ezzi, M.; Fabbri, F.; Fabbri, L.; Fabiani, V.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farina, E. M.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fawcett, W. J.; Fayard, L.; Fedin, O. L.; Fedorko, W.; Feickert, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, M.; Fenton, M. J.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Fiedler, F.; Filipčič, A.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Fischer, C.; Fischer, J.; Fisher, W. C.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fletcher, R. R. M.; Flick, T.; Flierl, B. M.; Flores, L. M.; Flores Castillo, L. R.; Fomin, N.; Forcolin, G. T.; Formica, A.; Förster, F. A.; Forti, A.; Foster, A. G.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; Fressard-Batraneanu, S. M.; Freund, B.; Freund, W. S.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fusayasu, T.; Fuster, J.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gadow, P.; Gagliardi, G.; Gagnon, L. G.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gamboa Goni, R.; Gan, K. K.; Ganguly, S.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; García, C.; García Navarro, J. E.; García Pascual, J. A.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gasnikova, K.; Gaudiello, A.; Gaudio, G.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Gee, C. N. P.; Geisen, J.; Geisen, M.; Geisler, M. P.; Gellerstedt, K.; Gemme, C.; Genest, M. H.; Geng, C.; Gentile, S.; Gentsos, C.; George, S.; Gerbaudo, D.; Geßner, G.; Ghasemi, S.; Ghneimat, M.; Giacobbe, B.; Giagu, S.; Giangiacomi, N.; Giannetti, P.; Gibson, S. M.; Gignac, M.; Gilchriese, M.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giordani, M. P.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugliarelli, G.; Giugni, D.; Giuli, F.; Giulini, M.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gkountoumis, P.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Gama, R.; Gonella, G.; Gonella, L.; Gongadze, A.; Gonnella, F.; Gonski, J. L.; González de La Hoz, S.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorini, B.; Gorini, E.; Gorišek, A.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gottardo, C. A.; Goudet, C. R.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Goy, C.; Gozani, E.; Grabowska-Bold, I.; Gradin, P. O. J.; Graham, E. C.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gravila, P. M.; Gray, C.; Gray, H. M.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Grevtsov, K.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Groh, S.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Grummer, A.; Guan, L.; Guan, W.; Guenther, J.; Guerguichon, A.; Guescini, F.; Guest, D.; Gueta, O.; Gugel, R.; Gui, B.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, W.; Guo, Y.; Gupta, R.; Gurbuz, S.; Gustavino, G.; Gutelman, B. J.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Guzik, M. P.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Hadef, A.; Hageböck, S.; Hagihara, M.; Hakobyan, H.; Haleem, M.; Haley, J.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Han, K.; Han, L.; Han, S.; Hanagaki, K.; Hance, M.; Handl, D. M.; Haney, B.; Hankache, R.; Hanke, P.; Hansen, E.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Harkusha, S.; Harrison, P. F.; Hartmann, N. M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havener, L. B.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heer, S.; Heidegger, K. K.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, J. J.; Heinrich, L.; Heinz, C.; Hejbal, J.; Helary, L.; Held, A.; Hellesund, S.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Heng, Y.; Henkelmann, S.; Henriques Correia, A. M.; Herbert, G. H.; Herde, H.; Herget, V.; Hernández Jiménez, Y.; Herr, H.; Herten, G.; Hertenberger, R.; Hervas, L.; Herwig, T. C.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Higashino, S.; Higón-Rodriguez, E.; Hildebrand, K.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hils, M.; Hinchliffe, I.; Hirose, M.; Hirschbuehl, D.; Hiti, B.; Hladik, O.; Hlaluku, D. R.; Hoad, X.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohn, D.; Hohov, D.; Holmes, T. R.; Holzbock, M.; Homann, M.; Honda, S.; Honda, T.; Hong, T. M.; Hooberman, B. H.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Horyn, L. A.; Hostachy, J.-Y.; Hostiuc, A.; Hou, S.; Hoummada, A.; Howarth, J.; Hoya, J.; Hrabovsky, M.; Hrdinka, J.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, P. J.; Hsu, S.-C.; Hu, Q.; Hu, S.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Huhtinen, M.; Hunter, R. F. H.; Huo, P.; Hupe, A. M.; Huseynov, N.; Huston, J.; Huth, J.; Hyneman, R.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iguchi, R.; Iizawa, T.; Ikegami, Y.; Ikeno, M.; Iliadis, D.; Ilic, N.; Iltzsche, F.; Introzzi, G.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Isacson, M. F.; Ishijima, N.; Ishino, M.; Ishitsuka, M.; Issever, C.; Istin, S.; Ito, F.; Iturbe Ponce, J. M.; Iuppa, R.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jacka, P.; Jackson, P.; Jacobs, R. M.; Jain, V.; Jakel, G.; Jakobi, K. B.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jamin, D. O.; Jana, D. K.; Jansky, R.; Janssen, J.; Janus, M.; Janus, P. A.; Jarlskog, G.; Javadov, N.; Javå¯Rek, T.; Javurkova, M.; Jeanneau, F.; Jeanty, L.; Jejelava, J.; Jelinskas, A.; Jenni, P.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, H.; Jiang, Y.; Jiang, Z.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Jivan, H.; Johansson, P.; Johns, K. A.; Johnson, C. A.; Johnson, W. J.; Jon-And, K.; Jones, R. W. L.; Jones, S. D.; Jones, S.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Jovicevic, J.; Ju, X.; Junggeburth, J. J.; Juste Rozas, A.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kaji, T.; Kajomovitz, E.; Kalderon, C. W.; Kaluza, A.; Kama, S.; Kamenshchikov, A.; Kanjir, L.; Kano, Y.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karpov, S. N.; Karpova, Z. M.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawade, K.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kay, E. F.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kellermann, E.; Kempster, J. J.; Kendrick, J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khader, M.; Khalil-Zada, F.; Khanov, A.; Kharlamov, A. G.; Kharlamova, T.; Khodinov, A.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kiehn, M.; Kilby, C. R.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; Kirchmeier, D.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kitali, V.; Kivernyk, O.; Kladiva, E.; Klapdor-Kleingrothaus, T.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klingl, T.; Klioutchnikova, T.; Klitzner, F. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Köhler, N. M.; Koi, T.; Kolb, M.; Koletsou, I.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Konya, B.; Kopeliansky, R.; Koperny, S.; Korcyl, K.; Kordas, K.; Korn, A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotwal, A.; Koulouris, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kourlitis, E.; Kouskoura, V.; Kowalewska, A. B.; Kowalewski, R.; Kowalski, T. Z.; Kozakai, C.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Krauss, D.; Kremer, J. A.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, M. C.; Kubota, T.; Kuday, S.; Kuechler, J. T.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kulinich, Y. P.; Kuna, M.; Kunigo, T.; Kupco, A.; Kupfer, T.; Kuprash, O.; Kurashige, H.; Kurchaninov, L. L.; Kurochkin, Y. A.; Kurth, M. G.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; La Ruffa, F.; Lacasta, C.; Lacava, F.; Lacey, J.; Lack, D. P. J.; Lacker, H.; Lacour, D.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lai, S.; Lammers, S.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lanfermann, M. C.; Lang, V. S.; Lange, J. C.; Langenberg, R. J.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Lapertosa, A.; Laplace, S.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Lau, T. S.; Laudrain, A.; Law, A. T.; Laycock, P.; Lazzaroni, M.; Le, B.; Le Dortz, O.; Le Guirriec, E.; Le Quilleuc, E. P.; Leblanc, M.; Lecompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, G. R.; Lee, S. C.; Lee, L.; Lefebvre, B.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehmann Miotto, G.; Leight, W. A.; Leisos, A.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Lerner, G.; Leroy, C.; Les, R.; Lesage, A. A. J.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, D.; Li, B.; Li, C.-Q.; Li, H.; Li, L.; Li, Q.; Li, Q.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liberti, B.; Liblong, A.; Lie, K.; Limosani, A.; Lin, C. Y.; Lin, K.; Lin, S. C.; Lin, T. H.; Linck, R. A.; Lindquist, B. E.; Lionti, A. E.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lister, A.; Litke, A. M.; Little, J. D.; Liu, B.; Liu, H.; Liu, H.; Liu, J. K. K.; Liu, J. B.; Liu, K.; Liu, M.; Liu, P.; Liu, Y. L.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo, C. Y.; Lo Sterzo, F.; Lobodzinska, E. M.; Loch, P.; Loebinger, F. K.; Loesle, A.; Loew, K. M.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Longo, L.; Looper, K. A.; Lopez, J. A.; Lopez Paz, I.; Lopez Solis, A.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, H.; Lu, N.; Lu, Y. J.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luedtke, C.; Luehring, F.; Luise, I.; Lukas, W.; Luminari, L.; Lund-Jensen, B.; Lutz, M. S.; Luzi, P. M.; Lynn, D.; Lysak, R.; Lytken, E.; Lyu, F.; Lyubushkin, V.; Ma, H.; Ma, L. L.; Ma, Y.; Maccarrone, G.; Macchiolo, A.; MacDonald, C. M.; Maček, B.; Machado Miguens, J.; Madaffari, D.; Madar, R.; Mader, W. F.; Madsen, A.; Madysa, N.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A. S.; Magerl, V.; Maidantchik, C.; Maier, T.; Maio, A.; Majersky, O.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandić, I.; Maneira, J.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mankinen, K. H.; Mann, A.; Manousos, A.; Mansoulie, B.; Mansour, J. D.; Mantifel, R.; Mantoani, M.; Manzoni, S.; Marceca, G.; March, L.; Marchese, L.; Marchiori, G.; Marcisovsky, M.; Marin Tobon, C. A.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marshall, Z.; Martensson, M. U. F.; Marti-Garcia, S.; Martin, C. B.; Martin, T. A.; Martin, V. J.; Martin Dit Latour, B.; Martinez, M.; Martinez Outschoorn, V. I.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Mason, L. H.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Maznas, I.; Mazza, S. M.; Mc Fadden, N. C.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, T. G.; McClymont, L. I.; McDonald, E. F.; McFayden, J. A.; McHedlidze, G.; McKay, M. A.; McMahon, S. J.; McNamara, P. C.; McNicol, C. J.; McPherson, R. A.; Meadows, Z. A.; Meehan, S.; Megy, T. J.; Mehlhase, S.; Mehta, A.; Meideck, T.; Meier, K.; Meirose, B.; Melini, D.; Mellado Garcia, B. R.; Mellenthin, J. D.; Melo, M.; Meloni, F.; Melzer, A.; Menary, S. B.; Meng, L.; Meng, X. T.; Mengarelli, A.; Menke, S.; Meoni, E.; Mergelmeyer, S.; Merlassino, C.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Miano, F.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Millar, D. A.; Miller, D. W.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Minegishi, Y.; Ming, Y.; Mir, L. M.; Mirto, A.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mizukami, A.; Mjörnmark, J. U.; Mkrtchyan, T.; Mlynarikova, M.; Moa, T.; Mochizuki, K.; Mogg, P.; Mohapatra, S.; Molander, S.; Moles-Valls, R.; Mondragon, M. C.; Mönig, K.; Monk, J.; Monnier, E.; Montalbano, A.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morgenstern, S.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moschovakos, P.; Mosidze, M.; Moss, H. J.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Moyse, E. J. W.; Muanza, S.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Munoz Sanchez, F. J.; Murin, P.; Murray, W. J.; Murrone, A.; Muškinja, M.; Mwewa, C.; Myagkov, A. G.; Myers, J.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nagai, K.; Nagai, R.; Nagano, K.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naryshkin, I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, M. E.; Nemecek, S.; Nemethy, P.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Newman, P. R.; Ng, T. Y.; Ng, Y. S.; Nguyen, H. D. N.; Nguyen Manh, T.; Nickerson, R. B.; Nicolaidou, R.; Nielsen, J.; Nikiforou, N.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishu, N.; Nisius, R.; Nitsche, I.; Nitta, T.; Nobe, T.; Noguchi, Y.; Nomachi, M.; Nomidis, I.; Nomura, M. A.; Nooney, T.; Nordberg, M.; Norjoharuddeen, N.; Novak, T.; Novgorodova, O.; Novotny, R.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nurse, E.; Nuti, F.; O'Connor, K.; O'Neil, D. C.; O'Rourke, A. A.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Oleiro Seabra, L. F.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver, J. L.; Olsson, M. J. R.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oppen, H.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orgill, E. C.; Orlando, N.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero Y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Pacheco Rodriguez, L.; Padilla Aranda, C.; Pagan Griso, S.; Paganini, M.; Paige, F.; Palacino, G.; Palazzo, S.; Palestini, S.; Palka, M.; Pallin, D.; Panagiotopoulou, E. St.; Panagoulias, I.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parida, B.; Parker, A. J.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pascuzzi, V. R.; Pasner, J. M.; Pasqualucci, E.; Passaggio, S.; Pastore, Fr.; Pataraia, S.; Pater, J. R.; Pauly, T.; Pearson, B.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Penc, O.; Peng, C.; Peng, H.; Penwell, J.; Peralva, B. S.; Perego, M. M.; Pereira Peixoto, A. P.; Perepelitsa, D. V.; Peri, F.; Perini, L.; Pernegger, H.; Perrella, S.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrov, M.; Petrucci, F.; Pettersson, N. E.; Peyaud, A.; Pezoa, R.; Pham, T.; Phillips, F. H.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Pickering, M. A.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pinamonti, M.; Pinfold, J. L.; Pitt, M.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Pluth, D.; Podberezko, P.; Poettgen, R.; Poggi, R.; Poggioli, L.; Pogrebnyak, I.; Pohl, D.; Pokharel, I.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Ponomarenko, D.; Pontecorvo, L.; Popeneciu, G. A.; Portillo Quintero, D. M.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potti, H.; Poulsen, T.; Poveda, J.; Pozo Astigarraga, M. E.; Pralavorio, P.; Prell, S.; Price, D.; Primavera, M.; Prince, S.; Proklova, N.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Puri, A.; Puzo, P.; Qian, J.; Qin, Y.; Quadt, A.; Queitsch-Maitland, M.; Qureshi, A.; Radeka, V.; Radhakrishnan, S. K.; Rados, P.; Ragusa, F.; Rahal, G.; Raine, J. A.; Rajagopalan, S.; Rashid, T.; Raspopov, S.; Ratti, M. G.; Rauch, D. M.; Rauscher, F.; Rave, S.; Ravina, B.; Ravinovich, I.; Rawling, J. H.; Raymond, M.; Read, A. L.; Readioff, N. P.; Reale, M.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reed, R. G.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reiss, A.; Rembser, C.; Ren, H.; Rescigno, M.; Resconi, S.; Resseguie, E. D.; Rettie, S.; Reynolds, E.; Rezanova, O. L.; Reznicek, P.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rimoldi, M.; Rinaldi, L.; Ripellino, G.; Ristić, B.; Ritsch, E.; Riu, I.; Rivera Vergara, J. C.; Rizatdinova, F.; Rizvi, E.; Rizzi, C.; Roberts, R. T.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Rocco, E.; Roda, C.; Rodina, Y.; Rodriguez Bosca, S.; Rodriguez Perez, A.; Rodriguez Rodriguez, D.; Rodríguez Vera, A. M.; Roe, S.; Rogan, C. S.; Røhne, O.; Röhrig, R.; Roloff, J.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Rosati, S.; Rosbach, K.; Rose, P.; Rosien, N.-A.; Rossi, E.; Rossi, L. P.; Rossini, L.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Rothberg, J.; Rousseau, D.; Roy, D.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Rüttinger, E. M.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryu, S.; Ryzhov, A.; Rzehorz, G. F.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saha, P.; Sahinsoy, M.; Saimpert, M.; Saito, M.; Saito, T.; Sakamoto, H.; Salamani, D.; Salamanna, G.; Salazar Loyola, J. E.; Salek, D.; Sales de Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sampsonidou, D.; Sánchez, J.; Sanchez Pineda, A.; Sandaker, H.; Sander, C. O.; Sandhoff, M.; Sandoval, C.; Sankey, D. P. C.; Sannino, M.; Sano, Y.; Sansoni, A.; Santoni, C.; Santos, H.; Santoyo Castillo, I.; Sapronov, A.; Saraiva, J. G.; Sasaki, O.; Sato, K.; Sauvan, E.; Savard, P.; Savic, N.; Sawada, R.; Sawyer, C.; Sawyer, L.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schachtner, B. M.; Schaefer, D.; Schaefer, L.; Schaeffer, J.; Schaepe, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schegelsky, V. A.; Scheirich, D.; Schenck, F.; Schernau, M.; Schiavi, C.; Schier, S.; Schildgen, L. K.; Schillaci, Z. M.; Schillo, C.; Schioppa, E. J.; Schioppa, M.; Schleicher, K. E.; Schlenker, S.; Schmidt-Sommerfeld, K. R.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, S.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schopf, E.; Schott, M.; Schouwenberg, J. F. P.; Schovancova, J.; Schramm, S.; Schuh, N.; Schulte, A.; Schultz-Coulon, H.-C.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwartzman, A.; Schwarz, T. A.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Sciandra, A.; Sciolla, G.; Scornajenghi, M.; Scuri, F.; Scutti, F.; Scyboz, L. M.; Searcy, J.; Seema, P.; Seidel, S. C.; Seiden, A.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Semprini-Cesari, N.; Senkin, S.; Serfon, C.; Serin, L.; Serkin, L.; Sessa, M.; Severini, H.; Šfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shahinian, J. D.; Shaikh, N. W.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Sharma, A. S.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Shen, Y.; Sherafati, N.; Sherman, A. D.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shipsey, I. P. J.; Shirabe, S.; Shiyakova, M.; Shlomi, J.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shope, D. R.; Shrestha, S.; Shulga, E.; Sicho, P.; Sickles, A. M.; Sidebo, P. E.; Sideras Haddad, E.; Sidiropoulou, O.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silva, M.; Silverstein, S. B.; Simic, L.; Simion, S.; Simioni, E.; Simmons, B.; Simon, M.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Siral, I.; Sivoklokov, S. Yu.; Sjölin, J.; Skinner, M. B.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Slovak, R.; Smakhtin, V.; Smart, B. H.; Smiesko, J.; Smirnov, N.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, J. W.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snyder, I. M.; Snyder, S.; Sobie, R.; Socher, F.; Soffa, A. M.; Soffer, A.; Søgaard, A.; Soh, D. A.; Sokhrannyi, G.; Solans Sanchez, C. A.; Solar, M.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Son, H.; Song, W.; Sopczak, A.; Sopkova, F.; Sosa, D.; Sotiropoulou, C. L.; Sottocornola, S.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Sperlich, D.; Spettel, F.; Spieker, T. M.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; St. Denis, R. D.; Stabile, A.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanitzki, M. M.; Stapf, B. S.; Stapnes, S.; Starchenko, E. A.; Stark, G. H.; Stark, J.; Stark, S. H.; Staroba, P.; Starovoitov, P.; Stärz, S.; Staszewski, R.; Stegler, M.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, T. J.; Stewart, G. A.; Stockton, M. C.; Stoicea, G.; Stolte, P.; Stonjek, S.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Suchek, S.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultan, Dms; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Suruliz, K.; Suster, C. J. E.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Swift, S. P.; Sydorenko, A.; Sykora, I.; Sykora, T.; Ta, D.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Tahirovic, E.; Taiblum, N.; Takai, H.; Takashima, R.; Takasugi, E. H.; Takeda, K.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tanaka, J.; Tanaka, M.; Tanaka, R.; Tanioka, R.; Tannenwald, B. B.; Tapia Araya, S.; Tapprogge, S.; Tarek Abouelfadl Mohamed, A. T.; Tarem, S.; Tarna, G.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, A. C.; Taylor, A. J.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teixeira-Dias, P.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Thais, S. J.; Theveneaux-Pelzer, T.; Thiele, F.; Thomas, J. P.; Thompson, P. D.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Tian, Y.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tipton, P.; Tisserant, S.; Todome, K.; Todorova-Nova, S.; Todt, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tolley, E.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, B.; Tornambe, P.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Treado, C. J.; Trefzger, T.; Tresoldi, F.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Trofymov, A.; Troncon, C.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsang, K. W.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tu, Y.; Tudorache, A.; Tudorache, V.; Tulbure, T. T.; Tuna, A. N.; Turchikhin, S.; Turgeman, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Ucchielli, G.; Ueda, I.; Ughetto, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Uno, K.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usui, J.; Vacavant, L.; Vacek, V.; Vachon, B.; Vadla, K. O. H.; Vaidya, A.; Valderanis, C.; Valdes Santurio, E.; Valente, M.; Valentinetti, S.; Valero, A.; Valéry, L.; Vallier, A.; Valls Ferrer, J. A.; van den Wollenberg, W.; van der Graaf, H.; van Gemmeren, P.; van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vaniachine, A.; Vankov, P.; Vari, R.; Varnes, E. W.; Varni, C.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vasquez, J. G.; Vasquez, G. A.; Vazeille, F.; Vazquez Furelos, D.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Veneziano, S.; Ventura, A.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, A. T.; Vermeulen, J. C.; Vetterli, M. C.; Viaux Maira, N.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigani, L.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vishwakarma, A.; Vittori, C.; Vivarelli, I.; Vlachos, S.; Vogel, M.; Vokac, P.; Volpi, G.; von Buddenbrock, S. E.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wagner, W.; Wagner-Kuhr, J.; Wahlberg, H.; Wahrmund, S.; Wakamiya, K.; Walder, J.; Walker, R.; Walkowiak, W.; Wallangen, V.; Wang, A. M.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, Q.; Wang, R.-J.; Wang, R.; Wang, S. M.; Wang, T.; Wang, W.; Wang, W.; Wang, Z.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, A. F.; Webb, S.; Weber, M. S.; Weber, S. M.; Weber, S. A.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weirich, M.; Weiser, C.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M. D.; Werner, P.; Wessels, M.; Weston, T. D.; Whalen, K.; Whallon, N. L.; Wharton, A. M.; White, A. S.; White, A.; White, M. J.; White, R.; Whiteson, D.; Whitmore, B. W.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilk, F.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, J. A.; Wingerter-Seez, I.; Winkels, E.; Winklmeier, F.; Winston, O. J.; Winter, B. T.; Wittgen, M.; Wobisch, M.; Wolf, A.; Wolf, T. M. H.; Wolff, R.; Wolter, M. W.; Wolters, H.; Wong, V. W. S.; Woods, N. L.; Worm, S. D.; Wosiek, B. K.; Wozniak, K. W.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xi, Z.; Xia, L.; Xu, D.; Xu, H.; Xu, L.; Xu, T.; Xu, W.; Yabsley, B.; Yacoob, S.; Yajima, K.; Yallup, D. P.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamanaka, T.; Yamane, F.; Yamatani, M.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, S.; Yang, Y.; Yang, Y.; Yang, Z.; Yao, W.-M.; Yap, Y. C.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yigitbasi, E.; Yildirim, E.; Yorita, K.; Yoshihara, K.; Young, C.; Young, C. J. S.; Yu, J.; Yu, J.; Yuen, S. P. Y.; Yusuff, I.; Zabinski, B.; Zacharis, G.; Zaidan, R.; Zaitsev, A. M.; Zakharchuk, N.; Zalieckas, J.; Zambito, S.; Zanzi, D.; Zeitnitz, C.; Zemaityte, G.; Zeng, J. C.; Zeng, Q.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, D.; Zhang, F.; Zhang, G.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, L.; Zhang, M.; Zhang, P.; Zhang, R.; Zhang, R.; Zhang, X.; Zhang, Y.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, M.; Zhou, M.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zhulanov, V.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; Zorbas, T. G.; Zou, R.; Zur Nedden, M.; Zwalinski, L.; Atlas Collaboration

    2018-05-01

    A search is presented for photonic signatures, motivated by generalized models of gauge-mediated supersymmetry breaking. This search makes use of proton-proton collision data at √{s }=13 TeV corresponding to an integrated luminosity of 36.1 fb-1 recorded by the ATLAS detector at the LHC, and it explores models dominated by both strong and electroweak production of supersymmetric partner states. Experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon or additional jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction, and 95% confidence-level upper limits of between 0.083 and 0.32 fb are set on the visible cross section of contributions from physics beyond the Standard Model. These results are interpreted in terms of lower limits on the masses of gluinos, squarks, and gauginos in the context of generalized models of gauge-mediated supersymmetry, which reach as high as 2.3 TeV for strongly produced and 1.3 TeV for weakly produced supersymmetric partner pairs.

  6. SSNTD-supersymmetry theory unifying cosmic and nucleonic matters

    International Nuclear Information System (INIS)

    Swarup, R.

    2011-01-01

    rise to the differences between ordinary particles and their superpartners well coupled with SSNTD type Cosmic Ray Tracks. While reviewing supersymmetry with supergravity every quantum particle can be imagined as little spinning top, the spin taking on only the discrete values 0, 1/2, 1, 3/2, 2 and so on in certain units (say Planck Constant h divided by 2Π). Spin s=0 means top does not spin. Spin s=1/2 means a specific amount of spin and spin s=1 means twice of this amount and so on. The pion, a strongly interacting hadron, has spin s=0. The proton, neutron, quarks and leptons all have spin s=1/2 while photon and weak Gluon W and G have spin 1 and spin s=2 for Graviton. For the first time the mathematical imagination saw the possibility that all quantum particles, not just those of same spin, are components of a single master super field endowed with supersymmetry. The SSNTD analog of stellar and cosmic worlds really describe specially structured space-time drains of sizes 10 -9 -10 -24 cm and various multiples in the lower dimensions having ranges nano-nano(nn), nano-micro-pico/Fermi/femto/atto/zepto/yocto: (np), (nf) (nft), (na), (nz), (nY)... (npfazy) transporting Geo-Cosmic matters as resonant quantum tunnels. Such states are attained as transverse fluctuations in SSNTD type geometrical constructs obeying quantum tunneling type characteristic behaviours. The supersymmetry breakings emerges through spin fractionalization such as s=1/3,1/4,1/5,1/6,1/8..... whose matrices formulated accordingly. (author)

  7. Focus point in dark matter selected high-scale supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Sibo [Department of Physics, Chongqing University,Chongqing, 401331 P.R. (China)

    2015-03-19

    In this paper, we explore conditions for focus point in the high-scale supersymmetry with the weak-scale gaugino masses. In this context the tension between the naturalness and LHC 2013 data about supersymmetry as well as the cold dark matter candidate are addressed simultaneously. It is shown that the observed Higgs mass can be satisfied in a wide classes of new models, which are realized by employing the non-minimal gauge mediation.

  8. Lattice sigma models with exact supersymmetry

    International Nuclear Information System (INIS)

    Simon Catterall; Sofiane Ghadab

    2004-01-01

    We show how to construct lattice sigma models in one, two and four dimensions which exhibit an exact fermionic symmetry. These models are discretized and twisted versions of conventional supersymmetric sigma models with N=2 supersymmetry. The fermionic symmetry corresponds to a scalar BRST charge built from the original supercharges. The lattice theories possess local actions and exhibit no fermion doubling. In the two and four dimensional theories we show that these lattice theories are invariant under additional discrete symmetries. We argue that the presence of these exact symmetries ensures that no fine tuning is required to achieve N=2 supersymmetry in the continuum limit. As a concrete example we show preliminary numerical results from a simulation of the O(3) supersymmetric sigma model in two dimensions. (author)

  9. Supersymmetry, attractors and cosmic censorship

    Energy Technology Data Exchange (ETDEWEB)

    Bellorin, Jorge [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: jorge.bellorin@uam.es; Meessen, Patrick [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: patrick.meessen@cern.ch; Ortin, Tomas [Instituto de Fisica Teorica UAM/CSIC, Facultad de Ciencias C-XVI, C.U. Cantoblanco, E-28049 Madrid (Spain)]. E-mail: tomas.ortin@cern.ch

    2007-01-29

    We show that requiring unbroken supersymmetry everywhere in black-hole-type solutions of N=2, d=4 supergravity coupled to vector supermultiplets ensures in most cases absence of naked singularities. We formulate three specific conditions which we argue are equivalent to the requirement of global supersymmetry. These three conditions can be related to the absence of sources for NUT charge, angular momentum, scalar hair and negative energy, although the solutions can still have globally defined angular momentum and non-trivial scalar fields, as we show in an explicit example. Furthermore, only the solutions satisfying these requirements seem to have a microscopic interpretation in string theory since only they have supersymmetric sources. These conditions exclude, for instance, singular solutions such as the Kerr-Newman with M=|q|, which fails to be everywhere supersymmetric. We also present a re-derivation of several results concerning attractors in N=2, d=4 theories based on the explicit knowledge of the most general solutions in the timelike class.

  10. Position-dependent mass, finite-gap systems, and supersymmetry

    Science.gov (United States)

    Bravo, Rafael; Plyushchay, Mikhail S.

    2016-05-01

    The ordering problem in quantum systems with position-dependent mass (PDM) is treated by inclusion of the classically fictitious similarity transformation into the kinetic term. This provides a generation of supersymmetry with the first-order supercharges from the kinetic term alone, while inclusion of the potential term allows us also to generate nonlinear supersymmetry with higher-order supercharges. A broad class of finite-gap systems with PDM is obtained by different reduction procedures, and general results on supersymmetry generation are applied to them. We show that elliptic finite-gap systems of Lamé and Darboux-Treibich-Verdier types can be obtained by reduction to Seiffert's spherical spiral and Bernoulli lemniscate in the presence of Calogero-like or harmonic oscillator potentials, or by angular momentum reduction of a free motion on some AdS2 -related surfaces in the presence of Aharonov-Bohm flux. The limiting cases include the Higgs and Mathews-Lakshmanan oscillator models as well as a reflectionless model with PDM exploited recently in the discussion of cosmological inflationary scenarios.

  11. Annecy meeting on supersymmetry and supergravity at LAPP, Jannary 10-12, 1983

    International Nuclear Information System (INIS)

    Sorba, P.; Stora, R.

    1983-01-01

    A collection of brief summaries of the talks delivered during the meeting is presented. This gives a good idea of what is going on. The contributions have been gathered under four titles: supersymmetry, supersymmetric guts, phenomenology of supersymmetry, supergravity

  12. Supersymmetry in random matrix theory

    International Nuclear Information System (INIS)

    Kieburg, Mario

    2010-01-01

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  13. Supersymmetry in random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Kieburg, Mario

    2010-05-04

    I study the applications of supersymmetry in random matrix theory. I generalize the supersymmetry method and develop three new approaches to calculate eigenvalue correlation functions. These correlation functions are averages over ratios of characteristic polynomials. In the first part of this thesis, I derive a relation between integrals over anti-commuting variables (Grassmann variables) and differential operators with respect to commuting variables. With this relation I rederive Cauchy- like integral theorems. As a new application I trace the supermatrix Bessel function back to a product of two ordinary matrix Bessel functions. In the second part, I apply the generalized Hubbard-Stratonovich transformation to arbitrary rotation invariant ensembles of real symmetric and Hermitian self-dual matrices. This extends the approach for unitarily rotation invariant matrix ensembles. For the k-point correlation functions I derive supersymmetric integral expressions in a unifying way. I prove the equivalence between the generalized Hubbard-Stratonovich transformation and the superbosonization formula. Moreover, I develop an alternative mapping from ordinary space to superspace. After comparing the results of this approach with the other two supersymmetry methods, I obtain explicit functional expressions for the probability densities in superspace. If the probability density of the matrix ensemble factorizes, then the generating functions exhibit determinantal and Pfaffian structures. For some matrix ensembles this was already shown with help of other approaches. I show that these structures appear by a purely algebraic manipulation. In this new approach I use structures naturally appearing in superspace. I derive determinantal and Pfaffian structures for three types of integrals without actually mapping onto superspace. These three types of integrals are quite general and, thus, they are applicable to a broad class of matrix ensembles. (orig.)

  14. Towards a tensor calculus for κ-supersymmetry

    International Nuclear Information System (INIS)

    Ivanov, E.A.; Kapustnikov, A.A.

    1991-05-01

    We present a new manifestly space-time and world-volume supersymmetric formulation of the simplest super p-branes, massive d=2, N=1 superparticle and d=4, N=1 superstring, in terms of properly constrained world-line and world-sheet superfields. We identify the relevant κ-supersymmetries with a kind of local supersymmetry in the world-volume superspaces and, based on this, develop a tensor calculus for constructing higher-order supersymmetric and κ-invariant corrections to the corresponding minimal super p-brane actions. The latter are represented by pure Wess-Zumino terms in the world-volume superspaces. A ''double analyticity'' principle for extending this superfield approach to other super p-branes is suggested. (author). 14 refs

  15. Higgs mass prediction with non-universal soft supersymmetry breaking in MSSM

    International Nuclear Information System (INIS)

    Codoban, S.; Jurcisin, M.; Kazakov, D.

    2001-01-01

    In the framework of the MSSM (Minimal supersymmetric extension of the standard model) the non-universal boundary conditions of soft SUSY breaking parameters are considered. Taking as input the top, bottom and Z-boson masses, the values of the gauge couplings at the EW scale and the infrared quasi-fixed points for Yukawa couplings and the soft parameters the mass of the lightest CP-even Higgs boson is found to be m h = 92.7 -4.9 +10 ± 5 ± 0.4 GeV/c 2 for the low tan(β) case and m h 125.7 -9.0 +6.4 ± 5 ± 0.4 GeV/c 2 (μ > 0) or m h 125.4 -9.0 +6.6 ± 5 ± 0.4 Ge V/c 2 (μ < 0) in the case of large tan(β). (authors)

  16. Supersymmetry at finite temperature

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1983-01-01

    Finite-temperature supersymmetry (SUSY) is characterized by unbroken Ward identities for SUSY variations of ensemble averages of Klein-operator inserted imaginary time-ordered products of fields. Path-integral representations of these products are defined and the Feynman rules in superspace are given. The finite-temperature no-renormalization theorem is derived. Spontaneously broken SUSY at zero temperature is shown not to be restored at high temperature. (orig.)

  17. Search for supersymmetry in {tau} final states at ATLAS and constraints on new physics using electroweak precision data

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Doerthe

    2012-08-15

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two {tau} leptons using 2 fb{sup -1} of proton-proton collision data recorded at {radical}(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale {Lambda} independent of the ratio of tan{beta}. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  18. Search for supersymmetry in τ final states at ATLAS and constraints on new physics using electroweak precision data

    International Nuclear Information System (INIS)

    Kennedy, Doerthe

    2012-08-01

    In this thesis, various models beyond the Standard Model (SM) offering different solutions to some of the shortcomings of the SM are studied: Supersymmetry, the two Higgs doublet model, and models with warped extra dimensions. A search for events with large missing transverse momentum, jets, and at least two τ leptons using 2 fb -1 of proton-proton collision data recorded at √(s)=7 TeV with the ATLAS detector at the Large Hadron Collider is performed. No excess above the SM background expectation is observed and a 95% CL upper limit on the visible cross section for new phenomena is set. A 95% CL lower limit of 32 TeV is set on the Gauge Mediated Supersymmetry Breaking scale Λ independent of the ratio of tanβ. These limits provide the most stringent tests to date in a large part of the considered parameter space. By using the results of the oblique vacuum polarization parameters from a fit to the electroweak precision data indirect constraints on model parameters are set. While in the two Higgs doublet model as well as in models with warped extra dimensions a heavy Higgs boson is compatible with the electroweak precision data, models with warped extra dimensions featuring custodial symmetry cannot accommodate a heavy Higgs.

  19. Mass formulae for broken supersymmetry in curved space-time

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Theoretical Physics Department, CERN, Geneva (Switzerland); INFN - Laboratori Nazionali di Frascati, Frascati (Italy); Department of Physics and Astronomy, U.C.L.A, Los Angeles, CA (United States); Proeyen, Antoine van [KU Leuven, Institute for Theoretical Physics, Leuven (Belgium)

    2016-11-15

    We derive the mass formulae for N = 1, D = 4 matter-coupled Supergravity for broken (and unbroken) Supersymmetry in curved space-time. These formulae are applicable to De Sitter configurations as is the case for inflation. For unbroken Supersymmetry in anti-de Sitter (AdS) one gets the mass relations modified by the AdS curvature. We compute the mass relations both for the potential and its derivative non-vanishing. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Search for photonic signatures of gauge-mediated supersymmetry in 8 TeV $pp$ collisions with the ATLAS detector

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz

    2015-10-06

    A search is presented for photonic signatures motivated by generalised models of gauge-mediated supersymmetry breaking. This search makes use of 20.3 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}=8$ TeV recorded by the ATLAS detector at the LHC, and explores models dominated by both strong and electroweak production of supersymmetric partner states. Four experimental signatures incorporating an isolated photon and significant missing transverse momentum are explored. These signatures include events with an additional photon, lepton, $b$-quark jet, or jet activity not associated with any specific underlying quark flavor. No significant excess of events is observed above the Standard Model prediction and model-dependent 95% confidence-level exclusion limits are set.

  1. Torsion, supersymmetry, and the heterotic string

    International Nuclear Information System (INIS)

    Curtright, T.

    1985-01-01

    The dynamical effects of torsion are summarized for bosonic and supersymmetric sigma models in two spacetime dimensions. Analogous structure for the heterotic superstring is discussed, including the presence of nonlinear realizations of supersymmetry on the world-sheet. 27 refs

  2. arXiv Searches for supersymmetry

    CERN Document Server

    Ventura, Andrea

    2018-05-03

    New and recent results on Supersymmetry searches are shown for the ATLAS and the CMS experiments. Analyses with about 36 fb−1 are considered for searches concerning light squarks and gluinos, direct pair production of 3rd generation squarks, electroweak production of charginos, neutralinos, sleptons, R-parity violating scenarios and long-lived particles.

  3. Minimal representations of supersymmetry and 1D N-extended σ-models

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2008-01-01

    We discuss the minimal representations of the 1D N-Extended Supersymmetry algebra (the Z 2 -graded symmetry algebra of the Supersymmetric Quantum Mechanics) linearly realized on a finite number of fields depending on a real parameter t, the time. Their knowledge allows to construct one-dimensional sigma-models with extended off-shell supersymmetries without using superfields (author)

  4. Symmetry breaking: The standard model and superstrings

    International Nuclear Information System (INIS)

    Gaillard, M.K.

    1988-01-01

    The outstanding unresolved issue of the highly successful standard model is the origin of electroweak symmetry breaking and of the mechanism that determines its scale, namely the vacuum expectation value (vev)v that is fixed by experiment at the value v = 4m//sub w//sup 2///g 2 = (√2G/sub F/)/sup /minus/1/ ≅ 1/4 TeV. In this talk I will discuss aspects of two approaches to this problem. One approach is straightforward and down to earth: the search for experimental signatures, as discussed previously by Pierre Darriulat. This approach covers the energy scales accessible to future and present laboratory experiments: roughly (10/sup /minus/9/ /minus/ 10 3 )GeV. The second approach involves theoretical speculations, such as technicolor and supersymmetry, that attempt to explain the TeV scale. 23 refs., 5 figs

  5. Half-maximal supersymmetry from exceptional field theory

    Energy Technology Data Exchange (ETDEWEB)

    Malek, Emanuel [Arnold Sommerfeld Center for Theoretical Physics, Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen (Germany)

    2017-10-15

    We study D ≥ 4-dimensional half-maximal flux backgrounds using exceptional field theory. We define the relevant generalised structures and also find the integrability conditions which give warped half-maximal Minkowski{sub D} and AdS{sub D} vacua. We then show how to obtain consistent truncations of type II / 11-dimensional SUGRA which break half the supersymmetry. Such truncations can be defined on backgrounds admitting exceptional generalised SO(d - 1 - N) structures, where d = 11 - D, and N is the number of vector multiplets obtained in the lower-dimensional theory. Our procedure yields the most general embedding tensors satisfying the linear constraint of half-maximal gauged SUGRA. We use this to prove that all D ≥ 4 half-maximal warped AdS{sub D} and Minkowski{sub D} vacua of type II / 11-dimensional SUGRA admit a consistent truncation keeping only the gravitational supermultiplet. We also show to obtain heterotic double field theory from exceptional field theory and comment on the M-theory / heterotic duality. In five dimensions, we find a new SO(5, N) double field theory with a (6 + N)-dimensional extended space. Its section condition has one solution corresponding to 10-dimensional N = 1 supergravity and another yielding six-dimensional N = (2, 0) SUGRA. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. FIP seminar: from supersymmetry to dark matter

    International Nuclear Information System (INIS)

    Oger, G.; Nicolas, T.; Kral, Quentin; Stril, Arthur

    2008-01-01

    As quantum physics very precisely describes the infinitely small world, and general relativity very well describes the universe at the astronomic scale, a problem is faced when considering very small objects with very high energy, such as a black hole, which require a both relativistic and quantum approach. A first contribution presents the standard model, and outlines its weaknesses. The authors then evoke the issues of super-symmetry and super-gravity, and briefly present the string theory. A second contribution also presents the standard model and its weaknesses, and then outlines the fundamental role of symmetries, evokes the notions of super-symmetry and super-gravity, briefly presents the string theory, and finally evokes some hidden dimensions and the concept of String Landscape

  7. ACADEMIC TRAINING LECTURE SERIES: Searching for Supersymmetry at the LHC

    CERN Multimedia

    2003-01-01

    3, 4, 5, 6, 7 February 2003 ACADEMIC TRAINING LECTURE SERIES from 10.00 to 12.00 hrs - Auditorium, bldg. 500 Searching for Supersymmetry at the LHC by F. Gianotti, CERN-EP and G. Ridolfi, Univ. Di Genova, Italy We will review the general motivations for proposing non-standard descriptions of fundamental interactions. We will give a simple and pedagogical presentation of the theoretical foundations of Supersymmetry, and we will describe the main features of a realistic supersymmetric extension of the Standard Model. We will present the phenomenology expected in several motivated scenarios. We will then review the present status of the experimental searches for Supersymmetry at LEP and Tevatron, and discuss prospects at future machines with emphasis on the LHC. We will outline the search strategies and the analysis methods, and compare the sensitivity and reach of the various machines.

  8. Matrix formulation of fractional supersymmetry and q-deformation

    Energy Technology Data Exchange (ETDEWEB)

    Benkaddour, I.

    2006-02-24

    Supersymmetry, which is the only non-trivial Z{sub 2} extension of the Poincare algebra, can be generalized to fractional supersymmetry, when the space time is smaller than 3. Since symmetries play an important role in physics; the principal task of quantum groups consist in extanding these standard symmetries to the deformed ones, which might be used in physics as well. This two aspects will be the main focus of this thesis. In this work, we discuss the matrix formulation of fractional supersymmetry, the q-deformation of KdV hierarchy systems and noncommutative geometry. In the first part fractional supersymmetry generated by more than one charge operator and those which can be described as a matrix model are studied. Using parafermionic field-theoretical methods, the fundamentals of two-dimensional fractional supersymmetry Q{sup k}=P are set up. Known difficulties induced by methods based on the U{sub q}(sl(2)) quantum group representations and noncommutative geometry are avoided in the parafermionic approach. Moreover, we find that fractional supersymmetric algebras are naturally realized as matrix models. The k=3 case is studied in detail. In the second part we will study the q-deformed algebra and the q-analogues of the generalised KdV hierarchy. We construct in this part the algebra of q-deformed pseudo-differential operators, shown to be an essential step toward setting up a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular on the first leading orders of this q-deformed hierarchy, namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u{sub n}, n{>=}2, and discuss the primary condition of the fields w{sub n}, n{>=}2, by using the Volterra gauge group transformations for the q-covariant Lax operators. In the last part we will discuss quantum groups and

  9. Spinors and supersymmetry in four-dimensional Euclidean space

    International Nuclear Information System (INIS)

    McKeon, D.G.C.; Sherry, T.N.

    2001-01-01

    Spinors in four-dimensional Euclidean space are treated using the decomposition of the Euclidean space SO(4) symmetry group into SU(2)xSU(2). Both 2- and 4-spinor representations of this SO(4) symmetry group are shown to differ significantly from the corresponding spinor representations of the SO(3, 1) symmetry group in Minkowski space. The simplest self conjugate supersymmetry algebra allowed in four-dimensional Euclidean space is demonstrated to be an N=2 supersymmetry algebra which resembles the N=2 supersymmetry algebra in four-dimensional Minkowski space. The differences between the two supersymmetry algebras gives rise to different representations; in particular an analysis of the Clifford algebra structure shows that the momentum invariant is bounded above by the central charges in 4dE, while in 4dM the central charges bound the momentum invariant from below. Dimensional reduction of the N=1 SUSY algebra in six-dimensional Minkowski space (6dM) to 4dE reproduces our SUSY algebra in 4dE. This dimensional reduction can be used to introduce additional generators into the SUSY algebra in 4dE. Well known interpolating maps are used to relate the N=2 SUSY algebra in 4dE derived in this paper to the N=2 SUSY algebra in 4dM. The nature of the spinors in 4dE allows us to write an axially gauge invariant model which is shown to be both Hermitian and anomaly-free. No equivalent model exists in 4dM. Useful formulae in 4dE are collected together in two appendixes

  10. On the dynamical supersymmetry of atomic hydrogen

    International Nuclear Information System (INIS)

    Slepchenko, L.A.

    1986-01-01

    In the framework of supersymmetric quantum mechanics a dynamical symmetry of the hydrogen atom is considered. New features of spectra for the dynamical supersymmetry of two-dimensional Kepler problem are found

  11. On the restoration of supersymmetry in twisted two-dimensional lattice Yang-Mills theory

    International Nuclear Information System (INIS)

    Catterall, Simon

    2007-01-01

    We study a discretization of N = 2 super Yang-Mills theory which possesses a single exact supersymmetry at non-zero lattice spacing. This supersymmetry arises after a reformulation of the theory in terms of twisted fields. In this paper we derive the action of the other twisted supersymmetries on the component fields and study, using Monte Carlo simulation, a series of corresponding Ward identities. Our results for SU(2) and SU(3) support a restoration of these additional supersymmetries without fine tuning in the infinite volume continuum limit. Additionally we present evidence supporting a restoration of (twisted) rotational invariance in the same limit. Finally we have examined the distribution of scalar field eigenvalues and find evidence for power law tails extending out to large eigenvalue. We argue that these tails indicate that the classical moduli space does not survive in the quantum theory

  12. Cosmological selection of multi-TeV supersymmetry

    Directory of Open Access Journals (Sweden)

    Keisuke Harigaya

    2015-10-01

    Full Text Available We discuss a possible answer to the fundamental question of why nature would actually prefer low-scale supersymmetry, but end up with a supersymmetry scale that is not completely natural. This question is inevitable if we postulate that low-energy supersymmetry is indeed realized in nature, despite the null observation of superparticles below a TeV at the Large Hadron Collider. As we argue in this paper, superparticles masses in the multi-TeV range can, in fact, be reconciled with the concept of naturalness by means of a cosmological selection effect—a selection effect based on the assumption of an exact discrete R-symmetry that is spontaneously broken by gaugino condensation in a pure supersymmetric Yang–Mills theory. In such theories, the dynamical scale of the Yang–Mills gauge interactions is required to be higher than the inflationary Hubble scale, in order to avoid the formation of domain walls. This results in a lower limit on the superparticle masses and leads us to conclude that, according to the idea of naturalness, the most probable range of superparticle masses is potentially located at the multi-TeV, if the inflationary Hubble rate is of O(1014 GeV. Our argument can be partially tested by future measurements of the tensor fraction in the Cosmic Microwave Background fluctuations.

  13. Search for Supersymmetry in Events with Large Missing Transverse Momentum, Jets, and at Least One Tau Lepton in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

    CERN Document Server

    The ATLAS collaboration

    2012-01-01

    A search for Supersymmetry (SUSY) in events with large missing transverse momentum, jets, and at least one hadronically decaying tau lepton, with zero or one additional light lepton (e/mu), has been performed using 4.7fb−1 of proton-proton collision data at sqrt(s)=7 TeV recorded with the ATLAS detector at the Large Hadron Collider. No excess above the Standard Model background expectation is observed and a 95 % Confidence Level (CL) visible cross section upper limit for new phenomena is set. In the framework of gauge- mediated SUSY breaking models (GMSB), exclusion limits on the GMSB breaking scale Lambda are set at 47 TeV, independently of tan(beta). These limits provide the most stringent tests to date of GMSB SUSY breaking models in a large part of the parameter space considered, improving previous best limits from ATLAS tau analyses.

  14. Superstring cosmology for N4 = 1 → 0 superstring vacua

    International Nuclear Information System (INIS)

    Estes, J.; Kounnas, C.; Partouche, H.

    2011-01-01

    We study the cosmology of perturbative heterotic superstring theory during the radiation-like era for semi-realistic backgrounds with initial N = 1 supersymmetry. This analysis is valid for times after the Hagedorn era (or alternatively inflation era) but before the electroweak symmetry breaking transition. We find an attraction to a radiation-like era with the ratio of the supersymmetry breaking scale to temperature stabilized. This provides a dynamical mechanism for setting the supersymmetry breaking scale and its corresponding hierarchy with the Planck scale. For the internal space, we find that orbifold directions never decompactify, while toroidal directions may decompactify only when they are wrapped by certain geometrical fluxes which break supersymmetry. This suggests a mechanism for generating spatial directions during the radiation-like era. Moreover, we show that certain moduli may be stabilized during the radiation-like era with masses near the supersymmetry breaking scale. In addition, the moduli do not dominate at late times, thus avoiding the cosmological moduli problem. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Spontaneously broken extended supersymmetry: Full superfield formulation

    International Nuclear Information System (INIS)

    Kandelakis, E.S.

    1984-01-01

    The superfield description, given by Samuel and Wess, of the non-linear Akulov-Volkov realization of (broken) supersymmetry, is generalized for the interesting cases of N=2 and 4 extended supersymmetry. The generalization, in terms of the full-superfield formulation, is straightforward. For the proof we first define the corresponding THETA-algebras; we then present explicitly many of the calculations. The schematic explanation makes the generalization manifest. We perform, for N=2, the coupling of the A-V field to standard-matter, in the way introduced by S-W, and schematically we make manifest the generalization for every N. The importance of our results consists in a complete, calculable description of the A-V fields (goldstinos) and of their interactions, easily applied to the tasks of today's phenomenology. (orig.) [de

  16. Vacuum Stability with Tachyonic Boundary Higgs Masses in No-Scale Supersymmetry or Gaugino Mediation

    CERN Document Server

    Evans, Jason L; Wells, James D

    2009-01-01

    No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino LSP. However, to obtain a neutralino LSP it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking (CCB) minima and unbounded-from-below (UFB) directions in the low energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger $\\tan\\beta \\sim 30$, while for smaller $\\tan\\beta\\sim 10$, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.

  17. String Threshold corrections in models with spondaneously broken supersymmetry

    CERN Document Server

    Kiritsis, Elias B; Petropoulos, P M; Rizos, J

    1999-01-01

    We analyse a class of four-dimensional heterotic ground states with N=2 space-time supersymmetry. From the ten-dimensional perspective, such models can be viewed as compactifications on a six-dimensional manifold with SU(2) holonomy, which is locally but not globally K3 x T^2. The maximal N=4 supersymmetry is spontaneously broken to N=2. The masses of the two massive gravitinos depend on the (T,U) moduli of T^2. We evaluate the one-loop threshold corrections of gauge and R^2 couplings and we show that they fall in several universality classes, in contrast to what happens in usual K3 x T^2 compactifications, where the N=4 supersymmetry is explicitly broken to N=2, and where a single universality class appears. These universality properties follow from the structure of the elliptic genus. The behaviour of the threshold corrections as functions of the moduli is analysed in detail: it is singular across several rational lines of the T^2 moduli because of the appearance of extra massless states, and suffers only f...

  18. Hermitian versus holomorphic complex and quaternionic generalized supersymmetries of the M-theory. A classification

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2004-06-01

    Relying upon the division-algebra classification of Clifford algebras and spinors, a classification of generalized supersymmetries (or, with a slight abuse of language, 'generalized super translations') is provided. In each given space-time the maximal, saturated, generalized supersymmetry, compatible with the division-algebra constraint that can be consistently imposed on spinors and on superalgebra generators, is furnished. Constraining the superalgebra generators in both the complex and the quaternionic cases gives rise to the two classes of constrained hermitian and holomorphic generalized supersymmetries. In the complex case these two classes of generalized supersymmetries can be regarded as complementary. The quaternionic holomorphic supersymmetry only exists in certain space-time dimensions and can admit at most a single bosonic scalar central charge. The results here presented pave the way for a better understanding of the various M algebra-type of structures which can be introduced in different space-time signatures and in association with different division algebras, as well as their mutual relations. In a previous work, e.g., the introduction of a complex holomorphic generalized supersymmetry was shown to be necessary in order to perform the analytic continuation of the standard M-theory to the 11-dimensional Euclidean space. As an application of the present results, it is shown that the above algebra also admits a 12-dimensional, Euclidean, F-algebra presentation. (author)

  19. Hermitean versus holomorphic complex and quaternionic generalized supersymmetries of the M-theory. A classification

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2004-01-01

    Relying upon the division-algebra classification of Clifford algebras and spinors, a classification of generalized supersymmetries (or, with a slight abuse of language,'generalized supertranslations') is provided. In each given space-time the maximal, saturated, generalized supersymmetry, compatible with the division-algebra constraint that can be consistently imposed on spinors and on superalgebra generators, is furnished. Constraining the superalgebra generators in both the complex and the quaternionic cases gives rise to the two classes of constrained hermitean and holomorphic generalized supersymmetries. In the complex case these two classes of generalized supersymmetries can be regarded as complementary. The quaternionic holomorphic supersymmetry only exists in certain space-time dimensions and can admit at most a single bosonic scalar central charge. The results here presented pave the way for a better understanding of the various M algebra-type of structures which can be introduced in different space-time signatures and in association with different division algebras, as well as their mutual relations. In a previous work, e.g., the introduction of a complex holomorphic generalized supersymmetry was shown to be necessary in order to perform the analytic continuation of the standard M-theory to the 11-dimensional euclidean space. As an application of the present results, it is shown that the above algebra also admits a 12-dimensional, euclidean, F-algebra presentation. (author)

  20. Supersymmetry in physics, introduction and overview

    International Nuclear Information System (INIS)

    Campbell, D.K.; Kostelecky, V.A.

    1983-01-01

    Some of the basic concepts in Lie Algebra and superalgebra theory are reviewed, and then an elementary summary of each of the areas in which supersymmetry has already been applied is given. These areas include nuclear physics, condensed matter and statistical physics, and particle physics and supergravity

  1. Asymptotic Safety Guaranteed in Supersymmetry

    Science.gov (United States)

    Bond, Andrew D.; Litim, Daniel F.

    2017-11-01

    We explain how asymptotic safety arises in four-dimensional supersymmetric gauge theories. We provide asymptotically safe supersymmetric gauge theories together with their superconformal fixed points, R charges, phase diagrams, and UV-IR connecting trajectories. Strict perturbative control is achieved in a Veneziano limit. Consistency with unitarity and the a theorem is established. We find that supersymmetry enhances the predictivity of asymptotically safe theories.

  2. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela [Fermi National Accelerator Laboratory, Batavia, IL (United States); Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Draper, Patrick [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Heinemeyer, Sven [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Liu, Tao [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; California Univ., Santa Barbara, CA (United States). Dept. of Physics; Wagner, Carlos E.M. [Chicago Univ., Chicago, IL (United States). Enrico Fermi Inst.; Argonne National Laboratory, Argonne, IL (United States). HEP Div.; Chicago Univ., Chicago, IL (United States). KICP and Dept. of Physics; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-12-15

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb{sup -1} per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb{sup -1}, our projection shows that evidence at the 3{sigma} level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  3. Probing the Higgs sector of high-scale SUSY-breaking models at the Tevatron

    International Nuclear Information System (INIS)

    Carena, Marcela; Liu, Tao

    2010-12-01

    A canonical signature of the Minimal Supersymmetric Standard Model (MSSM) is the presence of a neutral Higgs boson with mass bounded from above by about 135 GeV and Standard Model (SM)-like couplings to the electroweak gauge bosons. In this note we investigate the reach of the Tevatron collider for the MSSM Higgs sector parameter space associated with a variety of high-scale minimal models of supersymmetry (SUSY)-breaking, including the Constrained MSSM (CMSSM), minimal Gauge Mediated SUSY-breaking (mGMSB), and minimal Anomaly Mediated SUSY-breaking (mAMSB). We find that the Tevatron can provide strong constraints on these models via Higgs boson searches. Considering a simple projection for the efficiency improvements in the Tevatron analyses, we find that with an integrated luminosity of 16 fb -1 per detector and an efficiency improvement of 20% compared to the present situation, these models could be probed essentially over their entire ranges of validity. With 40% analysis improvements and 16 fb -1 , our projection shows that evidence at the 3σ level for the light Higgs boson could be expected in extended regions of parameter space. (orig.)

  4. Particle masses without the Higgs mechanism and supersymmetry

    International Nuclear Information System (INIS)

    Winterberg, F

    2012-01-01

    The non-observation of the Higgs boson and supersymmetry in the most recent high-energy physics data suggests considering the conjectured Planck mass plasma as a potential alternative. In it supersymmetry is replaced by the assumption that the vacuum of space is densely filled in equal numbers with positive and negative Planck mass particles, and the Higgs field by the gravitational field of interacting large positive with likewise large negative mass quasiparticles of the Planck mass plasma, giving these positive-negative mass configurations a small positive gravitational field mass. From this configuration the Dirac equation can be derived, with the fermions of the standard model composed of large positive and negative masses. (paper)

  5. Interpretation of searches for supersymmetry with simplified models

    Energy Technology Data Exchange (ETDEWEB)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rabady, D.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Wulz, C. -E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D’Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Malek, M.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Vilela Pereira, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Mekterovic, D.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Mahmoud, M. A.; Mahrous, A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Florent, A.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J. -L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J. -M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Fontaine, J. -C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A. -C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Brochet, S.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sgandurra, L.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Calpas, B.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Thüer, S.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Perchalla, L.; Pooth, O.; Sauerland, P.; Stahl, A.; Aldaya Martin, M.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Diez Pardos, C.; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Leonard, J.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I. -A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Novgorodova, O.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Ribeiro Cipriano, P. M.; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Blobel, V.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Gosselink, M.; Haller, J.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Husemann, U.; Katkov, I.; Komaragiri, J. R.; Lobelle Pardo, P.; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Schilling, F. -P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Gurtu, A.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Mohammadi Najafabadi, M.; Paktinat Mehdiabadi, S.; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D’Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Tosi, S.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; Tabarelli de Fatis, T.; Buontempo, S.; Carrillo Montoya, C. A.; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Gasparini, F.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Triossi, A.; Vanini, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; D’Agnolo, R. T.; Dell’Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Fanelli, C.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Lopez-Fernandez, R.; Martínez-Ortega, J.; Sanchez-Hernandez, A.; Villasenor-Cendejas, L. M.; Carrillo Moreno, S.; Vazquez Valencia, F.; Salazar Ibarguen, H. A.; Casimiro Linares, E.; Morelos Pineda, A.; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Butt, J.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Shreyber, I.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Merino, G.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Duarte Campderros, J.; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Coarasa Perez, J. A.; D’Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Giunta, M.; Glege, F.; Gomez-Reino Garrido, R.; Govoni, P.; Gowdy, S.; Guida, R.; Gundacker, S.; Hammer, J.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y. -J.; Lenzi, P.; Lourenço, C.; Magini, N.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orsini, L.; Palencia Cortezon, E.; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; Martinez Ruiz del Arbol, P.; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Ivova Rikova, M.; Kilminster, B.; Millan Mejias, B.; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Li, S. W.; Lin, W.; Lu, Y. J.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W. -S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R. -S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Asavapibhop, B.; Srimanobhas, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; Radburn-Smith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Guneratne Bryer, A.; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A. -M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Mall, O.; Miceli, T.; Pellett, D.; Ricci-Tam, F.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Vasquez Sierra, R.; Yohay, R.; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Rakness, G.; Schlein, P.; Traczyk, P.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D’Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Golf, F.; Incandela, J.; Justus, C.; Kalavase, P.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Magaña Villalba, R.; Mccoll, N.; Pavlunin, V.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Veverka, J.; Wilkinson, R.; Xie, S.; Yang, Y.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Ford, W. T.; Gaz, A.; Luiggi Lopez, E.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Hopkins, W.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Linacre, J.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O’Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Park, M.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Hewamanage, S.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Yumiceva, F.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; O’Brien, C.; Silkworth, C.; Strom, D.; Turner, P.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J. -P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Kenny, R. P.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Kim, Y.; Klute, M.; Krajczar, K.; Levin, A.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Zhukova, V.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Snow, G. R.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Orimoto, T.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Hahn, K. A.; Kubik, A.; Lusito, L.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Chan, K. M.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Planer, M.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Berry, E.; Elmer, P.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Koay, S. A.; Lopes Pegna, D.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Lopez, A.; Mendez, H.; Ramirez Vargas, J. E.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Vidal Marono, M.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Akgun, B.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Walker, M.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Kurt, P.; Maguire, C.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sakharov, A.; Anderson, M.; Belknap, D. A.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Friis, E.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2013-09-01

    The results of searches for supersymmetry by the CMS experiment are interpreted in the framework of simplified models. The results are based on data corresponding to an integrated luminosity of 4.73 to 4.98 inverse femtobarns. The data were collected at the LHC in proton-proton collisions at a center-of-mass energy of 7 TeV. This paper describes the method of interpretation and provides upper limits on the product of the production cross section and branching fraction as a function of new particle masses for a number of simplified models. These limits and the corresponding experimental acceptance calculations can be used to constrain other theoretical models and to compare different supersymmetry-inspired analyses.

  6. Berry phase and supersymmetry

    International Nuclear Information System (INIS)

    Sonner, Julian; Tong, David

    2009-01-01

    We study the constraints of supersymmetry on the non-Abelian holonomy given by U = Pexp (i∫A), the path-ordered exponential of a connection A. For theories with four supercharges, we show that A satisfies the tt* equations if it is a function of chiral multiplets. In contrast, when A is a function of vector multiplets, it satisfies the Bogomolnyi monopole equations. We describe applications of these results to the Berry connection in supersymmetric quantum mechanics.

  7. A new two-faced scalar solution and cosmological SUSY breaking

    International Nuclear Information System (INIS)

    Shmakova, Marina

    2010-01-01

    We propose a possible new way to resolve the long standing problem of strong supersymmetry breaking coexisting with a small cosmological constant. We consider a scalar component of a minimally coupled N = 1 supermultiplet in a general Friedmann-Robertson-Walker (FRW) expanding universe. We argue that a tiny term, proportional to H 2 ∼ 10 -122 in Plank's units, appearing in the field equations due to this expansion will provide both, the small vacuum energy and the heavy mass of the scalar supersymmetric partner. We present a non-perturbative solution for the scalar field with an unusual dual-frequency behavior. This solution has two characteristic mass scales related to the Hubble parameter as H 1/4 and H 1/2 measured in Plank's units.

  8. A model of intrinsic symmetry breaking

    International Nuclear Information System (INIS)

    Ge, Li; Li, Sheng; George, Thomas F.; Sun, Xin

    2013-01-01

    Different from the symmetry breaking associated with a phase transition, which occurs when the controlling parameter is manipulated across a critical point, the symmetry breaking presented in this Letter does not need parameter manipulation. Instead, the system itself suddenly undergoes symmetry breaking at a certain time during its evolution, which is intrinsic symmetry breaking. Through a polymer model, it is revealed that the origin of the intrinsic symmetry breaking is nonlinearity, which produces instability at the instance when the evolution crosses an inflexion point, where this instability breaks the original symmetry

  9. CP violation in supersymmetry, Higgs sector and large hadron collider

    International Nuclear Information System (INIS)

    Godbole, Rohini M.

    2006-01-01

    In this talk I discuss some aspects of CP violation (CPV) in supersymmetry (SUSY) as well as in the Higgs sector. Further, I discuss ways in which these may be probed at hadronic colliders. In particular I will point out the ways in which studies in the χ ∼± , χ 2 ∼0 sector at Tevatron may be used to provide information on this and how the search can be extended to the LHC. I will then follow this by a discussion of the CP mixing induced in the Higgs sector due to the above-mentioned CPV in the soft SUSY breaking parameters and its effects on the Higgs phenomenology at the LHC. I would then point out some interesting aspects of the phenomenology of a moderately light charged Higgs boson, consistent with the LEP constraints, in this scenario. Decay of such a charged Higgs boson would also allow a probe of a light (≤)50 GeV), CP-violating (CPV) Higgs boson. Such a light neutral Higgs boson might have escaped detection at LEP and could also be missed at the LHC in the usual search channels. (author)

  10. From maximal to minimal supersymmetry in string loop amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Marcus; Buchberger, Igor [Department of Physics, Karlstad University,651 88 Karlstad (Sweden); Schlotterer, Oliver [Max-Planck-Institut für Gravitationsphysik, Albert-Einstein-Institut,14476 Potsdam (Germany)

    2017-04-28

    We calculate one-loop string amplitudes of open and closed strings with N=1,2,4 supersymmetry in four and six dimensions, by compactification on Calabi-Yau and K3 orbifolds. In particular, we develop a method to combine contributions from all spin structures for arbitrary number of legs at minimal supersymmetry. Each amplitude is cast into a compact form by reorganizing the kinematic building blocks and casting the worldsheet integrals in a basis. Infrared regularization plays an important role to exhibit the expected factorization limits. We comment on implications for the one-loop string effective action.

  11. A heterotic N=2 string with space-time supersymmetry

    International Nuclear Information System (INIS)

    Bellucci, S.; Galajinsky, A.; Lechtenfeld, O.

    2001-02-01

    It is reconsidered the issue of embedding space-time fermions into the four dimensional N=2 world-sheet supersymmetric string. A new heterotic theory is constructed, taking the right-movers from the N =4 topological extension of the conventional N=2 string but a c=0 conformal field theory supporting target-space supersymmetry for the left-moving sector. The global bosonic symmetry of the full formalism proves to be U(1,1), just as in the usual N=2 string. Quantization reveals a spectrum of only two physical states, one boson and one fermion, which fall in a multiplet of (1,0) supersymmetry

  12. Models of dynamical R-parity violation

    Energy Technology Data Exchange (ETDEWEB)

    Csáki, Csaba; Kuflik, Eric [Department of Physics, LEPP, Cornell University, Ithaca, NY 14853 (United States); Slone, Oren; Volansky, Tomer [Raymond and Beverly Sackler School of Physics and Astronomy, Tel-Aviv University, Tel-Aviv 69978 (Israel)

    2015-06-08

    The presence of R-parity violating interactions may relieve the tension between existing LHC constraints and natural supersymmetry. In this paper we lay down the theoretical framework and explore models of dynamical R-parity violation in which the breaking of R-parity is communicated to the visible sector by heavy messenger fields. We find that R-parity violation is often dominated by non-holomorphic operators that have so far been largely ignored, and might require a modification of the existing searches at the LHC. The dynamical origin implies that the effects of such operators are suppressed by the ratio of either the light fermion masses or the supersymmetry breaking scale to the mediation scale, thereby providing a natural explanation for the smallness of R-parity violation. We consider various scenarios, classified by whether R-parity violation, flavor breaking and/or supersymmetry breaking are mediated by the same messenger fields. The most compact case, corresponding to a deformation of the so called flavor mediation scenario, allows for the mediation of supersymmetry breaking, R-parity breaking, and flavor symmetry breaking in a unified manner.

  13. Upper bounds of supersymmetric particle masses in a gaugino-originated radiative breaking scenario

    International Nuclear Information System (INIS)

    Goto, T.

    1993-01-01

    The mass spectrum of supersymmetric particles is studied in the radiative breaking scenario of the minimal supersymmetric standard model, with an assumption that all soft supersymmetry-breaking parameters other than the gaugino masses are vanishing at the Planck scale. The U(1) gaugino mass M 1X is taken to be an independent parameter, while the SU(2) and SU(3) gaugino masses are supposed to be unified. Within the ''natural'' range, the whole parameter space is scanned numerically and the consistent particle mass spectra with the experimental bounds are obtained. The supersymmetric particle masses are tightly bounded above as m eR approx-lt 100 GeV, etc., if the top quark is sufficiently heavy m top approx-gt 100 GeV and the minimal grand unified theory relation for three gaugino masses is satisfied. For a large |M 1X |, there is no restriction other than the naturalness for the upper bounds of supersymmetric particle masses

  14. SU(5)-invariant decomposition of ten-dimensional Yang-Mills supersymmetry

    CERN Document Server

    Baulieu, Laurent

    2011-01-01

    The N=1,d=10 superYang-Mills action is constructed in a twisted form, using SU(5)-invariant decomposition of spinors in 10 dimensions. The action and its off-shell closed twisted scalar supersymmetry operator Q derive from a Chern-Simons term. The action can be decomposed as the sum of a term in the cohomology of Q and of a term that is Q-exact. The first term is a fermionic Chern-Simons term for a twisted component of the Majorana-Weyl gluino and it is related to the second one by a twisted vector supersymmetry with 5 parameters. The cohomology of Q and some topological observables are defined from descent equations. In this SU(5)supersymmetry generators, as in the twisted N=4, d=4 theory. There is a superspace with 6 twisted fermionic directions, with solvable constraints.

  15. Generalized messenger sector for gauge mediation of supersymmetry breaking and the soft spectrum

    International Nuclear Information System (INIS)

    Marques, Diego

    2009-01-01

    We consider a generic renormalizable and gauge invariant messenger sector and derive the sparticle mass spectrum using the formalism introduced for General Gauge Mediation. Our results recover many expressions found in the literature in various limits. Constraining the messenger sector with a global symmetry under which the spurion field is charged, we analyze Extraordinary Gauge Mediation beyond the small SUSY breaking limit. Finally, we include D-term contributions and compute their corrections to the soft masses. This leads to a perturbative framework allowing to explore models capable of fully covering the parameter space of General Gauge Mediation to the Supersymmetric Standard Model.

  16. Small break loss of coolant accidents: Bottom and side break

    International Nuclear Information System (INIS)

    Hardy, P.G.; Richter, H.J.

    1987-01-01

    A LOCA can be caused, e.g. by a small break in the primary cooling system. The rate of fluid escaping through such a break will define the time until the core will be uncovered. Therefore the prediction of fluid loss and pressure transient is of major importance to plan for timely action in response to such an event. Stratification of the two phases might be present upstream of the break, thus, the location of the break relative to the vapor-liquid interface and the overall upstream fluid conditions are relevant for the calculation of fluid loss. Experimental results and analyses are presented here for small breaks at the bottom or at the side of a small pressure vessel. It was found that in such a case the onset of the so-called ''vapor pull through'' is important but swelling at sufficient depressurization rates of the liquid due to flashing is also of significance. It was also discovered that in the bottom break the flow rate is strongly dependent on the break entrance quality of the vapour-liquid mixture. The side break can be treated similarly to the bottom break if the interface level is above the break. The analyses developed on the basis of experimental observations showed reasonable agreement of predicted and measured pressure transients. It was possible to calculate the changing interface level and mixture void fraction history in a way compatible with the behavior observed during the experiments. Even though the experiments were performed at low pressures, this work should help to get a better understanding of physical phenomena occurring in a full scale small break LOCA. (orig./HP)

  17. BOOK REVIEW: Supersymmetry: Theory, Experiment and Cosmology

    Science.gov (United States)

    Jones, Tim

    2008-06-01

    This volume presents a comprehensive introduction to supersymmetry, concentrating mainly on the Minimal Supersymmetric Standard Model (MSSM) and its possible embedding in a grand unified theory, but also including material on supergravity, non-perturbative aspects of supersymmetry, string theory and cosmology. There is an excellent self-contained appendix on the standard model which could be read first; other appendices provide introductions to spinor representations of the Lorentz group, superfields, and cosmology, and there is a short appendix listing the MSSM renormalisation group beta-functions. The appendices in fact occupy over a quarter of the volume. Substantial knowledge of quantum field theory is required of the reader; and also a working knowledge of group theory as employed in the construction of particle physics models: while there is some useful material on this in the section on grand unification, an appendix on it might perhaps have been a useful addition. Supersymmetry is introduced via the particle physicist's concern with the hierarchy problem and developed in the component formalism beginning with the Wess Zumino model and proceeding to supersymmetric gauge theories. The treatment is detailed and authoritative; the author has 25 years of high-level research experience in the area and it shows. The level of presentation is high, and difficult concepts are explained clearly. The examples and associated hints are excellent. One topic I would have liked to see more on is the renormalisation of supersymmetric theories; presentation of the explicit calculation of the anomalous dimension of a chiral superfield (gamma) at one loop for at least the Wess Zumino model might perhaps have been pedagogically useful. Associated, perhaps, with this omission is an inconsistency in the definition of gamma; the sign of gamma in the treatment in section 8.3.2 clearly differs from its sign in the appendix section E.3. In the text the formalism of supersymmetry is

  18. Searches for natural supersymmetry with the ATLAS detector

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Naturalness arguments for weak-scale supersymmetry favour supersymmetric partners of the third generation quarks, Higgs and electroweak gauge bosons with masses not too far from those of their Standard Model counterparts. Under this paradigm, also the gluino mass would not exceed 1-2 TeV. Real and virtual production of third generation squarks via decay of a gluino can therefore be significant. Top and bottom squarks as well as charginos, neutralinos and sleptons with masses well below the TeV scale can also give rise to observable direct pair production rates at the LHC. The seminar will present results from searches for natural supersymmetry, many using the full data sample recorded during the 2012 run at 8 TeV centre-of-mass energy by the ATLAS detector.

  19. Report of the Supersymmetry Theory Subgroup

    International Nuclear Information System (INIS)

    Amundson, J.; Anderson, G.; Baer, H.

    1996-01-01

    We provide a mini-guide to some or the possible manifestations of weak scale supersymmetry. For each of six scenarios we provide: a brief description of the theoretical underpinnings, the adjustable parameters, a qualitative description of the associated phenomenology at future colliders, comments on how to simulate each scenario with existing event generators,

  20. Improving long term driving comfort by taking breaks - How break activity affects effectiveness.

    Science.gov (United States)

    Sammonds, George M; Mansfield, Neil J; Fray, Mike

    2017-11-01

    During long duration journeys, drivers are encouraged to take regular breaks. The benefits of breaks have been documented for safety; breaks may also be beneficial for comfort. The activity undertaken during a break may influence its effectiveness. Volunteers completed 3 journeys on a driving simulator. Each 130 min journey included a 10 min break after the first hour. During the break volunteers either stayed seated, left the simulator and sat in an adjacent room, or took a walk on a treadmill. The results show a reduction in driver discomfort during the break for all 3 conditions, but the effectiveness of the break was dependent on activity undertaken. Remaining seated in the vehicle provided some improvement in comfort, but more was experienced after leaving the simulator and sitting in an adjacent room. The most effective break occurred when the driver walked for 10 min on a treadmill. The benefits from taking a break continued until the end of the study (after a further hour of driving), such that comfort remained the best after taking a walk and worst for those who remained seated. It is concluded that taking a break and taking a walk is an effective method for relieving driving discomfort. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Gaugino-assisted anomaly mediation

    International Nuclear Information System (INIS)

    Kribs, Graham D.

    2001-01-01

    I present a model of supersymmetry breaking mediated through a small extra dimension. Standard model matter multiplets and a supersymmetry-breaking (or 'hidden') sector are confined to opposite four-dimensional boundaries while gauge multiplets live in the bulk. The hidden sector does not contain a singlet and the dominant contribution to gaugino masses is via anomaly-mediated supersymmetry breaking. Scalar masses get contributions from both anomaly mediation and a tiny hard breaking of supersymmetry by operators on the hidden-sector boundary. These operators contribute to scalar masses at one loop and in most of parameter space, their contribution dominates. Thus it is easy to make all squared scalar masses positive. As no additional fields or symmetries are required below the Planck scale, this is among the simplest working models of anomaly mediation. The gaugino spectrum is left untouched and the phenomenology of the model is roughly similar to anomaly mediated supersymmetry breaking with a universal scalar mass added. Finally, the main differences in the spectrum between this model and other approaches are identified. This talk is based on work [1] done in collaboration with David E. Kaplan

  2. Gaugino-Assisted Anomaly Mediation

    International Nuclear Information System (INIS)

    Kaplan, David Elazzar; Kribs, Graham D.

    2000-01-01

    We present a model of supersymmetry breaking mediated through a small extra dimension. Standard model matter multiplets and a supersymmetry-breaking (or ''hidden'') sector are confined to opposite four-dimensional boundaries while gauge multiplets live in the bulk. The hidden sector does not contain a singlet and the dominant contribution to gaugino masses is via anomaly-mediated supersymmetry breaking. Scalar masses get contributions from both anomaly mediation and a tiny hard breaking of supersymmetry by operators on the hidden-sector boundary. These operators contribute to scalar masses at one loop and in most of parameter space, their contribution dominates. Thus it is easy to make all squared scalar masses positive. As no additional fields or symmetries are required below the Planck scale, we consider this the simplest working model of anomaly mediation. The gaugino spectrum is left untouched and the phenomenology of the model is roughly similar to anomaly mediated supersymmetry breaking with a universal scalar mass added. We identify the main differences in the spectrum between this model and other approaches. We also discuss mechanisms for generating the μ term and constraints on additional bulk fields. (author)

  3. Vacuum stability with tachyonic boundary Higgs masses in no-scale supersymmetry or gaugino mediation

    International Nuclear Information System (INIS)

    Evans, Jason L.; Wells, James D.; Morrissey, David E.

    2009-01-01

    No-scale supersymmetry or gaugino mediation augmented with large negative Higgs soft masses at the input scale provides a simple solution to the supersymmetric flavor problem while giving rise to a neutralino lightest superpartner particle. However, to obtain a neutralino lightest superpartner particle it is often necessary to have tachyonic input Higgs soft masses that can give rise to charge-and-color-breaking minima and unbounded-from-below directions in the low-energy theory. We investigate the vacuum structure in these theories to determine when such problematic features are present. When the standard electroweak vacuum is only metastable, we compute its lifetime under vacuum tunneling. We find that vacuum metastability leads to severe restrictions on the parameter space for larger tanβ∼30, while for smaller tanβ∼10, only minor restrictions are found. Along the way, we derive an exact bounce solution for tunneling through an inverted parabolic potential.

  4. Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory

    Energy Technology Data Exchange (ETDEWEB)

    Kallosh, Renata; Karlsson, Anna; Murli, Divyanshu [Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305 (United States)

    2017-03-15

    We apply the background field technique, recently developed for a general class of nonlinear symmetries, at tree level, to the Volkov-Akulov theory with spontaneously broken N=1 supersymmetry. We find that the background field expansion in terms of the free fields to the lowest order reproduces the nonlinear supersymmetry transformation rules. The double soft limit of the background field is, in agreement with the new general identities, defined by the algebra of the nonlinear symmetries.

  5. Quantization by stochastic relaxation processes and supersymmetry

    International Nuclear Information System (INIS)

    Kirschner, R.

    1984-01-01

    We show the supersymmetry mechanism resposible for the quantization by stochastic relaxation processes and for the effective cancellation of the additional time dimension against the two Grassmann dimensions. We give a non-perturbative proof of the validity of this quantization procedure. (author)

  6. Spontaneously broken version of N=4 supersymmetry

    International Nuclear Information System (INIS)

    Terent'ev, M.V.

    1989-01-01

    The special scenario of reduction from the space of D=10 dimensions is used to construct the theory with describes interaction of supergravity with only one multiplet of matter in the framework of spontaneously broken N=4 supersymmetry. 6 refs.; 1 fig

  7. A novel supersymmetry in 2-dimensional Yang-Mills theory on Riemann surfaces

    International Nuclear Information System (INIS)

    Soda, Jiro

    1991-02-01

    We find a novel supersymmetry in 2-dimensional Maxwell and Yang-Mills theories. Using this supersymmetry, it is shown that the 2-dimensional Euclidean pure gauge theory on a closed Riemann surface Σ can be reduced to a topological field theory which is the 3-dimensional Chern-Simons gauge theory in the special space-time topology Σ x R. Related problems are also discussed. (author)

  8. 197Au(d,3He)196Pt reaction and the supersymmetry scheme

    International Nuclear Information System (INIS)

    Vergnes, M.; Berrier-Ronsin, G.; Rotbard, G.; Vernotte, J.; Langevin- Joliot, H.; Gerlic, E.; Wiele, J. van de; Guillot, J.

    1981-01-01

    The 197 Au(d, 3 He) 196 Pt reaction has been studied at Esub(d) = 108 MeV. An important breakdown of the selection rules of the supersymmetry scheme is observed for the 2 2 + level. The generally strong excitation of the 2 2 + level by transfer reactions in the Pt region leads to question the validity of the supersymmetry scheme at least for this level

  9. Effective Lagrangian density in gauge supersymmetry

    International Nuclear Information System (INIS)

    Chang, S.S.

    1976-01-01

    In the framework of gauge supersymmetry proposed by Arnowitt and Nath, an effective Lagrangian density is formally rewritten in terms of a spontaneously broken vacuum metric and the remaining perturbative part in the gauge metric tensor. Tensor notations in the superspace are revised so that all sign factors of Grassmann parities appear more systematically

  10. Supersymmetry search via gauge boson fusion

    Indian Academy of Sciences (India)

    Abstract. We propose a novel method for the search of supersymmetry, especially for the elec- troweak gauginos at the large hadron collider (LHC). Gauge boson fusion technique was shown to be useful for heavy and intermediate mass Higgs bosons. In this article, we have shown that this method can also be applied to ...

  11. Setting limits on supersymmetry using simplified models

    CERN Document Server

    Gutschow, C.

    2012-01-01

    Experimental limits on supersymmetry and similar theories are difficult to set because of the enormous available parameter space and difficult to generalize because of the complexity of single points. Therefore, more phenomenological, simplified models are becoming popular for setting experimental limits, as they have clearer physical implications. The use of these simplified model limits to set a real limit on a concrete theory has not, however, been demonstrated. This paper recasts simplified model limits into limits on a specific and complete supersymmetry model, minimal supergravity. Limits obtained under various physical assumptions are comparable to those produced by directed searches. A prescription is provided for calculating conservative and aggressive limits on additional theories. Using acceptance and efficiency tables along with the expected and observed numbers of events in various signal regions, LHC experimental results can be re-cast in this manner into almost any theoretical framework, includ...

  12. MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum

    Directory of Open Access Journals (Sweden)

    I. Antoniadis

    2016-01-01

    Full Text Available We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable positive cosmological constant, proposed by the authors in arXiv:1403.1534. It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus. The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.

  13. MSSM soft terms from supergravity with gauged R-symmetry in de Sitter vacuum

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I. [LPTHE, UMR CNRS 7589 Sorbonne Universités, UPMC Paris 6, 75005 Paris France (France); Albert Einstein Center, Institute for Theoretical Physics Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Knoops, R., E-mail: rob.knoops@cern.ch [CERN Theory Division, CH-1211 Geneva 23 (Switzerland); Section de Mathématiques, Université de Genève, CH-1211 Geneva (Switzerland); Instituut voor Theoretische Fysica, KU Leuven, Celestijnenlaan 200D, B-3001 Leuven (Belgium)

    2016-01-15

    We work out the phenomenology of a model of supersymmetry breaking in the presence of a tiny (tunable) positive cosmological constant, proposed by the authors in (arXiv:1403.1534). It utilizes a single chiral multiplet with a gauged shift symmetry that can be identified with the string dilaton (or an appropriate compactification modulus). The model is coupled to the MSSM, leading to calculable soft supersymmetry breaking masses and a distinct low energy phenomenology that allows to differentiate it from other models of supersymmetry breaking and mediation mechanisms.

  14. Broken supersymmetries and shifted superpropagators

    International Nuclear Information System (INIS)

    Helayel-Neto, J.A.; Rabelo de Carvalho, F.A.B.; Smith, A.W.

    1985-06-01

    Superfield Feynman rules are derived for a general case where global supersymmetry is spontaneously broken by F-terms. The complete superspace dependence of the superpropagators is factored out and they are employed to discuss the corrections to the effective action and the non-renormalization theorems. Their coupling to external gauge superfields is also contemplated and finite matter contributions to the gaugino mass and the Fayet-Iliopoulos term are considered. (author)

  15. Renormalization Group Flows from Holography-Supersymmetry and a c-Theorem

    CERN Document Server

    Freedman, D.Z.; Pilch, K.; Warner, N.P.

    1999-01-01

    We obtain first order equations that determine a supersymmetric kink solution in five-dimensional N=8 gauged supergravity. The kink interpolates between an exterior anti-de Sitter region with maximal supersymmetry and an interior anti-de Sitter region with one quarter of the maximal supersymmetry. One eighth of supersymmetry is preserved by the kink as a whole. We interpret it as describing the renormalization group flow in N=4 super-Yang-Mills theory broken to an N=1 theory by the addition of a mass term for one of the three adjoint chiral superfields. A detailed correspondence is obtained between fields of bulk supergravity in the interior anti-de Sitter region and composite operators of the infrared field theory. We also point out that the truncation used to find the reduced symmetry critical point can be extended to obtain a new N=4 gauged supergravity theory holographically dual to a sector of N=2 gauge theories based on quiver diagrams. We consider more general kink geometries and construct a c-function...

  16. Report of the supersymmetry theory subgroup

    International Nuclear Information System (INIS)

    Amundson, J.; Anderson, G.; Baer, H.

    1996-06-01

    The authors provide a mini-guide to some of the possible manifestations of weak-scale supersymmetry. For each of six scenarios they provide: (1) a brief description of the theoretical underpinnings; (2) the adjustable parameters; (3) a qualitative description of the associated phenomenology at future colliders; (4) comments on how to simulate each scenario with existing event generators

  17. Supersymmetry in Brane-Worlds

    International Nuclear Information System (INIS)

    Moura, C.

    2009-06-01

    This thesis is devoted to the analysis of phenomena based on the presence of extra dimensions and branes, within the framework of supersymmetric theories. We propose an extension of the MSSM (Minimal Supersymmetric Standard Model) motivated by theories containing extra dimensions, in which the gauge sector is extended to form a N = 2 representation of the supersymmetry algebra. We describe how Dirac masses appear naturally for the gauginos in this model, and calculate the interactions and mass matrices of the new the neutralinos and charginos. Then we study, within the framework of 5-dimensional supergravity theories, the coupling of the bulk gravitational fields to the chiral multiplets localized on the branes. This study leads to the introduction of a new off-shell extension of supergravity in 5 dimensions, which is well suited for coupling chiral fields on the branes to the bulk supergravity multiplet in the presence of a general superpotential and non vanishing F-terms vacuum expectation values. The generalized Scherk-Schwarz mechanism and the super-Higgs mechanism are also studied in detail in this class of theories. In particular we describe how the pseudo-Goldstinos appear when the supersymmetry is broken by F-terms on the branes and by a Scherk-Schwarz mechanism in the bulk. We also study possibilities for the identification of the pseudo-Goldstinos with the sterile neutrinos. Finally properties of the gravitino in theories with six dimensions are studied. (author)

  18. Supersymmetry for gauged double field theory and generalised Scherk–Schwarz reductions

    International Nuclear Information System (INIS)

    Berman, David S.; Lee, Kanghoon

    2014-01-01

    Previous constructions of supersymmetry for double field theory have relied on the so-called strong constraint. In this paper, the strong constraint is relaxed and the theory is shown to possess supersymmetry once the generalised Scherk–Schwarz reduction is imposed. The equivalence between the generalised Scherk–Schwarz reduced theory and the gauged double field theory is then examined in detail for the supersymmetric theory. As a biproduct we write the generalised Killing spinor equations for the supersymmetric double field theory

  19. Representations of algebras of extended supersymmetry and linearised supergravity theories

    International Nuclear Information System (INIS)

    Tejlor, Dzh.

    1985-01-01

    In the lecture an attempt is made to acquaint the reader with the theory of extended supersymmetry, to characterize the corresponding particle spectrum and to explain how it can be used in supersymmetry with the least difficulties. Superalgebras are classified, their irreducible representations are given. Superfields and superspace are introduced, their role in the superalgebra realization is analyzed. Examples of linearized Lagrangians and auxiliary fields for the theories of supergravity with N=1 and N=2 are presented. Methods of spin reduction with the central charges are considered. The possibility to construct supergravity model with N>=3 off mass shell is considered

  20. Supersymmetry, supergravity and superstring models

    International Nuclear Information System (INIS)

    Ross, G.G.

    1987-01-01

    The authors discuss the structure of models with a low-energy N=1 supersymmetry. This is extended to locally supersymmetric theories and to the models resulting if physics at the Planck scale is described by the superstring. The possible new light gauge and chiral supermultiplet structures are analysed and a specific model leading to the standard SU(3) x SU(2) x U(1) model is presented. Phenomenological implications of such models are discussed