Update of the search for supersymmetric particles in scenarios with Gravitino LSP and Sleptons NLSP
Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, Dmitri Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bilenky, Mikhail S.; Bloch, D.; Blom, H.M.; Bol, L.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Croix, J.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Haug, S.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hertz, O.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kucharczyk, M.; Kurowska, J.; Lamsa, J.W.; Laugier, J.P.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, M.R.; Montenegro, J.; Moraes, D.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mundim, L.M.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Nemecek, S.; Neufeld, N.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salmi, L.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwanda, C.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Y.; Segar, A.M.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Dam, Piet; Van den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.
2001-01-01
An update of the search for sleptons, neutralinos and charginos in the context of scenarios where the lightest supersymmetric particle is the gravitino and the next-to-lightest supersymmetric particle is a slepton, is presented, together with the update of the search for heavy stable charged particles in light gravitino scenarios and Minimal Supersymmetric Standard Models. Data collected in 1999 with the DELPHI detector at centre-of-mass energies around 192, 196, 200 and 202 GeV were analysed. No evidence for the production of these supersymmetric particles was found. Hence, new mass limits were derived at 95% confidence level.
Search for supersymmetric particles in scenarios with gravitino LSP and stau NLSP
Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chabaud, V.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Crepe-Renaudin, Sabine; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.A.; Demaria, N.; De Angelis, A.; de Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Duperrin, A.; Durand, J.D.; Eigen, G.; Ekelof, T.; Ekspong, G.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Fayot, J.; Feindt, M.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Fichet, S.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Guz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hessing, T.L.; Heuser, J.M.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Huet, K.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanskii, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Klein, Hansjorg; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Lapin, V.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Lefebure, V.; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loerstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Malmgren, T.G.M.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Meroni, C.; Meyer, W.T.; Myagkov, A.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Moreau, X.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mulet-Marquis, C.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevskii, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinertsen, P.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Rohne, O.; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Royon, C.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovskii, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Seibert, N.; Sekulin, R.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnova, O.; Smith, G.R.; Solovianov, O.; Sopczak, A.; Sosnowski, R.; Spassoff, Tz.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanic, S.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli de Fatis, T.; Taffard, A.; Tegenfeldt, F.; Terranova, F.; Thomas, J.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tomaradze, A.G.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Van Dam, Piet; Vanden Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Walck, C.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zucchelli, G.C.; Zumerle, G.
2000-01-01
Sleptons, neutralinos and charginos were searched for in the context of scenarios where the lightest supersymmetric particle isthe gravitino.It was assumed that the stau is the next-to-lightest supersymmetric particle.Data collected with the DELPHI detector at a centre-of-mass energy near 189 GeV were analysed combining the methods developed in previous searches at lower energies.No evidence for the production of these supersymmetric particles was found. Hence, limits were derived at 95\\% confidence level.
Search for supersymmetric particles in light gravitino scenarios and sleptons NLSP
Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Geralis, T.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tomaradze, A.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zimine, N.I.; Zintchenko, A.; Zupan, M.
2003-01-01
A search for sleptons, neutralinos, charginos, sgoldstinos and heavy stable charged sleptons in the context of scenarios where the lightest su\\-per\\-sym\\-me\\-tric particle is the gravitino, is present Data collected during 2000 with the DELPHI detector at centre-of-mass energies from 204 to 208 GeV were analysed and combined with all the data collected from 1995 to 1999 at lower energies. No evidence for the production of sleptons, neutralinos and charginos has been found, therefore new limits on the mass of these supersymmetric particles and on the model paramr space are set. The search for heavy stable charged sleptons also updates the %predicted production %cross-section of stable sleptons as a function of their mass. stable sleptons mass limit. The absence of evidence for sgoldstino production allows limits to be set on its mass and on the scale of supersymmetry breaking.
The Supersymmetric Particle Spectrum
Barger, V; Ohmann, P
1994-01-01
We examine the spectrum of supersymmetric particles predicted by grand unified theoretical (GUT) models where the electroweak symmetry breaking is accomplished radiatively. We evolve the soft supersymmetry breaking parameters according to the renormalization group equations (RGE). The minimization of the Higgs potential is conveniently described by means of tadpole diagrams. We present complete one-loop expressions for these minimization conditions, including contributions from the matter and the gauge sectors. We concentrate on the low $\\tan \\beta$ fixed point region (that provides a natural explanation of a large top quark mass) for which we find solutions to the RGE satisfying both experimental bounds and fine-tuning criteria. We also find that the constraint from the consideration of the lightest supersymmetric particle as the dark matter of the universe is accommodated in much of parameter space where the lightest neutralino is predominantly gaugino. The supersymmetric mass spectrum displays correlations...
Decoupling of supersymmetric particles
Dobado, A; Peñaranda, S
1999-01-01
The possibility of a heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed in detail. The formal proof of decoupling of supersymmetric particles from low energy physics is stated in terms of the effective action for the particles of the Standard Model that results by integrating out all the sparticles in the limit where their masses are larger than the electroweak scale. The computation of the effective action for the standard electroweak gauge bosons W^{+-}, Z and \\gamma is performed by integrating out all the squarks, sleptons, charginos and neutralinos to one-loop. The Higgs sector is not considered in this paper. The large sparticle masses limit is also analyzed in detail. Explicit analytical formulae for the two-point functions of the electroweak gauge bosons to be valid in that limit are presented. Finally, the decoupling of sparticles in the S, T and U parameters is studied analitically. A discussion...
General neutralino NLSP with gravitino dark matter vs. big bang nucleosynthesis
Energy Technology Data Exchange (ETDEWEB)
Hasenkamp, Jasper
2009-08-15
We study the scenario of gravitino dark matter with a general neutralino being the next-to-lightest supersymmetric particle (NLSP). Therefore, we compute analytically all 2- and 3-body decays of the neutralino NLSP to determine the lifetime and the electromagnetic and hadronic branching ratio of the neutralino decaying into the gravitino and Standard Model particles. We constrain the gravitino and neutralino NLSP mass via big bang nucleosynthesis and see how those bounds are relaxed for a Higgsino or a wino NLSP in comparison to the bino neutralino case. At neutralino masses >or similar 1 TeV, a wino NLSP is favoured, since it decays rapidly via a newly found 4-vertex. The Higgsino component becomes important, when resonant annihilation via heavy Higgses can occur. We provide the full analytic results for the decay widths and the complete set of Feynman rules necessary for these computations. This thesis closes any gap in the study of gravitino dark matter scenarios with neutralino NLSP coming from approximations in the calculation of the neutralino decay rates and its hadronic branching ratio. (orig.)
On the Feasibility of a Stop NLSP in Gravitino Dark Matter Scenarios
Díaz-Cruz, J L; Olive, K A; Santoso, Y; Ellis, John; Olive, Keith A.; Santoso, Yudi
2007-01-01
We analyze the possibility that the lighter stop {\\tilde t_1} could be the next-to-lightest supersymmetric particle (NLSP) in models where the gravitino is the lightest supersymmetric particle (LSP). We do not find any possibility for a stop NLSP in the constrained MSSM with universal input soft supersymmetry-breaking masses at the GUT scale (CMSSM), but do find small allowed regions in models with non-universal Higgs masses (NUHM). We discuss the cosmological evolution of stop hadrons. Most {\\tilde t_1}qq `sbaryons' and the corresponding `antisbaryons' annihilate with conventional antibaryons and baryons into {\\tilde t_1}{\\bar q} `mesinos' and the corresponding `antimesinos', respectively, shortly after the quark-hadron transition in the early Universe, and most mesinos and antimesinos subsequently annihilate. As a result, insufficient metastable charged stop hadrons survive to alter Big Bang nucleosynthesis.
Abreu, P; Adye, T; Adzic, P; Albrecht, Z; Alderweireld, T; Alekseev, G D; Alemany, R; Allmendinger, T; Allport, P P; Almehed, S; Amaldi, Ugo; Amapane, N; Amato, S; Anassontzis, E G; Andersson, P; Andreazza, A; Andringa, S; Antilogus, P; Apel, W D; Arnoud, Y; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Bambade, P; Barão, F; Barbiellini, Guido; Barbier, R; Bardin, Dimitri Yuri; Barker, G; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Beillière, P; Belokopytov, Yu A; Belous, K S; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Bertini, D; Bertrand, D; Besançon, M; Bigi, M; Bilenky, S M; Bizouard, M A; Bloch, D; Blom, H M; Bonesini, M; Bonivento, W; Boonekamp, M; Booth, P S L; Borgland, A W; Borisov, G; Bosio, C; Botner, O; Boudinov, E; Bouquet, B; Bourdarios, C; Bowcock, T J V; Boyko, I; Bozovic, I; Bozzo, M; Bracko, M; Branchini, P; Brenner, R A; Brückman, P; Brunet, J M; Bugge, L; Buran, T; Buschbeck, Brigitte; Buschmann, P; Cabrera, S; Caccia, M; Calvi, M; Camporesi, T; Canale, V; Carena, F; Carroll, L; Caso, Carlo; Castillo-Gimenez, M V; Cattai, A; Cavallo, F R; Chabaud, V; Chapkin, M M; Charpentier, P; Chaussard, L; Checchia, P; Chelkov, G A; Chierici, R; Shlyapnikov, P; Chochula, P; Chorowicz, V; Chudoba, J; Cieslik, K; Collins, P; Contri, R; Cortina, E; Cosme, G; Cossutti, F; Crawley, H B; Crennell, D J; Crépé, S; Crosetti, G; Cuevas-Maestro, J; Czellar, S; Davenport, Martyn; Da Silva, W; Deghorain, A; Della Ricca, G; Delpierre, P A; Demaria, N; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Min, A; De Paula, L S; Dijkstra, H; Di Ciaccio, Lucia; Dolbeau, J; Doroba, K; Dracos, M; Drees, J; Dris, M; Duperrin, A; Durand, J D; Eigen, G; Ekelöf, T J C; Ekspong, Gösta; Ellert, M; Elsing, M; Engel, J P; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Fayot, J; Feindt, Michael; Ferrari, P; Ferrer, A; Ferrer-Ribas, E; Ferro, F; Fichet, S; Firestone, A; Flagmeyer, U; Föth, H; Fokitis, E; Fontanelli, F; Franek, B J; Frodesen, A G; Frühwirth, R; Fulda-Quenzer, F; Fuster, J A; Galloni, A; Gamba, D; Gamblin, S; Gandelman, M; García, C; Gaspar, C; Gaspar, M; Gasparini, U; Gavillet, P; Gazis, E N; Gelé, D; Ghodbane, N; Gil, I; Glege, F; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; González-Caballero, I; Gopal, Gian P; Gorn, L; Guz, Yu; Gracco, Valerio; Grahl, J; Graziani, E; Gris, P; Grosdidier, G; Grzelak, K; Guy, J; Hahn, F; Hahn, S; Haider, S; Hallgren, A; Hamacher, K; Hansen, J; Harris, F J; Hedberg, V; Heising, S; Hernández, J J; Herquet, P; Herr, H; Hessing, T L; Heuser, J M; Higón, E; Holmgren, S O; Holt, P J; Hoorelbeke, S; Houlden, M A; Hrubec, Josef; Huber, M; Huet, K; Hughes, G J; Hultqvist, K; Jackson, J N; Jacobsson, R; Jalocha, P; Janik, R; Jarlskog, C; Jarlskog, G; Jarry, P; Jean-Marie, B; Jeans, D; Johansson, E K; Jönsson, P E; Joram, C; Juillot, P; Jungermann, L; Kapusta, F; Karafasoulis, K; Katsanevas, S; Katsoufis, E C; Keränen, R; Kernel, G; Kersevan, Borut P; Khomenko, B A; Khovanskii, N N; Kiiskinen, A P; King, B J; Kinvig, A; Kjaer, N J; Klapp, O; Klein, H; Kluit, P M; Kokkinias, P; Koratzinos, M; Kostyukhin, V; Kourkoumelis, C; Kuznetsov, O; Krammer, Manfred; Kriznic, E; Krumshtein, Z; Kubinec, P; Kurowska, J; Kurvinen, K L; Lamsa, J; Lane, D W; Lapin, V; Laugier, J P; Lauhakangas, R; Leder, Gerhard; Ledroit, F; Lefébure, V; Leinonen, L; Leisos, A; Leitner, R; Lenzen, Georg; Lepeltier, V; Lesiak, T; Lethuillier, M; Libby, J; Liebig, W; Liko, D; Lipniacka, A; Lippi, I; Lörstad, B; Loken, J G; Lopes, J H; López, J M; López-Fernandez, R; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J N; Mahon, J R; Maio, A; Malek, A; Malmgren, T G M; Maltezos, S; Malychev, V; Mandl, F; Marco, J; Marco, R P; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Martínez-Vidal, F; Martí i García, S; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Matthiae, Giorgio; Mazzucato, F; Mazzucato, M; McCubbin, M L; McKay, R; McNulty, R; McPherson, G; Meroni, C; Meyer, W T; Migliore, E; Mirabito, L; Mitaroff, Winfried A; Mjörnmark, U; Moa, T; Moch, M; Møller, R; Mönig, K; Monge, M R; Moreau, X; Morettini, P; Morton, G A; Müller, U; Münich, K; Mulders, M; Mulet-Marquis, C; Muresan, R; Murray, W J; Muryn, B; Myatt, Gerald; Myklebust, T; Naraghi, F; Nassiakou, M; Navarria, Francesco Luigi; Navas, S; Nawrocki, K; Negri, P; Neufeld, N; Nicolaidou, R; Nielsen, B S; Niezurawski, P; Nikolenko, M; Nomokonov, V P; Nygren, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Orazi, G; Österberg, K; Ouraou, A; Paganoni, M; Paiano, S; Pain, R; Paiva, R; Palacios, J; Palka, H; Papadopoulou, T D; Papageorgiou, K; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Pavel, T; Pegoraro, M; Peralta, L; Pernicka, Manfred; Perrotta, A; Petridou, C; Petrolini, A; Phillips, H T; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Privitera, P; Pukhaeva, N; Pullia, Antonio; Radojicic, D; Ragazzi, S; Rahmani, H; Rames, J; Ratoff, P N; Read, A L; Rebecchi, P; Redaelli, N G; Regler, Meinhard; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Resvanis, L K; Richard, F; Rídky, J; Rinaudo, G; Røhne, O M; Romero, A; Ronchese, P; Rosenberg, E I; Rosinsky, P; Roudeau, Patrick; Rovelli, T; Royon, C; Ruhlmann-Kleider, V; Ruiz, A; Saarikko, H; Sacquin, Yu; Sadovskii, A; Sajot, G; Salt, J; Sampsonidis, D; Sannino, M; Schwemling, P; Schwering, B; Schwickerath, U; Scuri, F; Seager, P; Sedykh, Yu; Segar, A M; Seibert, N; Sekulin, R L; Shellard, R C; Siebel, M; Simard, L C; Simonetto, F; Sissakian, A N; Smadja, G; Smirnova, O G; Smith, G R; Sokolov, A; Solovyanov, O; Sopczak, André; Sosnowski, R; Spassoff, Tz; Spiriti, E; Squarcia, S; Stanescu, C; Stanic, S; Stanitzki, M; Stevenson, K; Stocchi, A; Strauss, J; Strub, R; Stugu, B; Szczekowski, M; Szeptycka, M; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Terranova, F; Thomas, J; Timmermans, J; Tinti, N; Tkatchev, L G; Tobin, M; Todorova-Nová, S; Tomaradze, A G; Tomé, B; Tonazzo, A; Tortora, L; Tortosa, P; Tranströmer, G; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Tsirou, A L; Turluer, M L; Tyapkin, I A; Tzamarias, S; Ullaland, O; Uvarov, V; Valenti, G; Vallazza, E; Van der Velde, C; van Dam, P; Van den Boeck, W; Van Doninck, W K; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Ventura, L; Venus, W A; Verbeure, F; Verlato, M; Vertogradov, L S; Verzi, V; Vilanova, D; Vitale, L; Vlasov, E; Vodopyanov, A S; Voulgaris, G; Vrba, V; Wahlen, H; Walck, C; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G R; Winter, M; Witek, M; Wolf, G; Yi, J; Yushchenko, O P; Zaitsev, A; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zevgolatakos, E; Zimin, N I; Zinchenko, A I; Zucchelli, G C; Zumerle, G
1999-01-01
Promptly decaying lightest charginos were searched for in the context of scenarios with gravitino LSP. It was assumed that the stau is the next to lightest supersymmetric particle (NLSP). Data collected with the DELPHI detector at a centre-of-mass energy near 183~{~mbox{${mathrm{GeV}}$}}\
NLSP Gluino and NLSP Stop Scenarios from b-tau Yukawa Unification
Raza, Shabbar; Ün, Cem Salih
2014-01-01
We present a study of b-tau Yukawa unified supersymmetric SU(4)_c x SU(2)_L x SU(2)_R model (with mu > 0), which predicts the existence of gluino - neutralino and stop - neutralino coannihilation scenarios compatible with the desired relic LSP neutralino dark matter abundance and other collider constraints. The NLSP gluino or NLSP stop masses vary between 400 GeV to ~ 1 TeV. The NLSP gluinos will be accessible at the 14 TeV LHC, while we hope that the NSLP stop solutions will be probed in future LHC searches. We also identify regions of the parameter space in which the gluino and the lighter stop are closely degenerate in mass, interchangeably playing the role of NLSP and NNLSP. We also update a previous study of t-b-tau Yukawa unification and show that NLSP gluino of mass ~ 1 TeV, with a mass difference between the gluino and neutralino of less than 80 GeV, can be realized consistent with the current collider and astrophysical constraints. We present benchmark points for b-tau and t-b-tau Yukawa unification ...
Supersymmetric integrable scattering theories with unstable particles
Fring, A
2005-01-01
We propose scattering matrices for N=1 supersymmetric integrable quantum field theories in 1+1 dimensions which involve unstable particles in their spectra. By means of the thermodynamic Bethe ansatz we analyze the ultraviolet behaviour of some of these theories and identify the effective Virasoro central charge of the underlying conformal field theories.
Decoupling of Supersymmetric Particles in the MSSM
Dobado, A; Peñaranda, S
1998-01-01
A heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed. A formal and partial proof of decoupling of supersymmetric particles in the limit where their masses are larger than the electroweak scale is performed by integrating out all the sparticles to one loop and by evaluating the effective action for the standard electroweak gauge bosons $W^{\\pm}, Z$ and two-point functions of the electroweak gauge bosons and the $S, T$ and $U$ parameters, to be valid in that limit, are also presented. A discussion on how the decoupling takes place in terms of both the physical sparticle masses and the non-physical mass parameters as the $\\mu$-parameter and the soft-breaking parameters is included.
Particle astrophysics of nonlinear supersymmetric general relativity
Energy Technology Data Exchange (ETDEWEB)
Shima, K.; Tsuda, M. [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama (Japan)
2009-05-15
An explanation of relations between the large scale structure of the universe and the tiny scale structure of the particle physics, e.g. the observed mysterious relation between the (dark) energy density and the dark matter of the universe and the neutrino mass and the SUSY breaking mass scale of the particle physics may be given by the nonlinear supersymmetric general relativity (NLSUSY GR). NLSUSY GR shows that considering the physics before/of the big bang (BB) of the universe may be significant and may give new insight to unsolved problems of the low energy particle physics, cosmology and their relations. (Abstract Copyright [2009], Wiley Periodicals, Inc.)
Resummation predictions for supersymmetric electroweak particles
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Institut Pluridisciplinaire Hubert Curien/Departement Recherches Subatomiques, Universite de Strasbourg (France); Klasen, Michael; Lamprea, David R.; Rothering, Marcel [Institut fuer Theoretische Physik, Westfaelische Wilhelms-Universitaet Muenster (Germany)
2013-07-01
Since the discovery of a particle consistent with the properties of the Standard Model Higgs the experimentalists' effort of ATLAS and CMS at the LHC has been shifted towards the production of electroweak supersymmetric particles. In our work we have updated the resummation results for gauginos and sleptons with next-to-leading logarithmic accuracy matched to next-to-leading order computations for a center of mass energy of 8 TeV. We have used benchmark points for minimal supergravity breaking scenarios which are recently adopted by the experimental collaborations and motivated by the magnetic moment of the muon. Tables of total cross sections including scale and parton distribution function uncertainties are presented together with invariant mass and transverse momentum distributions. As expected, the resummation results reduce the scale dependence and ensure the convergence in the small transverse momentum region. The production of the lightest chargino with the next-to-lightest neutralino leads to the largest cross section of O(10 fb) for masses of a few hundred GeV. Due to the considered mixing in the third generation of sleptons the τ{sub 1} τ{sub 1}{sup *} production cross section can also reach the fb-region for the same benchmark point. The gauginos would give rise to the largest cross section and are probably soon accessible at the LHC being the first detected supersymmetric particles.
Particle Physics And Cosmology In Supersymmetric Models
Morrissey, D E
2005-01-01
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...
What if the Higgsino is the lightest supersymmetric particles
Energy Technology Data Exchange (ETDEWEB)
Haber, H.E.
1985-11-01
A pedagogical introduction to the mixing of neutral gauginos and Higgsinos in supersymmetric models is given. The possibility that the Higgsino (rather than the photino) is the lightest supersymmetric particle is considered and implications for phenomenology are discussed with some emphasis on signatures of supersymmetry in Z decays. Some related aspects of Higgs boson detection in Z decays are mentioned.
Particle physics and cosmology in supersymmetric models
Morrissey, David Edgar
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model parameter space. The strongest constraints on this scenario come from the lower bound on the Higgs boson mass, and the upper bound on the electric dipole moment of the electron. Moreover, upcoming experiments will probe the remaining allowed parameter space in the near future. Some of these constraints may be relaxed by going beyond the MSSM. With this in mind, we also investigate the nMSSM, a minimal singlet extension of the MSSM. We find that this model can also explain both the dark matter and the baryon asymmetry.
Utilitarian Supersymmetric Gauge Model of Particle Interactions
Ma, Ernest
2010-01-01
A remarkable U(1) gauge extension of the supersymmetric standard model was proposed eight years ago. It is anomaly-free, has no mu term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
Searches for supersymmetric particles produced in Z -boson decay
Energy Technology Data Exchange (ETDEWEB)
Barklow, T.; Abrams, G.S.; Adolphsen, C.E.; Averill, D.; Ballam, J.; Barish, B.C.; Barnett, B.A.; Bartelt, J.; Bethke, S.; Blockus, D.; Bonvicini, G.; Boyarski, A.; Brabson, B.; Breakstone, A.; Bulos, F.; Burchat, P.R.; Burke, D.L.; Cence, R.J.; Chapman, J.; Chmeissani, M.; Cords, D.; Coupal, D.P.; Dauncey, P.; DeStaebler, H.C.; Dorfan, D.E.; Dorfan, J.M.; Drewer, D.C.; Elia, R.; Feldman, G.J.; Fernandes, D.; Field, R.C.; Ford, W.T.; Fordham, C.; Frey, R.; Fujino, D.; Gan, K.K.; Gatto, C.; Gero, E.; Gidal, G.; Glanzman, T.; Goldhaber, G.; Gomez Cadenas, J.J.; Gratta, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Hanson, G.; Harr, R.; Harral, B.; Harris, F.A.; Hawkes, C.M.; Hayes, K.; Hearty, C.; Heusch, C.A.; Hildreth, M.D.; Himel, T.; Hinshaw, D.A.; Hong, S.J.; Hutchinson, D.; Hylen, J.; Innes, W.R.; Jacobsen, R.G.; Jaros, J.A.; Jung, C.K.; Kadyk, J.A.; Kent, J.; King, M.; Koetke, D.S.; Komamiya, S.; Koska, W.; Kowalski, L.A.; Kozanecki, W.; Kral, J.F.; Kuhlen, M.; Labarga, L.; Lankford,
1990-06-18
We have searched for supersymmetric particles in 528 {ital Z} decays with the Mark II detector at the SLAC Linear Collider. We place 95%-confidence-level lower mass limits on degenerate squarks, nondegenerate up-type squarks, nondegenerate down-type squarks, charginos, pair-produced unstable neutralinos, and neutralinos from associated production.
GravitinoPack and decays of supersymmetric metastable particles
Eberl, Helmut
2015-01-01
We present the package GravitinoPack that calculates the two- and three-body decays of unstable supersymmetric particles involving the gravitino in the final or initial state. In a previous paper, we already showed results for the gravitino decays into two and three particles. In this paper, we incorporate the processes where an unstable neutralino, stau or stop decays into a gravitino and Standard Model particles. This is the case in gravitino dark matter supersymmetric models, where the gravitino is the lightest SUSY particle. We give instructions for the installation and the use of the package. In the numerical analysis, we discuss various MSSM scenarios. We show that the calculation of all the decay channels and the three-body decay branching ratios is essential for the accurate application of cosmological bounds on these models.
Higher-order predictions for supersymmetric particle decays
Energy Technology Data Exchange (ETDEWEB)
Landwehr, Ananda Demian Patrick
2012-06-12
We analyze particle decays including radiative corrections at the next-to-leading order (NLO) within the Minimal Supersymmetric Standard Model (MSSM). If the MSSM is realized at the TeV scale, squark and gluino production and decays yield relevant rates at the LHC. Hence, in the first part of this thesis, we compute decay widths including QCD and electroweak NLO corrections to squark and gluino decays. Furthermore, the Higgs sector of the MSSM is enhanced compared to the one of the Standard Model. Thus, the additional Higgs bosons decay also into supersymmetric particles. These decays and the according NLO corrections are analyzed in the second part of this thesis. The calculations are performed within a common renormalization framework and numerically evaluated in specific benchmark scenarios.
Event with Supersymmetric Particles of the ATLAS Experiment
ATLAS, Experiment
2014-01-01
This event originated with the production of a pair of supersymmetric particles that decayed yielding: •Six jets of particles, •Two muons with momenta in the transverse direction of 74 and 84 GeV. They are visible in the side view going to the left, but not in the end view (because the exited the detector in the forward direction). They have opposite signs. •Missing energy in the direction transverse to the beam of 283 GeV.
Schwinger's oscillator method, supersymmetric quantum mechanics and massless particles
Directory of Open Access Journals (Sweden)
Mejía F. M.
2002-01-01
Full Text Available We consider Schwinger's method of angular momentum addition using the SU(2 algebra with both a fermionic and a bosonic oscillator. We show that the total spin states obtained are: one boson singlet state and an arbitrary number of spin-1/2 states, the later ones are energy degenerate. It means that we have in this case supersymmetric quantum mechanics and also the addition of angular momentum for massless particles. We review too the cases of two bosonic and two fermionic oscillators.
Search for electroweak production of supersymmetric particles with photonic final states at CMS
Energy Technology Data Exchange (ETDEWEB)
Feld, Lutz; Lange, Johannes; Schulz, Johannes [1. Physikalisches Institut B, RWTH Aachen University (Germany)
2016-07-01
Supersymmetry (SUSY) is a prominent extension of the standard model of particle physics, providing possible solutions to the hierarchy problem, unification of the coupling constants and the existence of dark matter. In the context of gauge mediated SUSY breaking the next-to-lightest SUSY particle (NLSP) is the lightest neutralino, while the gravitino is the lightest SUSY particle. For a bino-like mixture, the NLSP predominantly decays to a photon and a gravitino, the latter leaving the detector undetected. This analysis focuses on final states containing at least one photon, missing transverse energy and low hadronic activity, thus increasing the sensitivity to electroweak gaugino production and complementing searches requiring the presence of jets. The main background contributions are estimated using a template fit of the background simulations to the data in a control region. The search has already been carried out using a special parked data set recorded by the CMS detector at √(s)=8 TeV and an integrated luminosity of 7.4 fb{sup -1}. We present the current status of the analysis for the LHC RunII at √(s)=13 TeV.
Resummation for supersymmetric particle production at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Brensing, Silja Christine
2011-05-10
The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the
Precise predictions for supersymmetric particle production at the LHC
Energy Technology Data Exchange (ETDEWEB)
Rothering, Marcel
2016-07-01
One of the main objectives of the Large Hadron Collider (LHC) is the search for physics beyond the Standard Model. Among the most promising candidates is the Minimal Supersymmetric Standard Model (MSSM) which postulates the existence of further particles. Since none of these supersymmetric particles have been found yet, their mass limits have been shifted to high values. Hence, with the available energy of the LHC they would always be produced close to their production threshold. This leads to predictions for cross sections which are characterized by the presence of dominant logarithmic terms stemming from multiple soft gluon emission. These contributions spoil the convergence of the perturbative series and require a resummation to predict reliable results in these critical kinematical phase space regions. As the attention of experimental searches has been shifted towards electroweak supersymmetric particle production at the LHC, we update in this thesis our predictions for direct slepton pair production at proton-proton collision to next-to-leading order (NLO) matched to resummation at the next-to-leading logarithmic (NLL) accuracy. As a benchmark scenario we choose simplified models which have the advantage of only containing a few relevant physical parameters. They are now commonly adopted by the experimental collaborations for slepton and electroweak gaugino searches. We find that the scale dependence is drastically reduced by including NLL corrections, especially for large slepton masses. For increasing mass limits we hint towards the significance of next-to-next-to-leading logarithmic contributions to the cross section. By using modern Monte Carlo techniques we reanalyze ATLAS and CMS results for slepton searches for different assumptions about the compositions of the sleptons and their neutralino decay products. We observe similar mass limits for selectrons and smuons as both collaborations and find that masses for left-handed (right-handed) selectrons and
Search for electroweak production of supersymmetric particles at LHC Run 2 with the ATLAS detector
Carra, Sonia; The ATLAS collaboration
2017-01-01
A search for electroweak production of supersymmetric particles decaying to final states with two or three leptons and missing transverse momentum is presented. The analysis is based on 36.1 fb$^{-1}$ of $\\sqrt{s}$ = 13 TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. No significant deviations from the Standard Model expectation are observed and stringent exclusion limits at 95% confidence level are placed on the masses of the supersymmetric particles considered.
Das, Debottam; Ellwanger, Ulrich; Teixeira, Ana M.
2012-03-01
The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. NMSDECAY will be part of the NMSSMTools package, which computes Higgs, sparticle masses and Higgs decays in the NMSSM. Program summaryProgram title: NMSDECAY Catalogue identifier: AELC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 188 177 No. of bytes in distributed program, including test data, etc.: 1 896 478 Distribution format: tar.gz Programming language: FORTRAN77 Computer: All supporting g77, gfortran, ifort Operating system: All supporting g77, gfortran, ifort Classification: 11.1 External routines: Routines in the NMSSMTools package: At least one of the routines in the directory main (e.g. nmhdecay.f), all routines in the directory sources. (All software is included in the distribution package.) Nature of problem: Calculation of all decay widths and decay branching fractions of all particles in the Next-to-Minimal Supersymmetric Standard Model. Solution method: Suitable generalization of the code SDECAY [1] including the extended Higgs and neutralino sector of the Next-to-Minimal Supersymmetric Standard Model, and slepton 3-body decays. Additional comments: NMSDECAY is interfaced with NMSSMTools, available on the web page http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html. Running time: On an Intel Core i7 with 2.8 GHZ: about 2 seconds per point in parameter space, if all flags flagqcd, flagmulti and flagloop are switched on.
CP Violation in Production and Decay of Supersymmetric Particles
2005-01-01
In this thesis we analyze CP violating effects of MSSM phases in production and two-body decays of neutralinos, charginos and sfermions. For different supersymmetric processes we define and calculate CP-odd asymmetries, which base on triple products. We present numerical results for electron-positron collisions at a future linear collider with a center of mass energy of 500-800 GeV, high luminosity and longitudinally polarized beams.
CP violation in production and decay of supersymmetric particles
Energy Technology Data Exchange (ETDEWEB)
Kittel, O.
2004-07-01
In this thesis we analyze CP violating effects of MSSM phases in production and two-body decays of neutralinos, charginos and sfermions. For different supersymmetric processes we define and calculate CP-odd asymmetries, which base on triple products. We present numerical results for electron-positron collisions at a future linear collider with a center of mass energy of 500-800 GeV, high luminosity and longitudinally polarized beams. (Orig.)
Natural gauge mediation with a Bino next-to-lightest supersymmetric particle at the LHC.
Barnard, James; Farmer, Benjamin; Gherghetta, Tony; White, Martin
2012-12-14
Natural models of supersymmetry with a gravitino lightest supersymmetric particle provide distinctive signatures at the LHC. For a neutralino next-to-lightest supersymmetric particle, sparticles can decay to two high energy photons plus missing energy. We use the ATLAS diphoton search with 4.8 b(-1) of data to place limits in both the top-squark-gluino and neutralino-chargino mass planes for this scenario. If the neutralino is heavier than 50 GeV, the lightest top squark must be heavier than 580 GeV, the gluino must be heavier than 1100 GeV, and charginos must be heavier than approximately 300-470 GeV. This provides the first nontrivial constraints in natural gauge mediation models with a neutralino next-to-lightest supersymmetric particle decaying to photons and implies a fine-tuning of at least a few percent in such models.
Ellis, John; Savage, Christopher; Spanos, Vassilis C
2010-01-01
We evaluate the neutrino fluxes to be expected from neutralino LSP annihilations inside the Sun, within the minimal supersymmetric extension of the Standard Model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the GUT scale (the CMSSM). We find that there are large regions of typical CMSSM $(m_{1/2}, m_0)$ planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM $(m_{1/2}, m_0)$ planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large $m_{1/2}$ along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct ...
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Servico Nacional de Aprendizagem Industrial, Rio de Janeiro, RJ (Brazil). Centro de Tecnologia da Industria Quimica e Textil (SENAI/CETIQT)]. E-mail: paschoal@cbpf.br; Helayel-Neto, Jose A.; Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Grupo de Fisica Teorica Jose Leite Lopes, Petropolis, RJ (Brazil); E-mails: helayel@cbpf.br; lpgassis@cbpf.br
2004-07-01
The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to both magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed. (author)
Planar supersymmetric quantum mechanics of a charged particle in an external electromagnetic field
Energy Technology Data Exchange (ETDEWEB)
Paschoal, Ricardo C. [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Servico Nacional de Aprendizagem Industrial, Centro de Tecnologia da Industria Quimica e Textil, SENAI/CETIQT, Rua Dr. Manoel Cotrim 195, 20961-040 Rio de Janeiro, RJ (Brazil)]. E-mail: paschoal@cbpf.br; Helayel-Neto, Jose A. [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Grupo de Fisica Teorica Jose Leite Lopes, P.O. Box 91933, 25685-970 Petropolis, RJ (Brazil)]. E-mail: helayel@cbpf.br; Assis, Leonardo P.G. de [Centro Brasileiro de Pesquisas Fisicas, CBPF, Rua Dr. Xavier Sigaud 150, 22290-180 Rio de Janeiro, RJ (Brazil) and Grupo de Fisica Teorica Jose Leite Lopes, P.O. Box 91933, 25685-970 Petropolis, RJ (Brazil)]. E-mail: lpgassis@cbpf.br
2006-01-09
The supersymmetric quantum mechanics of a two-dimensional non-relativistic particle subject to external magnetic and electric fields is studied in a superfield formulation and with the typical non-minimal coupling of (2+1) dimensions. Both the N=1 and N=2 cases are contemplated and the introduction of the electric interaction is suitably analysed.
Search for Higgs bosons and for Supersymmetric particles at particle collider experiments
Muanza, Steve
The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...
Gravitino dark matter with neutralino NLSP in the constrained NMSSM
Panotopoulos, Grigoris
2010-01-01
The gravitino dark matter with neutralino NLSP hypothesis is investigated in the framework of NMSSM. We have considered both the thermal and non-thermal gravitino production mechanisms, and we have taken into account all the collider and cosmological constraints. The maximum allowed reheating temperature after inflation, as well as the maximum allowed gravitino mass are determined.
Study of R-parity Violating Decays of Supersymmetric Particles with the ATLAS Detector at the LHC
AUTHOR|(CDS)2101187; Flowerdew, Micheal
Supersymmetry is a space-time symmetry that postulates the existence of new particles. It assigns to each Standard Model fermion (boson) an associated supersymmetric boson (fermion) partner with the same quantum numbers except for spin. The introduction of these new supersymmetric particles provides a potential solution to the hierarchy problem. Discovery of such particles or alternatively an exclusion of a certain supersymmetic parameter space is one of the main purposes of collider experiments. A special scenario of Supersymmetry that enables the decay of the lightest supersymmetric particle to Standard Model particles is studied using proton-proton collision data collected by the ATLAS experiment at center-of-mass energy of 13 TeV. The searched signal is characterized by a final state of at least four leptons, which leads to extraordinarily low background contributions from Standard Model processes. The work described in this thesis assisted to an exclusion of the considered supersymmetric model for hypoth...
Feldman, Daniel; Liu, Zuowei; Nath, Pran
2007-12-21
The minimal supersymmetric standard model with soft breaking has a large landscape of supersymmetric particle mass hierarchies. This number is reduced significantly in well-motivated scenarios such as minimal supergravity and alternatives. We carry out an analysis of the landscape for the first four lightest particles and identify at least 16 mass patterns, and provide benchmarks for each. We study the signature space for the patterns at the CERN Large Hadron Collider by analyzing the lepton+ (jet> or =2) + missing P{T} signals with 0, 1, 2, and 3 leptons. Correlations in missing P{T} are also analyzed. It is found that even with 10 fb{-1} of data a significant discrimination among patterns emerges.
Search for supersymmetric particles at 130 GeV < √s < 140 GeV at LEP
Acciarri, M.; Adam, A.; Adriani, O.; Aguilar-Benitez, M.; Ahlen, S.; Alpat, B.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alverson, G.; Alviggi, M. G.; Ambrosi, G.; Anderhub, H.; Andreev, V. P.; Angelescu, T.; Antreasyan, D.; Arefiev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Ball, R. C.; Banerjee, S.; Banicz, K.; Barillère, R.; Barone, L.; Bartalini, P.; Baschirotto, A.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biland, A.; Bilei, G. M.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bock, R.; Böhm, A.; Borgia, B.; Boucham, A.; Bourilkov, D.; Bourquin, M.; Brambilla, E.; Branson, J. G.; Brigljevic, V.; Brock, I. C.; Buijs, A.; Bujak, A.; Burger, J. D.; Burger, W. J.; Busenitz, J.; Buytenhuijs, A.; Cai, X. D.; Campanelli, M.; Capell, M.; Romeo, G. Cara; Caria, M.; Carlino, G.; Cartacci, A. M.; Casaus, J.; Castellini, G.; Castello, R.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chan, A.; Chang, Y. H.; Chaturvedi, U. K.; Chemarin, M.; Chen, A.; Chen, C.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chereau, X.; Chiefari, G.; Chien, C. Y.; Choi, M. T.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Cohn, H. O.; Coignet, G.; Colijn, A. P.; Colino, N.; Commichau, V.; Costantini, S.; Cotorobai, F.; de la Cruz, B.; Dai, T. S.; D'Alessandro, R.; de Asmundis, R.; De Boeck, H.; Degré, A.; Deiters, K.; Denes, P.; DeNotaristefani, F.; DiBitonto, D.; Diemoz, M.; van Dierendonck, D.; Di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dorne, I.; Dova, M. T.; Drago, E.; Duchesneau, D.; Duinker, P.; Duran, I.; Dutta, S.; Easo, S.; Efremenko, Yu; El Mamouni, H.; Engler, A.; Eppling, F. J.; Erné, F. C.; Ernenwein, J. P.; Extermann, P.; Fabre, M.; Faccini, R.; Falciano, S.; Favara, A.; Fay, J.; Felcini, M.; Ferguson, T.; Fernandez, D.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Forconi, G.; Fredj, L.; Freudenreich, K.; Galaktionov, Yu; Ganguli, S. N.; Gau, S. S.; Gentile, S.; Gerald, J.; Gheordanescu, N.; Giagu, S.; Goldfarb, S.; Goldstein, J.; Gong, Z. F.; Gougas, A.; Gratta, G.; Gruenewald, M. W.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Hangarter, K.; Hartmann, B.; Hasan, A.; He, J. T.; Hebbeker, T.; Hervé, A.; van Hoek, W. C.; Hofer, H.; Hoorani, H.; Hou, S. R.; Hu, G.; Ilyas, M. M.; Innocente, V.; Janssen, H.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberria, I.; Kasser, A.; Khan, R. A.; Kamyshkov, Yu; Kapinos, P.; Kapustinsky, J. S.; Karyotakis, Y.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, D.; Kim, J. K.; Kim, S. C.; Kim, Y. G.; Kinnison, W. W.; Kirkby, A.; Kirkby, D.; Kirkby, J.; Kittel, W.; Klimentov, A.; König, A. C.; Köngeter, A.; Korolko, I.; Koutsenko, V.; Koulbardis, A.; Kraemer, R. W.; Kramer, T.; Krenz, W.; Kuijten, H.; Kunin, A.; de Guevara, P. Ladron; Landi, G.; Lapoint, C.; Lassila-Perini, K.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, J. S.; Lee, K. Y.; Le Goff, J. M.; Leiste, R.; Lenti, M.; Leonardi, E.; Levtchenko, P.; Li, C.; Lieb, E.; Lin, W. T.; Linde, F. L.; Lindemann, B.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, W.; Lu, Y. S.; Lübelsmeyer, K.; Luci, C.; Luckey, D.; Ludovici, L.; Luminari, L.; Lustermann, W.; Ma, W. G.; Macchiolo, A.; Maity, M.; Majumder, G.; Malgeri, L.; Malinin, A.; Maña, C.; Mangla, S.; Marchesini, P.; Marin, A.; Martin, J. P.; Marzano, F.; Massaro, G. G. G.; Mazumdar, K.; McNally, D.; McNeil, R. R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; von der Mey, M.; Mi, Y.; Mihul, A.; van Mil, A. J. W.; Mirabelli, G.; Mnich, J.; Möller, M.; Monteleoni, B.; Moore, R.; Morganti, S.; Mount, R.; Müller, S.; Muheim, F.; Nagy, E.; Nahn, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Nippe, A.; Nowak, H.; Organtini, G.; Ostonen, R.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Park, H. K.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pei, Y. J.; Pensotti, S.; Perret-Gallix, D.; Petrak, S.; Pevsner, A.; Piccolo, D.; Pieri, M.; Pinto, J. C.; Piroué, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Produit, N.; Raghavan, R.; Rahal-Callot, G.; Rancoita, P. G.; Rattaggi, M.; Raven, G.; Razis, P.; Read, K.; Redaelli, M.; Ren, D.; Rescigno, M.; Reucroft, S.; Ricker, A.; Riemann, S.; Riemers, B. C.; Riles, K.; Ro, S.; Robohm, A.; Rodin, J.; Rodriguez, F. J.; Roe, B. P.; Röhner, S.; Romero, L.; Rosier-Lees, S.; Rosselet, Ph; van Rossum, W.; Roth, S.; Rubio, J. A.; Rykaczewski, H.; Salicio, J.; Sanchez, E.; Santocchia, A.; Sarakinos, M. E.; Sarkar, S.; Sassowsky, M.; Schäfer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schmitz, P.; Schneegans, M.; Schoeneich, B.; Scholz, N.; Schopper, H.; Schotanus, D. J.; Schulte, R.; Schultze, K.; Schwenke, J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Sens, J. C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shukla, J.; Shumilov, E.; Siedenburg, T.; Son, D.; Sopczak, A.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Sticozzi, F.; Stone, H.; Stoyanov, B.; Straessner, A.; Strauch, K.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Susinno, G. F.; Suter, H.; Swain, J. D.; Tang, X. W.; Tauscher, L.; Taylor, L.; Ting, Samuel C. C.; Ting, S. M.; Toker, O.; Tonisch, F.; Tonutti, M.; Tonwar, S. C.; Tóth, J.; Tsaregorodtsev, A.; Tully, C.; Tuchscherer, H.; Tung, K. L.; Ulbricht, J.; Uwer, U.; Valente, E.; Van de Walle, R. T.; Vetlitsky, I.; Viertel, G.; Vivargent, M.; Völkert, R.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Vorobyov, An. A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, J. C.; Wang, X. L.; Wang, Y. F.; Wang, Z. M.; Weber, A.; Wittgenstein, F.; Wu, S. X.; Wynhoff, S.; Xu, J.; Xu, Z. Z.; Yang, B. Z.; Yang, C. G.; Yao, X. Y.; Ye, J. B.; Yeh, S. C.; You, J. M.; Zaccardelli, C.; Zalite, An; Zemp, P.; Zeng, J. Y.; Zeng, Y.; Zhang, Z.; Zhang, Z. P.; Zhou, B.; Zhou, G. J.; Zhou, Y.; Zhu, G. Y.; Zhu, R. Y.; Zichichi, A.; L3 Collaboration
1996-02-01
A search for supersymmetric particles (charginos, neutralinos, sleptons and stop quarks) has been performed with data collected by the L3 detector during the November 1995 run of the LEP collider at centre of mass energies between 130 and 140 GeV with a total integrated luminosity of 5.1 pb -1. We observe no signal for supersymmetric particles and we set improved exclusion limits on their production cross sections and masses.
Phenomenology of supersymmetric particle production process at the LHC
Energy Technology Data Exchange (ETDEWEB)
Trenkel, Maike Christina
2009-07-20
We study the hadronic production of strongly interacting SUSY particles in the framework of the MSSM. In particular, we consider top-squark pair, gluino. squark pair, and same sign squark-squark pair production processes. Aiming at precise theoretical predictions, we calculate the cross section contributions of electroweak origin up to the one-loop level. We find sizable effects both from tree-level electroweak subprocesses and next-to-leading order electroweak corrections, reaching the 20% level in kinematical distributions. In a second part of this thesis, we investigate the phenomenology of R-parity violating B{sub 3} SUSY models with the lightest stau ({tau}{sub 1}) being the LSP. We analyze the possible {tau}{sub 1} decay modes, taking into account the dynamical generation of non-zero R-parity violating couplings at lower scales. As an application of our studies which is interesting for experiments at particle accelators, we discuss single slepton production at the LHC and give numerical results for single smuon production. (orig.)
Search for Supersymmetric Particles with the OPAL Detector at LEP2
Kanaya, N
A search of Supersymmetric particles was performed using the data collected in 1999 and 2000 by the Opal detector at the LEP2 e+e- collider. The center-of-mass energies ranged from 192 GeV to 209 GeV, and the data analyzed correspond to an integrated luminosity of 432 pb-1. Supersymmetric models permit a large number of different experimental final states which should all be investigated. The search presented here is sensitive to final states with photons plus additional detector activity with missing energy. these topologies are characteristic of events expected in Gauge-Mediated Supersymmetry Breaking (GMSB) models. No significant evidence for their existence is observed. Finally, using various search results at centre-of-mass energy of 189 GeV, constraints on the parameters have been given within the framework of the minimal GMSB model.
Natural gauge mediation with a bino NLSP at the LHC
Barnard, James; Gherghetta, Tony; White, Martin
2012-01-01
Natural models of supersymmetry with a gravitino LSP provide distinctive signatures at the LHC. For a neutralino NLSP, sparticles can decay to two high energy photons plus missing energy. We use the ATLAS diphoton search with 4.8 fb^{-1} of data to place limits in both the stop-gluino and neutralino-chargino mass planes for this scenario. If the neutralino is heavier than 50 GeV, the lightest stop must be heavier than 580 GeV, the gluino heavier than 1100 GeV and charginos must be heavier than approximately 300-470 GeV. This provides the first nontrivial constraints in natural gauge mediation models with a neutralino NLSP decaying to photons, and implies a fine tuning of at least a few percent in such models.
Collider signatures of gravitino dark matter with a sneutrino NLSP
Energy Technology Data Exchange (ETDEWEB)
Covi, L. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kraml, S. [European Organization for Nuclear Research (CERN), Geneva (Switzerland)
2007-03-15
For gravitino dark matter with conserved R-parity and mass in the GeV range, very strong constraints from Big Bang Nucleosynthesis exclude the popular NLSP candidates like neutralino and charged sleptons. In this letter we therefore draw attention to the case of a sneutrino NLSP, that is naturally realised in the context of gaugino mediation. We find interesting collider signatures, characterised by soft jets or leptons due to the small sneutrino-stau mass splitting. Moreover, the lightest neutralino can have visible decays into staus, and in some part of the parameter space also into selectrons and smuons. We also show the importance of coannihilation effects for the evaluation of the BBN constraints. (orig.)
Searches for Supersymmetric Particles with the ATLAS Detector Using Boosted Decay Tree Topologies
AUTHOR|(INSPIRE)INSPIRE-00399438; De, Kaushik; Hadavand, Haleh; Musielak, Zdzislaw; White, Andrew
The existence of a scalar Higgs particle poses a challenge to the Standard Model through an unnatural hierarchy problem with quadratic divergence. A supersymmetric framework, proposing heavy partners to every Standard Model particle, can solve this problem by introducing new loop diagrams that involve a new fermion-boson symmetry. The LHC has the potential to probe the energy scale necessary for creation of these particles and the ATLAS experiment is poised for discovery. The detected particles are studied by reconstructing the detected events in boosted frames that approximate each decay frame of the interaction with pairs of heavy, invisible particles. This Razor method was used in the analysis of data from 2011 and 2012 and then generalized to the Recursive Jigsaw method in 2015.
Energy Technology Data Exchange (ETDEWEB)
Perez, E.
1996-06-17
The study exposed in this thesis concerns a supersymmetrical extension of the Standard Model where the R-parity (a new quantum number) is not conserved. The principle results, how this analysis can be generalised and what it is possible to get with more luminosity are detailed; then, the potential for HERA to produce others kind of supersymmetric particles is shown. (N.C.). 98 refs., 146 figs., 17 tabs.
Energy Technology Data Exchange (ETDEWEB)
Perez, E.
1996-06-17
The study exposed in this thesis concerns a supersymmetrical extension of the Standard Model where the R-parity (a new quantum number) is not conserved. The principle results, how this analysis can be generalised and what it is possible to get with more luminosity are detailed; then, the potential for HERA to produce others kind of supersymmetric particles is shown. (N.C.). 98 refs., 146 figs., 17 tabs.
Supersymmetric Dark Matter after LHC Run 1
Bagnaschi, E A; Cavanaugh, R; Citron, M; De Roeck, A; Dolan, M J; Ellis, J R; Flaecher, H; Heinemeyer, S; Isidori, G; Malik, S; Santos, D Martinez; Olive, K A; Sakurai, K; de Vries, K J; Weiglein, G
2015-01-01
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be exp...
Same-sign trileptons as a signal of sneutrino lightest supersymmetric particle
Directory of Open Access Journals (Sweden)
Arindam Chatterjee
2016-03-01
Full Text Available Contrary to common expectation, a left-sneutrino can occasionally be the lightest supersymmetric particle. This has important implications in both collider and dark matter studies. We show that same-sign tri-lepton (SS3L events at the Large Hadron Collider, with any lepton having opposite sign vetoed, distinguish such scenarios, up to gluino masses exceeding 2 TeV. The jets+MET signal rate is somewhat suppressed in this case, thus enhancing the scope of leptonic signals.
Energy Technology Data Exchange (ETDEWEB)
Mamuzic, Judita [DESY (Germany)
2011-07-01
Supersymmetric models with conserved R-parity, masses in the GeV range and G dark matter have a {chi}{sub 1}{sup 0} and a charged l as a NLSP, but can be excluded due to the strong constrains from the Big Bang Nucleosynthesis. For SUSY breaking with gaugino mediation the NLSP is the {nu} and it has viable regions where its primordial abundance satisfies the BBN constrains. Typical models of SUSY breaking with universal scalar and gaugino masses have l{sub R} lighter than the l{sub L} and {nu}. However, for models with non-universal SUSY breaking parameters at the high scale, especially for m{sub H{sub 1{sup 2}}}-m{sub H{sub 2{sup 2}}}>0, that mass order is different, and the NLSP can be {nu}. This results in cascade SUSY event with a slightly different topology, characterized by lots of soft leptons and jets and much lower turn-on of QCD production for a given center of mass energy. The benchmark analysis for 7 TeV and integrated luminosity of 1 fb{sup -1} applied on Monte Carlo data has not given a high enough significance. Therefore, optimization has been performed using Multi Variate Analyses methods (Boosted Decision Trees and Cuts method using Genetic Algorithm), which seems promising in achieving significance higher than 5 sigma.
Supersymmetric and Kaluza-Klein Particles Multiple Scattering in the Earth
Energy Technology Data Exchange (ETDEWEB)
Albuquerque, Ivone; Klein, Spencer
2009-05-19
Neutrino telescopes with cubic kilometer volume have the potential to discover new particles. Among them are next to lightest supersymmetric (NLSPs) and next to lightest Kaluza-Klein (NLKPs) particles. Two NLSPs or NLKPs will transverse the detector simultaneously producing parallel charged tracks. The track separation inside the detector can be a few hundred meters. As these particles might propagate a few thousand kilometers before reaching the detector, multiple scattering could enhance the pair separation at the detector. We find that the multiple scattering will alter the separation distribution enough to increase the number of NLKP pairs separated by more than 100 meters (a reasonable experimental cut) by up to 46% depending on the NLKP mass. Vertical upcoming NLSPs will have their separation increased by 24% due to multiple scattering.
Limits on the Masses of Supersymmetric Particles at $\\sqrt{s}$=189 GeV
Abreu, P.; Adye, T.; Adzic, P.; Azhinenko, I.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, D.Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Beilliere, P.; Belokopytov, Yu.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Bilenky, Mikhail S.; Bizouard, M.A.; Bloch, D.; Blom, H.M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bourdarios, C.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buran, T.; Buschbeck, B.; Buschmann, P.; Cabrera, S.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Shlyapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Crosetti, G.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Dolbeau, J.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.K.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Gerdyukov, L.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Gris, P.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Huber, M.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Janik, R.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovansky, N.N.; Kiiskinen, A.; King, B.J.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostyukhin, V.; Kourkoumelis, C.; Kuznetsov, O.; Krammer, M.; Kriznic, E.; Krumshtein, Z.; Kubinec, P.; Kurowska, J.; Kurvinen, K.; Lamsa, J.W.; Lane, D.W.; Laugier, J.P.; Lauhakangas, R.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Lorstad, B.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjornmark, U.; Moa, T.; Moch, M.; Moller, Rasmus; Monig, Klaus; Monge, M.R.; Moraes, D.; Morettini, P.; Morton, G.; Muller, U.; Munich, K.; Mulders, M.; Mulet-Marquis, C.; Mundim, L.M.; Muresan, R.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Naraghi, F.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Neufeld, N.; Nicolaidou, R.; Nielsen, B.S.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.F.; Olshevsky, A.G.; Onofre, A.; Orava, R.; Orazi, G.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Pavel, T.; Pegoraro, M.; Peralta, L.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdnyakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Rames, J.; Ratoff, P.N.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinertsen, P.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Yu.; Segar, A.M.; Seibert, N.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassoff, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkachev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Transtromer, G.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Dam, Piet; Van Den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; Van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zinchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.
2000-01-01
Searches for charginos, neutralinos and sleptons at LEP2 centre-of-mass energies from 130 GeV to 189 GeV have been used to set lower limits on the mass of the Lightest Supersymmetric Particle and other supersymmetric particles within the MSSM framework. R-parity conservation has been assumed. The lightest neutralino was found to be heavier than 32.3~\\mbox{$ {\\mathrm{GeV}}/c^2$} independent of the $m_0$ value. The lightest chargino, the second-to-lightest neutralino, the next-to-heaviest neutralino, the heaviest neutralino, the sneutrino and the right-handed selectron %{\\mbox{$ {\\tilde{\\mathrm e}_R} $}} were found to be heavier than 62.4~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 62.4~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 99.9~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 116.0~\\mbox{$ {\\mathrm{GeV}}/c^2$}, 61.0~\\mbox{$ {\\mathrm{GeV}}/c^2$}, and 87.0 GeV=c$^{2}$ , respectively. These limits do not depend on m0 or M2 and are valid for 1 $\\le tan\\beta \\le 40$, in the $\\mu$ region where the lightest neutralino is the LSP. If the sneutrino is heavier...
Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory
Bergner, Georg; Münster, Gernot; Özugurel, Umut D; Sandbrink, Dirk
2013-01-01
We present the current results of our simulations of N=1 supersymmetric Yang-Mills theory on a lattice. The masses of the gluino-glue particle, the a-eta-prime, the a-f0 meson, and the scalar glueball are obtained at finer lattice spacing than before, and extrapolations towards vanishing gluino mass are made. The calculations employ different levels of stout smearing. The statistical accuracy as well as the control of finite size effects and lattice artefacts are better than in previous investigations. Taking the statistical and systematic uncertainties into account, the extrapolations towards vanishing gluino mass of the masses of the fermionic and bosonic states in our present calculations are consistent with the formation of degenerate supermultiplets.
Towards the spectrum of low-lying particles in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Bergner, G. [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Montvay, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Muenster, G.; Oezugurel, U.D.; Sandbrink, D. [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1
2013-04-15
We present the current results of our simulations of N=1 supersymmetric Yang-Mills theory on a lattice. The masses of the gluino-glue particle, the a-{eta}', the a-f{sub 0} meson, and the scalar glueball are obtained at finer lattice spacing than before, and extrapolations towards vanishing gluino mass are made. The calculations employ different levels of stout smearing. The statistical accuracy as well as the control of finite size effects and lattice artefacts are better than in previous investigations. Taking the statistical and systematic uncertainties into account, the extrapolations towards vanishing gluino mass of the masses of the fermionic and bosonic states in our present calculations are consistent with the formation of degenerate supermultiplets.
Lopes, Ilídio P; Silk, Joseph
2002-04-15
SNO measurements strongly constrain the central temperature of the Sun, to within a precision of much less than 1%. This result can be used to probe the parameter space of supersymmetric dark matter. In this first analysis we find a lower limit for the weakly interacting massive particle (WIMP) mass of 60 GeV. Furthermore, in the event that WIMPs create a quasi-isothermal core, they will produce a peculiar distribution of the solar neutrino fluxes measured on Earth. Typically, a WIMP with a mass of 100 GeV and annihilation cross section of 10(-34) cm(3)/sec will decrease the neutrino predictions, by up to 4% for the Cl, by 3% for the heavy water, and by 1% for the Ga detectors.
Applications of SCET to the pair production of supersymmetric particles at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Broggio, Alessandro
2013-02-04
In this thesis we investigate the phenomenology of supersymmetric particles at hadron colliders beyond next-to-leading order (NLO) in perturbation theory. We discuss the foundations of Soft-Collinear Effective Theory (SCET) and, in particular, we explicitly construct the SCET Lagrangian for QCD. As an example, we discuss factorization and resummation for the Drell-Yan process in SCET. We use techniques from SCET to improve existing calculations of the production cross sections for slepton-pair production and top-squark-pair production at hadron colliders. As a first application, we implement soft-gluon resummation at next-to-next-to-next-to-leading logarithmic order (NNNLL) for slepton-pair production in the minimal supersymmetric extension of the Standard Model (MSSM). This approach resums large logarithmic corrections arising from the dynamical enhancement of the partonic threshold region caused by steeply falling parton luminosities. We evaluate the resummed invariant-mass distribution and total cross section for slepton-pair production at the Tevatron and LHC and we match these results, in the threshold region, onto NLO fixed-order calculations. As a second application we present the most precise predictions available for top-squark-pair production total cross sections at the LHC. These results are based on approximate NNLO formulas in fixed-order perturbation theory, which completely determine the coefficients multiplying the singular plus distributions. The analysis of the threshold region is carried out in pair invariant mass (PIM) kinematics and in single-particle inclusive (1PI) kinematics. We then match our results in the threshold region onto the exact fixed-order NLO results and perform a detailed numerical analysis of the total cross section.
Shell-model study on event rates of lightest supersymmetric particles scattering off 83Kr and 125Te
Pirinen, P.; Srivastava, P. C.; Suhonen, J.; Kortelainen, M.
2016-05-01
We investigate the elastic and inelastic scattering of lightest supersymmetric particle (LSP) dark matter off two possible target nuclei, 83Kr and 125Te. For the nuclear-structure calculations, we employ the nuclear shell model using recently generated realistic interactions. We have condensed the nuclear-physics contribution to a set of nuclear-structure factors that are independent of the adopted supersymmetric (SUSY) model. Total event rates are then easily calculated by combining the nuclear-structure factors with SUSY parameters of choice. In particular, 125Te shows promise as a detector material with both the elastic and inelastic channels yielding an appreciable nuclear response.
Search for Higgs Bosons and Supersymmetric Particles in Tau Final States
Energy Technology Data Exchange (ETDEWEB)
Torchiani, Ingo [Univ. of Freiburg (Germany)
2008-09-01
Supersymmetry, which provides elegant solutions to the named problems by introducing a supersymmetric partner to each Standard Model particle. The superpartners of the matter particles are called squarks and sleptons, while the superpartners of the interaction particles are called gauginos. The mass eigenstates of the gauginos are referred to as charginos and neutralinos, according to their electric charge. Since the predicted supersymmetric particles have not yet been observed, Supersymmetry, if it exists in nature, has to be broken in such a way that the masses of Standard Model particles and of their superpartners differ. During the last decades, the energies accessible to experiments has steadily increased. The Tevatron Accelerator at the Fermi National Accelerator Laboratory, with the two multipurpose experiments D0 and CDF, provides currently the highest center-of-mass energy ever reached in experiments using collisions of protons and antiprotons (√s = 1.96 TeV). The study of the particle collisions allows probing of predictions of the Standard Model and its extensions, e.g. Supersymmetry.
Rammensee, Michael
The Standard Model of particle physics (SM) is very successful in describing elementary particles and their interactions. The recent discovery of a new boson at the LHC continues this successful story as it is compatible with the last undiscovered particle in the SM, the Higgs boson. However, the SM has limitations such as the hierarchy problem or the missing dark matter candidate. One of the extensions to the SM includes a new space-time symmetry, called Supersymmetry (SUSY), resulting in a symmetry between fermions and bosons. In most phenomenological SUSY models the production of supersymmetric particles at the LHC is dominated by squark-squark, squark-anti-squark, squark-gluino and gluino-gluino pair production. Squarks are the super-partners to quarks and gluinos the super-partners to the gluons. These particles decay subsequently into the lightest supersymmetric particle which does not interact with detector material. Thus the striking signature for such a pair production of supersymmetric particles in ...
Abdallah, J.; Adam, W.; Adzic, P.; Albrecht, T.; Alderweireld, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P.P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, Nuno Filipe; Cavallo, F.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S.U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M.J.; Crawley, B.; Crennell, D.; Cuevas, J.; D'Hondt, J.; Dalmau, J.; da Silva, T.; Da Silva, W.; Della Ricca, G.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Maria, N.; De Min, A.; de Paula, L.; Di Ciaccio, L.; Di Simone, A.; Doroba, K.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, P.; Gazis, Evangelos; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Hansen, J.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Herr, H.; Hoffman, J.; Holmgren, S.O.; Holt, P.J.; Houlden, M.A.; Hultqvist, K.; Jackson, John Neil; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, Erik Karl; Johansson, P.D.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, Frederic; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B.P.; Kiiskinen, A.; King, B.T.; Kjaer, N.J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J.H.; Lopez, J.M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; McNulty, R.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J.P.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Rames, J.; Ramler, L.; Read, Alexander L.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Rosenberg, E.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Savoy-Navarro, A.; Schwickerath, U.; Segar, A.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Taffard, A.C.; Tegenfeldt, F.; Timmermans, Jan; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; Van Dam, Piet; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verbeure, F.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimine, N.I.; Zintchenko, A.; Zupan, M.
2004-01-01
DELPHI data collected at centre-of-mass energies up to 208 GeV have been analysed to search for charginos, neutralinos and sfermions in the framework of the Minimal Supersymmetric Standard Model (MSSM) with R-parity conservation. No evidence for a signal was found in any of the channels. The results of each search were used to derive limits on production cross-sections and particle masses. In addition, the combined result of all searches excludes regions in the parameter space of the constrained MSSM, leading to limits on the mass of the Lightest Supersymmetric Particle and other supersymmetric particles.
Higgs and supersymmetric particle signals at the infrared fixed point of the top quark mass
Carena, M S
1995-01-01
We study the properties of the Higgs and supersymmetric particle spectrum associated with the infrared fixed point solution of the top quark mass in the MSSM. We concentrate on the possible detection of these particles, analysing the deviations from the Standard Model predictions for the leptonic and hadronic variables measured at LEP and for the decay rate b\\rightarrow s\\gamma. We consider the low and moderate \\tan \\beta regime, and we study both, the cases of universal and non--universal soft supersymmetry breaking parameters at high energies. In the first case, for any given value of the top quark mass, the Higgs and sparticle spectra are completely determined as a function of two soft supersymmetry breaking parameters. In the case of non--universality, instead, the strong correlations between the sparticle masses are relaxed, allowing a richer structure for the precision data variables. We show, however, that the requirement that the low energy theory proceeds from a grand unified theory with a local symm...
Supersymmetric dark matter after LHC run 1
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.A. [DESY Hamburg (Germany); Buchmueller, O. [Imperial College, London (United Kingdom). Blackett Laboratory; Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Illinois Univ., Chicago, IL (United States). Physics Dept.; and others
2015-08-15
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ{sup 0}{sub 1}, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau τ{sub 1}, stop t{sub 1} or chargino χ{sup ±}{sub 1}, resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ{sub 1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E{sub T} events and long-lived charged particles, whereas their H/A funnel, focus-point and χ{sup ±}{sub 1} coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is χ{sup ±}{sub 1} coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.
Gluino NLSP, Dark Matter via Gluino Coannihilation, and LHC Signatures
Feldman, Daniel; Nath, Pran
2009-01-01
The possibility that the gluino is the next to the lightest supersymmetric particle (GNLSP) is discussed and it is shown that such models are realized in the context of nonuniversal SUGRA within a significant part of the parameter space under all known experimental bounds. It is then shown that the GNLSP models lead to a compressed sfermion spectrum with the sleptons often heavier than the squarks at least for the first two generations. The relic density here is governed by gluino coannihilation implying a near degeneracy of the gluino and neutralino masses. Thus the GNLSP class of models is very predictive first because the SUSY production cross sections at the LHC are dominated by gluino production and second because the gluino production itself proceeds dominantly through a single channel which allows for a direct determination of the gluino mass and an indirect determination of the neutralino mass due to the near degeneracy. A detailed analysis of these models shows that the jet production and tagged b-je...
The gluino-glue particle and relevant scales for the simulations of supersymmetric Yang-Mills theory
Bergner, Georg; Münster, Gernot; Sandbrink, Dirk; Özugurel, Umut D
2012-01-01
Supersymmetric Yang-Mills theory is in several respects different from QCD and pure Yang-Mills theory. Therefore, a reinvestigation of the scales, at which finite size effects and lattice artifacts become relevant, is necessary. Both, finite size effects and lattice artifacts, induce a breaking of supersymmetry. In view of the unexpected mass gap between bosonic and fermionic particles an estimation of these effects is essential.
Lagrangian higher spin field theories from the O(N) extended supersymmetric particle
Marnelius, Robert
2009-01-01
The wave function in the quantum theory of the O(N) extended supersymmetric particle model describes a massless free field with spin N/2. This quantum theory is here exactly solved in terms of gauge fields in arbitrary even dimensions using only the basic quantum operators which include graded external differentials, trace operators, index structure operators and their duals. The resulting equations for the gauge fields are of first (N odd) or second order (N even) and are shown to be generalized (Fang)-Fronsdal equations which are fully gauge invariant since they include compensator fields in a natural way. Local gauge invariant actions are first derived in analogy with the derivation by Francia and Sagnotti in the symmetric case. Then a minimal formulation is given within which it is easy to set up gauge invariant actions and here appropriate actions for the above equations are proposed. In a second part it is shown that there exist projection operators from the states of the field strengths (wave functions...
Are supersymmetric models with minimal particle content under tension for testing at LHC?
Samanta, Abhijit; Mandal, Sujoy Kumar; Manna, Himadri
2016-12-01
In supersymmetric models with minimal particle content and without large left-right squarks mixing, the conventional knowledge is that the Higgs Boson mass around 125 GeV leads to top squark masses O (10) TeV, far beyond the reach of colliders. Here, we pointed out that this conclusion is subject to several theoretical uncertainties. We find that electroweak symmetry breaking and evaluation of Higgs mass at a scale far away from the true electroweak symmetry breaking scale introduce a large uncertainty in Higgs mass calculation. We show that the electroweak symmetry breaking at the scale near the true vacuum expectation value of Higgs field can increase the Higgs Boson mass about 4-5 GeV and can lower the bounds on squarks and slepton masses to 1 TeV. Here we pointed out that the Higgs mass even with inclusion of radiative corrections can vary with electroweak symmetry breaking scale. We calculate it at two loop level and show that it varies substantially. We argue that Higgs mass like other coupling parameters can vary with energy scale and the Higgs potential with all orders loop corrections is scale invariant. This uncertainty to the Higgs mass calculation due to electroweak symmetry breaking around the supersymmetry breaking scale, normally taken as √{mt˜Lmt˜R }, to minimize the 1-loop radiative corrections can be removed if one considers all significant radiative contributions to make Higgs potential renormalization group evolution scale invariant and evaluates electroweak symmetry breaking at the scale near the electroweak symmetry breaking scale. A large parameter space becomes allowed when one considers electroweak symmetry breaking at its true scale not only for producing correct values of the Higgs masses, but also for providing successful breaking of this symmetry in more parameter spaces.
Energy Technology Data Exchange (ETDEWEB)
Grab, Sebastian
2009-08-15
The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background
Marjanovic, Marija; Vranjes Milosavljevic
This thesis has been performed in the context of the search for supersymmetry (SUSY) with the 20.3 fb^{-1} of LHC proton-proton collision data collected with the ATLAS detector at sqrts = 8 TeV. If SUSY is present in nature, squarks (partners of quarks) and gluinos (partners of gluons) are expected to be produced copiously at this energy, leading to events which main signature is no electron nor muon, a large number of jets and missing transverse energy (from the production of the lightest supersymmetric particle (LSP) leaving the detector unseen) denoted the 0-lepton analysis. The first part of the work presented in this thesis concentrates on the definition of Validation Regions used in the final fitting procedure to better assess the background coming from W-boson and top quark decays to tau leptons. From this fit, and since no excess has been observed, upper limits on various supersymmetric particles production have been derived within simplified models or SUSY models with low number of parameters. The ex...
Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, L; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, B P; Kerzel, U; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L; Murray, W; Muryn, B; Myatt, G; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, R; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Roudeau, P; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Sander, C; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I; Vegni, G; Veloso, F; Venus, W A; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, P; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zintchenko, A; Zupan, M
2004-01-01
Searches for pair-production of supersymmetric particles under the assumption of non-conservation of R-parity with a dominant LLEbar or UbarDbarDbar term have been performed using the data collected by the DELPHI experiment at LEP in e+e- collisions at centre-of-mass energies from 192 up to 208 GeV. No excess of data above Standard Model expectations was observed. The results were used to constrain the MSSM parameter space and to derive limits on the masses of supersymmetric particles.
Wittkowski, Josephine
Three analyses searching for electroweakly produced supersymmetric particles in proton-proton collisions are presented. The collisions were recorded by the ATLAS experiment at the Large Hadron Collider. Two leptons (electrons or muons), jets and missing transverse energy are expected in the final states. Simplified models as well as the phenomenological Minimal Supersymmetric Standard Model (pMSSM) are used to study the production and decay of pairs of gauginos, i.e. charginos and neutralinos. The first analysis is performed with an integrated luminosity of 4.7 fb^-1 of ATLAS data, recorded in 2011 at a centre-of-mass energy of sqrt(s) = 7 TeV. Direct slepton production and three scenarios in which pairs of gauginos decay via intermediate sleptons are addressed. Particular attention is paid to the trigger strategy. No excess is observed in the number of data events. In the simplified model that assumes the direct slepton production, left-handed slepton masses between 85 and 195 GeV are excluded at 95% confide...
A Search for Long-Lived, Charged, Supersymmetric Particles using Ionization with the ATLAS Detector
AUTHOR|(INSPIRE)INSPIRE-00379148
Several extensions of the Standard Model predict the existence of charged, very massive, and long-lived particles. Because of their high masses these particles would propagate non-relativistically through the ATLAS pixel detector and would therefore be identifiable through a measurement of large specific energy loss. Measuring heavy, long-lived particles through their track parameters in the pixel detector allows sensitivity to particles with lifetimes in the nanosecond range and above. This dissertation presents an inner detector driven method for identifying such particles in proton-proton collisions at 13 TeV with the 2015 LHC dataset corresponding to an integrated luminosity of 3.5 pb−1.
Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models
Nagata, Natsumi; Zheng, Jiaming
2015-01-01
Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting DM candidates in terms of their quantum numbers of $\\text{SU}(2)_L \\otimes \\text{U}(1)_Y$, $B-L$, and $\\text{SU}(2)_R$. We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2)$_L$ singlets with zero hypercharge or doublets with $Y=1/2$ satisfy all constraints for $\\text{SU}(4)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R$ and $\\text{SU}(3)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$ intermediate scale gauge groups. Among fermion triplets with zero hypercharge, o...
Buchmüller, O L; de Roeck, A; Ellis, Jonathan Richard; Flächer, H; Heinemeyer, S; Isidori, G; Olive, K A; Paradisi, P; Ronga, F J; Weiglein, G
2008-01-01
In view of the imminent start of the LHC experimental programme, we use the available indirect experimental and cosmological information to estimate the likely range of parameters of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), using a Markov-chain Monte Carlo (MCMC) technique to sample the parameter space. The 95% confidence-level area in the (m_0, m_1/2) plane of the CMSSM lies largely within the region that could be explored with 1/fb of integrated luminosity at 14 TeV, and much of the 68% confidence-level area lies within the region that could be explored with 50/pb of integrated luminosity at 10 TeV. A same-sign dilepton signal could well be visible in most of the 68% confidence-level area with 1/fb of integrated luminosity at 14 TeV. We discuss the sensitivities of the preferred ranges to variations in the most relevant indirect experimental and cosmological constraints and also to deviations from the universality of the supersymmetry-breaking contributions to the mass...
A minimal supersymmetric model of particle physics and the early universe
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS
2013-11-15
We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.
Institute of Scientific and Technical Information of China (English)
JIA Wen-Zhi; WANG Shun-Jin
2008-01-01
We find that in a supersymmetric quantum mechanics (SUSY QM) system, in addition to supersymmetric algebra, an associated SU(2) algebra can be obtained by using semiunitary (SUT) operator and projection operator, and the relevant constants of motion can be constructed. Two typical quantum systems are investigated as examples to demonstrate the above finding. The first example is the quantum system of a nonrelativistic charged particle moving in x-y plane and coupled to a magnetic field along z-axis. The second example is provided with the Dirac particle in a magnetic field. Similarly there exists an SUτ(2) SUσ(2) symmetry in the context of the relativistic Pauli Hamiltonian squared. We show that there exists also an SU(2) symmetry associated with the supersymmetry of the Dirac particle.
Gravitino and scalar {tau}-lepton decays in supersymmetric models with broken R-parity
Energy Technology Data Exchange (ETDEWEB)
Hajer, Jan
2010-06-15
Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1){sub Q} flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar {tau}-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar {tau}-leptons in collider experiments. (orig.)
Search of supersymmetric particles in multi-jet events with missing energy
Reisin Carretero, Hernan Diego
Many extensions of the Standard Model (SM) of particle physics predict the existence of TeV-scale strongly interacting particles that decay to weakly interacting descendants. Among them, Supersymmetry (Susy) is one of the most studied and a leading candidate theory for describing physics beyond SM since provides a consistent explanation to several theoretical concerns like the hierarchy problem of the SM. In the context of this theory, the strongly interacting parent particles are the partners of the quarks (squarks, q~) and gluons (gluinos, g~). If they are kinematically accessible, the squarks and gluinos could be produced in the proton-proton (pp) interactions at the Large Hadron Collider (LHC). This thesis presents the results of the search for new particles decaying to final states with large numbers (from at least 7 to at least 10) of jets together with significant missing transverse momentum and no isolated electrons or muons. The analysis is performed with a total integrated luminosity corresponding t...
Mutter, Andreas
2004-01-01
Of all the data of the years 1998 to 2000 taken with the OPAL detector at the e+e-- collider LEP at CERN, final states with jets and leptons have been analysed. A search for decays of new particles postulated by supersymmetric extensions of the standard model of particle physics has been performed. Only decays violating the quantum number R-parity (Rp) that is introduced in supersymmetric models have been investigated. The violation of Rp leads to experimental signatures that are in general completely different from those in the Rp conserving case. If Rp is violated, processes that lead to a rapid decay of the proton might be possible. In order to avoid such processes, in most investigations Rp is assumed to be conserved. However, there is no theoretically compelling reason for this assumption. Therefore, the possibility of R-parity violation should also be considered.
Search for supersymmetric particles in e+e- collisions at centre-of-mass energies of 130 and 136 GeV
Buskulic, Damir; Décamp, D; Ghez, P; Goy, C; Lees, J P; Lucotte, A; Minard, M N; Odier, P; Pietrzyk, B; Chmeissani, M; Crespo, J M; Delfino, M C; Efthymiopoulos, I; Fernández, E; Fernández-Bosman, M; Garrido, L; Juste, A; Martínez, M; Orteu, S; Pacheco, A; Padilla, C; Pascual, A; Perlas, J A; Riu, I; Sánchez, F; Teubert, F; Colaleo, A; Creanza, D; De Palma, M; Gelao, G; Girone, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Marinelli, N; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Alemany, R; Bazarko, A O; Cattaneo, M; Comas, P; Coyle, P; Drevermann, H; Forty, Roger W; Frank, M; Hagelberg, R; Harvey, J; Janot, P; Jost, B; Kneringer, E; Knobloch, J; Lehraus, Ivan; Martin, E B; Mato, P; Minten, Adolf G; Miquel, R; Mir, L M; Moneta, L; Oest, T; Palla, Fabrizio; Pusztaszeri, J F; Ranjard, F; Rensing, P E; Rolandi, Luigi; Schlatter, W D; Schmelling, M; Schneider, O; Tejessy, W; Tomalin, I R; Venturi, A; Wachsmuth, H W; Wagner, A; Ajaltouni, Ziad J; Barrès, A; Boyer, C; Falvard, A; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Proriol, J; Rossignol, J M; Fearnley, Tom; Hansen, J B; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Wäänänen, A; Kyriakis, A; Markou, C; Simopoulou, Errietta; Siotis, I; Vayaki, Anna; Zachariadou, K; Blondel, A; Brient, J C; Rougé, A; Rumpf, M; Valassi, Andrea; Videau, H L; Candlin, D J; Parsons, M I; Focardi, E; Parrini, G; Corden, M; Georgiopoulos, C H; Jaffe, D E; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Casper, David William; Chiarella, V; Felici, G; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Curtis, L; Dorris, S J; Halley, A W; Knowles, I G; Lynch, J G; O'Shea, V; Raine, C; Reeves, P; Scarr, J M; Smith, K; Thompson, A S; Thomson, F; Thorn, S; Turnbull, R M; Becker, U; Geweniger, C; Graefe, G; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Rensch, B; Schmidt, M; Sommer, J; Stenzel, H; Tittel, K; Werner, S; Wunsch, M; Abbaneo, D; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Moutoussi, A; Nash, J; Sedgbeer, J K; Stacey, A M; Williams, M D; Dissertori, G; Girtler, P; Kuhn, D; Rudolph, G; Betteridge, A P; Bowdery, C K; Colrain, P; Crawford, G; Finch, A J; Foster, F; Hughes, G; Sloan, Terence; Williams, M I; Galla, A; Greene, A M; Hoffmann, C; Kleinknecht, K; Quast, G; Renk, B; Rohne, E; Sander, H G; Van Gemmeren, P; Zeitnitz, C; Aubert, Jean-Jacques; Bencheikh, A M; Benchouk, C; Bonissent, A; Bujosa, G; Calvet, D; Carr, J; Diaconu, C A; Konstantinidis, N P; Payre, P; Rousseau, D; Talby, M; Sadouki, A; Thulasidas, M; Tilquin, A; Trabelsi, K; Abt, I; Assmann, R W; Bauer, C; Blum, Walter; Dietl, H; Dydak, Friedrich; Ganis, G; Gotzhein, C; Jakobs, K; Kroha, H; Lütjens, G; Lutz, Gerhard; Männer, W; Moser, H G; Richter, R H; Rosado-Schlosser, A; Schael, S; Settles, Ronald; Seywerd, H C J; Saint-Denis, R; Wiedenmann, W; Wolf, G; Boucrot, J; Callot, O; Cordier, A; Davier, M; Duflot, L; Grivaz, J F; Höcker, A; Jacquet, M; Kim, D W; Le Diberder, F R; Lefrançois, J; Lutz, A M; Nikolic, I A; Park, H J; Park, I C; Schune, M H; Simion, S; Veillet, J J; Videau, I; Zerwas, D; Azzurri, P; Bagliesi, G; Batignani, G; Bettarini, S; Bozzi, C; Calderini, G; Carpinelli, M; Ciocci, M A; Ciulli, V; Dell'Orso, R; Fantechi, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Rizzo, G; Sanguinetti, G; Sciabà, A; Spagnolo, P; Steinberger, Jack; Tenchini, Roberto; Tonelli, G; Vannini, C; Verdini, P G; Walsh, J; Blair, G A; Bryant, L M; Cerutti, F; Chambers, J T; Gao, Y; Green, M G; Medcalf, T; Perrodo, P; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Haywood, S; Maley, P; Norton, P R; Thompson, J C; Wright, A E; Bloch-Devaux, B; Colas, P; Emery, S; Kozanecki, Witold; Lançon, E; Lemaire, M C; Locci, E; Marx, B; Pérez, P; Rander, J; Renardy, J F; Roussarie, A; Schuller, J P; Schwindling, J; Trabelsi, A; Vallage, B; Black, S N; Dann, J H; Johnson, R P; Kim, H Y; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Boswell, R; Brew, C A J; Cartwright, S L; Combley, F; Köksal, A; Letho, M; Newton, W M; Reeve, J; Thompson, L F; Böhrer, A; Brandt, S; Büscher, V; Cowan, G D; Grupen, Claus; Lutters, G; Saraiva, P; Smolik, L; Stephan, F; Aleppo, M; Apollonio, M; Bosisio, L; Della Marina, R; Giannini, G; Gobbo, B; Musolino, G; Ragusa, F; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Bellantoni, L; Elmer, P; Feng, Z; Ferguson, D P S; Gao, Y S; González, S; Grahl, J; Greening, T C; Harton, J L; Hayes, O J; Hu, H; McNamara, P A; Nachtman, J M; Orejudos, W; Pan, Y B; Saadi, Y; Schmitt, M; Scott, I J; Sharma, V; Turk, J; Walsh, A M; Wu Sau Lan; Wu, X; Yamartino, J M; Zheng, M; Zobernig, G
1996-01-01
Search for supersymmetric particles in e+e- collisions at centre-of-mass energies of 130 and 136 GeV. Searches for supersymmetric particles produced in e+e- collisions at centre-of-mass energies of 130 and 136 GeV have been performed in a data sample of 5.7 pb-1 collected in the autumn of 1995 by the ALEPH detector at LEP. No candidate events were found, allowing limits to be set on the masses and production cross-sections of scalar leptons, scalar tops charginos and neutralinos. The domains previously excluded at LEP1 are substantially extended. For instance, masses of gaugino-like charginos smaller than 67.8 GeV/c2 are excluded at the 95% C.L. for scalar neutrino masses larger than 200 GeV/c2.
Koehn, Michael
2015-01-01
In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.
Supersymmetric quantum mechanics and paraquantization
Energy Technology Data Exchange (ETDEWEB)
Morchedi, O.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
The paraquantum Hamiltonian of a free particle is shown to be supersymmetric. Depending on the space-time dimension, the corresponding N=1 and N=2 supercharges are constructed and the related Hamiltonians are derived.
Probing the Supersymmetric Inflaton and Dark Matter link via the CMB, LHC and XENON1T experiments
hm, Céline Bœ; Mazumdar, Anupam; Pukartas, Ernestas
2012-01-01
The primordial inflation dilutes all matter except the quantum fluctuations which we see in the cosmic microwave background (CMB) radiation. Therefore the last phases of inflation must be embedded within a beyond the Standard Model (SM) sector where the inflaton can directly excite the SM quarks and leptons. In this paper we consider two inflaton candidates LLe and udd whose decay can naturally excite all the relevant degrees of freedom besides thermalizing the lightest supersymmetric particle (LSP) during and after reheating. In particular, we present the regions of the parameter space which can yield successful inflation with the right temperature anisotropy in the CMB, the observed relic density for the neutralino LSP, and the recent Higgs mass constraints from LHC within the MSSM with non-universal Higgs masses -- referred to as the NUHM2 model. We found that in most scenarios, the LSP seems strongly mass degenerated with the next to lightest LSP (NLSP) and the branching ratio B_s -> mu^+ mu^- very close ...
Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G.P.; Passalacqua, L.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.
2003-01-01
Searches for the pair production of supersymmetric particles under the assumption that R-parity is violated via a single dominant LLEbar, LQDbar or UbarDbarDbar coupling are performed using the data collected by the ALEPH detector at LEP at centre-of-mass energies from 189 to 209Gev. The numbers of observed candidate events in the data are in agreement with the Standard Model expectation, and limits on the production cross sections and on the masses of charginos, sleptons, squarks and sneutrinos are derived.
Barate, R; Ghez, P; Goy, C; Jézéquel, S; Lees, J P; Martin, F; Merle, E; Minard, M N; Pietrzyk, B; Przysiezniak, H; Alemany, R; Casado, M P; Chmeissani, M; Crespo, J M; Fernández, E; Fernández-Bosman, M; Garrido, L; Graugès-Pous, E; Juste, A; Martínez, M; Merino, G; Miquel, R; Mir, L M; Morawitz, P; Pacheco, A; Park, I C; Riu, I; Colaleo, A; Creanza, D; De Palma, M; Iaselli, Giuseppe; Maggi, G; Maggi, M; Nuzzo, S; Ranieri, A; Raso, G; Ruggieri, F; Selvaggi, G; Silvestris, L; Tempesta, P; Tricomi, A; Zito, G; Huang, X; Lin, J; Ouyang, Q; Wang, T; Xie, Y; Xu, R; Xue, S; Zhang, J; Zhang, L; Zhao, W; Abbaneo, D; Becker, U; Boix, G; Cattaneo, M; Cerutti, F; Ciulli, V; Dissertori, G; Drevermann, H; Forty, Roger W; Frank, M; Gianotti, F; Greening, T C; Halley, A W; Hansen, J B; Harvey, J; Janot, P; Jost, B; Lehraus, Ivan; Leroy, O; Loomis, C; Maley, P; Mato, P; Minten, Adolf G; Moutoussi, A; Ranjard, F; Rolandi, Luigi; Schlatter, W D; Schmitt, M; Schneider, O; Spagnolo, P; Tejessy, W; Teubert, F; Tomalin, I R; Tournefier, E; Wright, A E; Ajaltouni, Ziad J; Badaud, F; Chazelle, G; Deschamps, O; Dessagne, S; Falvard, A; Ferdi, C; Gay, P; Guicheney, C; Henrard, P; Jousset, J; Michel, B; Monteil, S; Montret, J C; Pallin, D; Perret, P; Podlyski, F; Hansen, J D; Hansen, J R; Hansen, P H; Nilsson, B S; Rensch, B; Wäänänen, A; Daskalakis, G; Kyriakis, A; Markou, C; Simopoulou, Errietta; Vayaki, Anna; Blondel, A; Brient, J C; Machefert, F P; Rougé, A; Swynghedauw, M; Tanaka, R; Valassi, Andrea; Videau, H L; Focardi, E; Parrini, G; Zachariadou, K; Cavanaugh, R J; Corden, M; Georgiopoulos, C H; Antonelli, A; Bencivenni, G; Bologna, G; Bossi, F; Campana, P; Capon, G; Chiarella, V; Laurelli, P; Mannocchi, G; Murtas, F; Murtas, G P; Passalacqua, L; Pepé-Altarelli, M; Chalmers, M; Curtis, L; Lynch, J G; Negus, P; O'Shea, V; Räven, B; Raine, C; Smith, D; Teixeira-Dias, P; Thompson, A S; Ward, J J; Buchmüller, O L; Dhamotharan, S; Geweniger, C; Hanke, P; Hansper, G; Hepp, V; Kluge, E E; Putzer, A; Sommer, J; Tittel, K; Werner, S; Wunsch, M; Beuselinck, R; Binnie, David M; Cameron, W; Dornan, Peter J; Girone, M; Goodsir, S M; Marinelli, N; Martin, E B; Nash, J; Nowell, J; Sciabà, A; Sedgbeer, J K; Thomson, E; Williams, M D; Ghete, V M; Girtler, P; Kneringer, E; Kuhn, D; Rudolph, G; Bowdery, C K; Buck, P G; Ellis, G; Finch, A J; Foster, F; Hughes, G; Jones, R W L; Robertson, N A; Smizanska, M; Williams, M I; Giehl, I; Hölldorfer, F; Jakobs, K; Kleinknecht, K; Kröcker, M; Müller, A S; Nürnberger, H A; Quast, G; Renk, B; Rohne, E; Sander, H G; Schmeling, S; Wachsmuth, H W; Zeitnitz, C; Ziegler, T; Aubert, Jean-Jacques; Benchouk, C; Bonissent, A; Carr, J; Coyle, P; Ealet, A; Fouchez, D; Motsch, F; Payre, P; Rousseau, D; Talby, M; Thulasidas, M; Tilquin, A; Aleppo, M; Antonelli, M; Ragusa, F; Büscher, V; Dietl, H; Ganis, G; Hüttmann, K; Lütjens, G; Mannert, C; Männer, W; Moser, H G; Schael, S; Settles, Ronald; Seywerd, H C J; Stenzel, H; Wiedenmann, W; Wolf, G; Azzurri, P; Boucrot, J; Callot, O; Chen, S; Davier, M; Duflot, L; Grivaz, J F; Heusse, P; Jacholkowska, A; Kado, M; Lefrançois, J; Serin, L; Veillet, J J; Videau, I; De Vivie de Régie, J B; Zerwas, D; Bagliesi, G; Bettarini, S; Boccali, T; Bozzi, C; Calderini, G; Dell'Orso, R; Ferrante, I; Giassi, A; Gregorio, A; Ligabue, F; Lusiani, A; Marrocchesi, P S; Messineo, A; Palla, Fabrizio; Rizzo, G; Sanguinetti, G; Sguazzoni, G; Tenchini, Roberto; Vannini, C; Venturi, A; Verdini, P G; Blair, G A; Coles, J; Cowan, G D; Green, M G; Hutchcroft, D E; Jones, L T; Medcalf, T; Strong, J A; Von Wimmersperg-Töller, J H; Botterill, David R; Clifft, R W; Edgecock, T R; Norton, P R; Thompson, J C; Bloch-Devaux, B; Colas, P; Fabbro, B; Lançon, E; Lemaire, M C; Locci, E; Pérez, P; Rander, J; Renardy, J F; Rosowsky, A; Trabelsi, A; Tuchming, B; Vallage, B; Black, S N; Dann, J H; Kim, H Y; Konstantinidis, N P; Litke, A M; McNeil, M A; Taylor, G; Booth, C N; Cartwright, S L; Combley, F; Hodgson, P N; Kelly, M S; Lehto, M H; Thompson, L F; Affholderbach, K; Böhrer, A; Brandt, S; Grupen, Claus; Hess, J; Misiejuk, A; Prange, G; Sieler, U; Giannini, G; Gobbo, B; Pütz, J; Rothberg, J E; Wasserbaech, S R; Williams, R W; Armstrong, S R; Elmer, P; Ferguson, D P S; Gao, Y; González, S; Hayes, O J; Hu, H; Jin, S; McNamara, P A; Nielsen, J; Orejudos, W; Pan, Y B; Saadi, Y; Scott, I J; Walsh, J; Wu Sau Lan; Wu, X; Zobernig, G
2000-01-01
Searches for pair-production of supersymmetric particles under the assumption that R-parity is violated via a single dominant $LL{\\bar E}$, $LQ{\\bar D}$ or ${\\bar U} {\\bar D} {\\bar D}$ coupling are performed using the data collected by the \\ALEPH\\ collaboration at centre-of-mass energies of 181--184~$\\gev$. The observed candidate events in the data are in agreement with the Standard Model expectations. Upper limits on the production cross-sections and lower limits on the masses of charginos, sleptons, squarks and sneutrinos are de rived.
Energy Technology Data Exchange (ETDEWEB)
Aaboud, M.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adachi, S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Ali, B.; Aliev, M.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alstaty, M.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antel, C.; Antonelli, M.; Antonov, A.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Armitage, L. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisits, M-S; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barranco Navarro, L.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bedognetti, M.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, A. S.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Belyaev, N. L.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez, J.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Beringer, J.; Berlendis, S.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertone, G.; Bertram, I. A.; Bertsche, C.; Bertsche, D.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethani, A.; Bethke, S.; Bevan, A. J.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bielski, R.; Biesuz, N. V.; Biglietti, M.; Bilbao De Mendizabal, J.; Billoud, T. R. V.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bisanz, T.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blazek, T.; Bloch, I.; Blocker, C.; Blue, A.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Boerner, D.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bokan, P.; Bold, T.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Bortfeldt, J.; Bortoletto, D.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Bossio Sola, J. D.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Broughton, J. H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.
2016-09-01
A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use 20 fb-1 of proton-proton collision data at s√=8s=8 TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino-higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass m(χ~01)m(χ~10) of the lightest neutralino is less than 65 GeV, excluding 86% of such models. The searches have limited impact on models with larger m(χ~01)m(χ~10) due to either heavy electroweakinos or compressed mass spectra where the mass splittings between the produced particles and the lightest supersymmetric particle is small.
Khoury, Justin; Ovrut, Burt A
2011-01-01
Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N=1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.
Barranco, Alejandro
2012-01-01
We implement relativistic BCS superconductivity in N=1 supersymmetric field theories with a U(1)_R symmetry. The simplest model contains two chiral superfields with a Kahler potential modified by quartic terms. We study the phase diagram of the gap as a function of the temperature and the specific heat. The superconducting phase transition turns out to be first order, due to the scalar contribution to the one-loop potential. By virtue of supersymmetry, the critical curves depend logarithmically with the UV cutoff, rather than quadratically as in standard BCS theory. We comment on the difficulties in having fermion condensates when the chemical potential is instead coupled to a baryonic U(1)_B current. We also discuss supersymmetric models of BCS with canonical Kahler potential constructed by "integrating-in" chiral superfields.
The supersymmetric flavor problem
Dimopoulos, Savas K; Dimopoulos, Savas; Sutter, Dave
1995-01-01
The supersymmetric SU(3)\\times SU(2)\\times U(1) theory with minimal particle content and general soft supersymmetry breaking terms has 110 physical parameters in its flavor sector: 30 masses, 39 real mixing angles and 41 phases. The absence of an experimental indication for the plethora of new parameters places severe constraints on theories posessing Planck or GUT-mass particles and suggests that theories of flavor conflict with naturalness. We illustrate the problem by studying the processes \\mu \\rightarrow e + \\gamma and K^0 - \\bar{K}^0 mixing which are very sensitive probes of Planckian physics: a single Planck mass particle coupled to the electron or the muon with a Yukawa coupling comparable to the gauge coupling typically leads to a rate for \\mu \\rightarrow e + \\gamma exceeding the present experimental limits. A possible solution is that the messengers which transmit supersymmetry breaking to the ordinary particles are much lighter than M_{\\rm Planck}.
Ducu, Otilia Anamaria
2014-01-01
A search for the production of supersymmetric (SUSY) particles decaying into final states with jets, b -jets, missing transverse momentum and two isolated leptons, e or m , with the same electric charge (same-sign leptons) is presented. The analysis uses a data sample collected during 2012, which corresponds to a total integrated luminosity of 20.7 fb
Guenther, Paul Andre
2016-01-01
In this report, an attempt to select $b$-quark pairs from $g\\rightarrow b\\bar b$ in the $t\\bar t+$jets background simulation of a search for supersymmetric particles in events with leptons and multiple jets is presented. $b$-tagged jets are paired and selected exploiting kinematic differences between these from gluon-splitting and mainly those from top quark decays. It is found that $(33\\pm3)\\%$ of the built pairs from the background in the signal region consist of two $b$-tagged jets from gluon-splitting. No large improvement of the signal-to-background ratio can be achieved from this. The fraction of built $b$-tagged jet pairs that originate from a gluon can be increased to above $60\\%$ with a cut on a discriminating variable.
Acciarri, M.; Adriani, O.; Aguilar-Benitez, M.; Alcaraz, J.; Alemanni, G.; Allaby, J.; Aloisio, A.; Alviggi, M.G.; Ambrosi, G.; Anderhub, H.; Andreev, Valery P.; Angelescu, T.; Anselmo, F.; Arefev, A.; Azemoon, T.; Aziz, T.; Bagnaia, P.; Baksay, L.; Balandras, A.; Ball, R.C.; Banerjee, S.; Banerjee, Sw.; Barczyk, A.; Barillere, R.; Barone, L.; Bartalini, P.; Basile, M.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B.L.; Bhattacharya, S.; Biasini, M.; Biland, A.; Blaising, J.J.; Blyth, S.C.; Bobbink, G.J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J.G.; Brigljevic, V.; Brochu, F.; Brock, I.C.; Buffini, A.; Buijs, A.; Burger, J.D.; Burger, W.J.; Button, A.; Cai, X.D.; Campanelli, Mario; Capell, M.; Cara Romeo, G.; Carlino, G.; Cartacci, A.M.; Casaus, J.; Castellini, G.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Cesaroni, F.; Chamizo, M.; Chang, Y.H.; Chaturvedi, U.K.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G.M.; Chen, H.F.; Chen, H.S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Civinini, C.; Clare, I.; Clare, R.; Coignet, G.; Colijn, A.P.; Colino, N.; Costantini, S.; Cotorobai, F.; Cozzoni, B.; de la Cruz, B.; Csilling, A.; Cucciarelli, S.; Dai, T.S.; van Dalen, J.A.; D'Alessandro, R.; de Asmundis, R.; Deglon, P.; Degre, A.; Deiters, K.; della Volpe, D.; Denes, P.; De Notaristefani, F.; De Salvo, A.; Diemoz, M.; van Dierendonck, D.; Di Lodovico, F.; Dionisi, C.; Dittmar, M.; Dominguez, A.; Doria, A.; Dova, M.T.; Duchesneau, D.; Dufournaud, D.; Duinker, P.; Duran, I.; Dutta, S.; El Mamouni, H.; Engler, A.; Eppling, F.J.; Erne, F.C.; Extermann, P.; Fabre, M.; Faccini, R.; Falagan, M.A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Ferroni, F.; Fesefeldt, H.; Fiandrini, E.; Field, J.H.; Filthaut, F.; Fisher, P.H.; Fisk, I.; Forconi, G.; Fredj, L.; Freudenreich, K.; Furetta, C.; Galaktionov, Iouri; Ganguli, S.N.; Garcia-Abia, Pablo; Gataullin, M.; Gau, S.S.; Gentile, S.; Gheordanescu, N.; Giagu, S.; Gong, Z.F.; Grenier, Gerald Jean; Grimm, O.; Gruenewald, M.W.; Guida, M.; van Gulik, R.; Gupta, V.K.; Gurtu, A.; Gutay, L.J.; Haas, D.; Hasan, A.; Hatzifotiadou, D.; Hebbeker, T.; Herve, Alain; Hidas, P.; Hirschfelder, J.; Hofer, H.; Holzner, G.; Hoorani, H.; Hou, S.R.; Iashvili, I.; Innocente, V.; Jin, B.N.; Jones, Lawrence W.; de Jong, P.; Josa-Mutuberria, I.; Khan, R.A.; Kaur, M.; Kienzle-Focacci, M.N.; Kim, D.; Kim, J.K.; Kirkby, Jasper; Kiss, D.; Kittel, W.; Klimentov, A.; Konig, A.C.; Koffeman, E.; Kopp, A.; Koutsenko, V.; Kraber, M.; Kraemer, R.W.; Krenz, W.; Kruger, A.; Kuijten, H.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lassila-Perini, K.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Lee, H.J.; Le Goff, J.M.; Leiste, R.; Leonardi, Emanuele; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C.H.; Lin, W.T.; Linde, F.L.; Lista, L.; Liu, Z.A.; Lohmann, W.; Longo, E.; Lu, Y.S.; Lu, W.; Lubelsmeyer, K.; Luci, C.; Luckey, David; Lugnier, L.; Luminari, L.; Lustermann, W.; Ma, W.G.; Maity, M.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Marchesini, P.; Marian, G.; Martin, J.P.; Marzano, F.; Massaro, G.G.G.; Mazumdar, K.; McNeil, R.R.; Mele, S.; Merola, L.; Merk, M.; Meschini, M.; Metzger, W.J.; von der Mey, M.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G.B.; Molnar, P.; Monteleoni, B.; Moulik, T.; Muanza, G.S.; Muheim, F.; Muijs, A.J.M.; Musy, M.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Kluge, Hannelies; Organtini, G.; Oulianov, A.; Palomares, C.; Pandoulas, D.; Paoletti, S.; Paolucci, P.; Paramatti, R.; Park, H.K.; Park, I.H.; Pascale, G.; Passaleva, G.; Patricelli, S.; Paul, Thomas Cantzon; Pauluzzi, M.; Paus, C.; Pauss, F.; Peach, D.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pieri, M.; Piroue, P.A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Postema, H.; Pothier, J.; Produit, N.; Prokofev, D.O.; Prokofev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M.A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P.G.; Raspereza, A.; Raven, G.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; van Rhee, T.; Riemann, S.; Riles, Keith; Robohm, A.; Rodin, J.; Roe, B.P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, Stefan; Rubio, J.A.; Ruschmeier, D.; Rykaczewski, H.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M.P.; Sarakinos, M.E.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D.J.; Schwering, G.; Sciacca, C.; Sciarrino, D.; Seganti, A.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Smith, B.; Spillantini, P.; Steuer, M.; Stickland, D.P.; Stone, A.; Stone, H.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L.Z.; Suter, H.; Swain, J.D.; Szillasi, Z.; Sztaricskai, T.; Tang, X.W.; Tauscher, L.; Taylor, L.; Tellili, B.; Timmermans, Charles; Ting, Samuel C.C.; Ting, S.M.; Tonwar, S.C.; Toth, J.; Tully, C.; Tung, K.L.; Uchida, Y.; Ulbricht, J.; Uwer, U.; Valente, E.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobev, I.; Vorobov, A.A.; Vorvolakos, A.; Wadhwa, M.; Wallraff, W.; Wang, M.; Wang, X.L.; Wang, Z.M.; Weber, A.; Weber, M.; Wienemann, P.; Wilkens, H.; Wu, S.X.; Wynhoff, S.; Xia, L.; Xu, Z.Z.; Yang, B.Z.; Yang, C.G.; Yang, H.J.; Yang, M.; Ye, J.B.; Yeh, S.C.; You, J.M.; Zalite, A.; Zalite, Yu.; Zhang, Z.P.; Zhu, G.Y.; Zhu, R.Y.; Zichichi, A.; Zilizi, G.; Zoller, M.
2000-01-01
A search for charginos nearly mass-degenerate with the lightestsupersymmetric particle isperformed using the 176 {pb$^{-1}$ of data collected at 189 {Ge\\kern -0.1em V} in 1998 with the L3detector. Mass differences between the chargino and the lightest supersymmetric particlebelow 4 {Ge\\kern -0.1em V} are considered.The presence of a high transverse momentum photon is required to single out the signal from the photon-photon interaction background. No evidence for charginos is found and upper limits on the cross section for chargino pair production are set. For the first time, in the case ofheavy scalar leptons, chargino mass limits are obtained for any $\\tilde{\\chi}^{\\pm}_1 - \\tilde{\\chi}^0_1$ mass difference.
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Akesson, Torsten Paul; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amoros, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Asman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Galtieri, Angela Barbaro; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimaraes da Costa, Joao; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jurg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter
2011-01-01
Results are presented of searches for the production of supersymmetric particles decaying into final states with missing transverse momentum and exactly two isolated leptons in sqrt{s}=7 TeV proton-proton collisions at the Large Hadron Collider. Search strategies requiring lepton pairs with identical sign or opposite sign electric charges are described. In a data sample corresponding to an integrated luminosity of 35 pb-1 collected with the ATLAS detector, no significant excesses are observed. Based on specific benchmark models, limits are placed on the squark mass between 450 and 690 GeV for squarks approximately degenerate in mass with gluinos, depending on the supersymmetric mass hierarchy considered.
Introduction to Supersymmetric Gauge Theories
Piguet, O
1997-01-01
In these lectures I present a basic introduction to supersymmetry, especially to N=1 supersymmetric gauge theories and their renormalization, in the Wess-Zumino gauge. I also discuss the various ways supersymmetry may be broken in order to account for the lack of exact supersymmetry in the actual world of elementary particles.
Ilinskii, K N; Melezhik, V S; Ilinski, K N; Kalinin, G V; Melezhik, V V
1994-01-01
We revise the sequences of SUSY for a cyclic adiabatic evolution governed by the supersymmetric quantum mechanical Hamiltonian. The condition (supersymmetric adiabatic evolution) under which the supersymmetric reductions of Berry (nondegenerated case) or Wilczek-Zee (degenerated case) phases of superpartners are taking place is pointed out. The analogue of Witten index (supersymmetric Berry index) is determined. As the examples of suggested concept of supersymmetric adiabatic evolution the Holomorphic quantum mechanics on complex plane and Meromorphic quantum mechanics on Riemann surface are considered. The supersymmetric Berry indexes for the models are calculated.
Toivanen, P.; Kortelainen, M.; Suhonen, J.; Toivanen, J.
2009-04-01
We discuss the dark-matter detection rates for the elastic and inelastic scattering of the lightest supersymmetric particle (LSP) off nuclei. For this we use an easily accessible formalism where the underlying nuclear physics is condensed in structure coefficients multiplying the key parameters of supersymmetric theories. In this work we compute these coefficients for the stable iodine, xenon, and cesium nuclei by application of the nuclear shell model in a model space involving the 2s, 1d, 0g7/2, and 0h11/2 single-particle orbitals. As an interaction we use the renormalized Bonn-CD G matrix. By using fitted nuclear gyromagnetic factors we have successfully reproduced the relevant spectroscopic data on magnetic moments and M1 decays in the discussed nuclei.
Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertone, Gianfranco; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela
2016-09-30
A selection of searches by the ATLAS experiment at the LHC for the electroweak production of SUSY particles are used to study their impact on the constraints on dark matter candidates. The searches use $20\\,{\\rm fb}^{-1}$ of proton-proton collision data at $\\sqrt{s}=8$ TeV. A likelihood-driven scan of a five-dimensional effective model focusing on the gaugino--higgsino and Higgs sector of the phenomenological minimal supersymmetric Standard Model is performed. This scan uses data from direct dark matter detection experiments, the relic dark matter density and precision flavour physics results. Further constraints from the ATLAS Higgs mass measurement and SUSY searches at LEP are also applied. A subset of models selected from this scan are used to assess the impact of the selected ATLAS searches in this five-dimensional parameter space. These ATLAS searches substantially impact those models for which the mass $m(\\tilde{\\chi}^0_1)$ of the lightest neutralino is less than 65 GeV, excluding 86% of such models. Th...
Lange, Johannes
2016-01-01
A search for supersymmetry in ﬁnal states with photons is presented in this thesis. Datacollected in Run II of the Large Hadron Collider at a center-of-mass energy of 13 TeV isused. The proton-proton collision dataset recorded with the CMS experiment in 2015corresponds to an integrated luminosity of 2.3 fb−1 .The analysis is designed to be sensitive to electroweak production of supersymmetric particles and compressed mass spectra. All considered models are motivated bygauge-mediated supersymmetry breaking. A cut-and-count experiment is performedusing three exclusive search bins. No sign for physics beyond the standard model isobserved.Exclusion limits are set for a general gauge mediation scenario and a simpliﬁedmodel assuming electroweak gaugino production. A similar sensitivity is reached as inthe search performed at s = 8 TeV.Additionally, two simpliﬁed models of gluino pair production are considered. Thecurrently best limits set by CMS can be improved for these scenarios at large neutralinoand cha...
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutouil, Sara; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brazzale, Simone Federico; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Kieran; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Brown, Jonathan; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Burckhart, Helfried; Burdin, Sergey; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Buszello, Claus-Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Cameron, David; Caminada, Lea Michaela; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chang, Philip; Chapleau, Bertrand; Chapman, John Derek; Charfeddine, Driss; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Ciocio, Alessandra; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Clarke, Robert; Cleland, Bill; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consonni, Sofia Maria; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Nooij, Lucie; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dwuznik, Michal; Dyndal, Mateusz; Ecker, Katharina Maria; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Engelmann, Roderich; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Favareto, Andrea; Fayard, Louis; Federic, Pavol; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrag, Samir; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Fitzgerald, Eric Andrew; Flechl, Martin; Fleck, Ivor; Fleischmann, Philipp; Fleischmann, Sebastian; Fletcher, Gareth Thomas; Fletcher, Gregory; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghazlane, Hamid; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Stephen; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Gouighri, Mohamed; Goujdami, Driss; Goussiou, Anna; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Grafström, Per; Grahn, Karl-Johan; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Gupta, Shaun; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guttman, Nir; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamer, Matthias; Hamilton, Andrew; Hamilton, Samuel; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Satoshi; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Heller, Matthieu; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herrberg-Schubert, Ruth; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Hong, Tae Min; Hooft van Huysduynen, Loek; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Inamaru, Yuki; Ince, Tayfun; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jung, Christian; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneda, Michiru; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Katre, Akshay; Katzy, Judith; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Kazarinov, Makhail; Keeler, Richard; Kehoe, Robert; Keil, Markus; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khodinov, Alexander; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hee Yeun; Kim, Hyeon Jin; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Robert Steven Beaufoy; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Klok, Peter; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; König, Sebastian; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Krumshteyn, Zinovii; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kurumida, Rie; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzen, Georg; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Bo; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Loscutoff, Peter; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lungwitz, Matthias; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Mahmoud, Sara; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Homero; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mazzaferro, Luca; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Meric, Nicolas; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Merritt, Hayes; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Marcus; Morii, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Morton, Alexander; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Klemens; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Munwes, Yonathan; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Nanava, Gizo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ouellette, Eric; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Pahl, Christoph; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pinto, Belmiro; Pires, Sylvestre; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Joe; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Qureshi, Anum; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Rave, Tobias Christian; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reisin, Hernan; Relich, Matthew; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodrigues, Luis; Roe, Shaun; Røhne, Ole; Rolli, Simona; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saimpert, Matthias; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R~Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt, Evelyn; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schroeder, Christian; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Schwoerer, Maud; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekula, Stephen; Selbach, Karoline Elfriede; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simoniello, Rosa; Sinervo, Pekka; Sinev, Nikolai; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soueid, Paul; Soukharev, Andrey; South, David; Spagnolo, Stefania; Spalla, Margherita; Spanò, Francesco; Spearman, William Robert; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; Spreitzer, Teresa; St Denis, Richard Dante; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Stavina, Pavel; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stern, Sebastian; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Sugaya, Yorihito; Suhr, Chad; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Swedish, Stephen; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanasijczuk, Andres Jorge; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tian, Feng; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Tran, Huong Lan; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; True, Patrick; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Uhlenbrock, Mathias; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; Van Der Leeuw, Robin; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Liantao; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Warsinsky, Markus; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wendland, Dennis; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Liwen; Yao, Weiming; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Robert; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2015-01-01
Results of a search for decays of massive particles to fully hadronic final states are presented. This search uses 20.3 fb$^{-1}$ of data collected by the ATLAS detector in $\\sqrt{s} = 8$TeV proton--proton collisions at the LHC. Signatures based on high jet multiplicities without requirements on the missing transverse momentum are used to search for $R$-parity-violating supersymmetric gluino pair production with subsequent decays to quarks. The analysis is performed using a requirement on the number of jets, in combination with separate requirements on the number of $b$-tagged jets, as well as a topological observable formed from the scalar sum of the mass values of large-radius jets in the event. Results are interpreted in the context of all possible branching ratios of direct gluino decays to various quark flavors. No significant deviation is observed from the expected Standard Model backgrounds estimated using jet-counting as well as data-driven templates of the total-jet-mass spectra. Gluino pair decays t...
Li, Tianjun; Nanopoulos, Dimitri V; Walker, Joel W
2011-01-01
We suggest that non-trivial correlations between the dark matter particle mass and collider based probes of missing transverse energy H_T^miss may facilitate a two tiered approach to the initial discovery of supersymmetry and the subsequent reconstruction of the LSP mass at the LHC. These correlations are demonstrated via extensive Monte Carlo simulation of seventeen benchmark models, each sampled at five distinct LHC center-of-mass beam energies, which span the parameter space of No-Scale F-SU(5), which is defined in turn by the union of the Flipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-like supersymmetric multiplets with origins in F-theory, and the dynamically established boundary conditions of No-Scale Supergravity. In addition, we consider a control sample comprised of a standard minimal Supergravity benchmark point. Led by a striking similarity between the H_T^miss distribution and the familiar power spectrum of a black body radiator at various temperatures, we implement...
Detection of supersymmetric dark matter.
Xinrui, Hou; Li, Xueqian; Xinhe, Meng; Zhijian, Tao
1997-10-01
A re-analysis of a heavy charged particle production event observed at the cloudy chamber of the Yunnan Cosmic Ray Station (YCRS) in 1972 indicates that the mysterious heavy particle may be identified as a supersymmetric (SUSY) particle produced by bombarding a neutral SUSY cosmic ray particle on a proton. Based on the assumption, following literature studies that the neutral SUSY particle which constitutes the main fraction of the cold dark matter is a scalar neutrino (sneutrino) or neutralino (photino), the authors evaluate the flux of such SUSY particles which gain sufficient energies via elastic scattering with charged cosmic particles on the way to an Earth detector and the capture rates in both the sneutrino and photino cases respectively. The errors appearing in the study are briefly discussed and this work may provide a basis of designing cosmic ray detectors to search for SUSY particles.
Signals of Supersymmetric Dark Matter
Abbas, A
2000-01-01
The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat would lead to large-scale volcanism which could in turn have caused mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe. Binary character of these extinctions is another unique aspect of this signature of dark matter. In addition dark matter...
Energy Technology Data Exchange (ETDEWEB)
Fuks, B
2007-06-15
Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)
Aad, Georges; Abdallah, Jalal; Abdel Khalek, Samah; Abdinov, Ovsat; Aben, Rosemarie; Abi, Babak; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Agustoni, Marco; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Allbrooke, Benedict; Allison, Lee John; Allport, Phillip; Almond, John; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Alviggi, Mariagrazia; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Anduaga, Xabier; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnal, Vanessa; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Auerbach, Benjamin; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baas, Alessandra; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Backus Mayes, John; Badescu, Elisabeta; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Balek, Petr; Balli, Fabrice; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Bartsch, Valeria; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Marco; Battistin, Michele; Bauer, Florian; Bawa, Harinder Singh; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Anne Kathrin; Becker, Sebastian; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Katharina; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernat, Pauline; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Bierwagen, Katharina; Biesiada, Jed; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel
2014-01-01
This paper reports the results of a search for strong production of supersymmetric particles in 20.1 fb$^{-1}$ of proton-proton collisions at a centre-of-mass energy of 8 TeV using the ATLAS detector at the LHC. The search is performed separately in events with either zero or at least one high $p_\\mathrm{T}$ lepton (electron or muon), large missing transverse momentum, high jet multiplicity and at least three jets identified as originated from the fragmentation of a b-quark. No excess is observed with respect to the Standard Model predictions. The results are interpreted in the context of several supersymmetric models involving gluinos and scalar top and bottom quarks, as well as a mSUGRA/CMSSM model. Gluino masses up to 1340 GeV are excluded, depending on the model, significantly extending the previous ATLAS limits.
Supersymmetric Displaced Number States
Directory of Open Access Journals (Sweden)
Fredy R. Zypman
2015-06-01
Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.
Supersymmetric Open Wilson Lines
Baker, Edward B
2011-01-01
In this paper we study Open Wilson Lines (OWL's) in the context of two Supersymmetric Yang Mills theories. First we consider four dimensional N=2 Supersymmetric Yang Mills Theory with hypermultiplets transforming in the fundamental representation of the gauge group, and find supersymmetric OWL's only in the superconformal versions of these theories. We then consider four dimensional N=4 SYM coupled to a three dimensional defect hypermultiplet. Here there is a semi-circular supersymmetric OWL, which is related to the ray by a conformal transformation. We perform a perturbative calculation of the operators in both theories, and discuss using localization to compute them non-perturbatively.
Supersymmetric Higgs Bosons and Beyond
Energy Technology Data Exchange (ETDEWEB)
Carena, Marcela; /Fermilab /Chicago U., EFI; Kong, Kyoungchul; /Fermilab /SLAC; Ponton, Eduardo; /Columbia U.; Zurita, Jose; /Fermilab /Buenos Aires U.
2010-08-26
We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.
Supersymmetric non conservative systems
Martínez-Pérez, N E
2015-01-01
We give the generalization of a recent variational formulation for nonconservative classical mechanics, for fermionic and sypersymmetric systems. Both cases require slightly modified boundary conditions. The supersymmetric version is given in the superfield formalism. The corresponding Noether theorem is formulated. As expected, like the energy, the supersymmetric charges are not conserved. Examples are discussed.
Barate, R.; Ghez, Philippe; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Boix, G.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Dissertori, G.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, John; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Lemaitre, V.; Maley, P.; Mato, P.; Minten, A.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Schmitt, M.; Schneider, O.; Spagnolo, P.; Tejessy, W.; Teubert, F.; Tournefier, E.; Valassi, A.; Ward, J.J.; Wright, A.E.; Ajaltouni, Z.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.C.; Pallin, D.; Pascolo, J.M.; Perret, P.; Podlyski, F.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Waananen, A.; Daskalakis, G.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Focardi, E.; Parrini, G.; Zachariadou, K.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Pepe-Altarelli, M.; Chalmers, M.; Halley, A.W.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Raeven, B.; Smith, D.; Teixeira-Dias, P.; Thompson, A.S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Tittel, K.; Werner, S.; Wunsch, M.; Beuselinck, R.; Binnie, D.M.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Marinelli, N.; Nowell, J.; Przysiezniak, H.; Sedgbeer, J.K.; Thompson, J.C.; Thomson, Evelyn J.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; Giehl, I.; Holldorfer, F.; Jakobs, K.; Kleinknecht, K.; Krocker, M.; Muller, A.S.; Nurnberger, H.A.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Carr, J.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Leroy, O.; Kachelhoffer, T.; Payre, P.; Rousseau, D.; Tilquin, A.; Aleppo, M.; Gilardoni, Simone S.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Heister, A.; Huttmann, K.; Lutjens, G.; Mannert, C.; Manner, W.; Moser, H.G.; Schael, S.; Settles, R.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.J.; Videau, I.; de Vivie de Regie, J.B.; Yuan, C.; Zerwas, D.; Bagliesi, Giuseppe; Boccali, T.; Calderini, G.; Ciulli, V.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Sguazzoni, G.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Blair, G.A.; Coles, J.; Cowan, G.; Green, M.G.; Jones, L.T.; Medcalf, T.; Strong, J.A.; von Wimmersperg-Toeller, J.H.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Loomis, C.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Misiejuk, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; Gobbo, B.; He, H.; Putz, J.; Rothberg, J.; Wasserbaech, S.; Armstrong, S.R.; Cranmer, K.; Elmer, P.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Orejudos, W.; Pan, Y.B.; Saadi, Y.; Scott, I.J.; Walsh, J.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.
2001-01-01
Searches for the production of supersymmetric particles under the assumption that R-parity is violated via a single dominant LLE, LQD or UDD coupling were performed. These use the data collected by the ALEPH detector at LEP at centre-of-mass energies from 188.6 to 201.6 GeV. The numbers of candidate events observed in the data are consistent with Standard Model expectations. Upper limits on the production cross sections and lower limits on the masses of charginos, sleptons, squarks and sneutrinos are derived.
The Supersymmetric Standard Model
Fayet, Pierre
2016-10-01
The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout-Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W± and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying on R-parity and other discrete symmetries, may determine both the supersymmetrybreaking and grand-unification scales.
The Supersymmetric Standard Model
Fayet, Pierre
2016-01-01
The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout- Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W$^\\pm$ and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying ...
Supersymmetric invariant theories
Esipova, S R; Radchenko, O V
2013-01-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Supersymmetric invariant theories
Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.
2014-04-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Supersymmetric Color Superconductivity
Harnik, R; Murayama, H; Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2004-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N_c) gauge theories with N_f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires mu mu_c. We also give a qualitative description of the phases in the `conformal window', 3/2 N_c < N_f < 3N_c, at finite density.
Energy Technology Data Exchange (ETDEWEB)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.
Renormalization of supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M{sub W} and sin{sup 2}{theta}{sup eff}. He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses.
Photon structure function in supersymmetric QCD revisited
Energy Technology Data Exchange (ETDEWEB)
Sahara, Ryo, E-mail: sahara@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Uematsu, Tsuneo, E-mail: uematsu@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Kitadono, Yoshio, E-mail: kitadono@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei, Taiwan (China)
2012-02-07
We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.
Photon Structure Function in Supersymmetric QCD Revisited
Sahara, Ryo; Kitadono, Yoshio
2011-01-01
We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.
Supersymmetric color superconductivity
Energy Technology Data Exchange (ETDEWEB)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2003-09-18
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N{sub c}) gauge theories with N{sub f} flavors of quarks in the presence of a baryon chemical potential {mu}, and describe the global symmetry breaking patterns at low energy. Our analysis requires {mu} < {Lambda} and is thus complementary to the variational approach that has been successful for {mu} >> {Lambda}. We find that for N{sub F} < N{sub c} a modified U(1){sub B} symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N{sub f} = N{sub c} there is a critical chemical potential above which the U(1){sub B} is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N{sub c} + 1 {le} N{sub f} < 3/2 N{sub c} and find that baryon number is broken dynamically for {mu} > {mu}{sub c}. We also give a qualitative description of the phases in the ''conformal window'', 3/2 N{sub c} < N{sub f} < 3N{sub c}, at finite density.
Supersymmetric radiative corrections at large tan {beta}
Energy Technology Data Exchange (ETDEWEB)
Logan, H.E.
2001-02-20
In the minimal supersymmetric extension of the Standard Model (MSSM), fermion masses and Yukawa couplings receive radiative corrections at one loop from diagrams involving the supersymmetric particles. The corrections to the relation between down-type fermion masses and Yukawa couplings are enhanced by tan {beta}, which makes them potentially very significant at large tan {beta}. These corrections affect a wide range of processes in the MSSM, including neutral and charged Higgs phenomenology, rare B meson decays, and renormalization of the CKM matrix. We give a pedagogical review of the sources and phenomenological effects of these corrections.
Supersymmetric defect models and mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Supersymmetric Defect Models and Mirror Symmetry
Hook, Anson; Torroba, Gonzalo
2013-01-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d N=4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d N=2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of N=4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
N=1 Supersymmetric Boundary Bootstrap
Toth, G Z
2004-01-01
We investigate the boundary bootstrap programme for finding exact reflection matrices of integrable boundary quantum field theories with N=1 boundary supersymmetry. The bulk S-matrix and the reflection matrix are assumed to take the form S=S_1S_0, R=R_1R_0, where S_0 and R_0 are the S-matrix and reflection matrix of some integrable non-supersymmetric boundary theory that is assumed to be known, and S_1 and R_1 describe the mixing of supersymmetric indices. Under the assumption that the bulk particles transform in the kink and boson/fermion representations and the ground state is a singlet we present rules by which the supersymmetry representations and reflection factors for excited boundary bound states can be determined. We apply these rules to the boundary sine-Gordon model, to the boundary a_2^(1) and a_4^(1) affine Toda field theories, to the boundary sinh-Gordon model and to the free particle.
Supersymmetric classical cosmology
Escamilla-Rivera, Celia; Urena-Lopez, L Arturo
2010-01-01
In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpartners associated with both the scale factor and the scalar field, and classical equations of motion are obtained from the super-Wheeler-DeWitt equation through the usual WKB method. The resulting supersymmetric Einstein-Klein-Gordon equations contain extra radiation and stiff matter terms, and we study their solutions in flat space for different scalar field potentials. The solutions are compared to the standard case, in particular those corresponding to the exponential potential, and their implications for the dynamics of the early Universe are discussed in turn.
Planarizable Supersymmetric Quantum Toboggans
Directory of Open Access Journals (Sweden)
Miloslav Znojil
2011-02-01
Full Text Available In supersymmetric quantum mechanics the emergence of a singularity may lead to the breakdown of isospectrality between partner potentials. One of the regularization recipes is based on a topologically nontrivial, multisheeted complex deformations of the line of coordinate x giving the so called quantum toboggan models (QTM. The consistent theoretical background of this recipe is briefly reviewed. Then, certain supersymmetric QTM pairs are shown exceptional and reducible to doublets of non-singular ordinary differential equations a.k.a. Sturm-Schrödinger equations containing a weighted energy E→EW(x and living in single complex plane.
Supersymmetric Optical Structures
Miri, Mohammad-Ali; El-Ganainy, Ramy; Christodoulides, Demetrios N
2013-01-01
We show that supersymmetry can provide a versatile platform in synthesizing a new class of optical structures with desired properties and functionalities. By exploiting the intimate relationship between superpatners, one can systematically construct index potentials capable of exhibiting the same scattering and guided wave characteristics. In particular, in the Helmholtz regime, we demonstrate that one-dimensional supersymmetric pairs display identical reflectivities and transmittivities for any angle of incidence. Optical SUSY is then extended to two-dimensional systems where a link between specific azimuthal mode subsets is established. Finally we explore supersymmetric photonic lattices where discreteness can be utilized to design lossless integrated mode filtering arrangements.
Supersymmetric heterotic string backgrounds
Gran, U.; Papadopoulos, G.; Roest, D.; Cvetič, M.
2007-01-01
We present the main features of the solution of the gravitino and dilatino Killing spinor equations derived in hep-th/0510176 and hep-th/0703143 which have led to the classification of geometric types of all type I backgrounds. We then apply these results to the supersymmetric backgrounds of the het
Gudnason, Sven Bjarke; Sasaki, Shin
2015-01-01
Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,C)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,C), we find explicitly a nontrivial solution to th...
Aad, Georges; Abdallah, Jalal; Abdinov, Ovsat; Aben, Rosemarie; Abolins, Maris; AbouZeid, Ossama; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Agricola, Johannes; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Alimonti, Gianluca; Alio, Lion; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Altheimer, Andrew David; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amako, Katsuya; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amram, Nir; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Anger, Philipp; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antonelli, Mario; Antonov, Alexey; Antos, Jaroslav; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Aurousseau, Mathieu; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bacci, Cesare; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Bain, Travis; Baines, John; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Basye, Austin; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James Baker; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Belanger-Champagne, Camille; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez Garcia, Jorge-Armando; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Beringer, Jürg; Bernard, Clare; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertsche, Carolyn; Bertsche, David; Besana, Maria Ilaria; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethke, Siegfried; Bevan, Adrian John; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianchini, Louis; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bieniek, Stephen Paul; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blanchard, Jean-Baptiste; Blanco, Jacobo Ezequiel; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Borroni, Sara; Bortfeldt, Jonathan; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Bousson, Nicolas; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozic, Ivan; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Bronner, Johanna; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Bruscino, Nello; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Buehrer, Felix; Bugge, Lars; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burghgrave, Blake; Burke, Stephen; Burmeister, Ingo; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Butt, Aatif Imtiaz; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Caloba, Luiz; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Campana, Simone; Campanelli, Mario; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cantrill, Robert; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Caputo, Regina; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Castaneda-Miranda, Elizabeth; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catastini, Pierluigi; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerio, Benjamin; Cerny, Karel; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cerv, Matevz; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chalupkova, Ina; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Liming; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chislett, Rebecca Thalatta; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coffey, Laurel; Cogan, Joshua Godfrey; Colasurdo, Luca; Cole, Brian; Cole, Stephen; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Corso-Radu, Alina; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Côté, David; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Cuthbert, Cameron; Czirr, Hendrik; Czodrowski, Patrick; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dafinca, Alexandru; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey Rogers; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Eleanor; Davies, Merlin; Davison, Peter; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Daya-Ishmukhametova, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Deigaard, Ingrid; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Deliyergiyev, Maksym; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; Deluca, Carolina; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Domenico, Antonio; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Diglio, Sara; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dohmae, Takeshi; Dolejsi, Jiri; Dolezal, Zdenek; Dolgoshein, Boris; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Dubreuil, Emmanuelle; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Duflot, Laurent; Duguid, Liam; Dührssen, Michael; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edson, William; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Endo, Masaki; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Gregory; Fletcher, Rob Roy MacGregor; Flick, Tobias; Floderus, Anders; Flores Castillo, Luis; Flowerdew, Michael; Formica, Andrea; Forti, Alessandra; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; French, Sky; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fulsom, Bryan Gregory; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; Garberson, Ford; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gaur, Bakul; Gauthier, Lea; Gauzzi, Paolo; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Ge, Peng; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisler, Manuel Patrice; Gemme, Claudia; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghazlane, Hamid; Giacobbe, Benedetto; Giagu, Stefano; Giangiobbe, Vincent; Giannetti, Paola; Gibbard, Bruce; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giorgi, Francesco Michelangelo; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Goddard, Jack Robert; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; González de la Hoz, Santiago; Gonzalez Parra, Garoe; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Grabas, Herve Marie Xavier; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Grohs, Johannes Philipp; Grohsjean, Alexander; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Haefner, Petra; Hageböck, Stephan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Hall, David; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, A; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Anthony David; Hayashi, Takayasu; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Lukas; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Hellmich, Dennis; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Hengler, Christopher; Henkelmann, Steffen; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Hickling, Robert; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hinman, Rachel Reisner; Hirose, Minoru; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohlfeld, Marc; Hohn, David; Holmes, Tova Ray; Homann, Michael; Hong, Tae Min; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howard, Jacob; Howarth, James; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Catherine; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Diedi; Hu, Qipeng; Hu, Xueye; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Hülsing, Tobias Alexander; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikegami, Yoichi; Ikematsu, Katsumasa; Ikeno, Masahiro; Ilchenko, Iurii; Iliadis, Dimitrios; Ilic, Nikolina; Ince, Tayfun; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Irles Quiles, Adrian; Isaksson, Charlie; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Ivarsson, Jenny; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Matthew; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jakubek, Jan; Jamin, David Olivier; Jana, Dilip; Jansen, Eric; Jansky, Roland; Janssen, Jens; Janus, Michel; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jentzsch, Jennifer; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Yi; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Joergensen, Morten Dam; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Joshi, Kiran Daniel; Jovicevic, Jelena; Ju, Xiangyang; Jussel, Patrick; Juste Rozas, Aurelio; Kaci, Mohammed; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kajomovitz, Enrique; Kalderon, Charles William; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazama, Shingo; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharlamov, Alexey; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; King, Samuel Burton; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klinger, Joel Alexander; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Kogan, Lucy Anne; Kohlmann, Simon; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, Jana; Kravchenko, Anton; Kreiss, Sven; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Amanda; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Andrew; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurochkin, Yurii; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lambourne, Luke; Lammers, Sabine; Lampen, Caleb; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Menedeu, Eve; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leisos, Antonios; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Leroy, Claude; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Adrian; Leyko, Agnieszka; Leyton, Michael; Li, Bing; Li, Haifeng; Li, Ho Ling; Li, Lei; Li, Liang; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liao, Hongbo; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limbach, Christian; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Linde, Frank; Lindquist, Brian Edward; Linnemann, James; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Miaoyuan; Liu, Minghui; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Loebinger, Fred; Loevschall-Jensen, Ask Emil; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Looper, Kristina Anne; Lopes, Lourenco; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Lynn, David; Lysak, Roman; Lytken, Else; Ma, Hong; Ma, Lian Liang; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahboubi, Kambiz; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Beatrice; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Manfredini, Alessandro; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Mantifel, Rodger; Mantoani, Matteo; Mapelli, Livio; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marino, Christopher; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti, Lukas Fritz; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Mazza, Simone Michele; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Mellado Garcia, Bruce Rafael; Meloni, Federico; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mercurio, Kevin Michael; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mochizuki, Kazuya; Mohapatra, Soumya; Mohr, Wolfgang; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mönig, Klaus; Monini, Caterina; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morton, Alexander; Morvaj, Ljiljana; Mosidze, Maia; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nadal, Jordi; Nagai, Koichi; Nagai, Ryo; Nagai, Yoshikazu; Nagano, Kunihiro; Nagarkar, Advait; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Namasivayam, Harisankar; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Nef, Pascal Daniel; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nickerson, Richard; Nicolaidou, Rosy; Nicquevert, Bertrand; Nielsen, Jason; Nikiforou, Nikiforos; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nuti, Francesco; O'Brien, Brendan Joseph; O'grady, Fionnbarr; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okamura, Wataru; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Oropeza Barrera, Cristina; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Ovcharova, Ana; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganis, Efstathios; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Palma, Alberto; Pan, Yibin; Panagiotopoulou, Evgenia; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Pelikan, Daniel; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penning, Bjoern; Penwell, John; Perepelitsa, Dennis; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrucci, Fabrizio; Pettersson, Nora Emilia; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pignotti, David; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pina, João Antonio; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Pizio, Caterina; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Plucinski, Pawel; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pralavorio, Pascal; Pranko, Aliaksandr; Prasad, Srivas; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Proissl, Manuel; Prokofiev, Kirill; Prokoshin, Fedor; Protopapadaki, Eftychia-sofia; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Ptacek, Elizabeth; Puddu, Daniele; Pueschel, Elisa; Puldon, David; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quarrie, David; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reisin, Hernan; Rembser, Christoph; Ren, Huan; Renaud, Adrien; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Roe, Shaun; Røhne, Ole; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosendahl, Peter Lundgaard; Rosenthal, Oliver; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rubinskiy, Igor; Rud, Viacheslav; Rudolph, Christian; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Saddique, Asif; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Saleem, Muhammad; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sanchez, Arturo; Sánchez, Javier; Sanchez Martinez, Victoria; Sandaker, Heidi; Sandbach, Ruth Laura; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Carlos; Sandstroem, Rikard; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sasaki, Yuichi; Sato, Koji; Sauvage, Gilles; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schaefer, Douglas; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitt, Stefan; Schneider, Basil; Schnellbach, Yan Jie; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schorlemmer, Andre Lukas; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schwegler, Philipp; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciacca, Gianfranco; Scifo, Estelle; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Sedov, George; Sedykh, Evgeny; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Serre, Thomas; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyedruhollah; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Shushkevich, Stanislav; Sicho, Petr; Sidebo, Per Edvin; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silver, Yiftah; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snidero, Giacomo; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Song, Hong Ye; Soni, Nitesh; Sood, Alexander; Sopczak, Andre; Sopko, Bruno; Sopko, Vit; Sorin, Veronica; Sosa, David; Sosebee, Mark; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Spearman, William Robert; Sperlich, Dennis; Spettel, Fabian; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Staerz, Steffen; Stahlman, Jonathan; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Subramaniam, Rajivalochan; Succurro, Antonella; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Susinno, Giancarlo; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tam, Jason; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Shuji; Tannenwald, Benjamin Bordy; Tannoury, Nancy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Frank; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Emily; Thompson, Paul; Thompson, Ray; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tiouchichine, Elodie; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tollefson, Kirsten; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tremblet, Louis; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tudorache, Alexandra; Tudorache, Valentina; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turecek, Daniel; Turra, Ruggero; Turvey, Andrew John; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Ueda, Ikuo; Ueno, Ryuichi; Ughetto, Michael; Ugland, Maren; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usanova, Anna; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Geer, Rogier; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vannucci, Francois; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veloce, Laurelle Maria; Veloso, Filipe; Velz, Thomas; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigne, Ralph; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vladoiu, Dan; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Vykydal, Zdenek; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tan; Wang, Tingting; Wang, Xiaoxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Wasicki, Christoph; Watkins, Peter; Watson, Alan; Watson, Ian; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; White, Sebastian; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, Alan; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winter, Benedict Tobias; Wittgen, Matthias; Wittkowski, Josephine; Wollstadt, Simon Jakob; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yakabe, Ryota; Yamada, Miho; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yen, Andy L; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yurkewicz, Adam; Yusuff, Imran; Zabinski, Bartlomiej; Zaidan, Remi; Zaitsev, Alexander; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Qi; Zengel, Keith; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zurzolo, Giovanni; Zwalinski, Lukasz
2016-01-01
The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross-sections. Results are based on 20 fb$^{-1}$ of proton--proton collision data at $\\sqrt{s}$=8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.
Energy Technology Data Exchange (ETDEWEB)
Aad, G.; Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T. [et al.
2016-03-04
The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb$^{-1}$ of proton-proton collision data at $\\sqrt{s}$ = 8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.
Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; Abouzeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Antrim, D. J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biesuz, N. V.; Biglietti, M.; Bilbao de Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Blunier, S.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.
2016-03-01
The ATLAS experiment has performed extensive searches for the electroweak production of charginos, neutralinos, and staus. This article summarizes and extends the search for electroweak supersymmetry with new analyses targeting scenarios not covered by previously published searches. New searches use vector-boson fusion production, initial-state radiation jets, and low-momentum lepton final states, as well as multivariate analysis techniques to improve the sensitivity to scenarios with small mass splittings and low-production cross sections. Results are based on 20 fb-1 of proton-proton collision data at √{s }=8 TeV recorded with the ATLAS experiment at the Large Hadron Collider. No significant excess beyond Standard Model expectations is observed. The new and existing searches are combined and interpreted in terms of 95% confidence-level exclusion limits in simplified models, where a single production process and decay mode is assumed, as well as within phenomenological supersymmetric models.
Small numbers in supersymmetric theories of nature
Energy Technology Data Exchange (ETDEWEB)
Graesser, Michael Lawrence [Univ. of California, Berkeley, CA (United States)
1999-05-01
The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10^{-32} to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity
Nearly Supersymmetric Dark Atoms
Energy Technology Data Exchange (ETDEWEB)
Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP
2011-08-12
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.
Gukov, S G
1997-01-01
The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.
Aaltonen, T; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Da Ronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dorr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobuev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S
2007-01-01
We search for direct pair production of supersymmetric top quarks and supersymmetric bottom quarks in proton-antiproton collisions at $\\sqrt{s}$ = 1.96 TeV, using 295 pb^-1 of data recorded by the Collider Detector at Fermilab (CDF II) experiment. The supersymmetric top (supersymmetric bottom) quarks are selected by reconstructing their decay into a charm (bottom) quark and a neutralino, which is assumed to be the lightest supersymmetric particle. The signature of such processes is two energetic heavy-flavor jets and missing transverse energy. The number of events that pass our selection for each search process is consistent with the standard model expectation. By comparing our results to the theoretical production cross sections of the supersymmetric top and supersymmetric bottom quarks in the minimal supersymmetric standard model, we exclude, at a 95% confidence level in the frame of that model, a supersymmetric top quark mass up to 132 GeV/c^2 for a neutralino mass of 48 GeV/c^2, and a supersymmetric botto...
Supersymmetric Descendants of Self-Adjointly Extended Quantum Mechanical Hamiltonians
Al-Hashimi, M H; Shalaby, A; Wiese, U -J
2013-01-01
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.
Energy Technology Data Exchange (ETDEWEB)
Vu Anh, T
2004-07-01
Supersymmetry is a possible way for physics beyond the standard model. This work is dedicated to the search of supersymmetric particles such as squarks and gluinos at the Tevatron collider. The analysis has been made on experimental data from the run-II. The first chapter is dedicated to a brief presentation of the standard model. In the second chapter the author reviews the recent work on this issue in CERN (Lep) and in Fermilab (Tevatron). The experimental properties of the search for squarks and gluinos such as the signature with leptons in the final state are detailed in this chapter. The third chapter is devoted to the D0 detector and to the reconstruction of particles with it. The fourth chapter describes the specificity of this work : the detection of squarks and gluinos through the simplest signature possible: 2 muons, 2 jets and with the adequate missing energy in the final state. It appears that for an integrated luminosity of 170 pb{sup -1} no events in excess with respect to the standard model has been detected. As a consequence it is shown that squarks and gluinos must have a mass greater than 200-250 GeV. (A.C.)
Prospects for detecting supersymmetric dark matter in the Galactic halo
Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.
2008-01-01
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at
Prospects for detecting supersymmetric dark matter in the Galactic halo
Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.
2008-01-01
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at
Phenomenology of the Utilitarian Supersymmetric Standard Model
Fraser, Sean; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2016-01-01
We study the 2010 specific version of the 2002 proposed $U(1)_X$ extension of the supersymmetric standard model, which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra $Z_X$ gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.
Phenomenology of the utilitarian supersymmetric standard model
Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2016-08-01
We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.
Harnik, R
2004-01-01
Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV completion allows us to maintain gauge coupling unification.
Generalized Supersymmetric Perturbation Theory
Institute of Scientific and Technical Information of China (English)
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Supersymmetric Electroweak Baryogenesis
Rius, N; Rius, Nuria; Sanz, Veronica
2000-01-01
We calculate the baryon asymmetry generated at the electroweak phase transition in the minimal supersymmetric standard model, using a new method to compute the CP-violating asymmetry in the Higgsino flux reflected into the unbroken phase. The method is based on a Higgs insertion expansion. We find that the CP asymmetry at leading order is proportional to the change in $\\tan next-to-leading order this suppression factor disappears. These results explain previous discrepancies among different calculations, and may enhance the final baryon asymmetry generated during the electroweak phase transition.
Prolongation structures for supersymmetric equations
Roelofs, G.H.M.; Hijligenberg, van den N.W.
1990-01-01
The well known prolongation technique of Wahlquist and Estabrook (1975) for nonlinear evolution equations is generalized for supersymmetric equations and applied to the supersymmetric extension of the KdV equation of Manin-Radul. Using the theory of Kac-Moody Lie superalgebras, the explicit form of
Likelihood Analysis of Supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY; Costa, J. C. [Imperial Coll., London; Sakurai, K. [Warsaw U.; Borsato, M. [Santiago de Compostela U.; Buchmueller, O. [Imperial Coll., London; Cavanaugh, R. [Illinois U., Chicago; Chobanova, V. [Santiago de Compostela U.; Citron, M. [Imperial Coll., London; De Roeck, A. [Antwerp U.; Dolan, M. J. [Melbourne U.; Ellis, J. R. [King' s Coll. London; Flächer, H. [Bristol U.; Heinemeyer, S. [Madrid, IFT; Isidori, G. [Zurich U.; Lucio, M. [Santiago de Compostela U.; Martínez Santos, D. [Santiago de Compostela U.; Olive, K. A. [Minnesota U., Theor. Phys. Inst.; Richards, A. [Imperial Coll., London; de Vries, K. J. [Imperial Coll., London; Weiglein, G. [DESY
2016-10-31
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel ${\\tilde u_R}/{\\tilde c_R} - \\tilde{\\chi}^0_1$ coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ${\\tilde \
Supersymmetrizing Massive Gravity
Malaeb, Ola
2013-01-01
When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. When the scalar components of the chiral multiplets z^A acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index making the scalar fields z^A vectors and the chiral spinors \\psi^A spin-3/2 Rarita-Schwinger fields. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.
Supersymmetric mode converters
Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.
2015-08-01
In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.
Quantum Supersymmetric Bianchi IX Cosmology
Damour, Thibault
2014-01-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing to one timelike dimension the action of D=4 simple supergravity for a Bianchi IX cosmological model. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a spinor of Spin(8,4) depending on the three squashing parameters, which satisfies Dirac, and Klein-Gordon-like, wave equations describing the propagation of a quantum spinning particle reflecting off spin-dependent potential walls. The algebra of the susy constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the maximally compact sub-algebra of the rank-3 hyperbolic Kac-Moody algebra AE3. The (quartic-in-fermions) squared-mass term entering the Klein-Gordon-like equation has several remarkable properties: 1)it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; 2)it is a quad...
Supersymmetric Quantum Mechanics and Topology
Directory of Open Access Journals (Sweden)
Muhammad Abdul Wasay
2016-01-01
Full Text Available Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Supersymmetric quantum mechanics with reflections
Energy Technology Data Exchange (ETDEWEB)
Post, Sarah; Vinet, Luc [Centre de Recherches Mathematiques, Universite de Montreal, Montreal CP6128 (QC) H3C 3J7 (Canada); Zhedanov, Alexei, E-mail: post@crm.umontreal.ca, E-mail: luc.vinet@umontreal.ca, E-mail: zhedanov@fti.dn.ua [Donetsk Institute for Physics and Technology, Donetsk 83114 (Ukraine)
2011-10-28
We consider a realization of supersymmetric quantum mechanics where supercharges are differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q {yields} -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wavefunctions of extended Scarf I potentials with different parameters are presented. (paper)
Relativistic Pseudospin Symmetry as a Supersymmetric Pattern in Nuclei
Leviatan, A
2004-01-01
Shell-model states involving several pseudospin doublets and ``intruder'' levels in nuclei, are combined into larger multiplets. The corresponding single-particle spectrum exhibits a supersymmetric pattern whose origin can be traced to the relativistic pseudospin symmetry of a nuclear mean-field Dirac Hamiltonian with scalar and vector potentials.
Continuous media interpretation of supersymmetric Wess-Zumino type models
Energy Technology Data Exchange (ETDEWEB)
Letelier, P.S. [Universidade Estadual de Campinas (Brazil). Departamento de Matematica Aplicada; Zanchin, V.T. [Departamento de Fisica-CCNE, Universidade Federal de Santa Maria, 97119, Santa Maria, R.S. (Brazil)
1995-02-20
Supersymmetric Wess-Zumino type models are considered as classical material media that can be interpreted as fluids of ordered strings with heat flow along the strings, or a mixture of fluids of ordered strings with either a cloud of particles or a flux of directed radiation. ((orig.))
Energy Technology Data Exchange (ETDEWEB)
Brochu, F
2000-04-01
This thesis is based on baryon number and then R-Parity (R{sub p}) violation, both allowed in the Minimal Supersymmetric Standard Model (MSSM) framework. This hypothesis leads to supersymmetric particles' decay topologies significantly different from those ever studied and opens new possibilities on searches for supersymmetry. We will detail throughout this work the phenomenological consequences of the baryon number violation hypothesis, the resulting decay signatures in an e{sup +}e{sup -} collider and the analysis setup developed to isolate these decays in the data collected by the L3 experiment at LEP between 1997 and 2000. In order to validate the search methods developed, we also measured the cross-section of the process e{sup +}e{sup -} {yields} ZZ {yields} qq-bar q'q'-bar. (author)
Supersymmetric Microscopic Theory of the Standard Model
Ter-Kazarian, G T
2000-01-01
We promote the microscopic theory of standard model (MSM, hep-ph/0007077) into supersymmetric framework in order to solve its technical aspects of vacuum zero point energy and hierarchy problems, and attempt, further, to develop its realistic viable minimal SUSY extension. Among other things that - the MSM provides a natural unification of geometry and the field theory, has clarified the physical conditions in which the geometry and particles come into being, in microscopic sense enables an insight to key problems of particle phenomenology and answers to some of its nagging questions - a present approach also leads to quite a new realization of the SUSY yielding a physically realistic particle spectrum. It stems from the special subquark algebra, from which the nilpotent supercharge operators are derived. The resulting theory makes plausible following testable implications for the current experiments at LEP2, at the Tevatron and at LHC drastically different from those of the conventional MSSM models: 1. All t...
Fu, Wenbo; Maldacena, Juan; Sachdev, Subir
2016-01-01
We discuss a supersymmetric generalization of the Sachdev-Ye-Kitaev model. These are quantum mechanical models involving $N$ Majorana fermions. The supercharge is given by a polynomial expression in terms of the Majorana fermions with random coefficients. The Hamiltonian is the square of the supercharge. The ${\\cal N}=1$ model with a single supercharge has unbroken supersymmetry at large $N$, but non-perturbatively spontaneously broken supersymmetry in the exact theory. We analyze the model by looking at the large $N$ equation, and also by performing numerical computations for small values of $N$. We also compute the large $N$ spectrum of "singlet" operators, where we find a structure qualitatively similar to the ordinary SYK model. We also discuss an ${\\cal N}=2$ version. In this case, the model preserves supersymmetry in the exact theory and we can compute a suitably weighted Witten index to count the number of ground states, which agrees with the large $N$ computation of the entropy. In both cases, we disc...
Supersymmetric Contributions to the Decay of an Extra Z Boson
Gherghetta, Tony; Kane, G L; Gherghetta, Tony; Kaeding, Thomas A.; Kane, Gordon L.
1998-01-01
We analyse in detail the supersymmetric contributions to the decay of an extra Z boson in effective rank 5 models, including the important effect of D-terms on sfermion masses. The inclusion of supersymmetric decay channels will reduce the Z' branching ratio to standard model particles resulting in lower Z' mass limits than those often quoted. In particular, the supersymmetric parameter space motivated by the recent Fermilab $ee\\gamma\\gamma$ event and other suggestive evidence results in a branching fraction B(Z' -> e^+ e^-)\\simeq 2-4%. The expected cross sections and branching ratios could give a few events in the present data and we speculate on the connection to the three e^+e^- events observed at Fermilab with large dielectron invariant mass.
Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector
Grout, Zara Jane; The ATLAS collaboration
2017-01-01
Supersymmetry models with light electroweak sparticles are well motivated by naturalness and have less stringent exclusion limits on the supersymmetric particle masses than strong production. ATLAS searches for electroweak production of supersymmetric particles in a number of channels, which include multiple leptons and therefore benefit from lower numbers of background process events. Results are presented here for searches using $\\sqrt{s}=13$TeV ATLAS data collected in 2015 and the most recent findings are summarised.
Supersymmetric vacua in random supergravity
Bachlechner, Thomas C.; Marsh, David; McAllister, Liam; Wrase, Timm
2013-01-01
We determine the spectrum of scalar masses in a supersymmetric vacuum of a general mathcal{N}=1 supergravity theory, with the Kähler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P=exp left( {{{{-2{N^2}{{{left| W right|}}^2}}} left/ {{m_{susy}^2}} right.}} right) , with W denoting the superpotential and m susy the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N ≫ 1. We conclude that for left| W right|gtrsim {{{{m_{susy}}}} left/ {N} right.} , tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.
Simple supersymmetric strongly coupled preon model
Fajfer, S.; Tadić, D.
1988-08-01
This supersymmetric-SU(5) composite model is a natural generalization of the usual strong-coupling models. Preon superfields are in representations 5* and 10. The product representations 5*×10, 5×10, 5×5, and 5*×5 contain only those strongly hypercolor bound states which are needed in the standard electroweak theory. There are no superfluous quarklike states. The neutrino is massless. Only one strongly hypercolor bound singlet (10×10*) can exist as a free particle. At higher energies one should expect to see a plethora of new particles. Grand unification happens at the scale M~1014 GeV. Cabibbo mixing can be incorporated by using a transposed Kobayashi-Maskawa mixing matrix.
Supersymmetric leptogenesis and light hidden sectors
Weniger, Christoph
2010-01-01
Thermal leptogenesis and supergravity are attractive scenarios for physics beyond the standard model. However, it is well known that the super-weak interaction of the gravitino often leads to problems with primordial nucleosynthesis in the standard scenario of matter parity conserving MSSM + three right-handed neutrinos. We will present and compare two related solutions to these problems: 1) The conflict between BBN and leptogenesis can be avoided in presence of a hidden sector with light supersymmetric particles which open new decay channels for the dangerous long-lived particles. 2) If there is a condensate in the hidden sector, such additional decay channels can be alternatively opened by dynamical breaking of matter parity in the hidden sector.
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others
2016-10-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2017-02-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)
A new supersymmetric classical Boussinesq equation
Institute of Scientific and Technical Information of China (English)
Zhang Meng-Xia; Liu Qing-Ping; Wang Juan; Wu Ke
2008-01-01
In this paper,we obtain a supersymmetric generalization for the classical Boussinesq equation.We show that the supersymmetric equation system passes the Painlevé test and we also calculate its one- and two-soliton solutions.
Supersymmetric q-deformed quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)
2012-06-27
A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.
The holographic supersymmetric Casimir energy
Benetti Genolini, Pietro; Cassani, Davide; Martelli, Dario; Sparks, James
2017-01-01
We consider a general class of asymptotically locally AdS5 solutions of minimal gauged supergravity, which are dual to superconformal field theories on curved backgrounds S1×M3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S1×R4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory supersymmetric relation between charges.
n = 4 supersymmetric FRW model
Energy Technology Data Exchange (ETDEWEB)
Rosales, J.J.; Pashnev, A. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 (Russian Federation); Tkach, V.I. [Instituto de Fisica, Universidad de Guanajuato, 05315-970 Leon, 66318 Guanajuato (Mexico)]. e-mail: juan@ifug3.ugto.mx, pashnev@thsun1.jinr.ru, vladimir@ifug3.ugto.mx
2003-07-01
In this work we have constructed the n = 4 extended local conformal time supersymmetry for the Friedmann-Robertson-Walker cosmological models. This is based on the superfield construction of the action, which is invariant under world line local n = 4 supersymmetry with SU(2){sub local} X SU(2){sub global} internal subgroup. It is shown that the supersymmetric action has the form of the localized (or superconformal) version of the action for n = 4 supersymmetric quantum mechanics. This superfield procedure provides a well defined scheme for including super matter. (Author)
Bilinear approach to the supersymmetric Gardner equation
Babalic, C. N.; Carstea, A. S.
2016-08-01
We study a supersymmetric version of the Gardner equation (both focusing and defocusing) using the superbilinear formalism. This equation is new and cannot be obtained from the supersymmetric modified Korteweg-de Vries equation with a nonzero boundary condition. We construct supersymmetric solitons and then by passing to the long-wave limit in the focusing case obtain rational nonsingular solutions. We also discuss the supersymmetric version of the defocusing equation and the dynamics of its solutions.
Supersymmetric quantum mechanics of the flux tube
Belitsky, A V
2016-01-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl(2|1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their facto...
Supersymmetric quantum mechanics of the flux tube
Belitsky, A. V.
2016-12-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.
Towards gauge unified, supersymmetric hidden strong dynamics
Chiang, Cheng-Wei; Ye, Fang
2016-01-01
We consider a class of models with extra complex scalars that are charged under both the Standard Model and a hidden strongly coupled $SU(N)_H$ gauge sector, and discuss the scenarios where the new scalars are identified as the messenger fields that mediate the spontaneously broken supersymmetries from the hidden sector to the visible sector. The new scalars are embedded into 5-plets and 10-plets of an $SU(5)_V$ gauge group that potentially unifies the Standard Model gauge groups. They also form a tower of bound states via hidden strong dynamics around the TeV scale. The Higgs bosons remain as elementary particles. Quadratically divergent contributions to the Higgs mass from the Standard Model fermions are canceled by the new scalar contributions to alleviate the fine-tuning problem. We also discuss a supersymmetrized version of this class of models, consisting of the minimal supersymmetric Standard Model plus extra chiral multiplets where the new scalars reside. Due to the hidden strong force, the new low-en...
Consistent supersymmetric decoupling in cosmology
Sousa Sánchez, Kepa
2012-01-01
The present work discusses several problems related to the stability of ground states with broken supersymmetry in supergravity, and to the existence and stability of cosmic strings in various supersymmetric models. In particular we study the necessary conditions to truncate consistently a sector o
Supersymmetric Vacua in Random Supergravity
Bachlechner, Thomas C; McAllister, Liam; Wrase, Timm
2012-01-01
We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the...
Supersymmetric classical mechanics: free case
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica
2001-06-01
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)
Quantum supersymmetric Bianchi IX cosmology
Damour, Thibault; Spindel, Philippe
2014-11-01
We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle
Polydimensional Supersymmetric Principles
Pezzaglia, W M
1999-01-01
Systems of equations are invariant under "polydimensional transformations" which reshuffle the geometry such that what is a line or a plane is dependent upon the frame of reference. This leads us to propose an extension of Clifford calculus in which each geometric element (vector, bivector) has its own coordinate. A new classical action principle is proposed in which particles take paths which minimize the distance traveled plus area swept out by the spin. This leads to a solution of the 50 year old conundrum of `what is the correct Lagrangian' in which to derive the Papapetrou equations of motion for spinning particles in curved space (including torsion). Based on talk given at: 5th International Conference on Clifford Algebras and their Applications in Mathematical Physics, Ixtapa-Zihuatanejo, Mexico, June 27-July 4, 1999.
The N = 1 Supersymmetric Wong Equations and the Non-Abelian Landau Problem
Fanuel, Michaël; Avossevou, Gabriel Y H; Dossa, Anselme F
2014-01-01
A Lagrangian formulation is given extending to N = 1 supersymmetry the motion of a charged point particle with spin in a non-abelian external field. The classical formulation is constructed for any external static non-abelian SU(N) gauge potential. As an illustration, a specific gauge is fixed enabling canonical quantization and the study of the supersymmetric non-abelian Landau problem. The spectrum of the quantum Hamiltonian operator follows in accordance with the supersymmetric structure.
Neutralino mass bounds in the next-to-minimal supersymmetric standard model
Franke, F; Bartl, Alfred
1994-01-01
We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next--To--Minimal Supersymmetric Standard Model (NMSSM). We find that for \\tan\\beta \\gsim 5.5 a massless neutralino is still possible, while the lower mass bound for the second lightest neutralino corresponds approximately to that for the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM).
Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians
Energy Technology Data Exchange (ETDEWEB)
Al-Hashimi, M.H., E-mail: hashimi@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Salman, M., E-mail: msalman@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Shalaby, A., E-mail: amshalab@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Physics Department, Faculty of Science, Mansoura University (Egypt); Wiese, U.-J., E-mail: wiese@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States)
2013-10-15
We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.
Tian, Kai; Liu, Q. P.
2012-07-01
A new N=1 supersymmetric Harry Dym equation is constructed by applying supersymmetric reciprocal transformation to a trivial supersymmetric Harry Dym equation, and its recursion operator and Lax formulation are also obtained. Within the framework of symmetry approach, a class of 3rd order supersymmetric equations of Harry Dym type are considered. In addition to five known integrable equations, a new supersymmetric equation, admitting 5th order generalized symmetry, is shown to be linearizable through supersymmetric reciprocal transformation. Furthermore, its Lax representation and recursion operator are given so that the integrability of this new equation is confirmed.
Regge trajectories in {N} = 2 supersymmetric Yang-Mills theory
Córdova, Clay
2016-09-01
We demonstrate that {N} = 2 supersymmetric non-Abelian gauge theories have towers of BPS particles obeying a Regge relation, J ˜ m 2, between their angular momenta, J, and their masses, m. For SU( N) Yang-Mills theories, we estimate the slope of these Regge trajectories using a non-relativistic quiver quantum mechanics model. Along the way, we also prove various structure theorems for the quiver moduli spaces that appear in the calculation.
Exploring the Supersymmetric $\\sigma$ Model
De Oliveira-Imbiriba, B C
1999-01-01
The purpose of this work is to present some basic concepts about the non-linear sigma model in a simple and direct way. We start with showing the bosonic model and the Wess-Zumino-Witten term, making some comments about its topological nature, and its association with the torsion. It is also shown that to cancel the quantum conformal anomaly the model should obey the Einstein equations. We provide a quick introduction about supersymmetry in chapter 2 to help the understanding the supersymmetric extension of the model. In the last chapter we present the supersymmetric model and its equations of motion. Finally we work-out the two-supersymmetry case, introducing the chiral as well as the twisted chiral fields, expliciting the very specific $SU(2)\\otimes U(1)$ case.
Supersymmetric Spacetimes from Curved Superspace
Kuzenko, Sergei M
2015-01-01
We review the superspace technique to determine supersymmetric spacetimes in the framework of off-shell formulations for supergravity in diverse dimensions using the case of 3D N=2 supergravity theories as an illustrative example. This geometric formalism has several advantages over other approaches advocated in the last four years. Firstly, the infinitesimal isometry transformations of a given curved superspace form, by construction, a finite-dimensional Lie superalgebra, with its odd part corresponding to the rigid supersymmetry transformations. Secondly, the generalised Killing spinor equation, which must be obeyed by the supersymmetry parameters, is a consequence of the more fundamental superfield Killing equation. Thirdly, general rigid supersymmetric theories on a curved spacetime are readily constructed in superspace by making use of the known off-shell supergravity-matter couplings and restricting them to the background chosen. It is the superspace techniques which make it possible to generate arbitra...
Fun with supersymmetric quantum mechanics
Freedman, B.; Cooper, F.
1984-04-01
The Hamiltonian and path integral approaches to supersymmetric quantum mechanics were reviewed. The related path integrals for the Witten Index and for stochastic processes were discussed and shown to be indications for supersymmetry breakdown. A system where in the superpotential W(x) has assymetrical values at + or - infinity was considered. Nonperturbative strategies for studying supersymmetry breakdown were described. These strategies are based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed.
Fun with supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup ..cap alpha../ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index ..delta.. which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if ..delta.. is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate ..delta.. for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references.
Quantum integrability and supersymmetric vacua
Nekrasov, Nikita A.; Shatashvili, Samson L.
2009-01-01
This is an announcement of some of the results of a longer paper where the supersymmetric vacua of two dimensional N=2 susy gauge theories with matter are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. The correspondence between the Heisenberg spin chain and the two dimensional U(N) theory with fundamental hypermultiplets is reviewed in detail. We demonstrate the isomorphism of the equivariant quantum cohomology of the cotangent bundle to ...
Warped Supersymmetric Grand Unification
Goldberger, W D; Smith, D R; Goldberger, Walter D.; Nomura, Yasunori; Smith, David R.
2003-01-01
We construct a realistic model of grand unification in AdS_5 truncated by branes, in which the unified gauge symmetry is broken by boundary conditions and the electroweak scale is generated by the AdS warp factor. We show that the model preserves the successful gauge coupling unification of the 4D MSSM at leading-logarithmic level. Kaluza-Klein towers, including those of XY gauge and colored Higgs multiplets, appear at the TeV scale, while the extra dimension provides natural mechanisms for doublet-triplet splitting and proton decay suppression. In one possible scenario supersymmetry is strongly broken on the TeV brane, in which case the lightest SU(3)_C x SU(2)_L x U(1)_Y gauginos are Dirac fermions, with universal masses at the weak scale, and the mass of the lightest XY gaugino is pushed well below that of the lowest gauge boson KK mode, improving the prospects for its production at the LHC. The bulk Lagrangian possesses a symmetry that we call GUT parity. If GUT parity is exact, the lightest GUT particle,...
Lorentz violation in supersymmetric field theories.
Nibbelink, Stefan Groot; Pospelov, Maxim
2005-03-04
We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies thereby escaping constraints from astrophysical searches for Lorentz violation.
Supersymmetric theories on squashed five-sphere
Imamura, Yosuke
2012-01-01
We construct supersymmetric theories on the SU(3)xU(1) symmetric squashed five-sphere with 2, 4, 6, and 12 supercharges. We first determine the Killing equation by dimensional reduction from 6d, and use Noether procedure to construct actions. The supersymmetric Yang-Mills action is straightforwardly obtained from the supersymmetric Chern-Simons action by using a supersymmetry preserving constant vector multiplet.
Instanton Corrected Non-Supersymmetric Attractors
Dominic, Pramod
2010-01-01
We discuss non-supersymmetric attractors with an instanton correction in Type IIA string theory compactified on a Calabi-Yau three-fold at large volume. For a stable non-supersymmetric black hole, the attractor point must minimize the effective black hole potential. We study the supersymmetric as well as non-supersymmetric attractors for the D0-D4 system with instanton corrections. We show that in simple models, like the STU model, the flat directions of the mass matrix can be lifted by a suitable choice of the instanton parameters.
Duality in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.
A blueprint for detecting supersymmetric dark matter in the Galactic halo
Springel, V.; White, S.D.M.; Frenk, C.S.; Navarro, J.F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.
2008-01-01
Dark matter is the dominant form of matter in the universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce g -rays at a lev
Geloun, Joseph Ben; Scholtz, Frederik G
2009-01-01
The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)commutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified.
Supersymmetric Composite Models on Intersecting D-branes
Kitazawa, N
2004-01-01
We construct supersymmetric composite models of quarks and leptons from type IIA T^6/(Z_2 x Z_2) orientifolds with intersecting D6-branes. In case of T^6 = T^2 x T^2 x T^2 with no tilted T^2, a composite model of the supersymmetric SU(5) grand unified theory with three generations is constructed. In case of that one T^2 is tilted, a composite model with SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry with three generations is constructed. These models are not realistic, but contain fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The mu-term of Higgs fields can be naturally generated through the exponentially suppressed Yukawa interaction among "preons".
Supersymmetric Grand Unification with Light Color-Triplet
Berezhiani, Lasha
2011-01-01
We construct a natural model of the supersymmetric SU(6) unification, in which the symmetry breaking, down to the standard model gauge group, results in the number of pseudo-Nambu-Goldstone superfields with interesting properties. Namely, besides the Higgs doublet-antidoublet pair which is responsible for the electroweak phase transition, the Nambu-Goldstone sector consists of multiplets in the anti- and fundamental representations of SU(5). While being strictly massless in the supersymmetric limit, they acquire the weak scale masses as a result of its breaking. The color-triplet components of this light sector could, in principle, mediate an unacceptably fast proton decay; however, because of the natural $\\text{TeV}/M_{\\text{GUT}}$ suppression of the Yukawa couplings to the light quarks and leptons, their existence is compatible with the experimental bound on proton lifetime. This suppression is made further interesting, since it results in the lifetime, of the lightest of the above-mentioned colored particl...
Supersymmetric Extension of the Standard Model with Naturally Stable Proton
Aoki, M; Aoki, Mayumi; Oshimo, Noriyuki
2000-01-01
A new supersymmetric standard model based on N=1 supergravity is constructed, aiming at natural explanation for the proton stability without invoking an ad hoc discrete symmetry through R parity. The proton is protected from decay by an extra U(1) gauge symmetry. Particle contents are necessarily increased to be free from anomalies, making it possible to incorporate the superfields for right-handed neutrinos and an SU(2)-singlet Higgs boson. The vacuum expectation value of this Higgs boson, which induces spontaneous breakdown of the U(1) symmetry, yields large Majorana masses for the right-handed neutrinos, leading to small masses for the ordinary neutrinos. The linear coupling of SU(2)-doublet Higgs superfields, which is indispensable to the superpotential of the minimal supersymmetric standard model, is replaced by a trilinear coupling of the Higgs superfields, so that there is no mass parameter in the superpotential. The energy dependencies of the model parameters are studied, showing that gauge symmetry b...
Supersymmetric quantum spin chains and classical integrable systems
Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei
2015-05-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Supersymmetric quantum spin chains and classical integrable systems
Tsuboi, Zengo; Zotov, Andrei
2014-01-01
For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.
Supersymmetric Adler Functions and Holography
Iwanaga, Masaya; Sakai, Tadakatsu
2016-01-01
We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.
Adding momentum to supersymmetric geometries
Energy Technology Data Exchange (ETDEWEB)
Lunin, Oleg, E-mail: olunin@albany.edu [Department of Physics, University at Albany (SUNY), Albany, NY 12222 (United States); Mathur, Samir D., E-mail: mathur.16@osu.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Turton, David, E-mail: turton.7@osu.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)
2013-03-11
We consider general supersymmetric solutions to minimal supergravity in six dimensions, trivially lifted to IIB supergravity. To any such solution we add a traveling wave deformation involving the additional directions. The deformed solution is given in terms of a function which is harmonic in the background geometry. We also present a family of explicit examples describing microstates of the D1-D5 system on T{sup 4}. In the case where the background contains a large AdS region, the deformation is identified as corresponding to an action of a U(1) current of the D1-D5 orbifold CFT on a given state.
Adding momentum to supersymmetric geometries
Lunin, Oleg; Turton, David
2012-01-01
We consider general supersymmetric solutions to minimal supergravity in six dimensions, trivially lifted to IIB supergravity. To any such solution we add a travelling-wave deformation involving the additional directions. The deformed solution is given in terms of a function which is harmonic in the background geometry. We also present a family of explicit examples describing microstates of the D1-D5 system on T^4. In the case where the background contains a large AdS region, the deformation is identified as corresponding to an action of a U(1) current of the D1-D5 orbifold CFT on a given state.
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
The holographic supersymmetric Casimir energy
Genolini, Pietro Benetti; Martelli, Dario; Sparks, James
2016-01-01
We consider a general class of asymptotically locally AdS_5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S^1 x M_3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S^1 x R^4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges.
Supersymmetric photonic signals at LEP
López, J; Zichichi, Antonino
1996-01-01
We explore and contrast the single-photon and diphoton signals expected at LEP 2, that arise from neutralino-gravitino (e^+ e^- -> chi + gravitino -> gamma + E_miss) and neutralino-neutralino (e^+ e^- -> chi + chi -> gamma + gamma + E_miss) production in supersymmetric models with a light gravitino. LEP 1 limits imply that one may observe either one, but not both, of these signals at LEP 2, depending on the values of the neutralino and gravitino masses: single-photons for m_chi > Mz and m_gravitino < 3 x 10^-5 eV; diphotons for m_chi < Mz and all allowed values of m_gravitino.
Supersymmetric R4-actions in ten dimensions
Roo, M. de; Suelmann, H.; Wiedemann, A.
1992-01-01
We construct supersymmetric R+R4-actions in ten dimensions. Two invariants, of which the bosonic parts are known from string amplitude and sigma model calculations, are obtained. One of these invariants can be generalized to an R+F2+F4-invariant for supersymmetric Yang-Mills theory coupled to superg
Supersymmetric features of Maxwell fisheye lens
Rosu, H C; Wolf, K B; Obregón, O; Rosu, Haret C; Reyes, M; Wolf, K B; Obregon, O
1995-01-01
Following L\\'evai, we apply a Natanzon-type supersymmetric analysis to the Maxwell fisheye wave problem at zero energy. Working in the so-called R_{0}=0 sector, we obtain the corresponding superpartner (fermionic) fisheye scattering potential within the standard one-dimensional (radial) supersymmetric procedure.
Supersymmetric dark matter after LHC run 1
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.A.; Weiglein, G. [DESY, Hamburg (Germany); Buchmueller, O.; Citron, M.; Malik, S.; De Vries, K.J. [High Energy Physics Group, Blackett Laboratory, Imperial College, London (United Kingdom); Cavanaugh, R. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); De Roeck, A. [CERN, Physics Department, Geneva 23 (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [Theory Group, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [CERN, Physics Department, Geneva 23 (Switzerland); King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Sakurai, K. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom)
2015-10-15
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ{sub 1}{sup 0}, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ{sub 1}, stop t{sub 1} or chargino χ{sub 1}{sup ±}, resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ{sub 1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for E{sub T} events and longlived charged particles, whereas their H/A funnel, focus-point and χ{sub 1}{sup ±} coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is χ{sub 1}{sup ±} coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches. (orig.)
Supersymmetric dark matter after LHC run 1.
Bagnaschi, E A; Buchmueller, O; Cavanaugh, R; Citron, M; De Roeck, A; Dolan, M J; Ellis, J R; Flächer, H; Heinemeyer, S; Isidori, G; Malik, S; Martínez Santos, D; Olive, K A; Sakurai, K; de Vries, K J; Weiglein, G
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, [Formula: see text], assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau [Formula: see text], stop [Formula: see text] or chargino [Formula: see text], resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the [Formula: see text] coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for [Formula: see text] events and long-lived charged particles, whereas their H / A funnel, focus-point and [Formula: see text] coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is [Formula: see text] coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.
A Maximally Supersymmetric Kondo Model
Energy Technology Data Exchange (ETDEWEB)
Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC
2012-02-17
We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.
Heister, A.; Barate, R.; Bruneliere, R.; De Bonis, I.; Decamp, D.; Goy, C.; Jezequel, S.; Lees, J.P.; Martin, F.; Merle, E.; Minard, M.N.; Pietrzyk, B.; Trocme, B.; Boix, G.; Bravo, S.; Casado, M.P.; Chmeissani, M.; Crespo, J.M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Grauges, E.; Lopez, J.; Martinez, M.; Merino, G.; Miquel, R.; Mir, L.M.; Pacheco, A.; Paneque, D.; Ruiz, H.; Colaleo, A.; Creanza, D.; De Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Azzurri, P.; Barklow, T.; Buchmuller, O.; Cattaneo, M.; Cerutti, F.; Clerbaux, B.; Drevermann, H.; Forty, R.W.; Frank, M.; Gianotti, F.; Greening, T.C.; Hansen, J.B.; Harvey, J.; Hutchcroft, D.E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, Gigi; Schlatter, D.; Sguazzoni, G.; Tejessy, W.; Teubert, F.; Valassi, A.; Videau, I.; Ward, J.J.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J.M.; Perret, P.; Hansen, J.D.; Hansen, J.R.; Hansen, P.H.; Nilsson, B.S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.C.; Machefert, F.; Rouge, A.; Swynghedauw, M.; Tanaka, R.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Campana, P.; Capon, G.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G.P.; Passalacqua, L.; Halley, A.; Kennedy, J.; Lynch, J.G.; Negus, P.; O'Shea, V.; Thompson, A.S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E.E.; Leibenguth, G.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P.J.; Girone, M.; Hill, R.D.; Marinelli, N.; Nowell, J.; Rutherford, S.A.; Sedgbeer, J.K.; Thompson, J.C.; White, R.; Ghete, V.M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C.K.; Clarke, D.P.; Ellis, G.; Finch, A.J.; Foster, F.; Hughes, G.; Jones, R.W.L.; Pearson, M.R.; Robertson, N.A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Lemaitre, V.; Blumenschein, U.; Holldorfer, F.; Jakobs, K.; Kayser, F.; Kleinknecht, K.; Muller, A.S.; Quast, G.; Renk, B.; Sander, H.G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Huttmann, K.; Lutjens, G.; Manner, W.; Moser, H.G.; Settles, R.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.F.; Heusse, P.; Jacholkowska, A.; Loomis, C.; Serin, L.; Veillet, J.J.; de Vivie de Regie, J.B.; Yuan, C.; Bagliesi, Giuseppe; Boccali, T.; Foa, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciaba, A.; Tenchini, R.; Venturi, A.; Verdini, P.G.; Awunor, O.; Blair, G.A.; Cowan, G.; Garcia-Bellido, A.; Green, M.G.; Jones, L.T.; Medcalf, T.; Misiejuk, A.; Strong, J.A.; Teixeira-Dias, P.; Clifft, R.W.; Edgecock, T.R.; Norton, P.R.; Tomalin, I.R.; Bloch-Devaux, Brigitte; Boumediene, D.; Colas, P.; Fabbro, B.; Lancon, E.; Lemaire, M.C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.F.; Rosowsky, A.; Seager, P.; Trabelsi, A.; Tuchming, B.; Vallage, B.; Konstantinidis, N.; Litke, A.M.; Taylor, G.; Booth, C.N.; Cartwright, S.; Combley, F.; Hodgson, P.N.; Lehto, M.; Thompson, L.F.; Affholderbach, K.; Boehrer, Armin; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Sieler, U.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S.R.; Berkelman, Karl; Cranmer, K.; Ferguson, D.P.S.; Gao, Y.; Gonzalez, S.; Hayes, O.J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P.A., III; Nielsen, J.; Pan, Y.B.; von Wimmersperg-Toeller, J.H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.
2002-01-01
A total of 628$\\invpb$ of data collected with the ALEPH detector at centre-of-mass energies from 189 to 209\\,GeV is analysed in the search for gauge mediated SUSY breaking (GMSB) topologies. These topologies include two acoplanar photons, non-pointing single photons, acoplanar leptons, large impact parameter leptons, detached slepton decay vertices, heavy stable charged sleptons and multi-leptons plus missing energy final states. No evidence is found for new phenomena, and lower limits on masses of supersymmetric particles are derived. A scan of a minimal GMSB parameter space is performed and lower limits are set for the next-to-lightest supersymmetric particle (NLSP) mass at 54$\\gevcc$ and for the mass scale parameter $\\Lambda$ at 10$\\tevcc$, independently of the NLSP lifetime. Including the results from the neutral Higgs boson searches, a NLSP mass limit of 77$\\gevcc$ is obtained and values of $\\Lambda$ up to 16$\\tevcc$ are excluded.
Non-Supersymmetric Stringy Attractors
Dominic, Pramod
2011-01-01
In this paper we examine the stability of non-supersymmetric attractors in type IIA supergravity compactified on a Calabi-Yau manifold, in the presence of sub-leading corrections to the N=$ pre-potential. We study black hole configurations carrying D0-D6 and D0-D4 charges. We consider the O(1) corrections to the pre-potential given by the Euler number of the Calabi-Yau manifold. We argue that such corrections in general can not lift the zero modes for the D0-D6 attractors. However, for the attractors carrying the D0-D4 charges, they affect the zero modes in the vector multiplet sector. We show that, in the presence of such O(1) corrections, the D0-D4 attractors can either be stable or unstable depending on the geometry of the underlying Calabi-Yau manifold, and on the specific values of the charges they carry.
Instability of supersymmetric microstate geometries
Eperon, Felicity C; Santos, Jorge E
2016-01-01
We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an "evanescent ergosurface": a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.
Supersymmetric Sneutrino-Higgs Inflation
Deen, Rehan; Purves, Austin
2016-01-01
It is shown that in the phenomenologically realistic supersymmetric $B-L$ MSSM theory, a linear combination of the neutral, up Higgs field with the third family left-and right-handed sneutrinos can play the role of the cosmological inflaton. Assuming that supersymmetry is softly broken at a mass scale of order $10^{13}~\\mathrm{GeV}$, the potential energy associated with this field allows for 60 e-foldings of inflation with the cosmological parameters being consistent with all Planck2015 data. The theory does not require any non-standard coupling to gravity and the physical fields are all sub-Planckian during the inflationary epoch. It will be shown that there is a "robust" set of initial conditions which, in addition to satisfying the Planck data, simultaneously are consistent with all present LHC phenomenological requirements.
Instability of supersymmetric microstate geometries
Energy Technology Data Exchange (ETDEWEB)
Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2016-10-07
We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an “evanescent ergosurface”: a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.
Currents in supersymmetric field theories
Derendinger, Jean-Pierre
2016-01-01
A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.
Supersymmetric unification at the millennium
Indian Academy of Sciences (India)
Charanjit S Aulakh
2000-07-01
We argue that the discovery of neutrino mass effects at super-Kamiokande implies a clear logical chain leading from the Standard Model, through the MSSM and the recently developed minimal left right supersymmetric models with a renormalizable see-saw mechanism for neutrino mass, to left right symmetric SUSY GUTS: in particular, SO(10) and SU(2)× SU(2) × SU(4). The progress in constructing such GUTS explicitly is reviewed and their testability/falsiﬁability by lepton ﬂavour violation and proton decay measurements emphasized. SUSY violations of the survival principle and the interplay between third generation Yukawa coupling uniﬁcation and the structurally stable IR attractive features of the RG ﬂow in SUSY GUTS are also discussed.
Supersymmetric Sneutrino-Higgs inflation
Deen, Rehan; Ovrut, Burt A.; Purves, Austin
2016-11-01
It is shown that in the phenomenologically realistic supersymmetric B - L MSSM theory, a linear combination of the neutral, up Higgs field with the third family left- and right-handed sneutrinos can play the role of the cosmological inflaton. Assuming that supersymmetry is softly broken at a mass scale of order 1013 GeV, the potential energy associated with this field allows for 60 e-foldings of inflation with the cosmological parameters being consistent with all Planck2015 data. The theory does not require any non-standard coupling to gravity and the physical fields are all sub-Planckian during the inflationary epoch. It will be shown that there is a "robust" set of initial conditions which, in addition to satisfying the Planck data, simultaneously are consistent with all present LHC phenomenological requirements.
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.
2017-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Cavanaugh, R.; Chobanova, V.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Lucio, M.; Martínez Santos, D.; Olive, K.A.; Richards, A.; de Vries, K.J.; Weiglein, G.
2016-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Supersymmetric counterterms from new minimal supergravity
Assel, Benjamin; Martelli, Dario
2014-01-01
We present a systematic classification of counterterms of four-dimensional supersymmetric field theories on curved space, obtained as the rigid limit of new minimal supergravity. These are supergravity invariants constructed using the field theory background fields. We demonstrate that if the background preserves two supercharges of opposite chirality, then all dimensionless counterterms vanish. This implies that a supersymmetric renormalisation scheme is free of ambiguities. When only one Euclidean supercharge is preserved, we describe the ambiguities that appear in supersymmetric observables, in particular in the dependence on marginal couplings.
A tool box for implementing supersymmetric models
Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian
2012-10-01
We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The
Flipped version of the supersymmetric strongly coupled preon model
Fajfer, S.; Mileković, M.; Tadić, D.
1989-12-01
In the supersymmetric SU(5) [SUSY SU(5)] composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5)⊗U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.
Supersymmetric extension of the minimal dark matter model
Institute of Scientific and Technical Information of China (English)
CHANG Xue; LIU Chun; MA Feng-Cai; YANG Shuo
2012-01-01
The minimal dark matter model is given a supersymmetric extension.A super SU(2)L quintuplet is introduced with its fermionic neutral component still being the dark matter,and the dark matter mass is about 19.7 TeV.Mass splitting among the quintplet due to supersymmetry particles is found to be negligibly small compared to the electroweak corrections.Other properties of this supersymmetry model are studied,it has the solutions to the PAMELA and Fermi-LAT anomaly,and the predictions in higher energies need further experimental data to verify them.
N= 4 Supersymmetric Quantum Mechanical Model: Novel Symmetries
Krishna, S
2016-01-01
We discuss a set of novel discrete symmetry transformations of the N = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions onto (1, 4)-dimensional supermanifold.
𝒩 = 4 supersymmetric quantum mechanical model: Novel symmetries
Krishna, S.
2017-04-01
We discuss a set of novel discrete symmetry transformations of the 𝒩 = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent 𝒩 = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions 𝜃α and 𝜃¯α onto (1, 4)-dimensional supermanifold.
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi
1998-01-01
We formulate a manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. In our scheme, the effective action in the superfield background-field method above one-loop is always supersymmetric and gauge invariant. The gauge anomaly has the covariant form and can emerge only in one-loop diagrams with all the external lines are the background gauge superfield. We also present several illustrative applications in the one-loop approximation: The self-energy part of the chiral multiplet and the gauge multiplet; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and the anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
The Minimal Supersymmetric Fat Higgs Model
Harnik, R; Larson, D T; Murayama, H; Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi
2003-01-01
We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.
Bosonization of supersymmetric KdV equation
Energy Technology Data Exchange (ETDEWEB)
Gao Xiaonan [Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Lou, S.Y., E-mail: sylou@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Faculty of Science, Ningbo University, Ningbo, 315211 (China); School of Mathematics, Fudan University, Shanghai, 200433 (China)
2012-01-16
Bosonization approach to the classical supersymmetric systems is presented. By introducing the multi-fermionic parameters in the expansions of the superfields, the N=1 supersymmetric KdV (sKdV) system is transformed to a system of coupled bosonic equations. The method can be applied to any fermionic systems. By solving the coupled bosonic equations, some novel types of exact solutions can be explicitly obtained. Especially, the richness of the localized excitations of the supersymmetric integrable system is discovered. The rich multi-soliton solutions obtained here have not yet been obtained by using other methods. However, the traditional known multi-soliton solutions can also not be obtained by the bosonization approach of this Letter. Some open problems on the bosonization of the supersymmetric integrable models are proposed in the both classical and quantum levels.
Proton Decay in Minimal Supersymmetric SU(5)
Bajc, Borut; Perez, Pavel Fileviez; Senjanovic, Goran
2002-01-01
We systematically study proton decay in the minimal supersymmetric SU(5) grand unified theory. We find that although the available parameter space of soft masses and mixings is quite constrained, the theory is still in accord with experiment.
Bubbles of Nothing and Supersymmetric Compactifications
Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon
2016-01-01
We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such "topologically unobstructed" cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to $M_3 \\times S_1$ presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this dec...
Patterns of flavor signals in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2007-11-15
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Search for Long-lived particles with the ATLAS detector
Saito, Masahiko; The ATLAS collaboration
2017-01-01
Several supersymmetric models predict the production of massive long-lived supersymmetric particles. Such particles, if charged, may be detected through abnormal specific energy loss or long time-of-flight to the calorimeters. The poster presents recent results from searches of long-lived supersymmetric charged particles using proton-proton collisions at a centre of mass energy of 13 TeV with the ATLAS detector.
Search for stable massive SUSY particles with the ATLAS detector
Heinrich, Jochen Jens; The ATLAS collaboration
2016-01-01
Several supersymmetric models predict the production of massive long-lived supersymmetric particles. Such particles, if charged, may be detected through abnormal specific energy loss or long time-of-flight to the calorimeters. The talk presents recent results from searches of long-lived supersymmetric charged particles using proton-proton collisions at a centre of mass energy of 13 TeV with the ATLAS detector.
NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS
Institute of Scientific and Technical Information of China (English)
LIU KE-JIA; HE LI; ZHOU GUO-LI; WU YU-JIAO
2001-01-01
Using the formalism of supersymmetric quantum mechanics, we give an exact solution for a family of onedimensional periodic potentials, which are the supersymmetric partners of the potential proportional to the trigonometric function cos(2x) such that the Schrodinger equation for this potential is named the Mathieu equation mathematically.We show that the new potentials are distinctly different from their original ones. However, both have the same energy band structure. All the potentials obtained in this paper are free of singularities.
On the uniqueness of supersymmetric attractors
Directory of Open Access Journals (Sweden)
Taniya Mandal
2015-10-01
Full Text Available In this paper we discuss the uniqueness of supersymmetric attractors in four-dimensional N=2 supergravity theories coupled to n vector multiplets. We prove that for a given charge configuration the supersymmetry preserving axion free attractors are unique. We generalise the analysis to axionic attractors and state the conditions for uniqueness explicitly. We consider the example of a two-parameter model and find all solutions to the supersymmetric attractor equations and discuss their uniqueness.
Generalized Kahler Geometry from supersymmetric sigma models
Bredthauer, A; Persson, J; Zabzine, M; Bredthauer, Andreas; Lindstrom, Ulf; Persson, Jonas; Zabzine, Maxim
2006-01-01
We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.
(2+1)-dimensional supersymmetric integrable equations
Yan, Zhao-Wen; Tala; Chen, Fang; Liu, Tao-Ran; Han, Jing-Min
2017-09-01
By means of two different approaches, we construct the (2+1)-dimensional supersymmetric integrable equations based on the super Lie algebra osp(3/2). We relax the constraint condition of homogenous space of super Lie algebra osp(3/2) in the first approach. In another one, the technique of extending the dimension of the systems is used. Furthermore for the (2 + 1)-dimensional supersymmetric integrable equations, we also derive their Bäcklund transformations.
Searches for electroweak production of supersymmetric gauginos and sleptons with the ATLAS detector
Kourkoumeli-Charalampidi, Athina; The ATLAS collaboration
2017-01-01
The latest results of the electroweak production of Supersymmetric particles is presented. The searches are based on the integrated luminosity of 36.1 fb^{-1} of pp collisions collected at \\sqrt{s} = 13 TeV by the ATLAS experiment at the LHC.
Neutral Supersymmetric Higgs Boson Searches
Energy Technology Data Exchange (ETDEWEB)
Robinson, Stephen Luke [Imperial College, London (United Kingdom)
2008-07-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL
Lectures on Supersymmetric Yang-Mills Theory and Integrable Systems
D'Hoker, Eric; Phong, D. H.
Introduction Supersymmetry and the Standard Model Supersymmetry and Unification of Forces Supersymmetric Yang-Mills Dynamics Supersymmetric Yang-Mills in 4 Dimensions Supersymmetry Algebra Massless Particle Representations Massive Particle Representations Field Contents of Supersymmetric Field Theories N = 1 Supersymmetric Lagrangians N = 1 Superfield Methods Irreducible Superfields of N = 1 General N = 1 Susy Lagrangians via Superfields Renormalizable N = 2,4 Susy Lagrangians N = 2 Superfield Methods: Unconstrained Superspace N = 2 Superfield Methods: Harmonic/Analytic Superspaces Seiberg-Witten Theory Wilson Effective Couplings and Actions Holomorphicity and Nonrenormalization Low Energy Dynamics of N = 2 Super-Yang-Mills Particle and Field Contents Form of the N = 2 Low Energy Effective Lagrangian Physical Properties of the Prepotential Electric-Magnetic Duality Monodromy via Elliptic Curves for SU(2) Gauge Group Physical Interpretation of Singularities Hypergeometric Function Representation More General Gauge Groups, Hypermultiplets Model of Riemann Surfaces Identifying Seiberg-Witten and Riemann Surface Data SU(N) Gauge Algebras, Fundamental Hypermultiplets Classical Gauge Algebras, Fundamental Hypermultiplets Mechanical Integrable Systems Lax Pairs with Spectral Parameter-Spectral Curves The Toda Systems The Calogero-Moser Systems for SU(N) Relation between Calogero-Moser and Toda for SU(N) Relations with KdV and KP Systems Calogero-Moser Systems for General Lie Algebras Scaling of Calogero-Moser to Toda for General Lie Algebras Calogero-Moser Lax Pairs for General Lie Algebras Lax Pairs with Spectral Parameter for Classical Lie Algebras The General Ansatz Lax Pairs for Untwisted Calogero-Moser Systems Lax Pairs for Twisted Calogero-Moser Systems Scaling Limits of Lax Pairs Super-Yang-Mills and Calogero-Moser Systems Correspondence of Seiberg-Witten and Integrable Systems Calogero-Moser and Seiberg-Witten Theory for SU(N) Four Fundamental Theorems Partial
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Celine; Fuks, Benjamin; Hirschi, Valentin; Proudom, Josselin; Shao, Hua-Sheng
2016-01-01
We present a fully automated framework based on the FeynRules and MadGraph5 aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Directory of Open Access Journals (Sweden)
Céline Degrande
2016-04-01
Full Text Available We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
The Supersymmetric origin of matter
Energy Technology Data Exchange (ETDEWEB)
Balazs, C.; /Argonne; Carena, M.; /Fermilab; Menon, A.; Morrissey, D.E.; Wagner, C.E.M.; /Argonne /Chicago U., EFI
2004-12-01
The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Due to the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron Electric Dipole Moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b {yields} s{gamma} decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.
Radiative Effects and Electroweak Symmetry Breaking in a Supersymmetric Preon Model
Kim, Jongbae
We construct the low energy effective theory of composite quarks, leptons, and Higgs bosons for a supersymmetric preon model and study the effects of renormalization-group based radiative corrections. The study on the evolution of scalar masses for avoiding color and charge breakings leads us to conclude that Yukawa couplings are bounded from above. The implementation of electroweak symmetry breaking requires that only the purely dynamical symmetry breaking should be needed for the model, but the combined scheme of dynamical and radiative symmetry breaking as well as the purely radiative symmetry breaking scheme be disfavored. Our analysis of (mb)/(m_τ ) including radiative effects shows that, should a discrepancy be found between the observed and the theoretical value of (mb)/(m_τ ) after experimental determination of supersymmetric particle masses, it would imply that the complete quark-lepton universality in the supersymmetric preon model does not hold either for the Yukawa couplings, or for the condensates, or for both.
Search for R-parity violating supersymmetric signals with the ATLAS detector
Smith, Russell; The ATLAS collaboration
2016-01-01
R-parity violation introduces new signatures to be considered in the search for supersymmetry at the LHC. Strongly interacting resonances may decay to jets, sleptons may decay via lepton-flavour violating processes and lightest supersymmetric particles may decay into many particles with or without missing transverse momentum. The talk presents recent results from searches of supersymmetry in resonance production and R-parity violating signatures with the ATLAS detector
Bubbles of nothing and supersymmetric compactifications
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)
2016-10-03
We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.
Hot-warm unstable supersymmetric dark matter and galaxy formation
Energy Technology Data Exchange (ETDEWEB)
Asselin, X.; Girardi, G.; Salati, P.; Blanchard, A.
1988-12-12
Recent observational results had lead to a revival of interest in neutrino-dominated universe. However, we recall that current constraints make the neutrino an unlikely candidate for the dark matter. In this paper, we show that a supersymmetric particle with a typical mass of a few tens of eV will be a much better candidate. Such a particle is radiatively unstable, and its lifetime is a few times larger than the age of the universe. This can drastically change the thermal history of the universe. We investigate in detail the heating of the intergalactic medium in the period z=100-z=10. In particular, we find that the universe can be fully reionized for lifetime less than or equal to 10/sup 24/. This, in turn, lowers the level of temperature fluctuations of the background radiation. We conclude that this model avoids the major problems of the neutrino picture.
A supersymmetric theory of vector-like leptons
Joglekar, Aniket; Schwaller, Pedro; Wagner, Carlos E. M.
2013-07-01
We study a supersymmetric extension of the vector-like lepton scenario, such that the vacuum instability induced by large lepton Yukawa couplings is lifted by the presence of superpartners at or below the TeV scale. In order to preserve the unification of gauge couplings, we introduce a full 16+overline{16} of SO(10), and determine the maximal possible values for the Yukawa couplings consistent with perturbativity at the GUT scale. We find that the Higgs to diphoton decay rate can be enhanced by up to 50% while maintaining vacuum stability and keeping the new particle masses above 100 GeV, while larger enhancements are possible if the masses of the new particles are lowered further.
A Supersymmetric Theory of Vector-like Leptons
Joglekar, Aniket; Wagner, Carlos E M
2013-01-01
We study a supersymmetric extension of the vector-like lepton scenario, such that the vacuum instability induced by large lepton Yukawa couplings is lifted by the presence of superpartners at or below the TeV scale. In order to preserve the unification of gauge couplings, we introduce a full 16+\\bar{16} of SO(10), and determine the maximal possible values for the Yukawa couplings consistent with perturbativity at the GUT scale. We find that the Higgs to diphoton decay rate can be enhanced by up to 50% while maintaining vacuum stability and keeping the new particle masses above 100 GeV, while larger enhancements are possible if the masses of the new particles are lowered further.
Spectral properties in supersymmetric matrix models
Energy Technology Data Exchange (ETDEWEB)
Boulton, Lyonell, E-mail: L.Boulton@hw.ac.uk [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Garcia del Moral, Maria Pilar, E-mail: garciamormaria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain); Restuccia, Alvaro, E-mail: arestu@usb.ve [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas (Venezuela, Bolivarian Republic of); Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain)
2012-03-21
We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.
N=2 supersymmetric dynamics for pedestrians
Tachikawa, Yuji
2015-01-01
Understanding the dynamics of gauge theories is crucial, given the fact that all known interactions are based on the principle of local gauge symmetry. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dimensions with extended N=2 supersymmetry are further constrained and have therefore been a fertile field of research in theoretical physics for quite some time. Moreover, there are far-reaching mathematical ramifications that have led to a successful dialogue with differential and algebraic geometry. These lecture notes aim to introduce students of modern theoretical physics to the fascinating developments in the understanding of N=2 supersymmetric gauge theories in a coherent fashion. Starting with a gentle introduction to electric-magnetic duality, the author guides r...
New dualities of supersymmetric gauge theories
2016-01-01
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...
Superconformal Algebras and Supersymmetric Integrable Flows
Sachse, Christoph; Devchand, Chandrasekhar
2009-01-01
After a comprehensive review of superconformal algebras, super-diffeomorphisms and supervector fields on supercircles S^{1|n} we study various supersymmetric extensions of the KdV and Camassa-Holm equations. We describe their (super) Hamiltonian structures and their connection to bihamiltonian geometry. These are interpreted as geodesic flows on various superconformal groups. We also give an example of superintegrable systems of Ramond type. The one-parameter family of equations shown by Degasperis, Holm and Hone (DHH) to possess multi-peakon solutions is identified as a geodesic flow equation on a one-parameter deformation of the group of diffeomorphisms of the circle, with respect to a right-invariant Sobolev H^1--metric. A supersymmetrisation of the algebra of deformed vector fields on S^1 yields supersymmetric DHH equations (also known as b-field equations), which include the supersymmetric Camassa--Holm equation as a special case.
Gauging isometries in N=4 supersymmetric mechanics
Delduc, F
2008-01-01
This talk summarizes the study of superfield gaugings of isometries of extended supersymmetric mechanics in hep-th/0605211, hep-th/0611247 and arXiv:0706.0706. The gauging procedure provides a manifestly supersymmetric realization of d=1 automorphic dualities which interrelate various irreducible off-shell multiplets of d=1 extended supersymmetry featuring the same number of physical fermions but different divisions of bosonic fields into the physical and auxiliary subsets. We concentrate on the most interesting N=4 case and demonstrate that, with a suitable choice of the symmetry to be gauged, all such multiplets of N=4 supersymmetric mechanics and their generic superfield actions can be obtained from the "root" multiplet (4,4,0) and the appropriate gauged subclasses of the generic superfield action of the latter by a simple universal recipe.
Supersymmetric extension of the Snyder algebra
Energy Technology Data Exchange (ETDEWEB)
Gouba, L., E-mail: lgouba@ictp.it [Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy); Stern, A., E-mail: astern@bama.ua.edu [Dept. of Physics and Astronomy, Univ. of Alabama, Tuscaloosa, Al 35487 (United States)
2012-04-11
We obtain a minimal supersymmetric extension of the Snyder algebra and study its representations. The construction differs from the general approach given in Hatsuda and Siegel ( (arXiv:hep-th/0311002)) and does not utilize super-de Sitter groups. The spectra of the position operators are discrete, implying a lattice description of space, and the lattice is compatible with supersymmetry transformations. -- Highlights: Black-Right-Pointing-Pointer A new supersymmetric extension of the Snyder algebra is constructed. Black-Right-Pointing-Pointer The extension is minimal and the construction does not involve supersymmetric de Sitter algebras. Black-Right-Pointing-Pointer An involution is defined for the system and discrete representations are constructed. Black-Right-Pointing-Pointer The representations imply a spatial lattice and the lattice spacing is half that of the bosonic case. Black-Right-Pointing-Pointer A differential operator representation is given for fields on super-momentum space.
Invariant Regularization of Supersymmetric Chiral Gauge Theory
Suzuki, H
1999-01-01
We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.
Softly Broken Supersymmetric Gauge Theories through Compactifications
Takenaga, K
1998-01-01
Effects of boundary conditions of fields for compactified space directions on the supersymmetric gauge theories are discussed. For general and possible boundary conditions the supersymmetry is explicitly broken to yield universal soft supersymmetry breaking terms, and the gauge symmetry of the theory can also be broken through the dynamics of non-integrable phases, depending on number and the representation under the gauge group of matters. The 4-dimensional supersymmetric QCD is studied as a toy model when one of the space coordinates is compactified on $S^1$.
Renormalizability of Supersymmetric Group Field Cosmology
Upadhyay, Sudhaker
2014-01-01
In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.
Renormalizability of supersymmetric group field cosmology
Upadhyay, Sudhaker
2014-03-01
In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.
Just so oscillations in supersymmetric standard model
Joshipura, A S; Anjan S Joshipura; Marek Nowakowski
1995-01-01
We analyze the spectrum and mixing among neutrinos in the minimal supersymmetric standard model with explicit breaking of R parity. It is shown that ({\\em i}) the mixing among neutrinos is naturally large and ({\\em ii}) the non zero neutrino mass is constrained to be \\leq 10^{-5} eV from arguments based on baryogenesis. Thus vacuum oscillations of neutrinos in this model may offer a solution of the solar neutrino problem. The allowed space of the supersymmetric parameters consistent with this solution is determined.
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety...... in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
Supersymmetric asymptotic safety is not guaranteed
Intriligator, Kenneth
2015-01-01
It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.
Gravitino/axino as decaying dark matter and cosmological tensions
Directory of Open Access Journals (Sweden)
Koichi Hamaguchi
2017-09-01
Full Text Available In supersymmetric axion models, if the gravitino or axino is the lightest SUSY particle (LSP, the other is often the next-to-LSP (NLSP. We investigate the cosmology of such a scenario and point out that the lifetime of the NLSP naturally becomes comparable to the present age of the universe in a viable parameter region. This is a well-motivated example of the so-called decaying dark matter model, which is recently considered as an extension of the ΛCDM model to relax some cosmological tensions.
Angular Momentum of Supersymmetric Non-isotropic Traps
Institute of Scientific and Technical Information of China (English)
XU Qiang
2001-01-01
A simple way to explain quantum behavior of supersymmetric non-isotropic traps is proposed in the framework of sermiunitary formulation of supersymmetric quantum mechanics. Using semiunitary formulation we can simultaneously supersymmetrize the complete set of observables, especially including angular moment.
5D Maximally Supersymmetric Yang-Mills on the Lattice
Joseph, Anosh
2016-01-01
We provide details of the lattice construction of five-dimensional maximally supersymmetric Yang-Mills theory. The lattice theory is supersymmetric, gauge invariant and free from spectrum doublers. Such a supersymmetric lattice formulation is interesting as it can be used for non-perturbative explorations of the five-dimensional theory, which has a known gravitational dual.
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Long-lived neutralinos as probes gravitino dark matter
Energy Technology Data Exchange (ETDEWEB)
Hajer, Jan
2013-08-15
Supersymmetric extensions of the Standard Model with small R-parity and lepton-number violating couplings are naturally consistent with primordial nucleosynthesis, thermal leptogenesis and gravitino dark matter. We consider both supergravity models with universal boundary conditions at the grand unification scale and a scalar tau or bino-like neutralino as the next-to-lightest supersymmetric particle (NLSP) as well as hybrid gauge-gravity mediation models with a higgsino-like neutralino as the NLSP. Fermi-LAT data on the isotropic diffuse gamma-ray flux yield a lower bound on the gravitino lifetime, which we translate into a lower bound of the NLSP decay length of several centimeters. Together with gravitino and neutralino masses, one obtains a microscopic determination of the Planck mass. For supersymmetric mass parameters that can be tested at the Large Hadron Collider (LHC), the discovery of a photon line with an intensity close to the Fermi-LAT limit would imply a NLSP decay length of several hundred meters, which can also be measured at the LHC. We conduct a detailed investigation of the sensitivity of LHC experiments to the amount of R-parity breaking for models with masses of the coloured particles, which allow for strong production, as well as masses which only allow for Drell-Yang production. We perform a simulation of signal and background events using tools that are publicly available, which we have extended in order to also simulate the finite NLSP decay length. We find that values of the overall scale of R-parity violation can be probed which are one to two orders of magnitude smaller than the present upper bound obtained from astrophysics and cosmology. Using the example of higgsinos, we demonstrate that, given a signal, the NLSP mass can be determined by reconstructing the di-muon mass edge.
Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination
Energy Technology Data Exchange (ETDEWEB)
Krauss, Manuel Ernst
2015-12-18
It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar SU(2){sub R} triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new
E6 inspired supersymmetric models with exact custodial symmetry
Nevzorov, Roman
2013-01-01
The breakdown of E6 gauge symmetry at high energies may lead to supersymmetric models based on the standard model gauge group together with extra U(1)ψ and U(1)χ gauge symmetries. To ensure anomaly cancellation the particle content of these E6 inspired models involves extra exotic states that generically give rise to nondiagonal flavor transitions and rapid proton decay. We argue that a single discrete Z˜2H symmetry can be used to forbid tree-level flavor changing transitions, as well as the most dangerous baryon and lepton number violating operators. We present 5D and 6D orbifold grand unified theory constructions that lead to the E6 inspired supersymmetric models of this type. The breakdown of U(1)ψ and U(1)χ gauge symmetries that preserves E6 matter parity assignment guarantees that ordinary quarks and leptons and their superpartners, as well as the exotic states which originate from 27 representations of E6, survive to low energies. These E6 inspired models contain two dark matter candidates and must also include additional TeV scale vectorlike lepton or vectorlike down-type quark states to render the lightest exotic quark unstable. We examine gauge coupling unification in these models and discuss their implications for collider phenomenology and cosmology.
Supersymmetric grand unification with light color-triplet
Berezhiani, Lasha
2012-05-01
We construct a natural model of the supersymmetric SU (6) unification, in which the symmetry breaking, down to the standard model gauge group, results in the number of pseudo-Nambu-Goldstone superfields with interesting properties. Namely, besides the Higgs doublet-antidoublet pair which is responsible for the electroweak phase transition, the Nambu-Goldstone sector consists of multiplets in the anti- and fundamental representations of SU (5). While being strictly massless in the supersymmetric limit, they acquire the weak scale masses as a result of its breaking. The color-triplet components of this light sector could, in principle, mediate an unacceptably fast proton decay; however, because of the natural TeV /MGUT suppression of the Yukawa couplings to the light quarks and leptons, their existence is compatible with the experimental bound on proton lifetime. This suppression is made further interesting, since it results in the lifetime, of the lightest of the above-mentioned colored particles from 1 s to 1 day, long enough for it to appear stable in the detector. Furthermore, we argue that the accommodation of the color-triplet pseudo-Nambu-Goldstones, without fine-tuning or contradicting observations, implies SU (6) unification.
Supersymmetric Quantum Mechanics and Super-Lichnerowicz Algebras
Hallowell, K; 10.1007/s00220-007-0393-1
2008-01-01
We present supersymmetric, curved space, quantum mechanical models based on deformations of a parabolic subalgebra of osp(2p+2|Q). The dynamics are governed by a spinning particle action whose internal coordinates are Lorentz vectors labeled by the fundamental representation of osp(2p|Q). The states of the theory are tensors or spinor-tensors on the curved background while conserved charges correspond to the various differential geometry operators acting on these. The Hamiltonian generalizes Lichnerowicz's wave/Laplace operator. It is central, and the models are supersymmetric whenever the background is a symmetric space, although there is an osp(2p|Q) superalgebra for any curved background. The lowest purely bosonic example (2p,Q)=(2,0) corresponds to a deformed Jacobi group and describes Lichnerowicz's original algebra of constant curvature, differential geometric operators acting on symmetric tensors. The case (2p,Q)=(0,1) is simply the {\\cal N}=1 superparticle whose supercharge amounts to the Dirac operat...
Energy Technology Data Exchange (ETDEWEB)
Magnan, A.M
2005-07-15
This thesis is dedicated to the study of the first data taken by the D0 detector during the Run II of the Tevatron. Supersymmetric particles have been search for in proton-antiproton collisions, with a center of mass energy of 1.96 TeV. In the framework of supersymmetry with R-parity violation, I have studied the pair production of Gauginos, leading to a pair of LSP (0,{chi}{sub 1}), each one decaying into ee{nu}{sub {mu}} or e{mu}{nu}{sub e} with a {lambda}(121) coupling. The final state contains at least two electrons: I have thus paid special attention in this work to the methods concerning identification and mis-identification of electromagnetic particles, as well as reconstruction, triggering, and correction (of the reconstructed energy). In a selection of tri-leptons, with at least two electrons, and some transverse missing energy, we observed 0 event in the 350 pb{sup -1} of analyzed data, for 0.4 + 0.35 - 0.05 (sta) {+-} 0.16 (sys) expected from the Standard Model contributions. In the signal considered in this analysis, the selection efficiency is around 12 per cent. Results have been studied in two models: mSUGRA and MSSM. In mSUGRA model, limits on m(1/2) and lightest gauginos's masses have been obtained, with tan({beta}) = 5, A{sub 0} = 0, m{sub 0} = 100 and 1000 GeV.c{sup -2} and both signs of {mu}. In MSSM, with the hypothesis of massive sfermions (1000 GeV.c{sup -2}), we can exclude, at 95% Confidence Level, the region m({chi}{sub 1}{sup {+-}}) < 200 GeV.c{sup -2} for all masses of {chi}{sub 1}{sup 0} LSP. (author)
Computing Maximally Supersymmetric Scattering Amplitudes
Stankowicz, James Michael, Jr.
This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at
Asymptotic iteration approach to supersymmetric bistable potentials
Institute of Scientific and Technical Information of China (English)
H. Ciftci; O. ozer; P. Roy
2012-01-01
We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.
Neutrino masses and mixing in supersymmetric theories
Indian Academy of Sciences (India)
Sudhir K Vempati
2000-07-01
It has been known for sometime that supersymmetric theories with -parity violation provide a natural framework where small neutrino masses can be generated. We discuss neutrino masses and mixing in these theories in the presence of trilinear lepton number violating couplings. It will be shown that simultaneous solutions to solar and atmospheric neutrino problems can be realized in these models.
Spectral properties of supersymmetric shape invariant potentials
Indian Academy of Sciences (India)
Barnali Chakrabarti
2008-01-01
We present the spectral properties of supersymmetric shape invariant potentials (SIPs). Although the folded spectrum is completely random, unfolded spectrum shows that energy levels are highly correlated and absolutely rigid. All the SIPs exhibit harmonic oscillator-type spectral statistics in the unfolded spectrum. We conjecture that this is the reflection of shape invariant symmetry.
Partition functions for supersymmetric black holes
Manschot, J.
2008-01-01
This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a
Geometry of all supersymmetric type I backgrounds
Gran, Ulf; Papadopoulos, George; Sloane, Peter; Roest, Diederik
2007-01-01
We find the geometry of all supersymmetric type I backgrounds by solving the gravitino and dilatino Killing spinor equations, using the spinorial geometry technique, in all cases. The solutions of the gravitino Killing spinor equation are characterized by their isotropy group in Spin(9, 1), while th
A renormalizable supersymmetric SO(10) model
Chen, Ying-Kang
2015-01-01
A realistic grand unified model has never been constructed in the literature due to three major difficulties: the seesaw mechanism without spoiling gauge coupling unification, the doublet-triplet splitting and the proton decay suppression. We propose a renormalizable supersymmetric SO(10) model with all these difficulties solved naturally.
The spinorial method of classifying supersymmetric backgrounds
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2006-01-01
We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046] t
New supersymmetric localizations from topological gravity
Bae, Jinbeom; Imbimbo, Camillo; Rey, Soo-Jong; Rosa, Dario
2016-03-01
Supersymmetric field theories can be studied exactly on off-shell "localizing" supergravity backgrounds. We show that these supergravity configurations can be identified with BRST invariant configurations of background topological gravity coupled to background topological gauge multiplets. We apply this topological point of view to two-dimensional {N}=left(2,2right) supersymmetric matter theories to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. We recover all known localizing backgrounds and (infinitely) many more that have not been explored so far. The newly found localizing backgrounds are characterized by quantized fluxes for both graviphotons of the {N}=left(2,2right) supergravity multiplet. The BRST invariant topological backgrounds are parametrized by both Killing vectors and {{S}}^1 -equivariant cohomology of the two-dimensional spacetime. We completely reconstruct the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are composite, in that they are nonlinear functionals of topological fields. Moreover, we show that the supersymmetric Ω-deformation is nothing but the background value of the ghost-for-ghost of topological gravity, a result which holds for higher dimensions too.
Effective action for supersymmetric chiral anomaly
Energy Technology Data Exchange (ETDEWEB)
Krivoshchekov, V.K.; Chekhov, L.O.
1987-05-01
It is shown that consistency conditions of the type of the Wess-Zumino conditions are necessary and sufficient conditions for local integrability of the supersymmetric chiral anomaly. It follows from the requirement of global integrability that the coefficient of the anomalous action is discrete. Explicit expressions are obtained for consistent anomalies and the corresponding functionals, which depend on superfields of various types.
Electric dipole moments in supersymmetric theories
Romanino, Andrea
1996-01-01
Intrinsic EDMs in microscopic systems at a level of sensitivity achievable in experiments under way or foreseen are predicted in supersymmetric unified theories. I describe this and other sources of measurable EDMs and I show how these sources can be distinguished through experiments in different systems.
The Extent of the Stop Coannihilation Strip
Ellis, John; Zheng, Jiaming
2014-01-01
Many supersymmetric models such as the CMSSM feature a strip in parameter space where the lightest neutralino \\chi is identified as the lightest supersymmetric particle (LSP), the lighter stop squark \\tilde t_1 is the next-to-lightest supersymmetric particle (NLSP), and the relic \\chi cold dark matter density is brought into the range allowed by astrophysics and cosmology by coannihilation with the lighter stop squark \\tilde t_1 NLSP. We calculate the stop coannihilation strip in the CMSSM, incorporating Sommerfeld enhancement effects, and explore the relevant phenomenological constraints and phenomenological signatures. In particular, we show that the \\tilde t_1 may weigh several TeV, and its lifetime may be in the nanosecond range, features that are more general than the specific CMSSM scenarios that we study in this paper.
A Free N = 2 Supersymmetric System: Novel Symmetries
Krishna, S
2014-01-01
We discuss a set of novel discrete symmetries of a free N = 2 supersymmetric (SUSY) quantum mechanical system which is the limiting case of a widely-studied interacting SUSY model of a charged particle constrained to move on a sphere in the background of a Dirac magnetic monopole. The usual continuous symmetries of this model provide the physical realization of the de Rham cohomological operators of differential geometry. The interplay between the novel discrete symmetries and usual continuous symmetries leads to the physical realization of relationship between the (co-)exterior derivatives of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N = 2 SUSY symmetries of the theory and provided the geometrical origin and interpretation for the nilpotency property. Ultimately, our present study (based on innate symmetries) proves that our free N = 2 SUSY example is a tractable model for the Hodge theory.
Perturbative unification of gauge couplings in supersymmetric E6 models
Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho
2016-07-01
We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.
Making Supersymmetric Quivers from N =(0,2) Sigma Models
Shifman, Mikhail; Yung, Alexei
2014-01-01
We show how to construct quiver-like (0,2) sigma models starting from n copies of (2,2) CP(N-1) models (or similar more generic models). These "quivers" present a natural generalization of the non-minimally deformed (2,2) model with an extra (0,2) fermion superfield on tangle bundle T[CP(N-1)xC^1] considered previously. A remarkable feature observed is elimination of the spontaneous supersymmetry breaking. We study supersymmetric vacua and determine the particle spectrum in the large-N limit. We then examine the \\beta -functions of our quiver-like (0,2) sigma models and show that under certain conditions they develop an infrared fixed point in the perturbative domain.
Testing the Higgs Sector of the Minimal Supersymmetric Standard Model at Large Hadron Colliders
Kunszt, Zoltán
1992-01-01
We study the Higgs sector of the Minimal Supersymmetric Standard Model, in the context of proton-proton collisions at LHC and SSC energies. We assume a relatively heavy supersymmetric particle spectrum, and include recent results on one-loop radiative corrections to Higgs-boson masses and couplings. We begin by discussing present and future constraints from the LEP experiments. We then compute branching ratios and total widths for the neutral ($h,H,A$) and charged ($H^\\pm$) Higgs particles. We present total cross-sections and event rates for the important discovery channels at the LHC and SSC. Promising physics signatures are given by $h \\to \\gamma \\gamma$, $H \\to \\gamma \\gamma$ or $Z^* Z^*$ or $\\tau^+ \\tau^-$, $A \\to \\tau^+ \\tau^-$, and $t \\to b H^+$ followed by $H^+ \\to \\tau^+ \
The modulation effect for supersymmetric dark matter detection with asymmetric velocity dispersion
Vergados, J D
2000-01-01
The detection of the theoretically expected dark matter is central to particle physics cosmology. Current fashionable supersymmetric models provide a natural dark matter candidate which is the lightest supersymmetric particle (LSP). Such models combined with fairly well understood physics like the quark substructure of the nucleon and the nuclear form factor and the spin response function of the nucleus, permit the evaluation of the event rate for LSP-nucleus elastic scattering. The thus obtained event rates are, however, very low or even undetectable. So it is imperative to exploit the modulation effect, i.e. the dependence of the event rate on the earth's annual motion. In this review we study such a modulation effect in directional and undirectional experiments. We calculate both the differential and the total rates using symmetric as well as asymmetric velocity distributions. We find that in the symmetric case the modulation amplitude is small, less than 0.07. There exist, however, regions of the phase sp...
The Higgs Sector and CoGeNT/DAMA-Like Dark Matter in Supersymmetric Models
Gunnion, John F
2010-01-01
Recent data from CoGeNT and DAMA are roughly consistent with a very light dark matter particle with $m\\sim 4-10\\gev$ and spin-independent cross section of order $\\sigma_{SI} \\sim (1-3)\\times 10^{-4}\\pb$. An important question is whether these observations are compatible with supersymmetric models obeying $\\Omega h^2\\sim 0.11$ without violating existing collider constraints and precision measurements. In this talk, I review the fact the the Minimal Supersymmetric Model allows insufficient flexibility to achieve such compatibility, basically because of the highly constrained nature of the MSSM Higgs sector in relation to LEP limits on Higgs bosons. I then outline the manner in which the more flexible Higgs sectors of the Next-to-Minimal Supersymmetric Model and an Extended Next-to-Minimal Supersymmetric Model allow large $\\sigma_{SI}$ and $\\Omega h^2\\sim 0.11$ at low LSP mass without violating LEP, Tevatron, BaBar and other experimental limits. The relationship of the required Higgs sectors to the NMSSM ``ideal...
Tugai, V V
1996-01-01
A supersymmetric formulation of the classical action of interacting charged and neutral fermions with arbitrary anomalous magnetic moment is considered. This formulation generalizes the known action for scalar charged particles investigated in papers by Fokker, Schwarzschild, Tetrode, Wheeler and Feynman. The superfield formulation of the electrodynamics of the Maxwell supermultiplet, constructed from the world coordinates of charged or neutral fermions is carried out basing on the proposed action.
Tugai, V. V.; Zheltukhin, A. A.
1996-01-01
A supersymmetric formulation of the classical action of interacting charged and neutral fermions with arbitrary anomalous magnetic moment is considered. This formulation generalizes the known action for scalar charged particles investigated in papers by Fokker, Schwarzschild, Tetrode, Wheeler and Feynman. The superfield formulation of the electrodynamics of the Maxwell supermultiplet, constructed from the world coordinates of charged or neutral fermions is carried out basing on the proposed a...
Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider
De Campos, F; Hirsch, M; Magro, M B; Porod, W; Restrepo, D; Valle, J W F
2010-01-01
The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
A new Supersymmetric $SU(3)_L \\otimes U(1)_X$ gauge model
Díaz, R A; Rodríguez, José Alberto; Diaz, Rodolfo A.
2003-01-01
We present a new supersymmetric version of the $SU(3) \\otimes U(1)$ gauge model using a more economic content of particles. The model has a smaller set of free parameters than other possibilities considered before. The MSSM can be seen as an effective theory of this larger symmetry. We find that the upper bound of the ligthest CP-even Higgs boson can be moved up to 140 GeV.
Measuring And Explaining The Supersymmetric Lagrangian
Wang, L
2002-01-01
The issues of measuring the supersymmetric Lagrangian once data is available, and making the connections between the low energy effective Lagrangian and fundamental theory, are considered. After a brief introduction to the fundamentals of supersymmetry and overview of Minimal Supersymmetric Standard Model (MSSM), case studies in ways of measuring different parameters in the low energy MSSM Lagrangian are presented. They include: measuring CP violation phases and LSP masses in gluino decay; Higgs production and detection; flavor and CP violation in b → sγ processes; signature of cold dark matter in the cosmic rays. Potential ambiguities in the process of recovering the high energy effective Lagrangian from low energy data are discussed. A new basis, which is explicitly independent of unphysical parameters, is proposed to write the renormalization group equations. After a brief survey of some basic issues of string theory phenomenology, a string theory motivated Pati-Salam like model is const...
A constrained supersymmetric left-right model
Hirsch, Martin; Opferkuch, Toby; Porod, Werner; Staub, Florian
2016-01-01
We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.
A supersymmetric consistent truncation for conifold solutions
Cassani, Davide
2010-01-01
We establish a supersymmetric consistent truncation of type IIB supergravity on the T^{1,1} coset space, based on extending the Papadopoulos-Tseytlin ansatz to the full set of SU(2)xSU(2) invariant Kaluza-Klein modes. The five-dimensional model is a gauged N=4 supergravity with three vector multiplets, which incorporates various conifold solutions and is suitable for the study of their dynamics. By analysing the scalar potential we find a family of new non-supersymmetric AdS_5 extrema interpolating between a solution obtained long ago by Romans and a solution employing an Einstein metric on T^{1,1} different from the standard one. Finally, we discuss some simple consistent subtruncations preserving N=2 supersymmetry. One of them is compatible with the inclusion of smeared D7-branes.
Bound States Of Supersymmetric Black Holes
Britto-Pacumio, R A
2002-01-01
The quantum mechanics of N slowly-moving supersymmetric black holes in five dimensions is considered. A divergent continuum of states describing arbitrarily closely bound black holes with arbitrarily small excitation energies is found. A superconformal structure appears at low energies and can be used to define a topological index counting the weighted number of supersymmetric bound states. It is shown that the index is determined from the dimensions of certain cohomology classes on the symmetric product of N copies of R4. This bound state index is computed exactly for two and three black holes. The required regulator for the infrared continuum of near-coincident black holes is chosen in accord with the enhanced superconformal symmetry.
Supersymmetric QCD: Exact Results and Strong Coupling
Dine, Michael; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao
2011-01-01
We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is...
Selecting Supersymmetric String Scenarios From Sparticle Spectra
Allanach, Benjamin C; Quevedo, Fernando
2002-01-01
We approach the following question: if supersymmetry is discovered, how can we select among different supersymmetric extensions of the Standard Model? In particular, we perform an analysis of the sparticle spectrum in low-energy string effective theories, asking which observables best distinguish various scenarios. We examine scenarios differing by the fundamental string scale and concentrate on GUT and intermediate scale models. We scan over all parameters (two goldstino angles, tan beta and the gravitino mass) in each scenario, finding ratios of sparticle masses that provide the maximum discrimination between them. The necessary accuracy for discrimination is determined in each case. We find that the required accuracy on various sparticle mass ratios is at the few percent level, a precision that may be achieved in future linear colliders. We place phenomenological constraints on the parameter space and determine the supersymmetric contribution to the muon anomalous magnetic moment.
New Supersymmetric Localizations from Topological Gravity
Bae, Jinbeom; Rey, Soo-Jong; Rosa, Dario
2015-01-01
Supersymmetric field theories can be studied exactly on suitable off-shell supergravity backgrounds. We show that in two dimensions such backgrounds are identifiable with BRST invariant backgrounds of topological gravity coupled to an abelian topological gauge multiplet. This latter background is required for the consistent coupling of the topological `matter' YM theory to topological gravity. We make use of this topological point of view to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. The BRST invariant topological backgrounds are parametrized by both Killing vectors and $S^1$-equivariant cohomology of the 2-dimensional world-sheet. We reconstruct completely the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are "composite", i.e. they are non-linear functionals of them. We recover all the known localizing 2-dimensional backg...
Galoisian Approach to Supersymmetric Quantum Mechanics
Acosta-Humanez, Primitivo B
2009-01-01
This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \\emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \\emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization alg...
The gravitino problem in supersymmetric warm inflation
Sanchez, Juan C Bueno; Berera, Arjun; Dimopoulos, Konstantinos; Kohri, Kazunori
2010-01-01
The warm inflation paradigm considers the continuous production of radiation during inflation due to dissipative effects. In its strong dissipation limit, warm inflation gives way to a radiation dominated Universe. High scale inflation then yields a high reheating temperature, which then poses a severe gravitino overproduction problem for the supersymmetric realisations of warm inflation. In this paper we show that in certain class of supersymmetric models the dissipative dynamics of the inflaton is such that the field can avoid its complete decay after inflation. In some cases, the residual energy density stored in the field oscillations may come to dominate over the radiation bath at a later epoch. If the inflaton field finally decays much later than the onset of the matter dominated phase, the entropy produced in its decay may be sufficient to counteract the excess of gravitinos produced during the last stages of warm inflation.
Supersymmetric composite gauge fields with compensators
Nishino, Hitoshi; Rajpoot, Subhash
2016-06-01
We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.
Flavor Mixing Phenomenology in Supersymmetric Models
Rehman, Muhammad
2016-01-01
This dissertation investigates the flavor mixing effects in supersymmetric models on electroweak precision observables, Higgs boson mass predictions, B-physics observables, quark flavor violating Higgs decays, lepton flavor violating charged lepton decays and lepton flavor violating Higgs decays. The flavor mixing effects are studied in model independent way i.e. by putting off-diagonal entries in the sfermion mass matrix by hand as well as in the minimal flavor violating constrained MSSM, where mixing can originate from CKM matrix in the case of squarks and from PMNS matrix in the case of sleptons. We found that flavor mixing can have large impact to some observables, enabling us to put new constraints on parameter space in supersymmetric models.
Topological solitons in the supersymmetric Skyrme model
Gudnason, Sven Bjarke; Sasaki, Shin
2016-01-01
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Planar Gravitational Corrections For Supersymmetric Gauge Theories
Dijkgraaf, R; Ooguri, H; Vafa, C; Zanon, D
2004-01-01
In this paper we discuss the contribution of planar diagrams to gravitational F-terms for N=1 supersymmetric gauge theories admitting a large N description. We show how the planar diagrams lead to a universal contribution at the extremum of the glueball superpotential, leaving only the genus one contributions, as was previously conjectured. We also discuss the physical meaning of gravitational F-terms.
Approximate Flavor Symmetry in Supersymmetric Model
Tao, Zhijian
1998-01-01
We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...
Renormalizable supersymmetric gauge theory in six dimensions
Energy Technology Data Exchange (ETDEWEB)
Ivanov, E.A. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: eivanov@theor.jinr.ru; Smilga, A.V. [SUBATECH, Universite de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307 (France)]. E-mail: smilga@subatech.in2p3.fr; Zupnik, B.M. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: zupnik@theor.jinr.ru
2005-10-17
We construct and discuss a 6D supersymmetric gauge theory involving four derivatives in the action. The theory involves a dimensionless coupling constant and is renormalizable. At the tree level, it enjoys N=(1,0) superconformal symmetry, but the latter is broken by quantum anomaly. Our study should be considered as preparatory for seeking an extended version of this theory which would hopefully preserve conformal symmetry at the full quantum level and be ultraviolet-finite.
Supersymmetric solutions for non-relativistic holography
Energy Technology Data Exchange (ETDEWEB)
Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)
2009-01-15
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Simple supersymmetric methods in neutron diffusion
1996-01-01
We present the supersymmetric Witten and double Darboux (strictly isospectral) constructions as applied to the diffusion of thermal neutrons from an infinitely long line source. While the Witten construction is just a mathematical scheme, the double Darboux method introduces a one-parameter family of diffusion solutions which are strictly isospectral to the stationary solution. They correspond to a Darboux-transformed diffusion length which is flux dependent
Supersymmetric branes on curved spaces and fluxes
Triendl, Hagen
2015-01-01
We discuss general supersymmetric brane configurations in flux backgrounds of string and M-theory and derive a necessary condition for the worldvolume theory to be supersymmetric on a given curved manifold. This condition resembles very much the conditions found from coupling a supersymmetric field theory to off-shell supergravity but can be derived in any dimension and for up to sixteen supercharges. Apart from the topological twist, all couplings appearing in the supersymmetry condition are linked to fluxes in the bulk. We explicitly derive the condition for D3-, M2- and M5-branes, in which case the results are also useful for constructing holographic duals to the corresponding field theories. In $N=1$ setups we compare the supersymmetry conditions to those that arise by coupling the field theory to off-shell supergravity. We find that the couplings of both old and new minimal supergravity are simultaneously realized, indicating that off-shell supergravity should be coupled via the S-multiplet of 16/16 supe...
Cosmological consequences of supersymmetric flat directions
Riva, Francesco; Sarkar, Subir; Giudice, Gian
In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...
Non-supersymmetric Orientifolds of Gepner Models
Gato-Rivera, B
2008-01-01
Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings -- bulk supersymmetry, automorphism invariants or Klein bottle projection -- we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly ...
Supersymmetry in Elementary Particle Physics
Peskin, Michael E.
2008-01-01
These lectures, presented at the 2006 TASI summer school, give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions...
Supersymmetry in Elementary Particle Physics
Energy Technology Data Exchange (ETDEWEB)
Peskin, Michael E.; /SLAC
2008-02-05
These lectures give a general introduction to supersymmetry, emphasizing its application to models of elementary particle physics at the 100 GeV energy scale. I discuss the following topics: the construction of supersymmetric Lagrangians with scalars, fermions, and gauge bosons, the structure and mass spectrum of the Minimal Supersymmetric Standard Model (MSSM), the measurement of the parameters of the MSSM at high-energy colliders, and the solutions that the MSSM gives to the problems of electroweak symmetry breaking and dark matter.
A Search for Neutral Supersymmetric Higgs Bosons at DØ
Energy Technology Data Exchange (ETDEWEB)
Osman, Nicolas Ahmed [Imperial College, London (United Kingdom)
2010-09-01
A search for Higgs bosons in multijet data from the DØ detector is reported in this thesis. The Higgs boson is the only remaining undiscovered particle in the Standard Model of particle physics, and plays an integral role in this model. It is known that this model is not a complete description of fundamental physics (it does not describe gravity, for example), and so searches for physics beyond the Standard Model are an important part of particle physics. One extension of the Standard Model, the Minimal Supersymmetric Standard Model (MSSM), predicts the existence of five Higgs bosons, two of which can show an enhanced coupling to bottom quarks. For this reason, a search in the bbb (multijet) channel is a sensitive test of Higgs boson physics. The analysis described in this thesis was conducted over 6.6 fb^{-1} of data. At the time of writing, the best limits on tan β (a key parameter of the MSSM) in the multijet channel were set by DØ. The new analysis described in this thesis included more data than the previous analysis in the channel, and made use of a new trigger and event-based analysis method. An improved Multivariate Analysis technique was used to separate signal and background events and produce a final discriminant for the limit setting process. These changes increased the expected sensitivity of this measurement by roughly 50% more than would be expected from the increase in the size of data sample alone.
Searches for Long Lived SUSY Particles
Jeanty, Laura; The ATLAS collaboration
2016-01-01
Several supersymmetric models predict massive long-lived supersymmetric particles with lifetimes from fractions of a nanosecond to lifetimes that are effectively stable in the detector. Such particles may be detected through abnormal specific energy loss, disappearing tracks, displaced vertices, long time-of-flight or late calorimetric energy deposits. The talk presents recent results from searches for long-lived supersymmetric particles with the ATLAS detector. The increase in the center-of-mass energy of the proton-proton collisions gives a unique opportunity to extend the sensitivity to production of supersymmetric particles at the Large Hadron Collider. Results will be based on pp collisions at sqrt(s) = 13 TeV.
Geometry and duality in Supersymmetric $\\sigma$-Models
Curtright, T L; Zachos, C K; Curtright, Thomas; Uematsu, Tsuneo; Zachos, Cosmas
1996-01-01
The Supersymmetric Dual Sigma Model (SDSM) is a local field theory introduced to be nonlocally equivalent to the Supersymmetric Chiral nonlinear sigma-Model (SCM), this dual equivalence being proven by explicit canonical transformation in tangent space. This model is here reconstructed in superspace and identified as a chiral-entwined supersymmetrization of the Dual Sigma Model (DSM). This analysis sheds light on the Boson-Fermion Symphysis of the dual transition, and on the new geometry of the DSM.
Bilinear approach to N=2 supersymmetric KdV equations
Institute of Scientific and Technical Information of China (English)
2009-01-01
The N=2 supersymmetric KdV equations are studied within the framework of Hirota bilinear method. For two such equations, namely N=2, a=4 and N=2, a=1 supersymmetric KdV equations, we obtain the corresponding bilinear formulations. Using them, we construct particular solutions for both cases. In particular, a bilinear Bcklund transformation is given for the N=2, a=1 supersymmetric KdV equation.
Vertex Operators for Irregular Conformal Blocks: Supersymmetric Case
Polyakov, Dimitri
2016-01-01
We construct supersymmetric irregular vertex operators of arbitrary rank, appearing in the colliding limit of primary fields. We find that the structure of the supersymmetric irregular vertices differs significantly from the bosonic case: upon supersymmetrization, the irregular operators are no longer the eigenstates of positive Virasoro and $W_N$ generators but block-diagonalize them. We relate the block-diagonal structure of the irregular vertices to contributions of the Ramond sector to the colliding limit.
On supersymmetric Chern-Simons-type theories in five dimensions
Kuzenko, Sergei M
2014-01-01
We present a closed-form expression for the supersymmetric non-Abelian Chern-Simons action in conventional five-dimensional N=1 superspace. Our construction makes use of the superform formalism to generate supersymmetric invariants. Similar ideas are applied to construct supersymmetric actions for off-shell supermultiplets with an intrinsic central charge. In particular, the large tensor multiplet is described in superspace for the first time.
Non-renormalization theorems andN=2 supersymmetric backgrounds
Energy Technology Data Exchange (ETDEWEB)
Butter, Daniel [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Wit, Bernard de [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Institute for Theoretical Physics, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Lodato, Ivano [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)
2014-03-28
The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed.
Non-renormalization theorems and N=2 supersymmetric backgrounds
Butter, Daniel; Lodato, Ivano
2014-01-01
The conditions for fully supersymmetric backgrounds of general N=2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed.
Higgs as a Probe of Supersymmetric Grand Unification with the Hosotani Mechanism
Kakizaki, Mitsuru; Taniguchi, Hiroyuki; Yamashita, Toshifumi
2013-01-01
The supersymmetric grand unified theory where the SU(5) gauge symmetry is broken by the Hosotani mechanism predicts the existence of adjoint chiral superfields whose masses are at the supersymmetry breaking scale. The Higgs sector is extended with the SU(2)_L triplet with hypercharge zero and neutral singlet chiral multiplets from that in the minimal supersymmetric standard model. Since the triplet and singlet chiral multiplets originate from a higher-dimensional vector multiplet, this model is highly predictive. Properties of the particles in the Higgs sector are characteristic and can be different from those in the Standard Model and other models. We evaluate deviations in coupling constants of the standard model-like Higgs boson and the mass spectrum of the additional Higgs bosons. We find that our model is discriminative from the others by precision measurements of these coupling constants and masses of the additional Higgs bosons. This model can be a good example of grand unification that is testable at ...
Counting Trees in Supersymmetric Quantum Mechanics
Cordova, Clay
2015-01-01
We study the supersymmetric ground states of the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in four-dimensional N=2 systems. The ground state degeneracy may be written as a multi-dimensional contour integral, and the enumeration of poles can be simply phrased as counting bipartite trees. We solve this combinatorics problem, thereby obtaining exact formulas for the degeneracies of an infinite class of models. We also develop an algorithm to compute the angular momentum of the ground states, and present explicit expressions for the refined indices of theories where one rank is small.
Supersymmetric black holes in string theory
Energy Technology Data Exchange (ETDEWEB)
Mohaupt, T. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL (United Kingdom)
2007-05-15
We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation with the topological string, mainly from the supergravity perspective. We summarize the state of art and discuss various open questions and problems. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
BiHermitian supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Zucchini, Roberto [Dipartimento di Fisica, Universita degli Studi di Bologna, V Irnerio 46, I-40126 Bologna (Italy)
2007-04-21
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kaehler manifolds recently developed by Gualtieri. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li.
BiHermitian Supersymmetric Quantum Mechanics
Zucchini, R
2006-01-01
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2,2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kaehler manifolds recently developed by Gualtieri. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li.
Supersymmetric structure of the induced $W$ gravities
Ader, J P; Noirot, Y; Ader, Jean-Pierre; Biet, Franck; Noirot, Yves
1999-01-01
We derive the supersymmetric structure present in W-gravities which has been already observed in various contexts as Yang-Mills theory, topological field theories, bosonic string and chiral W_{3}-gravity. This derivation which is made in the geometrical framework of Zucchini, necessitates the introduction of an appropriate new basis of variables which replace the canonical fields and their derivatives. This construction is used, in the W_{2}-case, to deduce from the Chern-Simons action the Wess-Zumino-Polyakov action.
BiHermitian supersymmetric quantum mechanics
Zucchini, Roberto
2007-04-01
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kähler manifolds recently developed by Gualtieri in [33]. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li in [9].
Leptonic CP violation in supersymmetric standard model
Joshipura, A S
1995-01-01
We point out the possibility of spontaneous and hard CP-violation in the scalar potential of R-parity broken supersymmetric Standard Model. The existence of spontaneous CP-violation depends crucially on the R-parity breaking terms in the superpotential and, in addition, on the choice of the soft supersymmetry breaking terms. Unlike in theories with R-parity conservation, it is natural, in the context of the present model, for the sneutrinos to acquire (complex) vacuum expectation values. In the context of this model we examine here the global implications, like the strength of the CP-violating interactions and the neutrino masses.
Seeing an invisible axion in the supersymmetric particle spectrum.
Conlon, Joseph P
2006-12-31
I describe how under favorable circumstances, the existence of an invisible axion could correlate with a distinctive CERN Large Hadron Collider sparticle spectrum, in particular, through a gluino approximately ln(M(P)/m(3/2)) times heavier than other gauginos.
Prospects for detecting supersymmetric dark matter in the Galactic halo.
Springel, V; White, S D M; Frenk, C S; Navarro, J F; Jenkins, A; Vogelsberger, M; Wang, J; Ludlow, A; Helmi, A
2008-11-06
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species. In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at a level that may soon be observable. Previous work has argued that the annihilation signal will be dominated by emission from very small clumps (perhaps smaller even than the Earth), which would be most easily detected where they cluster together in the dark matter haloes of dwarf satellite galaxies. Here we report that such small-scale structure will, in fact, have a negligible impact on dark matter detectability. Rather, the dominant and probably most easily detectable signal will be produced by diffuse dark matter in the main halo of the Milky Way. If the main halo is strongly detected, then small dark matter clumps should also be visible, but may well contain no stars, thereby confirming a key prediction of the cold dark matter model.
Supersymmetric Chern-Simons terms in ten dimensions
Bergshoeff, E.; Roo, M. de
1989-01-01
We construct a supersymmetric extension of the Lorentz and Yang-Mills Chern-Simons terms in ten dimensions. In terms of dimensionful parameters Î± (Lorentz) and Î² (Yang-Mills), we obtain the complete O(Î±) supersymmetrization. Furthermore, we present the leading O(Î±2) and O(Î±Î²) corrections requi
Supersymmetric compactifications of heterotic strings with fluxes and condensates
Energy Technology Data Exchange (ETDEWEB)
Manousselis, Pantelis [Department of Engineering Sciences, University of Patras, GR-26110 Patras (Greece)]. E-mail: pantelis@upatras.gr; Prezas, Nikolaos [Institut de Physique, Universite de Neuchatel, CH-2000 Neuchatel (Switzerland)]. E-mail: nikolaos.prezas@unine.ch; Zoupanos, George [Physics Department, National Technical University of Athens, GR-15780 University Campus, Athens (Greece)]. E-mail: zoupanos@mail.cern.ch
2006-04-03
We discuss supersymmetric compactifications of heterotic strings in the presence of H-flux and general condensates using the formalism of G-structures and intrinsic torsion. We revisit the examples based on nearly-Kaehler coset spaces and show that supersymmetric solutions, where the Bianchi identity is satisfied, can be obtained when both gaugino and dilatino condensates are present.
On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Klimčík, Ctirad [Aix Marseille Université, CNRS, Centrale Marseille I2M, UMR 7373, 13453 Marseille (France)
2015-12-15
We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.
Superconformal indices and partition functions for supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, I.B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Vartanov, G.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-12-15
Recently there was a substantial progress in understanding of supersymmetric theories (in particular, their BPS spectrum) in space-times of different dimensions due to the exact computation of superconformal indices and partition functions using localization method. Here we discuss a connection of 4d superconformal indices and 3d partition functions using a particular example of supersymmetric theories with matter in antisymmetric representation.
Supersymmetric Wilson Loops and Super Non-Abelian Stokes Theorem
Karp, R L; Karp, Robert L.; Mansouri, Freydoon
2000-01-01
We generalize the standard product integral formalism to incorporateGrassmann valued matrices and show that the resulting supersymmetric productintegrals provide a natural framework for describing supersymmetric Wilsonlines and Wilson loops. We use this formalism to establish the supersymmetricversion of the non-Abelian Stokes Theorem.
Search for supersymmetric Higgs signatures at the LHC
Rompotis, Nikolaos; The ATLAS collaboration
2015-01-01
This talk reviews the searches for supersymmetric Higgs bosons signatures at the LHC after Run-I. Searches for the Higgs bosons of the minimal supersymmetric Standard Model (MSSM) have been spearheaded in ATLAS and CMS by $h/H/A\\to \\tau\\tau$ and $H^{\\pm}\\to \\tau\
Higher dimensional supersymmetric quantum mechanics and Dirac equation
Indian Academy of Sciences (India)
L P Singh; B Ram
2002-04-01
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
Chiral anomalies in N=1 supersymmetric Yang-Mills theories
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Grimm, R.; Stora, R. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)
1985-06-20
We establish a manifestly supersymmetric, compact, formula for the chiral anomalies of supersymmetric gauge theories. This result is obtained by combining superspace geometry with the usual algebra of anomalies. Except for a Wess-Zumino type term, we obtain an expression which is polynomial in the coefficients of the superconnection form.
All supersymmetric solutions of minimal supergravity in five dimensions
Energy Technology Data Exchange (ETDEWEB)
Gauntlett, Jerome P; Gutowski, Jan B; Hull, Christopher M; Pakis, Stathis; Reall, Harvey S [Department of Physics, Queen Mary, University of London, Mile End Rd, London E1 4NS (United Kingdom)
2003-11-07
All purely bosonic supersymmetric solutions of minimal supergravity in five dimensions are classified. The solutions preserve either one half or all of the supersymmetry. Explicit examples of new solutions are given, including a large family of plane-fronted waves and a maximally supersymmetric analogue of the Goedel universe which lifts to a solution of 11-dimensional supergravity that preserves 20 supersymmetries.
All supersymmetric solutions of minimal supergravity in five dimensions
Gauntlett, J P; Hull, C M; Pakis, S; Reall, H S; Gauntlett, Jerome P.; Gutowski, Jan B.; Hull, Christopher M.; Pakis, Stathis; Reall, Harvey S.
2003-01-01
All purely bosonic supersymmetric solutions of minimal supergravity in five dimensions are classified. The solutions preserve either one half or all of the supersymmetry. Explicit examples of new solutions are given, including a large family of plane-fronted waves and a maximally supersymmetric analogue of the G\\"odel universe which lifts to a solution of eleven dimensional supergravity that preserves 20 supersymmetries.
CP Violation in Supersymmetric U(1)' Models
Demir, D A
2004-01-01
The supersymmetric CP problem is studied within superstring-motivated extensions of the MSSM with an additional U(1)' gauge symmetry broken at the TeV scale. This class of models offers an attractive solution to the mu problem of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an effective mu parameter is generated by the vacuum expectation value of a Standard Model singlet S which has superpotential coupling of the form SH_uH_d to the electroweak Higgs doublets. The effective mu parameter is thus dynamically determined as a function of the soft supersymmetry breaking parameters, and can be complex if the soft parameters have nontrivial CP-violating phases. We examine the phenomenological constraints on the reparameterization invariant phase combinations within this framework, and find that the supersymmetric CP problem can be greatly alleviated in models in which the phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar mass parameter associated with the ...
Toward precision holography with supersymmetric Wilson loops
Faraggi, Alberto; Pando Zayas, Leopoldo A.; Silva, Guillermo A.; Trancanelli, Diego
2016-04-01
We consider certain 1/4 BPS Wilson loop operators in SU( N) N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS 5 × S 5. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.
Gravitational Quantum Foam and Supersymmetric Gauge Theories
Maeda, T; Noma, Y; Tamakoshi, T; Maeda, Takashi; Nakatsu, Toshio; Noma, Yui; Tamakoshi, Takeshi
2005-01-01
We study K\\"{a}hler gravity on local SU(N) geometry and describe precise correspondence with certain supersymmetric gauge theories and random plane partitions. The local geometry is discretized, via the geometric quantization, to a foam of an infinite number of gravitational quanta. We count these quanta in a relative manner by measuring a deviation of the local geometry from a singular Calabi-Yau threefold, that is a A_{N-1} singularity fibred over \\mathbb{P}^1. With such a regularization prescription, the number of the gravitational quanta becomes finite and turns to be the perturbative prepotential for five-dimensional \\mathcal{N}=1 supersymmetric SU(N) Yang-Mills. These quanta are labelled by lattice points in a certain convex polyhedron on \\mathbb{R}^3. The polyhedron becomes obtainable from a plane partition which is the ground state of a statistical model of random plane partition that describes the exact partition function for the gauge theory. Each gravitational quantum of the local geometry is shown...
Quantum symmetries in supersymmetric Toda theories
Penati, S; Penati, Silvia; Zanon, Daniela
1992-01-01
: We consider two--dimensional supersymmetric Toda theories based on the Lie superalgebras $A(n,n)$, $D(n+1,n)$ and $B(n,n)$ which admit a fermionic set of simple roots and a fermionic untwisted affine extension. In particular, we concentrate on two simple examples, the $B(1,1)$ and $A(1,1)$ theories. Both in the conformal and massive case we address the issue of quantum integrability by constructing the first non trivial conserved currents and proving their conservation to all--loop orders. While the $D(n+1,n)$ and $B(n,n)$ systems are genuine $N=1$ supersymmetric theories, the $A(n,n)$ models possess a global $N=2$ supersymmetry. In the conformal case, we show that the $A(n,n)$ stress--energy tensor, uniquely determined by the holomorphicity condition, has vanishing central charge and it corresponds to the stress--energy tensor of the associated topological theory. (Invited talk at the International Workshop ``String theory, quantum gravity and the unification of the fundamental interactions'', Roma, Septem...
The Supersymmetric Parameter Space in Light of B-physics Observables and Electroweak Precision Data
Ellis, Jonathan Richard; Olive, K A; Weber, A M; Weiglein, G
2007-01-01
Indirect information about the possible scale of supersymmetry (SUSY) breaking is provided by B-physics observables (BPO) as well as electroweak precision observables (EWPO). We combine the constraints imposed by recent measurements of the BPO BR(b -> s gamma), BR(B_s -> mu^+ mu^-), BR(B_u -> tau nu_tau) and Delta M_{B_s} with those obtained from the experimental measurements of the EWPO M_W, sin^2 theta_eff, Gamma_Z, (g-2)_mu and M_h, incorporating the latest theoretical calculations of these observables within the Standard Model and supersymmetric extensions. We perform a chi^2 fit to the parameters of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which the SUSY-breaking parameters are universal at the GUT scale, and the non-universal Higgs model (NUHM), in which this constraint is relaxed for the soft SUSY-breaking contributions to the Higgs masses. Assuming that the lightest supersymmetric particle (LSP) provides the cold dark matter density preferred by WMAP and other...
The supersymmetric parameter space in light of B-physics observables and electroweak precision data
Ellis, John; Heinemeyer, Sven; Olive, Keith A.; Weber, Arne M.; Weiglein, Georg
2007-08-01
Indirect information about the possible scale of supersymmetry (SUSY) breaking is provided by B-physics observables (BPO) as well as electroweak precision observables (EWPO). We combine the constraints imposed by recent measurements of the BPO BR(b → sγ), BR(Bs → μ+μ-), BR(Bu → τντ) and ΔMBs with those obtained from the experimental measurements of the EWPO MW, sin2 θeff, ΓZ, (g-2)μ and Mh, incorporating the latest theoretical calculations of these observables within the Standard Model and supersymmetric extensions. We perform a χ2 fit to the parameters of the constrained minimal supersymmetric extension of the Standard Model (CMSSM), in which the SUSY-breaking parameters are universal at the GUT scale, and the non-universal Higgs model (NUHM), in which this constraint is relaxed for the soft SUSY-breaking contributions to the Higgs masses. Assuming that the lightest supersymmetric particle (LSP) provides the cold dark matter density preferred by WMAP and other cosmological data, we scan over the remaining parameter space. Within the CMSSM, we confirm the preference found previously for a relatively low SUSY-breaking scale, though there is some slight tension between the EWPO and the BPO. In studies of some specific NUHM scenarios compatible with the cold dark matter constraint we investigate (MA, tan β) planes and find preferred regions that have values of χ2 somewhat lower than in the CMSSM.
The Collider Phenomenology Of Supersymmetric Models (charged Higgs Boson, Tau Leptons)
Müller, D J
1998-01-01
The purpose of this study is to investigate the phenomenology of various supersymmetric models. First, the Minimal Supersymmetric Standard Model (MSSM) is investigated. This model contains an extended Higgs sector that includes a charged boson. The effect that this charged Higgs boson has on the signatures for top quark pair production at the Tevatron is investigated. The rest of the work is devoted to the phenomenology of models with gauge mediated supersymmetry breaking (GMSB). In GMSB models, the lighter stau can be the next to lightest supersymmetric particle. The signals at hadronic colliders for GMSB models with minimal visible sector content are explored for this case. A GMSB model with non-minimal visible sector content is also explored. This is the left-right symmetric GMSB model which contains doubly charged bosons and fermions that could be light enough in mass to be produced at Run II of the Tevatron. Findings and conclusions. The presence of a charged Higgs boson that is lighter than the top quar...
Parameter space of general gauge mediation
Energy Technology Data Exchange (ETDEWEB)
Rajaraman, Arvind [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: arajaram@uci.edu; Shirman, Yuri [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: yshirman@uci.edu; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: jsmidt@uci.edu; Yu, Felix [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States)], E-mail: felixy@uci.edu
2009-07-27
We study a subspace of General Gauge Mediation (GGM) models which generalize models of gauge mediation. We find superpartner spectra that are markedly different from those of typical gauge and gaugino mediation scenarios. While typical gauge mediation predictions of either a neutralino or stau next-to-lightest supersymmetric particle (NLSP) are easily reproducible with the GGM parameters, chargino and sneutrino NLSPs are generic for many reasonable choices of GGM parameters.
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Perturbative stability along the supersymmetric directions of the landscape
Energy Technology Data Exchange (ETDEWEB)
Sousa, Kepa [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); Ortiz, Pablo, E-mail: kepa.sousa@ehu.es, E-mail: ortiz@lorentz.leidenuniv.nl [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)
2015-02-01
We consider the perturbative stability of non-supersymmetric configurations in N=1 supergravity models with a spectator sector not involved in supersymmetry breaking. Motivated by the supergravity description of complex structure moduli in Large Volume Compactifications of type IIB-superstrings, we concentrate on models where the interactions are consistent with the supersymmetric truncation of the spectator fields, and we describe their couplings by a random ensemble of generic supergravity theories. We characterise the mass spectrum of the spectator fields in terms of the statistical parameters of the ensemble and the geometry of the scalar manifold. Our results show that the non-generic couplings between the spectator and the supersymmetry breaking sectors can stabilise all the tachyons which typically appear in the spectator sector before including the supersymmetry breaking effects, and we find large regions of the parameter space where the supersymmetric sector remains stable with probability close to one. We discuss these results about the stability of the supersymmetric sector in two physically relevant situations: non-supersymmetric Minkowski vacua, and slow-roll inflation driven by the supersymmetry breaking sector. For the class of models we consider, we have reproduced the regimes in which the KKLT and Large Volume Scenarios stabilise all supersymmetric moduli. We have also identified a new regime in which the supersymmetric sector is stabilised at a very robust type of dS minimum without invoking a large mass hierarchy.
Higher Derivative Corrections To Extended Supersymmetric Theories
Braun, G A
2004-01-01
We investigate higher-derivative terms in N = 2 supersymmetric effective actions. We systematically construct such terms in harmonic superspace despite the infinite redundancy in their description due to the infinite number of auxiliary fields. We write all 3- and 4-derivative terms on Higgs, Coulomb, and mixed branches, modulo the existence of superspace Chern-Simons-like terms. Among these terms are several with only holomorphic dependence on fields, and at least one satisfies a non-renormalization theorem. We then search for superspace Chern-Simons-like terms, which are those gauge-invariant terms which cannot be written solely in terms of field strength superfields and covariant derivatives, but in which gauge potential superfield appears explicitly. We find a class of four- derivative terms with N = 2 supersymmetry which, though locally on the Coulomb branch can be written solely in terms of field strengths, globally on the Coulomb branch are superspace Chern- Simons-like.
Supersymmetric inversion of effective-range expansions
Midya, Bikashkali; Abramowicz, Sylvain; Suárez, O L Ramírez; Sparenberg, Jean-Marc
2015-01-01
A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.
Towards a Non-Supersymmetric String Phenomenology
Abel, Steven; Mavroudi, Eirini
2015-01-01
Over the past three decades, considerable effort has been devoted to studying the rich and diverse phenomenologies of heterotic strings exhibiting spacetime supersymmetry. Unfortunately, during this same period, there has been relatively little work studying the phenomenologies associated with their non-supersymmetric counterparts. The primary reason for this relative lack of attention is the fact that strings without spacetime supersymmetry are generally unstable, exhibiting large one-loop dilaton tadpoles. In this paper, we demonstrate that this hurdle can be overcome in a class of tachyon-free four-dimensional string models realized through coordinate-dependent compactifications. Moreover, as we shall see, it is possible to construct models in this class whose low-lying states resemble the Standard Model (or even potential unified extensions thereof) --- all without any light superpartners, and indeed without supersymmetry at any energy scale. The existence of such models thus opens the door to general stu...
Supersymmetric Scenarios with Dominant Radiative Neutralino Decay
Ambrosanio, S; Ambrosanio, Sandro; Mele, Barbara
1997-01-01
The radiative decay of the next-to-lightest neutralino into a lightest neutralino and a photon is analyzed in the MSSM. We find that significant regions of the supersymmetric parameter space with large radiative BR's (up to about 100%) do exist. The radiative channel turns out to be enhanced when the neutralino tree-level decays are suppressed either `kinematically' or `dynamically'. In general, in the regions allowed by LEP data and not characterized by asymptotic values of the SuSy parameters, the radiative enhancement requires tan beta ~= 1 and/or M_1 ~= M_2, and negative values of relaxing the usual relation M_1=(5/3)*tan^2(th_W)*M_2, i.e. gaugino mass unification at the GUT scale. The influence of varying the stop masses and mixing angle when the radiative decay is enhanced is also considered. Some phenomenological consequences of the above picture are discussed.
Supersymmetric quantum mechanics and Painleve equations
Bermudez, David
2013-01-01
In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order PHA the potential is determined by solutions to Painleve IV (PIV) and Painleve V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.
A new perspective on supersymmetric inflation
Energy Technology Data Exchange (ETDEWEB)
Matsuda, Tomohiro, E-mail: matsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)
2009-11-01
We consider supersymmetric inflation with the hybrid-type potential. In the absence of the symmetry that forbids Hubble-induced mass terms, the inflaton mass will be as large as the Hubble scale during inflation. We consider gravitational decay of the trigger field as the least decay mode and find that the damping caused by the dissipation can dominate the friction of the inflaton when the heavy trigger field is coupled to the inflaton. The dissipative damping provides a solution to the traditional η problem without introducing additional symmetry and interactions. Considering the spatial inhomogeneities of the dissipative coefficient, we find that modulated inflation (modulation of the inflaton velocity) can create significant curvature perturbations.
Supersymmetric partition functions on Riemann surfaces
Benini, Francesco
2016-01-01
We present a compact formula for the supersymmetric partition function of 2d N=(2,2), 3d N=2 and 4d N=1 gauge theories on $\\Sigma_g \\times T^n$ with partial topological twist on $\\Sigma_g$, where $\\Sigma_g$ is a Riemann surface of arbitrary genus and $T^n$ is a torus with n=0,1,2, respectively. In 2d we also include certain local operator insertions, and in 3d we include Wilson line operator insertions along $S^1$. For genus g=1, the formula computes the Witten index. We present a few simple Abelian and non-Abelian examples, including new tests of non-perturbative dualities. We also show that the large N partition function of ABJM theory on $\\Sigma_g \\times S^1$ reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS4 whose horizon has $\\Sigma_g$ topology.
Area law violations in a supersymmetric model
Huijse, Liza; Swingle, Brian
2013-01-01
We study the structure of entanglement in a supersymmetric lattice model of fermions on certain types of decorated graphs with quenched disorder. In particular, we construct models with controllable ground-state degeneracy protected by supersymmetry and the choice of Hilbert space. We show that in certain special limits, these degenerate ground states are associated with local impurities and that there exists a basis of the ground-state manifold in which every basis element satisfies a boundary law for entanglement entropy. On the other hand, by considering incoherent mixtures or coherent superpositions of these localized ground states, we can find regions that violate the boundary law for entanglement entropy over a wide range of length scales. More generally, we discuss various criteria for constructing violations of the boundary law for entanglement entropy and discuss possible relations of our work to recent holographic studies.
SU(2|2) supersymmetric mechanics
Ivanov, Evgeny; Sidorov, Stepan
2016-01-01
We introduce a new kind of non-relativistic ${\\cal N}{=}\\,8$ supersymmetric mechanics, associated with worldline realizations of the supergroup $SU(2|2)$ treated as a deformation of flat ${\\cal N}{=}\\,8$, $d{=}1$ supersymmetry. Various worldline $SU(2|2)$ superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell $SU(2|2)$ multiplets $({\\bf 3,8,5})$, $({\\bf 4,8,4})$ and $({\\bf 5,8,3})$, we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group $OSp(4^*|4)$ in the conformal cases. For the simplest $({\\bf 5, 8, 3})$ model the quantization is performed.
Supersymmetric Wilson loops at two loops
Bassetto, Antonio; Pucci, Fabrizio; Seminara, Domenico
2008-01-01
We study the quantum properties of certain BPS Wilson loops in ${\\cal N}=4$ supersymmetric Yang-Mills theory. They belong to a general family, introduced recently, in which the addition of particular scalar couplings endows generic loops on $S^3$ with a fraction of supersymmetry. When restricted to $S^2$, their quantum average has been further conjectured to be exactly computed by the matrix model governing the zero-instanton sector of YM$_2$ on the sphere. We perform a complete two-loop analysis on a class of cusped Wilson loops lying on a two-dimensional sphere, finding perfect agreement with the conjecture. The perturbative computation reproduces the matrix-model expectation through a highly non-trivial interplay between ladder diagrams and self-energies/vertex contributions, suggesting the existence of a localization procedure.
Dynamics of Non-supersymmetric Flavours
Alam, M Sohaib; Kundu, Arnab; Kundu, Sandipan
2013-01-01
We continue investigating the effect of the back-reaction by non-supersymmetric probes in the Kuperstein-Sonnenschein model. In the limit when the back-reaction is small, we discuss physical properties of the back-reacted geometry. We further introduce additional probe flavours in this back-reacted geometry and study in detail the phase structure of this sector when a constant electromagnetic field or a chemical potential are present. We find that the Landau pole, which serves as the UV cut-off of the background geometry, also serves as an important scale in the corresponding thermodynamics of the additional flavour sector. We note that since this additional probe flavours are indistinguishable from the back-reacting flavours, the results we obtain point to a much richer phase structure of the system.
Supersymmetric backgrounds and generalised special holonomy
Coimbra, André; Strickland-Constable, Charles; Waldram, Daniel
2016-06-01
We define intrinsic torsion in generalised geometry and use it to introduce a new notion of generalised special holonomy. We then consider generic warped supersymmetric flux compactifications of M theory and Type II of the form {{{R}}}D-{1,1}× M. Using the language of {E}d(d)× {{{R}}}+ generalised geometry, we show that, for D≥slant 4, preserving minimal supersymmetry is equivalent to the manifold M having generalised special holonomy and list the relevant holonomy groups. We conjecture that this result extends to backgrounds preserving any number of supersymmetries. As a prime example, we consider { N }=1 in D = 4. The corresponding generalised special holonomy group is {SU}(7), giving the natural M theory extension to the notion of a G 2 manifold, and, for Type II backgrounds, reformulating the pure spinor {SU}(3)× {SU}(3) conditions as an integrable structure.
Supersymmetric Backgrounds and Generalised Special Holonomy
Coimbra, André; Waldram, Daniel
2014-01-01
We define intrinsic torsion in generalised geometry and use it to introduce a new notion of generalised special holonomy. We then consider generic warped supersymmetric flux compactifications of M theory and Type II of the form $\\mathbb{R}^{D-1,1}\\times M$. Using the language of $E_{d(d)}\\times\\mathbb{R}^+$ generalised geometry, we show that, for $D\\geq 4$, preserving minimal supersymmetry is equivalent to the manifold $M$ having generalised special holonomy and list the relevant holonomy groups. We conjecture that this result extends to backgrounds preserving any number of supersymmetries. As a prime example, we consider $\\mathcal{N}=1$ in $D=4$. The corresponding generalised special holonomy group is $SU(7)$, giving the natural M theory extension to the notion of a $G_2$ manifold, and, for Type II backgrounds, reformulating the pure spinor $SU(3)\\times SU(3)$ conditions as an integrable structure.
Gauge Unification from Split Supersymmetric String Models
Kokorelis, Christos
2016-01-01
We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.
Effective Action of Softly Broken Supersymmetric Theories
Nibbelink, S G; Nibbelink, Stefan Groot; Nyawelo, Tino S.
2007-01-01
We study the renormalization of (softly) broken supersymmetric theories at the one loop level in detail. We perform this analysis in a superspace approach in which the supersymmetry breaking interactions are parameterized using spurion insertions. We comment on the uniqueness of this parameterization. We compute the one loop renormalization of such theories by calculating superspace vacuum graphs with multiple spurion insertions. To preform this computation efficiently we develop algebraic properties of spurion operators, that naturally arise because the spurions are often surrounded by superspace projection operators. Our results are general apart from the restrictions that higher super covariant derivative terms and some finite effects due to non-commutativity of superfield dependent mass matrices are ignored. One of the soft potentials induces renormalization of the Kaehler potential.
Phases of supersymmetric O(N) theories
Heilmann, Marianne; Synatschke-Czerwonka, Franziska; Wipf, Andreas
2012-01-01
We perform a global renormalization group study of O(N) symmetric Wess-Zumino theories and their phases in three euclidean dimensions. At infinite N the theory is solved exactly. The phases and phase transitions are worked out for finite and infinite short-distance cutoffs. A distinctive new feature arises at strong coupling, where the effective superfield potential becomes multi-valued, signalled by divergences in the fermion-boson interaction. Our findings resolve the long-standing puzzle about the occurrence of degenerate O(N) symmetric phases. At finite N, we find a strongly-coupled fixed point in the local potential approximation and explain its impact on the phase transition. We also examine the possibility for a supersymmetric Bardeen-Moshe-Bander phenomenon, and relate our findings with the spontaneous breaking of supersymmetry in other models.
SU(2|2) supersymmetric mechanics
Energy Technology Data Exchange (ETDEWEB)
Ivanov, Evgeny [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Sidorov, Stepan [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation)
2016-11-07
We introduce a new kind of non-relativistic N= 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N= 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4{sup ∗}|4) in the conformal cases. For the simplest (5,8,3) model the quantization is performed.
Supersymmetric One-family Model without Higgsinos
Mira, J M; Restrepo, D A; Sánchez, L A; Mira, Jesus M.; Ponce, William A.; Restrepo, Diego A.; Sanchez, Luis A.
2003-01-01
The Higgs potential and the mass spectrum of the N=1 supersymmetric extension of a recently proposed one-family model based on the local gauge group $SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X$, which is a subgroup of the electroweak-strong unification group $E_6$, is analyzed. In this model the slepton multiplets play the role of the Higgs scalars and no Higgsinos are needed, with the consequence that the sneutrino, the selectron and six other sleptons play the role of the Goldstone bosons. We show how the $\\mu$ problem is successfully addressed in the context of this model which also predicts the existence of a light CP-odd scalar.
The Supersymmetric Effective Field Theory of Inflation
Delacretaz, Luca V; Senatore, Leonardo
2016-01-01
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...
Supersymmetric dark matter above the W mass
Griest, Kim; Kamionkowski, Marc; Turner, Michael S.
1989-01-01
The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.
The transformations between N = 2 supersymmetric Korteweg-de Vries and Harry Dym equations
Tian, Kai; Liu, Q. P.
2012-05-01
The N = 2 supercomformal transformations are employed to study supersymmetric integrable systems. It is proved that two known N = 2 supersymmetric Harry Dym equations are transformed into two N = 2 supersymmetric modified Korteweg-de Vries equations, thus are connected with two N = 2 supersymmetric Korteweg-de Vries equations.
Direct versus indirect detection of supersymmetric dark matter
Energy Technology Data Exchange (ETDEWEB)
NONE
2003-07-01
This document gathers the slides that were presented during the workshop 'direct versus indirect detection of supersymmetric dark matter'(about 30 contributions). This workshop intended to bring together people from the particle theory community, astrophysicists and cosmologists, as well as experimentalists involved in the detection of dark matter. The aim is to generate a discussion about current and future strategies for detection of SUSY dark matter (with focus, but not exclusively, on neutralinos). Complementarities between accelerator, direct and indirect searches as well as a comparison between the uncertainties in direct and indirect searches of dark matter, are supposed to be discussed. Among the issues which will be addressed are: -) the crucial questions related to the structure of galaxies (local dark matter density, clumping, anomalous velocity distributions, etc.) ; -) the possibilities offered by the present and future experimental facilities for direct and indirect (photon, neutrino) searches; -) the potential for the discovery of SUSY at LHC and beyond; and -) the parameterization of the SUSY breaking models beyond the minimal versions.
Pseudospin symmetry in nuclear structure and its supersymmetric representation
Liang, H. Z.
2016-08-01
The quasi-degeneracy between the single-particle states (n,l,j=l+1/2) and (n-1,l+2,j=l+3/2) indicates a special and hidden symmetry in atomic nuclei—the so-called pseudospin symmetry (PSS)—which is an important concept in both spherical and deformed nuclei. A number of phenomena in nuclear structure have been successfully interpreted directly or implicitly by this symmetry, including nuclear superdeformed configurations, identical bands, quantized alignment, pseudospin partner bands, and so on. Since the PSS was recognized as a relativistic symmetry in 1990s, there have been comprehensive efforts to understand its properties in various systems and potentials. In this review, we mainly focus on the latest progress on the supersymmetric (SUSY) representation of PSS, and one of the key targets is to understand its symmetry-breaking mechanism in realistic nuclei in a quantitative and perturbative way. The SUSY quantum mechanics and its applications to the SU(2) and U(3) symmetries of the Dirac Hamiltonian are discussed in detail. It is shown that the origin of PSS and its symmetry-breaking mechanism, which are deeply hidden in the origin Hamiltonian, can be traced by its SUSY partner Hamiltonian. Essential open questions, such as the SUSY representation of PSS in the deformed system, are pointed out.
Pseudospin symmetry in nuclear structure and its supersymmetric representation
Liang, Haozhao
2016-01-01
The quasi-degeneracy between the single-particle states $(n,\\,l,\\,j=l+1/2)$ and $(n-1,\\,l+2,\\,j=l+3/2)$ indicates a special and hidden symmetry in atomic nuclei---the so-called pseudospin symmetry (PSS)---which is an important concept in both spherical and deformed nuclei. A number of phenomena in nuclear structure have been successfully interpreted directly or implicitly by this symmetry, including nuclear superdeformed configurations, identical bands, quantized alignment, pseudospin partner bands, and so on. Since the PSS was recognized as a relativistic symmetry in 1990s, there have been comprehensive efforts to understand its properties in various systems and potentials. In this Review, we mainly focus on the latest progress on the supersymmetric (SUSY) representation of PSS, and one of the key targets is to understand its symmetry-breaking mechanism in realistic nuclei in a quantitative and perturbative way. The SUSY quantum mechanics and its applications to the SU(2) and U(3) symmetries of the Dirac Ham...
Supersymmetric quantum mechanics approach to a nonlinear lattice
Energy Technology Data Exchange (ETDEWEB)
Ricotta, Regina Maria [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil); Drigo Filho, Elso [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)
2011-07-01
Full text: DNA is one of the most important macromolecules of all biological system. New discoveries about it have open a vast new field of research, the physics of nonlinear DNA. A particular feature that has attracted a lot of attention is the thermal denaturation, i.e., the spontaneous separation of the two strands upon heating. In 1989 a simple lattice model for the denaturation of the DNA was proposed, the Peyrard-Bishop model, PB. The bio molecule is described by two chains of particles coupled by nonlinear springs, simulating the hydrogen bonds that connect the two basis in a pair. The potential for the hydrogen bonds is usually approximated by a Morse potential. The Hamiltonian system generates a partition function which allows the evaluation of the thermodynamical quantities such as mean strength of the basis pairs. As a byproduct the Hamiltonian system was shown to be a NLSE (nonlinear Schroedinger equation) having soliton solutions. On the other hand, a reflectionless potential with one bound state, constructed using supersymmetric quantum mechanics, SQM, can be shown to be identical to a soliton solution of the KdV equation. Thus, motivated by this Hamiltonian problem and inspired by the PB model, we consider the Hamiltonian of a reflectionless potential through SQM, in order to evaluate thermodynamical quantities of a unidimensional lattice with possible biological applications. (author)
Supersymmetric P(X,phi) and the Ghost Condensate
Khoury, Justin; Ovrut, Burt
2010-01-01
We show how to construct supersymmetric actions for higher-derivative scalar field theories of the form P(X,phi), within the context of d=4, N=1 supersymmetry. This construction is of general use, and is applied to write a supersymmetric version of the Dirac-Born-Infeld action. Our principal application of this formalism is to construct the supersymmetric extension of the ghost condensate. This allows us to study the interplay between supersymmetry, time-dependent backgrounds and violations of the null energy condition.
The geometry of supersymmetric coset models and superconformal algebras
Papadopoulos, G
1993-01-01
An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.
Light Stop, Heavy Higgs, and Heavy Gluino in Supersymmetric Standard Models with Extra Matters
Hisano, Junji; Kuwahara, Takumi
2016-01-01
We have explored the possibilities of scenarios with heavy gluinos and light stops in the supersymmetric (SUSY) standard models with extra vector-like multiplets. If we assume the hierarchical structure for soft masses of MSSM scalar fields and extra scalars, the light stop and the observed Higgs boson can be realized. While the stau is the lightest SUSY particle (LSP) in broad parameter space, we have found the neutralino LSP is realized in the case that the non-zero soft parameters for the MSSM Higgs doublets or the non-universal gaugino masses are assumed.
Enhancement of proton decay rates in supersymmetric SU(5) grand unified models
Hisano, Junji; Kobayashi, Daiki; Nagata, Natsumi
2012-10-01
In the supersymmetric grand unified theories (SUSY GUTs), gauge bosons associated with the unified gauge group induce proton decay. We investigate the proton decay rate via the gauge bosons in the SUSY GUTs under the two situations; one is with extra vector-like multiplets, and the other is with heavy sfermions. It is found that the proton lifetime is significantly reduced in the former case, while in the latter case it is slightly prolonged. Determination of the particle contents and their mass spectrum below the GUT scale is important to predict the proton lifetime. The proton decay searches have started to access to the 1016GeV scale.
Enhancement of Proton Decay Rates in Supersymmetric SU(5) Grand Unified Models
Hisano, Junji; Nagata, Natsumi
2012-01-01
In the supersymmetric grand unified theories (SUSY GUTs), gauge bosons associated with the unified gauge group induce proton decay. We investigate the proton decay rate via the gauge bosons in the SUSY GUTs under the two situations; one is with extra vector-like multiplets, and the other is with heavy sfermions. It is found that the proton lifetime is significantly reduced in the former case, while in the latter case it is slightly prolonged. Determination of the particle contents and their mass spectrum below the GUT scale is important to predict the proton lifetime. The proton decay searches have started to access to the 10^16 GeV scale.
Mixed axion/neutralino cold dark matter in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard; Lessa, Andre; Rajagopalan, Shibi; Sreethawong, Warintorn, E-mail: baer@nhn.ou.edu, E-mail: lessa@nhn.ou.edu, E-mail: shibi@nhn.ou.edu, E-mail: wstan@nhn.ou.edu [Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)
2011-06-01
We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter (a Z-tilde {sub 1} CDM). The mixed a Z-tilde {sub 1} CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos (ã) to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as ∼ (f{sub a}/N)/m{sub ã}{sup 3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In a Z-tilde {sub 1} CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.
Implications of a 125 GeV Higgs for supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Arbey, A. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822 IPNL, F-69622 Villeurbanne Cedex (France); CERN, CH-1211 Geneva 23 (Switzerland); Observatoire de Lyon, CNRS, UMR5574 CRAL, Ecole Normale Superieure de Lyon, F-69561 Saint-Genis Laval Cedex (France); Battaglia, M. [CERN, CH-1211 Geneva 23 (Switzerland); Santa Cruz Institute of Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Djouadi, A., E-mail: abdelhak.djouadi@th.u-psud.fr [CERN, CH-1211 Geneva 23 (Switzerland); Laboratoire de Physique Theorique, Universite Paris XI and CNRS, F-91405 Orsay (France); Mahmoudi, F. [CERN, CH-1211 Geneva 23 (Switzerland); Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, 63000 Clermont-Ferrand (France); Quevillon, J. [Laboratoire de Physique Theorique, Universite Paris XI and CNRS, F-91405 Orsay (France)
2012-02-14
Preliminary results of the search for a Standard Model like Higgs boson at the LHC with 5 fb{sup -1} data have just been presented by the ATLAS and CMS Collaborations and an excess of events at a mass of Almost-Equal-To 125 GeV has been reported. If this excess of events is confirmed by further searches with more data, it will have extremely important consequences in the context of supersymmetric extensions of the Standard Model and, in particular the minimal one, the MSSM. We show that for a standard-like Higgs boson with a mass 123
Aspects of a supersymmetric Brans-Dicke theory
Energy Technology Data Exchange (ETDEWEB)
Catena, R.
2006-11-15
We consider a locally supersymmetric theory where the Planck mass is replaced by a dynamical superfield. This model can be thought of as the Minimal Supersymmetric extension of the Brans-Dicke theory (MSBD). The motivation that underlies this analysis is the research of possible connections between Dark Energy models based on Brans-Dicke-like theories and supersymmetric Dark Matter scenarios. We find that the phenomenology associated with the MSBD model is very different compared to the one of the original Brans-Dicke theory: the new scalar and fermionic degrees of freedom do not couple to matter in a universal metric way, i.e. they can not be removed from the matter sector by a Weyl rescaling of the metric. This feature could make the minimal supersymmetric extension of the BD idea phenomenologically inconsistent. (orig.)
LHC phenomenology of supersymmetric models beyond the MSSM
Porod, Werner
2010-01-01
We discuss various phenomenological aspects of supersymmetric models beyond the MSSM. A particular focus is on models which can correctly explain neutrino data and the possiblities of LHC to identify the underlying scenario.
N=2 supersymmetric extension of l-conformal Galilei algebra
Energy Technology Data Exchange (ETDEWEB)
Masterov, Ivan [Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)
2012-07-15
N=2 supersymmetric extension of the l-conformal Galilei algebra is constructed. A relation between its representations in flat spacetime and in Newton-Hooke spacetime is discussed. An infinite-dimensional generalization of the superalgebra is given.
Ma, E
1994-01-01
In the minimal supersymmetric standard model, the Higgs sector has two unknown parameters, usually taken to be $\\tan \\beta \\equiv v_2/v_1$ and $m_A$, the mass of its one physical pseudoscalar particle. By minimizing the minimum of the Higgs potential along a certain direction in parameter space, it is shown that $m_A = M_Z$ + radiative correction, and if one further plausible assumption is made, $\\tan \\beta > \\sqrt 3$.
A supersymmetric composite model of quarks and leptons
Luty, Markus A.; Mohapatra, Rabindra N.
1997-02-01
We present a class of supersymmetric models with complete generations of composite quarks and leptons using recent non-perturbative results for the low energy dynamics of supersymmetric QCD. In these models, the quarks arise as composite ``mesons'' and the leptons emerge as composite ``baryons''. The quark and lepton flavor symmetries are linked at the preon level. Baryon number violation is automatically suppressed by accidental symmetries. We give some speculations on how this model might be made realistic.
Reduction of couplings and finiteness in realistic supersymmetric GUTs
Energy Technology Data Exchange (ETDEWEB)
Kubo, J. [Kanazawa Univ. (Japan). Dept. of Physics; Mondragon, M. [Instituto de Fisica, UNAM, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G. [Physics Dept., Nat. Technical University, 157 80 Zografou, Athens (Greece)
1997-07-01
Reduction of couplings in supersymmetric GUTs is achieved by searching for renormalization group invariant (RGI) relations among couplings which hold beyond the unification scale. Finiteness is due to the fact that there exist RGI relations among couplings that guarantee the vanishing of the {beta}-functions of a N = 1 supersymmetric GUT even to all orders in perturbation theory. Of particular interest are the relations among gauge and Yukawa couplings which lead to very interesting predictions of the top quark mass. (orig.).
Neutralino annihilation into massive quarks with supersymmetric QCD corrections
Herrmann, Björn; Klasen, Michael; Kovařík, Karol
2009-03-01
We compute the full O(αs) supersymmetric (SUSY)-QCD corrections for neutralino annihilation into massive quarks through gauge or Higgs bosons and squarks in the minimal supersymmetric standard model, including the known resummation of logarithmically enhanced terms. The numerical impact of the corrections on the extraction of SUSY mass parameters from cosmological data is analyzed for gravity-mediated SUSY-breaking scenarios and shown to be sizable, so that these corrections must be included in common analysis tools.
Non-supersymmetric AdS and the Swampland
Ooguri, Hirosi
2016-01-01
We propose to sharpen the weak gravity conjecture by the statement that, except for BPS states in a supersymmetric theory, the gravitational force is strictly weaker than any electric force and provide a number of evidences for this statement. Our conjecture implies that any non-supersymmetric anti-de Sitter vacuum supported by fluxes must be unstable, as is the case for all known attempts at such holographic constructions.
Second Hopf map and supersymmetric mechanics with Yang monopole
Energy Technology Data Exchange (ETDEWEB)
Gonzales, M.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z. [Universidade Federal do ABC, Santo Andre, SP (Brazil); Nersessian, F. [Artsakh State University, Stepanakert (Armenia); Yeghikyan, V. [Yerevan State University (Armenia)
2009-07-01
We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)
Supersymmetric Q-Lumps in the Grassmannian nonlinear sigma models
Bak, D; Lee, J; Oh, P; Bak, Dongsu; Hahn, Sang-Ok; Lee, Joohan; Oh, Phillial
2007-01-01
We construct the N=2 supersymmetric Grassmannian nonlinear sigma model for the massless case and extend it to massive N=2 model by adding an appropriate superpotential. We then study their BPS equations leading to supersymmetric Q-lumps carrying both topological and Noether charges. These solutions are shown to be always time dependent even sometimes involving multiple frequencies. Thus we illustrate explicitly that the time dependence is consistent with remaining supersymmetries of solitons.
Supersymmetric M5 brane theories on R × CP2
Kim, Hee-Cheol; Lee, Kimyeong
2013-07-01
We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant 1/{g_{{YM}^2}}=k/{4{π^2}} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1 , 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU( N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Z k modding of the AdS7 × S4 geometry, we speculate that the M region is for k ≲ N 1/3 and the type IIA region is N 1/3 ≲ k ≲ N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.
Phenomenological study of the minimal R-symmetric supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip
2016-10-20
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
Search for Long-lived particles with the ATLAS detector
Saito, Masahiko; The ATLAS collaboration
2017-01-01
Several supersymmetric models predict the production of meta-stable supersymmetric particles. Such particles, if charged, may be detected through disappearing tracks. The poster presents recent results from disappearing track analysis based on an integrated luminosity of 36.1 $\\mathrm{fb}^{-1}$ of $pp$ collisions at a centre of mass energy of 13 TeV with the ATLAS detector at the LHC.
Search for R-parity violating supersymmetry and long-lived particles at the ATLAS experiment
Chitan, A; The ATLAS collaboration
2014-01-01
Admission of R-parity violation introduces new signatures to the search for supersymmetry at the LHC. Strongly interacting resonances may decay to jets, sleptons may decay via lepton-flavour violating processes and lightest supersymmetric particles may decay into many leptons with or without missing transverse momentum. Several supersymmetric models also predict massive long-lived supersymmetric particles. Such particles may be detected through abnormal specific energy loss, appearing or disappearing tracks, displaced vertices, long time-of-flight or late calorimetric energy deposits. The talk presents recent results from searches supersymmetry in resonance production, R-parity violating signatures and events with long-lived particles with the ATLAS detector.
The goldstone and goldstino of supersymmetric inflation
Energy Technology Data Exchange (ETDEWEB)
Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139 (United States)
2015-10-01
We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X{sub NL} containing the goldstino and satisfying X{sub NL}{sup 2}=0, and a real superfield B{sub NL} containing both the goldstino and the goldstone, satisfying X{sub NL}B{sub NL}=B{sub NL}{sup 3}=0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.
The goldstone and goldstino of supersymmetric inflation
Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse
2015-10-01
We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X NL containing the goldstino and satisfying X NL 2 = 0, and a real superfield B NL containing both the goldstino and the goldstone, satisfying X NL B NL = B NL 3 = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.
Introduction to Supersymmetric Theory of Stochastics
Directory of Open Access Journals (Sweden)
Igor V. Ovchinnikov
2016-03-01
Full Text Available Many natural and engineered dynamical systems, including all living objects, exhibit signatures of what can be called spontaneous dynamical long-range order (DLRO. This order’s omnipresence has long been recognized by the scientific community, as evidenced by a myriad of related concepts, theoretical and phenomenological frameworks, and experimental phenomena such as turbulence, 1/f noise, dynamical complexity, chaos and the butterfly effect, the Richter scale for earthquakes and the scale-free statistics of other sudden processes, self-organization and pattern formation, self-organized criticality, etc. Although several successful approaches to various realizations of DLRO have been established, the universal theoretical understanding of this phenomenon remained elusive. The possibility of constructing a unified theory of DLRO has emerged recently within the approximation-free supersymmetric theory of stochastics (STS. There, DLRO is the spontaneous breakdown of the topological or de Rahm supersymmetry that all stochastic differential equations (SDEs possess. This theory may be interesting to researchers with very different backgrounds because the ubiquitous DLRO is a truly interdisciplinary entity. The STS is also an interdisciplinary construction. This theory is based on dynamical systems theory, cohomological field theories, the theory of pseudo-Hermitian operators, and the conventional theory of SDEs. Reviewing the literature on all these mathematical disciplines can be time consuming. As such, a concise and self-contained introduction to the STS, the goal of this paper, may be useful.
Supersymmetric Perturbations of the M5 brane
Niarchos, Vasilis
2014-01-01
We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the $\\kappa$-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspond...
Precision Holography with Supersymmetric Wilson Loops
Faraggi, Alberto; Silva, Guillermo A; Trancanelli, Diego
2016-01-01
We consider certain 1/4 BPS Wilson loop operators in $SU(N)$ ${\\cal N}=4$ super Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in $AdS_5\\times S^5$. The string on-shell action reproduces the large $N$ and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by computing the 1-loop determinant of the quantum fluctuations around the classical string configuration. A source of ambiguity, related to ghost zero modes, is removed by comparing our operator with the 1/2 BPS circular Wilson loop. We find perfect agreement between the string theory result and the gauge theory prediction. This successful match, besides being a high precision test of the AdS/CFT correspondence, elucidates some o...
On maximally supersymmetric Yang-Mills theories
Movshev, M
2004-01-01
We consider ten-dimensional supersymmetric Yang-Mills theory (10D SUSY YM theory) and its dimensional reductions, in particular, BFSS and IKKT models. We formulate these theories using algebraic techniques based on application of differential graded Lie algebras and associative algebras as well as of more general objects, L_{\\infty}- and A_{\\infty}- algebras. We show that using pure spinor formulation of 10D SUSY YM theory equations of motion and isotwistor formalism one can interpret these equations as Maurer-Cartan equations for some differential Lie algebra. This statement can be used to write BV action functional of 10D SUSY YM theory in Chern-Simons form. The differential Lie algebra we constructed is closely related to differential associative algebra Omega of (0, k)-forms on some supermanifold; the Lie algebra is tensor product of Omega and matrix algebra . We construct several other algebras that are quasiisomorphic to Omega and, therefore, also can be used to give BV formulation of 10D SUSY YM theory...
New Dualities in Supersymmetric Chiral Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC
2011-08-15
We analyze the phase structure of supersymmetric chiral gauge theories with gauge group SU(N), an antisymmetric, and F {le} N + 3 flavors, in the presence of a cubic superpotential. When F = N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits a self-dual magnetic description. For general N, we find an infinite family of magnetic dual descriptions, characterized by arbitrarily large gauge groups and additional classical global symmetries that are truncated by nonperturbative effects. The infrared dynamics of these theories are analyzed using a-maximization, which supports the claim that all these theories flow to the same superconformal fixed point. A very rich phase structure is found when the number of flavors is reduced below N + 3, including a new self-dual point, transitions from conformal to confining, and a nonperturbative instability for F {le} N. We also give examples of chiral theories with antisymmetrics that have nonchiral duals.
Simulations of supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Demmouche, K.; Farchioni, F.; Ferling, A.; Muenster, G.; Wuilloud, J. [Muenster Univ. (Germany); Montvay, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Scholz, E.E. [Fermi National Accelerator Lab., Batavia, IL (United States)
2009-11-15
Results of a numerical simulation concerning the low-lying spectrum of four-dimensional N = 1 SU(2) Supersymmetric Yang-Mills (SYM) theory on the lattice with light dynamical gluinos are reported. We use the tree-level Symanzik improved gauge action and Wilson fermions with stout smearing of the gauge links in the Wilson-Dirac operator. The configurations are produced with the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithm. We performed simulations on lattices up to a size of 24{sup 3}.48 at {beta}=1.6. Using QCD units with the Sommer scale being set to r{sub 0}=0.5 fm, the lattice spacing is about a {approx_equal}0.09 fm, and the spatial extent of the lattice corresponds to 2.1 fm to control finite size effects. At the lightest simulated gluino mass our results indicate a mass for the lightest gluino-glue bound state, which is considerably heavier than the values obtained for its possible superpartners. Whether supermultiplets are formed remains to be studied in upcoming simulations. (orig.)
The supersymmetric NUTs and bolts of holography
Energy Technology Data Exchange (ETDEWEB)
Martelli, Dario; Passias, Achilleas [Department of Mathematics, King' s College London, The Strand, London WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford OX1 3LB (United Kingdom)
2013-11-21
We show that a given conformal boundary can have a rich and intricate space of supersymmetric supergravity solutions filling it, focusing on the case where this conformal boundary is a biaxially squashed Lens space. Generically we find that the biaxially squashed Lens space S{sup 3}/Z{sub p} admits Taub-NUT-AdS fillings, with topology R{sup 4}/Z{sub p}, as well as smooth Taub-Bolt-AdS fillings with non-trivial topology. We show that the Taub-NUT-AdS solutions always lift to solutions of M-theory, and correspondingly that the gravitational free energy then agrees with the large N limit of the dual field theory free energy, obtained from the localized partition function of a class of N=2 Chern–Simons-matter theories. However, the solutions of Taub-Bolt-AdS type only lift to M-theory for appropriate classes of internal manifold, meaning that these solutions exist only for corresponding classes of three-dimensional N=2 field theories.
Supersymmetric plasma systems and their nonsupersymmetric counterparts
Czajka, Alina
2016-01-01
In this thesis a systematic comparison of supersymmetric plasma systems and their nonsupersymmetric counterparts is presented. The work is motivated by the AdS/CFT correspondence and the main aim is to check how much the plasma governed by the N=4 super Yang-Mills theory resembles the quark-gluon plasma studied experimentally in relativistic heavy-ion collisions. The analysis is done in a weak coupling regime where perturbative methods are applicable. Since the Keldysh-Schwinger approach is used, not only equilibrium but also nonequilibrium plasmas, which are assumed to be ultrarelativistic, are under consideration. First, using the functional techniques we introduce Faddeev-Popov ghosts into the Keldysh-Schwinger formalism of nonAbelian gauge theories. Next the collective excitations of the N=1 SUSY QED plasma are considered and compared to those of the usual QED system. The analysis is repeated to confront with each other the plasmas governed by the N=4 super Yang-Mills and QCD theories. Finally, transport ...
Higgs particle searches at LEP
Energy Technology Data Exchange (ETDEWEB)
Martin, J.P.
1996-12-31
Results on searches for the Higgs particle performed by the four LEP experiments are received in the framework of the Standard Model, Two Doublet Model, and Minimal Supersymmetric Model. The combined mass lower limit for the standard Higgs boson is 66 GeV/c{sup 2} at 95 % CL for a statistics of 14.6 Million hadronic Z decays. (authors). 24 refs.
A renormalization in group study of supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Heilmann, Marianne
2015-05-13
This thesis analyses scalar supersymmetric field theories within the framework of the functional renormalization group (FRG). Classical physics on microscopic scales is connected to the effective model on macroscopic scales via the scale-dependent effective average action by a reformulation of the path integral. Three supersymmetric theories are explored in detail: supersymmetric quantum mechanics, the three-dimensional Wess-Zumino model and supersymmetric spherical theories in three dimensions. The corresponding renormalization group flow is formulated in a manifestly supersymmetric way. By utilizing an expansion of the effective average action in derivative operators, an adequate and intrinsically non-perturbative truncation scheme is selected. In quantum mechanics, the supersymmetric derivative expansion is shown to converge by increasing the order of truncation. Besides, high-accuracy results for the ground and first excited state energies for quantum systems with conserved as well as spontaneously broken supersymmetry are achieved. Furthermore, the critical behaviour of the three-dimensional Wess-Zumino is investigated. Via spectral methods, a global Wilson-Fisher scaling solution and its corresponding universal exponents are determined. Besides, a superscaling relation of the leading exponents is verified for arbitrary dimensions greater than or equal to two. Lastly, three-dimensional spherical, supersymmetric theories are analysed. Their phase structure is determined in detail for infinite as well as finitely many superfields. The exact one-parameter scaling solution for infinitely many fields is shown to collapse to a single non-trivial Wilson-Fisher fixed-point for finitely many superfields. It is pointed out that the strongly-coupled domains of these theories are plagued by Landau poles and non-analyticities, indicating spontaneous supersymmetry breaking.
Search for a Supersymmetric Partner to the Top Quark using a Multivariate Analysis Technique.
AUTHOR|(INSPIRE)INSPIRE-00337045
Supersymmetry (SUSY) is an extension to the Standard Model (SM) which introduces supersymmetric partners of the known fermions and bosons. Top squark (stop) searches are a natural extension of inclusive SUSY searches at the Large Hadron Collider (LHC). If SUSY solves the naturalness problem, the stop should be light enough to cancel the top loop contribution to the Higgs mass parameter. The 3rd generation squarks may be the first SUSY particles to be discovered at the LHC. The stop can decay into a variety of final states, depending, amongst other factors, on the hierarchy of the mass eigenstates formed from the linear superposition of the SUSY partners of the Higgs boson and electroweak gauge bosons. In this study the relevant mass eigenstates are the lightest chargino ($\\chi_{1}^{\\pm}$) and the neutralino ($\\chi_{1}^{0}$). A search is presented for a heavy SUSY top partner decaying to a lepton, neutrino and the lightest supersymmetric particle ($\\chi_{1}^{0}$), via a b-quark and a chargino ($\\chi_{1}^{\\p...
Phase diagrams of exceptional and supersymmetric lattice gauge theories
Energy Technology Data Exchange (ETDEWEB)
Wellegehausen, Bjoern-Hendrik
2012-07-10
In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.
Search for R-parity violating or long-living SUSY particles
Axen, Bradley; The ATLAS collaboration
2016-01-01
The proton-proton collisions at "sqrt{s}" = 13 TeV at the LHC have increased the ATLAS sensitivity to production of strongly produced supersymmetric particles. If R-parity is not conserved, these particles may decay to jets and leptons, and lightest supersymmetric particles may decay into many leptons with or without missing transverse momentum. Several supersymmetric models also predict massive long-lived supersymmetric particles. Such particles may be detected through abnormal specific energy loss, appearing or disappearing tracks, displaced vertices, long time-of-flight or late calorimetric energy deposits. The talk presents recent results from searches of supersymmetry in resonance production, R-parity violating signatures and events with long-lived particles with the ATLAS detector using LHC Run 2 data.
Comments on twisted indices in 3d supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Closset, Cyril [Simons Center for Geometry and PhysicsState University of New York, Stony Brook, NY 11794 (United States); Kim, Heeyeon [Perimeter Institute for Theoretical Physics31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada)
2016-08-09
We study three-dimensional N=2 supersymmetric gauge theories on Σ{sub g}×S{sup 1} with a topological twist along Σ{sub g}, a genus-g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S{sup 1} can be computed exactly by supersymmetric localization. For g=1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on ℝ{sup 2}×S{sup 1}. This also provides a powerful and simple tool to study 3d N=2 Seiberg dualities. Finally, we study A- and B-twisted indices for N=4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S{sup 2}×S{sup 1} twisted indices and the Hilbert series of N=4 moduli spaces.
Indian Academy of Sciences (India)
E Coniavitis; A Ferrari
2007-11-01
The minimal supersymmetric extension of the standard model (MSSM) predicts the existence of new charged and neutral Higgs bosons. The pair creation of these new particles at the multi-TeV + − compact linear collider (CLIC), followed by decays into standard model particles, were simulated along with the corresponding background. High-energy beam–beam effects such as ISR, beamstrahlung and hadronic background were included. We have investigated the possibility of using the ratio between the number of events found in various decay channels to determine the MSSM parameter tan and we have derived the corresponding statistical error from the uncertainties on the measured cross-sections and Higgs boson masses.
Energy Technology Data Exchange (ETDEWEB)
Liebler, Stefan Rainer
2011-09-15
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
Santoyo Castillo, Itzebelt; The ATLAS collaboration
2015-01-01
This talk summarises the latest ATLAS results in the context of searches for electroweak production of supersymmetric particles, R-Parity violating/conserving SUSY scenarios, and long-lived supersymmetric particles using the full 2012 data corresponding to 20.3~fb^{-1} at \\sqrt{s} = 8~TeV of p-p collisions collected by the ATLAS.
A search for supersymmetric electrons with the Mark II detector at PEP (Positron Electron Project)
Energy Technology Data Exchange (ETDEWEB)
LeClaire, B.W.
1987-10-01
An experimental search for selectrons, the supersymmetric partner of the electron, has been performed at the PEP storage ring at SLAC using the Mark II detector. The experimental search done was based upon hypothetical reaction in e/sup +/e/sup -/ interactions at PEP center of mass energies of 29 GeV. In this reaction the selectrons, e-tilde, are assumed produced by the interaction of one of initial state electrons with a photon radiated from the other initial state electron. This latter electron is assumed to continue down the beam pipe undetected. The photon and electron then produce a selectron and a photino, ..gamma..-tilde, in the supersymmetric analog of Compton scattering. The photino is assumed to be the lightest supersymmetric particle, and as such, does not interact in the detector, thereby escaping detection very much like a neutrino. The selectron is assumed to immediately decay into an electron and photino. This electron is produced with large p perpendicular with respect to the beam pipe, since it must balance the transverse momentum carried off by the photinos. Thus, the experimental signature of the process is a single electron in the detector with a large unbalanced tranverse momentum. No events of this type were observed in the original search of 123 pb/sup -1/ of data, resulting in a cross section limit of less than 2.4 x 10/sup -2/ pb (at the 95% CL) within the detector acceptance. This cross section upper limit applies to any process which produces anomalous single electron events with missing transverse momentum. When interpreted as a supersymmetry search it results in a lower selectron mass limit of 22.2 GeV/c/sup 2/ for the case of massless photinos. Limits for non-zero mass photinos have been calculated. 87 refs., 67 figs., 17 tabs.
SEARCH FOR SUSY PARTICLE DECAYS TO Z+JETS+ETmiss AT ATLAS
Holmes, Tova Ray; The ATLAS collaboration
2016-01-01
A search for supersymmetric particles decaying to a Z boson, jets, and invisible particles is presented. The search is performed using 13 TeV proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider. The results are interpreted using a simplified model in which gluinos are produced and subsequently decay via the second lightest neutralino to Z bosons and lightest supersymmetric particles.
Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories
Aniceto, Inês; Schiappa, Ricardo
2015-01-01
Localization methods have recently led to a plethora of new exact results in supersymmetric gauge theories, as certain observables may be computed in terms of matrix integrals. These can then be evaluated by making use of standard large N techniques, or else via perturbative expansions in the gauge coupling. Either approximation often leads to observables given in terms of asymptotic series, which need to be properly defined in order to obtain nonperturbative results. At the same time, resurgent analysis has recently been successfully applied to several problems, e.g., in quantum, field and string theories, precisely to overcome this issue and construct nonperturbative answers out of asymptotic perturbative expansions. The present work uses exact results from supersymmetric localization to address the resurgent structure of the free energy and partition function of Chern-Simons and ABJM gauge theories in three dimensions, and of N=2 supersymmetric Yang-Mills theories in four dimensions. For each case, the com...
Extended Supersymmetric BMS$_3$ algebras and Their Free Field Realisations
Banerjee, Nabamita; Lodato, Ivano; Mukhi, Sunil; Neogi, Turmoli
2016-01-01
We study $N=(2,4,8)$ supersymmetric extensions of the three dimensional BMS algebra (BMS$_3$) with most generic possible central extensions. We find that $N$-extended supersymmetric BMS$_3$ algebras can be derived by a suitable contraction of two copies of the extended superconformal algebras. Extended algebras from all the consistent contractions are obtained by scaling left-moving and right-moving supersymmetry generators symmetrically, while Virasoro and R-symmetry generators are scaled asymmetrically. On the way, we find that the BMS/GCA correspondence does not in general hold for supersymmetric systems. Using the $\\beta$-$\\gamma$ and the ${\\mathfrak b}$-${\\mathfrak c}$ systems, we construct free field realisations of all the extended super-BMS$_3$ algebras.
Non-supersymmetric Asymmetric Orbifolds with Vanishing Cosmological Constant
Satoh, Yuji; Wada, Taiki
2015-01-01
We study type II string vacua defined by torus compactifications accompanied by T-duality twists. We realize the string vacua, specifically, by means of the asymmetric orbifolding associated to the chiral reflections combined with a shift, which are interpreted as describing the compactification on `T-folds'. We discuss possible consistent actions of the chiral reflection on the Ramond-sector of the world-sheet fermions, and explicitly construct non-supersymmetric as well as supersymmetric vacua. Above all, we demonstrate a simple realization of non-supersymmetric vacua with vanishing cosmological constant at one loop. Our orbifold group is generated only by a single element, which results in simpler models than those with such property known previously.
Non-supersymmetric asymmetric orbifolds with vanishing cosmological constant
Satoh, Yuji; Sugawara, Yuji; Wada, Taiki
2016-02-01
We study type II string vacua defined by torus compactifications accompanied by T-duality twists. We realize the string vacua, specifically, by means of the asymmetric orbifolding associated to the chiral reflections combined with a shift, which are interpreted as describing the compactification on `T-folds'. We discuss possible consistent actions of the chiral reflection on the Ramond-sector of the world-sheet fermions, and explicitly construct non-supersymmetric as well as supersymmetric vacua. Above all, we demonstrate a simple realization of non-supersymmetric vacua with vanishing cosmological constant at one loop. Our orbifold group is generated only by a single element, which results in simpler models than those with such property known previously.
Rigid Supersymmetric Backgrounds of 3-dimensional Newton-Cartan Supergravity
Knodel, Gino; Liu, James T
2015-01-01
Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the $c \\rightarrow \\infty$ limit of three dimensional $\\mathcal{N}=2$ supergravity in arXiv:1505.02095. In the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there are $\\frac{1}{2}$-BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of $\\mathcal{N}=2$ supergravity are connected to the solutions found here in the $c \\rightarrow \\infty$ limit.
The Minimal Supersymmetric Model without a mu term
Nelson, A E; Sanz, V; Unsal, M; Nelson, Ann E.; Rius, Nuria; Sanz, Veronica; Unsal, Mithat
2002-01-01
We propose a supersymmetric extension of the standard model which is a realistic alternative to the MSSM, and which has several advantages. No ``mu'' supersymmetric Higgs/Higgsino mass parameter is needed for sufficiently heavy charginos. An approximate U(1) R symmetry naturally guarantees that tan beta is large, explaining the top/bottom quark mass hierarchy. This symmetry also suppresses supersymmetric contributions to anomalous magnetic moments, b to s gamma, and proton decay, and these processes place no lower bounds on superpartner masses, even at large tan beta. The soft supersymmetry breaking mass parameters can easily be obtained from either gauge or Planck scale mediation, without the usual mu problem. Unlike in the MSSM, there are significant upper bounds on the masses of superpartners, including an upper bound of 114 GeV on the mass of the lightest chargino. However the MSSM bound on the lightest Higgs mass does not apply.
Supersymmetric Lepton Flavour Violation in Low-Scale Seesaw Models
Ilakovac, Amon
2009-01-01
We study a new supersymmetric mechanism for lepton flavour violation in \\mu and \\tau decays and \\mu -> e conversion in nuclei, within a minimal extension of the MSSM with low-mass heavy singlet neutrinos and sneutrinos. We find that the decays \\mu -> e\\gamma$, \\tau -> e\\gamma and \\tau -> \\mu\\gamma are forbidden in the supersymmetric limit of the theory, whereas other processes, such as \\mu -> eee, \\mu -> e conversion, \\tau -> eee and \\tau -> e\\mu\\mu, are allowed and can be dramatically enhanced several orders of magnitude above the observable level by potentially large neutrino Yukawa coupling effects. The profound implications of supersymmetric lepton flavour violation for present and future experiments are discussed.
D-brane Solitons in Supersymmetric Sigma-Models
Gauntlett, J P; Tong, D; Townsend, P K; Gauntlett, Jerome P.; Portugues, Rubén; Tong, David; Townsend, Paul K.
2001-01-01
Massive D=4 N=2 supersymmetric sigma models typically admit domain wall (Q-kink) solutions and string (Q-lump) solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric `kink-lump' solution in which a string ends on a wall, and show that it has an effective realization as a BIon of the D=4 super DBI-action. It is also shown to have a time-dependent Q-kink-lump generalization which reduces to the Q-lump in a limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric sigma-model solitons are shown to be realized in M-theory as calibrated, or `Q-calibrated', M5-branes in an M-monopole background.
Geometry of non-supersymmetric three-charge bound states
Energy Technology Data Exchange (ETDEWEB)
Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.; Ross, Simon F.
2007-05-14
We study the smooth non-supersymmetric three-charge microstatesof Jejjala, Madden, Ross and Titchener using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relation between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.
Deviations From Newton's Law in Supersymmetric Large Extra Dimensions
Callin, P
2006-01-01
Deviations from Newton's Inverse-Squared Law at the micron length scale are smoking-gun signals for models containing Supersymmetric Large Extra Dimensions (SLEDs), which have been proposed as approaches for resolving the Cosmological Constant Problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the Dark Energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant natu...
Relation Between the Pole Mass and MS Mass of Top Quark in Supersymmetric QCD
Institute of Scientific and Technical Information of China (English)
CHEN Shao-Long; FENG Tai-Fu; LI Xue-Qian
2001-01-01
We discuss the relation between the pole mass and MS mass of top quark in the framework of the supersymmetric QCD. We find that the supersymmetric contributions are comparable to those of the standard model.
Relation Between the Pole Mass and MS Mass of Top Quark in Supersymmetric QCD
Institute of Scientific and Technical Information of China (English)
CHENShao－Long; FENGTai－Fu; 等
2001-01-01
We discuss the relation between the pole mass and MS mass of top quark in the framework of the supersymmetric QCD.We find that the supersymmetric contributions are comparable to those of the standard model.
Invariant Regularization of Supersymmetric Chiral Gauge Theory, 2
Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi
1998-01-01
By supplementing additional analyses postponed in the previous paper, we complete our construction of manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. We present: An evaluation of the covariant gauge anomaly; the proof of integrability of the covariant gauge current in anomaly-free cases; a calculation of one-loop superconformal anomaly in the gauge supermultiplet sector. On the last point, we find that the ghost-anti-ghost supermultiplet and the Nakanishi-Lautrup supermultiplet give rise to BRST exact contributions which, due to the Slavnov-Taylor identities in our regularization scheme, can safely be neglected.
Supersymmetric quantum mechanics for two-dimensional disk
Indian Academy of Sciences (India)
Akira Suzuki; Ranabir Dutt; Rajat K Bahaduri
2005-07-01
The infinite square well potential in one dimension has a smooth supersymmetric partner potential which is shape invariant. In this paper, we study the generalization of this to two dimensions by constructing the supersymmetric partner of the disk billiard. We find that the property of shape invariance is lost in this case. Nevertheless, the WKB results are significantly improved when SWKB calculations are performed with the square of the superpotential. We also study the effect of inserting a singular flux line through the center of the disk.
A review of Higgs mass calculations in supersymmetric models
DEFF Research Database (Denmark)
Draper, P.; Rzehak, H.
2016-01-01
related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...... in the Minimal Supersymmetric Standard Model, in particular the large radiative corrections required to lift mh to 125 GeV and their calculation via Feynman-diagrammatic and effective field theory techniques. This review is intended as an entry point for readers new to the field, and as a summary of the current...
Dark matter and dark forces from a supersymmetric hidden sector
Energy Technology Data Exchange (ETDEWEB)
Andreas, S.; Goodsell, M.D.; Ringwald, A.
2011-09-15
We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)
Metastable Vacua in Deformed N=2 Supersymmetric Models
Halyo, Edi
2009-01-01
We show that supersymmetric Abelian models that are obtained from deformations of those with ${\\cal N}=2$ supersymmetry also contain metastable vacua for a wide range of parameters. The deformations we consider are combinations of masses for charged and singlet fields, a singlet F--term and an anomalous D--term. We find that, in all cases, the nonsupersymmetric vacua are parametrically far from the supersymmetric ones and therefore metastable. Using retrofitting, we show that these metastable vacua may lead to semi--realistic phenomenology.
Supersymmetric quantum mechanics on the lattice: I. Loop formulation
Directory of Open Access Journals (Sweden)
David Baumgartner
2015-05-01
Full Text Available Simulations of supersymmetric field theories on the lattice with (spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Supersymmetric Casimir Energy and $SL(3,\\mathbb{Z})$ Transformations
Brünner, Frederic; Spiridonov, Vyacheslav P
2016-01-01
We provide a recipe to extract the supersymmetric Casimir energy of theories defined on primary Hopf surfaces directly from the superconformal index. It involves an $SL(3,\\mathbb{Z})$ transformation acting on the complex structure moduli of the background geometry. In particular, the known relation between Casimir energy, index and partition function emerges naturally from this framework, allowing rewriting of the latter as a modified elliptic hypergeometric integral. We show this explicitly for $\\mathcal{N}=1$ SQCD and $\\mathcal{N}=4$ supersymmetric Yang-Mills theory for all classical gauge groups, and conjecture that it holds more generally.
Consistent gravitino couplings in non-supersymmetric strings
Dudas, E A
2001-01-01
The massless spectrum of the ten dimensional USp(32) type I string has an N=1 supergravity multiplet coupled to non-supersymmetric matter. This raises the question of the consistency of the gravitino interactions. We resolve this apparent puzzle by arguing for the existence of a local supersymmetry which is non-linearly realised in the open sector. We determine the leading order low energy effective Lagrangian. Similar results are expected to apply to lower dimensional type I models where supergravity is coupled to non-supersymmetric branes.
Global Properties of Supersymmetric Theories and the Lens Space
Razamat, Shlomo S
2013-01-01
We compute the supersymmetric partition function on L(r,1)xS^1, the lens space index, for 4d gauge theories related by supersymmetric dualities and involving non simply-connected groups. This computation is sensitive to the global properties of the underlying gauge group and to discrete theta angle parameters and thus distinguishes versions of dualities differing by such. We explicitly discuss N=1 so(N_c) Seiberg dualities and N=4 su(N_c) S-dualities.
Supersymmetric quantum mechanics on the lattice: I. Loop formulation
Baumgartner, David
2014-01-01
Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N = 2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper - the first in a series of three - we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.
Schulze-Halberg, Axel
2016-06-01
We construct supersymmetric partners of a quantum system featuring a class of trigonometric potentials that emerge from the spheroidal equation. Examples of both standard and confluent supersymmetric transformations are presented. Furthermore, we use integral formulas arising from the confluent supersymmetric formalism to derive new representations for single and multiple integrals of spheroidal functions.
Radiative Symmetry Breaking in the Supersymmetric Minimal B-L Extended Standard Model
Burell, Zachary
2016-01-01
The Standard Model (SM) of particle physics is a precise model of electroweak interactions, however there is growing tension between the SM and observations (neutrino oscillations, dark matter, dark energy, baryogenesis, among others). There is no reason to expect the validity of the ad hoc SM to remain intact at energy scales above a few TeV, thus a more fundamental theory will almost certainly be required. Motivated by these considerations, we investigate a Supersymmetric version of a natural extension of the SM, the $U(1)_{B-L}$ model, that is obtained by gauging the accidental B-L symmetry that exists in the ordinary SM. The Supersymmetric $U(1)_{B-L}$ extended SM can resolve the neutrino mass problem, the dark matter problem, the hierarchy problem, and provides a mechanism for establishing the observed baryon asymmetry of the Universe. When we include quantum corrections to the Higgs potential of the model, we find that Radiative $B-L$ symmetry breaking occurs through the interplay between large Majorana...
Supersymmetric Fits after the Higgs Discovery and Implications for Model Building
Ellis, John
2014-01-01
The data from the first run of the LHC at 7 and 8 TeV, together with the information provided by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment, provide important constraints on supersymmetric models. Important information is provided by the ATLAS and CMS measurements of the mass of the Higgs boson, as well as the negative results of searches at the LHC for events with missing transverse energy accompanied by jets, and the LHCb and CMS measurements off BR($B_s \\to \\mu^+ \\mu^-$). Results are presented from frequentist analyses of the parameter spaces of the CMSSM and NUHM1. The global $\\chi^2$ functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs mass and the missing transverse energy search, with best-fit values that are comparable to the $\\chi^2$ for the Standard Model. The $95\\%$ CL lower...
Dark radiation and dark matter in supersymmetric axion models with high reheating temperature
Energy Technology Data Exchange (ETDEWEB)
Graf, Peter; Steffen, Frank Daniel, E-mail: graf@mpp.mpg.de, E-mail: steffen@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, D–80805 Munich (Germany)
2013-12-01
Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior to BBN and decays of axinos with a cosmologically required TeV-scale mass can produce extra entropy. In the axion CDM case, cosmological constraints are respected with light eV-scale axinos and weak-scale gravitinos that decay into axions and axinos. These decays lead to late extra radiation which can coexist with the early contributions from saxion decays. Recent results of the Planck satellite probe extra radiation at late times and thereby both scenarios. Further tests are the searches for axions at ADMX and for supersymmetric particles at the LHC.
Energy Technology Data Exchange (ETDEWEB)
Mayet, F
2001-09-01
A substantial body of astrophysical evidence supports the existence of non-baryonic dark matter in the universe. One of the leading dark matter candidates is the neutralino predicted by the supersymmetric extensions of the standard model of particle physics. Different detectors have been designed for the detection, either indirect or direct, of the neutralino. Related to indirect detection, the present work has been performed in the context of the AMS experiment. A precursor version of the spectrometer was flown on the space shuttle Discovery in June 1998. The detector included an Aerogel Threshold Cherenkov counter (ATC) to identify antiprotons, whose spectrum may be used to infer a neutralino signal. The analysis of the ATC data is presented including an evaluation of the flight performance and a description of the optimization of the antiproton selection. An antiproton analysis is also reported. A phenomenological study allows us to investigate the discovery potential of this indirect method. This thesis also includes the development of a new detector (MACHe3) designed for direct neutralino search using a superfluid {sup 3}He bolometer operated at ultra low temperatures. The data analysis of the prototype cell is presented. A Monte Carlo simulation has been developed, in order to optimize the detector design for direct neutralino search. These results are compared with theoretical predictions of supersymmetric models, thus highlighting the discovery potential of this detector and its complementarity with existing devices. (author)
Stable Non-Supersymmetric Throats in String Theory
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC /Santa Barbara, KITP; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC
2011-06-28
We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.
Diphoton Revelation of the Utilitarian Supersymmetric Standard Model
Ma, Ernest
2016-01-01
In 2002, I proposed a unique $U(1)$ extension of the supersymmetric standard model which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. This model, ${without~any~change}$, has all the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC).
On timelike supersymmetric solutions of gauged minimal 5-dimensional supergravity
Chimento, Samuele
2016-01-01
We analyze the timelike supersymmetric solutions of minimal gauged 5-dimensional supergravity for the case in which the K\\"ahler base manifold admits a holomorphic isometry and depends on two real functions satisfying a simple second-order differential equation. Using this general form of the base space, the equations satisfied by the building blocks of the solutions become of, at most, fourth degree and can be solved by simple polynomic ansatzs. In this way we construct two 3-parameter families of solutions that contain almost all the timelike supersymmetric solutions of this theory with one angular momentum known so far and a few more: the (singular) supersymmetric Reissner-Nordstr\\"om-AdS solutions, the three exact supersymmetric solutions describing the three near-horizon geometries found by Gutowski and Reall, three 1-parameter asymptotically-AdS$_{5}$ black-hole solutions with those three near-horizon geometries (Gutowski and Reall's black hole being one of them), three generalizations of the G\\"odel un...
On the supersymmetric non-abelian Born-Infeld action
Bergshoeff, E.A.; Roo, M. de; Sevrin, A.
2001-01-01
We review an iterative construction of the supersymmetric non-abelian Born-Infeld action. We obtain the action through second order in the field strength. Kappa-invariance fixes the ordenings which turn out to deviate from the symmetrized trace proposal.
On the supersymmetric non-abelian Born-Infeld action
Bergshoeff, E. A.; de Roo, M.; Sevrin, A.
2000-01-01
We review an iterative construction of the supersymmetric non-abelian Born-Infeld action. We obtain the action through second order in the fieldstrength. Kappa-invariance fixes the ordenings which turn out to deviate from the symmetrized trace proposal.
Neutrino masses within the minimal supersymmetric Standard Model
Cvetic, M; Cvetic, Mirjam; Langacker, Paul
1992-01-01
We investigate the possibility of accommodating neutrino masses compatible with the MSW study of the Solar neutrino deficit within the minimal supersymmetric Standard Model. The ``gravity-induced'' seesaw mechanism based on an interplay of nonrenormalizable and renormalizable terms in the superpotential allows neutrino masses $m_\
Supersymmetric Langevin equation to explore free-energy landscapes.
Mossa, Alessandro; Clementi, Cecilia
2007-04-01
The recently discovered supersymmetric generalizations of the Langevin dynamics and Kramers equation can be utilized for the exploration of free-energy landscapes of systems whose large time-scale separation hampers the usefulness of standard molecular dynamics techniques. The first realistic application is here presented. The system chosen is a minimalist model for a short alanine peptide exhibiting a helix-coil transition.
From Scalar Field Theories to Supersymmetric Quantum Mechanics
Bazeia, D
2016-01-01
In this work we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.
Coherent States for Supersymmetric Partners of the Infinite Well
Hussin, V.; Morales-Salgado, V. S.
2017-05-01
We define linear and quadratic coherent states for the supersymmetric partners of the quantum infinite well through formal series expansions of the energy eigenfunctions of the systems and we study the appropriateness of this definitions as coherent states by means of their properties. In particular, we examine the localization in position and time evolution, minimum uncertainty relations and the behavior of the Wigner function.
Large BR(h -> tau mu) in Supersymmetric Models
Hammad, Ahmed; Un, Cem Salih
2016-01-01
We analyze the Lepton Flavor Violating (LFV) Higgs decay h -> tau mu in three supersymmetric models: Minimal Supersymmetric Standard Model (MSSM), Supersymmetric Seesaw Model (SSM), and Supersymmetric B-L model with Inverse Seesaw (BLSSM-IS). We show that in generic MSSM, with non-universal slepton masses and/or trilinear couplings, it is not possible to enhance BR(h -> tau mu) without violating the experimental bound on the BR(tau -> mu gamma). In SSM, where flavor mixing is radiatively generated, the LFV process mu -> e gamma strictly constrains the parameter space and the maximum value of BR(h -> tau mu) is of order 10^-10, which is extremely smaller than the recent results reported by the CMS and ATLAS experiments. In BLSSM-IS, with universal soft SUSY breaking terms at the grand unified scale, we emphasize that the measured values of BR(h -> tau mu) can be accommodated in a wide region of parameter space without violating LFV constraints. Thus, confirming the LFV Higgs decay results will be a clear signa...
Comments on the spontaneous symmetry breaking in supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Girardi, G.; Sorba, P.; Stora, R. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)
1984-08-30
The role of the complex extension of the symmetry group in supersymmetric theories is revisited. We prove, in particular, that if symmetry breaking occurs at an extremum of the superpotential, then supersymmetry will be preserved if and only if the complex stabilizer of the vacuum is the complexified of its maximal compact part.
Search for dark photons from supersymmetric hidden valleys
Abazov, V.M.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.; van Leeuwen, W.M.
2009-01-01
We search for a new light gauge boson, a dark photon, with the D0 experiment. In the model we consider, supersymmetric partners are pair produced and cascade to the lightest neutralinos that can decay into the hidden sector state plus either a photon or a dark photon. The dark photon decays through
Two-loop beta functions for supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Jack, I. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)
1984-11-15
The two-loop ..beta.. functions in the dimensional regularisation framework for a general gauge theory coupled to scalar and spinor fields are presented and by means of a finite transformation of the couplings are converted into a form which vanishes for special cases corresponding to supersymmetric gauge theories.
The $N=2$ supersymmetric unconstrained matrix GNLS hierarchies
Sorin, A.S.; Kersten, P.H.M.
2002-01-01
The generalization of the $N=2$ supersymmetric chiral matrix $(k|n,m)$--GNLS hierarchy to the case when matrix entries are bosonic and fermionic unconstrained $N=2$ superfields is proposed. This is done by exhibiting the corresponding matrix Lax--pair representation in terms of $N=2$ unconstrained s
Recursive representation of Wronskians in confluent supersymmetric quantum mechanics
Contreras-Astorga, Alonso; Schulze-Halberg, Axel
2017-03-01
A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation.
Non-supersymmetric microstates of the MSW system
Banerjee, Souvik; Chowdhury, Borun D.; Vercnocke, Bert; Virmani, Amitabh
2014-01-01
We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845)and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using
Costanza, Francesco
2015-01-01
The analysis presented in this thesis is a search for direct pair production of supersymmetric top-quark partners at CMS.Supersymmetry is a compelling theory providing possible solutions to several of the Standard Models limitations. However, previous searches for supersymmetric particles came backwith empty hands. These results and the discovery of a Higgs boson with a mass of about125 GeV by the ATLAS and CMS Collaborations strongly constrain the simplest supersymmetric models. Nevertheless, more sophisticated models with light third-generation squarksdid not lose their theoretical appeal and are within the reach of the 8 TeV run of the LargeHadron Collider.In this analysis, a search for direct top-squark (˜) pair production is performed in a ﬁnaltstate consisting of a single isolated lepton, jets, among which at least one is a b-tagged jet,and large missing transverse energy. Six search regions are deﬁned with a semi-automaticprocedure to maximize the sensitivity of the analysis. The background estima...
Directory of Open Access Journals (Sweden)
E. Ireson
2016-01-01
Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.
Energy Technology Data Exchange (ETDEWEB)
Carena, Marcela; Hooper, Dan; /Fermilab; Vallinotto, Alberto; /Fermilab /Chicago U. /Paris, Inst. Astrophys.
2006-11-01
In this article, we explore the interplay between searches for supersymmetric particles and Higgs bosons at hadron colliders (the Tevatron and the LHC) and direct dark matter searches (such as CDMS, ZEPLIN, XENON, EDELWEISS, CRESST, WARP and others). We focus on collider searches for heavy MSSM Higgs bosons (A, H, H{sup {+-}}) and how the prospects for these searches are impacted by direct dark matter limits and vice versa. We find that the prospects of these two experimental programs are highly interrelated. A positive detection of A, H or H{sup {+-}} at the Tevatron would dramatically enhance the prospects for a near future direct discovery of neutralino dark matter. Similarly, a positive direct detection of neutralino dark matter would enhance the prospects of discovering heavy MSSM Higgs bosons at the Tevatron or the LHC. Combining the information obtained from both types of experimental searches will enable us to learn more about the nature of supersymmetry.
Nilpotent Symmetries of a Specific N = 2 Supersymmetric Quantum Mechanical Model: A Novel Approach
Krishna, S; Malik, R P
2013-01-01
We derive the on-shell nilpotent supersymmetric (SUSY) transformations for the N = 2 SUSY quantum mechanical model of a one (0 + 1)-dimensional free particle by exploiting the SUSY invariant restrictions on the (anti-)chiral supervariables of the SUSY theory that is defined on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables \\theta and \\bar \\theta with \\theta^2 = \\bar \\theta^2 = 0,\\theta \\bar \\theta + \\bar \\theta \\theta = 0). Within the framework of our novel approach, we express the Lagrangian and conserved SUSY charges in terms of the (anti-)chiral supervariables to demonstrate the SUSY invariance of the Lagrangian and nilpotency of the conserved charges in a simple manner. Our approach has the potential to be generalized to the description of other N = 2 SUSY quantum mechanical systems with physically interesting potential functions.
Neutrino-induced Electroweak Symmetry Breaking in Supersymmetric SO(10) Unification
Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi
2006-01-01
The radiative electroweak symmetry breaking, the unification of third-generation Yukawa couplings, and flavor-changing rare decay are investigated in two types of supersymmetric SO(10) scenarios taking into account of the effects of neutrino physics, i.e. the observed large generation mixing and tiny mass scale. The first scenario is minimal, including right-handed neutrinos at intermediate scale with the unification of third-generation Yukawa couplings. Another is the case that the large mixing of atmospheric neutrinos originates from the charged-lepton sector. Under the SO(10)-motivated boundary conditions for supersymmetry-breaking parameters, typical low-energy particle spectrum is discussed and the parameter space is identified which satisfies the conditions for successful radiative electroweak symmetry breaking and the experimental mass bounds of superparticles. In particular, the predictions of the bottom quark mass and the b \\to s gamma branching ratio are fully analyzed. In both two scenarios, new ty...
Supersymmetric Yang Mills Fields and Black Holes ; In Ten Dimensional Unified Field Theory
Patwardhan, Ajay
2007-01-01
The Ten dimensional Unified field theory has a 4 dimensional Riemannian spacetime and six dimensional Calabi Yau space structure. The supersymmetric Yang Mills fields and black holes are solutions in these theories. The formation of primordial black holes in early universe, the collapse to singularity of stellar black holes, the Hawking evaporation of microscopic black holes in LHC are topics of observational and theoretical interest. The observation of gamma ray bursts and creation of spectrum of particles and radiation of dark and normal matter occur due to primordial and microscopic black holes. The approach to singularity in black hole interior solutions, require the Bogoliubov transforms of SUSY YM fields in black hole geometries; both during formation and in evaporation. The Hawking effect of radiating black holes is applicable for all the fields. Invariants can be defined to give the conditions for these processes.
Family number non-conservation induced by the supersymmetric mixing of scalar leptons
Energy Technology Data Exchange (ETDEWEB)
Levine, M.J.S.
1987-08-01
The most egregious aspect of (N = 1) supersymmetric theories is that each particle state is accompanied by a 'super-partner', a state with identical quantum numbers save that it differs in spin by one half unit. For the leptons these are scalars and are called ''sleptons'', or scalar leptons. These consist of the charged sleptons (selectron, smuon, stau) and the scalar neutrinos ('sneutrinos'). We examine a model of supersymmetry with soft breaking terms in the electroweak sector. Explicit mixing among the scalar leptons results in a number of effects, principally non-conservation of lepton family number. Comparison with experiment permits us to place constraints upon the model. 49 refs., 12 figs.
Boundary effects on the supersymmetric sine-Gordon model through light-cone lattice approach
Matsui, Chihiro
2014-01-01
We discussed subspaces of the N=1 supersymmetric sine-Gordon model with Dirichlet boundaries through light-cone lattice regularization. In this paper, we showed, unlike the periodic boundary case, both of Neveu-Schwarz (NS) and Ramond (R) sectors of a superconformal field theory were obtained. Using a method of nonlinear integral equations for auxiliary functions defined by eigenvalues of transfer matrices, we found that an excitation state with an odd number of particles is allowed for a certain value of a boundary parameter even on a system consisting of an even number of sites. In a small-volume limit where conformal invariance shows up in the theory, we derived conformal dimensions of states constructed through the lattice-regularized theory. The result shows existence of the R sector, which cannot be obtained from the periodic system, while a winding number is restricted to an integer or a half-integer depending on boundary parameters.
Bottom-Tau Unification in Supersymmetric Model with Anomaly-Mediation
Chigusa, So
2016-01-01
We study the Yukawa unification, in particular, the unification of the Yukawa coupling constants of $b$ and $\\tau$, in the framework of supersymmetric (SUSY) model. We concentrate on the model in which the SUSY breaking scalar masses are of the order of the gravitino mass while the gaugino masses originate from the effect of anomaly mediation and hence are one-loop suppressed relative to the gravitino mass. We perform an accurate calculation of the Yukawa coupling constants of $b$ and $\\tau$ at the grand unified theory (GUT) scale, including relevant renormalization group effects and threshold corrections. In particular, we study the renormalization group effects, taking into account the mass splittings among sfermions, gauginos, and the standard model particles. We found that the Yukawa coupling constant of $b$ at the GUT scale is about $70\\ \\%$ of that of $\\tau$ if there is no hierarchy between the sfermion masses and the gravitino mass. Our results suggest sizable threshold corrections to the Yukawa coupli...
Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.
Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver
2013-08-02
We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.
Approximations for strongly-coupled supersymmetric quantum mechanics
Kabat, D; Kabat, Daniel; Lifschytz, Gilad
2000-01-01
We advocate a set of approximations for studying the finite temperature behavior of strongly-coupled theories in 0+1 dimensions. The approximation consists of expanding about a Gaussian action, with the width of the Gaussian determined by a set of gap equations. The approximation can be applied to supersymmetric systems, provided that the gap equations are formulated in superspace. It can be applied to large-N theories, by keeping just the planar contribution to the gap equations. We analyze several models of scalar supersymmetric quantum mechanics, and show that the Gaussian approximation correctly distinguishes between a moduli space, mass gap, and supersymmetry breaking at strong coupling. Then we apply the approximation to a bosonic large-N gauge theory, and argue that a Gross-Witten transition separates the weak-coupling and strong-coupling regimes. A similar transition should occur in a generic large-N gauge theory, in particular in 0-brane quantum mechanics.
Quasicomplex N=2, d=1 Supersymmetric Sigma Models
Directory of Open Access Journals (Sweden)
Evgeny A. Ivanov
2013-11-01
Full Text Available We derive and discuss a new type of N=2 supersymmetric quantum mechanical sigma models which appear when the superfield action of the (1,2,1 multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric N=2 sigma models built on the multiplets (2,2,0 and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden N=4 supersymmetry.
Supersymmetric Theory of Stochastic ABC Model: A Numerical Study
Ovchinnikov, Igor V; Ensslin, Torsten A; Wang, Kang L
2016-01-01
In this paper, we investigate numerically the stochastic ABC model, a toy model in the theory of astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics (STS). STS characterises stochastic differential equations (SDEs) by the spectrum of the stochastic evolution operator (SEO) on elements of the exterior algebra or differentials forms over the system's phase space, X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the phenomenon of stochastic chaos with the spontaneously broken topological supersymmetry that all SDEs possess. We demonstrate the following three properties of the SEO, deduced previously analytically and from physical arguments: the SEO spectra for zeroth and top degree forms never break topological supersymmetry, all SDEs possesses pseudo-time-reversal symmetry, and each de Rahm cohomology class provides one supersymmetric eigenstate. Our results also suggests that the SEO spectra for forms of complementary degrees, i.e., k and ...
Higher-Rank Supersymmetric Models and Topological Field Theory
Kawai, T; Yang, S K; Kawai, Toshiya; Uchino, Taku; Yang, Sung-Kil
1993-01-01
In the first part of this paper we investigate the operator aspect of higher-rank supersymmetric model which is introduced as a Lie theoretic extension of the $N=2$ minimal model with the simplest case $su(2)$ corresponding to the $N=2$ minimal model. In particular we identify the analogs of chirality conditions and chiral ring. In the second part we construct a class of topological conformal field theories starting with this higher-rank supersymmetric model. We show the BRST-exactness of the twisted stress-energy tensor, find out physical observables and discuss how to make their correlation functions. It is emphasized that in the case of $su(2)$ the topological field theory constructed in this paper is distinct from the one obtained by twisting the $N=2$ minimal model through the usual procedure.
Supersymmetric Gödel Universes in string theory
DEFF Research Database (Denmark)
Harmark, Troels; Takayanagi, Tadashi
2003-01-01
Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...
Perturbation Theory in Supersymmetric QED: Infrared Divergences and Gauge Invariance
Dine, Michael; Haber, Howard E; Haskins, Laurel Stephenson
2016-01-01
We study some aspects of perturbation theory in $N=1$ supersymmetric abelian gauge theories with massive charged matter. In general gauges, infrared (IR) divergences and nonlocal behavior arise in 1PI diagrams, associated with a $1/k^4$ term in the propagator for the vector superfield. We examine this structure in supersymmetric QED. The IR divergences are gauge-dependent and must cancel in physical quantities like the electron pole mass. We demonstrate that cancellation takes place in a nontrivial way, amounting to a reorganization of the perturbative series from powers of $e^2$ to powers of $e$. We also show how these complications are avoided in cases where a Wilsonian effective action can be defined.
Supersymmetric quantum mechanics on the lattice: II. Exact results
Directory of Open Access Journals (Sweden)
David Baumgartner
2015-08-01
Full Text Available Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper – the second in a series of three – we present such an investigation for N=2 supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.
The Glueball Spectrum In Conventional And Supersymmetric Quantum Chromodynamics
Gabadadze, Gregory T
1998-01-01
In the Dissertation we study some nonperturbative aspects of conventional Quantum Chromodynamics and its minimal supersymmetric counterpart, supersymmetric gluodynamics. After the introduction, the discussion of the spectrum of lightest glueballs in Quantum Chromodynamics is given. It is shown that the pseudoscalar glueball mass in Quantum Chromodynamics is less than the mass obtained in quenched lattice calculations. The glueball mass and nonperturbative glueball matrix elements are calculated. The production rate for the pseudoscalar glueball in radiative decays is predicted. Then, we study the nonperturbative features of the Lagrangian of Quantum Chromodynamics which might be responsible for formation of the pseudoscalar glueball state. The issue of the screening of the topological charge is analyzed. A possible non-perturbative mechanism of formation of the pseudoscalar glueball state is proposed. The masses of lowest pseudoscalar glueballs are predicted within the framework of this approach. The second h...
Cluster-like coordinates in supersymmetric quantum field theory.
Neitzke, Andrew
2014-07-08
Recently it has become apparent that N = 2 supersymmetric quantum field theory has something to do with cluster algebras. I review one aspect of the connection: supersymmetric quantum field theories have associated hyperkähler moduli spaces, and these moduli spaces carry a structure that looks like an extension of the notion of cluster variety. In particular, one encounters the usual variables and mutations of the cluster story, along with more exotic extra variables and generalized mutations. I focus on a class of examples where the underlying cluster varieties are moduli spaces of flat connections on surfaces, as considered by Fock and Goncharov [Fock V, Goncharov A (2006) Publ Math Inst Hautes Études Sci 103:1-211]. The work reviewed here is largely joint with Davide Gaiotto and Greg Moore.
Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM
Berg, Marcus; Ghilencea, D.M.; Petersson, Christoffer
2013-01-01
We show that supersymmetric "new physics" beyond the MSSM can naturally accommodate a Higgs mass near 126 GeV and enhance the signal rate in the Higgs to diphoton channel, while the signal rates in all the other Higgs decay channels coincide with Standard Model expectations, except possibly the Higgs to Z-photon channel. The "new physics" that corrects the relevant Higgs couplings can be captured by two supersymmetric effective operators. We provide a simple example of an underlying model in which these operators are simultaneously generated. The scale of "new physics" that generates these operators can be around 5 TeV or larger, and outside the reach of the LHC.
Supersymmetric Gödel Universes in string theory
DEFF Research Database (Denmark)
Harmark, Troels; Takayanagi, Tadashi
2003-01-01
Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...
Supersymmetric quantum mechanics on the lattice: II. Exact results
Baumgartner, David
2015-01-01
Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper -- the second in a series of three -- we present such an investigation for ${\\cal N}=2$ supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.
Deformed supersymmetric gauge theories from the fluxtrap background
Orlando, Domenico
2013-01-01
The fluxtrap background of string theory provides a transparent and algorithmic way of constructing supersymmetric gauge theories with both mass and Omega-type deformations in various dimensions. In this article, we review a number of deformed supersymmetric gauge theories in two and four dimensions which can be obtained via the fluxtrap background from string or M-theory. Such theories, the most well-known being Omega-deformed super Yang-Mills theory in four dimensions, have met with a lot of interest in the recent literature. The string theory treatment offers many new avenues of analysis and applications, such as for example the study of the gravity duals for deformed N=4 gauge theories.
Antideuterons as a Signature of Supersymmetric Dark Matter
Donato, F; Salati, Pierre
2000-01-01
Once the energy spectrum of the secondary component is well understood, measurements of the antiproton cosmic-ray flux at the Earth will be a powerful way to indirectly probe for the existence of supersymmetric relics in the galactic halo. Unfortunately, it is still spoilt by considerable theoretical uncertainties. As shown in this work, searches for low-energy antideuterons appear in the mean time as a plausible alternative, worth being explored. Above a few GeV/n, a dozen spallation antideuterons should be collected by the future AMS experiment on board ISSA. For energies less than about 3 GeV/n, the antideuteron spallation component becomes negligible and may be supplanted by a potential supersymmetric signal. If a few low-energy antideuterons are discovered, this should be seriously taken as a clue for the existence of massive neutralinos in the Milky Way.
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD
DEFF Research Database (Denmark)
Ryttov, Thomas A.
2016-01-01
We suggest how to consistently calculate the anomalous dimension $\\gamma_*$ of the $\\bar{\\psi}\\psi$ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the $n+1$ loop beta function and $n$ loop anomalous dimension are known then $\\gamma......_*$ can be calculated exactly and fully scheme independently through $O(\\Delta_f^n )$ where $\\Delta_f = \\bar{N_f} - N_f$ and $N_f$ is the number of flavors and $\\bar{N}_f$ is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory the calculation preserves supersymmetry...... order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...
Supersymmetric standard model from the heterotic string (II)
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.
2006-06-15
We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
Neutralino Relic Density in a Supersymmetric U(1)' Model
Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung
2004-01-01
We study properties of the lightest neutralino (\\chi) and calculate its cosmological relic density in a supersymmetric U(1)' model with a secluded U(1)' breaking sector (the S-model). The lightest neutralino mass is smaller than in the minimal supersymmetric standard model; for instance, m_\\chi < 100 GeV in the limit that the U(1)' gaugino mass is large compared to the electroweak scale. We find that the Z-\\chi-\\chi coupling can be enhanced due to the singlino components in the extended neutralino sector. Neutralino annihilation through the Z-resonance then reproduces the measured cold dark matter density over broad regions of the model parameter space.
Non-supersymmetric microstates of the MSW system
Banerjee, Souvik; Chowdhury, Borun D.; Vercnocke, Bert; Virmani, Amitabh
2014-05-01
We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845) and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using SO(4, 4) dualities applied to an appropriate seed solution. The SO(4, 4) approach offers certain technical advantages. Our microstate solutions are smooth in five dimensions, as opposed to all previously known non-supersymmetric microstates with AdS3 cores, which are smooth only in six dimensions. The decoupled geometries for our microstates are related to global AdS3 × S2 by spectral flows.
Non-supersymmetric microstates of the MSW system
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Souvik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, Groningen (Netherlands); Chowdhury, Borun D. [Department of Physics, Arizona State University,Tempe, Arizona 85287 (United States); Vercnocke, Bert [Institute of Physics, University of Amsterdam,Science Park, Postbus 94485, 1090 GL Amsterdam (Netherlands); Virmani, Amitabh [Institute of Physics,Sachivalaya Marg, Bhubaneswar, Odisha, 751005 (India)
2014-05-05
We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845) and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using SO(4,4) dualities applied to an appropriate seed solution. The SO(4,4) approach offers certain technical advantages. Our microstate solutions are smooth in five dimensions, as opposed to all previously known non-supersymmetric microstates with AdS{sub 3} cores, which are smooth only in six dimensions. The decoupled geometries for our microstates are related to global AdS{sub 3}×S{sup 2} by spectral flows.
Flavor violation in supersymmetric theories with gauged flavor symmetries
Kobayashi, Tatsuo; Nakano, Hiroaki; Terao, Haruhiko; Yoshioka, Koichi
2002-01-01
In this paper we study flavor violation in supersymmetric models with gauged flavor symmetries. There are several sources of flavor violation in these theories. The dominant flavor violation is the tree-level $D$-term contribution to scalar masses generated by flavor symmetry breaking. We present a new approach for suppressing this phenomenologically dangerous effects by separating the flavor-breaking sector from supersymmetry-breaking one. The separation can be achieved in geometrical setups...
BPS Boojums in N=2 supersymmetric gauge theories II
Arai, Masato; Blaschke, Filip; Eto, Minoru(Department of Physics, Yamagata University, Yamagata, 990-8560, Japan)
2016-01-01
We continue our study of 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) composite solitons of vortex strings, domain walls and boojums in N=2 supersymmetric Abelian gauge theories in four dimensions. In this work, we numerically confirm that a boojum appearing at an end point of a string on a thick domain wall behaves as a magnetic monopole with a fractional charge in three dimensions. We introduce a "magnetic" scalar potential whose gradient gives magnetic fields. Height of the magnetic potential ...
Supersymmetric black holes with lens-space topology.
Kunduri, Hari K; Lucietti, James
2014-11-21
We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.
Radiative fermion mass matrix generation in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Papantonopoulos, E.; Zoupanos, G.
1984-01-01
Supersymmetric SU(2)sub(L)xU(1) horizontal models are studied. The non-renormalisation theorems of sypersymmetry are used to make the mass generation and flavour mixing natural. For three families, the fermion mass matrix generation mechanism is studied as a radiative effect due to horizontal interactions, using various representations of the gauge horizontal groups SU(2)sub(H) and SU(3)sub(H). An attractive possibility leading to a realistic mass matrix is found.
The supersymmetric Higgs boson with flavoured A-terms
Directory of Open Access Journals (Sweden)
Andrea Brignole
2015-09-01
Full Text Available We consider a supersymmetric scenario with large flavour violating A-terms in the stop/scharm sector and study their impact on the Higgs mass, the electroweak ρ parameter and the effective Higgs couplings to gluons, photons and charm quarks. For each observable we present explicit analytical expressions which exhibit the relevant parametric dependences, both in the general case and in specific limits. We find significant effects and comment on phenomenological implications for the LHC and future colliders.
Review of localization for 5d supersymmetric gauge theories
Qiu, Jian
2016-01-01
We give a pedagogical review of the localization of supersymmetric gauge theory on 5d toric Sasaki-Einstein manifolds. We construct the cohomological complex resulting from supersymmetry and consider its natural toric deformations with all equivariant parameters turned on. We also give detailed discussion on how the Sasaki-Einstein geometry permeates every aspect of the calculation, from Killing spinor, vanishing theorems to the index theorems.
Supersymmetric R\\'enyi Entropy in Two Dimensions
Mori, Hironori
2015-01-01
We compute the exact partition function on the branched two-sphere by the localization technique. It is found that it does not depend on a branching parameter q, which means that supersymmetric R\\'enyi entropy defined by utilizing it is equivalent to the usual entanglement entropy. We also provide the interpretation of the conical singularities on the branched sphere as defects sit on the poles of the nonsingular two-sphere.
N=2 supersymmetric sigma-models in AdS
Butter, Daniel
2011-01-01
We construct the most general N=2 supersymmetric nonlinear sigma-model in four-dimensional anti-de Sitter (AdS) space in terms of N=1 chiral superfields. The target space is shown to be a non-compact hyperkahler manifold restricted to possess a special Killing vector field. A remarkable property of the sigma-model constructed is that the algebra of OSp(2|4) transformations is closed off the mass shell.