Supersymmetric quantum mechanics with reflections
Energy Technology Data Exchange (ETDEWEB)
Post, Sarah; Vinet, Luc [Centre de Recherches Mathematiques, Universite de Montreal, Montreal CP6128 (QC) H3C 3J7 (Canada); Zhedanov, Alexei, E-mail: post@crm.umontreal.ca, E-mail: luc.vinet@umontreal.ca, E-mail: zhedanov@fti.dn.ua [Donetsk Institute for Physics and Technology, Donetsk 83114 (Ukraine)
2011-10-28
We consider a realization of supersymmetric quantum mechanics where supercharges are differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q {yields} -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wavefunctions of extended Scarf I potentials with different parameters are presented. (paper)
Supersymmetric Quantum Mechanics and Topology
Directory of Open Access Journals (Sweden)
Muhammad Abdul Wasay
2016-01-01
Full Text Available Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Fun with supersymmetric quantum mechanics
Freedman, B.; Cooper, F.
1984-04-01
The Hamiltonian and path integral approaches to supersymmetric quantum mechanics were reviewed. The related path integrals for the Witten Index and for stochastic processes were discussed and shown to be indications for supersymmetry breakdown. A system where in the superpotential W(x) has assymetrical values at + or - infinity was considered. Nonperturbative strategies for studying supersymmetry breakdown were described. These strategies are based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed.
Fun with supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup ..cap alpha../ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index ..delta.. which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if ..delta.. is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate ..delta.. for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references.
Supersymmetric q-deformed quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
Supersymmetric quantum mechanics and paraquantization
Energy Technology Data Exchange (ETDEWEB)
Morchedi, O.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
The paraquantum Hamiltonian of a free particle is shown to be supersymmetric. Depending on the space-time dimension, the corresponding N=1 and N=2 supercharges are constructed and the related Hamiltonians are derived.
Galoisian Approach to Supersymmetric Quantum Mechanics
Acosta-Humanez, Primitivo B
2009-01-01
This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \\emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \\emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization alg...
Counting Trees in Supersymmetric Quantum Mechanics
Cordova, Clay
2015-01-01
We study the supersymmetric ground states of the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in four-dimensional N=2 systems. The ground state degeneracy may be written as a multi-dimensional contour integral, and the enumeration of poles can be simply phrased as counting bipartite trees. We solve this combinatorics problem, thereby obtaining exact formulas for the degeneracies of an infinite class of models. We also develop an algorithm to compute the angular momentum of the ground states, and present explicit expressions for the refined indices of theories where one rank is small.
BiHermitian supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Zucchini, Roberto [Dipartimento di Fisica, Universita degli Studi di Bologna, V Irnerio 46, I-40126 Bologna (Italy)
2007-04-21
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kaehler manifolds recently developed by Gualtieri. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li.
BiHermitian Supersymmetric Quantum Mechanics
Zucchini, R
2006-01-01
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2,2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kaehler manifolds recently developed by Gualtieri. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li.
BiHermitian supersymmetric quantum mechanics
Zucchini, Roberto
2007-04-01
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kähler manifolds recently developed by Gualtieri in [33]. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li in [9].
Supersymmetric quantum mechanics and Painleve equations
Bermudez, David
2013-01-01
In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order PHA the potential is determined by solutions to Painleve IV (PIV) and Painleve V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.
Higher dimensional supersymmetric quantum mechanics and Dirac equation
Indian Academy of Sciences (India)
L P Singh; B Ram
2002-04-01
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
From Scalar Field Theories to Supersymmetric Quantum Mechanics
Bazeia, D
2016-01-01
In this work we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.
Supersymmetric Descendants of Self-Adjointly Extended Quantum Mechanical Hamiltonians
Al-Hashimi, M H; Shalaby, A; Wiese, U -J
2013-01-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Recursive representation of Wronskians in confluent supersymmetric quantum mechanics
Contreras-Astorga, Alonso; Schulze-Halberg, Axel
2017-03-01
A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation.
Supersymmetric quantum mechanics on the lattice: I. Loop formulation
Directory of Open Access Journals (Sweden)
David Baumgartner
2015-05-01
Full Text Available Simulations of supersymmetric field theories on the lattice with (spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Supersymmetric quantum mechanics on the lattice: I. Loop formulation
Baumgartner, David
2014-01-01
Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N = 2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper - the first in a series of three - we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Supersymmetric quantum mechanics of the flux tube
Belitsky, A V
2016-01-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl(2|1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their facto...
Supersymmetric quantum mechanics of the flux tube
Belitsky, A. V.
2016-12-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.
Approximations for strongly-coupled supersymmetric quantum mechanics
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
2000-01-01
We advocate a set of approximations for studying the finite temperature behavior of strongly-coupled theories in 0+1 dimensions. The approximation consists of expanding about a Gaussian action, with the width of the Gaussian determined by a set of gap equations. The approximation can be applied to supersymmetric systems, provided that the gap equations are formulated in superspace. It can be applied to large-N theories, by keeping just the planar contribution to the gap equations. We analyze several models of scalar supersymmetric quantum mechanics, and show that the Gaussian approximation correctly distinguishes between a moduli space, mass gap, and supersymmetry breaking at strong coupling. Then we apply the approximation to a bosonic large-N gauge theory, and argue that a Gross-Witten transition separates the weak-coupling and strong-coupling regimes. A similar transition should occur in a generic large-N gauge theory, in particular in 0-brane quantum mechanics.
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Al-Hashimi, M.H., E-mail: hashimi@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Salman, M., E-mail: msalman@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Shalaby, A., E-mail: amshalab@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Physics Department, Faculty of Science, Mansoura University (Egypt); Wiese, U.-J., E-mail: wiese@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States)
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
Supersymmetric quantum mechanics on the lattice: II. Exact results
Directory of Open Access Journals (Sweden)
David Baumgartner
2015-08-01
Full Text Available Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper – the second in a series of three – we present such an investigation for N=2 supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.
Supersymmetric quantum mechanics on the lattice: II. Exact results
Baumgartner, David
2015-01-01
Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper -- the second in a series of three -- we present such an investigation for ${\\cal N}=2$ supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.
Schwinger's oscillator method, supersymmetric quantum mechanics and massless particles
Directory of Open Access Journals (Sweden)
Mejía F. M.
2002-01-01
Full Text Available We consider Schwinger's method of angular momentum addition using the SU(2 algebra with both a fermionic and a bosonic oscillator. We show that the total spin states obtained are: one boson singlet state and an arbitrary number of spin-1/2 states, the later ones are energy degenerate. It means that we have in this case supersymmetric quantum mechanics and also the addition of angular momentum for massless particles. We review too the cases of two bosonic and two fermionic oscillators.
Recent developments in the N-extended supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica]. E-mail: toppan@cbpf.br
2007-07-01
In this paper we review some recent developments in the understanding of the supersymmetric quantum mechanics for large-N values of the extended supersymmetries. A list of the topics here covered includes the new available classification of the finite linear irreducible representations, the construction of manifestly off-shell invariant actions without introducing a superfield formalism, the notion of the 'fusion algebra' of the irreducible representations, the connection (for N = 8) with the octonionic structure constants, etc. The results presented are based on the work of the author and his collaborators. (author)
N= 4 Supersymmetric Quantum Mechanical Model: Novel Symmetries
Krishna, S
2016-01-01
We discuss a set of novel discrete symmetry transformations of the N = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions onto (1, 4)-dimensional supermanifold.
Loop formulation of supersymmetric Yang-Mills quantum mechanics
Steinhauer, Kyle
2014-01-01
We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.
𝒩 = 4 supersymmetric quantum mechanical model: Novel symmetries
Krishna, S.
2017-04-01
We discuss a set of novel discrete symmetry transformations of the 𝒩 = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent 𝒩 = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions 𝜃α and 𝜃¯α onto (1, 4)-dimensional supermanifold.
An Interacting N = 2 Supersymmetric Quantum Mechanical Model: Novel Symmetries
Krishna, S; Malik, R P
2015-01-01
We demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting N = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realization of the de Rham cohomological operators of differential geometry. We derive the nilpotent N = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our N = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables, obtained after the imposition of the SUSY invariant restrictions, and...
Deformation of supersymmetric and conformal quantum mechanics through affine transformations
Spiridonov, Vyacheslav
1993-01-01
Affine transformations (dilatations and translations) are used to define a deformation of one-dimensional N = 2 supersymmetric quantum mechanics. Resulting physical systems do not have conserved charges and degeneracies in the spectra. Instead, superpartner Hamiltonians are q-isospectral, i.e. the spectrum of one can be obtained from another (with possible exception of the lowest level) by q(sup 2)-factor scaling. This construction allows easily to rederive a special self-similar potential found by Shabat and to show that for the latter a q-deformed harmonic oscillator algebra of Biedenharn and Macfarlane serves as the spectrum generating algebra. A general class of potentials related to the quantum conformal algebra su(sub q)(1,1) is described. Further possibilities for q-deformation of known solvable potentials are outlined.
Supersymmetric Quantum Mechanics and Super-Lichnerowicz Algebras
Hallowell, K; 10.1007/s00220-007-0393-1
2008-01-01
We present supersymmetric, curved space, quantum mechanical models based on deformations of a parabolic subalgebra of osp(2p+2|Q). The dynamics are governed by a spinning particle action whose internal coordinates are Lorentz vectors labeled by the fundamental representation of osp(2p|Q). The states of the theory are tensors or spinor-tensors on the curved background while conserved charges correspond to the various differential geometry operators acting on these. The Hamiltonian generalizes Lichnerowicz's wave/Laplace operator. It is central, and the models are supersymmetric whenever the background is a symmetric space, although there is an osp(2p|Q) superalgebra for any curved background. The lowest purely bosonic example (2p,Q)=(2,0) corresponds to a deformed Jacobi group and describes Lichnerowicz's original algebra of constant curvature, differential geometric operators acting on symmetric tensors. The case (2p,Q)=(0,1) is simply the {\\cal N}=1 superparticle whose supercharge amounts to the Dirac operat...
Planarizable Supersymmetric Quantum Toboggans
Directory of Open Access Journals (Sweden)
Miloslav Znojil
2011-02-01
Full Text Available In supersymmetric quantum mechanics the emergence of a singularity may lead to the breakdown of isospectrality between partner potentials. One of the regularization recipes is based on a topologically nontrivial, multisheeted complex deformations of the line of coordinate x giving the so called quantum toboggan models (QTM. The consistent theoretical background of this recipe is briefly reviewed. Then, certain supersymmetric QTM pairs are shown exceptional and reducible to doublets of non-singular ordinary differential equations a.k.a. Sturm-Schrödinger equations containing a weighted energy E→EW(x and living in single complex plane.
CALL FOR PAPERS: Progress in Supersymmetric Quantum Mechanics
2003-12-01
This is a call for contributions to a special issue of Journal of Physics A: Mathematical and General dedicated to the subject of Supersymmetric Quantum Mechanics as featured in the International Conference in Supersymmetric Quantum Mechanics (PSQM03), 15--19 July 2003, University of Valladolid, Spain (http://metodos.fam.cie.uva.es/~susy_qm_03/). Participants at that meeting, as well as other researchers working in this area or in related fields, are invited to submit a research paper to this issue. The Editorial Board has invited Irina Areféva, David J Fernández, Véronique Hussin, Javier Negro, Luis M Nieto and Boris F Samsonov to act as Guest Editors for the special issue. Their criteria for acceptance of contributions are as follows: bullet The subject of the paper should be in the general area covered by the PSQM03 conference. bullet Contributions will be refereed and processed according to the usual mechanisms of the journal. bullet Papers should present substantial new results (they should not be simply reviews of authors' own work that is already published elsewhere). The guidelines for the preparation of contributions are as follows: bullet DEADLINE for submission of contributions is 15 January 2004. This deadline will allow the special issue to appear in approximately September 2004. bullet There is a page limit of 15 pages per research contribution. Further advice on publishing your work in Journal of Physics A: Mathematical and General may be found at www.iop.org/Journals/jphysa. bullet Contributions to the special issue should if possible be submitted electronically at www.iop.org/Journals/jphysa or by e-mail to jphysa@iop.org, quoting `JPhysA special issue --- PSQM03'. Submissions should ideally be in either standard LaTeX form or Microsoft Word. Please see the web site for further information on electronic submissions. bullet Authors unable to submit by email may send hard copy contributions to: Journal of Physics A, Institute of Physics Publishing
Donets, E. E.; Pashnev, A.; Juan Rosales, J.; Tsulaia, M. M.
2000-02-01
The multidimensional N=4 supersymmetric (SUSY) quantum mechanics (QM) is constructed using the superfield approach. As a result, the component form of the classical and quantum Lagrangian and Hamiltonian is obtained. In the SUSY QM considered, both classical and quantum N=4 algebras include central charges, and this opens various possibilities for partial supersymmetry breaking. It is shown that quantum-mechanical models with one-quarter, one-half, and three-quarters of unbroken (broken) supersymmetries can exist in the framework of the multidimensional N=4 SUSY QM, while the one-dimensional N=4 SUSY QM, constructed earlier, admits only one half or total supersymmetry breakdown. We illustrate the constructed general formalism, as well as all possible cases of partial SUSY breaking taking as an example a direct multidimensional generalization of the one-dimensional N=4 superconformal quantum-mechanical model. Some open questions and possible applications of the constructed multidimensional N=4 SUSY QM to the known exactly integrable systems and problems of quantum cosmology are briefly discussed.
Supersymmetric quantum mechanics approach to a nonlinear lattice
Energy Technology Data Exchange (ETDEWEB)
Ricotta, Regina Maria [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil); Drigo Filho, Elso [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)
2011-07-01
Full text: DNA is one of the most important macromolecules of all biological system. New discoveries about it have open a vast new field of research, the physics of nonlinear DNA. A particular feature that has attracted a lot of attention is the thermal denaturation, i.e., the spontaneous separation of the two strands upon heating. In 1989 a simple lattice model for the denaturation of the DNA was proposed, the Peyrard-Bishop model, PB. The bio molecule is described by two chains of particles coupled by nonlinear springs, simulating the hydrogen bonds that connect the two basis in a pair. The potential for the hydrogen bonds is usually approximated by a Morse potential. The Hamiltonian system generates a partition function which allows the evaluation of the thermodynamical quantities such as mean strength of the basis pairs. As a byproduct the Hamiltonian system was shown to be a NLSE (nonlinear Schroedinger equation) having soliton solutions. On the other hand, a reflectionless potential with one bound state, constructed using supersymmetric quantum mechanics, SQM, can be shown to be identical to a soliton solution of the KdV equation. Thus, motivated by this Hamiltonian problem and inspired by the PB model, we consider the Hamiltonian of a reflectionless potential through SQM, in order to evaluate thermodynamical quantities of a unidimensional lattice with possible biological applications. (author)
Socorro, J.; Nuñez, Omar E.
2017-04-01
The multi-scalar field cosmology of the anisotropic Bianchi type-I model is used in order to construct a family of potentials that are the best suited to model the inflation phenomenon. We employ the quantum potential approach to quantum mechanics due to Bohm in order to solve the corresponding Wheeler-DeWitt equation; which in turn enables us to restrict sensibly the aforementioned family of potentials. Supersymmetric Quantum Mechanics (SUSYQM) is also employed in order to constrain the superpotential function, at the same time the tools from SUSY Quantum Mechanics are used to test the family of potentials in order to infer which is the most convenient for the inflation epoch. For completeness solutions to the wave function of the universe are also presented.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
We show that there exist spurious states for the sector two tensor Hamiltonian in multidimensional supersymmetric quantum mechanics. For one-dimensional supersymmetric quantum mechanics on an infinite domain, the sector one and two Hamiltonians have identical spectra with the exception of the ground state of the sector one. For tensorial multidimensional supersymmetric quantum mechanics, there exist normalizable spurious states for the sector two Hamiltonian with energy equal to the ground state energy of the sector one. These spurious states are annihilated by the adjoint charge operator, and hence, they do not correspond to physical states for the original Hamiltonian. The Hermitian property of the sector two Hamiltonian implies the orthogonality between spurious and physical states. In addition, we develop a method for construction of a specific form of the spurious states for any quantum system and also generate several spurious states for a two-dimensional anharmonic oscillator system and for the hydrogen atom.
Indian Academy of Sciences (India)
ALFREDO VEGA; JORGE FLORES
2016-11-01
Using the variational method and supersymmetric quantum mechanics we calculated, in an approximate way, the eigenvalues, eigenfunctions and wave functions at the origin of the Cornell potential. We compared results with numerical solutions for heavy quarkonia $c \\bar {c}, b \\bar{b}$ and $b \\bar{c}$.
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia da Industria Quimica e Textil (SENAI/CETIQT)]. E-mail: paschoal@cbpf.br; Helayel-Neto, Jose A.; Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: helayel@cbpf.br; lpgassis@cbpf.br
2004-07-01
The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to both magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed. (author)
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Servico Nacional de Aprendizagem Industrial, Centro de Tecnologia da Industria Quimica e Textil, SENAI/CETIQT, Rua Dr. Manoel Cotrim 195, 20961-040 Rio de Janeiro, RJ (Brazil)]. E-mail: paschoal@cbpf.br; Helayel-Neto, Jose A. [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Grupo de Fisica Teorica Jose Leite Lopes, P.O. Box 91933, 25685-970 Petropolis, RJ (Brazil)]. E-mail: helayel@cbpf.br; Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Grupo de Fisica Teorica Jose Leite Lopes, P.O. Box 91933, 25685-970 Petropolis, RJ (Brazil)]. E-mail: lpgassis@cbpf.br
2006-01-09
The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to external magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed.
Hamiltonian Truncation Study of Supersymmetric Quantum Mechanics: S-Matrix and Metastable States
Balthazar, Bruno; Yin, Xi
2016-01-01
We implement the Rayleigh-Ritz method in supersymmetric quantum mechanics with flat directions, and extract the S-matrix and metastable resonances. The effectiveness of the method is demonstrated in two strongly coupled systems: an N=1 toy supermembrane model, and an N=4 model with a U(1) gauge multiplet and a charged chiral multiplet.
Supersymmetric quantum mechanics for two-dimensional disk
Indian Academy of Sciences (India)
Akira Suzuki; Ranabir Dutt; Rajat K Bahaduri
2005-07-01
The infinite square well potential in one dimension has a smooth supersymmetric partner potential which is shape invariant. In this paper, we study the generalization of this to two dimensions by constructing the supersymmetric partner of the disk billiard. We find that the property of shape invariance is lost in this case. Nevertheless, the WKB results are significantly improved when SWKB calculations are performed with the square of the superpotential. We also study the effect of inserting a singular flux line through the center of the disk.
Supersymmetric Yang-Mills quantum mechanics in various dimensions
Wosiek, J
2004-01-01
Recent analytical and numerical solutions of the above systems are reviewed. Discussed results include: a) exact construction of the supersymmetric vacua in two space-time dimensions, and b) precise numerical calculations of the coexisting continuous and discrete spectra in the four-dimensional system, together with the identification of dynamical supermultiplets and SUSY vacua. New construction of the gluinoless SO(9) singlet state, which is vastly different from the empty state, in the ten-dimensional model is also briefly summarized.
Khan, Md Abdul
2015-01-01
Bound state properties of few single and double-$\\Lambda$ hypernuclei is critically examined in the framework of core-$\\Lambda$ and core+$\\Lambda+\\Lambda$ few-body model applying hyperspherical harmonics expansion method (HHEM). The $\\Lambda\\Lambda$ potential is chosen phenomenologically while the core-$\\Lambda$ potential is obtained by folding a phenomenological $\\Lambda N$ interaction into the density distribution of the core. The depth of the effective $\\Lambda N$ potential is adjusted to reproduce the experimental data for the core-$\\Lambda$ subsystem. The three-body Schr\\"odinger equation is solved by hyperspherical adiabatic approximation (HAA) to get the ground state energy and wave function. The ground state wavefunction is used to construct the supersymmetric partner potential following prescription of supersymmetric quantum mechanics (SSQM) algebra. The newly constructed supersymmetric partner potential is used to solve the three-body Schr\\"odinger equation to get the energy and wavefunction for the...
Extended supersymmetric quantum mechanics of Fierz and Schur type
Energy Technology Data Exchange (ETDEWEB)
Kuznetsova, Zhanna, E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil); Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2010-07-01
We discuss two independent constructions to introduce an N-extended Super- symmetric Quantum Mechanics. The rst one makes use of the Fierz identities while the second one (divided into two sub cases) makes use of the Schur lemma. The N supercharges Q{sub I} are square roots of a free Hamiltonian H given by the tensor product of a D-dimensional Laplacian and a 2d-dimensional identity matrix operator. We present the mutual relations among N, D and d. The mod 8 Bott's periodicity of Clifford algebras is encoded, in the Fierz case, in the Radon-Hurwitz function and, in the Schur case, in an extra independent function. (author)
Supersymmetric quantum mechanics living on topologically non-trivial Riemann surfaces
Indian Academy of Sciences (India)
Miloslav Znojil; Vít Jakubský
2009-08-01
Supersymmetric quantum mechanics is constructed in a new non-Hermitian representation. Firstly, the map between the partner operators (±) is chosen antilinear. Secondly, both these components of a super-Hamiltonian $\\mathcal{H}$ are defined along certain topologically non-trivial complex curves r(±)() which spread over several Riemann sheets of the wave function. The non-uniqueness of our choice of the map $\\mathcal{T}$ between `tobogganic' partner curves r(+)() and r(−)() is emphasized.
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel [Escuela Superior de Fisica y Matematicas, IPN, Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, Edificio 9, 07738 Mexico D.F. (Mexico)], E-mail: xbataxel@gmail.com; Rivas, Jesus Morales [Universidad Autonoma Metropolitana - Azcapotzalco, CBI - Area de Fisica Atomica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 Mexico D.F. (Mexico)], E-mail: jmr@correo.azc.uam.mx; Pena Gil, Jose Juan [Universidad Autonoma Metropolitana - Azcapotzalco, CBI - Area de Fisica Atomica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 Mexico D.F. (Mexico)], E-mail: jjpg@correo.azc.uam.mx; Garcia-Ravelo, Jesus [Escuela Superior de Fisica y Matematicas, IPN, Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, Edificio 9, 07738 Mexico D.F. (Mexico)], E-mail: ravelo@esfm.ipn.mx; Roy, Pinaki [Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta-700108 (India)], E-mail: pinaki@isical.ac.in
2009-04-20
We generalize the formalism of nth order Supersymmetric Quantum Mechanics (n-SUSY) to the Fokker-Planck equation for constant diffusion coefficient and stationary drift potential. The SUSY partner drift potentials and the corresponding solutions of the Fokker-Planck equation are given explicitly. As an application, we generate new solutions of the Fokker-Planck equation by means of our first- and second-order transformation.
Canonical simulations of supersymmetric SU(N) Yang-Mills quantum mechanics
Bergner, Georg; Wenger, Urs
2015-01-01
The fermion loop formulation naturally separates partition functions into their canonical sectors. Here we discuss various strategies to make use of this for supersymmetric SU(N) Yang-Mills quantum mechanics obtained from dimensional reduction in various dimensions and present numerical results for the separate canonical sectors with fixed fermion numbers. We comment on potential problems due to the sign of the contributions from the fermions and due to flat directions.
Supersymmetric quantum mechanics with Levy disorder in one dimension
Comtet, Alain; Tourigny, Yves
2011-01-01
We consider the Schroedinger equation with a supersymmetric random potential, where the superpotential is a Levy noise. We focus on the problem of computing the so-called complex Lyapunov exponent, whose real and imaginary parts are, respectively, the Lyapunov exponent and the integrated density of states of the system. In the case where the Levy process is non-decreasing, we show that the calculation of the complex Lyapunov exponent reduces to a Stieltjes moment problem, we ascertain the low-energy behaviour of the density of states in some generality, and relate it to the distributional properties of the Levy process. We review the known solvable cases, where the complex Lyapunov exponent can be expressed in terms of special functions, and discover a new one.
Nilpotent Symmetries of a Specific N = 2 Supersymmetric Quantum Mechanical Model: A Novel Approach
Krishna, S; Malik, R P
2013-01-01
We derive the on-shell nilpotent supersymmetric (SUSY) transformations for the N = 2 SUSY quantum mechanical model of a one (0 + 1)-dimensional free particle by exploiting the SUSY invariant restrictions on the (anti-)chiral supervariables of the SUSY theory that is defined on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables \\theta and \\bar \\theta with \\theta^2 = \\bar \\theta^2 = 0,\\theta \\bar \\theta + \\bar \\theta \\theta = 0). Within the framework of our novel approach, we express the Lagrangian and conserved SUSY charges in terms of the (anti-)chiral supervariables to demonstrate the SUSY invariance of the Lagrangian and nilpotency of the conserved charges in a simple manner. Our approach has the potential to be generalized to the description of other N = 2 SUSY quantum mechanical systems with physically interesting potential functions.
Solutions to the Painlevé V equation through supersymmetric quantum mechanics
Bermudez, David; Fernández C, David J.; Negro, Javier
2016-08-01
In this paper we shall use the algebraic method known as supersymmetric quantum mechanics (SUSY QM) to obtain solutions to the Painlevé V (PV) equation, a second-order nonlinear ordinary differential equation. For this purpose, we will apply first the SUSY QM treatment to the radial oscillator. In addition, we will revisit the polynomial Heisenberg algebras (PHAs) and we will study the general systems ruled by them: for first-order PHAs we obtain the radial oscillator while for third-order PHAs the potential will be determined by solutions to the PV equation. This connection allows us to introduce a simple technique for generating solutions of the PV equation expressed in terms of confluent hypergeometric functions. Finally, we will classify them into several solution hierarchies.
Energy Technology Data Exchange (ETDEWEB)
Krishna, S., E-mail: skrishna.bhu@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); Shukla, A., E-mail: ashukla038@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); Malik, R.P., E-mail: rpmalik1995@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); DST-CIMS, Faculty of Science, BHU-Varanasi-221 005 (India)
2014-12-15
Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.
Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model
Krishna, S.; Shukla, D.; Malik, R. P.
2016-07-01
In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.
Directory of Open Access Journals (Sweden)
Christiane Quesne
2009-08-01
Full Text Available New exactly solvable rationally-extended radial oscillator and Scarf I potentials are generated by using a constructive supersymmetric quantum mechanical method based on a reparametrization of the corresponding conventional superpotential and on the addition of an extra rational contribution expressed in terms of some polynomial g. The cases where g is linear or quadratic are considered. In the former, the extended potentials are strictly isospectral to the conventional ones with reparametrized couplings and are shape invariant. In the latter, there appears a variety of extended potentials, some with the same characteristics as the previous ones and others with an extra bound state below the conventional potential spectrum. Furthermore, the wavefunctions of the extended potentials are constructed. In the linear case, they contain (ν+1th-degree polynomials with ν = 0,1,2,..., which are shown to be X1-Laguerre or X1-Jacobi exceptional orthogonal polynomials. In the quadratic case, several extensions of these polynomials appear. Among them, two different kinds of (ν+2th-degree Laguerre-type polynomials and a single one of (ν+2th-degree Jacobi-type polynomials with ν = 0,1,2,... are identified. They are candidates for the still unknown X2-Laguerre and X2-Jacobi exceptional orthogonal polynomials, respectively.
Chou, Chia-Chun; Kouri, Donald J
2013-04-25
Supersymmetric quantum mechanics (SUSY-QM) is shown to provide a novel approach to the construction of the initial states for the imaginary time propagation method to determine the first and second excited state energies and wave functions for a two-dimensional system. In addition, we show that all calculations are carried out in sector one and none are performed with the tensor sector two Hamiltonian. Through our tensorial approach to multidimensional supersymmetric quantum mechanics, we utilize the correspondence between the eigenstates of the sector one and two Hamiltonians to construct appropriate initial sector one states from sector two states for the imaginary time propagation method. The imaginary time version of the time-dependent Schrödinger equation is integrated to obtain the first and second excited state energies and wave functions using the split operator method for a two-dimensional anharmonic oscillator system and a two-dimensional double well potential. The computational results indicate that we can obtain the first two excited state energies and wave functions even when a quantum system does not exhibit any symmetry. Moreover, instead of dealing with the increasing computational complexity resulting from computations in the tensor sector two Hamiltonian, this study presents a new supersymmetric approach to calculations of accurate excited state energies and wave functions by directly using the scalar sector one Hamiltonian.
Quantum integrability and supersymmetric vacua
Nekrasov, Nikita A.; Shatashvili, Samson L.
2009-01-01
This is an announcement of some of the results of a longer paper where the supersymmetric vacua of two dimensional N=2 susy gauge theories with matter are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. The correspondence between the Heisenberg spin chain and the two dimensional U(N) theory with fundamental hypermultiplets is reviewed in detail. We demonstrate the isomorphism of the equivariant quantum cohomology of the cotangent bundle to ...
Koller, Andrew; Olshanii, Maxim
2011-12-01
We present a case demonstrating the connection between supersymmetric quantum mechanics (SUSYQM), reflectionless scattering, and soliton solutions of integrable partial differential equations. We show that the members of a class of reflectionless Hamiltonians, namely, Akulin's Hamiltonians, are connected via supersymmetric chains to a potential-free Hamiltonian, explaining their reflectionless nature. While the reflectionless property in question has been mentioned in the literature for over two decades, the enabling algebraic mechanism was previously unknown. Our results indicate that the multisoliton solutions of the sine-Gordon and nonlinear Schrödinger equations can be systematically generated via the supersymmetric chains connecting Akulin's Hamiltonians. Our findings also explain a well-known but little-understood effect in laser physics: when a two-level atom, initially in the ground state, is subjected to a laser pulse of the form V(t) = (nh/τ)/cosh(t/τ), with n being an integer and τ being the pulse duration, it remains in the ground state after the pulse has been applied, for any choice of the laser detuning.
Quantum Supersymmetric Bianchi IX Cosmology
Damour, Thibault
2014-01-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing to one timelike dimension the action of D=4 simple supergravity for a Bianchi IX cosmological model. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a spinor of Spin(8,4) depending on the three squashing parameters, which satisfies Dirac, and Klein-Gordon-like, wave equations describing the propagation of a quantum spinning particle reflecting off spin-dependent potential walls. The algebra of the susy constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the maximally compact sub-algebra of the rank-3 hyperbolic Kac-Moody algebra AE3. The (quartic-in-fermions) squared-mass term entering the Klein-Gordon-like equation has several remarkable properties: 1)it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; 2)it is a quad...
Instantons in four-Fermi term broken supersymmetric quantum mechanics with general potential
Energy Technology Data Exchange (ETDEWEB)
Hatzinikitas, Agapitos; Smyrnakis, Ioannis [University of Crete, Department of Applied Mathematics, L. Knosou-Ambelokipi, 71409 Iraklio, Crete (Greece)
2004-01-09
We have shown here how to find an integral representation for the solution of the Euclidean equations of motion of a quantum mechanical point particle in a general potential and in the presence of a four-Fermi term. The classical action in this theory depends explicitly on a set of four fermionic collective coordinates. The corrections to the classical action due to the presence of fermions are of topological nature in the sense that they depend only on the values of the fields at the boundary points {tau} {yields} {+-} {infinity}. As an application, the quantum mechanical sine-Gordon model with a four-Fermi term is solved explicitly and the corrections to the classical action are computed.
Quantum supersymmetric Bianchi IX cosmology
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle
Institute of Scientific and Technical Information of China (English)
JIA Wen-Zhi; WANG Shun-Jin
2008-01-01
We find that in a supersymmetric quantum mechanics (SUSY QM) system, in addition to supersymmetric algebra, an associated SU(2) algebra can be obtained by using semiunitary (SUT) operator and projection operator, and the relevant constants of motion can be constructed. Two typical quantum systems are investigated as examples to demonstrate the above finding. The first example is the quantum system of a nonrelativistic charged particle moving in x-y plane and coupled to a magnetic field along z-axis. The second example is provided with the Dirac particle in a magnetic field. Similarly there exists an SUτ(2) SUσ(2) symmetry in the context of the relativistic Pauli Hamiltonian squared. We show that there exists also an SU(2) symmetry associated with the supersymmetry of the Dirac particle.
Supersymmetric classical mechanics: free case
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica
2001-06-01
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)
The Glueball Spectrum In Conventional And Supersymmetric Quantum Chromodynamics
Gabadadze, Gregory T
1998-01-01
In the Dissertation we study some nonperturbative aspects of conventional Quantum Chromodynamics and its minimal supersymmetric counterpart, supersymmetric gluodynamics. After the introduction, the discussion of the spectrum of lightest glueballs in Quantum Chromodynamics is given. It is shown that the pseudoscalar glueball mass in Quantum Chromodynamics is less than the mass obtained in quenched lattice calculations. The glueball mass and nonperturbative glueball matrix elements are calculated. The production rate for the pseudoscalar glueball in radiative decays is predicted. Then, we study the nonperturbative features of the Lagrangian of Quantum Chromodynamics which might be responsible for formation of the pseudoscalar glueball state. The issue of the screening of the topological charge is analyzed. A possible non-perturbative mechanism of formation of the pseudoscalar glueball state is proposed. The masses of lowest pseudoscalar glueballs are predicted within the framework of this approach. The second h...
Angraini, Lily Maysari; Suparmi, Variani, Viska Inda
2010-12-01
SUSY quantum mechanics can be applied to solve Schrodinger equation for high dimensional system that can be reduced into one dimensional system and represented in lowering and raising operators. Lowering and raising operators can be obtained using relationship between original Hamiltonian equation and the (super) potential equation. In this paper SUSY quantum mechanics is used as a method to obtain the wave function and the energy level of the Modified Poschl Teller potential. The graph of wave function equation and probability density is simulated by using Delphi 7.0 programming language. Finally, the expectation value of quantum mechanics operator could be calculated analytically using integral form or probability density graph resulted by the programming.
Quantum symmetries in supersymmetric Toda theories
Penati, S; Penati, Silvia; Zanon, Daniela
1992-01-01
: We consider two--dimensional supersymmetric Toda theories based on the Lie superalgebras $A(n,n)$, $D(n+1,n)$ and $B(n,n)$ which admit a fermionic set of simple roots and a fermionic untwisted affine extension. In particular, we concentrate on two simple examples, the $B(1,1)$ and $A(1,1)$ theories. Both in the conformal and massive case we address the issue of quantum integrability by constructing the first non trivial conserved currents and proving their conservation to all--loop orders. While the $D(n+1,n)$ and $B(n,n)$ systems are genuine $N=1$ supersymmetric theories, the $A(n,n)$ models possess a global $N=2$ supersymmetry. In the conformal case, we show that the $A(n,n)$ stress--energy tensor, uniquely determined by the holomorphicity condition, has vanishing central charge and it corresponds to the stress--energy tensor of the associated topological theory. (Invited talk at the International Workshop ``String theory, quantum gravity and the unification of the fundamental interactions'', Roma, Septem...
Quantum Cohomology and Quantum Hydrodynamics from Supersymmetric Quiver Gauge Theories
Bonelli, Giulio; Tanzini, Alessandro; Vasko, Petr
2015-01-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
Quantum cohomology and quantum hydrodynamics from supersymmetric quiver gauge theories
Bonelli, Giulio; Sciarappa, Antonio; Tanzini, Alessandro; Vasko, Petr
2016-11-01
We study the connection between N = 2 supersymmetric gauge theories, quantum cohomology and quantum integrable systems of hydrodynamic type. We consider gauge theories on ALE spaces of A and D-type and discuss how they describe the quantum cohomology of the corresponding Nakajima's quiver varieties. We also discuss how the exact evaluation of local BPS observables in the gauge theory can be used to calculate the spectrum of quantum Hamiltonians of spin Calogero integrable systems and spin Intermediate Long Wave hydrodynamics. This is explicitly obtained by a Bethe Ansatz Equation provided by the quiver gauge theory in terms of its adjacency matrix.
Gravitational Quantum Foam and Supersymmetric Gauge Theories
Maeda, T; Noma, Y; Tamakoshi, T; Maeda, Takashi; Nakatsu, Toshio; Noma, Yui; Tamakoshi, Takeshi
2005-01-01
We study K\\"{a}hler gravity on local SU(N) geometry and describe precise correspondence with certain supersymmetric gauge theories and random plane partitions. The local geometry is discretized, via the geometric quantization, to a foam of an infinite number of gravitational quanta. We count these quanta in a relative manner by measuring a deviation of the local geometry from a singular Calabi-Yau threefold, that is a A_{N-1} singularity fibred over \\mathbb{P}^1. With such a regularization prescription, the number of the gravitational quanta becomes finite and turns to be the perturbative prepotential for five-dimensional \\mathcal{N}=1 supersymmetric SU(N) Yang-Mills. These quanta are labelled by lattice points in a certain convex polyhedron on \\mathbb{R}^3. The polyhedron becomes obtainable from a plane partition which is the ground state of a statistical model of random plane partition that describes the exact partition function for the gauge theory. Each gravitational quantum of the local geometry is shown...
Ilinskii, K N; Melezhik, V S; Ilinski, K N; Kalinin, G V; Melezhik, V V
1994-01-01
We revise the sequences of SUSY for a cyclic adiabatic evolution governed by the supersymmetric quantum mechanical Hamiltonian. The condition (supersymmetric adiabatic evolution) under which the supersymmetric reductions of Berry (nondegenerated case) or Wilczek-Zee (degenerated case) phases of superpartners are taking place is pointed out. The analogue of Witten index (supersymmetric Berry index) is determined. As the examples of suggested concept of supersymmetric adiabatic evolution the Holomorphic quantum mechanics on complex plane and Meromorphic quantum mechanics on Riemann surface are considered. The supersymmetric Berry indexes for the models are calculated.
Gauging isometries in N=4 supersymmetric mechanics
Delduc, F
2008-01-01
This talk summarizes the study of superfield gaugings of isometries of extended supersymmetric mechanics in hep-th/0605211, hep-th/0611247 and arXiv:0706.0706. The gauging procedure provides a manifestly supersymmetric realization of d=1 automorphic dualities which interrelate various irreducible off-shell multiplets of d=1 extended supersymmetry featuring the same number of physical fermions but different divisions of bosonic fields into the physical and auxiliary subsets. We concentrate on the most interesting N=4 case and demonstrate that, with a suitable choice of the symmetry to be gauged, all such multiplets of N=4 supersymmetric mechanics and their generic superfield actions can be obtained from the "root" multiplet (4,4,0) and the appropriate gauged subclasses of the generic superfield action of the latter by a simple universal recipe.
New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics
Carone, C D; Moroi, T; Carone, Christopher D.; Hall, Lawrence J.; Moroi, Takeo
1997-01-01
We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.
Supersymmetric quantum mechanics and regularizations
Znojil, M
2003-01-01
The text is inspired by the recent preprints by Gangopadhyaya and Mallow (arXiv: hep-th/0206133) and by Das and Pernice (arXiv: hep-th/0207112) and offers the new resolution of the singularity paradox of Jevicki and Rodriguez (Phys. Lett. B 146 (1984) 55).
Quantum cosmology: From hidden symmetries towards a new (supersymmetric) perspective
Jalalzadeh, S.; Rostami, T.; Moniz, P. V.
2016-02-01
P. V. Moniz, Phys. Rev. D 92 (2015) 023526, arXiv:gr-qc/1507.04212]. We envisage that we could extend this framework towards a class of shape invariant potentials, which could include well known analytically solvable cosmological cases. Provided, we identify integrability in terms of the shape invariance conditions, we could eventually consider to import features of supersymmetric quantum mechanics towards quantum cosmology [P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 1: Fundamentals, Lecture Notes in Physics, Vol. 803 (Springer-Verlag, Berlin, 2010), P. V. Moniz, Quantum Cosmology-the Supersymmetric Perspective-Vol. 2: Advanced Topics, Lecture Notes in Physics, Vol. 804 (Springer, New York, 2010)], which we will also discuss in this review. Another point to emphasize is that by means of a hidden symmetry and then an algebra of Dirac observables, boundary conditions are extracted (and not ad hoc formulated) within a framework intrinsic to each model dynamics. Therefore, meeting DeWitt’s conjecture [B. S. DeWitt, Phys. Rev. 160 (1967) 1113] that “the constraints are everything” and nothing else but the constraints should be needed.
SU(2|2) supersymmetric mechanics
Ivanov, Evgeny; Sidorov, Stepan
2016-01-01
We introduce a new kind of non-relativistic ${\\cal N}{=}\\,8$ supersymmetric mechanics, associated with worldline realizations of the supergroup $SU(2|2)$ treated as a deformation of flat ${\\cal N}{=}\\,8$, $d{=}1$ supersymmetry. Various worldline $SU(2|2)$ superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell $SU(2|2)$ multiplets $({\\bf 3,8,5})$, $({\\bf 4,8,4})$ and $({\\bf 5,8,3})$, we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group $OSp(4^*|4)$ in the conformal cases. For the simplest $({\\bf 5, 8, 3})$ model the quantization is performed.
SU(2|2) supersymmetric mechanics
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Evgeny [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Sidorov, Stepan [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation)
2016-11-07
We introduce a new kind of non-relativistic N= 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N= 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4{sup ∗}|4) in the conformal cases. For the simplest (5,8,3) model the quantization is performed.
Supersymmetric quantum spin chains and classical integrable systems
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Supersymmetric quantum spin chains and classical integrable systems
Tsuboi, Zengo; Zotov, Andrei
2014-01-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Cluster-like coordinates in supersymmetric quantum field theory.
Neitzke, Andrew
2014-07-08
Recently it has become apparent that N = 2 supersymmetric quantum field theory has something to do with cluster algebras. I review one aspect of the connection: supersymmetric quantum field theories have associated hyperkähler moduli spaces, and these moduli spaces carry a structure that looks like an extension of the notion of cluster variety. In particular, one encounters the usual variables and mutations of the cluster story, along with more exotic extra variables and generalized mutations. I focus on a class of examples where the underlying cluster varieties are moduli spaces of flat connections on surfaces, as considered by Fock and Goncharov [Fock V, Goncharov A (2006) Publ Math Inst Hautes Études Sci 103:1-211]. The work reviewed here is largely joint with Davide Gaiotto and Greg Moore.
The Quantum Hall Effect in Supersymmetric Chern-Simons Theories
Tong, David
2015-01-01
In d=2+1 dimensions, there exist gauge theories which are supersymmetric but non-relativistic. We solve the simplest U(1) gauge theory in this class and show that the low-energy physics is that of the fractional quantum Hall effect, with ground states given by the Laughlin wavefunctions. We do this by quantising the vortices and relating them to the quantum Hall matrix model. We further construct coherent state representations of the excitations of vortices. These are quasi-holes. By an explicit computation of the Berry phase, without resorting to a plasma analogy, we show that these excitations have fractional charge and spin.
Quantum mechanics for mathematicians
Takhtajan, Leon A
2008-01-01
This book provides a comprehensive treatment of quantum mechanics from a mathematics perspective and is accessible to mathematicians starting with second-year graduate students. It addition to traditional topics, like classical mechanics, mathematical foundations of quantum mechanics, quantization, and the Schrodinger equation, this book gives a mathematical treatment of systems of identical particles with spin, and it introduces the reader to functional methods in quantum mechanics. This includes the Feynman path integral approach to quantum mechanics, integration in functional spaces, the relation between Feynman and Wiener integrals, Gaussian integration and regularized determinants of differential operators, fermion systems and integration over anticommuting (Grassmann) variables, supersymmetry and localization in loop spaces, and supersymmetric derivation of the Atiyah-Singer formula for the index of the Dirac operator. Prior to this book, mathematicians could find these topics only in physics textbooks ...
Quantum Cosmology - The Supersymmetric Perspective - Vol. 2
Moniz, Paulo Vargas
What is this book about? What is quantum cosmology with supersymmetry? How is supersymmetry implemented? Is it through the use of (recent developments in) a superstring theory? Why should the very early universe be explored in that manner? Are there enticing and interesting research problems left to solve? How relevant would it be to address and solve them?
N=2 supersymmetric gauge theories and quantum integrable systems
Energy Technology Data Exchange (ETDEWEB)
Luo, Yuan; Tan, Meng-Chwan [Department of Physics, National University of Singapore 2 Science Drive 3, 117551 (Singapore); Yagi, Junya [Department of Physics, National University of Singapore 2 Science Drive 3, 117551 (Singapore); International School for Advanced Studies (SISSA) Via Bonomea, 265, 34136 Trieste (Italy); INFN, Sezione di Trieste Via Valerio, 2, 34149 Trieste (Italy)
2014-03-20
We study N=2 supersymmetric gauge theories on the product of a two-sphere and a cylinder. We show that the low-energy dynamics of a BPS sector of such a theory is described by a quantum integrable system, with the Planck constant set by the inverse of the radius of the sphere. If the sphere is replaced with a hemisphere, then our system reduces to an integrable system of the type studied by Nekrasov and Shatashvili. In this case we establish a correspondence between the effective prepotential of the gauge theory and the Yang-Yang function of the integrable system.
Second Hopf map and supersymmetric mechanics with Yang monopole
Energy Technology Data Exchange (ETDEWEB)
Gonzales, M.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z. [Universidade Federal do ABC, Santo Andre, SP (Brazil); Nersessian, F. [Artsakh State University, Stepanakert (Armenia); Yeghikyan, V. [Yerevan State University (Armenia)
2009-07-01
We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)
Rae, Alastair I M
2016-01-01
A Thorough Update of One of the Most Highly Regarded Textbooks on Quantum Mechanics Continuing to offer an exceptionally clear, up-to-date treatment of the subject, Quantum Mechanics, Sixth Edition explains the concepts of quantum mechanics for undergraduate students in physics and related disciplines and provides the foundation necessary for other specialized courses. This sixth edition builds on its highly praised predecessors to make the text even more accessible to a wider audience. It is now divided into five parts that separately cover broad topics suitable for any general course on quantum mechanics. New to the Sixth Edition * Three chapters that review prerequisite physics and mathematics, laying out the notation, formalism, and physical basis necessary for the rest of the book * Short descriptions of numerous applications relevant to the physics discussed, giving students a brief look at what quantum mechanics has made possible industrially and scientifically * Additional end-of-chapter problems with...
Factorization Method in Quantum Mechanics
Dong, Shi-Hai
2007-01-01
This Work introduces the factorization method in quantum mechanics at an advanced level with an aim to put mathematical and physical concepts and techniques like the factorization method, Lie algebras, matrix elements and quantum control at the Reader’s disposal. For this purpose a comprehensive description is provided of the factorization method and its wide applications in quantum mechanics which complements the traditional coverage found in the existing quantum mechanics textbooks. Related to this classic method are the supersymmetric quantum mechanics, shape invariant potentials and group theoretical approaches. It is no exaggeration to say that this method has become the milestone of these approaches. In fact the Author’s driving force has been his desire to provide a comprehensive review volume that includes some new and significant results about the factorization method in quantum mechanics since the literature is inundated with scattered articles in this field, and to pave the Reader’s way into ...
Powell, John L
2015-01-01
Suitable for advanced undergraduates, this thorough text focuses on the role of symmetry operations and the essentially algebraic structure of quantum-mechanical theory. Based on courses in quantum mechanics taught by the authors, the treatment provides numerous problems that require applications of theory and serve to supplement the textual material.Starting with a historical introduction to the origins of quantum theory, the book advances to discussions of the foundations of wave mechanics, wave packets and the uncertainty principle, and an examination of the Schrödinger equation that includ
Energy Technology Data Exchange (ETDEWEB)
Krivoshchekov, V.L.; Slavnov, A.A.; Chekhov, L.O.
1988-01-01
An effective meson action is constructed for supersymmetric quantum chromodynamics (SUSY-QCD) in the framework of the 1/N expansion. It is shown that there is no dynamical spontaneous breaking of the supersymmetry. The explicit expression obtained for the low-energy action with allowance for the anomaly is the supersymmetric generalization of the Weinberg-Wess-Zumino-Witten action.
Mandl, F.
1992-07-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scientists R. J. Barlow and A. R. Barnett Quantum Mechanics aims to teach those parts of the subject which every physicist should know. The object is to display the inherent structure of quantum mechanics, concentrating on general principles and on methods of wide applicability without taking them to their full generality. This book will equip students to follow quantum-mechanical arguments in books and scientific papers, and to cope with simple cases. To bring the subject to life, the theory is applied to the all-important field of atomic physics. No prior knowledge of quantum mechanics is assumed. However, it would help most readers to have met some elementary wave mechanics before. Primarily written for students, it should also be of interest to experimental research workers who require a good grasp of quantum mechanics without the full formalism needed by the professional theorist. Quantum Mechanics features: A flow diagram allowing topics to be studied in different orders or omitted altogether. Optional "starred" and highlighted sections containing more advanced and specialized material for the more ambitious reader. Sets of problems at the end of each chapter to help student understanding. Hints and solutions to the problems are given at the end of the book.
Fitzpatrick, Richard
2015-01-01
Quantum mechanics was developed during the first few decades of the twentieth century via a series of inspired guesses made by various physicists, including Planck, Einstein, Bohr, Schroedinger, Heisenberg, Pauli, and Dirac. All these scientists were trying to construct a self-consistent theory of microscopic dynamics that was compatible with experimental observations. The purpose of this book is to present quantum mechanics in a clear, concise, and systematic fashion, starting from the fundamental postulates, and developing the theory in as logical manner as possible. Topics covered in the book include the fundamental postulates of quantum mechanics, angular momentum, time-dependent and time-dependent perturbation theory, scattering theory, identical particles, and relativistic electron theory.
Ghosh, P K
2014-01-01
Quantum mechanics, designed for advanced undergraduate and graduate students of physics, mathematics and chemistry, provides a concise yet self-contained introduction to the formal framework of quantum mechanics, its application to physical problems and the interpretation of the theory. Starting with a review of some of the necessary mathematics, the basic concepts are carefully developed in the text. After building a general formalism, detailed treatment of the standard material - the harmonic oscillator, the hydrogen atom, angular momentum theory, symmetry transformations, approximation methods, identical particle and many-particle systems, and scattering theory - is presented. The concluding chapter discusses the interpretation of quantum mechanics. Some of the important topics discussed in the book are the rigged Hilbert space, deformation quantization, path integrals, coherent states, geometric phases, decoherene, etc. This book is characterized by clarity and coherence of presentation.
Gravitational quantum corrections in warped supersymmetric brane worlds
Gregoire, T; Scrucca, C A; Strumia, A; Trincherini, E
2005-01-01
We study gravitational quantum corrections in supersymmetric theories with warped extra dimensions. We develop for this a superfield formalism for linearized gauged supergravity. We show that the 1-loop effective Kahler potential is a simple functional of the KK spectrum in the presence of generic localized kinetic terms at the two branes. We also present a simple understanding of our results by showing that the leading matter effects are equivalent to suitable displacements of the branes. We then apply this general result to compute the gravity-mediated universal soft mass $m_0^2$ in models where the visible and the hidden sectors are sequestered at the two branes. We find that the contributions coming from radion mediation and brane-to-brane mediation are both negative in the minimal set-up, but the former can become positive if the gravitational kinetic term localized at the hidden brane has a sizeable coefficient. We then compare the features of the two extreme cases of flat and very warped geometry, and ...
Rae, Alastair I M
2007-01-01
PREFACESINTRODUCTION The Photoelectric Effect The Compton Effect Line Spectra and Atomic Structure De Broglie Waves Wave-Particle Duality The Rest of This Book THE ONE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Time-Dependent Schrödinger Equation The Time-Independent Schrödinger Equation Boundary ConditionsThe Infinite Square Well The Finite Square Well Quantum Mechanical Tunneling The Harmonic Oscillator THE THREE-DIMENSIONAL SCHRÖDINGER EQUATIONS The Wave Equations Separation in Cartesian Coordinates Separation in Spherical Polar Coordinates The Hydrogenic Atom THE BASIC POSTULATES OF QUANTUM MEC
Zagoskin, Alexandre
2015-01-01
Written by Dr Alexandre Zagoskin, who is a Reader at Loughborough University, Quantum Mechanics: A Complete Introduction is designed to give you everything you need to succeed, all in one place. It covers the key areas that students are expected to be confident in, outlining the basics in clear jargon-free English, and then providing added-value features like summaries of key ideas, and even lists of questions you might be asked in your exam. The book uses a structure that is designed to make quantum physics as accessible as possible - by starting with its similarities to Newtonian physics, ra
Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.
Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto
2014-07-11
Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.
Quantum Spectral Curve of the N =6 Supersymmetric Chern-Simons Theory
Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto
2014-07-01
Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N =6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.
Angular Momentum of Supersymmetric Non-isotropic Traps
Institute of Scientific and Technical Information of China (English)
XU Qiang
2001-01-01
A simple way to explain quantum behavior of supersymmetric non-isotropic traps is proposed in the framework of sermiunitary formulation of supersymmetric quantum mechanics. Using semiunitary formulation we can simultaneously supersymmetrize the complete set of observables, especially including angular moment.
Jian, Shao-Kai; Maciejko, Joseph; Yao, Hong
2016-01-01
We show that a supersymmetric gauge theory with dynamical gauge bosons and fermionic gauginos emerges naturally at the pair-density-wave (PDW) quantum phase transition on the surface of a correlated topological insulator (TI) hosting three Dirac cones, such as the candidate topological Kondo insulator SmB$_6$. At the tricritical point separating the first- and second-order quantum phase transitions between the surface Dirac semimetal and nematic PDW phases, three massless bosonic Cooper pair fields emerge as the superpartners of three massless surface Dirac fermions. The resulting low-energy effective theory is the supersymmetric XYZ model, which is dual by mirror symmetry to $\\mathcal{N}=2$ supersymmetric quantum electrodynamics (SQED) in 2+1 dimensions. Using supersymmetry, we calculate exactly certain critical exponents and the optical conductivity of the surface states at the tricritical point, which may be measured in future experiments.
Mandl, Franz
1992-01-01
The Manchester Physics Series General Editors: D. J. Sandiford; F. Mandl; A. C. Phillips Department of Physics and Astronomy, University of Manchester Properties of Matter B. H. Flowers and E. Mendoza Optics Second Edition F. G. Smith and J. H. Thomson Statistical Physics Second Edition F. Mandl Electromagnetism Second Edition I. S. Grant and W. R. Phillips Statistics R. J. Barlow Solid State Physics Second Edition J. R. Hook and H. E. Hall Quantum Mechanics F. Mandl Particle Physics Second Edition B. R. Martin and G. Shaw The Physics of Stars Second Edition A. C. Phillips Computing for Scient
Trace anomalies from quantum mechanics
Bastianelli, F; Bastianelli, Fiorenzo; Nieuwenhuizen, Peter van
1993-01-01
The 1-loop anomalies of a d-dimensional quantum field theory can be computed by evaluating the trace of the regulated path integral jacobian matrix, as shown by Fujikawa. In 1983, Alvarez-Gaum\\'e and Witten observed that one can simplify this evaluation by replacing the operators which appear in the regulator and in the jacobian by quantum mechanical operators with the same (anti)commutation relations. By rewriting this quantum mechanical trace as a path integral with periodic boundary conditions for a one-dimensional supersymmetric nonlinear sigma model, they obtained the chiral anomalies for spin 1/2 and 3/2 fields and selfdual antisymmetric tensors in d dimensions. In this article, we treat the case of trace anomalies for spin 0, 1/2 and 1 fields in a gravitational and Yang-Mills background. We do not introduce a supersymmetric sigma model, but keep the original Dirac matrices $\\g^\\m$ and internal symmetry generators $T^a$ in the path integral. As a result, we get a matrix-valued action. Gauge covariance o...
A supersymmetric exotic field theory in (1+1) dimensions. One loop soliton quantum mass corrections
Aguirre, A R
2016-01-01
We consider one loop quantum corrections to soliton mass for the $N=1$ supersymmetric extension of the $\\phi^2 \\cos^2(\\ln \\phi^2)$ scalar field theory in (1+1) dimensions. First, we compute the one loop quantum soliton mass correction of the bosonic sector by using a mixture of the scattering phase shift and the Euclidean effective action technique. Afterwards the computation in the supersymmetric case is naturally extended by considering the fermionic phase shifts associated to the Majorana fields. As a result we derive a general formula for the one loop quantum corrections to the soliton mass of the SUSY kink, and obtain for this exotic model the same value as for the SUSY sine-Gordon and $\\phi^4$ models.
Quantum phase transition in many-flavor supersymmetric QED$_{3}$
Russo, Jorge G
2016-01-01
We study $\\mathcal{N}=4$ supersymmetric QED in three dimensions, on a three-sphere, with 2N massive hypermultiplets and a Fayet-Iliopoulos parameter. We identify the exact partition function of the theory with a conical (Mehler) function. This implies a number of analytical formulas, including a recurrence relation and a second-order differential equation, associated with an integrable system. In the large N limit, the theory undergoes a second-order phase transition on a critical line in the parameter space. We discuss the critical behavior and compute the two-point correlation function of a gauge invariant mass operator, which is shown to diverge as one approaches criticality from the subcritical phase. Finally, we comment on the asymptotic 1/N expansion and on mirror symmetry.
Heisenberg double of supersymmetric algebras for noncommutative quantum field theory
Kirchanov, V. S.
2013-09-01
The ground work is laid for the construction of a Heisenberg superdouble in the form of a smash product of a standard Poincaré-Lie quantum-operator superalgebra with coalgebra and its double Lie spatial superalgebra with coalgebra, which are Hopf algebras and a Hopf modular algebra, respectively. Deformation of the superalgebras is realized by Drinfeld twists for the shift and supershift operators. As a result, an extended algebra is obtained, containing a non(anti)commutative superspace and quantum-group generators.
6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Teschner, J.; Vartanov, G.S.
2012-02-15
We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)
6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories
Teschner, J
2012-01-01
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.
N ＝ 4 Superconformal Quantum Mechanics in One Dimension and Its Algebraic Structure
Institute of Scientific and Technical Information of China (English)
RUAN Dong; GUO Hao; SUN Hong-Zhou
2002-01-01
N = 4 superconformal quantum mechanics of nonrelativistic particles in the typical 1/x2-potentials, which holds not only supersymmetry but also dynamical conformal symmetry, is studied. The corresponding superconformal quantum mechanical algebra, which contains supersymmetric quantum mechanical algebra with four supercharges and conformal algebra as subalgebras, and its two canonical group chains are established.
Greiner, Walter
1989-01-01
"Quantum Dynamics" is a major survey of quantum theory based on Walter Greiner's long-running and highly successful courses at the University of Frankfurt. The key to understanding in quantum theory is to reinforce lecture attendance and textual study by working through plenty of representative and detailed examples. Firm belief in this principle led Greiner to develop his unique course and to transform it into a remarkable and comprehensive text. The text features a large number of examples and exercises involving many of the most advanced topics in quantum theory. These examples give practical and precise demonstrations of how to use the often subtle mathematics behind quantum theory. The text is divided into five volumes: Quantum Mechanics I - An Introduction, Quantum Mechanics II - Symmetries, Relativistic Quantum Mechanics, Quantum Electrodynamics, Gauge Theory of Weak Interactions. These five volumes take the reader from the fundamental postulates of quantum mechanics up to the latest research in partic...
Introduction to quantum mechanics
Villaseñor, Eduardo J. S.
2008-01-01
The purpose of this contribution is to give a very brief introduction to Quantum Mechanics for an audience of mathematicians. I will follow Segal's approach to Quantum Mechanics paying special attention to algebraic issues. The usual representation of Quantum Mechanics on Hilbert spaces is also discussed.
New results for the quantum bosonic and supersymmetric kinks
Litvintsev, Andrei V.
2001-07-01
In this thesis we present complete and consistent treatment of the problem of computation of the quantum corrections for the bosonic and susy kinks. We consider a new momentum cut-off scheme for sums over zero-point energies, containing an arbitrary function f(k) which interpolates smoothly between the zero-point energies of the modes around the kink and those in flat space. A term proportional to 66k f(k) modifies the result for the one-loop quantum mass M(1) as obtained from naive momentum cut-off regularization, which now agrees with previous results, both for the non-susy and susy case. We also introduce a new regularization scheme for the evaluation of the one-loop correction to the central charge Z(1), with a cut-off K for the Dirac delta function in the canonical commutation relations and a cut-off Λ for the loop momentum. The result for Z(1) depends only on whether K > Λ or K sums over modes. For a single kink, there is one bosonic zero mode degree of freedom, but it is necessary to average over four sets of fermionic boundary conditions in order (i) to preserve the fermionic Z2 gauge invariance y→-y , (ii) to satisfy the basic principle of mode regularization that the boundary conditions in the trivial and the kink sector should be the same, (iii) in order that the energy stored at the boundaries cancels and (iv) to avoid obtaining a finite, uniformly distributed energy which would violate cluster decomposition. The average number of fermionic zeroenergy degrees of freedom in the presence of the kink is then indeed 1/2. For boundary conditions leading to only one fermionic zeroenergy solution, the Z2 gauge invariance identifies two seemingly distinct 'vacua' as the same physical ground state, and the single fermionic zero-energy solution does not correspond to a degree of freedom. Other boundary conditions lead to two spatially separated o ˜ 0 solutions, corresponding to one (spatially delocalized) degree of freedom. This nonlocality is consistent
Testing Nonassociative Quantum Mechanics.
Bojowald, Martin; Brahma, Suddhasattwa; Büyükçam, Umut
2015-11-27
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to nonassociative algebras. Their quantum physics has remained obscure. This Letter presents the first derivation of potentially testable physical results in nonassociative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Chowdhury, Debtosh; Vempati, Sudhir K
2011-01-01
Accurate supersymmetric spectra are required to confront data from direct and indirect searches of supersymmetry. \\SUSEFLAV\\ is a numerical tool which is capable of computing supersymmetric spectra accurately for various supersymmetric breaking scenarios applicable even in the presence of flavor violation. The program solves MSSM RGEs with complete $3\\times3$ flavor mixing at 2-loop level and one loop finite threshold corrections to all MSSM parameters by incorporating radiative electroweak symmetry breaking conditions. The program also incorporates the Type-I seesaw mechanism with three massive right handed neutrinos at user defined mass scales and mixing. It also computes branching ratios of flavor violating processes such as $l_j\\,\\rightarrow\\, l_i\\gamma$, $l_j\\;\\rightarrow\\, 3 ~l_i$, $b \\,\\rightarrow\\,s\\gamma$ and supersymmetric contributions to flavor conserving quantities such as $(g_{\\mu}-2)$. A large choice of executables suitable for various operations of the program are provided.
Ahn, Doyeol
2011-01-01
A clear introduction to quantum mechanics concepts Quantum mechanics has become an essential tool for modern engineering, particularly due to the recent developments in quantum computing as well as the rapid progress in optoelectronic devices. Engineering Quantum Mechanics explains the fundamentals of this exciting field, providing broad coverage of both traditional areas such as semiconductor and laser physics as well as relatively new yet fast-growing areas such as quantum computation and quantum information technology. The book begins with basic quantum mechanics, reviewing measurements and probability, Dirac formulation, the uncertainty principle, harmonic oscillator, angular momentum eigenstates, and perturbation theory. Then, quantum statistical mechanics is explored, from second quantization and density operators to coherent and squeezed states, coherent interactions between atoms and fields, and the Jaynes-Cummings model. From there, the book moves into elementary and modern applications, discussing s...
Advanced Visual Quantum Mechanics
Thaller, Bernd
2005-01-01
Advanced Visual Quantum Mechanics is a systematic effort to investigate and to teach quantum mechanics with the aid of computer-generated animations. It is a self-contained textbook that combines selected topics from atomic physics (spherical symmetry, the hydrogen atom, and particles with spin) with an introduction to quantum information theory (qubits, EPR paradox, teleportation, quantum computers). It explores relativistic quantum mechanics and the strange behavior of Dirac equation solutions. A series of appendices covers important topics from perturbation and scattering theory. The book places an emphasis on ideas and concepts, with a fair to moderate amount of mathematical rigor. Though this book stands alone, it can also be paired with Thaller Visual Quantum Mechanics to form a comprehensive course in quantum mechanics. The software for the first book earned the European Academic Software Award 2000 for outstanding innovation in its field.
Quantum mechanics in chemistry
Schatz, George C
2002-01-01
Intended for graduate and advanced undergraduate students, this text explores quantum mechanical techniques from the viewpoint of chemistry and materials science. Dynamics, symmetry, and formalism are emphasized. An initial review of basic concepts from introductory quantum mechanics is followed by chapters examining symmetry, rotations, and angular momentum addition. Chapter 4 introduces the basic formalism of time-dependent quantum mechanics, emphasizing time-dependent perturbation theory and Fermi's golden rule. Chapter 5 sees this formalism applied to the interaction of radiation and matt
Quantum mechanics for pedestrians
Pade, Jochen
2014-01-01
This book provides an introduction into the fundamentals of non-relativistic quantum mechanics. In Part 1, the essential principles are developed. Applications and extensions of the formalism can be found in Part 2. The book includes not only material that is presented in traditional textbooks on quantum mechanics, but also discusses in detail current issues such as interaction-free quantum measurements, neutrino oscillations, various topics in the field of quantum information as well as fundamental problems and epistemological questions, such as the measurement problem, entanglement, Bell's inequality, decoherence, and the realism debate. A chapter on current interpretations of quantum mechanics concludes the book. To develop quickly and clearly the main principles of quantum mechanics and its mathematical formulation, there is a systematic change between wave mechanics and algebraic representation in the first chapters. The required mathematical tools are introduced step by step. Moreover, the appendix coll...
Dirac, Paul A M
2001-01-01
The author of this concise, brilliant series of lectures on mathematical methods in quantum mechanics was one of the shining intellects in the field, winning a Nobel prize in 1933 for his pioneering work in the quantum mechanics of the atom. Beyond that, he developed the transformation theory of quantum mechanics (which made it possible to calculate the statistical distribution of certain variables), was one of the major authors of the quantum theory of radiation, codiscovered the Fermi-Dirac statistics, and predicted the existence of the positron.The four lectures in this book were delivered
Facing quantum mechanical reality.
Rohrlich, F
1983-09-23
Two recent precision experiments provide conclusive evidence against any local hidden variables theory and in favor of standard quantum mechanics. Therefore the epistemology and the ontology of quantum mechanics must now be taken more seriously than ever before. The consequences of the standard interpretation of quantum mechanics are summarized in nontechnical language. The implications of the finiteness of Planck's constant (h > 0) for the quantum world are as strange as the implications of the finiteness of the speed of light (c < infinity for space and time in relativity theory. Both lead to realities beyond our common experience that cannot be rejected.
Holography and Quantum Mechanics
Wang, X J
2002-01-01
It is illustrated that quantum mechanics can be interpreted as holographic projection of higher dimension classical gravity. In this explanation every quantum path in D-dimension is dual to a classical path of (D+1)-dimension gravity under definite holographic projection. I consider 2-dimension non-relativitic free particle and harmonic oscillator as two examples, and find their gravity dual. I conjecture that every quantum mechanics system has their dual gravity description.
Elementary Nonrelativistic Quantum Mechanics
Rosu, H C
2000-01-01
This is a graduate course on elementary quantum mechanics written for the benefit of undergraduate and graduate students. It is the English version of physics/0003106, which I did at the suggestion of several students from different countries. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Gol'dman, I I
2010-01-01
A comprehensive collection of problems of varying degrees of difficulty in nonrelativistic quantum mechanics, with answers and completely worked-out solutions. Among the topics: one-dimensional motion, transmission through a potential barrier, commutation relations, angular momentum and spin, and motion of a particle in a magnetic field. An ideal adjunct to any textbook in quantum mechanics, useful in courses in atomic and nuclear physics, mathematical methods in physics, quantum statistics and applied differential equations. 1961 edition.
Lecture Notes on Three Supersymmetric/Topological Systems in Quantum Field Theory
Guilarte, Juan Mateos
2016-01-01
((1+1)-dimensional ${\\cal N}=1$ super-symmetric field theory and (3+1)-dimensional ${\\cal N}=2$ super-symmetric gauge theory are discussed in a, more or less, unified way, designed to identify the quantum BPS states in both systems. Euclidean 4-dimensional gauge theory with ${\\cal N}=2$ twisted super-symmetry is also analized. ${\\bf C}^\\infty$-topological invariants are identified as certain n-point correlation functions in this QFT framework. The twist of the effective dual Abelian gauge theory is briefly described, both from mathematical and physical viewpoints. The physical nature of the topological defects arising in these systems, kinks, BPS and Dirac monopoles, BPST instantons, Liouville and Abrikosov-Nielsen-Olesen selfdual vortices, etcetera, is analyzed, The thread of the story connecting the QFT systems treated respectively in Sections \\S.3 and \\S.4 is the process of TWIST that leads from a conventional extended Supersymetric Gauge Theory to the topological ${\\cal N}=2$ SUSY Donaldson QFT. Within Se...
Chang, Lay Nam; Minic, Djordje; Takeuchi, Tatsu
2012-01-01
We construct a discrete quantum mechanics using a vector space over the Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discrete quantum mechanics cannot be reproduced with any hidden variable theory.
Goldman, Iosif Ilich; Geilikman, B T
2006-01-01
This challenging book contains a comprehensive collection of problems in nonrelativistic quantum mechanics of varying degrees of difficulty. It features answers and completely worked-out solutions to each problem. Geared toward advanced undergraduates and graduate students, it provides an ideal adjunct to any textbook in quantum mechanics.
Directory of Open Access Journals (Sweden)
Tadashi Okazaki
2015-01-01
Full Text Available We consider the multiple M2-branes wrapped on a compact Riemann surface and study the arising quantum mechanics by taking the limit where the size of the Riemann surface goes to zero. The IR quantum mechanical models resulting from the BLG-model and the ABJM-model compactified on a torus are N=16 and N=12 superconformal gauged quantum mechanics. After integrating out the auxiliary gauge fields we find OSp(16|2 and SU(1,1|6 quantum mechanics from the reduced systems. The curved Riemann surface is taken as a holomorphic curve in a Calabi–Yau space to preserve supersymmetry and we present a prescription of the topological twisting. We find the N=8 superconformal gauged quantum mechanics that may describe the motion of two wrapped M2-branes in a K3 surface.
Quantum Mechanics interpreted in Quantum Real Numbers
Corbett, J V; Corbett, John V; Durt, Thomas
2002-01-01
The concept of number is fundamental to the formulation of any physical theory. We give a heuristic motivation for the reformulation of Quantum Mechanics in terms of non-standard real numbers called Quantum Real Numbers. The standard axioms of quantum mechanics are re-interpreted. Our aim is to show that, when formulated in the language of quantum real numbers, the laws of quantum mechanics appear more natural, less counterintuitive than when they are presented in terms of standard numbers.
Energy Technology Data Exchange (ETDEWEB)
Kapustin, Anton [California Institute of Technology, Pasadena, California 91125 (United States)
2013-06-15
We formulate physically motivated axioms for a physical theory which for systems with a finite number of degrees of freedom uniquely lead to quantum mechanics as the only nontrivial consistent theory. Complex numbers and the existence of the Planck constant common to all systems arise naturally in this approach. The axioms are divided into two groups covering kinematics and basic measurement theory, respectively. We show that even if the second group of axioms is dropped, there are no deformations of quantum mechanics which preserve the kinematic axioms. Thus, any theory going beyond quantum mechanics must represent a radical departure from the usual a priori assumptions about the laws of nature.
Quantum Chaos and Statistical Mechanics
Srednicki, Mark
1994-01-01
We briefly review the well known connection between classical chaos and classical statistical mechanics, and the recently discovered connection between quantum chaos and quantum statistical mechanics.
Quantum mechanical Carnot engine
Bender, C M; Meister, B K
2000-01-01
A cyclic thermodynamic heat engine runs most efficiently if it is reversible. Carnot constructed such a reversible heat engine by combining adiabatic and isothermal processes for a system containing an ideal gas. Here, we present an example of a cyclic engine based on a single quantum-mechanical particle confined to a potential well. The efficiency of this engine is shown to equal the Carnot efficiency because quantum dynamics is reversible. The quantum heat engine has a cycle consisting of adiabatic and isothermal quantum processes that are close analogues of the corresponding classical processes.
NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
Institute of Scientific and Technical Information of China (English)
LIU KE-JIA; HE LI; ZHOU GUO-LI; WU YU-JIAO
2001-01-01
Using the formalism of supersymmetric quantum mechanics, we give an exact solution for a family of onedimensional periodic potentials, which are the supersymmetric partners of the potential proportional to the trigonometric function cos(2x) such that the Schrodinger equation for this potential is named the Mathieu equation mathematically.We show that the new potentials are distinctly different from their original ones. However, both have the same energy band structure. All the potentials obtained in this paper are free of singularities.
Odake, Satoru; Sasaki, Ryu
2011-01-01
A comprehensive review of the discrete quantum mechanics with the pure imaginary shifts and the real shifts is presented in parallel with the corresponding results in the ordinary quantum mechanics. The main subjects to be covered are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modification), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creati...
González-Ruiz, A
1994-01-01
We consider integrable open-boundary conditions for the supersymmetric t-J model commuting with the number operator $n$ and $S^{z}$. We find four families, each one depending on two arbitrary parameters. The associated eigenvalue problem is solved by generalizing the Nested Algebraic Bethe Ansatz of the quantum group invariant case (which is obtained as a special limit). For the quantum group invariant case the Bethe ansatz states are shown to be highest weights of $spl_{q}(2,1)$. We also discuss the relation between Sklyanin's method of constructing open boundary conditions and the one for the quantum group invariant case based on Markov traces.
Rosu, H C
2000-01-01
This is the first graduate course on elementary quantum mechanics in Internet written in Romanian for the benefit of Romanian speaking students (Romania and Moldova). It is a translation (with corrections) of the Spanish version of the course (physics/9808031, English translation is under consideration), which I did at the request of students of physics in Bucharest. The topics included refer to the postulates of quantum mechanics, one-dimensional barriers and wells, angular momentum and spin, WKB method, harmonic oscillator, hydrogen atom, quantum scattering, and partial waves
Effectively Emergent Quantum Mechanics
Exirifard, Qasem
2008-01-01
We consider non minimal coupling between matters and gravity in modified theories of gravity. In contrary to the current common sense, we report that quantum mechanics can effectively emerge when the space-time geometry is sufficiently flat. In other words, quantum mechanics might play no role when and where the space-time geometry is highly curved. We study the first two simple models of Effectively Emergent Quantum Mechanics(EEQM): R-dependent EEQM and G-dependent EEQM where R is the Ricci scalar and G is the Gauss-Bonnet Lagrangian density. We discuss that these EEQM theories might be fine tuned to remain consistent with all the implemented experiments and performed observations. In particular, we observe that G-dependent EEQM softens the problem of quantum gravity.
n = 4 supersymmetric FRW model
Energy Technology Data Exchange (ETDEWEB)
Rosales, J.J.; Pashnev, A. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 (Russian Federation); Tkach, V.I. [Instituto de Fisica, Universidad de Guanajuato, 05315-970 Leon, 66318 Guanajuato (Mexico)]. e-mail: juan@ifug3.ugto.mx, pashnev@thsun1.jinr.ru, vladimir@ifug3.ugto.mx
2003-07-01
In this work we have constructed the n = 4 extended local conformal time supersymmetry for the Friedmann-Robertson-Walker cosmological models. This is based on the superfield construction of the action, which is invariant under world line local n = 4 supersymmetry with SU(2){sub local} X SU(2){sub global} internal subgroup. It is shown that the supersymmetric action has the form of the localized (or superconformal) version of the action for n = 4 supersymmetric quantum mechanics. This superfield procedure provides a well defined scheme for including super matter. (Author)
Dolev, S; Kolenda, N
2005-01-01
For more than a century, quantum mechanics has served as a very powerful theory that has expanded physics and technology far beyond their classical limits, yet it has also produced some of the most difficult paradoxes known to the human mind. This book represents the combined efforts of sixteen of today's most eminent theoretical physicists to lay out future directions for quantum physics. The authors include Yakir Aharonov, Anton Zeilinger; the Nobel laureates Anthony Leggett and Geradus 't Hooft; Basil Hiley, Lee Smolin and Henry Stapp. Following a foreword by Roger Penrose, the individual chapters address questions such as quantum non-locality, the measurement problem, quantum insights into relativity, cosmology and thermodynamics, and the possible bearing of quantum phenomena on biology and consciousness.
Indian Academy of Sciences (India)
S Sree Ranjani; A K Kapoor; Avinash Khare; P K Panigrahi
2013-08-01
Quantum Hamilton–Jacobi formalism is used to give a proof for Gozzi’s criterion, which states that for eigenstates of the supersymmetric partners, corresponding to the same energy, the difference in the number of nodes is equal to one when supersymmetry (SUSY) is unbroken and is zero when SUSY is broken. We also show that this proof is also applicable to the case, where isospectral deformation is involved.
Mayato, R; Egusquiza, I
2002-01-01
The treatment of time in quantum mechanics is still an important and challenging open question in the foundation of the theory. This book describes the problems, and the attempts and achievements in defining, formalizing and measuring different time quantities in quantum theory, such as the parametric (clock) time, tunneling times, decay times, dwell times, delay times, arrival times or jump times. This multiauthored book, written as an introductory guide for the non-initiated as well as a useful source of information for the expert, covers many of the open questions. A brief historical overview is to be found in the introduction. It is followed by 12 chapters devoted to conceptual and theoretical investigations as well as experimental issues in quantum-mechanical time measurements. This unique monograph should attract physicists as well as philosophers of science working in the foundations of quantum physics.
Probability in quantum mechanics
Directory of Open Access Journals (Sweden)
J. G. Gilson
1982-01-01
Full Text Available By using a fluid theory which is an alternative to quantum theory but from which the latter can be deduced exactly, the long-standing problem of how quantum mechanics is related to stochastic processes is studied. It can be seen how the Schrödinger probability density has a relationship to time spent on small sections of an orbit, just as the probability density has in some classical contexts.
Effectively calculable quantum mechanics
Bolotin, Arkady
2015-01-01
According to mathematical constructivism, a mathematical object can exist only if there is a way to compute (or "construct") it; so, what is non-computable is non-constructive. In the example of the quantum model, whose Fock states are associated with Fibonacci numbers, this paper shows that the mathematical formalism of quantum mechanics is non-constructive since it permits an undecidable (or effectively impossible) subset of Hilbert space. On the other hand, as it is argued in the paper, if...
Mechanics classical and quantum
Taylor, T T
2015-01-01
Mechanics: Classical and Quantum explains the principles of quantum mechanics via the medium of analytical mechanics. The book describes Schrodinger's formulation, the Hamilton-Jacobi equation, and the Lagrangian formulation. The author discusses the Harmonic Oscillator, the generalized coordinates, velocities, as well as the application of the Lagrangian formulation to systems that are partially or entirely electromagnetic in character under certain conditions. The book examines waves on a string under tension, the isothermal cavity radiation, and the Rayleigh-Jeans result pertaining to the e
Mechanisms of supersymmetry breaking in the minimal supersymmetric standard model
Indian Academy of Sciences (India)
Probir Roy
2003-02-01
We provide a bird’s eyeview of current ideas on supersymmetry breaking mechanisms in the MSSM. The essentials of gauge, gravity, anomaly and gaugino/higgsino mediation mechanisms are covered brieﬂy and the phenomenology of the associated models is touched upon. A few statement are also made on braneworld supersymmetry breaking.
The quantum mechanics of cosmology.
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
Fundamentals of quantum mechanics
House, J E
2017-01-01
Fundamentals of Quantum Mechanics, Third Edition is a clear and detailed introduction to quantum mechanics and its applications in chemistry and physics. All required math is clearly explained, including intermediate steps in derivations, and concise review of the math is included in the text at appropriate points. Most of the elementary quantum mechanical models-including particles in boxes, rigid rotor, harmonic oscillator, barrier penetration, hydrogen atom-are clearly and completely presented. Applications of these models to selected “real world” topics are also included. This new edition includes many new topics such as band theory and heat capacity of solids, spectroscopy of molecules and complexes (including applications to ligand field theory), and small molecules of astrophysical interest.
Analysis of the R-symmetric supersymmetric models including quantum corrections
Kotlarski, Wojciech
2016-01-01
We study the Minimal R-symmetric Supersymmetric Standard Model (MRSSM) at the quantum level. The thesis consists of two parts. First one treats about the electroweak sector of the model. Among others, it identifies the parameter region allowed by the electroweak precision observables. Since the MRSSM contains an $SU(2)_L$-triplet with a non-zero vacuum expectation value the emphasis is put on the calculation of the $W$ boson mass. To that end, a full one-loop calculation of $m_W$ augmented with the leading two-loop SM result is presented. The region is then checked against the measurement of the Higgs boson mass. For this, the full one-loop and leading two-loop corrections to the Higgs boson mass in the MRSSM are calculated. Devised benchmark points, consistent with both of these observables, are shown to fulfill also a number of additional experimental constraints like properties of the Higgs boson(s), $b$-physics observables and vacuum stability. Correlating all of these observables allows to put bounds on ...
Quantum Vacua of 2d Maximally Supersymmetric Yang-Mills Theory
Koloğlu, Murat
2016-01-01
We analyze the classical and quantum vacua of 2d $\\mathcal{N}=(8,8)$ supersymmetric Yang-Mills theory with $SU(N)$ and $U(N)$ gauge group, describing the worldvolume interactions of $N$ parallel D1-branes with flat transverse directions $\\mathbb{R}^8$. We claim that the IR limit of the $SU(N)$ theory in the superselection sector labeled $M \\pmod{N}$ --- identified with the internal dynamics of $(M,N)$-string bound states of Type IIB string theory --- is described by the symmetric orbifold $\\mathcal{N}=(8,8)$ sigma model into $(\\mathbb{R}^8)^{D-1}/\\mathbb{S}_D$ when $D=\\gcd(M,N)>1$, and by a single massive vacuum when $D=1$, generalizing the conjectures of E. Witten and others. The full worldvolume theory of the D1-branes is the $U(N)$ theory with an additional $U(1)$ 2-form gauge field $B$ coming from the string theory Kalb-Ramond field. This $U(N)+B$ theory has generalized field configurations, labeled by the $\\mathbb{Z}$-valued generalized electric flux and an independent $\\mathbb{Z}_N$-valued 't Hooft flux...
Quantum Mechanics with Applications
Afnan, Iraj R
2011-01-01
The ebook introduces undergraduate students to the basic skills required to use non-relativistic quantum mechanics for bound and scattering problems in atomic, molecular and nuclear physics. Initial emphasis is on problems that admit analytic solutions. These results are then used in conjunction with symmetry to develop approximation methods for both bound and scattering problems. The text concentrates on the application of computational problems to introduce the basic concepts of quantum mechanics. These are then used to study more complex problems that can be reduced to one-body problems.
Kogan, VI; Gersch, Harold
2011-01-01
Written by a pair of distinguished Soviet mathematicians, this compilation presents 160 lucidly expressed problems in nonrelativistic quantum mechanics plus completely worked-out solutions. Some were drawn from the authors' courses at the Moscow Institute of Engineering, but most were prepared especially for this book. A high-level supplement rather than a primary text, it constitutes a masterful complement to advanced undergraduate and graduate texts and courses in quantum mechanics.The mathematics employed in the proofs of the problems-asymptotic expansions of functions, Green's functions, u
Saxon, David S
2012-01-01
Based on lectures for an undergraduate UCLA course in quantum mechanics, this volume focuses on the formulas of quantum mechanics rather than applications. Widely used in both upper-level undergraduate and graduate courses, it offers a broad self-contained survey rather than in-depth treatments.Topics include the dual nature of matter and radiation, state functions and their interpretation, linear momentum, the motion of a free particle, Schrödinger's equation, approximation methods, angular momentum, and many other subjects. In the interests of keeping the mathematics as simple as possible, m
Noncommutative quantum mechanics
Gamboa, J.; Loewe, M.; Rojas, J. C.
2001-09-01
A general noncommutative quantum mechanical system in a central potential V=V(r) in two dimensions is considered. The spectrum is bounded from below and, for large values of the anticommutative parameter θ, we find an explicit expression for the eigenvalues. In fact, any quantum mechanical system with these characteristics is equivalent to a commutative one in such a way that the interaction V(r) is replaced by V=V(HHO,Lz), where HHO is the Hamiltonian of the two-dimensional harmonic oscillator and Lz is the z component of the angular momentum. For other finite values of θ the model can be solved by using perturbation theory.
Higgs as a Probe of Supersymmetric Grand Unification with the Hosotani Mechanism
Kakizaki, Mitsuru; Taniguchi, Hiroyuki; Yamashita, Toshifumi
2013-01-01
The supersymmetric grand unified theory where the SU(5) gauge symmetry is broken by the Hosotani mechanism predicts the existence of adjoint chiral superfields whose masses are at the supersymmetry breaking scale. The Higgs sector is extended with the SU(2)_L triplet with hypercharge zero and neutral singlet chiral multiplets from that in the minimal supersymmetric standard model. Since the triplet and singlet chiral multiplets originate from a higher-dimensional vector multiplet, this model is highly predictive. Properties of the particles in the Higgs sector are characteristic and can be different from those in the Standard Model and other models. We evaluate deviations in coupling constants of the standard model-like Higgs boson and the mass spectrum of the additional Higgs bosons. We find that our model is discriminative from the others by precision measurements of these coupling constants and masses of the additional Higgs bosons. This model can be a good example of grand unification that is testable at ...
Csáki, C; Csaki, Csaba; Randall, Lisa
1995-01-01
There are few robust solutions to the doublet-triplet splitting problem in supersymmetric GUT theories. One of the more promising solutions is the Higgs as pseudo-Goldstone boson mechanism. In its minimal implementation, such a solution places an additional restriction on the parameter space of the minimal supersymmetric standard model. A testable consequence of this constraint is an equation for \\tan \\beta. We present this restriction and study its solutions in order to constrain the allowed parameter space. Thus the assumptions on the GUT scale Higgs sector should yield testable predictions for weak scale physics. If the SUSY parameters are measured then it should be possible to check the predictions, yielding insight into GUT scale physics.
Hollowood, Timothy J.
2016-07-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950s development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrödinger cat states are the norm rather than curiosities generated in physicists' laboratories. We then describe how the conditioned state of a quantum system depends crucially on how the system is monitored illustrating this with the example of a decaying atom monitored with a time of arrival photon detector, leading to Bohr's quantum jumps. On the other hand, other kinds of detection lead to much smoother behaviour, providing yet another example of complementarity. Finally we explain how classical behaviour emerges, including classical mechanics but also thermodynamics.
Time Asymmetric Quantum Mechanics
Directory of Open Access Journals (Sweden)
Arno R. Bohm
2011-09-01
Full Text Available The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1 for states or the Heisenberg equation (6a for observables are given by a unitary group. Dirac kets require the concept of a RHS (rigged Hilbert space of Schwartz functions; for this kind of RHS a mathematical theorem also leads to time symmetric group evolution. Scattering theory suggests to distinguish mathematically between states (defined by a preparation apparatus and observables (defined by a registration apparatus (detector. If one requires that scattering resonances of width Γ and exponentially decaying states of lifetime τ=h/Γ should be the same physical entities (for which there is sufficient evidence one is led to a pair of RHS's of Hardy functions and connected with it, to a semigroup time evolution t_0≤t<∞, with the puzzling result that there is a quantum mechanical beginning of time, just like the big bang time for the universe, when it was a quantum system. The decay of quasi-stable particles is used to illustrate this quantum mechanical time asymmetry. From the analysis of these processes, we show that the properties of rigged Hilbert spaces of Hardy functions are suitable for a formulation of time asymmetry in quantum mechanics.
Determinism beneath Quantum Mechanics
Hooft, G
2002-01-01
Contrary to common belief, it is not difficult to construct deterministic models where stochastic behavior is correctly described by quantum mechanical amplitudes, in precise accordance with the Copenhagen-Bohr-Bohm doctrine. What is difficult however is to obtain a Hamiltonian that is bounded from below, and whose ground state is a vacuum that exhibits complicated vacuum fluctuations, as in the real world. Beneath Quantum Mechanics, there may be a deterministic theory with (local) information loss. This may lead to a sufficiently complex vacuum state, and to an apparent non-locality in the relation between the deterministic ("ontological") states and the quantum states, of the kind needed to explain away the Bell inequalities. Theories of this kind would not only be appealing from a philosophical point of view, but may also be essential for understanding causality at Planckian distance scales.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Institute of Scientific and Technical Information of China (English)
吴宁; 阮图南
1996-01-01
A quantum mechanical model with one bosonic degree of freedom is discussed in detail. Conventionally, when a quantum mechanical model is constructed, one must know the corresponding classical model. And by applying the correspondence between the classical Poisson brackets and the canonical commutator, the canonical quantization condition can be obtained. In the quantum model, study of the corresponding classical model is needed first. In this model, the Lagrangian is an operator gauge invariant. After localization, in order to keep gauge invariance, the operator gauge potential must be introduced. The Eular-Lagrange equation of motion of the dynamical argument gives the usual operator equation of motion. And the operator gauge potential just gjves a constraint. This constraint is just the usual canonical quantization condition.
Generalized Supersymmetric Perturbation Theory
Institute of Scientific and Technical Information of China (English)
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Hollowood, Timothy J
2013-01-01
We describe an interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description for macro-systems. The interpretation is a modal one, but does not suffer from the range of problems that plague other modal interpretations. The key feature is that quantum states carry an additional property assignment in the form of one the eigenvectors of the reduced density matrix which evolves evolves according to a stochastic process driven by the unmodified Schrodinger equation, but it is usually hidden from the emergent classical description due to the ergodic nature of its dynamics. However, during a quantum measurement, ergodicity is broken by decoherence and definite outcomes occur with probabilities that agree with the Born rule.
Quantum mechanics with applications
Beard, David B
2014-01-01
This introductory text emphasizes Feynman's development of path integrals and its application to wave theory for particles. Suitable for undergraduate and graduate students of physics, the well-written, clear, and rigorous text was written by two of the nation's leading authorities on quantum physics. A solid foundation in quantum mechanics and atomic physics is assumed. Early chapters provide background in the mathematical treatment and particular properties of ordinary wave motion that also apply to particle motion. The close relation of quantum theory to physical optics is stressed. Subsequent sections emphasize the physical consequences of a wave theory of material properties, and they offer extensive applications in atomic physics, nuclear physics, solid state physics, and diatomic molecules. Four helpful Appendixes supplement the text.
Epigenetics: Biology's Quantum Mechanics.
Jorgensen, Richard A
2011-01-01
The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920s and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Epigenetics: Biology's Quantum Mechanics
Directory of Open Access Journals (Sweden)
Richard A Jorgensen
2011-04-01
Full Text Available The perspective presented here is that modern genetics is at a similar stage of development as were early formulations of quantum mechanics theory in the 1920's and that in 2010 we are at the dawn of a new revolution in genetics that promises to enrich and deepen our understanding of the gene and the genome. The interrelationships and interdependence of two views of the gene - the molecular biological view and the epigenetic view - are explored, and it is argued that the classical molecular biological view is incomplete without incorporation of the epigenetic perspective and that in a sense the molecular biological view has been evolving to include the epigenetic view. Intriguingly, this evolution of the molecular view toward the broader and more inclusive epigenetic view of the gene has an intriguing, if not precise, parallel in the evolution of concepts of atomic physics from Newtonian mechanics to quantum mechanics that are interesting to consider.
Advanced concepts in quantum mechanics
Esposito, Giampiero; Miele, Gennaro; Sudarshan, George
2015-01-01
Introducing a geometric view of fundamental physics, starting from quantum mechanics and its experimental foundations, this book is ideal for advanced undergraduate and graduate students in quantum mechanics and mathematical physics. Focusing on structural issues and geometric ideas, this book guides readers from the concepts of classical mechanics to those of quantum mechanics. The book features an original presentation of classical mechanics, with the choice of topics motivated by the subsequent development of quantum mechanics, especially wave equations, Poisson brackets and harmonic oscillators. It also presents new treatments of waves and particles and the symmetries in quantum mechanics, as well as extensive coverage of the experimental foundations.
Tomino, Dan
2010-01-01
1-loop vacuum energies of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra are discussed. A_{2,2} algebra, Nambu-Poisson algebra in flat spacetime, and a Lorentzian 3-algebra are examined as 3-algebras.
Supersymmetric invariant theories
Esipova, S R; Radchenko, O V
2013-01-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Supersymmetric invariant theories
Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.
2014-04-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Symmetry and quantum mechanics
Corry, Scott
2016-01-01
This book offers an introduction to quantum mechanics for professionals, students, and others in the field of mathematics who have a minimal background in physics with an understanding of linear algebra and group theory. It covers such topics as Lie groups, algebras and their representations, and analysis (Hilbert space, distributions, the spectral Theorem, and the Stone-Von Neumann Theorem). The book emphasizes the role of symmetry and is useful to physicists as it provides a mathematical introduction to the topic.
Graduate Quantum Mechanics Reform
Carr, L D
2008-01-01
We address four main areas in which graduate quantum mechanics education in the U.S. can be improved: course content; textbook; teaching methods; and assessment tools. We report on a three year longitudinal study at the Colorado School of Mines using innovations in all four of these areas. In particular, we have modified the content of the course to reflect progress in the field in the last 50 years, use modern textbooks that include such content, incorporate a variety of teaching techniques based on physics education research, and used a variety of assessment tools to study the effectiveness of these reforms. We present a new assessment tool, the Graduate Quantum Mechanics Conceptual Survey, and further testing of a previously developed assessment tool, the Quantum Mechanics Conceptual Survey (QMCS). We find that graduate students respond well to research-based techniques that have previously been tested mainly in introductory courses, and that they learn a great deal of the new content introduced in each ve...
Quantum Mechanics in the Infrared
Radicevic, Djordje
2016-01-01
This paper presents an algebraic formulation of the renormalization group flow in quantum mechanics on flat target spaces. For any interacting quantum mechanical theory, the fixed point of this flow is a theory of classical probability, not a different effective quantum mechanics. Each energy eigenstate of the UV Hamiltonian flows to a probability distribution whose entropy is a natural diagnostic of quantum ergodicity of the original state. These conclusions are supported by various examples worked out in detail.
Basdevant, Jean-Louis
2007-01-01
Beautifully illustrated and engagingly written, Lectures on Quantum Mechanics presents theoretical physics with a breathtaking array of examples and anecdotes. Basdevant's style is clear and stimulating, in the manner of a brisk classroom lecture that students can follow with ease and enjoyment. Here is a sample of the book's style, from the opening of Chapter 1: "If one were to ask a passer-by to quote a great formula of physics, chances are that the answer would be 'E = mc2'. Nevertheless, the formula 'E=hV' which was written in the same year 1905 by the same Albert Einstein, and which started quantum theory, concerns their daily life considerably more. In fact, of the three watershed years for physics toward the beginning of the 20th century - 1905: the Special Relativity of Einstein, Lorentz and Poincaré; 1915: the General Relativity of Einstein, with its extraordinary reflections on gravitation, space and time; and 1925: the full development of Quantum Mechanics - it is surely the last which has the mos...
Hollowood, Timothy J
2015-01-01
In our quantum mechanics courses, measurement is usually taught in passing, as an ad-hoc procedure involving the ugly collapse of the wave function. No wonder we search for more satisfying alternatives to the Copenhagen interpretation. But this overlooks the fact that the approach fits very well with modern measurement theory with its notions of the conditioned state and quantum trajectory. In addition, what we know of as the Copenhagen interpretation is a later 1950's development and some of the earlier pioneers like Bohr did not talk of wave function collapse. In fact, if one takes these earlier ideas and mixes them with later insights of decoherence, a much more satisfying version of Copenhagen quantum mechanics emerges, one for which the collapse of the wave function is seen to be a harmless book keeping device. Along the way, we explain why chaotic systems lead to wave functions that spread out quickly on macroscopic scales implying that Schrodinger cat states are the norm rather than curiosities generat...
Sakurai, Jun John
2011-01-01
This best-selling classic provides a graduate-level, non-historical, modern introduction of quantum mechanical concepts. The author, J. J. Sakurai, was a renowned theorist in particle theory. This revision by Jim Napolitano retains the original material and adds topics that extend the text’s usefulness into the 21st century. The introduction of new material, and modification of existing material, appears in a way that better prepares the student for the next course in quantum field theory. You will still find such classic developments as neutron interferometer experiments, Feynman path integrals, correlation measurements, and Bell’s inequality. The style and treatment of topics is now more consistent across chapters.
Lattice studies of quark spectra and supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Schierenberg, Sebastian
2012-06-24
In the first part of this work, we study quark spectra at either non-zero temperature or chemical potential. In the first case, we find a possible explanation for the Anderson localization that is observed in the spectrum. We introduce a random matrix model that has the same localization and shares other important properties of the QCD Dirac operator, too. In the case of a non-vanishing chemical potential, we show that the eigenvalue spacing distributions of the Dirac operator are described by simple random matrix models. In the second part of this work, we study supersymmetry on the lattice. We summarize our progress with the blocking approach and show possible problems. Furthermore, we construct a lattice action which is improved with respect to supersymmetry and study this action numerically.
Supersymmetric quantum mechanics on the lattice: III. Simulations and algorithms
Baumgartner, David
2015-01-01
In the fermion loop formulation the contributions to the partition function naturally separate into topological equivalence classes with a definite sign. This separation forms the basis for an efficient fermion update algorithm using a fluctuating open fermion string. It guarantees sufficient tunnelling between the topological sectors, and hence provides a solution to the fermion sign problem affecting systems with broken supersymmetry. Moreover, the algorithm shows no critical slowing down even in the massless limit and can hence handle the massless Goldstino mode emerging in the supersymmetry broken phase. In this paper -- the third in a series of three -- we present the details of the simulation algorithm and demonstrate its efficiency by means of a few examples.
Bananaworld quantum mechanics for primates
Bub, Jeffrey
2016-01-01
What on earth do bananas have to do with quantum mechanics? From a modern perspective, quantum mechanics is about strangely counterintuitive correlations between separated systems, which can be exploited in feats like quantum teleportation, unbreakable cryptographic schemes, and computers with enormously enhanced computing power. Schro?dinger coined the term "entanglement" to describe these bizarre correlations. Bananaworld -- an imaginary island with "entangled" bananas -- brings to life the fascinating discoveries of the new field of quantum information without the mathematical machinery of quantum mechanics. The connection with quantum correlations is fully explained in sections written for the non-physicist reader with a serious interest in understanding the mysteries of the quantum world. The result is a subversive but entertaining book that is accessible and interesting to a wide range of readers, with the novel thesis that quantum mechanics is about the structure of information. What we have discovered...
Quantum mechanics theory and experiment
Beck, Mark
2012-01-01
This textbook presents quantum mechanics at the junior/senior undergraduate level. It is unique in that it describes not only quantum theory, but also presents five laboratories that explore truly modern aspects of quantum mechanics. These laboratories include "proving" that light contains photons, single-photon interference, and tests of local realism. The text begins by presenting the classical theory of polarization, moving on to describe the quantum theory of polarization. Analogies between the two theories minimize conceptual difficulties that students typically have when first presented with quantum mechanics. Furthermore, because the laboratories involve studying photons, using photon polarization as a prototypical quantum system allows the laboratory work to be closely integrated with the coursework. Polarization represents a two-dimensional quantum system, so the introduction to quantum mechanics uses two-dimensional state vectors and operators. This allows students to become comfortable with the mat...
Scan Quantum Mechanics: Quantum Inertia Stops Superposition
Gato-Rivera, Beatriz
2015-01-01
A novel interpretation of the quantum mechanical superposition is put forward. Quantum systems scan all possible available states and switch randomly and very rapidly among them. The longer they remain in a given state, the larger the probability of the system to be found in that state during a measurement. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia $I_q$ reaches a critical value $I_{cr}$ for an observable, the switching among the different eigenvalues of that observable stops and the corresponding superposition comes to an end. Consequently, increasing the mass, temperature, gravitational force, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. The process could be reversible decreasing the size, temperature, gravitational force, etc. leading to...
On the Stability of Non-Supersymmetric Quantum Attractors in String Theory
Dominic, Pramod
2011-01-01
We study four dimensional non-supersymmetric attractors in type IIA string theory in the presence of sub-leading corrections to the prepotential. For a given Calabi-Yau manifold, the D0-D4 system admits an attractor point in the moduli space which is uniquely specified by the black hole charges. The perturbative corrections to the prepotential do not change the number of massless directions in the black hole effective potential. We further study non-supersymmetric D0-D6 black holes in the presence of sub-leading corrections. In this case the space of attractor points define a hypersurface in the moduli space.
Quantum mechanics of leptogenesis
Energy Technology Data Exchange (ETDEWEB)
Mendizabal Cofre, Sebastian
2010-08-15
Leptogenesis is an attractive mechanism that simultaneously explains the matterantimatter asymmetry of the universe as well as the small masses of the standard model neutrinos. This is performed by naturally extending the standard model with the insertion of right handed neutrinos. Leptogenesis is usually studied via the semi-classical Boltzmann equations. However, these equations suffer from basic conceptual problems and they lack to include many quantum phenomena, such as memory effects and coherence oscillations. In order to fully describe leptogenesis, a full quantum treatment is required. In this work we show how to address leptogenesis systematically in a purely quantum way. We start by studying scalar and fermionic excitations in a plasma by solving the Kadanoff-Baym equations of motion for Green's functions, with significant emphasis on the initial and boundary conditions of the solutions. We compute analytically the asymmetry generated from the departure of equilibrium of a particle in a thermal bath. The comparison with the semi-classical Boltzmann approach is also analysed, leading to a qualitative difference between both methods. The non-locality of the Kadanoff-Baym equations shows how off-shell effects can have a huge impact on the generated asymmetry, effects that cannot be studied with the Boltzmann equations. The insertion of standard model interactions like the decay widths for the particles of the bath is also discussed. We explain how with a trivial insertion of these widths we regain locality on the processes, i.e. we regain the Boltzmann equations. (orig.)
Exactly Solvable Quantum Mechanics
Sasaki, Ryu
2014-01-01
A comprehensive review of exactly solvable quantum mechanics is presented with the emphasis of the recently discovered multi-indexed orthogonal polynomials. The main subjects to be discussed are the factorised Hamiltonians, the general structure of the solution spaces of the Schroedinger equation (Crum's theorem and its modifications), the shape invariance, the exact solvability in the Schroedinger picture as well as in the Heisenberg picture, the creation/annihilation operators and the dynamical symmetry algebras, coherent states, various deformation schemes (multiple Darboux transformations) and the infinite families of multi-indexed orthogonal polynomials, the exceptional orthogonal polynomials, and deformed exactly solvable scattering problems.
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Quantum mechanics of materials
Energy Technology Data Exchange (ETDEWEB)
Cohen, M.L.; Heine, V.; Phillips, J.C.
1982-06-01
In the past 25 years, new quantum-mechanical methods have been developed for predicting the configuration of the valence electrons in an atom or an aggregate of many atoms, within the range of energy excitations in which the atoms form interatomic bonds. A theory specifying the configuration of the valence electrons has much to say about the bulk properties of matter that depends on the nature of the interatomic bonds. The new method regards the core electrons and the atomic nucleus as if they constituted a single particle without internal structure. The method is called the pseudopotential theory. A general quantum-mechanical prediction of the properties of a substance in terms of the additive properties of separate chemical bonds is not yet feasible for molecules. However, there is one realm where prediction is now practical: crystalline solids. The regularity of the lattice into which the atoms are organized in a crystal makes it possible to calculate the properties of a macroscopic solid. In other words, many properties of an elemental solid such as lead or a simple binary solid such as gallium arsenide can not be deduced from energy considerations alone. (SC)
Submicroscopic Deterministic Quantum Mechanics
Krasnoholovets, V
2002-01-01
So-called hidden variables introduced in quantum mechanics by de Broglie and Bohm have changed their initial enigmatic meanings and acquired quite reasonable outlines of real and measurable characteristics. The start viewpoint was the following: All the phenomena, which we observe in the quantum world, should reflect structural properties of the real space. Thus the scale 10^{-28} cm at which three fundamental interactions (electromagnetic, weak, and strong) intersect has been treated as the size of a building block of the space. The appearance of a massive particle is associated with a local deformation of the cellular space, i.e. deformation of a cell. The mechanics of a moving particle that has been constructed is deterministic by its nature and shows that the particle interacts with cells of the space creating elementary excitations called "inertons". The further study has disclosed that inertons are a substructure of the matter waves which are described by the orthodox wave \\psi-function formalism. The c...
Higgs as a probe of supersymmetric grand unification with the Hosotani mechanism
Yamashita, T
2015-01-01
The supersymmetric grand unified theory where the $SU(5)$ gauge symmetry is broken by the Hosotani mechanism provides a natural solution to the so-called doublet-triplet splitting problem. At the same time, this model derives a general and distinctive prediction that is testable at TeV scale collider experiments. To be more concrete, adjoint chiral supermultiplets with masses around TeV scale appear. Since these additional fields originate from a higher-dimensional gauge supermultiplet, our model is highly predictive. We study especially the Higgs sector and show that our model is discriminative from the others by precision measurements of the couplings and masses. Namely, we may get a hint of the breaking mechanism of the grand unification at future collider experiments.
Quantum mechanics using Fradkin's representation
Shajesh, K V; Milton, Kimball A.
2005-01-01
Fradkin's representation is a general method of attacking problems in quantum field theory, having as its basis the functional approach of Schwinger. As a pedagogical illustration of that method, we explicitly formulate it for quantum mechanics (field theory in one dimension) and apply it to the solution of Schrodinger's equation for the quantum harmonic oscillator.
Gamification of Quantum Mechanics Teaching
Bjælde, Ole Eggers; Sherson, Jacob
2015-01-01
In this small scale study we demonstrate how a gamified teaching setup can be used effectively to support student learning in a quantum mechanics course. The quantum mechanics games were research games, which were played during lectures and the learning was measured with a pretest/posttest method with promising results. The study works as a pilot study to guide the planning of quantum mechanics courses in the future at Aarhus University in Denmark.
Supersymmetric Proof of the Hirzebruch-Riemann-Roch Theorem for Non-Kähler Manifolds
Directory of Open Access Journals (Sweden)
Andrei V. Smilga
2012-01-01
Full Text Available We present the proof of the HRR theorem for a generic complex compact manifold by evaluating the functional integral for the Witten index of the appropriate supersymmetric quantum mechanical system.
Quantum Mechanics for Electrical Engineers
Sullivan, Dennis M
2011-01-01
The main topic of this book is quantum mechanics, as the title indicates. It specifically targets those topics within quantum mechanics that are needed to understand modern semiconductor theory. It begins with the motivation for quantum mechanics and why classical physics fails when dealing with very small particles and small dimensions. Two key features make this book different from others on quantum mechanics, even those usually intended for engineers: First, after a brief introduction, much of the development is through Fourier theory, a topic that is at
A Quantum Space behind Simple Quantum Mechanics
Directory of Open Access Journals (Sweden)
Chuan Sheng Chew
2017-01-01
Full Text Available In physics, experiments ultimately inform us about what constitutes a good theoretical model of any physical concept: physical space should be no exception. The best picture of physical space in Newtonian physics is given by the configuration space of a free particle (or the center of mass of a closed system of particles. This configuration space (as well as phase space can be constructed as a representation space for the relativity symmetry. From the corresponding quantum symmetry, we illustrate the construction of a quantum configuration space, similar to that of quantum phase space, and recover the classical picture as an approximation through a contraction of the (relativity symmetry and its representations. The quantum Hilbert space reduces into a sum of one-dimensional representations for the observable algebra, with the only admissible states given by coherent states and position eigenstates for the phase and configuration space pictures, respectively. This analysis, founded firmly on known physics, provides a quantum picture of physical space beyond that of a finite-dimensional manifold and provides a crucial first link for any theoretical model of quantum space-time at levels beyond simple quantum mechanics. It also suggests looking at quantum physics from a different perspective.
Quantum mechanics the theoretical minimum
Susskind, Leonard
2014-01-01
From the bestselling author of The Theoretical Minimum, an accessible introduction to the math and science of quantum mechanicsQuantum Mechanics is a (second) book for anyone who wants to learn how to think like a physicist. In this follow-up to the bestselling The Theoretical Minimum, physicist Leonard Susskind and data engineer Art Friedman offer a first course in the theory and associated mathematics of the strange world of quantum mechanics. Quantum Mechanics presents Susskind and Friedman’s crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics. An accessible but rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Decoherence in quantum mechanics and quantum cosmology
Hartle, James B.
1992-01-01
A sketch of the quantum mechanics for closed systems adequate for cosmology is presented. This framework is an extension and clarification of that of Everett and builds on several aspects of the post-Everett development. It especially builds on the work of Zeh, Zurek, Joos and Zeh, and others on the interactions of quantum systems with the larger universe and on the ideas of Griffiths, Omnes, and others on the requirements for consistent probabilities of histories.
Supersymmetric non conservative systems
Martínez-Pérez, N E
2015-01-01
We give the generalization of a recent variational formulation for nonconservative classical mechanics, for fermionic and sypersymmetric systems. Both cases require slightly modified boundary conditions. The supersymmetric version is given in the superfield formalism. The corresponding Noether theorem is formulated. As expected, like the energy, the supersymmetric charges are not conserved. Examples are discussed.
Quantum mechanics II advanced topics
Rajasekar, S
2015-01-01
Quantum Mechanics II: Advanced Topics uses more than a decade of research and the authors’ own teaching experience to expound on some of the more advanced topics and current research in quantum mechanics. A follow-up to the authors introductory book Quantum Mechanics I: The Fundamentals, this book begins with a chapter on quantum field theory, and goes on to present basic principles, key features, and applications. It outlines recent quantum technologies and phenomena, and introduces growing topics of interest in quantum mechanics. The authors describe promising applications that include ghost imaging, detection of weak amplitude objects, entangled two-photon microscopy, detection of small displacements, lithography, metrology, and teleportation of optical images. They also present worked-out examples and provide numerous problems at the end of each chapter.
Quantum inertia stops superposition: Scan Quantum Mechanics
Gato-Rivera, Beatriz
2017-08-01
Scan Quantum Mechanics is a novel interpretation of some aspects of quantum mechanics in which the superposition of states is only an approximate effective concept. Quantum systems scan all possible states in the superposition and switch randomly and very rapidly among them. A crucial property that we postulate is quantum inertia, that increases whenever a constituent is added, or the system is perturbed with all kinds of interactions. Once the quantum inertia Iq reaches a critical value Icr for an observable, the switching among its different eigenvalues stops and the corresponding superposition comes to an end, leaving behind a system with a well defined value of that observable. Consequently, increasing the mass, temperature, gravitational strength, etc. of a quantum system increases its quantum inertia until the superposition of states disappears for all the observables and the system transmutes into a classical one. Moreover, the process could be reversible. Entanglement can only occur between quantum systems because an exact synchronization between the switchings of the systems involved must be established in the first place and classical systems do not have any switchings to start with. Future experiments might determine the critical inertia Icr corresponding to different observables, which translates into a critical mass Mcr for fixed environmental conditions as well as critical temperatures, critical electric and magnetic fields, etc. In addition, this proposal implies a new radiation mechanism from astrophysical objects with strong gravitational fields, giving rise to non-thermal synchrotron emission, that could contribute to neutron star formation. Superconductivity, superfluidity, Bose-Einstein condensates, and any other physical phenomena at very low temperatures must be reanalyzed in the light of this interpretation, as well as mesoscopic systems in general.
Bender, Carl M; DeKieviet, Maarten; Klevansky, S P
2013-04-28
PT-symmetric quantum mechanics (PTQM) has become a hot area of research and investigation. Since its beginnings in 1998, there have been over 1000 published papers and more than 15 international conferences entirely devoted to this research topic. Originally, PTQM was studied at a highly mathematical level and the techniques of complex variables, asymptotics, differential equations and perturbation theory were used to understand the subtleties associated with the analytic continuation of eigenvalue problems. However, as experiments on PT-symmetric physical systems have been performed, a simple and beautiful physical picture has emerged, and a PT-symmetric system can be understood as one that has a balanced loss and gain. Furthermore, the PT phase transition can now be understood intuitively without resorting to sophisticated mathematics. Research on PTQM is following two different paths: at a fundamental level, physicists are attempting to understand the underlying mathematical structure of these theories with the long-range objective of applying the techniques of PTQM to understanding some of the outstanding problems in physics today, such as the nature of the Higgs particle, the properties of dark matter, the matter-antimatter asymmetry in the universe, neutrino oscillations and the cosmological constant; at an applied level, new kinds of PT-synthetic materials are being developed, and the PT phase transition is being observed in many physical contexts, such as lasers, optical wave guides, microwave cavities, superconducting wires and electronic circuits. The purpose of this Theme Issue is to acquaint the reader with the latest developments in PTQM. The articles in this volume are written in the style of mini-reviews and address diverse areas of the emerging and exciting new area of PT-symmetric quantum mechanics.
Popper's test of Quantum Mechanics
Bramon, A
2005-01-01
A test of quantum mechanics proposed by K. Popper and dealing with two-particle entangled states emitted from a fixed source has been criticized by several authors. Some of them claim that the test becomes inconclusive once all the quantum aspects of the source are considered. Moreover, another criticism states that the predictions attributed to quantum mechanics in Popper's analysis are untenable. We reconsider these criticisms and show that, to a large extend, the `falsifiability' potential of the test remains unaffected.
The theoretical foundations of quantum mechanics
Baaquie, Belal E
2013-01-01
The Theoretical Foundations of Quantum Mechanics addresses fundamental issues that are not discussed in most books on quantum mechanics. This book focuses on analyzing the underlying principles of quantum mechanics and explaining the conceptual and theoretical underpinning of quantum mechanics. In particular, the concepts of quantum indeterminacy, quantum measurement and quantum superposition are analyzed to clarify the concepts that are implicit in the formulation of quantum mechanics. The Schrodinger equation is never solved in the book. Rather, the discussion on the fundamentals of quantum mechanics is treated in a rigorous manner based on the mathematics of quantum mechanics. The new concept of the interplay of empirical and trans-empirical constructs in quantum mechanics is introduced to clarify the foundations of quantum mechanics and to explain the counter-intuitive construction of nature in quantum mechanics. The Theoretical Foundations of Quantum Mechanics is aimed at the advanced undergraduate and a...
Noncommutative Quantum Mechanics and Quantum Cosmology
Bastos, Catarina; Dias, Nuno; Prata, Joao Nuno
2009-01-01
We present a phase-space noncommutative version of quantum mechanics and apply this extension to Quantum Cosmology. We motivate this type of noncommutative algebra through the gravitational quantum well (GQW) where the noncommutativity between momenta is shown to be relevant. We also discuss some qualitative features of the GQW such as the Berry phase. In the context of quantum cosmology we consider a Kantowski-Sachs cosmological model and obtain the Wheeler-DeWitt (WDW) equation for the noncommutative system through the ADM formalism and a suitable Seiberg-Witten (SW) map. The WDW equation is explicitly dependent on the noncommutative parameters, $\\theta$ and $\\eta$. We obtain numerical solutions of the noncommutative WDW equation for different values of the noncommutative parameters. We conclude that the noncommutativity in the momenta sector leads to a damped wave function implying that this type of noncommmutativity can be relevant for a selection of possible initial states for the universe.
Carneiro, D F; Sampaio, M D; Nemes, M C
2003-01-01
We compute the three loop $\\beta$ function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disantangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories.
Principles of Quantum Mechanics
Landé, Alfred
2013-10-01
ödinger's equation for non-conservative systems; 46. Pertubation theory; 47. Orthogonality, normalization and Hermitian conjugacy; 48. General matrix elements; Part IV. The Principle of Correspondence: 49. Contact transformations in classical mechanics; 50. Point transformations; 51. Contact transformations in quantum mechanics; 52. Constants of motion and angular co-ordinates; 53. Periodic orbits; 54. De Broglie and Schrödinger function; correspondence to classical mechanics; 55. Packets of probability; 56. Correspondence to hydrodynamics; 57. Motion and scattering of wave packets; 58. Formal correspondence between classical and quantum mechanics; Part V. Mathematical Appendix: Principle of Invariance: 59. The general theorem of transformation; 60. Operator calculus; 61. Exchange relations; three criteria for conjugacy; 62. First method of canonical transformation; 63. Second method of canonical transformation; 64. Proof of the transformation theorem; 65. Invariance of the matrix elements against unitary transformations; 66. Matrix mechanics; Index of literature; Index of names and subjects.
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Discovering Quantum Mechanics Once Again
Duck, Ian M
2003-01-01
We expand on a recent development by Hardy, in which quantum mechanics is derived from classical probability theory supplemented by a single new axiom, Hardy's Axiom 5. Our scenario involves a `pretend world' with a `pretend' Heisenberg who seeks to construct a dynamical theory of probabilities and is lead -- seemingly inevitably -- to the Principles of Quantum Mechanics.
Quantum mechanics & the big world
Wezel, Jasper van
2007-01-01
Quantum Mechanics is one of the most successful physical theories of the last century. It explains physical phenomena from the smallest to the largest lengthscales. Despite this triumph, quantum mechanics is often perceived as a mysterious theory, involving superposition states that are alien to our
Quantum mechanics of molecular structures
Yamanouchi, Kaoru
2012-01-01
At a level accessible to advanced undergraduates, this textbook explains the fundamental role of quantum mechanics in determining the structure, dynamics, and other properties of molecules. Readers will come to understand the quantum-mechanical basis for harmonic oscillators, angular momenta and scattering processes. Exercises are provided to help readers deepen their grasp of the essential phenomena.
On Finite $J$-Hermitian Quantum Mechanics
Lee, Sungwook
2014-01-01
In his recent paper arXiv:1312.7738, the author discussed $J$-Hermitian quantum mechanics and showed that $PT$-symmetric quantum mechanics is essentially $J$-Hermitian quantum mechanics. In this paper, the author discusses finite $J$-Hermitian quantum mechanics which is derived naturally from its continuum one and its relationship with finite $PT$-symmetric quantum mechanics.
Modern Approach to Quantum Mechanics
Townsend, John S.
Inspired by Richard Feynman and J.J. Sakurai, A Modern Approach to Quantum Mechanics lets professors expose their undergraduates to the excitement and insight of Feynman's approach to quantum mechanics while simultaneously giving them a textbook that is well-ordered, logical, and pedagogically sound. This book covers all the topics that are typically presented in a standard upper-level course in quantum mechanics, but its teaching approach is new: Rather than organizing his book according to the historical development of the field and jumping into a mathematical discussion of wave mechanics, Townsend begins his book with the quantum mechanics of spin. Thus, the first five chapters of the book succeed in laying out the fundamentals of quantum mechanics with little or no wave mechanics, so the physics is not obscured by mathematics. Starting with spin systems gives students something new and interesting while providing elegant but straightforward examples of the essential structure of quantum mechanics. When wave mechanics is introduced later, students perceive it correctly as only one aspect of quantum mechanics and not the core of the subject. Praised for its pedagogical brilliance, clear writing, and careful explanations, this book is destined to become a landmark text.
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
Mathematical foundation of quantum mechanics
Parthasarathy, K R
2005-01-01
This is a brief introduction to the mathematical foundations of quantum mechanics based on lectures given by the author to Ph.D.students at the Delhi Centre of the Indian Statistical Institute in order to initiate active research in the emerging field of quantum probability. The material in the first chapter is included in the author's book "An Introduction to Quantum Stochastic Calculus" published by Birkhauser Verlag in 1992 and the permission of the publishers to reprint it here is acknowledged. Apart from quantum probability, an understanding of the role of group representations in the development of quantum mechanics is always a fascinating theme for mathematicians. The first chapter deals with the definitions of states, observables and automorphisms of a quantum system through Gleason's theorem, Hahn-Hellinger theorem and Wigner's theorem. Mackey's imprimitivity theorem and the theorem of inducing representations of groups in stages are proved directly for projective unitary antiunitary representations ...
Quantum mechanics a modern development
Ballentine, Leslie E
2015-01-01
Although there are many textbooks that deal with the formal apparatus of quantum mechanics (QM) and its application to standard problems, none take into account the developments in the foundations of the subject which have taken place in the last few decades. There are specialized treatises on various aspects of the foundations of QM, but none that integrate those topics with the standard material. This book aims to remove that unfortunate dichotomy, which has divorced the practical aspects of the subject from the interpretation and broader implications of the theory. In this edition a new chapter on quantum information is added. As the topic is still in a state of rapid development, a comprehensive treatment is not feasible. The emphasis is on the fundamental principles and some key applications, including quantum cryptography, teleportation of states, and quantum computing. The impact of quantum information theory on the foundations of quantum mechanics is discussed. In addition, there are minor revisions ...
Communication: quantum mechanics without wavefunctions.
Schiff, Jeremy; Poirier, Bill
2012-01-21
We present a self-contained formulation of spin-free non-relativistic quantum mechanics that makes no use of wavefunctions or complex amplitudes of any kind. Quantum states are represented as ensembles of real-valued quantum trajectories, obtained by extremizing an action and satisfying energy conservation. The theory applies for arbitrary configuration spaces and system dimensionalities. Various beneficial ramifications-theoretical, computational, and interpretational-are discussed.
Coherent states in quantum mechanics
Rodrigues, R D L; Fernandes, D
2001-01-01
We present a review work on the coherent states is non-relativistic quantum mechanics analysing the quantum oscillators in the coherent states. The coherent states obtained via a displacement operator that act on the wave function of ground state of the oscillator and the connection with Quantum Optics which were implemented by Glauber have also been considered. A possible generalization to the construction of new coherent states it is point out.
Quantum Mechanics of Extended Objects
Sastry, R R
2000-01-01
We propose a quantum mechanics of extended objects that accounts for the finite extent of a particle defined via its Compton wavelength. The Hilbert space representation theory of such a quantum mechanics is presented and this representation is used to demonstrate the quantization of spacetime. The quantum mechanics of extended objects is then applied to two paradigm examples, the fuzzy (extended object) harmonic oscillator and the Yukawa potential. In the second example the phenomenological coupling constant of the $\\omega$ meson which mediates the short range and repulsive nucleon force as well as the repulsive core radius are theoretically predicted.
Quantum mechanics in Hilbert space
Prugovecki, Eduard
2006-01-01
A critical presentation of the basic mathematics of nonrelativistic quantum mechanics, this text is suitable for courses in functional analysis at the advanced undergraduate and graduate levels. Its readable and self-contained form is accessible even to students without an extensive mathematical background. Applications of basic theorems to quantum mechanics make it of particular interest to mathematicians working in functional analysis and related areas.This text features the rigorous proofs of all the main functional-analytic statements encountered in books on quantum mechanics. It fills the
Linear operators for quantum mechanics
Jordan, Thomas F
2006-01-01
This compact treatment highlights the logic and simplicity of the mathematical structure of quantum mechanics. Suitable for advanced undergraduates and graduate students, it treats the language of quantum mechanics as expressed in the mathematics of linear operators.Originally oriented toward atomic physics, quantum mechanics became a basic language for solid-state, nuclear, and particle physics. Its grammar consists of the mathematics of linear operators, and with this text, students will find it easier to understand and use the language of physics. Topics include linear spaces and linear fun
Stochastic methods in quantum mechanics
Gudder, Stanley P
2005-01-01
Practical developments in such fields as optical coherence, communication engineering, and laser technology have developed from the applications of stochastic methods. This introductory survey offers a broad view of some of the most useful stochastic methods and techniques in quantum physics, functional analysis, probability theory, communications, and electrical engineering. Starting with a history of quantum mechanics, it examines both the quantum logic approach and the operational approach, with explorations of random fields and quantum field theory.The text assumes a basic knowledge of fun
Quantum mechanical irreversibility and measurement
Grigolini, P
1993-01-01
This book is intended as a tutorial approach to some of the techniques used to deal with quantum dissipation and irreversibility, with special focus on their applications to the theory of measurements. The main purpose is to provide readers without a deep expertise in quantum statistical mechanics with the basic tools to develop a critical judgement on whether the major achievements in this field have to be considered a satisfactory solution of quantum paradox, or rather this ambitious achievement has to be postponed to when a new physics, more general than quantum and classical physics, will
Time Asymmetric Quantum Mechanics
National Research Council Canada - National Science Library
Arno R Bohm; Manuel Gadella; Piotr Kielanowski
2011-01-01
The meaning of time asymmetry in quantum physics is discussed. On the basis of a mathematical theorem, the Stone-von Neumann theorem, the solutions of the dynamical equations, the Schrödinger equation (1...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Analytical mechanics for relativity and quantum mechanics
Johns, Oliver Davis
2011-01-01
Analytical Mechanics for Relativity and Quantum Mechanics is an innovative and mathematically sound treatment of the foundations of analytical mechanics and the relation of classical mechanics to relativity and quantum theory. It is intended for use at the introductory graduate level. A distinguishing feature of the book is its integration of special relativity into teaching of classical mechanics. After a thorough review of the traditional theory, Part II of the book introduces extended Lagrangian and Hamiltonian methods that treat time as a transformable coordinate rather than the fixed parameter of Newtonian physics. Advanced topics such as covariant Langrangians and Hamiltonians, canonical transformations, and Hamilton-Jacobi methods are simplified by the use of this extended theory. And the definition of canonical transformation no longer excludes the Lorenz transformation of special relativity. This is also a book for those who study analytical mechanics to prepare for a critical exploration of quantum...
Hilbert space and quantum mechanics
Gallone, Franco
2015-01-01
The topics of this book are the mathematical foundations of non-relativistic quantum mechanics and the mathematical theory they require. The main characteristic of the book is that the mathematics is developed assuming familiarity with elementary analysis only. Moreover, all the proofs are carried out in detail. These features make the book easily accessible to readers with only the mathematical training offered by undergraduate education in mathematics or in physics, and also ideal for individual study. The principles of quantum mechanics are discussed with complete mathematical accuracy and an effort is made to always trace them back to the experimental reality that lies at their root. The treatment of quantum mechanics is axiomatic, with definitions followed by propositions proved in a mathematical fashion. No previous knowledge of quantum mechanics is required. This book is designed so that parts of it can be easily used for various courses in mathematics and mathematical physics, as suggested in the Pref...
Quantum mechanics principles and formalism
McWeeny, Roy
2012-01-01
Focusing on main principles of quantum mechanics and their immediate consequences, this graduate student-oriented volume develops the subject as a fundamental discipline, opening with review of origins of Schrödinger's equations and vector spaces.
Quantum mechanical description of waveguides
Institute of Scientific and Technical Information of China (English)
Wang Zhi-Yong; Xiong Cai-Dong; He Bing
2008-01-01
Applying the spinor representation of the electromagnetic field,this paper present a quantum-mechanical description of waveguides.As an example of application,a potential qubit generated by photon tunnelling is discussed.
Quantum Mechanics and Common Sense
Gantsevich, S V
2016-01-01
A physical picture for Quantum Mechanics which permits to conciliate it with the usual common sense is proposed. The picture agrees with the canonical Copenhagen interpretation making more clear its statements.
Quantum mechanics I the fundamentals
Rajasekar, S
2015-01-01
Quantum Mechanics I: The Fundamentals provides a graduate-level account of the behavior of matter and energy at the molecular, atomic, nuclear, and sub-nuclear levels. It covers basic concepts, mathematical formalism, and applications to physically important systems.
Gürdoǧan, Ömer; Kazakov, Vladimir
2016-11-01
We introduce a family of new integrable quantum field theories in four dimensions by considering the γ -deformed N =4 supersymmetric Yang-Mills (SYM) theory in the double scaling limit of large imaginary twists and small coupling. This limit discards the gauge fields and retains only certain Yukawa and scalar interactions with three arbitrary effective couplings. In the `t Hooft limit, these 4D theories are integrable, and contain a wealth of conformal correlators such that the whole arsenal of AdS /CFT integrability remains applicable. As a special case of these models, we obtain a quantum field theory of two complex scalars with a chiral, quartic interaction. The Berenstein-Maldacena-Nastase vacuum anomalous dimension is dominated in each loop order by a single "wheel" graph, whose bulk represents an integrable "fishnet" graph. This explicitly demonstrates the all-loop integrability of gamma-deformed planar N =4 SYM theory, at least in our limit. Using this feature and integrability results we provide an explicit conjecture for the periods of double-wheel graphs with an arbitrary number of spokes in terms of multiple zeta values of limited depth.
The physics of quantum mechanics
Binney, James
2014-01-01
The Physics of Quantum Mechanics aims to give students a good understanding of how quantum mechanics describes the material world. It shows that the theory follows naturally from the use of probability amplitudes to derive probabilities. It stresses that stationary states are unphysical mathematical abstractions that enable us to solve the theory's governing equation, the time-dependent Schroedinger equation. Every opportunity is taken to illustrate the emergence of the familiarclassical, dynamical world through the quantum interference of stationary states. The text stresses the continuity be
Quantum mechanics in a nutshell
Mahan, Gerald D
2009-01-01
Covering the fundamentals as well as many special topics of current interest, this is the most concise, up-to-date, and accessible graduate-level textbook on quantum mechanics available. Written by Gerald Mahan, a distinguished research physicist and author of an acclaimed textbook on many-particle physics, Quantum Mechanics in a Nutshell is the distillation of many years' teaching experience. Emphasizing the use of quantum mechanics to describe actual quantum systems such as atoms and solids, and rich with interesting applications, the book proceeds from solving for the properties of a single particle in potential; to solving for two particles (the helium atom); to addressing many-particle systems. Applications include electron gas, magnetism, and Bose-Einstein Condensation; examples are carefully chosen and worked; and each chapter has numerous homework problems, many of them original
Mathematical foundations of quantum mechanics
Mackey, George W
2004-01-01
Designed for students familiar with abstract mathematical concepts but possessing little knowledge of physics, this text focuses on generality and careful formulation rather than problem-solving. Its author, a member of the distinguished National Academy of Science, based this graduate-level text on the course he taught at Harvard University.Opening chapters on classical mechanics examine the laws of particle mechanics; generalized coordinates and differentiable manifolds; oscillations, waves, and Hilbert space; and statistical mechanics. A survey of quantum mechanics covers the old quantum
Quantum Mechanics and determinism
Hooft, G. 't
2001-01-01
It is shown how to map the quantum states of a system of free scalar particles one-to-one onto the states of a completely deterministic model. It is a classical field theory with a large (global) gauge group. The mapping is now also applied to free Maxwell fields. Lorentz invariance is demonstrated.
The quantum field theory interpretation of quantum mechanics
de la Torre, Alberto C.
2015-01-01
It is shown that adopting the \\emph{Quantum Field} ---extended entity in space-time build by dynamic appearance propagation and annihilation of virtual particles--- as the primary ontology the astonishing features of quantum mechanics can be rendered intuitive. This interpretation of quantum mechanics follows from the formalism of the most successful theory in physics: quantum field theory.
Quantum Mechanics and Narratability
Myrvold, Wayne C.
2016-07-01
As has been noted by several authors, in a relativistic context, there is an interesting difference between classical and quantum state evolution. For a classical system, a state history of a quantum system given along one foliation uniquely determines, without any consideration of the system's dynamics, a state history along any other foliation. This is not true for quantum state evolution; there are cases in which a state history along one foliation is compatible with multiple distinct state histories along some other, a phenomenon that David Albert has dubbed "non-narratability." In this article, we address the question of whether non-narratability is restricted to the sorts of special states that so far have been used to illustrate it. The results of the investigation suggest that there has been a misplaced emphasis on underdetermination of state histories; though this is generic for the special cases that have up until now been considered, involving bipartite systems in pure entangled states, it fails generically in cases in which more component systems are taken into account, and for bipartite systems that have some entanglement with their environment. For such cases, if we impose relativistic causality constraints on the evolution, then, except for very special states, a state history along one foliation uniquely determines a state history along any other. But this in itself is a marked difference between classical and quantum state evolution, because, in a classical setting, no considerations of dynamics at all are needed to go from a state history along one foliation to a state history along another.
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Quantum Mechanical Earth: Where Orbitals Become Orbits
Keeports, David
2012-01-01
Macroscopic objects, although quantum mechanical by nature, conform to Newtonian mechanics under normal observation. According to the quantum mechanical correspondence principle, quantum behavior is indistinguishable from classical behavior in the limit of very large quantum numbers. The purpose of this paper is to provide an example of the…
Baulieu, L.; Toppan, Francesco
2016-11-01
We extend to a possibly infinite chain the conformally invariant mechanical system that was introduced earlier as a toy model for understanding the topological Yang-Mills theory. It gives a topological quantum model that has interesting and computable zero modes and topological invariants. It confirms the recent conjecture by several authors that supersymmetric quantum mechanics may provide useful tools for understanding robotic mechanical systems (Vitelli et al.) and condensed matter properties (Kane et al.), where trajectories are allowed or not by the conservation of topological indices. The absences of ground state and mass gaps are special features of such systems.
Directory of Open Access Journals (Sweden)
L. Baulieu
2016-11-01
Full Text Available We extend to a possibly infinite chain the conformally invariant mechanical system that was introduced earlier as a toy model for understanding the topological Yang–Mills theory. It gives a topological quantum model that has interesting and computable zero modes and topological invariants. It confirms the recent conjecture by several authors that supersymmetric quantum mechanics may provide useful tools for understanding robotic mechanical systems (Vitelli et al. and condensed matter properties (Kane et al., where trajectories are allowed or not by the conservation of topological indices. The absences of ground state and mass gaps are special features of such systems.
Energy Technology Data Exchange (ETDEWEB)
Baulieu, L., E-mail: baulieu@lpthe.jussieu.fr [LPTHE – Sorbonne Universités, UPMC, 4 Place Jussieu, 75 005 Paris (France); Toppan, Francesco [CBPF, Rio de Janeiro, Rua Dr. Xavier Sigaud 150, Urca, cep 22290-180 (RJ) (Brazil)
2016-11-15
We extend to a possibly infinite chain the conformally invariant mechanical system that was introduced earlier as a toy model for understanding the topological Yang–Mills theory. It gives a topological quantum model that has interesting and computable zero modes and topological invariants. It confirms the recent conjecture by several authors that supersymmetric quantum mechanics may provide useful tools for understanding robotic mechanical systems (Vitelli et al.) and condensed matter properties (Kane et al.), where trajectories are allowed or not by the conservation of topological indices. The absences of ground state and mass gaps are special features of such systems.
Baulieu, Laurent
2016-01-01
We extend to a possibly infinite chain the conformally invariant mechanical system that was introduced earlier as a toy model for understanding the topological Yang-Mills theory. It gives a topological quantum model that has interesting and computable zero modes and topological invariants. It confirms the recent conjecture by several authors that supersymmetric quantum mechanics may provide useful tools for understanding robotic mechanical systems (Vitelli et al.) and condensed matter properties (Kane et al.), where trajectories of effective models are allowed or not by the conservation of topological indices. The absences of ground state and mass gaps are special features of such systems.
Non-relativistic quantum mechanics
Puri, Ravinder R.
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
QUANTUM MECHANICS. Quantum squeezing of motion in a mechanical resonator.
Wollman, E E; Lei, C U; Weinstein, A J; Suh, J; Kronwald, A; Marquardt, F; Clerk, A A; Schwab, K C
2015-08-28
According to quantum mechanics, a harmonic oscillator can never be completely at rest. Even in the ground state, its position will always have fluctuations, called the zero-point motion. Although the zero-point fluctuations are unavoidable, they can be manipulated. Using microwave frequency radiation pressure, we have manipulated the thermal fluctuations of a micrometer-scale mechanical resonator to produce a stationary quadrature-squeezed state with a minimum variance of 0.80 times that of the ground state. We also performed phase-sensitive, back-action evading measurements of a thermal state squeezed to 1.09 times the zero-point level. Our results are relevant to the quantum engineering of states of matter at large length scales, the study of decoherence of large quantum systems, and for the realization of ultrasensitive sensing of force and motion.
Framing difficulties in quantum mechanics
Modir, Bahar; Sayre, Eleanor C
2016-01-01
Students' difficulties in quantum mechanics may be the result of unproductive framing and not fundamental inability to solve the problems or misconceptions about physics content. We observed groups of students solving quantum mechanics problems in an upper-division physics course. Using the lens of the epistemological framing, we investigated four frames in our observational data: algorithmic math, conceptual math, algorithmic physics, and conceptual physics. We then used our framework to seek an underlying structure to the long lists of published difficulties that span many topics in quantum mechanics. We mapped descriptions of published difficulties into errors in epistemological framing and resource use. We analyzed descriptions of students' problem solving to find their frames, and compared students' framing to framing (and frame shifting) required by problem statements. We found three categories of error: mismatches between students' framing and problem statement framing; inappropriate or absent transiti...
Algebraic Quantum Mechanics and Pregeometry
Hiley, D J B P G D B J
2006-01-01
We discuss the relation between the q-number approach to quantum mechanics suggested by Dirac and the notion of "pregeometry" introduced by Wheeler. By associating the q-numbers with the elements of an algebra and regarding the primitive idempotents as "generalized points" we suggest an approach that may make it possible to dispense with an a priori given space manifold. In this approach the algebra itself would carry the symmetries of translation, rotation, etc. Our suggestion is illustrated in a preliminary way by using a particular generalized Clifford Algebra proposed originally by Weyl, which approaches the ordinary Heisenberg algebra in a suitable limit. We thus obtain a certain insight into how quantum mechanics may be regarded as a purely algebraic theory, provided that we further introduce a new set of "neighbourhood operators", which remove an important kind of arbitrariness that has thus far been present in the attempt to treat quantum mechanics solely in terms of a Heisenberg algebra.
Remarks on osmosis, quantum mechanics, and gravity
Carroll, Robert
2011-01-01
Some relations of the quantum potential to Weyl geometry are indicated with applications to the Friedmann equations for a toy quantum cosmology. Osmotic velocity and pressure are briefly discussed in terms of quantum mechanics and superfluids with connections to gravity.
Black holes and quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, G. ' t, E-mail: g.thooft@uu.n [Institute for Theoretical Physics, Utrecht University and Spinoza Institute, P.O. Box 80.195, 3508 TD Utrecht (Netherlands)
2010-07-15
After a brief review of quantum black hole physics, it is shown how the dynamical properties of a quantum black hole may be deduced to a large extent from Standard Model Physics, extended to scales near the Planck length, and combined with results from perturbative quantum gravity. Together, these interactions generate a Hilbert space of states on the black hole horizon, which can be investigated, displaying interesting systematics by themselves. To make such approaches more powerful, a study is made of the black hole complementarity principle, from which one may deduce the existence of a hidden form of local conformal invariance. Finally, the question is raised whether the principles underlying Quantum Mechanics are to be sharpened in this domain of physics as well. There are intriguing possibilities.
Quantum mechanics foundations and applications
Swanson, Donald Gary
2006-01-01
Progressing from the fundamentals of quantum mechanics (QM) to more complicated topics, Quantum Mechanics: Foundations and Applications provides advanced undergraduate and graduate students with a comprehensive examination of many applications that pertain to modern physics and engineering.Based on courses taught by the author, this textbook begins with an introductory chapter that reviews historical landmarks, discusses classical theory, and establishes a set of postulates. The next chapter demonstrates how to find the appropriate wave functions for a variety of physical systems in one dimens
A renormalization in group study of supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Heilmann, Marianne
2015-05-13
This thesis analyses scalar supersymmetric field theories within the framework of the functional renormalization group (FRG). Classical physics on microscopic scales is connected to the effective model on macroscopic scales via the scale-dependent effective average action by a reformulation of the path integral. Three supersymmetric theories are explored in detail: supersymmetric quantum mechanics, the three-dimensional Wess-Zumino model and supersymmetric spherical theories in three dimensions. The corresponding renormalization group flow is formulated in a manifestly supersymmetric way. By utilizing an expansion of the effective average action in derivative operators, an adequate and intrinsically non-perturbative truncation scheme is selected. In quantum mechanics, the supersymmetric derivative expansion is shown to converge by increasing the order of truncation. Besides, high-accuracy results for the ground and first excited state energies for quantum systems with conserved as well as spontaneously broken supersymmetry are achieved. Furthermore, the critical behaviour of the three-dimensional Wess-Zumino is investigated. Via spectral methods, a global Wilson-Fisher scaling solution and its corresponding universal exponents are determined. Besides, a superscaling relation of the leading exponents is verified for arbitrary dimensions greater than or equal to two. Lastly, three-dimensional spherical, supersymmetric theories are analysed. Their phase structure is determined in detail for infinite as well as finitely many superfields. The exact one-parameter scaling solution for infinitely many fields is shown to collapse to a single non-trivial Wilson-Fisher fixed-point for finitely many superfields. It is pointed out that the strongly-coupled domains of these theories are plagued by Landau poles and non-analyticities, indicating spontaneous supersymmetry breaking.
Effective equations for the quantum pendulum from momentous quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Hector H.; Chacon-Acosta, Guillermo [Universidad Autonoma de Chihuahua, Facultad de Ingenieria, Nuevo Campus Universitario, Chihuahua 31125 (Mexico); Departamento de Matematicas Aplicadas y Sistemas, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40, Mexico D. F. 01120 (Mexico)
2012-08-24
In this work we study the quantum pendulum within the framework of momentous quantum mechanics. This description replaces the Schroedinger equation for the quantum evolution of the system with an infinite set of classical equations for expectation values of configuration variables, and quantum dispersions. We solve numerically the effective equations up to the second order, and describe its evolution.
Quantum Mechanics, is it magic
Ferrero, M; Sánchez-Gómez, J L
2008-01-01
We show that quantum mechanics is the first theory in human history that violates the basic a priori principles that have shaped human thought since immemorial times. Therefore although it is more contrary to magic than any body of knowledge could be, what could be called its magic precisely resides in this violation.
Mind, matter and quantum mechanics
Stapp, Henry P
2009-01-01
"Scientists other than quantum physicists often fail to comprehend the enormity of the conceptual change wrought by quantum theory in our basic conception of the nature of matter," writes Henry Stapp. Stapp is a leading quantum physicist who has given particularly careful thought to the implications of the theory that lies at the heart of modern physics. In this book, which contains several of his key papers as well as new material, he focuses on the problem of consciousness and explains how quantum mechanics allows causally effective conscious thought to be combined in a natural way with the physical brain made of neurons and atoms. The book is divided into four sections. The first consists of an extended introduction. Key foundational and somewhat more technical papers are included in the second part, together with a clear exposition of the "orthodox" interpretation of quantum mechanics. The third part addresses, in a non-technical fashion, the implications of the theory for some of the most profound questi...
Philosophic foundations of quantum mechanics
Reichenbach, Hans
1998-01-01
Physics concerns direct analysis of the physical world, while philosophy analyzes knowledge about the physical world. This volume combines both disciplines for a philosophical interpretation of quantum physics - an interpretation free from the imprecision of metaphysics, offering a view of the atomic world and its quantum mechanical results as concrete as the visible everyday world.Written by an internationally renowned philosopher who specialized in symbolic logic and the theory of relativity, this approach consists of three parts. The first section, which requires no background in math or p
Memetics of Quantum Mechanical Interpretations
Chakrabarty, I
2006-01-01
Memes, self reproducing mental information and cognitive structures analogous to genes in biology, can be seen as the basis for an explanatory model of cultural and psychological behavior. Their properties and effects are evolutionary conditioned and ultimately seeks to promote their replication. To survive in a context the memes must meet certain conditions. We here propose a Memetics of Quantum Mechanical Interpretations, which have eluded mankind for a century now. We also see how the ideas of memes best fit the way scientific theories in general and Quantum Theory in particular propagates in the scientific brains and finds its expressions in the scientific community and effects the way we perceive Nature.
Operator methods in quantum mechanics
Schechter, Martin
2003-01-01
This advanced undergraduate and graduate-level text introduces the power of operator theory as a tool in the study of quantum mechanics, assuming only a working knowledge of advanced calculus and no background in physics. The author presents a few simple postulates describing quantum theory, gradually introducing the mathematical techniques that help answer questions important to the physical theory; in this way, readers see clearly the purpose of the method and understand the accomplishment. The entire book is devoted to the study of a single particle moving along a straight line. By posing q
Wigner distributions in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Ercolessi, E; Marmo, G; Morandi, G; Mukunda, N [Physics Department, University of Bologna, INFN and CNISM. 46 v.Irnerio. I-40126, Bologna (Italy); Dip. di Scienze Fisiche. University di Napoli ' Federico II' and INFN. v.Cinzia. I-80100 Naples (Italy); Physics Department, University of Bologna, INFN and CNISM. 6/2 v.le Berti Pichat. I-40127, Bologna (Italy); Centre for High-Energy Physics. Indian Institute of Science. Bamgalore 560012 (India)
2007-11-15
The Weyl-Wigner description of quantum mechanical operators and states in classical phase-space language is well known for Cartesian systems. We describe a new approach based on ideas of Dirac which leads to the same results but with interesting additional insights. A way to set up Wigner distributions in an interesting non-Cartesian case, when the configuration space is a compact connected Lie group, is outlined. Both these methods are adapted to quantum systems with finite-dimensional Hilbert spaces, and the results are contrasted.
Paradoxical reflection in quantum mechanics
Pedro L. Garrido; Goldstein, Sheldon; Lukkarinen, Jani; Tumulka, Roderich
2011-01-01
This article concerns a phenomenon of elementary quantum mechanics that is quite counter-intuitive, very non-classical, and apparently not widely known: a quantum particle can get reflected at a downward potential step. In contrast, classical particles get reflected only at upward steps. The conditions for this effect are that the wave length is much greater than the width of the potential step and the kinetic energy of the particle is much smaller than the depth of the potential step. This p...
Afzal, Muhammad Imran; Lee, Yong Tak
2016-12-01
Von Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices. The lattices consisted of inhomogeneous strain-like phases of triangular solitons. The resonance created two-dimensional, inhomogeneously deformed photonic graphene. All parent eigenstates were annihilated. Eigenstates of mildly strained solitons were annihilated at similar rates through one tail and generated Hermitian bounded eigenstates. The strongly strained solitons with positive phase defects were annihilated at exponential rates through one tail, which bounded eigenstates through non-Hermitianally generated exceptional points. Supersymmetry was evident, with preservation of the shapes and relative phase differences of the parent solitons. Localizations of energies generated from annihilations of mildly and strongly strained soliton eigenstates were responsible for geometrical (Berry) and topological phase transitions, respectively. Both contributed to generating a quantum Zeno phase, whereas only strong twists generated topological (Anderson) localization. Anti-bunching-like condensation was also observed.
Making sense of quantum mechanics
Bricmont, Jean
2016-01-01
This book explains, in simple terms, with a minimum of mathematics, why things can appear to be in two places at the same time, why correlations between simultaneous events occurring far apart cannot be explained by local mechanisms, and why, nevertheless, the quantum theory can be understood in terms of matter in motion. No need to worry, as some people do, whether a cat can be both dead and alive, whether the moon is there when nobody looks at it, or whether quantum systems need an observer to acquire definite properties. The author’s inimitable and even humorous style makes the book a pleasure to read while bringing a new clarity to many of the longstanding puzzles of quantum physics.
The Lagrangian in Quantum Mechanics
Dirac, P. A. M.
Quantum mechanics was built up on a foundation of analogy with the Hamiltonian theory of classical mechanics. This is because the classical notion of canonical coordinates and momenta was found to be one with a very simple quantum analogue, as a result of which the whole of the classical Hamiltonian theory, which is just a structure built up on this notion, could be taken over in all its details into quantum mechanics. Now there is an alternative formulation for classical dynamics, provided by the Lagrangian. This requires one to work in terms of coordinates and velocities instead of coordinates and momenta. The two formulations are, of course, closely related, but there are reasons for believing that the Lagrangian one is the more fundamental. In the first place the Lagrangian method allows one to collect together all the equations of motion and express them as the stationary property of a certain action function. (This action function is just the time-integral of the Lagrangian.) There is no corresponding action principle in terms of the coordinates and momenta of the Hamiltonian theory. Secondly the Lagrangian method can easily be expressed relativistically, on account of the action function being a relativistic invariant; while the Hamiltonian method is essentially non-relativistic in form, since it marks out a particular time variable as the canonical conjugate of the Hamiltonian function. For these reasons it would seem desirable to take up the question of what corresponds in the quantum theory to the Lagrangian method of the classical theory. A little consideration shows, however, that one cannot expect to be able to take over the classical Lagrangian equations in any very direct way. These equations involve partial derivatives of the Lagrangian with respect to the coordinates and velocities and no meaning can be given to such derivatives in quantum mechanics. The only differentiation process that can be carried out with respect to the dynamical variables of
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Star Products for Relativistic Quantum Mechanics
Henselder, P.
2007-01-01
The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.
Afzal, Muhammad Imran; Lee, Yong Tak
2016-01-01
Von Neumann and Wigner theorized bounding of asymmetric eigenstates and anti-crossing of symmetric eigenstates. Experiments have shown that owing to anti-crossing and similar radiation rates, graphene-like resonance of inhomogeneously strained photonic eigenstates can generate pseudomagnetic field, bandgaps and Landau levels, while dissimilar rates induce non-Hermicity. Here, we showed experimentally higher-order supersymmetry and quantum phase transitions by resonance between similar one dimensional lattices. The lattices consisted of inhomgeneously strain-like phases of triangular solitons. The resonance created two dimensional inhomogeneously deformed photonic graphene. All parent eigenstates are annihilated. Where eigenstates of mildly strained solitons are annihilated with similar (power law) rates through one tail only and generated Hermitianally bounded eigenstates. The strongly strained solitons, positive defects are annihilated exponentially through both tails with dissimilar rates. Which bounded eig...
Bohmian Mechanics and the Quantum Revolution
Goldstein, Sheldon
1995-01-01
This is a review-essay on ``Speakable and Unspeakable in Quantum Mechanics'' by John Bell and ``The Undivided Universe: An Ontological Interpretation of Quantum Mechanics'' by David Bohm and Basil Hiley. The views of these authors concerning the character of quantum theory and quantum reality---and, in particular, their approaches to the issues of nonlocality, the possibility of hidden variables, and the nature of and desiderata for a satisfactory scientific explanation of quantum phenomena--...
Quantum mechanics and the psyche
Galli Carminati, G.; Martin, F.
2008-07-01
In this paper we apply the last developments of the theory of measurement in quantum mechanics to the phenomenon of consciousness and especially to the awareness of unconscious components. Various models of measurement in quantum mechanics can be distinguished by the fact that there is, or there is not, a collapse of the wave function. The passive aspect of consciousness seems to agree better with models in which there is no collapse of the wave function, whereas in the active aspect of consciousness—i.e., that which goes together with an act or a choice—there seems to be a collapse of the wave function. As an example of the second possibility we study in detail the photon delayed-choice experiment and its consequences for subjective or psychological time. We apply this as an attempt to explain synchronicity phenomena. As a model of application of the awareness of unconscious components we study the mourning process. We apply also the quantum paradigm to the phenomenon of correlation at a distance between minds, as well as to group correlations that appear during group therapies or group training. Quantum entanglement leads to the formation of group unconscious or collective unconscious. Finally we propose to test the existence of such correlations during sessions of group training.
Quantum mechanics of black holes.
Witten, Edward
2012-08-03
The popular conception of black holes reflects the behavior of the massive black holes found by astronomers and described by classical general relativity. These objects swallow up whatever comes near and emit nothing. Physicists who have tried to understand the behavior of black holes from a quantum mechanical point of view, however, have arrived at quite a different picture. The difference is analogous to the difference between thermodynamics and statistical mechanics. The thermodynamic description is a good approximation for a macroscopic system, but statistical mechanics describes what one will see if one looks more closely.
Quantum communication between remote mechanical resonators
Felicetti, S.; Fedortchenko, S.; Rossi, R.; Ducci, S.; Favero, I.; Coudreau, T.; Milman, P.
2017-02-01
Mechanical resonators represent one of the most promising candidates to mediate the interaction between different quantum technologies, bridging the gap between efficient quantum computation and long-distance quantum communication. Here, we introduce an interferometric scheme where the interaction of a mechanical resonator with input-output quantum pulses is controlled by an independent classical drive. We design protocols for state teleportation and direct quantum state transfer, between distant mechanical resonators. The proposed device, feasible with state-of-the-art technology, can serve as a building block for the implementation of long-distance quantum networks of mechanical resonators.
Crum's Theorem for `Discrete' Quantum Mechanics
Odake, Satoru; Sasaki, Ryu
2009-01-01
In one-dimensional quantum mechanics, or the Sturm-Liouville theory, Crum's theorem describes the relationship between the original and the associated Hamiltonian systems, which are iso-spectral except for the lowest energy state. Its counterpart in `discrete' quantum mechanics is formulated algebraically, elucidating the basic structure of the discrete quantum mechanics, whose Schr\\"odinger equation is a difference equation.
Helping Students Learn Quantum Mechanics for Quantum Computing
Singh, Chandralekha
2016-01-01
Quantum information science and technology is a rapidly growing interdisciplinary field drawing researchers from science and engineering fields. Traditional instruction in quantum mechanics is insufficient to prepare students for research in quantum computing because there is a lack of emphasis in the current curriculum on quantum formalism and dynamics. We are investigating the difficulties students have with quantum mechanics and are developing and evaluating quantum interactive learning tutorials (QuILTs) to reduce the difficulties. Our investigation includes interviews with individual students and the development and administration of free-response and multiple-choice tests. We discuss the implications of our research and development project on helping students learn quantum mechanics relevant for quantum computing.
Dimer Models, Free Fermions and Super Quantum Mechanics
Dijkgraaf, R; Reffert, S
2007-01-01
This note relates topics in statistical mechanics, graph theory and combinatorics, lattice quantum field theory, super quantum mechanics and string theory. We give a precise relation between the dimer model on a graph embedded on a torus and the massless free Majorana fermion living on the same lattice. A loop expansion of the fermion determinant is performed, where the loops turn out to be compositions of two perfect matchings. These loop states are sorted into co-chain groups using categorification techniques similar to the ones used for categorifying knot polynomials. The Euler characteristic of the resulting co-chain complex recovers the Newton polynomial of the dimer model. We re-interpret this system as supersymmetric quantum mechanics, where configurations with vanishing net winding number form the ground states. Finally, we make use of the quiver gauge theory - dimer model correspondence to obtain an interpretation of the loops in terms of the physics of D-branes probing a toric Calabi-Yau singularity...
Geometrical Phases in Quantum Mechanics
Christian, Joy Julius
In quantum mechanics, the path-dependent geometrical phase associated with a physical system, over and above the familiar dynamical phase, was initially discovered in the context of adiabatically changing environments. Subsequently, Aharonov and Anandan liberated this phase from the original formulation of Berry, which used Hamiltonians, dependent on curves in a classical parameter space, to represent the cyclic variations of the environments. Their purely quantum mechanical treatment, independent of Hamiltonians, instead used the non-trivial topological structure of the projective space of one-dimensional subspaces of an appropriate Hilbert space. The geometrical phase, in their treatment, results from a parallel transport of the time-dependent pure quantum states along a curve in this space, which is endowed with an abelian connection. Unlike Berry, they were able to achieve this without resort to an adiabatic approximation or to a time-independent eigenvalue equation. Prima facie, these two approaches are conceptually quite different. After a review of both approaches, an exposition bridging this apparent conceptual gap is given; by rigorously analyzing a model composite system, it is shown that, in an appropriate correspondence limit, the Berry phase can be recovered as a special case from the Aharonov-Anandan phase. Moreover, the model composite system is used to show that Berry's correction to the traditional Born-Oppenheimer energy spectra indeed brings the spectra closer to the exact results. Then, an experimental arrangement to measure geometrical phases associated with cyclic and non-cyclic variations of quantum states of an entangled composite system is proposed, utilizing the fundamental ideas of the recently opened field of two-particle interferometry. This arrangement not only resolves the controversy regarding the true nature of the phases associated with photon states, but also unequivocally predicts experimentally accessible geometrical phases in a
The formalisms of quantum mechanics an introduction
David, Francois
2015-01-01
These lecture notes present a concise and introductory, yet as far as possible coherent, view of the main formalizations of quantum mechanics and of quantum field theories, their interrelations and their theoretical foundations. The “standard” formulation of quantum mechanics (involving the Hilbert space of pure states, self-adjoint operators as physical observables, and the probabilistic interpretation given by the Born rule) on one hand, and the path integral and functional integral representations of probabilities amplitudes on the other, are the standard tools used in most applications of quantum theory in physics and chemistry. Yet, other mathematical representations of quantum mechanics sometimes allow better comprehension and justification of quantum theory. This text focuses on two of such representations: the algebraic formulation of quantum mechanics and the “quantum logic” approach. Last but not least, some emphasis will also be put on understanding the relation between quantum physics and ...
Line Defects, Tropicalization, and Multi-Centered Quiver Quantum Mechanics
Cordova, Clay
2013-01-01
We study BPS line defects in N=2 supersymmetric four-dimensional field theories. We focus on theories of "quiver type," those for which the BPS particle spectrum can be computed using quiver quantum mechanics. For a wide class of models, the renormalization group flow between defects defined in the ultraviolet and in the infrared is bijective. Using this fact, we propose a way to compute the BPS Hilbert space of a defect defined in the ultraviolet, using only infrared data. In some cases our proposal reduces to studying representations of a "framed" quiver, with one extra node representing the defect. In general, though, it is different. As applications, we derive a formula for the discontinuities in the defect renormalization group map under variations of moduli, and show that the operator product algebra of line defects contains distinguished subalgebras with universal multiplication rules. We illustrate our results in several explicit examples.
Multi-Well Potentials in Quantum Mechanics and Stochastic Processes
Directory of Open Access Journals (Sweden)
Victor P. Berezovoj
2010-12-01
Full Text Available Using the formalism of extended N=4 supersymmetric quantum mechanics we consider the procedure of the construction of multi-well potentials. We demonstrate the form-invariance of Hamiltonians entering the supermultiplet, using the presented relation for integrals, which contain fundamental solutions. The possibility of partial N=4 supersymmetry breaking is determined. We also obtain exact forms of multi-well potentials, both symmetric and asymmetric, using the Hamiltonian of harmonic oscillator as initial. The modification of the shape of potentials due to variation of parameters is also discussed, as well as application of the obtained results to the study of tunneling processes. We consider the case of exact, as well as partially broken N=4 supersymmetry. The distinctive feature of obtained probability densities and potentials is a parametric freedom, which allows to substantially modify their shape. We obtain the expressions for probability densities under the generalization of the Ornstein-Uhlenbeck process.
The Linguistic Interpretation of Quantum Mechanics
Ishikawa, Shiro
2012-01-01
About twenty years ago, we proposed the mathematical formulation of Heisenberg's uncertainty principle, and further, we concluded that Heisenberg's uncertainty principle and EPR-paradox are not contradictory. This is true, however we now think that we should have argued about it under a certain firm interpretation of quantum mechanics. Recently we proposed the linguistic quantum interpretation (called quantum and classical measurement theory), which was characterized as a kind of metaphysical and linguistic turn of the Copenhagen interpretation. This turn from physics to language does not only extend quantum theory to classical systems but also yield the quantum mechanical world view (i.e., the philosophy of quantum mechanics, in other words, quantum philosophy). In fact, we can consider that traditional philosophies have progressed toward quantum philosophy. In this paper, we first review the linguistic quantum interpretation, and further, clarify the relation between EPR-paradox and Heisenberg's uncertainty...
Fu, Wenbo; Maldacena, Juan; Sachdev, Subir
2016-01-01
We discuss a supersymmetric generalization of the Sachdev-Ye-Kitaev model. These are quantum mechanical models involving $N$ Majorana fermions. The supercharge is given by a polynomial expression in terms of the Majorana fermions with random coefficients. The Hamiltonian is the square of the supercharge. The ${\\cal N}=1$ model with a single supercharge has unbroken supersymmetry at large $N$, but non-perturbatively spontaneously broken supersymmetry in the exact theory. We analyze the model by looking at the large $N$ equation, and also by performing numerical computations for small values of $N$. We also compute the large $N$ spectrum of "singlet" operators, where we find a structure qualitatively similar to the ordinary SYK model. We also discuss an ${\\cal N}=2$ version. In this case, the model preserves supersymmetry in the exact theory and we can compute a suitably weighted Witten index to count the number of ground states, which agrees with the large $N$ computation of the entropy. In both cases, we disc...
Negative entropy and information in quantum mechanics
Cerf, N. J.; Adami, C.
1995-01-01
A framework for a quantum mechanical information theory is introduced that is based entirely on density operators, and gives rise to a unified description of classical correlation and quantum entanglement. Unlike in classical (Shannon) information theory, quantum (von Neumann) conditional entropies can be negative when considering quantum entangled systems, a fact related to quantum non-separability. The possibility that negative (virtual) information can be carried by entangled particles sug...
Teaching Quantum Mechanics on an Introductory Level.
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Teaching Quantum Mechanics on an Introductory Level.
Muller, Rainer; Wiesner, Hartmut
2002-01-01
Presents a new research-based course on quantum mechanics in which the conceptual issues of quantum mechanics are taught at an introductory level. Involves students in the discovery of how quantum phenomena deviate from classical everyday experiences. (Contains 31 references.) (Author/YDS)
Bound States Of Supersymmetric Black Holes
Britto-Pacumio, R A
2002-01-01
The quantum mechanics of N slowly-moving supersymmetric black holes in five dimensions is considered. A divergent continuum of states describing arbitrarily closely bound black holes with arbitrarily small excitation energies is found. A superconformal structure appears at low energies and can be used to define a topological index counting the weighted number of supersymmetric bound states. It is shown that the index is determined from the dimensions of certain cohomology classes on the symmetric product of N copies of R4. This bound state index is computed exactly for two and three black holes. The required regulator for the infrared continuum of near-coincident black holes is chosen in accord with the enhanced superconformal symmetry.
The quantum mechanics of materials
Cohen, M. L.; Heine, V.; Phillips, J. C.
1982-06-01
The prediction of the properties of materials from fundamental principles, i.e., quantum mechanics, by the use of pseudopotential theory is discussed. Following a review of previous difficulties encountered in the application of quantum theory to complex aggregates of matter, and the failures of early theories to resolve differences corresponding to important phase transitions in solids, the idea first proposed by Herring concerning the energy cancellation of valence electrons and the possibility of neglecting core electron effects is examined as the basis of pseudopotential theory. The application of the electron pseudopotential, representing the scattering strength of one atomic core with respect to a single Fourier component of one valence-electron wave, to the calculation of the scattering of an electron wave in crystalline solids is examined, and the derivation of structural properties from the pseudopotentials is discussed. Recent advances in pseudopotential theory explaining the properties of surface and interface structures, and the total energy of semiconducting materials are indicated.
Hidden scale in quantum mechanics
Giri, Pulak Ranjan
2007-01-01
We show that the intriguing localization of a free particle wave-packet is possible due to a hidden scale present in the system. Self-adjoint extensions (SAE) is responsible for introducing this scale in quantum mechanical models through the nontrivial boundary conditions. We discuss a couple of classically scale invariant free particle systems to illustrate the issue. In this context it has been shown that a free quantum particle moving on a full line may have localized wave-packet around the origin. As a generalization, it has also been shown that particles moving on a portion of a plane or on a portion of a three dimensional space can have unusual localized wave-packet.
Quantum mechanics: Myths and facts
Nikolic, H
2006-01-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of "myths", that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Matrix Quantum Mechanics from Qubits
Hartnoll, Sean A; Mazenc, Edward A
2016-01-01
We introduce a transverse field Ising model with order N^2 spins interacting via a nonlocal quartic interaction. The model has an O(N,Z), hyperoctahedral, symmetry. We show that the large N partition function admits a saddle point in which the symmetry is enhanced to O(N). We further demonstrate that this `matrix saddle' correctly computes large N observables at weak and strong coupling. The matrix saddle undergoes a continuous quantum phase transition at intermediate couplings. At the transition the matrix eigenvalue distribution becomes disconnected. The critical excitations are described by large N matrix quantum mechanics. At the critical point, the low energy excitations are waves propagating in an emergent 1+1 dimensional spacetime.
Quantum Mechanics: Myths and Facts
Nikolić, Hrvoje
2007-11-01
A common understanding of quantum mechanics (QM) among students and practical users is often plagued by a number of “myths”, that is, widely accepted claims on which there is not really a general consensus among experts in foundations of QM. These myths include wave-particle duality, time-energy uncertainty relation, fundamental randomness, the absence of measurement-independent reality, locality of QM, nonlocality of QM, the existence of well-defined relativistic QM, the claims that quantum field theory (QFT) solves the problems of relativistic QM or that QFT is a theory of particles, as well as myths on black-hole entropy. The fact is that the existence of various theoretical and interpretational ambiguities underlying these myths does not yet allow us to accept them as proven facts. I review the main arguments and counterarguments lying behind these myths and conclude that QM is still a not-yet-completely-understood theory open to further fundamental research.
Deformation of noncommutative quantum mechanics
Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan
2016-09-01
In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .
A quantum mechanical model of "dark matter"
Belokurov, V V
2014-01-01
The role of singular solutions in some simple quantum mechanical models is studied. The space of the states of two-dimensional quantum harmonic oscillator is shown to be separated into sets of states with different properties.
Quantum Jacobi fields in Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
Jacobi fields of classical solutions of a Hamiltonian mechanical system are quantized in the framework of vertical-extended Hamiltonian formalism. Quantum Jacobi fields characterize quantum transitions between classical solutions.
Entropy, Topological Theories and Emergent Quantum Mechanics
Directory of Open Access Journals (Sweden)
D. Cabrera
2017-02-01
Full Text Available The classical thermostatics of equilibrium processes is shown to possess a quantum mechanical dual theory with a ﬁnite dimensional Hilbert space of quantum states. Speciﬁcally, the kernel of a certain Hamiltonian operator becomes the Hilbert space of quasistatic quantum mechanics. The relation of thermostatics to topological ﬁeld theory is also discussed in the context of the approach of the emergence of quantum theory, where the concept of entropy plays a key role.
Correspondence Truth and Quantum Mechanics
Karakostas, Vassilios
2015-01-01
The logic of a physical theory reflects the structure of the propositions referring to the behaviour of a physical system in the domain of the relevant theory. It is argued in relation to classical mechanics that the propositional structure of the theory allows truth-value assignment in conformity with the traditional conception of a correspondence theory of truth. Every proposition in classical mechanics is assigned a definite truth value, either 'true' or 'false', describing what is actually the case at a certain moment of time. Truth-value assignment in quantum mechanics, however, differs; it is known, by means of a variety of 'no go' theorems, that it is not possible to assign definite truth values to all propositions pertaining to a quantum system without generating a Kochen-Specker contradiction. In this respect, the Bub-Clifton 'uniqueness theorem' is utilized for arguing that truth-value definiteness is consistently restored with respect to a determinate sublattice of propositions defined by the state...
Transfer of Learning in Quantum Mechanics
Singh, Chandralekha
2016-01-01
We investigate the difficulties that undergraduate students in quantum mechanics courses have in transferring learning from previous courses or within the same course from one context to another by administering written tests and conducting individual interviews. Quantum mechanics is abstract and its paradigm is very different from the classical one. A good grasp of the principles of quantum mechanics requires creating and organizing a knowledge structure consistent with the quantum postulates. Previously learned concepts such as the principle of superposition and probability can be useful in quantum mechanics if students are given opportunity to build associations between new and prior knowledge. We also discuss the need for better alignment between quantum mechanics and modern physics courses taken previously because semi-classical models can impede internalization of the quantum paradigm in more advanced courses.
Quantum localization of Classical Mechanics
Batalin, Igor A
2016-01-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Quantum localization of classical mechanics
Batalin, Igor A.; Lavrov, Peter M.
2016-07-01
Quantum localization of classical mechanics within the BRST-BFV and BV (or field-antifield) quantization methods are studied. It is shown that a special choice of gauge fixing functions (or BRST-BFV charge) together with the unitary limit leads to Hamiltonian localization in the path integral of the BRST-BFV formalism. In turn, we find that a special choice of gauge fixing functions being proportional to extremals of an initial non-degenerate classical action together with a very special solution of the classical master equation result in Lagrangian localization in the partition function of the BV formalism.
Quantum mechanics in phase space
DEFF Research Database (Denmark)
Hansen, Frank
1984-01-01
A reformulation of quantum mechanics for a finite system is given using twisted multiplication of functions on phase space and Tomita's theory of generalized Hilbert algebras. Quantization of a classical observable h is achieved when the twisted exponential Exp0(-h) is defined as a tempered....... Generalized Weyl-Wigner maps related to the notion of Hamiltonian weight are studied and used in the formulation of a twisted spectral theory for functions on phase space. Some inequalities for Wigner functions on phase space are proven. A brief discussion of the classical limit obtained through dilations...
Quantum mechanics for applied physics and engineering
Fromhold, Albert T
2011-01-01
This excellent text, directed to upper-level undergraduates and graduate students in engineering and applied physics, introduces the fundamentals of quantum mechanics, emphasizing those aspects of quantum mechanics and quantum statistics essential to an understanding of solid-state theory. A heavy background in mathematics and physics is not required beyond basic courses in calculus, differential equations, and calculus-based elementary physics.The first three chapters introduce quantum mechanics (using the Schrödinger equations), quantum statistics, and the free-electron theory of metals. Ch
How quantum mechanics probes superspace
Nicolis, Stam
2016-01-01
We study the relation between the partition function of a non--relativistic particle, that describes the equilibrium fluctuations implicitly, and the partition function of the same system, deduced from the Langevin equation, that describes the fluctuations explicitly, of a bath with additive white--noise properties. We show that both can be related to the partition function of an ${\\mathcal N}=1$ supersymmetric theory with one--dimensional bosonic worldvolume and that they can all describe the same physics, since the correlation functions of the observables satisfy the same identities for all systems.The supersymmetric theory provides the consistent closure for describing the fluctuations, even though supersymmetry may be broken, when their backreaction is taken into account. The trajectory of the classical particle becomes a component of a superfield, when fluctuations are taken into account. These statements can be tested by the identities the correlation functions satisfy, by using a lattice regularization...
How quantum mechanics probes superspace
Nicolis, Stam
2017-03-01
We study the relation between the partition function of a non-relativistic particle, that describes the equilibrium fluctuations implicitly, and the partition function of the same system, deduced from the Langevin equation, that describes the fluctuations explicitly, of a bath with additive white-noise properties. We show that both can be related to the partition function of an N = 1 supersymmetric theory with one-dimensional bosonic worldvolume and that they can all describe the same physics, since the correlation functions of the observables satisfy the same identities for all systems.The supersymmetric theory provides the consistent closure for describing the fluctuations, even though supersymmetry may be broken, when their backreaction is taken into account. The trajectory of the classical particle becomes a component of a superfield, when fluctuations are taken into account. These statements can be tested by the identities the correlation functions satisfy, by using a lattice regularization of an action that describes commuting fields only.
A Quantum Space Behind Simple Quantum Mechanics
Chew, Chuan Sheng; Payne, Jason
2016-01-01
In physics, we are supposed to learn from experiments what constitutes a good/correct theoretical/mathematical model of any physical concept, the physical space should not be an exception. The best picture of the physical space, in Newtonian physics, is given by the configuration space of a free particle. The space, as well as the phase space, can be constructed as a representation space of the relativity symmetry. Starting with the corresponding quantum symmetry, we illustrate the construction of a quantum space along the lines of the quantum phase space and demonstrate the retrieval of the classical picture as an approximation through the contraction of the (relativity) symmetry and the representations of it. The result suggests a picture of the physical space beyond that of a finite dimensional manifold.
The emerging quantum the physics behind quantum mechanics
Pena, Luis de la; Valdes-Hernandez, Andrea
2014-01-01
This monograph presents the latest findings from a long-term research project intended to identify the physics behind Quantum Mechanics. A fundamental theory for quantum mechanics is constructed from first physical principles, revealing quantization as an emergent phenomenon arising from a deeper stochastic process. As such, it offers the vibrant community working on the foundations of quantum mechanics an alternative contribution open to discussion. The book starts with a critical summary of the main conceptual problems that still beset quantum mechanics. The basic consideration is then introduced that any material system is an open system in permanent contact with the random zero-point radiation field, with which it may reach a state of equilibrium. Working from this basis, a comprehensive and self-consistent theoretical framework is then developed. The pillars of the quantum-mechanical formalism are derived, as well as the radiative corrections of nonrelativistic QED, while revealing the underlying physi...
Quantum mechanics in complex systems
Hoehn, Ross Douglas
This document should be considered in its separation; there are three distinct topics contained within and three distinct chapters within the body of works. In a similar fashion, this abstract should be considered in three parts. Firstly, we explored the existence of multiply-charged atomic ions by having developed a new set of dimensional scaling equations as well as a series of relativistic augmentations to the standard dimensional scaling procedure and to the self-consistent field calculations. Secondly, we propose a novel method of predicting drug efficacy in hopes to facilitate the discovery of new small molecule therapeutics by modeling the agonist-protein system as being similar to the process of Inelastic Electron Tunneling Spectroscopy. Finally, we facilitate the instruction in basic quantum mechanical topics through the use of quantum games; this method of approach allows for the generation of exercises with the intent of conveying the fundamental concepts within a first year quantum mechanics classroom. Furthermore, no to be mentioned within the body of the text, yet presented in appendix form, certain works modeling the proliferation of cells types within the confines of man-made lattices for the purpose of facilitating artificial vascular transplants. In Chapter 2, we present a theoretical framework which describes multiply-charged atomic ions, their stability within super-intense laser fields, also lay corrections to the systems due to relativistic effects. Dimensional scaling calculations with relativistic corrections for systems: H, H-, H 2-, He, He-, He2-, He3- within super-intense laser fields were completed. Also completed were three-dimensional self consistent field calculations to verify the dimensionally scaled quantities. With the aforementioned methods the system's ability to stably bind 'additional' electrons through the development of multiple isolated regions of high potential energy leading to nodes of high electron density is shown
Potentiality, Actuality, and Quantum Mechanics
Directory of Open Access Journals (Sweden)
Boris Koznjak
2007-12-01
Full Text Available In this paper a possible interpretative value of Aristotle’s fundamental ontological doctrine of potentiality (δύναµις and actuality (ἐνέργεια is considered in the context of operationally undoubtedly the most successful but interpretatively still controversial theory of modern physics – quantum mechanics – especially regarding understanding the nature of the world, the phenomena of which it describes and predicts so successfully. In particular, beings of the atomic world are interpreted as real potential beings (δυνάµει ὄντα actualized by the measurement process in appropriate experimental arrangement, and the problem of actual beings (ἐνεργείᾳ ὄντα of the atomic world (better known as the measurement problem in quantum mechanics is considered in the context of Aristotle’s threefold requirement for the priority of actuality over potentiality – in time (χρόνος, definition or knowledge (λόγος, and substantiality (οὐσία.
Khoury, Justin; Ovrut, Burt A
2011-01-01
Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N=1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.
Barranco, Alejandro
2012-01-01
We implement relativistic BCS superconductivity in N=1 supersymmetric field theories with a U(1)_R symmetry. The simplest model contains two chiral superfields with a Kahler potential modified by quartic terms. We study the phase diagram of the gap as a function of the temperature and the specific heat. The superconducting phase transition turns out to be first order, due to the scalar contribution to the one-loop potential. By virtue of supersymmetry, the critical curves depend logarithmically with the UV cutoff, rather than quadratically as in standard BCS theory. We comment on the difficulties in having fermion condensates when the chemical potential is instead coupled to a baryonic U(1)_B current. We also discuss supersymmetric models of BCS with canonical Kahler potential constructed by "integrating-in" chiral superfields.
Bridging classical and quantum mechanics
Haddad, D.; Seifert, F.; Chao, L. S.; Li, S.; Newell, D. B.; Pratt, J. R.; Williams, C.; Schlamminger, S.
2016-10-01
Using a watt balance and a frequency comb, a mass-energy equivalence is derived. The watt balance compares mechanical power measured in terms of the meter, the second, and the kilogram to electrical power measured in terms of the volt and the ohm. A direct link between mechanical action and the Planck constant is established by the practical realization of the electrical units derived from the Josephson and the quantum Hall effects. By using frequency combs to measure velocities and acceleration of gravity, the unit of mass can be realized from a set of three defining constants: the Planck constant h, the speed of light c, and the hyperfine splitting frequency of 133Cs.
Emergent quantum mechanics and emergent symmetries
Hooft, G. 't
2007-01-01
Quantum mechanics is ‘emergent’ if a statistical treatment of large scale phenomena in a locally deterministic theory requires the use of quantum operators. These quantum operators may allow for symmetry transformations that are not present in the underlying deterministic system. Such
A Process Model of Quantum Mechanics
Sulis, William
2014-01-01
A process model of quantum mechanics utilizes a combinatorial game to generate a discrete and finite causal space upon which can be defined a self-consistent quantum mechanics. An emergent space-time M and continuous wave function arise through a non-uniform interpolation process. Standard non-relativistic quantum mechanics emerges under the limit of infinite information (the causal space grows to infinity) and infinitesimal scale (the separation between points goes to zero). The model has th...
Energy Technology Data Exchange (ETDEWEB)
Whitaker, A [Department of Physics, Queen' s University, Belfast (United Kingdom)
2004-02-27
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried's well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. To commence with general discussion of the new book, the authors recognise that the graduate student of today almost certainly has substantial experience of wave mechanics, and is probably familiar with the Dirac formalism. The new edition has been almost entirely rewritten; even at the level of basic text, it is difficult to trace sentences or paragraphs that have moved unscathed from one edition to the next. As well as the new topics, many of the old ones are discussed in much greater depth, and the general organisation is entirely different. As compared with the steady rise in level of the 1966 edition, the level of this book is fairly consistent throughout, and from the perspective of a beginning graduate student, I would estimate, a little tough. To sum up, Gottfried and Yan's book contains a vast amount of knowledge and understanding
Schwinger Algebra for Quaternionic Quantum Mechanics
Horwitz, L P
1997-01-01
It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states $N \\to \\infty$.
Bohmian mechanics and the quantum revolution
Goldstein, S
1995-01-01
This is a review-essay on ``Speakable and Unspeakable in Quantum Mechanics'' by John Bell and ``The Undivided Universe: An Ontological Interpretation of Quantum Mechanics'' by David Bohm and Basil Hiley. The views of these authors concerning the character of quantum theory and quantum reality---and, in particular, their approaches to the issues of nonlocality, the possibility of hidden variables, and the nature of and desiderata for a satisfactory scientific explanation of quantum phenomena---are contrasted, with each other and with the orthodox approach to these issues.
Quantum mechanics and computation; Quanta y Computacion
Energy Technology Data Exchange (ETDEWEB)
Cirac Sasturain, J. I.
2000-07-01
We review how some of the basic principles of Quantum Mechanics can be used in the field of computation. In particular, we explain why a quantum computer can perform certain tasks in a much more efficient way than the computers we have available nowadays. We give the requirements for a quantum system to be able to implement a quantum computer and illustrate these requirements in some particular physical situations. (Author) 16 refs.
Interactive learning tutorials on quantum mechanics
Singh, Chandralekha
2016-01-01
We discuss the development and evaluation of quantum interactive learning tutorials (QuILTs) which are suitable for undergraduate courses in quantum mechanics. QuILTs are based on the investigation of student difficulties in learning quantum physics. They exploit computer-based visualization tools and help students build links between the formal and conceptual aspects of quantum physics without compromising the technical content. They can be used both as supplements to lectures or as a self-study tool.
Bohmian mechanics and quantum field theory.
Dürr, Detlef; Goldstein, Sheldon; Tumulka, Roderich; Zanghì, Nino
2004-08-27
We discuss a recently proposed extension of Bohmian mechanics to quantum field theory. For more or less any regularized quantum field theory there is a corresponding theory of particle motion, which, in particular, ascribes trajectories to the electrons or whatever sort of particles the quantum field theory is about. Corresponding to the nonconservation of the particle number operator in the quantum field theory, the theory describes explicit creation and annihilation events: the world lines for the particles can begin and end.
Oss, Stefano; Rosi, Tommaso
2015-04-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many reasons why quantum mechanical systems and phenomena are difficult both to teach and deeply understand. They are described by equations that are generally hard to visualize, and they often oppose the so-called "common sense" based on the human perception of the world, which is built on mental images such as locality and causality. Moreover students cannot have direct experience of those systems and solutions, and generally do not even have the possibility to refer to pictures, videos, or experiments to fill this gap. Teachers often encounter quite serious troubles in finding out a sensible way to speak about the wonders of quantum physics at the high school level, where complex formalisms are not accessible at all. One should however consider that this is quite a common issue in physics and, more generally, in science education. There are plenty of natural phenomena whose models (not only at microscopic and atomic levels) are of difficult, if not impossible, visualization. Just think of certain kinds of waves, fields of forces, velocities, energy, angular momentum, and so on. One should also notice that physical reality is not the same as the images we make of it. Pictures (formal, abstract ones, as well as artists' views) are a convenient bridge between these two aspects.
Towards a Constructive Foundation of Quantum Mechanics
Smilga, Walter
2016-11-01
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
Towards a Constructive Foundation of Quantum Mechanics
Smilga, Walter
2017-01-01
I describe a constructive foundation for quantum mechanics, based on the discreteness of the degrees of freedom of quantum objects and on the Principle of Relativity. Taking Einstein's historical construction of Special Relativity as a model, the construction is carried out in close contact with a simple quantum mechanical Gedanken experiment. This leads to the standard axioms of quantum mechanics. The quantum mechanical description is identified as a mathematical tool that allows describing objects, whose degree of freedom in space-time has a discrete spectrum, relative to classical observers in space-time. This description is covariant with respect to (continuous) coordinate transformations and meets the requirement that the spectrum is the same in every inertial system. The construction gives detailed answers to controversial questions, such as the measurement problem, the informational content of the wave function, and the completeness of quantum mechanics.
Quantum Mechanics As A Limiting Case of Classical Mechanics
Ghose, Partha
2000-01-01
In spite of its popularity, it has not been possible to vindicate the conventional wisdom that classical mechanics is a limiting case of quantum mechanics. The purpose of the present paper is to offer an alternative point of view in which quantum mechanics emerges as a limiting case of classical mechanics in which the classical system is decoupled from its environment.
BOOK REVIEWS: Quantum Mechanics: Fundamentals
Whitaker, A.
2004-02-01
This review is of three books, all published by Springer, all on quantum theory at a level above introductory, but very different in content, style and intended audience. That of Gottfried and Yan is of exceptional interest, historical and otherwise. It is a second edition of Gottfried’s well-known book published by Benjamin in 1966. This was written as a text for a graduate quantum mechanics course, and has become one of the most used and respected accounts of quantum theory, at a level mathematically respectable but not rigorous. Quantum mechanics was already solidly established by 1966, but this second edition gives an indication of progress made and changes in perspective over the last thirty-five years, and also recognises the very substantial increase in knowledge of quantum theory obtained at the undergraduate level. Topics absent from the first edition but included in the second include the Feynman path integral, seen in 1966 as an imaginative but not very useful formulation of quantum theory. Feynman methods were given only a cursory mention by Gottfried. Their practical importance has now been fully recognised, and a substantial account of them is provided in the new book. Other new topics include semiclassical quantum mechanics, motion in a magnetic field, the S matrix and inelastic collisions, radiation and scattering of light, identical particle systems and the Dirac equation. A topic that was all but totally neglected in 1966, but which has flourished increasingly since, is that of the foundations of quantum theory. John Bell’s work of the mid-1960s has led to genuine theoretical and experimental achievement, which has facilitated the development of quantum optics and quantum information theory. Gottfried’s 1966 book played a modest part in this development. When Bell became increasingly irritated with the standard theoretical approach to quantum measurement, Viki Weisskopf repeatedly directed him to Gottfried’s book. Gottfried had devoted a
Quantum mechanics without potential function
Energy Technology Data Exchange (ETDEWEB)
Alhaidari, A. D., E-mail: haidari@sctp.org.sa [Saudi Center for Theoretical Physics, P.O. Box 32741, Jeddah 21438 (Saudi Arabia); Ismail, M. E. H. [Department of Mathematics, University of Central Florida, Orlando, Florida 32816 (United States)
2015-07-15
In the standard formulation of quantum mechanics, one starts by proposing a potential function that models the physical system. The potential is then inserted into the Schrödinger equation, which is solved for the wavefunction, bound states energy spectrum, and/or scattering phase shift. In this work, however, we propose an alternative formulation in which the potential function does not appear. The aim is to obtain a set of analytically realizable systems, which is larger than in the standard formulation and may or may not be associated with any given or previously known potential functions. We start with the wavefunction, which is written as a bounded infinite sum of elements of a complete basis with polynomial coefficients that are orthogonal on an appropriate domain in the energy space. Using the asymptotic properties of these polynomials, we obtain the scattering phase shift, bound states, and resonances. This formulation enables one to handle not only the well-known quantum systems but also previously untreated ones. Illustrative examples are given for two- and three-parameter systems.
Quantum mechanics of Proca fields
Zamani, Farhad; Mostafazadeh, Ali
2009-05-01
We construct the most general physically admissible positive-definite inner product on the space of Proca fields. Up to a trivial scaling this defines a five-parameter family of Lorentz invariant inner products that we use to construct a genuine Hilbert space for the quantum mechanics of Proca fields. If we identify the generator of time translations with the Hamiltonian, we obtain a unitary quantum system that describes first-quantized Proca fields and does not involve the conventional restriction to the positive-frequency fields. We provide a rather comprehensive analysis of this system. In particular, we examine the conserved current density responsible for the conservation of the probabilities, explore the global gauge symmetry underlying the conservation of the probabilities, obtain a probability current density, construct position, momentum, helicity, spin, and angular momentum operators, and determine the localized Proca fields. We also compute the generalized parity (P), generalized time-reversal (T), and generalized charge or chirality (C) operators for this system and offer a physical interpretation for its PT-, C-, and CPT-symmetries.
A modern approach to quantum mechanics
Townsend, John S
2012-01-01
Using an innovative approach that students find both accessible and exciting, A Modern Approach to Quantum Mechanics, Second Edition lays out the foundations of quantum mechanics through the physics of intrinsic spin. Written to serve as the primary textbook for an upper-division course in quantum mechanics, Townsend's text gives professors and students a refreshing alternative to the old style of teaching, by allowing the basic physics of spin systems to drive the introduction of concepts such as Dirac notation, operators, eigenstates and eigenvalues, time evolution in quantum mechanics, and entanglement. Chapters 6 through 10 cover the more traditional subjects in wave mechanics-the Schrodinger equation in position space, the harmonic oscillator, orbital angular momentum, and central potentials-but they are motivated by the foundations developed in the earlier chapters. Students using this text will perceive wave mechanics as an important aspect of quantum mechanics, but not necessarily the core of the subj...
Quantum mechanics II a second course in quantum theory
Landau, Rubin H
2004-01-01
Here is a readable and intuitive quantum mechanics text that covers scattering theory, relativistic quantum mechanics, and field theory. This expanded and updated Second Edition - with five new chapters - emphasizes the concrete and calculable over the abstract and pure, and helps turn students into researchers without diminishing their sense of wonder at physics and nature.As a one-year graduate-level course, Quantum Mechanics II: A Second Course in Quantum Theory leads from quantum basics to basic field theory, and lays the foundation for research-oriented specialty courses. Used selectively, the material can be tailored to create a one-semester course in advanced topics. In either case, it addresses a broad audience of students in the physical sciences, as well as independent readers - whether advanced undergraduates or practicing scientists
Quantum Mechanics: Bell and Quantum Entropy for the Classroom
Pluch, Philipp
2014-01-01
In this article we are willing to give some first steps to quantum mechanics and a motivation of quantum mechanics and its interpretation for undergraduate students not from physics. After a short historical review in the development we discuss philosophical, physical and mathematical interpretation. We define local realism, locality and hidden variable theory which ends up in the EPR paradox, a place where questions on completeness and reality comes into play. The fundamental result of the last century was maybe Bell's that states that local realism is false if quantum mechanics is true. From this fact we can obtain the so called Bell inequalities. After a didactic example of the fact what these inequalities means we describe the key concept of quantum entanglement motivated here by quantum information theory. Also classical entropy and von Neuman entropy is discussed.
Time Symmetry and Asymmetry in Quantum Mechanics and Quantum Cosmology
Gell-Mann, Murray; Gell-Mann, Murray; Hartle, James B.
1993-01-01
We investigate the origin of the arrow of time in quantum mechanics in the context of quantum cosmology. The ``Copenhagen'' quantum mechanics of measured subsystems incorporates a fundamental arrow of time. Extending discussions of Aharonov, Bergmann and Lebovitz, Griffiths, and others we investigate a generalized quantum mechanics for cosmology that utilizes both an initial and a final density matrix to give a time-neutral formulation without a fundamental arrow of time. Time asymmetries can arise for particular universes from differences between their initial and final conditions. Theories for both would be a goal of quantum cosmology. A special initial condition and a final condition of indifference would be sufficient to explain the observed time asymmetries of the universe. In this essay we ask under what circumstances a completely time symmetric universe, with T-symmetric initial and final condition, could be consistent with the time asymmetries of the limited domain of our experience. We discuss the ap...
Pragmatic Information in Quantum Mechanics
Roederer, Juan G
2015-01-01
An objective definition of pragmatic information and the consideration of recent results about information processing in the human brain can help overcome some traditional difficulties with the interpretation of quantum mechanics. Rather than attempting to define information ab initio, I introduce the concept of interaction between material bodies as a primary concept. Two distinct categories can be identified: 1) Interactions which can always be reduced to a superposition of physical interactions (forces) between elementary constituents; 2) Interactions between complex bodies which cannot be reduced to a superposition of interactions between parts, and in which patterns and forms (in space and/or time) play the determining role. Pragmatic information is then defined as the correspondence between a given pattern and the ensuing pattern-specific change. I will show that pragmatic information is a biological concept that plays no active role in the purely physical domain; it only does so when a living organism ...
Morlet Wavelets in Quantum Mechanics
Directory of Open Access Journals (Sweden)
John Ashmead
2012-11-01
Full Text Available Wavelets offer significant advantages for the analysis of problems in quantum mechanics. Because wavelets are localized in both time and frequency they avoid certain subtle but potentially fatal conceptual errors that can result from the use of plane wave or δ function decomposition. Morlet wavelets in particular are well-suited for this work: as Gaussians, they have a simple analytic form and they work well with Feynman path integrals. But to take full advantage of Morlet wavelets we need to supply an explicit form for the inverse Morlet transform and a manifestly covariant form for the four-dimensional Morlet wavelet. We construct both here.Quanta 2012; 1: 58–70.
Kindergarten Quantum Mechanics lectures notes
Coecke, B
2005-01-01
These lecture notes survey some joint work with Samson Abramsky as it was presented by me at several conferences in the summer of 2005. It concerns `doing quantum mechanics using only pictures of lines, squares, triangles and diamonds'. This picture calculus can be seen as a very substantial extension of Dirac's notation, and has a purely algebraic counterpart in terms of so-called Strongly Compact Closed Categories (introduced by Abramsky and I in quant-ph/0402130 and [4]) which subsumes my Logic of Entanglement quant-ph/0402014. For a survey on the `what', the `why' and the `hows' I refer to a previous set of lecture notes quant-ph/0506132. In a last section we provide some pointers to the body of technical literature on the subject.
Energy Technology Data Exchange (ETDEWEB)
Bossard, G
2007-10-15
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the {beta} function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
Quantum Tunneling In Deformed Quantum Mechanics with Minimal Length
Guo, Xiaobo; Tao, Jun; Wang, Peng
2016-01-01
In the deformed quantum mechanics with a minimal length, one WKB connection formula through a turning point is derived. We then use it to calculate tunnelling rates through potential barriers under the WKB approximation. Finally, the minimal length effects on two examples of quantum tunneling in nuclear and atomic physics are discussed
Non-renormalization theorem in a lattice supersymmetric theory and the cyclic Leibniz rule
Kato, Mitsuhiro; So, Hiroto
2016-01-01
N=4 supersymmetric quantum mechanical model is formulated on the lattice. Two supercharges, among four, are exactly conserved with the help of the cyclic Leibniz rule without spoiling the locality. In use of the cohomological argument, any possible local terms of the effective action are classified into two categories which we call type-I and type-II, analogous to the D- and F-terms in the supersymmetric field theories. We prove non-renormalization theorem on the type-II terms which include mass and interaction terms with keeping a lattice constant finite, while type-I terms such as the kinetic terms have nontrivial quantum corrections.
Testing non-associative quantum mechanics
Bojowald, Martin; Buyukcam, Umut
2015-01-01
The familiar concepts of state vectors and operators in quantum mechanics rely on associative products of observables. However, these notions do not apply to some exotic systems such as magnetic monopoles, which have long been known to lead to non-associative algebras. Their quantum physics has remained obscure. This letter presents the first derivation of potentially testable physical results in non-associative quantum mechanics, based on effective potentials. They imply new effects which cannot be mimicked in usual quantum mechanics with standard magnetic fields.
Thermodynamic integration from classical to quantum mechanics.
Habershon, Scott; Manolopoulos, David E
2011-12-14
We present a new method for calculating quantum mechanical corrections to classical free energies, based on thermodynamic integration from classical to quantum mechanics. In contrast to previous methods, our method is numerically stable even in the presence of strong quantum delocalization. We first illustrate the method and its relationship to a well-established method with an analysis of a one-dimensional harmonic oscillator. We then show that our method can be used to calculate the quantum mechanical contributions to the free energies of ice and water for a flexible water model, a problem for which the established method is unstable.
Algebraic-statistical approach to quantum mechanics
Slavnov, D A
2001-01-01
It is proposed the scheme of quantum mechanics, in which a Hilbert space and the linear operators are not primary elements of the theory. Instead of it certain variant of the algebraic approach is considered. The elements of noncommutative algebra (observables) and the nonlinear functionals on this algebra (physical states) are used as the primary constituents. The functionals associate with results of a particular measurement. It is suggested to consider certain ensembles of the physical states as quantum states of the standart quantum mechanics. It is shown that in such scheme the mathematical formalism of the standart quantum mechanics can be reproduced completely.
Random Matrix theory approach to Quantum mechanics
Chaitanya, K. V. S. Shiv
2015-01-01
In this paper, we give random matrix theory approach to the quantum mechanics using the quantum Hamilton-Jacobi formalism. We show that the bound state problems in quantum mechanics are analogous to solving Gaussian unitary ensemble of random matrix theory. This study helps in identify the potential appear in the joint probability distribution function in the random matrix theory as a super potential. This approach allows to extend the random matrix theory to the newly discovered exceptional ...
Review of student difficulties in upper-level quantum mechanics
National Research Council Canada - National Science Library
Chandralekha Singh; Emily Marshman
2015-01-01
... at the introductory and intermediate levels. In addition, learning quantum mechanics can be especially challenging because the paradigms of classical mechanics and quantum mechanics are very different...
Elucidating reaction mechanisms on quantum computers.
Reiher, Markus; Wiebe, Nathan; Svore, Krysta M; Wecker, Dave; Troyer, Matthias
2017-07-18
With rapid recent advances in quantum technology, we are close to the threshold of quantum devices whose computational powers can exceed those of classical supercomputers. Here, we show that a quantum computer can be used to elucidate reaction mechanisms in complex chemical systems, using the open problem of biological nitrogen fixation in nitrogenase as an example. We discuss how quantum computers can augment classical computer simulations used to probe these reaction mechanisms, to significantly increase their accuracy and enable hitherto intractable simulations. Our resource estimates show that, even when taking into account the substantial overhead of quantum error correction, and the need to compile into discrete gate sets, the necessary computations can be performed in reasonable time on small quantum computers. Our results demonstrate that quantum computers will be able to tackle important problems in chemistry without requiring exorbitant resources.
The transactional interpretation of quantum mechanics
Cramer, John G.
2001-06-01
The transactional interpretation of quantum mechanics [1] was originally published in 1986 and is now about 14 years old. It is an explicitly nonlocal and Lorentz invariant alternative to the Copenhagen interpretation. It interprets the formalism for a quantum interaction as describing a "handshake" between retarded waves (ψ) and advanced waves (ψ*) for each quantum event or "transaction" in which energy, momentum, angular momentum, and other conserved quantities are transferred. The transactional interpretation offers the advantages that (1) it is actually "visible" in the formalism of quantum mechanics, (2) it is economical, involving fewer independent assumptions than its rivals, (3) it is paradox-free, resolving all of the paradoxes of standard quantum theory including nonlocality and wave function collapse, (4) it does not give a privileged role to observers or measurements, and (5) it permits the visualization of quantum events. We will review the transactional interpretation and some of its applications to "quantum paradoxes."
Critique of Conventional Relativistic Quantum Mechanics.
Fanchi, John R.
1981-01-01
Following an historical sketch of the development of relativistic quantum mechanics, a discussion of the still unresolved difficulties of the currently accepted theories is presented. This review is designed to complement and update the discussion of relativistic quantum mechanics presented in many texts used in college physics courses. (Author/SK)
Regge trajectories in {N} = 2 supersymmetric Yang-Mills theory
Córdova, Clay
2016-09-01
We demonstrate that {N} = 2 supersymmetric non-Abelian gauge theories have towers of BPS particles obeying a Regge relation, J ˜ m 2, between their angular momenta, J, and their masses, m. For SU( N) Yang-Mills theories, we estimate the slope of these Regge trajectories using a non-relativistic quiver quantum mechanics model. Along the way, we also prove various structure theorems for the quiver moduli spaces that appear in the calculation.
On the Classical Limit of Quantum Mechanics
Allori, V; Allori, Valia; Zangh\\`{\\i}, Nino
2001-01-01
Contrary to the widespread belief, the problem of the emergence of classical mechanics from quantum mechanics is still open. In spite of many results on the $\\h \\to 0$ asymptotics, it is not yet clear how to explain within standard quantum mechanics the classical motion of macroscopic bodies. In this paper we shall analyze special cases of classical behavior in the framework of a precise formulation of quantum mechanics, Bohmian mechanics, which contains in its own structure the possibility of describing real objects in an observer-independent way.
Conference on Mathematical Results in Quantum Mechanics
Exner, Pavel; Tater, Miloš; QMath-7
1999-01-01
At the age of almost three quarters of a century, quantum mechanics is by all accounts a mature theory. There were times when it seemed that it had borne its best fruit already and would give way to investigation of deeper levels of matter. Today this sounds like rash thinking. Modern experimental techniques have led to discoveries of numerous new quantum effects in solid state, optics and elsewhere. Quantum mechanics is thus gradually becoming a basis for many branches of applied physics, in this way entering our everyday life. While the dynamic laws of quantum mechanics are well known, a proper theoretical understanding requires methods which would allow us to de rive the abundance of observed quantum effects from the first principles. In many cases the rich structure hidden in the Schr6dinger equation can be revealed only using sophisticated tools. This constitutes a motivation to investigate rigorous methods which yield mathematically well-founded properties of quantum systems.
Kouri, Donald J; Markovich, Thomas; Maxwell, Nicholas; Bodmann, Bernhard G
2009-07-02
We discuss a periodic variant of the Heisenberg-Weyl algebra, associated with the group of translations and modulations on the circle. Our study of uncertainty minimizers leads to a periodic version of canonical coherent states. Unlike the canonical, Cartesian case, there are states for which the uncertainty product associated with the generators of the algebra vanishes. Next, we explore the supersymmetric (SUSY) quantum mechanical setting for the uncertainty-minimizing states and interpret them as leading to a family of "hindered rotors". Finally, we present a standard quantum mechanical treatment of one of these hindered rotor systems, including numerically generated eigenstates and energies.
Propagators in Polymer Quantum Mechanics
Flores-González, Ernesto; Reyes, Juan D
2013-01-01
Polymer Quantum Mechanics is based on some of the techniques used in the loop quantization of gravity that are adapted to describe systems possessing a finite number of degrees of freedom. It has been used in two ways: on one hand it has been used to represent some aspects of the loop quantization in a simpler context, and, on the other, it has been applied to each of the infinite mechanical modes of other systems. Indeed, this polymer approach was recently implemented for the free scalar field propagator. In this work we compute the polymer propagators of the free particle and a particle in a box; amusingly, just as in the non polymeric case, the one of the particle in a box may be computed also from that of the free particle using the method of images. We verify the propagators hereby obtained satisfy standard properties such as: consistency with initial conditions, composition and Green's function character. Furthermore they are also shown to reduce to the usual Schr\\"odinger propagators in the limit of sm...
Quantum Semiotics: A Sign Language for Quantum Mechanics
Prashant
2006-01-01
Semiotics is the language of signs which has been used effectively in various disciplines of human scientific endeavor. It gives a beautiful and rich structure of language to express the basic tenets of any scientific discipline. In this article we attempt to develop from first principles such an axiomatic structure of semiotics for Quantum Mechanics. This would be a further enrichment to the already existing well understood mathematical structure of Quantum Mechanics but may give new insights and understanding to the theory and may help understand more lucidly the fundamentality of Nature which Quantum Theory attempts to explain.
Dorit Aharonov; Umesh Vazirani
2012-01-01
Quantum computation teaches us that quantum mechanics exhibits exponential complexity. We argue that the standard scientific paradigm of "predict and verify" cannot be applied to testing quantum mechanics in this limit of high complexity. We describe how QM can be tested in this regime by extending the usual scientific paradigm to include {\\it interactive experiments}.
Bibliographic guide to the foundations of quantum mechanics and quantum information
Cabello, A
2000-01-01
This is a collection of references (papers, books, preprints, book reviews, Ph. D. thesis, patents, etc.), sorted alphabetically and (some of them) classified by subject, on foundations of quantum mechanics and quantum information. Specifically, it covers hidden variables (``no-go'' theorems, experiments), interpretations of quantum mechanics, entanglement, quantum effects (quantum Zeno effect, quantum erasure, ``interaction-free'' measurements, quantum ``non-demolition'' measurements), quantum information (cryptography, cloning, dense coding, teleportation), and quantum computation.
Prologue to super quantum mechanics something is rotten in the state of quantum mechanics
Vaguine, Victor
2012-01-01
Since its foundation more than eight decades ago, quantum mechanics has been plagued by enigmas, mysteries and paradoxes and held hostage by quantum positivism. This fact strongly suggests that something is fundamentally wrong with the quantum mechanics paradigm. The best scientific minds, such as Albert Einstein, Louis de Broglie, David Bohm, Richard Feynman and others have spent years of their professional lives attempting to find resolution to the quantum mechanics predicament, with not much success. A shift of the quantum mechanics paradigm toward a deeper physics theory is long overdue.
Pseudospin, Spin, and Coulomb Dirac-Symmetries: Doublet Structure and Supersymmetric Patterns
Leviatan, A
2005-01-01
Relativistic symmetries of the Dirac Hamiltonian with a mixture of spherically symmetric Lorentz scalar and vector potentials, are examined from the point of view of supersymmetric quantum mechanics. The cases considered include the Coulomb, pseudospin and spin limits relevant, respectively, to atoms, nuclei and hadrons.
Quasicomplex N=2, d=1 Supersymmetric Sigma Models
Directory of Open Access Journals (Sweden)
Evgeny A. Ivanov
2013-11-01
Full Text Available We derive and discuss a new type of N=2 supersymmetric quantum mechanical sigma models which appear when the superfield action of the (1,2,1 multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric N=2 sigma models built on the multiplets (2,2,0 and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden N=4 supersymmetry.
Topological strings from quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Grassi, Alba; Marino, Marcos [Geneve Univ. (Switzerland). Dept. de Physique Theorique et Section de Mathematique; Hatsuda, Yasuyuki [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-12-15
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized θ function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P{sup 2}, local P{sup 1} x P{sup 1} and local F{sub 1}. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Physically, our results provide a Fermi gas picture of topological strings on toric Calabi-Yau manifolds, which is fully non-perturbative and background independent. They also suggest the existence of an underlying theory of M2 branes behind this formulation. Mathematically, our results lead to precise, surprising conjectures relating the spectral theory of functional difference operators to enumerative geometry.
Topological Strings from Quantum Mechanics
Grassi, Alba; Marino, Marcos
2014-01-01
We propose a general correspondence which associates a non-perturbative quantum-mechanical operator to a toric Calabi-Yau manifold, and we conjecture an explicit formula for its spectral determinant in terms of an M-theoretic version of the topological string free energy. As a consequence, we derive an exact quantization condition for the operator spectrum, in terms of the vanishing of a generalized theta function. The perturbative part of this quantization condition is given by the Nekrasov-Shatashvili limit of the refined topological string, but there are non-perturbative corrections determined by the conventional topological string. We analyze in detail the cases of local P2, local P1xP1 and local F1. In all these cases, the predictions for the spectrum agree with the existing numerical results. We also show explicitly that our conjectured spectral determinant leads to the correct spectral traces of the corresponding operators, which are closely related to topological string theory at orbifold points. Phys...
Strange Bedfellows: Quantum Mechanics and Data Mining
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin [SLAC National Accelerator Laboratory, Stanford, CA (United States)
2010-02-15
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
On the tomographic picture of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Ibort, A., E-mail: albertoi@math.uc3m.e [Departamento de Matematicas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes, Madrid (Spain); Man' ko, V.I., E-mail: manko@na.infn.i [P.N. Lebedev Physical Institute, Leninskii Prospect 53, Moscow 119991 (Russian Federation); Marmo, G., E-mail: marmo@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Simoni, A., E-mail: simoni@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy); Ventriglia, F., E-mail: ventriglia@na.infn.i [Dipartimento di Scienze Fisiche dell' Universita ' Federico II' e Sezione INFN di Napoli, Complesso Universitario di Monte S. Angelo, via Cintia, 80126 Naples (Italy)
2010-06-07
We formulate necessary and sufficient conditions for a symplectic tomogram of a quantum state to determine the density state. We establish a connection between the (re)construction by means of symplectic tomograms with the construction by means of Naimark positive definite functions on the Weyl-Heisenberg group. This connection is used to formulate properties which guarantee that tomographic probabilities describe quantum states in the probability representation of quantum mechanics.
Strange Bedfellows: Quantum Mechanics and Data Mining
Energy Technology Data Exchange (ETDEWEB)
Weinstein, Marvin; /SLAC
2009-12-16
Last year, in 2008, I gave a talk titled Quantum Calisthenics. This year I am going to tell you about how the work I described then has spun off into a most unlikely direction. What I am going to talk about is how one maps the problem of finding clusters in a given data set into a problem in quantum mechanics. I will then use the tricks I described to let quantum evolution lets the clusters come together on their own.
A New Interpretation to The Quantum Mechanics
Feng, Yulei
2012-01-01
In this paper, we try to give a new interpretation to the quantum mechanics from the point of view of (non-relativistic) quantum field theory. After field quantization, we obtain the Heisenberg equations for the momentum and coordinate operators of the particles excited from the (Schrodinger) field. We then give the probability concepts of quantum mechanics on the base of a statistical assemble realizing the assemble interpretation. With these, we make a series of conceptual modifications to the standard quantum mechanics, especially the quantum measurement theory; in the end, we try to solve the EPR paradox with the use of our new ideas. In addition, we also give a field theoretical description to the double-slit interference experiment, obtaining the particle number distribution, in the appendix.
A new introductory quantum mechanics curriculum
Kohnle, Antje; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2013-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of interpretive aspects of quantum mechanics and quantum information theory. This article gives an overview of the resources available at the IOP website. The core text is presented as around 80 articles co-authored by leading experts that are arranged in themes and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is part of the resource. Solutions to activities are available ...
Realism and Objectivism in Quantum Mechanics
Karakostas, Vassilios
2012-01-01
The present study attempts to provide a consistent and coherent account of what the world could be like, given the conceptual framework and results of contemporary quantum theory. It is suggested that standard quantum mechanics can, and indeed should, be understood as a realist theory within its domain of application. It is pointed out, however, that a viable realist interpretation of quantum theory requires the abandonment or radical revision of the classical conception of physical reality and its traditional philosophical presuppositions. It is argued, in this direction, that the conceptualization of the nature of reality, as arising out of our most basic physical theory, calls for a kind of contextual realism. Within the domain of quantum mechanics, knowledge of 'reality in itself', 'the real such as it truly is' independent of the way it is contextualized, is impossible in principle. In this connection, the meaning of objectivity in quantum mechanics is analyzed, whilst the important question concerning t...
Quantum ballistic evolution in quantum mechanics application to quantum computers
Benioff, P
1996-01-01
Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e. motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also pr...
Quantum Mechanics Fundamentals and Applications to Technology
Singh, Jasprit
1996-01-01
Explore the relationship between quantum mechanics and information-age applications. This volume takes an altogether unique approach to quantum mechanics. Providing an in-depth exposition of quantum mechanics fundamentals, it shows how these concepts are applied to most of today's information technologies, whether they are electronic devices or materials. No other text makes this critical, essential leap from theory to real-world applications. The book's lively discussion of the mathematics involved fits right in with contemporary multidisciplinary trends in education: Once the basic formulati
A condensed course of quantum mechanics
Cejnar, Pavel
2013-01-01
This book represents a concise summary of non-relativistic quantum mechanics on the level suitable for university students of physics. It covers, perhaps even slightly exceeds, a one-year course of about 50 lectures, requiring basic knowledge of calculus, algebra, classical mechanics and a bit of motivation for the quantum adventure.The exposition is succinct, with minimal narration, but witha maximum of explicit and hierarchically structured mathematical derivations. The text covers all essential topics of university courses of quantum mechanics - from general mathematical formalism to specif
Optimization of a relativistic quantum mechanical engine
Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
Theoretical and quantum mechanics fundamentals for chemists
Ivanov, Stefan
2006-01-01
Provides the basics of theoretical and quantum mechanics in one place and emphasizes the continuity between themUniquely presented to be used for self-taught courses covering theoretical and quantum mechanicsEach chapter includes a detailed outline, a summary, self-assessment questions for which answers can be found in the textInvaluable for chemistry undergraduate and graduate students, chemists, other non-physical scientists, engineering students of modern techniques and technology, specialists who need a better understanding of quantum mechanics.
Philosophical foundations of interpretations of quantum mechanics
Bezlepkin, Evgeny
2016-01-01
It is demonstrated that the reason for the diversity of interpretations of quantum mechanics is that they are not connected by continuity relations with classical physics, and also the reason is the impossibility of operationalist definition of the vector of state. The problem lies in the incompatibility of the philosophical foundations of interpretations, which results in the difficulty of building a unified picture of the world. To solve the problem, we identify general philosophical foundation of interpretations of quantum mechanics and built their classification. We also show that in more general theories, the part of which is quantum mechanics, it is possible to integrate (reconcile) the philosophical foundations of interpretations.
Mossbauer neutrinos in quantum mechanics and quantum field theory
Kopp, Joachim
2009-01-01
We demonstrate the correspondence between quantum mechanical and quantum field theoretical descriptions of Mossbauer neutrino oscillations. First, we compute the combined rate $\\Gamma$ of Mossbauer neutrino emission, propagation, and detection in quantum field theory, treating the neutrino as an internal line of a tree level Feynman diagram. We include explicitly the effect of homogeneous line broadening due to fluctuating electromagnetic fields in the source and detector crystals and show that the resulting formula for $\\Gamma$ is identical to the one obtained previously (Akhmedov et al., arXiv:0802.2513) for the case of inhomogeneous line broadening. We then proceed to a quantum mechanical treatment of Mossbauer neutrinos and show that the oscillation, coherence and resonance terms from the field theoretical result can be reproduced if the neutrino is described as a superposition of Lorentz-shaped wave packet with appropriately chosen energies and widths. On the other hand, the emission rate and the detecti...
Playing Games with Quantum Mechanics
Phoenix, Simon J D
2012-01-01
We present a perspective on quantum games that focuses on the physical aspects of the quantities that are used to implement a game. If a game is to be played, it has to be played with objects and actions that have some physical existence. We call such games playable. By focusing on the notion of playability for games we can more clearly see the distinction between classical and quantum games and tackle the thorny issue of what it means to quantize a game. The approach we take can more properly be thought of as gaming the quantum rather than quantizing a game and we find that in this perspective we can think of a complete quantum game, for a given set of preferences, as representing a single family of quantum games with many different playable versions. The versions of Quantum Prisoners Dilemma presented in the literature can therefore be thought of specific instances of the single family of Quantum Prisoner's Dilemma with respect to a particular measurement. The conditions for equilibrium are given for playab...
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
On the principles of quantum mechanics
Sakai, E
2004-01-01
We propose five principles as the fundamental principles of quantum mechanics: principle of space and time, Galilean principle of relativity, Hamilton's principle, wave principle, and probability principle. We deductively establish quantum mechanics on the basis of them. Then we adopt the following four guide lines. First, we do not premise the relations between dynamical variables in classical mechanics. Second, since energy and momentum are quantitatively defined in classical mechanics, we define them in quantum mechanics so that the corresponding conservation laws are satisfied in a coupling system of a quantum particle and a classical particle. Third, we define Planck's constant as a proportionality constant between energy and frequency due to one of Einstein-de Broglie formulas. Fourth, we define mass as a proportionality constant between momentum and velocity. We have succeeded to obtain the canonical commutation relations and the Schroedinger equation for a particle in an external field in the definiti...
Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, Valeriy V
2015-01-01
We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.
Quantum Mechanics as a Principle Theory
Bub, J
1999-01-01
I show how quantum mechanics, like the theory of relativity, can be understood as a 'principle theory' in Einstein's sense, and I use this notion to explore the approach to the problem of interpretation developed in my book Interpreting the Quantum World (Cambridge: Cambridge University Press, 1999).
Quantum mechanics as electrodynamics of curvilinear waves
2002-01-01
The suggested theory is the new quantum mechanics (QM) interpretation.The research proves that QM represents the electrodynamics of the curvilinear closed (non-linear) waves. It is entirely according to the modern interpretation and explains the particularities and the results of the quantum field theory.
Quantum mechanics in simple matrix form
Jordan, Thomas F
1986-01-01
With this text, basic quantum mechanics becomes accessible to undergraduates with no background in mathematics beyond algebra. Containing more than 100 problems, it provides an easy way to learn part of the quantum language and to employ this new skill in solving problems.
Are All Probabilities Fundamentally Quantum Mechanical?
Pradhan, Rajat Kumar
2011-01-01
The subjective and the objective aspects of probabilities are incorporated in a simple duality axiom inspired by observer participation in quantum theory. Transcending the classical notion of probabilities, it is proposed and demonstrated that all probabilities may be fundamentally quantum mechanical in the sense that they may all be derived from the corresponding amplitudes. The classical coin-toss and the quantum double slit interference experiments are discussed as illustrative prototype examples. Absence of multi-order quantum interference effects in multiple-slit experiments and the Experimental tests of complementarity in Wheeler's delayed-choice type experiments are explained using the involvement of the observer.
Schuch, Dieter
2014-04-01
Theoretical physics seems to be in a kind of schizophrenic state. Many phenomena in the observable macroscopic world obey nonlinear evolution equations, whereas the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. I claim that linearity in quantum mechanics is not as essential as it apparently seems since quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown where complex Riccati equations appear in time-dependent quantum mechanics and how they can be treated and compared with similar space-dependent Riccati equations in supersymmetric quantum mechanics. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation. Finally, it will be shown that (real and complex) Riccati equations also appear in many other fields of physics, like statistical thermodynamics and cosmology.
Babaei, Hassan; Mostafazadeh, Ali
2017-08-01
A first-quantized free photon is a complex massless vector field A =(Aμ ) whose field strength satisfies Maxwell's equations in vacuum. We construct the Hilbert space H of the photon by endowing the vector space of the fields A in the temporal-Coulomb gauge with a positive-definite and relativistically invariant inner product. We give an explicit expression for this inner product, identify the Hamiltonian for the photon with the generator of time translations in H , determine the operators representing the momentum and the helicity of the photon, and introduce a chirality operator whose eigenfunctions correspond to fields having a definite sign of energy. We also construct a position operator for the photon whose components commute with each other and with the chirality and helicity operators. This allows for the construction of the localized states of the photon with a definite sign of energy and helicity. We derive an explicit formula for the latter and compute the corresponding electric and magnetic fields. These turn out to diverge not just at the point where the photon is localized but on a plane containing this point. We identify the axis normal to this plane with an associated symmetry axis and show that each choice of this axis specifies a particular position operator, a corresponding position basis, and a position representation of the quantum mechanics of a photon. In particular, we examine the position wave functions determined by such a position basis, elucidate their relationship with the Riemann-Silberstein and Landau-Peierls wave functions, and give an explicit formula for the probability density of the spatial localization of the photon.
Avoiding Negative Probabilities in Quantum Mechanics
Nyambuya, Golden Gadzirayi
2013-01-01
As currently understood since its discovery, the bare Klein-Gordon theory consists of negative quantum probabilities which are considered to be physically meaningless if not outright obsolete. Despite this annoying setback, these negative probabilities are what led the great Paul Dirac in 1928 to the esoteric discovery of the Dirac Equation. The Dirac Equation led to one of the greatest advances in our understanding of the physical world. In this reading, we ask the seemingly senseless question, "Do negative probabilities exist in quantum mechanics?" In an effort to answer this question, we arrive at the conclusion that depending on the choice one makes of the quantum probability current, one will obtain negative probabilities. We thus propose a new quantum probability current of the Klein-Gordon theory. This quantum probability current leads directly to positive definite quantum probabilities. Because these negative probabilities are in the bare Klein-Gordon theory, intrinsically a result of negative energie...
Superconducting Qubits as Mechanical Quantum Engines
Sachtleben, Kewin; Mazon, Kahio T.; Rego, Luis G. C.
2017-09-01
We propose the equivalence of superconducting qubits with a pistonlike mechanical quantum engine. The work reports a study on the nature of the nonequilibrium work exchanged with the quantum-nonadiabatic working medium, which is modeled as a multilevel coupled quantum well system subject to an external control parameter. The quantum dynamics is solved for arbitrary control protocols. It is shown that the work output has two components: one that depends instantaneously on the level populations and another that is due to the quantum coherences built in the system. The nonadiabatic coherent dynamics of the quantum engine gives rise to a resistance (friction) force that decreases the work output. We consider the functional equivalence of such a device and a rf-SQUID flux qubit.
Progress in post-quantum mechanics
Sarfatti, Jack
2017-05-01
Newton's mechanics in the 17th century increased the lethality of artillery. Thermodynamics in the 19th led to the steam-powered industrial revolution. Maxwell's unification of electricity, magnetism and light gave us electrical power, the telegraph, radio and television. The discovery of quantum mechanics in the 20th century by Planck, Bohr, Einstein, Schrodinger, Heisenberg led to the creation of the atomic and hydrogen bombs as well as computer chips, the world-wide-web and Silicon Valley's multibillion dollar corporations. The lesson is that breakthroughs in fundamental physics, both theoretical and experimental, have always led to profound technological wealth-creating industries and will continue to do so. There is now a new revolution brewing in quantum mechanics that can be divided into three periods. The first quantum revolution was from 1900 to about 1975. The second quantum information/computer revolution was from about 1975 to 2015. (The early part of this story is told by Kaiser in his book, How the Hippies Saved Physics, how a small group of Berkeley/San Francisco physicists triggered that second revolution.) The third quantum revolution is how an extension of quantum mechanics may lead to the understanding of consciousness as a natural physical phenomenon that can emerge in many material substrates, not only in our carbon-based biochemistry. In particular, this new post-quantum mechanics may lead to naturally conscious artificial intelligence in nano-electronic machines, as well as perhaps extending human life spans to hundreds of years and more.
Buchel, Alexander Sergeevich
In the first part of this thesis we study a class of models for brittle fracture: elastic theory models which allow for cracks but not for plastic flow. We show that these models exhibit, at all finite temperatures, a transition to fracture under applied load. We study this transition at low temperature for small tension. We discuss the appropriate thermodynamic limit of these theories: a large class of boundary conditions is identified for which the energy release for a crack becomes independent of the macroscopic shape of the material. We prove that the energy release in an isotropically stretched material due to the creation of an arbitrary curvy cut is the same to cubic order as the energy release for the straight cut with the same end points. We find the normal modes and the energy spectrum for crack shape fluctuations and for crack surface phonons, under a uniform isotropic tension. For small uniform isotropic tension in two dimensions we calculate the essential singularity associated with fracturing the material in a saddle point approximation including quadratic fluctuations. We calculate the asymptotic ratio of the high-order elastic coefficients of the inverse bulk modulus and argue that the result is unchanged by nonlinearities. In the second part of this thesis we study dualities in supersymmetric field theories. We derive S-dualities in scale invariant N = 2 supersymmetric gauge theories by embedding those theories in asymptotically free theories with higher rank gauge groups. We proceed then to study ``ultrastrong'' coupling points in scale- invariant N = 2 gauge theories. Using the low-energy field theory arguments we relate these theories to other known N = 2 CFT. Finally, we argue that the topology of the quantum coupling space and the low energy effective action on the Coulomb branch of scale invariant N = 2 SU(n) gauge theories pick out a preferred nonperturbative definition of the gauge coupling up to non-singular holomorphic reparameterization
Quantum mechanics: Thought experiments made real
Martín, Fernando
2015-02-01
Elegant experiments performed with X-rays and a double slit formed from molecular oxygen have finally made it possible to realize and test a long-standing and famous gedanken experiment in quantum mechanics.
Beyond Quantum Mechanics and General Relativity
Gregori, Andrea
2010-01-01
In this note I present the main ideas of my proposal about the theoretical framework that could underlie, and therefore "unify", Quantum Mechanics and Relativity, and I briefly summarize the implications and predictions.
Four formulations of noncommutative quantum mechanics
Gouba, Laure
2016-01-01
Four formulations of noncommutative quantum mechanics are reviewed. These are the canonical, path-integral, Weyl-Wigner and systematic formulations. The four formulations are charaterized by a deformed Heisenberg algebra but differ in mathematical and conceptual overview.
Advanced quantum mechanics materials and photons
Dick, Rainer
2016-01-01
In this updated and expanded second edition of a well-received and invaluable textbook, Prof. Dick emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. Advanced Quantum Mechanics, Materials and Photons can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. This second edition includes an additional 62 new problems as well as expanded sections on relativistic quantum fields and applications of�...
Quantum mechanical streamlines. I - Square potential barrier
Hirschfelder, J. O.; Christoph, A. C.; Palke, W. E.
1974-01-01
Exact numerical calculations are made for scattering of quantum mechanical particles hitting a square two-dimensional potential barrier (an exact analog of the Goos-Haenchen optical experiments). Quantum mechanical streamlines are plotted and found to be smooth and continuous, to have continuous first derivatives even through the classical forbidden region, and to form quantized vortices around each of the nodal points. A comparison is made between the present numerical calculations and the stationary wave approximation, and good agreement is found between both the Goos-Haenchen shifts and the reflection coefficients. The time-independent Schroedinger equation for real wavefunctions is reduced to solving a nonlinear first-order partial differential equation, leading to a generalization of the Prager-Hirschfelder perturbation scheme. Implications of the hydrodynamical formulation of quantum mechanics are discussed, and cases are cited where quantum and classical mechanical motions are identical.
On the geometrization of quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Tavernelli, Ivano, E-mail: ita@zurich.ibm.com
2016-08-15
Nonrelativistic quantum mechanics is commonly formulated in terms of wavefunctions (probability amplitudes) obeying the static and the time-dependent Schrödinger equations (SE). Despite the success of this representation of the quantum world a wave–particle duality concept is required to reconcile the theory with observations (experimental measurements). A first solution to this dichotomy was introduced in the de Broglie–Bohm theory according to which a pilot-wave (solution of the SE) is guiding the evolution of particle trajectories. Here, I propose a geometrization of quantum mechanics that describes the time evolution of particles as geodesic lines in a curved space, whose curvature is induced by the quantum potential. This formulation allows therefore the incorporation of all quantum effects into the geometry of space–time, as it is the case for gravitation in the general relativity.
Macroscopic quantum mechanics in a classical spacetime.
Yang, Huan; Miao, Haixing; Lee, Da-Shin; Helou, Bassam; Chen, Yanbei
2013-04-26
We apply the many-particle Schrödinger-Newton equation, which describes the coevolution of a many-particle quantum wave function and a classical space-time geometry, to macroscopic mechanical objects. By averaging over motions of the objects' internal degrees of freedom, we obtain an effective Schrödinger-Newton equation for their centers of mass, which can be monitored and manipulated at quantum levels by state-of-the-art optomechanics experiments. For a single macroscopic object moving quantum mechanically within a harmonic potential well, its quantum uncertainty is found to evolve at a frequency different from its classical eigenfrequency-with a difference that depends on the internal structure of the object-and can be observable using current technology. For several objects, the Schrödinger-Newton equation predicts semiclassical motions just like Newtonian physics, yet quantum uncertainty cannot be transferred from one object to another.
Uncertainty in quantum mechanics: faith or fantasy?
Penrose, Roger
2011-12-13
The word 'uncertainty', in the context of quantum mechanics, usually evokes an impression of an essential unknowability of what might actually be going on at the quantum level of activity, as is made explicit in Heisenberg's uncertainty principle, and in the fact that the theory normally provides only probabilities for the results of quantum measurement. These issues limit our ultimate understanding of the behaviour of things, if we take quantum mechanics to represent an absolute truth. But they do not cause us to put that very 'truth' into question. This article addresses the issue of quantum 'uncertainty' from a different perspective, raising the question of whether this term might be applied to the theory itself, despite its unrefuted huge success over an enormously diverse range of observed phenomena. There are, indeed, seeming internal contradictions in the theory that lead us to infer that a total faith in it at all levels of scale leads us to almost fantastical implications.
Experimental status of quaternionic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Brumby, S.P.; Joshi, G.C.
1995-10-01
Analysis of the logical foundations of quantum mechanics indicates the possibility of constructing a theory using quaternionic Hilbert spaces. Whether this mathematical structure reflects reality is a matter for experiment to decide. The only direct search for quaternionic quantum mechanics yet carried out is reviewed and is proposed to look for quaternionic effects in correlated multi-particle systems. It is also discussed how such experiments might distinguish between the several quaternionic models proposed in the literature. 21 refs.
Implications of conformal symmetry in quantum mechanics
Okazaki, Tadashi
2017-09-01
In conformal quantum mechanics with the vacuum of a real scaling dimension and with a complete orthonormal set of energy eigenstates, which is preferable under the unitary evolution, the dilatation expectation value between energy eigenstates monotonically decreases along the flow from the UV to the IR. In such conformal quantum mechanics, there exist bounds on scaling dimensions of the physical states and the gauge operators.
Some Mutant Forms of Quantum Mechanics
Takeuchi, Tatsu; Lewis, Zachary; Minic, Djordje
2013-01-01
We construct a `mutant' form of quantum mechanics on a vector space over the finite Galois field GF(q). We find that the correlations in our model do not violate the Clauser-Horne-Shimony-Holt (CHSH) version of Bell's inequality, despite the fact that the predictions of this discretized quantum mechanics cannot be reproduced with any hidden variable theory. An alternative `mutation' is also suggested.
Antonio Gramsci's Reflection on Quantum Mechanics
Tassani, Isabella
2006-06-01
As the first step of a wider historical reconstruction of the reception of quantum mechanics in the nineteenth-century philosophy, we are going to consider Antonio Gramsci's philosophy. He asks himself about the nature of quantum objects, if their existence depends on the act of measuring by the experimenter and if this kind of relationship can be interpreted as an argument in favour of an immaterialistic philosophy. We will remark how an idealistic interpretation of quantum mechanics found a fertile field in the Italian culture, characterized by an antiscientific attitude and at the same time needing to find in science a term of comparison.
Horizon quantum mechanics of rotating black holes
Energy Technology Data Exchange (ETDEWEB)
Casadio, Roberto [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Giugno, Andrea [Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Giusti, Andrea [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); I.N.F.N., Sezione di Bologna, I.S. FLAG, Bologna (Italy); Ludwig-Maximilians-Universitaet, Arnold Sommerfeld Center, Munich (Germany); Micu, Octavian [Institute of Space Science, Bucharest, P.O. Box MG-23, Bucharest-Magurele (Romania)
2017-05-15
The horizon quantum mechanics is an approach that was previously introduced in order to analyze the gravitational radius of spherically symmetric systems and compute the probability that a given quantum state is a black hole. In this work, we first extend the formalism to general space-times with asymptotic (ADM) mass and angular momentum. We then apply the extended horizon quantum mechanics to a harmonic model of rotating corpuscular black holes. We find that simple configurations of this model naturally suppress the appearance of the inner horizon and seem to disfavor extremal (macroscopic) geometries. (orig.)
Quantum mechanics of charged particle beam optics
Khan, Sameen Ahmed
2018-01-01
Theory of charged particle beam optics is basic to the design and working of charged particle beam devices from electron microscopes to accelerator machines. Traditionally, the optical elements of the devices are designed and operated based on classical mechanics and classical electromagnetism, and only certain specific quantum mechanical aspects are dealt with separately using quantum theory. This book provides a systematic approach to quantum theory of charged particle beam optics, particularly in the high energy cases such as accelerators or high energy electron microscopy.
Book Review Bohmian Mechanics and Quantum Theory
Jäger, G
1999-01-01
A review of "Bohmian Mechanics and Quantum Theory: An Appraisal" (James Cushing, Arthur Fine and Sheldon Goldstein, Eds.), an extensive collection of articles on Bohmian mechanics. In addition to broad, critical overviews of Bohmian mechanics, the reviewed collection contains extensions and hybrid versions of the theory, as are several detailed applications to practical situtations.
Lecture Notes in Quantum Mechanics
Cohen, D
2006-01-01
These lecture notes cover undergraduate textbook topics (e.g. as in Sakurai), and also additional advanced topics at the same level of presentation. In particular: EPR and Bell; Basic postulates; The probability matrix; Measurement theory; Entanglement; Quantum computation; Wigner-Weyl formalism; The adiabatic picture; Berry phase; Linear response theory; Kubo formula; Modern approach to scattering theory with mesoscopic orientation; Theory of the resolvent and the Green function; Gauge and Galilei Symmetries; Motion in magnetic field; Quantum Hall effect; Quantization of the electromagnetic field; Fock space formalism.
A new interpretation of quantum mechanics
Golovko, V A
2016-01-01
The present paper is based upon equations obtained in an earlier paper by the author devoted to a new formulation of quantum electrodynamics. The equations describe the structure of the electron as well as its motion in external fields, interaction with a measuring apparatus inclusive, in a deterministic manner without any jumps. Quantum mechanics is an approximate theory because its equations follow from the above equations upon neglecting the self-field of the electron itself. Just this leads to paradoxes, seeming contradictions and jumps in quantum mechanics. The quantum mechanical wavefunction has a dual interpretation. In some problems the square of its modulus represents a real distribution of the electronic density while in others the same square determines the probability distribution of coordinates. It is shown why, given the different interpretations of the wavefunction, it satisfies one and the same Dirac or Schr\\"odinger equation. Description of many-electron systems is also considered in the star...
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
How to teach quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Passon, Oliver [Fachbereich Physik, University of Wuppertal, Postfach 100127, 42097 Wuppertal (Germany)
2004-11-01
In the spirit and style of John S Bell's well-known paper on How to teach special relativity it is argued that a 'Bohmian pedagogy' provides a very useful tool to illustrate the relation between classical and quantum physics and illuminates the peculiar features of the latter.
Oss, Stefano; Rosi, Tommaso
2015-01-01
We have developed an app for iOS-based smart-phones/tablets that allows a 3-D, complex phase-based colorful visualization of hydrogen atom wave functions. Several important features of the quantum behavior of atomic orbitals can easily be made evident, thus making this app a useful companion in introductory modern physics classes. There are many…
Quantum approach to classical statistical mechanics.
Somma, R D; Batista, C D; Ortiz, G
2007-07-20
We present a new approach to study the thermodynamic properties of d-dimensional classical systems by reducing the problem to the computation of ground state properties of a d-dimensional quantum model. This classical-to-quantum mapping allows us to extend the scope of standard optimization methods by unifying them under a general framework. The quantum annealing method is naturally extended to simulate classical systems at finite temperatures. We derive the rates to assure convergence to the optimal thermodynamic state using the adiabatic theorem of quantum mechanics. For simulated and quantum annealing, we obtain the asymptotic rates of T(t) approximately (pN)/(k(B)logt) and gamma(t) approximately (Nt)(-c/N), for the temperature and magnetic field, respectively. Other annealing strategies are also discussed.
Nonrelativistic Quantum Mechanics with Fundamental Environment
Gevorkyan, Ashot S.
2011-03-01
Spontaneous transitions between bound states of an atomic system, "Lamb Shift" of energy levels and many other phenomena in real nonrelativistic quantum systems are connected within the influence of the quantum vacuum fluctuations ( fundamental environment (FE)) which are impossible to consider in the limits of standard quantum-mechanical approaches. The joint system "quantum system (QS) + FE" is described in the framework of the stochastic differential equation (SDE) of Langevin-Schrödinger (L-Sch) type, and is defined on the extended space R 3 ⊗ R { ξ}, where R 3 and R { ξ} are the Euclidean and functional spaces, respectively. The density matrix for single QS in FE is defined. The entropy of QS entangled with FE is defined and investigated in detail. It is proved that as a result of interaction of QS with environment there arise structures of various topologies which are a new quantum property of the system.
Quantum Mechanical Nature in Liquid NMR Quantum Computing
Institute of Scientific and Technical Information of China (English)
LONGGui－Lu; YANHai－Yang; 等
2002-01-01
The quantum nature of bulk ensemble NMR quantum computing-the center of recent heated debate,is addressed.Concepts of the mixed state and entanglement are examined,and the data in a two-qubit liquid NMR quantum computation are analyzed.the main points in this paper are;i) Density matrix describes the "state" of an average particle in an ensemble.It does not describe the state of an individual particle in an ensemble;ii) Entanglement is a property of the wave function of a microscopic particle(such as a molecule in a liquid NMR sample),and separability of the density matrix canot be used to measure the entanglement of mixed ensemble;iii) The state evolution in bulkensemble NMR quantum computation is quantum-mechanical;iv) The coefficient before the effective pure state density matrix,ε,is a measure of the simultaneity of the molecules in an ensemble,It reflets the intensity of the NMR signal and has no significance in quantifying the entanglement in the bulk ensemble NMR system.The decomposition of the density matrix into product states is only an indication that the ensemble can be prepared by an ensemble with the particles unentangeld.We conclude that effective-pure-state NMR quantum computation is genuine,not just classical simulations.
Measurements and mathematical formalism of quantum mechanics
Slavnov, D. A.
2007-03-01
A scheme for constructing quantum mechanics is given that does not have Hilbert space and linear operators as its basic elements. Instead, a version of algebraic approach is considered. Elements of a noncommutative algebra (observables) and functionals on this algebra (elementary states) associated with results of single measurements are used as primary components of the scheme. On the one hand, it is possible to use within the scheme the formalism of the standard (Kolmogorov) probability theory, and, on the other hand, it is possible to reproduce the mathematical formalism of standard quantum mechanics, and to study the limits of its applicability. A short outline is given of the necessary material from the theory of algebras and probability theory. It is described how the mathematical scheme of the paper agrees with the theory of quantum measurements, and avoids quantum paradoxes.
Nilpotent Quantum Mechanics: Analogs and Applications
Directory of Open Access Journals (Sweden)
Peter Marcer
2017-07-01
Full Text Available The most significant characteristic of nilpotent quantum mechanics is that the quantum system (fermion state and its environment (vacuum are, in mathematical terms, mirror images of each other. So a change in one automatically leads to corresponding changes in the other. We have used this characteristic as a model for self-organization, which has applications well beyond quantum physics. The nilpotent structure has also been identified as being constructed from two commutative vector spaces. This zero square-root construction has a number of identifiable characteristics which we can expect to find in systems where self-organization is dominant, and a case presented after the publication of a paper by us on “The ‘Logic’ of Self-Organizing Systems” [1], in the organization of the neurons in the visual cortex. We expect to find many more complex systems where our general principles, based, by analogy, on nilpotent quantum mechanics, will apply.
On Time. 6b: Quantum Mechanical Time
Raju, C K
2008-01-01
The existence of small amounts of advanced radiation, or a tilt in the arrow of time, makes the basic equations of physics mixed-type functional differential equations. The novel features of such equations point to a microphysical structure of time. This corresponds to a change of logic at the microphysical level. We show that the resulting logic is a quantum logic. This provides a natural and rigorous explanation of quantum interference. This structured-time interpretation of quantum mechanics is briefly compared with various other interpretations of q.m.
Computations in quantum mechanics made easy
Korsch, H. J.; Rapedius, K.
2016-09-01
Convenient and simple numerical techniques for performing quantum computations based on matrix representations of Hilbert space operators are presented and illustrated by various examples. The applications include the calculations of spectral and dynamical properties for one-dimensional and two-dimensional single-particle systems as well as bosonic many-particle and open quantum systems. Due to their technical simplicity these methods are well suited as a tool for teaching quantum mechanics to undergraduates and graduates. Explicit implementations of the presented numerical methods in Matlab are given.
The canonical connection in quantum mechanics
Lévai, Peter; Tsutsui, I; Levay, Peter; McMullan, David; Tsutsui, Izumi
1995-01-01
In this paper we investigate the form of induced gauge fields that arises in two types of quantum systems. In the first we consider quantum mechanics on coset spaces G/H, and argue that G-invariance is central to the emergence of the H-connection as induced gauge fields in the different quantum sectors. We then demonstrate why the same connection, now giving rise to the non-abelian generalization of Berry's phase, can also be found in systems which have slow variables taking values in such a coset space.
The canonical connection in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Levay, P. [Budapesti Mueszaki Egyetem, Budapest (Hungary); Mcmullan, D.; Tsutsui, Izumi
1995-04-01
In this paper we investigate the form of induced gauge fields that arises in two types of quantum systems. In the first we consider quantum mechanics on coset spaces G/H, and argue that G-invariance is central to the emergence of the H-connection as induced gauge fields in the different quantum sectors. We then demonstrate why the same connection, now giving rise to the non-abelian generalization of Berry`s phase, can also be found in systems which have slow variables taking values in such a coset space. (author).
Why Quantum Mechanics is Hard to Understand
Bilodeau, D
1998-01-01
To understand the foundations of quantum mechanics, we have to think carefully about how theoretical concepts are rooted in -- and limited by -- the nature of experience, as Bohr attempted to show. Geometrical pictures of physical phenomena are favored because of their clarity. Quantum phenomena, however, do not permit them. Instead, the historical and dynamical aspects of description diverge and must be expressed in different but complementary languages. Objective historical facts are recorded in terms of objects, which necessarily have an imprecise, empirical quality. Dynamics is based on quantitative abstraction from recurring patterns. The "quantum of action" is the discontinuity between these two ways of looking at the physical world.
Emergent quantum mechanics of finances
Nastasiuk, Vadim A.
2014-06-01
This paper is an attempt at understanding the quantum-like dynamics of financial markets in terms of non-differentiable price-time continuum having fractal properties. The main steps of this development are the statistical scaling, the non-differentiability hypothesis, and the equations of motion entailed by this hypothesis. From perspective of the proposed theory the dynamics of S&P500 index are analyzed.
Fourier's Law in Quantum Mechanics
Seligman, Thomas H
2010-01-01
We derive Fourier's law for a completely coherent quantum system coupled locally to two heat baths at different temperatures. We solve the master equation to first order in the temperature difference. We show that the heat conductance can be expressed as a thermodynamic equilibrium coefficient taken at some intermediate temperature. We use that expression to show that for temperatures large compared to the mean level spacing of the system, the heat conductance is inversely proportional to the length of the system.
Advanced quantum mechanics materials and photons
Dick, Rainer
2012-01-01
Advanced Quantum Mechanics: Materials and Photons is a textbook which emphasizes the importance of advanced quantum mechanics for materials science and all experimental techniques which employ photon absorption, emission, or scattering. Important aspects of introductory quantum mechanics are covered in the first seven chapters to make the subject self-contained and accessible for a wide audience. The textbook can therefore be used for advanced undergraduate courses and introductory graduate courses which are targeted towards students with diverse academic backgrounds from the Natural Sciences or Engineering. To enhance this inclusive aspect of making the subject as accessible as possible, Appendices A and B also provide introductions to Lagrangian mechanics and the covariant formulation of electrodynamics. Other special features include an introduction to Lagrangian field theory and an integrated discussion of transition amplitudes with discrete or continuous initial or final states. Once students have acquir...
On quantum statistical mechanics; A study guide
Majewski, W. A.
2016-01-01
These notes are intended as an introduction to a study of applications of noncommutative calculus to quantum statistical mechanics. Centered on noncommutative calculus we describe the physical concepts and mathematical structures appearing in the analysis of large quantum systems, and their consequences. These include the emergence of algebraic approach and the necessity of employment of infinite dimensional structures. As an illustration, a quantization of stochastic processes, new formalism...
Quantum mechanics: why complex Hilbert space?
Cassinelli, G; Lahti, P
2017-11-13
We outline a programme for an axiomatic reconstruction of quantum mechanics based on the statistical duality of states and effects that combines the use of a theorem of Solér with the idea of symmetry. We also discuss arguments favouring the choice of the complex field.This article is part of the themed issue 'Second quantum revolution: foundational questions'. © 2017 The Author(s).
The conceptual foundations of quantum mechanics
Eisenbud, Leonard
2007-01-01
This book provides a clear and logical path to understanding what quantum mechanics is about. It will be accessible to undergraduates with minimal mathematical preparation: all that is required is an open mind, a little algebra, and a first course in undergraduate physics. Quantum mechanics is arguably the most successful physical theory. It makes predictions of incredible accuracy. It provides the structure underlying all of our electronic technology, and much of our mastery over materials. But compared with Newtonian mechanics, or even relativity, its teachings seem obscure-they have no coun
The mathematical basis for deterministic quantum mechanics
Hooft, G. 't
2006-01-01
If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint
The mathematical basis for deterministic quantum mechanics
Hooft, G. 't
2007-01-01
If there exists a classical, i.e. deterministic theory underlying quantum mechanics, an explanation must be found of the fact that the Hamiltonian, which is defined to be the operator that generates evolution in time, is bounded from below. The mechanism that can produce exactly such a constraint is
Intrinsic resonance representation of quantum mechanics
DEFF Research Database (Denmark)
Carioli, M.; Heller, E.J.; Møller, Klaus Braagaard
1997-01-01
an optimal representation, based purely on classical mechanics. ''Hidden'' constants of the motion and good actions already known to the classical mechanics are thus incorporated into the basis, leaving the quantum effects to be isolated and included by small matrix diagonalizations. This simplifies...
Presenting Nonreflexive Quantum Mechanics: Formalism and Metaphysics
Krause, Decio
2015-01-01
Nonreflexive quantum mechanics is a formulation of quantum theory based on a non-classical logic termed \\ita{nonreflexive logic} (a.k.a. `non-reflexive'). In these logics, the standard notion of identity, as encapsulated in classical logic and set theories, does not hold in full. The basic aim of this kind of approach to quantum mechanics is to take seriously the claim made by some authors according to whom quantum particles are \\ita{non-individuals} in some sense, and also to take into account the fact that they may be absolutely indistinguishable (or indiscernible). The nonreflexive formulation of quantum theory assumes these features of the objects already at the level of the underlying logic, so that no use is required of symmetrization postulates or other mathematical devices that serve to pretend that the objects are indiscernible (when they are not: all objects that obey classical logic are \\ita{individuals} in a sense). Here, we present the ideas of the development of nonreflexive quantum mechanics an...
Logic and probability in quantum mechanics
1976-01-01
During the academic years 1972-1973 and 1973-1974, an intensive sem inar on the foundations of quantum mechanics met at Stanford on a regular basis. The extensive exploration of ideas in the seminar led to the org~ization of a double issue of Synthese concerned with the foundations of quantum mechanics, especially with the role of logic and probability in quantum meChanics. About half of the articles in the volume grew out of this seminar. The remaining articles have been so licited explicitly from individuals who are actively working in the foun dations of quantum mechanics. Seventeen of the twenty-one articles appeared in Volume 29 of Syn these. Four additional articles and a bibliography on -the history and philosophy of quantum mechanics have been added to the present volume. In particular, the articles by Bub, Demopoulos, and Lande, as well as the second article by Zanotti and myself, appear for the first time in the present volume. In preparing the articles for publication I am much indebted to ...
Quantum mechanics and quantum information a guide through the quantum world
Fayngold, Moses
2013-01-01
Alongside a thorough definition of the basic concepts and their interrelations, backed by numerous examples, this textbook features a rare discussion of the quantum information theory. It also deals with other important topics hardly found in the literature, including the Robertson-Schrodinger-relation, angle and angular momentum uncertainties, interaction-free measurements, and the limitations of the no-cloning theorem With its interpretations of quantum mechanics and its discussions of quantum computing, this book is poised to become the standard textbook for advanced undergraduate and beginning graduate quantum mechanics courses and as an essential reference for physics students and physics professionals.
Quantum Mechanics as Quantum Information (and only a little more)
Fuchs, C
2002-01-01
In this paper, I try once again to cause some good-natured trouble. The issue remains, when will we ever stop burdening the taxpayer with conferences devoted to the quantum foundations? The suspicion is expressed that no end will be in sight until a means is found to reduce quantum theory to two or three statements of crisp physical (rather than abstract, axiomatic) significance. In this regard, no tool appears better calibrated for a direct assault than quantum information theory. Far from a strained application of the latest fad to a time-honored problem, this method holds promise precisely because a large part--but not all--of the structure of quantum theory has always concerned information. It is just that the physics community needs reminding. This paper, though taking quant-ph/0106166 as its core, corrects one mistake and offers several observations beyond the previous version. In particular, I identify one element of quantum mechanics that I would not label a subjective term in the theory--it is the in...
Relating the quantum mechanics of discrete systems to standard canonical quantum mechanics
Hooft, Gerard t
2012-01-01
Discrete quantum mechanics is here defined to be a quantum theory of wave functions defined on integers P_i and Q_i, while canonical quantum mechanics is assumed to be based on wave functions on the real numbers, R^n. We study reversible mappings from the position operators q_i and their quantum canonical operators p_i of a canonical theory, onto the discrete, commuting operators Q_i and P_i. In this paper we are particularly interested in harmonic oscillators. In the discrete system, these t...
The cellular automaton interpretation of quantum mechanics
't Hooft, Gerard
2016-01-01
This book presents the deterministic view of quantum mechanics developed by Nobel Laureate Gerard 't Hooft. Dissatisfied with the uncomfortable gaps in the way conventional quantum mechanics meshes with the classical world, 't Hooft has revived the old hidden variable ideas, but now in a much more systematic way than usual. In this, quantum mechanics is viewed as a tool rather than a theory. The book presents examples of models that are classical in essence, but can be analysed by the use of quantum techniques, and argues that even the Standard Model, together with gravitational interactions, might be viewed as a quantum mechanical approach to analysing a system that could be classical at its core. He shows how this approach, even though it is based on hidden variables, can be plausibly reconciled with Bell's theorem, and how the usual objections voiced against the idea of ‘superdeterminism' can be overcome, at least in principle. This framework elegantly explains - and automatically cures - the problems of...
Multichannel framework for singular quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Camblong, Horacio E., E-mail: camblong@usfca.edu [Department of Physics and Astronomy, University of San Francisco, San Francisco, CA 94117-1080 (United States); Epele, Luis N., E-mail: epele@fisica.unlp.edu.ar [Laboratorio de Física Teórica, Departamento de Física, IFLP, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67–1900 La Plata (Argentina); Fanchiotti, Huner, E-mail: huner@fisica.unlp.edu.ar [Laboratorio de Física Teórica, Departamento de Física, IFLP, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67–1900 La Plata (Argentina); García Canal, Carlos A., E-mail: garcia@fisica.unlp.edu.ar [Laboratorio de Física Teórica, Departamento de Física, IFLP, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C.C. 67–1900 La Plata (Argentina); Ordóñez, Carlos R., E-mail: ordonez@uh.edu [Department of Physics, University of Houston, Houston, TX 77204-5506 (United States)
2014-01-15
A multichannel S-matrix framework for singular quantum mechanics (SQM) subsumes the renormalization and self-adjoint extension methods and resolves its boundary-condition ambiguities. In addition to the standard channel accessible to a distant (“asymptotic”) observer, one supplementary channel opens up at each coordinate singularity, where local outgoing and ingoing singularity waves coexist. The channels are linked by a fully unitary S-matrix, which governs all possible scenarios, including cases with an apparent nonunitary behavior as viewed from asymptotic distances. -- Highlights: •A multichannel framework is proposed for singular quantum mechanics and analogues. •The framework unifies several established approaches for singular potentials. •Singular points are treated as new scattering channels. •Nonunitary asymptotic behavior is subsumed in a unitary multichannel S-matrix. •Conformal quantum mechanics and the inverse quartic potential are highlighted.
Non-locality beyond quantum mechanics
Popescu, Sandu
2010-01-01
Quantum mechanics is, without any doubt, a tremendously successful theory: it started by explaining black-body radiation and the photoelectric effect, it explained the spectra of atoms, and then went on to explain chemical bonds, the structure of atoms and of the atomic nucleus, the properties of crystals and the elementary particles, and a myriad of other phenomena. Yet it is safe to say that we still lack a deep understanding of quantum mechanics – surprising and even puzzling new effects continue to be discovered with regularity. That we are surprised and puzzled is the best sign that we still don't understand; however, the veil over the mysteries of quantum mechanics is starting to lift a little.
Holism, Physical Theories and Quantum Mechanics
Seevinck, M P
2004-01-01
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. I propose an operational criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if some determination (measurement) of the global properties in the theory which can be determined by global measurements, can not be implemented by local operations and classical communication. This approach is contrasted with the well known approaches to holism in terms of supervenience. I will argue that the latter have a limited scope and need to be extended using the criterion for holism proposed here in order to satisfactory address the issue for physical theories. I formalize this criterion for classical particle physics and Bohmian mechanics as represented on a Cartesian phase and configuration space, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum ope...
Introductory quantum mechanics for applied nanotechnology
Kim, Dae Mann
2015-01-01
This introductory textbook covers fundamental quantum mechanics from an application perspective, considering optoelectronic devices, biological sensors and molecular imagers as well as solar cells and field effect transistors. The book provides a brief review of classical and statistical mechanics and electromagnetism, and then turns to the quantum treatment of atoms, molecules, and chemical bonds. Aiming at senior undergraduate and graduate students in nanotechnology related areas like physics, materials science, and engineering, the book could be used at schools that offer interdisciplinary but focused training for future workers in the semiconductor industry and for the increasing number of related nanotechnology firms, and even practicing people could use it when they need to learn related concepts. The author is Professor Dae Mann Kim from the Korea Institute for Advanced Study who has been teaching Quantum Mechanics to engineering, material science and physics students for over 25 years in USA and Asia.
Quantum Mechanics of Palladium Nanostructures
Hira, Ajit; McKeough, James; Ortiz, Bridget; Diaz, Juan
We continue our interest in the chemisorption of different atomic and molecular species on small clusters of metallic elements, by examining the interactions of H, H2, Li and O adsorbates with Pdn clusters (n = 2 thru 20). The study of clusters can reveal the effects of substrate geometry on the behavior of adsorbates. Transition-metal clusters are especially suited for the study of quantum size effects and for formation of metallic states, and are ideal candidates for catalytic processes. Hybrid ab initio methods of quantum chemistry (particularly the DFT-B3LYP model) are used to derive optimal geometries for the clusters of interest. We compare calculated binding energies, bond-lengths, ionization potentials, electron affinities and HOMO-LUMO gaps for the clusters. Of particular interest are the comparisons of binding strengths at the three important types of sites: edge (E), hollow (H), on-top (T), threefold sites and fourfold sites. Effects of crystal symmetries corresponding to the bulk structures are investigated. The capacity of Pd clusters to adsorb H atoms will be compared to Ni clusters. Admixture with Pt atoms will also be considered.
Gallilei covariant quantum mechanics in electromagnetic fields
Directory of Open Access Journals (Sweden)
H. E. Wilhelm
1985-01-01
Full Text Available A formulation of the quantum mechanics of charged particles in time-dependent electromagnetic fields is presented, in which both the Schroedinger equation and wave equations for the electromagnetic potentials are Galilei covariant, it is shown that the Galilean relativity principle leads to the introduction of the electromagnetic substratum in which the matter and electromagnetic waves propagate. The electromagnetic substratum effects are quantitatively significant for quantum mechanics in reference frames, in which the substratum velocity w is in magnitude comparable with the velocity of light c. The electromagnetic substratum velocity w occurs explicitly in the wave equations for the electromagnetic potentials but not in the Schroedinger equation.
Quantum Mechanical Studies of DNA and LNA
DEFF Research Database (Denmark)
Koch, Troels; Shim, Irene; Lindow, Morten;
2014-01-01
Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies of the e......Quantum mechanical (QM) methodology has been employed to study the structure activity relations of DNA and locked nucleic acid (LNA). The QM calculations provide the basis for construction of molecular structure and electrostatic surface potentials from molecular orbitals. The topologies...
An Axiomatic Basis for Quantum Mechanics
Cassinelli, Gianni; Lahti, Pekka
2016-10-01
In this paper we use the framework of generalized probabilistic theories to present two sets of basic assumptions, called axioms, for which we show that they lead to the Hilbert space formulation of quantum mechanics. The key results in this derivation are the co-ordinatization of generalized geometries and a theorem of Solér which characterizes Hilbert spaces among the orthomodular spaces. A generalized Wigner theorem is applied to reduce some of the assumptions of Solér's theorem to the theory of symmetry in quantum mechanics. Since this reduction is only partial we also point out the remaining open questions.
Quantum mechanics new approaches to selected topics
Lipkin, Harry J
2007-01-01
Acclaimed as ""excellent"" (Nature) and ""very original and refreshing"" (Physics Today), this collection of self-contained studies is geared toward advanced undergraduates and graduate students. Its broad selection of topics includes the Mössbauer effect, many-body quantum mechanics, scattering theory, Feynman diagrams, and relativistic quantum mechanics.Author Harry J. Lipkin, a well-known teacher at Israel's Weizmann Institute, takes an unusual approach by introducing many interesting physical problems and mathematical techniques at a much earlier point than in conventional texts. This meth
Emergence of Quantum Mechanics from a Sub-Quantum Statistical Mechanics
Grössing, Gerhard
2015-10-01
A research program within the scope of theories on "Emergent Quantum Mechanics" is presented, which has gained some momentum in recent years. Via the modeling of a quantum system as a non-equilibrium steady-state maintained by a permanent throughput of energy from the zero-point vacuum, the quantum is considered as an emergent system. We implement a specific "bouncer-walker" model in the context of an assumed sub-quantum statistical physics, in analogy to the results of experiments by Couder and Fort on a classical wave-particle duality. We can thus give an explanation of various quantum mechanical features and results on the basis of a "21st century classical physics", such as the appearance of Planck's constant, the Schrödinger equation, etc. An essential result is given by the proof that averaged particle trajectories' behaviors correspond to a specific type of anomalous diffusion termed "ballistic" diffusion on a sub-quantum level...
A new introductory quantum mechanics curriculum
Kohnle, Antje; Bozhinova, Inna; Browne, Dan; Everitt, Mark; Fomins, Aleksejs; Kok, Pieter; Kulaitis, Gytis; Prokopas, Martynas; Raine, Derek; Swinbank, Elizabeth
2014-01-01
The Institute of Physics New Quantum Curriculum consists of freely available online learning and teaching materials (quantumphysics.iop.org) for a first course in university quantum mechanics starting from two-level systems. This approach immediately immerses students in inherently quantum-mechanical aspects by focusing on experiments that have no classical explanation. It allows from the start a discussion of the interpretive aspects of quantum mechanics and quantum information theory. This paper gives an overview of the resources available from the IOP website. The core text includes around 80 articles which are co-authored by leading experts, arranged in themes, and can be used flexibly to provide a range of alternative approaches. Many of the articles include interactive simulations with accompanying activities and problem sets that can be explored by students to enhance their understanding. Much of the linear algebra needed for this approach is included in the resource. Solutions to activities are available to instructors. The resources can be used in a variety of ways, from being supplemental to existing courses to forming a complete programme.
Quantum Gravity and a Time Operator in Relativistic Quantum Mechanics
Bauer, M
2016-01-01
The problem of time in the quantization of gravity arises from the fact that time in Schroedinger's equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus "time" in QM and "time" in General Relativity (GR) are seen as mutually incompatible notions. The introduction of a dy- namical time operator in relativistic quantum mechanics (RQM), that in the Heisenberg representation is also a function of the parameter t (iden- tifed as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of the canonical quantization approach toquantum gravity is developed. 1
Quantum Mechanics in the Light of Quantum Cosmology
Gell-Mann, Murray; Hartle, James B.
We sketch a quantum-mechanical framework for the universe as a whole. Within that framework we propose a program for describing the ultimate origin in quantum cosmology of the "quasiclassical domain" of familiar experience and for characterizing the process of measurement. Predictions in quantum mechanics are made from probabilities for sets of alternative histories. Probabilities (approximately obeying the rules of probability theory) can be assigned only to sets of histories that approximately decohere. Decoherence is defined and the mechanism of decoherence is reviewed. Decoherence requires a sufficiently coarse-grained description of alternative histories of the universe. A quasiclassical domain consists of a branching set of alternative decohering histories, described by a coarse graining that is, in an appropriate sense, maximally refined consistent with decoherence, with individual branches that exhibit a high level of classical correlation in time. We pose the problem of making these notions precise and quantitative. A quasiclassical domain is emergent in the universe as a consequence of the initial condition and the action function of the elementary particles. It is an important question whether all the quasiclassical domains are roughly equivalent or whether there are various essentially inequivalent ones. A measurement is a correlation with variables in a quasiclassical domain. An "observer" (or information gathering and utilizing system) is a complex adaptive system that has evolved to exploit the relative predictability of a quasiclassical domain, or rather a set of such domains among which it cannot discriminate because of its own very coarse graining. We suggest that resolution of many of the problems of interpretation presented by quantum mechanics is to be accomplished, not by further scrutiny of the subject as it applies to reproducible laboratory situations, but rather by an examination of alternative histories of the universe, stemming from its
The Emergent Copenhagen Interpretation of Quantum Mechanics
Hollowood, Timothy J
2013-01-01
We introduce a new and conceptually simple interpretation of quantum mechanics based on reduced density matrices of sub-systems from which the standard Copenhagen interpretation emerges as an effective description of macroscopically large systems. Wave function collapse is seen to be a useful but fundamentally unnecessary piece of prudent book keeping which is only valid for macro-systems. The new interpretation lies in a class of modal interpretations in that it applies to quantum systems that interact with a much larger environment. However, we show that it does not suffer from the problems that have plagued similar modal interpretations like macroscopic superpositions and rapid flipping between macroscopically distinct states. We describe how the interpretation fits neatly together with fully quantum formulations of statistical mechanics and that a measurement process can be viewed as a process of ergodicity breaking analogous to a phase transition. The key feature of the new interpretation is that joint p...
Quantum Mechanics on discrete space and time
Lorente, M
2004-01-01
We propose the assumption of quantum mechanics on a discrete space and time, which implies the modification of mathematical expressions for some postulates of quantum mechanics. In particular we have a Hilbert space where the vectors are complex functions of discrete variable. As a concrete example we develop a discrete analog of the one-dimensional quantum harmonic oscillator, using the dependence of the Wigner functions in terms of Kravchuk polynomials. In this model the position operator has a discrete spectrum given by one index of the Wigner functions, in the same way that the energy eigenvalues are given by the other matricial index. Similar picture can be made for other models where the differential equation and their solutions correspond to the continuous limit of some difference operator and orthogonal polynomial of discrete variable.
Practical quantum mechanics modern tools and applications
Manousakis, Efstratios
2016-01-01
Quantum mechanics forms the foundation of all modern physics, including atomic, nuclear, and molecular physics, the physics of the elementary particles, condensed matter physics. Modern astrophysics also relies heavily on quantum mechanics. Quantum theory is needed to understand the basis for new materials, new devices, the nature of light coming from stars, the laws which govern the atomic nucleus, and the physics of biological systems. As a result the subject of this book is a required course for most physics graduate students. While there are many books on the subject, this book targets specifically graduate students and it is written with modern advances in various fields in mind. Many examples treated in the various chapters as well as the emphasis of the presentation in the book are designed from the perspective of such problems. For example, the book begins by putting the Schrodinger equation on a spatial discrete lattice and the continuum limit is also discussed, inspired by Hamiltonian lattice gauge ...
Using quantum mechanics to synthesize electronic devices
Schmidt, Petra; Levi, Anthony
2005-03-01
Adaptive quantum design [1] has been used to explore the possibility of creating new classes of electronic semiconductor devices. We show how non-equilibrium electron transmission through a synthesized conduction band potential profile can be used to obtain a desired current - voltage characteristic. We illustrate our methodology by designing a two-terminal linear resistive element in which current is limited by quantum mechanical transmission through a potential profile and power is dissipated non-locally in the electrodes. As electronic devices scale to dimensions in which the physics of operation is dominated by quantum mechanical effects, classical designs fail to deliver the desired functionality. Our device synthesis approach is a way to realize device functionality that may not otherwise be achieved. [1] Y.Chen, R.Yu, W.Li, O.Nohadani, S.Haas, A.F.J. Levi, Journal of Applied Physics, Vol.94, No.9, p6065, 2003
Bosonization of supersymmetric KdV equation
Energy Technology Data Exchange (ETDEWEB)
Gao Xiaonan [Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Lou, S.Y., E-mail: sylou@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Faculty of Science, Ningbo University, Ningbo, 315211 (China); School of Mathematics, Fudan University, Shanghai, 200433 (China)
2012-01-16
Bosonization approach to the classical supersymmetric systems is presented. By introducing the multi-fermionic parameters in the expansions of the superfields, the N=1 supersymmetric KdV (sKdV) system is transformed to a system of coupled bosonic equations. The method can be applied to any fermionic systems. By solving the coupled bosonic equations, some novel types of exact solutions can be explicitly obtained. Especially, the richness of the localized excitations of the supersymmetric integrable system is discovered. The rich multi-soliton solutions obtained here have not yet been obtained by using other methods. However, the traditional known multi-soliton solutions can also not be obtained by the bosonization approach of this Letter. Some open problems on the bosonization of the supersymmetric integrable models are proposed in the both classical and quantum levels.
Quantum Mechanical Nature in Liquid NMR Quantum Computing
Institute of Scientific and Technical Information of China (English)
LONG Gui-Lu; YAN Hai-Yang; LI Yan-Song; TU Chang-Cun; ZHU Sheng-Jiang; RUAN Dong; SUN Yang; TAO Jia-Xun; CHEN Hao-Ming
2002-01-01
The quantum nature of bulk ensemble NMR quantum computing the center of recent heated debate,is addressed. Concepts of the mixed state and entanglement are examined, and the data in a two-qubit liquid NMRquantum computation are analyzed. The main points in this paper are: i) Density matrix describes the "state" of anaverage particle in an ensemble. It does not describe the state of an individual particle in an ensemble; ii) Entanglementis a property of the wave function of a microscopic particle (such as a molecule in a liquid NMR sample), and separabilityof the density matrix cannot be used to measure the entanglement of mixed ensemble; iii) The state evolution in bulk-ensemble NMRquantum computation is quantum-mechanical; iv) The coefficient before the effective pure state densitymatrix, e, is a measure of the simultaneity of the molecules in an ensemble. It reflects the intensity of the NMR signaland has no significance in quantifying the entanglement in the bulk ensemble NMR system. The decomposition of thedensity matrix into product states is only an indication that the ensemble can be prepared by an ensemble with theparticles unentangled. We conclude that effective-pure-state NMR quantum computation is genuine, not just classicalsimulations.
Emerging interpretations of quantum mechanics and recent progress in quantum measurement
Clarke, M. L.
2014-01-01
The focus of this paper is to provide a brief discussion on the quantum measurement process, by reviewing select examples highlighting recent progress towards its understanding. The areas explored include an outline of the measurement problem, the standard interpretation of quantum mechanics, quantum to classical transition, types of measurement (including weak and projective measurements) and newly emerging interpretations of quantum mechanics (decoherence theory, objective reality, quantum Darwinism and quantum Bayesianism).
Riemann hypothesis and quantum mechanics
Planat, Michel; Solé, Patrick; Omar, Sami
2011-04-01
In their 1995 paper, Jean-Benoît Bost and Alain Connes (BC) constructed a quantum dynamical system whose partition function is the Riemann zeta function ζ(β), where β is an inverse temperature. We formulate Riemann hypothesis (RH) as a property of the low-temperature Kubo-Martin-Schwinger (KMS) states of this theory. More precisely, the expectation value of the BC phase operator can be written as \\phi _{\\beta }(q)=N_{q-1}^{\\beta -1} \\psi _{\\beta -1}(N_q), where Nq = ∏qk = 1pk is the primorial number of order q and ψb is a generalized Dedekind ψ function depending on one real parameter b as \\psi _b (q)=q \\prod _{p \\in {P,}p \\vert q}\\frac{1-1/p^b}{1-1/p}. Fix a large inverse temperature β > 2. The RH is then shown to be equivalent to the inequality N_q |\\phi _\\beta (N_q)|\\zeta (\\beta -1) \\gt e^\\gamma log log N_q, for q large enough. Under RH, extra formulas for high-temperature KMS states (1.5 < β < 2) are derived. 'Number theory is not pure Mathematics. It is the Physics of the world of Numbers.' Alf van der Poorten
A new exact quantum mechanical propagator
Wiegel, F.W.; Andel, van P.W.
1987-01-01
The authors derive a closed-form expression for the time-dependent propagator for a quantum mechanical particle which is subject to an external force which is the sum of (i) a reflecting half-plane barrier with a straight edge, and (ii) a harmonic force pointing towards a point of the edge. This new
Quantum mechanics for two-timers
Indian Academy of Sciences (India)
P Mitra
2001-02-01
Extensions of standard quantum mechanics with joint probability distributions for position coordinates and momenta have been proposed in the literature. Time is assumed to be onedimensional in these studies. In view of recent interest in two-dimensional time, the construction is extended to this situation and found to satisfy the necessary consistency conditions.
Quantum Mechanical Effects in Gravitational Collapse
Greenwood, Eric
2010-01-01
In this thesis we investigate quantum mechanical effects to various aspects of gravitational collapse. These quantum mechanical effects are implemented in the context of the Functional Schr\\"odinger formalism. The Functional Schr\\"odinger formalism allows us to investigate the time-dependent evolutions of the quantum mechanical effects, which is beyond the scope of the usual methods used to investigate the quantum mechanical corrections of gravitational collapse. Utilizing the time-dependent nature of the Functional Schr\\"odinger formalism, we study the quantization of a spherically symmetric domain wall from the view point of an asymptotic and infalling observer, in the absence of radiation. To build a more realistic picture, we then study the time-dependent nature of the induced radiation during the collapse using a semi-classical approach. Using the domain wall and the induced radiation, we then study the time-dependent evolution of the entropy of the domain wall. Finally we make some remarks about the pos...
Student Difficulties with Quantum Mechanics Formalism
Singh, Chandralekha
2016-01-01
We discuss student difficulties in distinguishing between the physical space and Hilbert space and difficulties related to the Time-independent Schroedinger equation and measurements in quantum mechanics. These difficulties were identified by administering written surveys and by conducting individual interviews with students.
Spin & Statistics in Nonrelativistic Quantum Mechanics, II
Kuckert, B; Kuckert, Bernd; Mund, Jens
2004-01-01
Recently a sufficient and necessary condition for Pauli's spin- statistics connection in nonrelativistic quantum mechanics has been established [quant-ph/0208151]. The two-dimensional part of this result is extended to n-particle systems and reformulated and further simplified in a more geometric language.
Holism, physical theories and quantum mechanics
Seevinck, M. P.
Motivated by the question what it is that makes quantum mechanics a holistic theory (if so), I try to define for general physical theories what we mean by `holism'. For this purpose I propose an epistemological criterion to decide whether or not a physical theory is holistic, namely: a physical theory is holistic if and only if it is impossible in principle to infer the global properties, as assigned in the theory, by local resources available to an agent. I propose that these resources include at least all local operations and classical communication. This approach is contrasted with the well-known approaches to holism in terms of supervenience. The criterion for holism proposed here involves a shift in emphasis from ontology to epistemology. I apply this epistemological criterion to classical physics and Bohmian mechanics as represented on a phase and configuration space respectively, and for quantum mechanics (in the orthodox interpretation) using the formalism of general quantum operations as completely positive trace non-increasing maps. Furthermore, I provide an interesting example from which one can conclude that quantum mechanics is holistic in the above mentioned sense, although, perhaps surprisingly, no entanglement is needed.
Quantum mechanics in finite dimensional Hilbert space
de la Torre, A C
2002-01-01
The quantum mechanical formalism for position and momentum of a particle in a one dimensional cyclic lattice is constructively developed. Some mathematical features characteristic of the finite dimensional Hilbert space are compared with the infinite dimensional case. The construction of an unbiased basis for state determination is discussed.
The geometric semantics of algebraic quantum mechanics.
Cruz Morales, John Alexander; Zilber, Boris
2015-08-06
In this paper, we will present an ongoing project that aims to use model theory as a suitable mathematical setting for studying the formalism of quantum mechanics. We argue that this approach provides a geometric semantics for such a formalism by means of establishing a (non-commutative) duality between certain algebraic and geometric objects.
Exploring the Supersymmetric $\\sigma$ Model
De Oliveira-Imbiriba, B C
1999-01-01
The purpose of this work is to present some basic concepts about the non-linear sigma model in a simple and direct way. We start with showing the bosonic model and the Wess-Zumino-Witten term, making some comments about its topological nature, and its association with the torsion. It is also shown that to cancel the quantum conformal anomaly the model should obey the Einstein equations. We provide a quick introduction about supersymmetry in chapter 2 to help the understanding the supersymmetric extension of the model. In the last chapter we present the supersymmetric model and its equations of motion. Finally we work-out the two-supersymmetry case, introducing the chiral as well as the twisted chiral fields, expliciting the very specific $SU(2)\\otimes U(1)$ case.
Nachman, Benjamin
2016-01-01
Quarks and gluons are the fundamental building blocks of matter responsible for most of the visible energy density in the universe. However, they cannot be directly observed due to the confining nature of the strong force. The LHC uses pp collisions to probe the highest energy reactions involving quarks and gluons happening at the smallest distance scales ever studied in a terrestrial laboratory. The quantum properties of the initiating partons are encoded in the distribution of energy inside and around jets. These quantum properties of jets (QPJ) can be used to study the high energy nature of the strong force and provide a way to tag the hadronic decays of heavy boosted particles. The ATLAS detector is well-suited to perform measurements of the structure of high energy jets. A variety of novel techniques utilizing the unique capabilities of the ATLAS calorimeter and tracking detectors are introduced in order to probe the experimental and theoretical limits of the QPJ. Quarks and gluons may also be the key to...
AUTHOR|(INSPIRE)INSPIRE-00376212; Schwartzman, Ariel
Quarks and gluons are the fundamental building blocks of matter responsible for most of the visible energy density in the universe. However, they cannot be directly observed due to the confining nature of the strong force. The Large Hadron Collider (LHC) uses proton-proton collisions to probe the highest energy reactions involving quarks and gluons happening at the smallest distance scales ever studied in a terrestrial laboratory. The observable consequence of quark and gluon production in these reactions is the emergent phenomenon known as the jet: a collimated stream of particles traveling at nearly the speed of light. The quantum properties of the initiating quarks and gluons are encoded in the distribution of energy inside and around jets. These quantum properties of jets can be used to study the high energy nature of the strong force and provide a way to tag the hadronic decays of heavy boosted particles. The ATLAS detector at the LHC is well-suited to perform measurements of the internal structur...
Nucleon–nucleon scattering in the light of supersymmetric quantum mechanics
Indian Academy of Sciences (India)
J Bhoi; U Laha; K C Panda
2014-05-01
By exploiting supersymmetry-inspired factorization method together with a judiciously chosen deuteron ground-state wave function, approximate higher partial wave nucleon–nucleon potentials are generated. In this context, a minor modification is also introduced to the generated potentials. The n–p scattering phase shifts are computed and analysed via the phase function method.
On the SO(9) structure of supersymmetric Yang-Mills quantum mechanics
Wosiek, J
2005-01-01
In ten space-time dimensions the number of Majorana-Weyl fermions is not conserved, not only during the time evolution, but also by rotations. As a consequence the empty Fock state is not rotationally symmetric. We construct explicitly the simplest singlet state which provides the starting point for building up invariant SO(9) subspaces. The state has non-zero fermion number and is a complicated combination of the 1360 elementary, gauge invariant, gluinoless Fock states with twelve fermions. Fermionic structure of higher irreps of SO(9) is also briefly outlined.
On the classification of N-extended supersymmetric quantum mechanical systems
Energy Technology Data Exchange (ETDEWEB)
Pashnev, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogoliubov Lab. of Theoretical Physics; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)
2000-12-01
In this paper some properties of the irreducible multiplets of representation for the N = (p,q) - extended supersymmetry in one dimension are discussed. Essentially two results are here presented. At first a peculiar property of the one dimension is exhibited, namely that any multiplet containing 2d (d bosonic and d fermionic) particles in M different spin states, is equivalent to a {l_brace}d,d{r_brace} multiplet of just 2 spin states (all bosons and all fermions being grouped in the same spin). Later, it is shown that the classification of all multiplets of this kind carrying an irreducible representation of the N - extended supersymmetry is in one-to-one correspondence with the classification of real-valued Clifford {gamma}-matrices of Weil type. In particular, p+q is mapped into D, the space-time dimensionality, while 2d is determined to be the dimensionality of the corresponding {gamma}-matrices. The implications of these results to the theory of spinning particles are analyzed. (author)
Interactive Quantum Mechanics Quantum Experiments on the Computer
Brandt, S; Dahmen, H.D
2011-01-01
Extra Materials available on extras.springer.com INTERACTIVE QUANTUM MECHANICS allows students to perform their own quantum-physics experiments on their computer, in vivid 3D color graphics. Topics covered include: • harmonic waves and wave packets, • free particles as well as bound states and scattering in various potentials in one and three dimensions (both stationary and time dependent), • two-particle systems, coupled harmonic oscillators, • distinguishable and indistinguishable particles, • coherent and squeezed states in time-dependent motion, • quantized angular momentum, • spin and magnetic resonance, • hybridization. For the present edition the physics scope has been widened appreciably. Moreover, INTERQUANTA can now produce user-defined movies of quantum-mechanical situations. Movies can be viewed directly and also be saved to be shown later in any browser. Sections on spec...
On Quantum Mechanics on Noncommutative Quantum Phase Space
Institute of Scientific and Technical Information of China (English)
A.E.F. DjemaI; H. Smail
2004-01-01
In this work, we develop a general framework in which Noncommutative Quantum Mechanics (NCQM),characterized by a space noncommutativity matrix parameter θ =∈k ijθk and a momentum noncommutativity matrix parameter βij = ∈k ijβk, is shown to be equivalent to Quantum Mechanics (QM) on a suitable transformed Quantum Phase Space (QPS). Imposing some constraints on this particular transformation, we firstly find that the product of the two parameters θ and β possesses a lower bound in direct relation with Heisenberg incertitude relations, and secondly that the two parameters are equivalent but with opposite sign, up to a dimension factor depending on the physical system under study. This means that noncommutativity is represented by a unique parameter which may play the role of a fundamental constant characterizing the whole NCQPS. Within our framework, we treat some physical systems on NCQPS : free particle, harmonic oscillator, system of two-charged particles, Hydrogen atom. Among the obtained results,we discover a new phenomenon which consists of a free particle on NCQPS viewed as equivalent to a harmonic oscillator with Larmor frequency depending on β, representing the same particle in presence ofa magnetic field B = q-1 β. For the other examples, additional correction terms depending onβ appear in the expression of the energy spectrum. Finally, in the two-particle system case, we emphasize the fact that for two opposite charges noncommutativity is effectively feeled with opposite sign.
Quantum mechanical studies of carbon structures
Energy Technology Data Exchange (ETDEWEB)
Bartelt, Norman Charles [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Ward, Donald [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Zhou, Xiaowang [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Foster, Michael E. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Schultz, Peter A. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Wang, Bryan M. [Sandia National Lab. (SNL-CA), Livermore, CA (United States); Univ. of California, Riverside, CA (United States); McCarty, Kevin F. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)
2015-10-01
Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their unique mechanical and electrical properties. The materials exhibit extremely high strength and conductivity when defects created during synthesis are minimized. Atomistic modeling is one technique for high resolution studies of defect formation and mitigation. To enable simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-fidelity analytical bond-order potential for the C is needed. To generate inputs for developing such a potential, we performed quantum mechanical calculations of various C structures.
Quantum mechanical coherence, resonance, and mind
Energy Technology Data Exchange (ETDEWEB)
Stapp, H.P.
1995-03-26
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Global and Local Horizon Quantum Mechanics
Casadio, R; Giusti, A
2016-01-01
Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical "Hamiltonian" constraint that relates the gravitational radius to the ADM mass, thus giving rise to a "horizon wave-function". This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner-Sharp mass function of the quantum source, provided its energy spectrum is determine by spatially localised modes.
Quantum mechanics of 4-derivative theories
Energy Technology Data Exchange (ETDEWEB)
Salvio, Alberto [Universidad Autonoma de Madrid and Instituto de Fisica Teorica IFT-UAM/CSIC, Departamento de Fisica Teorica, Madrid (Spain); Strumia, Alessandro [Dipartimento di Fisica, Universita di Pisa (Italy); CERN, Theory Division, Geneva (Switzerland); INFN, Pisa (Italy)
2016-04-15
A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm. (orig.)
Quantum mechanical coherence, resonance, and mind
Stapp, Henry P
1995-01-01
Norbert Wiener and J.B.S. Haldane suggested during the early thirties that the profound changes in our conception of matter entailed by quantum theory opens the way for our thoughts, and other experiential or mind-like qualities, to play a role in nature that is causally interactive and effective, rather than purely epiphenomenal, as required by classical mechanics. The mathematical basis of this suggestion is described here, and it is then shown how, by giving mind this efficacious role in natural process, the classical character of our perceptions of the quantum universe can be seen to be a consequence of evolutionary pressures for the survival of the species.
Global and local horizon quantum mechanics
Casadio, Roberto; Giugno, Andrea; Giusti, Andrea
2017-02-01
Horizons are classical causal structures that arise in systems with sharply defined energy and corresponding gravitational radius. A global gravitational radius operator can be introduced for a static and spherically symmetric quantum mechanical matter state by lifting the classical "Hamiltonian" constraint that relates the gravitational radius to the ADM mass, thus giving rise to a "horizon wave-function". This minisuperspace-like formalism is shown here to be able to consistently describe also the local gravitational radius related to the Misner-Sharp mass function of the quantum source, provided its energy spectrum is determined by spatially localised modes.
Quantum mechanics of 4-derivative theories.
Salvio, Alberto; Strumia, Alessandro
2016-01-01
A renormalizable theory of gravity is obtained if the dimension-less 4-derivative kinetic term of the graviton, which classically suffers from negative unbounded energy, admits a sensible quantization. We find that a 4-derivative degree of freedom involves a canonical coordinate with unusual time-inversion parity, and that a correspondingly unusual representation must be employed for the relative quantum operator. The resulting theory has positive energy eigenvalues, normalizable wavefunctions, unitary evolution in a negative-norm configuration space. We present a formalism for quantum mechanics with a generic norm.
Spinning Particles in Quantum Mechanics and Quantum Field Theory
Corradini, Olindo
2015-01-01
The first part of the lectures, given by O. Corradini, covers introductory material on quantum-mechanical Feynman path integrals, which are here derived and applied to several particle models. We start considering the nonrelativistic bosonic particle, for which we compute the exact path integrals for the case of the free particle and for the harmonic oscillator, and then describe perturbation theory for an arbitrary potential. We then move to relativistic particles, both bosonic and fermionic (spinning) particles. We first investigate them from the classical view-point, studying the symmetries of their actions, then consider their canonical quantization and path integrals, and underline the role these models have in the study of space-time quantum field theories (QFT), by introducing the "worldline" path integral representation of propagators and effective actions. We also describe a special class of spinning particles that constitute a first-quantized approach to higher-spin fields. Since the fifties the qua...
Neutrino oscillations: Quantum mechanics vs. quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Akhmedov, Evgeny Kh.; Kopp, Joachim
2010-01-01
A consistent description of neutrino oscillations requires either the quantum-mechanical (QM) wave packet approach or a quantum field theoretic (QFT) treatment. We compare these two approaches to neutrino oscillations and discuss the correspondence between them. In particular, we derive expressions for the QM neutrino wave packets from QFT and relate the free parameters of the QM framework, in particular the effective momentum uncertainty of the neutrino state, to the more fundamental parameters of the QFT approach. We include in our discussion the possibilities that some of the neutrino's interaction partners are not detected, that the neutrino is produced in the decay of an unstable parent particle, and that the overlap of the wave packets of the particles involved in the neutrino production (or detection) process is not maximal. Finally, we demonstrate how the properly normalized oscillation probabilities can be obtained in the QFT framework without an ad hoc normalization procedure employed in the QM approach.
A mathematical theory for deterministic quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Hooft, Gerard ' t [Institute for Theoretical Physics, Utrecht University (Netherlands); Spinoza Institute, Postbox 80.195, 3508 TD Utrecht (Netherlands)
2007-05-15
Classical, i.e. deterministic theories underlying quantum mechanics are considered, and it is shown how an apparent quantum mechanical Hamiltonian can be defined in such theories, being the operator that generates evolution in time. It includes various types of interactions. An explanation must be found for the fact that, in the real world, this Hamiltonian is bounded from below. The mechanism that can produce exactly such a constraint is identified in this paper. It is the fact that not all classical data are registered in the quantum description. Large sets of values of these data are assumed to be indistinguishable, forming equivalence classes. It is argued that this should be attributed to information loss, such as what one might suspect to happen during the formation and annihilation of virtual black holes. The nature of the equivalence classes follows from the positivity of the Hamiltonian. Our world is assumed to consist of a very large number of subsystems that may be regarded as approximately independent, or weakly interacting with one another. As long as two (or more) sectors of our world are treated as being independent, they all must be demanded to be restricted to positive energy states only. What follows from these considerations is a unique definition of energy in the quantum system in terms of the periodicity of the limit cycles of the deterministic model.
Bohmian mechanics and quantum theory an appraisal
Goldstein, Sheldon; Cushing, James T
1996-01-01
We are often told that quantum phenomena demand radical revisions of our scientific world view and that no physical theory describing well defined objects, such as particles described by their positions, evolving in a well defined way, let alone deterministically, can account for such phenomena. The great majority of physicists continue to subscribe to this view, despite the fact that just such a deterministic theory, accounting for all of the phe nomena of nonrelativistic quantum mechanics, was proposed by David Bohm more than four decades ago and has arguably been around almost since the inception of quantum mechanics itself. Our purpose in asking colleagues to write the essays for this volume has not been to produce a Festschrift in honor of David Bohm (worthy an undertaking as that would have been) or to gather together a collection of papers simply stating uncritically Bohm's views on quantum mechanics. The central theme around which the essays in this volume are arranged is David Bohm's vers...
On the missing axiom of Quantum Mechanics
D'Ariano, G M
2005-01-01
Quantum Non Locality, ruling out an epistemic interpretation of quantum probabilities for an ontic one, elevates Quantum Mechanics to the level of a Theory of Knowledge. In such context the superposition principle becomes an unacceptable extrinsic axiom of non "gnoseological" nature. We are thus lead to seek a purely operational axiomatization that supersedes the current mathematical one based on Hilbert spaces, with the purpose of deriving the latter from the former. In the present work I present a set of axioms for a general operational approach, based on a general definition of "experiment". As we will see, this starting point logically entails a sequel of notions [state, conditional state, local state, pure state, faithful state, instrument, propensity (i.e. "effect"), dynamical and informational equivalence, dynamical and informational compatibility, predictability, discriminability, programmability, locality, a-causality, rank of the state, maximally chaotic state, maximally entangled state, information...
The Picture Book of Quantum Mechanics
Brandt, Siegmund
2012-01-01
The aim of this book is to explain the basic concepts and phenomena of quantum mechanics by means of visualization. Computer-generated illustrations in color are used extensively throughout the text, helping to establish the relation between quantum mechanics—wave functions, interference, atomic structure, and so forth—and classical physics—point mechanics, statistical mechanics, and wave optics. Even more important, by studying the pictures in parallel with the text, readers develop an intuition for such notoriously abstract phenomena as • the tunnel effect • excitation and decay of metastable states • wave-packet motion within a well • systems of distinguishable and indistinguishable particles • free wave packets and scattering in 3 dimensions • angular-momentum decomposition • stationary bound states in various 3-dimensional potentials • hybrid states • Kepler motion of wave packets in the Coulomb field • spin and magnetic resonance Illustrations from experiments in a variety of f...
Theoretical physics 6 quantum mechanics : basics
Nolting, Wolfgang
2017-01-01
This textbook offers a clear and comprehensive introduction to the basics of quantum mechanics, one of the core components of undergraduate physics courses. It follows on naturally from the previous volumes in this series, thus developing the physical understanding further on to quantized states. The first part of the book introduces wave equations while exploring the Schrödinger equation and the hydrogen atom. More complex themes are covered in the second part of the book, which describes the Dirac formulism of quantum mechanics. Ideally suited to undergraduate students with some grounding in classical mechanics and electrodynamics, the book is enhanced throughout with learning features such as boxed inserts and chapter summaries, with key mathematical derivations highlighted to aid understanding. The text is supported by numerous worked examples and end of chapter problem sets. About the Theoretical Physics series Translated from the renowned and highly successful German editions, the eight volumes of this...
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
Schulze-Halberg, Axel
2016-06-01
We construct supersymmetric partners of a quantum system featuring a class of trigonometric potentials that emerge from the spheroidal equation. Examples of both standard and confluent supersymmetric transformations are presented. Furthermore, we use integral formulas arising from the confluent supersymmetric formalism to derive new representations for single and multiple integrals of spheroidal functions.
Energy Technology Data Exchange (ETDEWEB)
Adagideli, Inanc; Goldbart, Paul M.; Shnirman, Alexander; Yazdani, Ali
1999-12-27
Low-energy quasiparticle states, arising from scattering by single-particle potentials in d -wave superconductors, are addressed. Via a natural extension of the Andreev approximation, the idea that sign variations in the superconducting pair potential lead to such states is extended beyond its original setting of boundary scattering to the broader context of scattering by general single-particle potentials, such as those due to impurities. The index-theoretic origin of these states is exhibited via a simple connection with Witten's supersymmetric quantum-mechanical model. (c) 1999 The American Physical Society.
Origin of quantum randomness in the pilot wave quantum mechanics
Shtanov, Yuri
1997-01-01
We account for the origin of the laws of quantum probabilities in the de Broglie-Bohm (pilot wave) formulation of quantum theory by considering the property of ergodicity likely to characterise the dynamics of microscopic quantum systems.
A Quantum Mechanical Approach to Nuclear Rotations
Zettili, Nouredine
2014-09-01
We deal with the study of collective motion within the context of a quantum mechanical method - the nuclear Born-Oppenheirmer (NBO) method. We focus in particular on a quantum mechanical approach to nuclear rotations. As an illustration, we utilize the NBO method to study non-spherical, permanently deformed nuclei; in particular, we study nuclei that are axially-symmetric and even, but with non-closed shells. We also focus on a quantum mechanical derivation of formal expressions for the energy and for the moment of inertia. Using trial functions in which the intrinsic structure is described by a mean-field approximation, we then show that the NBO formalism yields the Thouless-Valantin formula for the moment of inertia and that this moment of inertia increases with angular momentum, in agreement with experimental data. We show that the NBO formalism is well equipped to describe low-lying as well as high lying rotational states. Additionally, we establish a connection between the NBO method and the self-consistent Cranking (SCC) model. We deal with the study of collective motion within the context of a quantum mechanical method - the nuclear Born-Oppenheirmer (NBO) method. We focus in particular on a quantum mechanical approach to nuclear rotations. As an illustration, we utilize the NBO method to study non-spherical, permanently deformed nuclei; in particular, we study nuclei that are axially-symmetric and even, but with non-closed shells. We also focus on a quantum mechanical derivation of formal expressions for the energy and for the moment of inertia. Using trial functions in which the intrinsic structure is described by a mean-field approximation, we then show that the NBO formalism yields the Thouless-Valantin formula for the moment of inertia and that this moment of inertia increases with angular momentum, in agreement with experimental data. We show that the NBO formalism is well equipped to describe low-lying as well as high lying rotational states
New dualities of supersymmetric gauge theories
2016-01-01
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...
Dummett vs Bell on quantum mechanics
Ben-Menahem, Yemima
The purpose of this paper is to cast doubt on the common allegation that quantum mechanics (QM) is incompatible with realism. I argue that the results usually considered inimical to realism, notably the violation of Bells inequality, in fact play the opposite role-they support realism. The argument is not intended, however, to demonstrate realism or refute its alternatives as general metaphysical positions. It is directed specifically at the view that QM differs from classical mechanics in that, unlike classical mechanics, it is not amenable to a realist interpretation.
Introduction to quantum mechanics a time-dependent perspective
Tannor, David J
2007-01-01
"Introduction to Quantum Mechanics" covers quantum mechanics from a time-dependent perspective in a unified way from beginning to end. Intended for upper-level undergraduate and graduate courses this text will change the way people think about and teach quantum mechanics in chemistry and physics departments.
Supersymmetric Displaced Number States
Directory of Open Access Journals (Sweden)
Fredy R. Zypman
2015-06-01
Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.
Supersymmetric Open Wilson Lines
Baker, Edward B
2011-01-01
In this paper we study Open Wilson Lines (OWL's) in the context of two Supersymmetric Yang Mills theories. First we consider four dimensional N=2 Supersymmetric Yang Mills Theory with hypermultiplets transforming in the fundamental representation of the gauge group, and find supersymmetric OWL's only in the superconformal versions of these theories. We then consider four dimensional N=4 SYM coupled to a three dimensional defect hypermultiplet. Here there is a semi-circular supersymmetric OWL, which is related to the ray by a conformal transformation. We perform a perturbative calculation of the operators in both theories, and discuss using localization to compute them non-perturbatively.
Beyond relativity and quantum mechanics: space physics
Lindner, Henry H.
2011-09-01
Albert Einstein imposed an observer-based epistemology upon physics. Relativity and Quantum Mechanics limit physics to describing and modeling the observer's sensations and measurements. Their "underlying reality" consists only of ideas that serve to model the observer's experience. These positivistic models cannot be used to form physical theories of Cosmic phenomena. To do this, we must again remove the observer from the center of physics. When we relate motion to Cosmic space instead of to observers and we attempt to explain the causes of Cosmic phenomena, we are forced to admit that Cosmic space is a substance. We need a new physics of space. We can begin by replacing Relativity with a modified Lorentzian-Newtonian model of spatial flow, and Quantum Mechanics with a wave-based theory of light and electrons. Space physics will require the reinterpretation of all known phenomena, concepts, and mathematical models.
Challenges in Large Scale Quantum Mechanical Calculations
Ratcliff, Laura E; Huhs, Georg; Deutsch, Thierry; Masella, Michel; Genovese, Luigi
2016-01-01
During the past decades, quantum mechanical methods have undergone an amazing transition from pioneering investigations of experts into a wide range of practical applications, made by a vast community of researchers. First principles calculations of systems containing up to a few hundred atoms have become a standard in many branches of science. The sizes of the systems which can be simulated have increased even further during recent years, and quantum-mechanical calculations of systems up to many thousands of atoms are nowadays possible. This opens up new appealing possibilities, in particular for interdisciplinary work, bridging together communities of different needs and sensibilities. In this review we will present the current status of this topic, and will also give an outlook on the vast multitude of applications, challenges and opportunities stimulated by electronic structure calculations, making this field an important working tool and bringing together researchers of many different domains.
Events and the Ontology of Quantum Mechanics
Dorato, Mauro
2015-01-01
In the first part of the paper I argue that an ontology of events is precise, flexible and general enough so as to cover the three main alternative formulations of quantum mechanics as well as theories advocating an antirealistic view of the wave function. Since these formulations advocate a primitive ontology of entities living in four-dimensional spacetime, they are good candidates to connect that quantum image with the manifest image of the world. However, to the extent that some form of realism about the wave function is also necessary, one needs to endorse also the idea that the wave function refers to some kind of power. In the second part, I discuss some difficulties raised by the recent proposal that in Bohmian mechanics this power is holistically possessed by all the particles in the universe.
Conserved symmetries in noncommutative quantum mechanics
Kupriyanov, V G
2014-01-01
We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in f{i}eld theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. F{i}rst we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time.
Conserved symmetries in noncommutative quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Kupriyanov, V.G. [CMCC, Universidade Federal do ABC, Santo Andre, SP (Brazil)
2014-09-11
We consider a problem of the consistent deformation of physical system introducing a new features, but preserving its fundamental properties. In particular, we study how to implement the noncommutativity of space-time without violation of the rotational symmetry in quantum mechanics or the Lorentz symmetry in field theory. Since the canonical (Moyal) noncommutativity breaks the above symmetries one should work with more general case of coordinate-dependent noncommutative spaces, when the commutator between coordinates is a function of these coordinates. First we describe in general lines how to construct the quantum mechanics on coordinate-dependent noncommutative spaces. Then we consider the particular examples: the Hydrogen atom on rotationally invariant noncommutative space and the Dirac equation on covariant noncommutative space-time. (Copyright copyright 2014 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Applications of computational quantum mechanics
Temel, Burcin
This original research dissertation is composed of a new numerical technique based on Chebyshev polynomials that is applied on scattering problems, a phenomenological kinetics study for CO oxidation on RuO2 surface, and an experimental study on methanol coupling with doped metal oxide catalysts. Minimum Error Method (MEM), a least-squares minimization method, provides an efficient and accurate alternative to solve systems of ordinary differential equations. Existing methods usually utilize matrix methods which are computationally costful. MEM, which is based on the Chebyshev polynomials as a basis set, uses the recursion relationships and fast Chebyshev transforms which scale as O(N). For large basis set calculations this provides an enormous computational efficiency in the calculations. Chebyshev polynomials are also able to represent non-periodic problems very accurately. We applied MEM on elastic and inelastic scattering problems: it is more efficient and accurate than traditionally used Kohn variational principle, and it also provides the wave function in the interaction region. Phenomenological kinetics (PK) is widely used in industry to predict the optimum conditions for a chemical reaction. PK neglects the fluctuations, assumes no lateral interactions, and considers an ideal mix of reactants. The rate equations are tested by fitting the rate constants to the results of the experiments. Unfortunately, there are numerous examples where a fitted mechanism was later shown to be erroneous. We have undertaken a thorough comparison between the phenomenological equations and the results of kinetic Monte Carlo (KMC) simulations performed on the same system. The PK equations are qualitatively consistent with the KMC results but are quantitatively erroneous as a result of interplays between the adsorption and desorption events. The experimental study on methanol coupling with doped metal oxide catalysts demonstrates the doped metal oxides as a new class of catalysts
Quantum mechanics and elements of reality
Mohrhoff, Ulrich
1999-01-01
It is widely accepted that a Born probability of 1 is sufficient for the existence of a corresponding element of reality. Recently Vaidman has extended this idea to the ABL probabilities of the time-symmetrized version of quantum mechanics originated by Aharonov, Bergmann, and Lebowitz. Several authors have objected to Vaidman's time-symmetrized elements of reality without casting doubt on the widely accepted sufficiency condition for `ordinary' elements of reality. In this paper I show that ...
Landau problem in noncommutative quantum mechanics
Institute of Scientific and Technical Information of China (English)
Sayipjamal Dulat; LI Kang
2008-01-01
The Landau problem in non-commutative quantum mechanics (NCQM) is studied.First by solving the Schr(o)dinger equations on noncommutative (NC) space we obtain the Landau energy levels and the energy correction that is caused by space-space noncommutativity.Then we discuss the noncommutative phase space case,namely,space-space and momentum-momentum non-commutative case,and we get the explicit expression of the Hamfltonian as well as the corresponding eigenfunctions and eigenvalues.
Exceptional polynomials and SUSY quantum mechanics
Indian Academy of Sciences (India)
K V S Shiv Chaitanya; S Sree Ranjani; Prasanta K Panigrahi; R Radhakrishnan; V Srinivasan
2015-07-01
We show that for the quantum mechanical problem which admit classical Laguerre/Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the potential. Then, we claim that the existence of these exceptional polynomials leads to the presence of non-trivial supersymmetry.
Quantum Mechanics and the Cookie Cutter Paradigm
Mohrhoff, U
2000-01-01
What has so far prevented us from decrypting quantum mechanics is the Cookie Cutter Paradigm, according to which the world's synchronic multiplicity derives from surfaces that carve up space in the manner of three-dimensional cookie cutters. This insidious notion is shown to be rooted in our neurophysiological make-up. An effort is made to liberate the physical world from this innate fallacy.
Quantum mechanical theory behind "dark energy"?
Colin Johnson, R
2007-01-01
"The mysterious increase in the acceleration of the universe, when intuition says it should be slowing down, is postulated to be caused by dark energy - "dark" because it is undetected. Now a group of scientists in the international collaboration Essence has suggested that a quantum mechanical interpretation of Einstein's proposed "cosmological constant" is the simplest explanation for dark energy. The group measured dark energy to within 10 percent." (1,5 page)
A Global Optimization Approach to Quantum Mechanics
Huang, Xiaofei
2006-01-01
This paper presents a global optimization approach to quantum mechanics, which describes the most fundamental dynamics of the universe. It suggests that the wave-like behavior of (sub)atomic particles could be the critical characteristic of a global optimization method deployed by nature so that (sub)atomic systems can find their ground states corresponding to the global minimum of some energy function associated with the system. The classic time-independent Schrodinger equation is shown to b...
The Central Mystery of Quantum Mechanics
Ghose, Partha
2009-01-01
A critical re-examination of the double-slit experiment and its variants is presented to clarify the nature of what Feynmann called the ``central mystery'' and the ``only mystery'' of quantum mechanics, leading to an interpretation of complementarity in which a `wave {\\em and} particle' description rather than a `wave {\\em or} particle' description is valid for the {\\em same} experimental set up, with the wave culminating in the particle sequentially in time. This interpretation is different ...
Generalized Borel transform technique in quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Epele, L.N.; Fanchiotti, H.; Garcia Canal, C.A.; Marucho, M
2003-03-13
We present the Generalized Borel Transform (GBT). This new approach allows one to obtain approximate solutions of Laplace/Mellin transform valid in both, perturbative and non-perturbative regimes. We compare the results provided by the GBT for a solvable model of quantum mechanics with those provided by standard techniques, as the conventional Borel sum, or its modified versions. We found that our approach is very efficient for obtaining both the low and the high energy behavior of the model.
Nanowires:inter-connection between newton mechanics and quantum mechanics
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Nanowires have been proved to be excellent candidates for future nanodevices for their advantages of being the smallest charge carrier,enabling abundant choice of materials,and related size,surface and quantum effects.Nanowires thus play important role to understand the physical phenomena between macro-scale Newton world and the micro-scale quantum mechanical world. Our group is among the few pioneers in early 1998's in developing methods for synthesis of silicon nanowires,and extending the nanowire synt...
A Local Interpretation of Quantum Mechanics
Lopez, Carlos
2016-04-01
A local interpretation of quantum mechanics is presented. Its main ingredients are: first, a label attached to one of the "virtual" paths in the path integral formalism, determining the output for measurement of position or momentum; second, a mathematical model for spin states, equivalent to the path integral formalism for point particles in space time, with the corresponding label. The mathematical machinery of orthodox quantum mechanics is maintained, in particular amplitudes of probability and Born's rule; therefore, Bell's type inequalities theorems do not apply. It is shown that statistical correlations for pairs of particles with entangled spins have a description completely equivalent to the two slit experiment, that is, interference (wave like behaviour) instead of non locality gives account of the process. The interpretation is grounded in the experimental evidence of a point like character of electrons, and in the hypothetical existence of a wave like, the de Broglie, companion system. A correspondence between the extended Hilbert spaces of hidden physical states and the orthodox quantum mechanical Hilbert space shows the mathematical equivalence of both theories. Paradoxical behaviour with respect to the action reaction principle is analysed, and an experimental set up, modified two slit experiment, proposed to look for the companion system.
The Objective Indefiniteness Interpretation of Quantum Mechanics
Ellerman, David
2014-01-01
The common-sense view of reality is expressed logically in Boolean subset logic (each element is either definitely in or not in a subset, i.e., either definitely has or does not have a property). But quantum mechanics does not agree with this "properties all the way down" picture of micro-reality. Are there other coherent alternative views of reality? A logic of partitions, dual to the Boolean logic of subsets (partitions are dual to subsets), was recently developed along with a logical version of information theory. In view of the subset-partition duality, partition logic is the alternative to Boolean subset logic and thus it abstractly describes the alternative dual view of micro-reality. Perhaps QM is compatible with this dual view? Indeed, when the mathematics of partitions using sets is "lifted" from sets to vector spaces, then it yields the mathematics and relations of quantum mechanics. Thus the vision of micro-reality abstractly characterized by partition logic matches that described by quantum mechan...
Lecture Script: Introduction to Computational Quantum Mechanics
Schmied, Roman
2014-01-01
This document is the lecture script of a one-semester course taught at the University of Basel in the Fall semesters of 2012 and 2013. It is aimed at advanced students of physics who are familiar with the concepts and notations of quantum mechanics. Quantum mechanics lectures can often be separated into two classes. In the first class you get to know Schroedinger's equation and find the form and dynamics of simple physical systems (square well, harmonic oscillator, hydrogen atom); most calculations are analytic and inspired by calculations originally done in the 1920s and 1930s. In the second class you learn about large systems such as molecular structures, crystalline solids, or lattice models; these calculations are usually so complicated that it is difficult for the student to understand them in all detail. This lecture tries to bridge the gap between simple analytic calculations and complicated large-scale computations. We will revisit most of the problems encountered in introductory quantum mechanics, fo...
Supersymmetric integrable scattering theories with unstable particles
Fring, A
2005-01-01
We propose scattering matrices for N=1 supersymmetric integrable quantum field theories in 1+1 dimensions which involve unstable particles in their spectra. By means of the thermodynamic Bethe ansatz we analyze the ultraviolet behaviour of some of these theories and identify the effective Virasoro central charge of the underlying conformal field theories.
A Rosetta Stone for Quantum Mechanics with an Introduction to Quantum Computation
Lomonaco, S J
2000-01-01
The purpose of these lecture notes is to provide readers, who have some mathematical background but little or no exposure to quantum mechanics and quantum computation, with enough material to begin reading the research literature in quantum computation and quantum information theory. This paper is a written version of the first of eight one hour lectures given in the American Mathematical Society (AMS) Short Course on Quantum Computation held in conjunction with the Annual Meeting of the AMS in Washington, DC, USA in January 2000, and will appear in the AMS PSAPM volume entitled "Quantum Computation." Part 1 of the paper is an introduction the to the concept of the qubit. Part 2 gives an introduction to quantum mechanics covering such topics as Dirac notation, quantum measurement, Heisenberg uncertainty, Schrodinger's equation, density operators, partial trace, multipartite quantum systems, the Heisenberg versus the Schrodinger picture, quantum entanglement, EPR paradox, quantum entropy. Part 3 gives a brief ...
The Supersymmetric Standard Model
Fayet, Pierre
2016-10-01
The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout-Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W± and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying on R-parity and other discrete symmetries, may determine both the supersymmetrybreaking and grand-unification scales.
The Supersymmetric Standard Model
Fayet, Pierre
2016-01-01
The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout- Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W$^\\pm$ and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying ...