WorldWideScience

Sample records for supersymmetric kdv equation

  1. Constructing soliton solutions and super-bilinear form of lattice supersymmetric KdV equation

    International Nuclear Information System (INIS)

    Carstea, A S

    2015-01-01

    The Hirota bilinear form and multisoliton solution for semidiscrete and fully discrete (difference–difference) versions of the supersymmetric Korteweg–de Vries (KdV) equation found by Xue et al (2013 J. Phys. A: Math. Theor 46 502001) are presented. The solitonic interaction term displays a fermionic dressing factor as in the continuous supersymmetric case. Using bilinear equations it is also shown that a new integrable semidiscrete (and fully discrete) version of supersymmetric KdV can be constructed with a simpler bilinear form but a more complicated interaction dressing. Its continuum limit is also computed. (paper)

  2. New supersymmetrizations of the generalized KDV hierarchies

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, J.M.; Stanciu, S.

    1993-03-01

    Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, expect for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy. (orig.)

  3. (Non)local Hamiltonian and symplectic structures, recursions and hierarchies: a new approach and applications to the N = 1 supersymmetric KdV equation

    International Nuclear Information System (INIS)

    Kersten, P; Krasil'shchik, I; Verbovetsky, A

    2004-01-01

    Using methods of Kersten et al (2004 J. Geom. Phys. 50 273-302) and Krasil'shchik and Kersten (2000 Symmetries and Recursion Operators for Classical and Supersymmetric Differential Equations (Dordrecht: Kluwer)), we accomplish an extensive study of the N = 1 supersymmetric Korteweg-de Vries (KdV) equation. The results include a description of local and nonlocal Hamiltonian and symplectic structures, five hierarchies of symmetries, the corresponding hierarchies of conservation laws, recursion operators for symmetries and generating functions of conservation laws. We stress that the main point of the paper is not just the results on super-KdV equation itself, but merely exposition of the efficiency of the geometrical approach and of the computational algorithms based on it

  4. The supersymmetric generalized modified KdV hierarchy and odd minimal superconformal field theories coupled to 2D supergravity: 2

    International Nuclear Information System (INIS)

    Awada, M.A.

    1990-01-01

    We further study the universal equations of the supersymmetric modified KdV (MKdV) hierarchy in its generalized form. We show that these equations describe the dynamical quantum equations of the odd series of N = 1 minimal (p,q) superconformal field theory coupled to N = 1 supergravity in particular those unitary series with p = 2k + 3, and q = 2k = 1. The string susceptibility of these models is γ sstr. (0) = -2/2k + 1. We demonstrate explicitly the cases k = 2; and k = 3. 10 refs

  5. Higher order supersymmetries and fermionic conservation laws of the supersymmetric extension of the KdV equation

    NARCIS (Netherlands)

    Kersten, P.H.M.

    1988-01-01

    By the introduction of nonlocal basonic and fermionic variables we construct a recursion symmetry of the super KdV equation, leading to a hierarchy of bosonic symmetries and one of fermionic symmetries. The hierarchies of bosonic and fermionic conservation laws arise in a natural way in the

  6. The integrability of an extended fifth-order KdV equation with Riccati ...

    Indian Academy of Sciences (India)

    method was extended to investigate variable coefficient NLEEs, which included gener- alized KdV equation, generalized modified KdV equation and generalized Boussinesq equation [11,12]. It is well known that KdV equation models a variety of nonlinear phenomena, including ion-acoustic waves in plasmas and shallow ...

  7. N = 4 super KdV hierarchy in N = 4 and N = 2 superspaces

    International Nuclear Information System (INIS)

    Delduc, F.

    1995-10-01

    The results of further analysis of the integrability properties of the N = 4 supersymmetric KdV equation deduced earlier as a Hamiltonian flow on N 4 SU(2) superconformal algebra in the harmonic N = 4 superspace are presented. To make this equation and the relevant Hamiltonian structures more tractable, it is reformulated in the ordinary N = 4 and further in N = 2 superspaces. These results provide a strong evidence that the unique N = 4 SU(2) super KdV hierarchy exists. (author)

  8. A method for solving the KDV equation and some numerical experiments

    International Nuclear Information System (INIS)

    Chang Jinjiang.

    1993-01-01

    In this paper, by means of difference method for discretization of space partial derivatives of KDV equation, an initial value problem in ordinary differential equations of large dimensions is produced. By using this ordinary differential equations the existence and the uniqueness of the solution of the KDV equation and the conservation of scheme are proved. This ordinary differential equation can be solved by using implicit Runge-Kutta methods, so a new method for finding the numerical solution of the KDV equation is presented. Numerical experiments not only describe in detail the procedure of two solitons collision, soliton reflex and soliton produce, but also show that this method is very effective. (author). 7 refs, 3 figs

  9. New Numerical Treatment for Solving the KDV Equation

    Directory of Open Access Journals (Sweden)

    khalid ali

    2017-01-01

    Full Text Available In the present article, a numerical method is proposed for the numerical solution of the KdV equation by using collocation method with the modified exponential cubic B-spline. In this paper we convert the KdV equation to system of two equations. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms2L, ?L are computed. Three invariants of motion are predestined to determine the preservation properties of the problem, and the numerical scheme leads to careful and active results. Furthermore, interaction of two and three solitary waves is shown. These results show that the technique introduced here is easy to apply.

  10. Solving the discrete KdV equation with homotopy analysis method

    International Nuclear Information System (INIS)

    Zou, L.; Zong, Z.; Wang, Z.; He, L.

    2007-01-01

    In this Letter, we apply the homotopy analysis method to differential-difference equations. We take the discrete KdV equation as an example, and successfully obtain double periodic wave solutions and solitary wave solutions. It illustrates the validity and the great potential of the homotopy analysis method in solving discrete KdV equation. Comparisons are made between the results of the proposed method and exact solutions. The results reveal that the proposed method is very effective and convenient

  11. Adiabatic invariants of the extended KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Karczewska, Anna [Faculty of Mathematics, Computer Science and Econometrics, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Rozmej, Piotr, E-mail: p.rozmej@if.uz.zgora.pl [Institute of Physics, Faculty of Physics and Astronomy, University of Zielona Góra, Szafrana 4a, 65-246 Zielona Góra (Poland); Infeld, Eryk [National Centre for Nuclear Research, Hoża 69, 00-681 Warszawa (Poland); Rowlands, George [Department of Physics, University of Warwick, Coventry, CV4 7A (United Kingdom)

    2017-01-30

    When the Euler equations for shallow water are taken to the next order, beyond KdV, momentum and energy are no longer exact invariants. (The only one is mass.) However, adiabatic invariants (AI) can be found. When the KdV expansion parameters are zero, exact invariants are recovered. Existence of adiabatic invariants results from general theory of near-identity transformations (NIT) which allow us to transform higher order nonintegrable equations to asymptotically equivalent (when small parameters tend to zero) integrable form. Here we present a direct method of calculations of adiabatic invariants. It does not need a transformation to a moving reference frame nor performing a near-identity transformation. Numerical tests show that deviations of AI from constant values are indeed small. - Highlights: • We suggest a new and simple method for calculating adiabatic invariants of second order wave equations. • It is easy to use and we hope that it will be useful if published. • Interesting numerics included.

  12. Supersymmetric quasipotential equations

    International Nuclear Information System (INIS)

    Zaikov, R.P.

    1981-01-01

    A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru

  13. New exact solutions to the generalized KdV equation with ...

    Indian Academy of Sciences (India)

    is reduced to an ordinary differential equation with constant coefficients ... Application to generalized KdV equation with generalized evolution ..... [12] P F Byrd and M D Friedman, Handbook of elliptic integrals for engineers and physicists.

  14. Explicit solutions to the semi-discrete modified KdV equation and motion of discrete plane curves

    International Nuclear Information System (INIS)

    Inoguchi, Jun-ichi; Kajiwara, Kenji; Matsuura, Nozomu; Ohta, Yasuhiro

    2012-01-01

    We construct explicit solutions to continuous motion of discrete plane curves described by a semi-discrete potential modified KdV equation. Explicit formulas in terms of the τ function are presented. Bäcklund transformations of the discrete curves are also discussed. We finally consider the continuous limit of discrete motion of discrete plane curves described by the discrete potential modified KdV equation to motion of smooth plane curves characterized by the potential modified KdV equation. (paper)

  15. On a generalized fifth order KdV equations

    International Nuclear Information System (INIS)

    Kaya, Dogan; El-Sayed, Salah M.

    2003-01-01

    In this Letter, we dealt with finding the solutions of a generalized fifth order KdV equation (for short, gfKdV) by using the Adomian decomposition method (for short, ADM). We prove the convergence of ADM applied to the gfKdV equation. Then we obtain the exact solitary-wave solutions and numerical solutions of the gfKdV equation for the initial conditions. The numerical solutions are compared with the known analytical solutions. Their remarkable accuracy are finally demonstrated for the gfKdV equation

  16. Two new supersymmetric equations of Harry Dym type and their supersymmetric reciprocal transformations

    International Nuclear Information System (INIS)

    Tian, Kai; Liu, Q.P.

    2012-01-01

    A new N=1 supersymmetric Harry Dym equation is constructed by applying supersymmetric reciprocal transformation to a trivial supersymmetric Harry Dym equation, and its recursion operator and Lax formulation are also obtained. Within the framework of symmetry approach, a class of 3rd order supersymmetric equations of Harry Dym type are considered. In addition to five known integrable equations, a new supersymmetric equation, admitting 5th order generalized symmetry, is shown to be linearizable through supersymmetric reciprocal transformation. Furthermore, its Lax representation and recursion operator are given so that the integrability of this new equation is confirmed. -- Highlights: ► A new supersymmetric Harry Dym equation is constructed through supersymmetric reciprocal transformations. ► The recursion operator and Lax formulation are established for the new supersymmetric Harry Dym equation. ► A supersymmetric equation of Harry Dym type is shown to be linearized through supersymmetric reciprocal transformation.

  17. On the exact solutions of high order wave equations of KdV type (I)

    Science.gov (United States)

    Bulut, Hasan; Pandir, Yusuf; Baskonus, Haci Mehmet

    2014-12-01

    In this paper, by means of a proper transformation and symbolic computation, we study high order wave equations of KdV type (I). We obtained classification of exact solutions that contain soliton, rational, trigonometric and elliptic function solutions by using the extended trial equation method. As a result, the motivation of this paper is to utilize the extended trial equation method to explore new solutions of high order wave equation of KdV type (I). This method is confirmed by applying it to this kind of selected nonlinear equations.

  18. New analytic solutions of stochastic coupled KdV equations

    International Nuclear Information System (INIS)

    Dai Chaoqing; Chen Junlang

    2009-01-01

    In this paper, firstly, we use the exp-function method to seek new exact solutions of the Riccati equation. Then, with the help of Hermit transformation, we employ the Riccati equation and its new exact solutions to find new analytic solutions of the stochastic coupled KdV equation in the white noise environment. As some special examples, some analytic solutions can degenerate into these solutions reported in open literatures.

  19. A motion of spacelike curves in the Minkowski 3-space and the KdV equation

    International Nuclear Information System (INIS)

    Ding Qing; Wang Wei; Wang Youde

    2010-01-01

    This Letter shows that soliton solutions to KdV equation describe a motion of spacelike curves in R 2,1 with initial data being suitably restricted. This gives a different geometric interpretation of KdV from that given recently by Musso and Nicolodi, and gives a unified geometric explanation for KdV and MKdV.

  20. Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation

    International Nuclear Information System (INIS)

    Shi, Ying; Zhang, Da-jun; Nimmo, Jonathan J C

    2014-01-01

    The Hirota–Miwa equation can be written in ‘nonlinear’ form in two ways: the discrete KP equation and, by using a compatible continuous variable, the discrete potential KP equation. For both systems, we consider the Darboux and binary Darboux transformations, expressed in terms of the continuous variable, and obtain exact solutions in Wronskian and Grammian form. We discuss reductions of both systems to the discrete KdV and discrete potential KdV equation, respectively, and exploit this connection to find the Darboux and binary Darboux transformations and exact solutions of these equations. (paper)

  1. Supersymmetric two-particle equations

    International Nuclear Information System (INIS)

    Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.

    1986-01-01

    In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found

  2. New exact travelling wave solutions for two potential coupled KdV equations with symbolic computation

    International Nuclear Information System (INIS)

    Yang Zonghang

    2007-01-01

    We find new exact travelling wave solutions for two potential KdV equations which are presented by Foursov [Foursov MV. J Math Phys 2000;41:6173-85]. Compared with the extended tanh-function method, the algorithm used in our paper can obtain some new kinds of exact travelling wave solutions. With the aid of symbolic computation, some novel exact travelling wave solutions of the potential KdV equations are constructed

  3. Modulating functions method for parameters estimation in the fifth order KdV equation

    KAUST Repository

    Asiri, Sharefa M.; Liu, Da-Yan; Laleg-Kirati, Taous-Meriem

    2017-01-01

    In this work, the modulating functions method is proposed for estimating coefficients in higher-order nonlinear partial differential equation which is the fifth order Kortewegde Vries (KdV) equation. The proposed method transforms the problem into a

  4. Interactions of Soliton Waves for a Generalized Discrete KdV Equation

    International Nuclear Information System (INIS)

    Zhou Tong; Zhu Zuo-Nong

    2017-01-01

    It is well known that soliton interactions in discrete integrable systems often possess new properties which are different from the continuous integrable systems, e.g., we found that there are such discrete solitons in a semidiscrete integrable system (the time variable is continuous and the space one is discrete) that the shorter solitary waves travel faster than the taller ones. Very recently, this kind of soliton was also observed in a full discrete generalized KdV system (the both of time and space variables are discrete) introduced by Kanki et al. In this paper, for the generalized discrete KdV (gdKdV) equation, we describe its richer structures of one-soliton solutions. The interactions of two-soliton waves to the gdKdV equation are studied. Some new features of the soliton interactions are proposed by rigorous theoretical analysis. (paper)

  5. A multidimensionally consistent version of Hirota’s discrete KdV equation

    International Nuclear Information System (INIS)

    Atkinson, James

    2012-01-01

    A multidimensionally consistent generalization of Hirota’s discrete KdV equation is proposed, it is a quad equation defined by a polynomial that is quadratic in each variable. Soliton solutions and interpretation of the model as superposition principle are given. It is discussed how an important property of the defining polynomial, a factorization of discriminants, appears also in the few other known discrete integrable multi-quadratic models. (fast track communication)

  6. The fractional coupled KdV equations: Exact solutions and white noise functional approach

    International Nuclear Information System (INIS)

    Ghany, Hossam A.; El Bab, A. S. Okb; Zabel, A. M.; Hyder, Abd-Allah

    2013-01-01

    Variable coefficients and Wick-type stochastic fractional coupled KdV equations are investigated. By using the modified fractional sub-equation method, Hermite transform, and white noise theory the exact travelling wave solutions and white noise functional solutions are obtained, including the generalized exponential, hyperbolic, and trigonometric types. (general)

  7. Poisson's theorem and integrals of KdV equation

    International Nuclear Information System (INIS)

    Tasso, H.

    1978-01-01

    Using Poisson's theorem it is proved that if F = integral sub(-infinity)sup(+infinity) T(u,usub(x),...usub(n,t))dx is an invariant functional of KdV equation, then integral sub(-infinity)sup(+infinity) delta F/delta u dx integral sub(-infinity)sup(+infinity) delta T/delta u dx is also an invariant functional. In the case of a polynomial T, one finds in a simple way the known recursion ΔTr/Δu = Tsub(r-1). This note gives an example of the usefulness of Poisson's theorem. (author)

  8. On "new travelling wave solutions" of the KdV and the KdV-Burgers equations

    NARCIS (Netherlands)

    Kudryashov, Nikolai A.

    The Korteweg-de Vries and the Korteweg-de Vries-Burgers equations are considered. Using the travelling wave the general solutions of these equations are presented. "New travelling wave solutions" of the KdV and the KdV-Burgers equations by Wazzan [Wazzan L Commun Nonlinear Sci Numer Simulat

  9. Conditional Stability of Solitary-Wave Solutions for Generalized Compound KdV Equation and Generalized Compound KdV-Burgers Equation

    International Nuclear Information System (INIS)

    Zhang Weiguo; Dong Chunyan; Fan Engui

    2006-01-01

    In this paper, we discuss conditional stability of solitary-wave solutions in the sense of Liapunov for the generalized compound KdV equation and the generalized compound KdV-Burgers equations. Linear stability of the exact solitary-wave solutions is proved for the above two types of equations when the small disturbance of travelling wave form satisfies some special conditions.

  10. An outline of cellular automaton universe via cosmological KdV equation

    Science.gov (United States)

    Christianto, V.; Smarandache, F.; Umniyati, Y.

    2018-03-01

    It has been known for long time that the cosmic sound wave was there since the early epoch of the Universe. Signatures of its existence are abound. However, such a sound wave model of cosmology is rarely developed fully into a complete framework. This paper can be considered as our second attempt towards such a complete description of the Universe based on soliton wave solution of cosmological KdV equation. Then we advance further this KdV equation by virtue of Cellular Automaton method to solve the PDEs. We submit wholeheartedly Robert Kuruczs hypothesis that Big Bang should be replaced with a finite cellular automaton universe with no expansion [4][5]. Nonetheless, we are fully aware that our model is far from being complete, but it appears the proposed cellular automaton model of the Universe is very close in spirit to what Konrad Zuse envisaged long time ago. It is our hope that the new proposed method can be verified with observation data. But we admit that our model is still in its infancy, more researches are needed to fill all the missing details.

  11. New binary travelling-wave periodic solutions for the modified KdV equation

    International Nuclear Information System (INIS)

    Yan Zhenya

    2008-01-01

    In this Letter, the modified Korteweg-de Vries (mKdV) equations with the focusing (+) and defocusing (-) branches are investigated, respectively. Many new types of binary travelling-wave periodic solutions are obtained for the mKdV equation in terms of Jacobi elliptic functions such as sn(ξ,m)cn(ξ,m)dn(ξ,m) and their extensions. Moreover, we analyze asymptotic properties of some solutions. In addition, with the aid of the Miura transformation, we also give the corresponding binary travelling-wave periodic solutions of KdV equation

  12. A numerical dressing method for the nonlinear superposition of solutions of the KdV equation

    International Nuclear Information System (INIS)

    Trogdon, Thomas; Deconinck, Bernard

    2014-01-01

    In this paper we present the unification of two existing numerical methods for the construction of solutions of the Korteweg–de Vries (KdV) equation. The first method is used to solve the Cauchy initial-value problem on the line for rapidly decaying initial data. The second method is used to compute finite-genus solutions of the KdV equation. The combination of these numerical methods allows for the computation of exact solutions that are asymptotically (quasi-)periodic finite-gap solutions and are a nonlinear superposition of dispersive, soliton and (quasi-)periodic solutions in the finite (x, t)-plane. Such solutions are referred to as superposition solutions. We compute these solutions accurately for all values of x and t. (paper)

  13. A modified KdV equation with self-consistent sources in non-uniform media and soliton dynamics

    International Nuclear Information System (INIS)

    Zhang Dajun; Bi Jinbo; Hao Honghai

    2006-01-01

    Two non-isospectral modified KdV equations with self-consistent sources are derived, which correspond to the time-dependent spectral parameter λ satisfying λ t = λ and λ t = λ 3 , respectively. Gauge transformation between the first non-isospectral equation (corresponding to λ t = λ) and its isospectral counterpart is given, from which exact solutions and conservation laws for the non-isospectral one are easily listed. Besides, solutions to the two non-isospectral modified KdV equations with self-consistent sources are derived by means of the Hirota method and the Wronskian technique, respectively. Non-isospectral dynamics and source effects, including one-soliton characteristics in non-uniform media, two-solitons scattering and special behaviours related to sources (for example, the 'ghost' solitons in the degenerate two-soliton case), are investigated analytically

  14. Adler endash Kostant endash Symes construction, bi-Hamiltonian manifolds, and KdV equations

    International Nuclear Information System (INIS)

    Guha, P.

    1997-01-01

    This paper focuses a relation between Adler endash Kostant endash Symes (AKS) theory applied to Fordy endash Kulish scheme and bi-Hamiltonian manifolds. The spirit of this paper is closely related to Casati endash Magri endash Pedroni work on Hamiltonian formulation of the KP equation. Here the KdV equation is deduced via the superposition of the Fordy endash Kulish scheme and AKS construction on the underlying current algebra C ∞ (S 1 ,g circle-times C[[λ

  15. Extended N=2 supersymmetric matrix (1, s)-KdV hierarchies

    International Nuclear Information System (INIS)

    Krivonos, S.O.; Sorin, A.S.

    1997-01-01

    We propose the Lax operators for N=2 supersymmetric matrix generalization of the bosonic (1, s)-KdV hierarchies. The simplest examples - the N=2 supersymmetric a=4 KdV and a=5/2 Boussinesq hierarchies - are discussed in detail

  16. Binary Bell polynomial application in generalized (2+1)-dimensional KdV equation with variable coefficients

    International Nuclear Information System (INIS)

    Zhang Yi; Wei Wei-Wei; Cheng Teng-Fei; Song Yang

    2011-01-01

    In this paper, we apply the binary Bell polynomial approach to high-dimensional variable-coefficient nonlinear evolution equations. Taking the generalized (2+1)-dimensional KdV equation with variable coefficients as an illustrative example, the bilinear formulism, the bilinear Bäcklund transformation and the Lax pair are obtained in a quick and natural manner. Moreover, the infinite conservation laws are also derived. (general)

  17. Modulating functions method for parameters estimation in the fifth order KdV equation

    KAUST Repository

    Asiri, Sharefa M.

    2017-07-25

    In this work, the modulating functions method is proposed for estimating coefficients in higher-order nonlinear partial differential equation which is the fifth order Kortewegde Vries (KdV) equation. The proposed method transforms the problem into a system of linear algebraic equations of the unknowns. The statistical properties of the modulating functions solution are described in this paper. In addition, guidelines for choosing the number of modulating functions, which is an important design parameter, are provided. The effectiveness and robustness of the proposed method are shown through numerical simulations in both noise-free and noisy cases.

  18. Exact traveling wave solutions of the bbm and kdv equations using (G'/G)-expansion method

    International Nuclear Information System (INIS)

    Saddique, I.; Nazar, K.

    2009-01-01

    In this paper, we construct the traveling wave solutions involving parameters of the Benjamin Bona-Mahony (BBM) and KdV equations in terms of the hyperbolic, trigonometric and rational functions by using the (G'/G)-expansion method, where G = G(zeta) satisfies a second order linear ordinary differential equation. When the parameters are taken special values, the Solitary was are derived from the traveling waves. (author)

  19. Lax pair and exact solutions of a discrete coupled system related to coupled KdV and coupled mKdV equations

    International Nuclear Information System (INIS)

    Liu Ping; Jia Man; Lou Senyue

    2007-01-01

    A modified Korteweg-de Vries (mKdV) lattice is also found to be a discrete Korteweg-de Vries (KdV) equation in this paper. The Lax pair for the discrete equation is found with the help of the Lax pair for a similar discrete equation. A Lax-integrable coupled extension of the lattice is posed, which is a common discrete version of both the coupled KdV and coupled mKdV systems. Some rational expansions of the Jacobian elliptic, trigonometric and hyperbolic functions are used to construct cnoidal waves, negaton and positon solutions of the discrete coupled system

  20. Two-dimensional nonlinear equations of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Savel'ev, M.V.

    1985-01-01

    Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations

  1. Perturbative expansion and the initial value problem of the K.d.V. equations

    International Nuclear Information System (INIS)

    Turchetti, G.

    1980-01-01

    For the potential K.d.V. equation is considered a perturbation expansion in which the initial condition is imposed on the zeroth order term. The N soliton solutions turn out to be rational functions in the expansion parameter so that the perturbation series can be exactly summed by the [N-1/N] Pade approximants; moreover the [n-1/n] and [n/n] Pade approximants for n [pt

  2. The transformations between N= 2 supersymmetric Korteweg-de Vries and Harry Dym equations

    International Nuclear Information System (INIS)

    Tian Kai; Liu, Q. P.

    2012-01-01

    The N= 2 supercomformal transformations are employed to study supersymmetric integrable systems. It is proved that two known N= 2 supersymmetric Harry Dym equations are transformed into two N= 2 supersymmetric modified Korteweg-de Vries equations, thus are connected with two N= 2 supersymmetric Korteweg-de Vries equations.

  3. Invariant solutions of the supersymmetric sine-Gordon equation

    International Nuclear Information System (INIS)

    Grundland, A M; Hariton, A J; Snobl, L

    2009-01-01

    A comprehensive symmetry analysis of the N=1 supersymmetric sine-Gordon equation is performed. Two different forms of the supersymmetric system are considered. We begin by studying a system of partial differential equations corresponding to the coefficients of the various powers of the anticommuting independent variables. Next, we consider the super-sine-Gordon equation expressed in terms of a bosonic superfield involving anticommuting independent variables. In each case, a Lie (super)algebra of symmetries is determined and a classification of all subgroups having generic orbits of codimension 1 in the space of independent variables is performed. The method of symmetry reduction is systematically applied in order to derive invariant solutions of the supersymmetric model. Several types of algebraic, hyperbolic and doubly periodic solutions are obtained in explicit form.

  4. The (G′/G-Expansion Method and Its Application for Higher-Order Equations of KdV (III

    Directory of Open Access Journals (Sweden)

    Huizhang Yang

    2014-01-01

    Full Text Available New exact traveling wave solutions of a higher-order KdV equation type are studied by the (G′/G-expansion method, where G=G(ξ satisfies a second-order linear differential equation. The traveling wave solutions are expressed by the hyperbolic functions, the trigonometric functions, and the rational functions. The property of this method is that it is quite simple and understandable.

  5. Soliton and periodic solutions for higher order wave equations of KdV type (I)

    International Nuclear Information System (INIS)

    Khuri, S.A.

    2005-01-01

    The aim of the paper is twofold. First, a new ansaetze is introduced for the construction of exact solutions for higher order wave equations of KdV type (I). We show the existence of a class of discontinuous soliton solutions with infinite spikes. Second, the projective Riccati technique is implemented as an alternate approach for obtaining new exact solutions, solitary solutions, and periodic wave solutions

  6. Infinitely many conservation laws for the discrete KdV equation

    International Nuclear Information System (INIS)

    Rasin, Alexander G; Schiff, Jeremy

    2009-01-01

    Rasin and Hydon (2007 J. Phys. A: Math. Theor. 40 12763-73) suggested a way to construct an infinite number of conservation laws for the discrete KdV equation (dKdV), by repeated application of a certain symmetry to a known conservation law. It was not decided, however, whether the resulting conservation laws were distinct and nontrivial. In this paper we obtain the following results: (1) we give an alternative method to construct an infinite number of conservation laws using a discrete version of the Gardner transformation. (2) We give a direct proof that the conservation laws obtained by the method of Rasin and Hydon are indeed distinct and nontrivial. (3) We consider a continuum limit in which the dKdV equation becomes a first-order eikonal equation. In this limit the two sets of conservation laws become the same, and are evidently distinct and nontrivial. This proves the nontriviality of the conservation laws constructed by the Gardner method, and gives an alternative proof of the nontriviality of the conservation laws constructed by the method of Rasin and Hydon

  7. On Solutions of the Integrable Boundary Value Problem for KdV Equation on the Semi-Axis

    International Nuclear Information System (INIS)

    Ignatyev, M. Yu.

    2013-01-01

    This paper is concerned with the Korteweg–de Vries (KdV) equation on the semi-axis. The boundary value problem with inhomogeneous integrable boundary conditions is studied. We establish some characteristic properties of solutions of the problem. Also we construct a wide class of solutions of the problem using the inverse spectral method.

  8. N = 2 local and N = 4 non-local reductions of supersymmetric KP hierarchy in N = 2 superspace

    International Nuclear Information System (INIS)

    Delduc, F.; Gallot, L.; Sorin, A.

    1999-01-01

    An N = 4 supersymmetric matrix KP hierarchy is proposed and a wide class of its reductions which are characterized by a finite number of fields are described. This class includes the one-dimensional reduction of the two-dimensional N = (2,2) superconformal Toda lattice hierarchy possessing the N = 4 supersymmetry -- the N = 4 Toda chain hierarchy - which may be relevant in the construction of supersymmetric matrix models. The Lax-pair representations of the bosonic and fermionic flows, corresponding local and non-local Hamiltonians, finite and infinite discrete symmetries, the first two Hamiltonian structures and the recursion operator connecting all evolution equations and the Hamiltonian structures of the N = 4 Toda chain hierarchy are constructed in explicit form. Is secondary reduction to the N 4 supersymmetric α = - 2 KdV hierarchy is

  9. Well-posedness and ill-posedness of the fifth-order modified KdV equation

    Directory of Open Access Journals (Sweden)

    Soonsik Kwon

    2008-01-01

    Full Text Available We consider the initial value problem of the fifth-order modified KdV equation on the Sobolev spaces. $$displaylines{ partial_t u - partial_x^5u + c_1partial_x^3(u^3 + c_2upartial_x upartial_x^2 u + c_3uupartial_x^3 u =0cr u(x,0= u_0(x }$$ where $u:mathbb{R}imesmathbb{R} o mathbb{R} $ and $c_j$'s are real. We show the local well-posedness in $H^s(mathbb{R}$ for $sgeq 3/4$ via the contraction principle on $X^{s,b}$ space. Also, we show that the solution map from data to the solutions fails to be uniformly continuous below $H^{3/4}(mathbb{R}$. The counter example is obtained by approximating the fifth order mKdV equation by the cubic NLS equation.

  10. Supersymmetric KP hierarchy in N=1 superspace and its N=2 reductions

    International Nuclear Information System (INIS)

    Lechtenfeld, O.; Sorin, A.

    2000-01-01

    A wide class of N=2 reductions of the supersymmetric KP hierarchy in N=1 superspace is described. This class includes a new N=2 supersymmetric generalization of the Toda chain hierarchy. The Lax pair representations of the bosonic and fermionic flows, local and non-local Hamiltonians, finite and infinite discrete symmetries, first two Hamiltonian structures and the recursion operator of this hierarchy are constructed. Its secondary reduction to new N=2 supersymmetric modified KdV hierarchy is discussed

  11. Supersymmetric KP hierarchy in N=1 superspace and its N=2 reductions

    International Nuclear Information System (INIS)

    Lechtenfeld, O.; Sorin, A.

    1999-01-01

    A wide class of N=2 reductions of the supersymmetric KP hierarchy in N=1 superspace is described. This class includes a new N=2 supersymmetric generalization of the Toda chain hierarchy. The Lax pair representations of the bosonic and fermionic flows, local and nonlocal Hamiltonians, finite and infinite discrete symmetries, first two Hamiltonian structures and the recursion operator of this hierarchy are constructed. Its secondary reduction to new N=2 supersymmetric modified KdV hierarchy is discussed

  12. Stability properties of solitary waves for fractional KdV and BBM equations

    Science.gov (United States)

    Angulo Pava, Jaime

    2018-03-01

    This paper sheds new light on the stability properties of solitary wave solutions associated with Korteweg-de Vries-type models when the dispersion is very low. Using a compact, analytic approach and asymptotic perturbation theory, we establish sufficient conditions for the existence of exponentially growing solutions to the linearized problem and so a criterium of spectral instability of solitary waves is obtained for both models. Moreover, the nonlinear stability and spectral instability of the ground state solutions for both models is obtained for some specific regimen of parameters. Via a Lyapunov strategy and a variational analysis, we obtain the stability of the blow-up of solitary waves for the critical fractional KdV equation. The arguments presented in this investigation show promise for use in the study of the instability of traveling wave solutions of other nonlinear evolution equations.

  13. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation

    International Nuclear Information System (INIS)

    Znojil, Miloslav

    2004-01-01

    Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations

  14. Abundant general solitary wave solutions to the family of KdV type equations

    Directory of Open Access Journals (Sweden)

    Md. Azmol Huda

    2017-03-01

    Full Text Available This work explores the construction of more general exact traveling wave solutions of some nonlinear evolution equations (NLEEs through the application of the (G′/G, 1/G-expansion method. This method is allied to the widely used (G′/G-method initiated by Wang et al. and can be considered as an extension of the (G′/G-expansion method. For effectiveness, the method is applied to the family of KdV type equations. Abundant general form solitary wave solutions as well as periodic solutions are successfully obtained through this method. Moreover, in the obtained wider set of solutions, if we set special values of the parameters, some previously known solutions are revived. The approach of this method is simple and elegantly standard. Having been computerized it is also powerful, reliable and effective.

  15. Numerical search for a Phi4 breather mode and study of the Phi4, sine-Gordon, and Kdv equations with adibatic coefficients

    International Nuclear Information System (INIS)

    Wingate, C.A.

    1978-01-01

    Two major problems are studied in this thesis. The first is a numerical search for a stable oscillating mode in the Phi4 equation similar to the one that is known for the sine-Gordon equation. Starting with a widely separated soliton and anti-soliton traveling toward each other, it is observed, after a long period of time (t = 2800), that the solitons form a quasistable oscillating state. An interesting, previously unknown structure in the interaction depending on the initial velocity and initial separation is found and studied in detail. The second topic covered here is a study of the phi4, KdV and sine-Gordon equations when the coefficients vary slowly with time. A general first order solution is found for the wave equation with a non-linear potential and is applied to the phi4 and sine-Gordon potentials. In doing this it is found that the conservation of momentum is equivalent order by order to the secular conditions. Deficiencies in existing calculations for the KdV equation are pointed out through the use of adiabatic invariants and numerical calculations

  16. Bilinear approach to Kuperschmidt super-KdV type equations

    Science.gov (United States)

    Babalic, Corina N.; Carstea, A. S.

    2018-06-01

    Hirota bilinear form and soliton solutions for the super-KdV (Korteweg–de Vries) equation of Kuperschmidt (Kuper–KdV) are given. It is shown that even though the collision of supersolitons is more complicated than in the case of the supersymmetric KdV equation of Manin–Radul, the asymptotic effect of the interaction is simpler. As a physical application it is shown that the well-known FPU problem, having a phonon-mediated interaction of some internal degrees of freedom expressed through Grassmann fields, transforms to the Kuper–KdV equation in a multiple-scale approach.

  17. Hodograph solutions of the dispersionless coupled KdV hierarchies, critical points and the Euler-Poisson-Darboux equation

    International Nuclear Information System (INIS)

    Konopelchenko, B; Alonso, L MartInez; Medina, E

    2010-01-01

    It is shown that the hodograph solutions of the dispersionless coupled KdV (dcKdV) hierarchies describe critical and degenerate critical points of a scalar function which obeys the Euler-Poisson-Darboux equation. Singular sectors of each dcKdV hierarchy are found to be described by solutions of higher genus dcKdV hierarchies. Concrete solutions exhibiting shock-type singularities are presented.

  18. N = 4 Toda chain (KdV) hierarchy in N = 4 superspace

    International Nuclear Information System (INIS)

    Sorin, A.S.

    2002-01-01

    The Lax pair and Hamiltonian formulations are presented for the N = 4 supersymmetric Toda chain (KdV) hierarchy in N = 4 superspace. The general formulas for an infinite tower of its bosonic flows in terms of the Lax operator in N = 4 superspace are derived, and five real forms of the hierarchy are presented. New N = 4 superfield bases in which the flows are local are discussed. A relation between the two descriptions of the hierarchy in N = 4 superspace used in the literature is established

  19. On the method of inverse scattering problem and Baecklund transformations for supersymmetric equations

    International Nuclear Information System (INIS)

    Chaichian, M.; Kulish, P. P.

    1978-04-01

    Supersymmetric Liouville and sine-Gordon equations are studied. We write down for these models the system of linear equations for which the method of inverse scattering problem should be applicable. Expressions for an infinite set of conserved currents are explicitly given. Supersymmetric Baecklund transformations and generalized conservation laws are constructed. (author)

  20. Liouville supersymmetrical equation for a quantum case

    International Nuclear Information System (INIS)

    Leznov, A.N.; Khrushev, V.V.

    1982-01-01

    The relation between coupling constants of interacting nonlinear scalar and spinor fields was established which leads to finite series of perturbation theory for the dynamical variable esup(-phi). In the classical limit h/2π→0 the system under consideration turns out to be described by supersymmetric Luiville equation

  1. General method and exact solutions to a generalized variable-coefficient two-dimensional KdV equation

    International Nuclear Information System (INIS)

    Chen, Yong; Shanghai Jiao-Tong Univ., Shangai; Chinese Academy of sciences, Beijing

    2005-01-01

    A general method to uniformly construct exact solutions in terms of special function of nonlinear partial differential equations is presented by means of a more general ansatz and symbolic computation. Making use of the general method, we can successfully obtain the solutions found by the method proposed by Fan (J. Phys. A., 36 (2003) 7009) and find other new and more general solutions, which include polynomial solutions, exponential solutions, rational solutions, triangular periodic wave solution, soliton solutions, soliton-like solutions and Jacobi, Weierstrass doubly periodic wave solutions. A general variable-coefficient two-dimensional KdV equation is chosen to illustrate the method. As a result, some new exact soliton-like solutions are obtained. planets. The numerical results are given in tables. The results are discussed in the conclusion

  2. Constraints and Soliton Solutions for KdV Hierarchy and AKNS Hierarchy

    International Nuclear Information System (INIS)

    Li Nianhua; Li Yuqi

    2011-01-01

    It is well-known that the finite-gap solutions of the KdV equation can be generated by its recursion operator. We generalize the result to a special form of Lax pair, from which a method to constrain the integrable system to a lower-dimensional or fewer variable integrable system is proposed. A direct result is that the n-soliton solutions of the KdV hierarchy can be completely depicted by a series of ordinary differential equations (ODEs), which may be gotten by a simple but unfamiliar Lax pair. Furthermore the AKNS hierarchy is constrained to a series of univariate integrable hierarchies. The key is a special form of Lax pair for the AKNS hierarchy. It is proved that under the constraints all equations of the AKNS hierarchy are linearizable. (general)

  3. Supersymmetric reciprocal transformation and its applications

    International Nuclear Information System (INIS)

    Liu, Q. P.; Popowicz, Ziemowit; Tian Kai

    2010-01-01

    The supersymmetric analog of the reciprocal transformation is introduced. This is used to establish a transformation between one of the supersymmetric Harry Dym equations and the supersymmetric modified Korteweg-de Vries equation. The reciprocal transformation, as a Baecklund-type transformation between these two equations, is adopted to construct a recursion operator for the supersymmetric Harry Dym equation. By proper factorization of the recursion operator, a bi-Hamiltonian structure is found for the supersymmetric Harry Dym equation. Furthermore, a supersymmetric Kawamoto equation is proposed and is associated with the supersymmetric Sawada-Kotera equation. The recursion operator and odd bi-Hamiltonian structure of the supersymmetric Kawamoto equation are also constructed.

  4. Zero curvature condition of OSp(2/2) and the associated supergravity theory

    International Nuclear Information System (INIS)

    Das, A.; Huang, W.J.; Roy, S.

    1992-01-01

    In this paper, the N = 2 fermionic extensions of the KdV equations are derived from the zero curvature condition associated with the graded Lie algebra of OSp(2/2). These equations lead to two bi-Hamiltonian systems, one of which is supersymmetric. The authors also derive the one-parameter family of N = 2 supersymmetric KdV equations without a bi-Hamiltonian structure in this approach. Following the authors' earlier proposal, the authors interpret the zero curvature conditions as a gauge anomaly equation which brings out the underlying current algebra for the corresponding 2D supergravity theory. This current algebra is then used to obtain the operator product expansions of various fields of this theory

  5. An Algebraic Construction of the First Integrals of the Stationary KdV Hierarchy

    Science.gov (United States)

    Matsushima, Masatomo; Ohmiya, Mayumi

    2009-09-01

    The stationary KdV hierarchy is constructed using a kind of recursion operator called Λ-operator. The notion of the maximal solution of the n-th stationary KdV equation is introduced. Using this maximal solution, a specific differential polynomial with the auxiliary spectral parameter called the spectral M-function is constructed as the quadratic form of the fundamental system of the eigenvalue problem for the 2-nd order linear ordinary differential equation which is related to the linearizing operator of the hierarchy. By calculating a perfect square condition of the quadratic form by an elementary algebraic method, the complete set of first integrals of this hierarchy is constructed.

  6. A new generalized expansion method and its application in finding explicit exact solutions for a generalized variable coefficients KdV equation

    International Nuclear Information System (INIS)

    Sabry, R.; Zahran, M.A.; Fan Engui

    2004-01-01

    A generalized expansion method is proposed to uniformly construct a series of exact solutions for general variable coefficients non-linear evolution equations. The new approach admits the following types of solutions (a) polynomial solutions, (b) exponential solutions, (c) rational solutions, (d) triangular periodic wave solutions, (e) hyperbolic and solitary wave solutions and (f) Jacobi and Weierstrass doubly periodic wave solutions. The efficiency of the method has been demonstrated by applying it to a generalized variable coefficients KdV equation. Then, new and rich variety of exact explicit solutions have been found

  7. The Lax operator approach for the Virasoro and the W-constraints in the generalized KdV hierarchy

    International Nuclear Information System (INIS)

    Panda, S.; Roy, S.

    1992-08-01

    We show directly in the Lax operator approach how the Virasoro and W-constraints on the τ-function arise in the p-reduced KP hierarchy or Generalized KdV hierarchy. In particular, we consider the KdV and the Boussinesq hierarchy to show that the Virasoro and the W-constraints follow from the string equation by expanding the ''additional symmetry'' operator in terms of the Lax operator. We also mention how this method could be generalized for higher KdV hierarchies. (author). 34 refs

  8. A linearizing transformation for the Korteweg-de Vries equation; generalizations to higher-dimensional nonlinear partial differential equations

    NARCIS (Netherlands)

    Dorren, H.J.S.

    1998-01-01

    It is shown that the Korteweg–de Vries (KdV) equation can be transformed into an ordinary linear partial differential equation in the wave number domain. Explicit solutions of the KdV equation can be obtained by subsequently solving this linear differential equation and by applying a cascade of

  9. Stability of Modified K-dV soliton in plasma with negative ion

    International Nuclear Information System (INIS)

    Matsukawa, Michiaki; Watanabe, Shinsuke

    1988-01-01

    The K-P and Modified K-P equations for ion acoustic wave are derived from the fluid equations for plasma with negative ion. At the critical density of the negative ion where the nonlinearity of the K-P equation vanishes, the ion acoustic soliton is described by the Modified K-P equation. The stability of Modified K-dV soliton against bending are investigated by using the Modified K-P equation. It is found that the soliton is stable, independent of the sign of amplitude. (author)

  10. Superspace descent equations and zero curvature formalism of the four dimensional N=1 supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Vilar, L.C.Q.; Sasaki, C.A.G.; Sorella, S.P.

    1996-09-01

    The supersymmetric descent equations in superspace are discussed by means of the introduction of two operators ζ α , ζ -α which allow to decompose the supersymmetric covariant derivatives D α , D -α as BRS commutators. (author). 27 refs., 4 tabs

  11. Superspace descent equations and zero curvature formalism of the four dimensional N=1 supersymmetric Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Vilar, L.C.Q.; Sasaki, C.A.G. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Sorella, S.P. [Universidade do Estado, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1996-09-01

    The supersymmetric descent equations in superspace are discussed by means of the introduction of two operators {zeta}{sup {alpha}}, {zeta}{sup -{alpha}} which allow to decompose the supersymmetric covariant derivatives D{sup {alpha}}, D{sup -{alpha}} as BRS commutators. (author). 27 refs., 4 tabs.

  12. Functional renormalisation group equations for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Synatschke-Czerwonka, Franziska

    2011-01-11

    This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)

  13. Soliton evolution and radiation loss for the Korteweg--de Vries equation

    International Nuclear Information System (INIS)

    Kath, W.L.; Smyth, N.F.

    1995-01-01

    The time-dependent behavior of solutions of the Korteweg--de Vries (KdV) equation for nonsoliton initial conditions is considered. While the exact solution of the KdV equation can in principle be obtained using the inverse scattering transform, in practice it can be extremely difficult to obtain information about a solution's transient evolution by this method. As an alternative, we present here an approximate method for investigating this transient evolution which is based upon the conservation laws associated with the KdV equation. Initial conditions which form one or two solitons are considered, and the resulting approximate evolution is found to be in good agreement with the numerical solution of the KdV equation. Justification for the approximations employed is also given by way of the linearized inverse scattering solution of the KdV equation. In addition, the final soliton state determined from the approximate equations agrees very well with the final state determined from the exact inverse scattering transform solution

  14. Exact solutions of the Fokker-Planck equation from an nth order supersymmetric quantum mechanics approach

    Energy Technology Data Exchange (ETDEWEB)

    Schulze-Halberg, Axel [Escuela Superior de Fisica y Matematicas, IPN, Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, Edificio 9, 07738 Mexico D.F. (Mexico)], E-mail: xbataxel@gmail.com; Rivas, Jesus Morales [Universidad Autonoma Metropolitana - Azcapotzalco, CBI - Area de Fisica Atomica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 Mexico D.F. (Mexico)], E-mail: jmr@correo.azc.uam.mx; Pena Gil, Jose Juan [Universidad Autonoma Metropolitana - Azcapotzalco, CBI - Area de Fisica Atomica Molecular Aplicada, Av. San Pablo 180, Reynosa Azcapotzalco, 02200 Mexico D.F. (Mexico)], E-mail: jjpg@correo.azc.uam.mx; Garcia-Ravelo, Jesus [Escuela Superior de Fisica y Matematicas, IPN, Unidad Profesional Adolfo Lopez Mateos, Col. San Pedro Zacatenco, Edificio 9, 07738 Mexico D.F. (Mexico)], E-mail: ravelo@esfm.ipn.mx; Roy, Pinaki [Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta-700108 (India)], E-mail: pinaki@isical.ac.in

    2009-04-20

    We generalize the formalism of nth order Supersymmetric Quantum Mechanics (n-SUSY) to the Fokker-Planck equation for constant diffusion coefficient and stationary drift potential. The SUSY partner drift potentials and the corresponding solutions of the Fokker-Planck equation are given explicitly. As an application, we generate new solutions of the Fokker-Planck equation by means of our first- and second-order transformation.

  15. Exact solutions of the Fokker-Planck equation from an nth order supersymmetric quantum mechanics approach

    International Nuclear Information System (INIS)

    Schulze-Halberg, Axel; Rivas, Jesus Morales; Pena Gil, Jose Juan; Garcia-Ravelo, Jesus; Roy, Pinaki

    2009-01-01

    We generalize the formalism of nth order Supersymmetric Quantum Mechanics (n-SUSY) to the Fokker-Planck equation for constant diffusion coefficient and stationary drift potential. The SUSY partner drift potentials and the corresponding solutions of the Fokker-Planck equation are given explicitly. As an application, we generate new solutions of the Fokker-Planck equation by means of our first- and second-order transformation.

  16. Energy preserving integration of bi-Hamiltonian partial differential equations

    NARCIS (Netherlands)

    Karasozen, B.; Simsek, G.

    2013-01-01

    The energy preserving average vector field (AVF) integrator is applied to evolutionary partial differential equations (PDEs) in bi-Hamiltonian form with nonconstant Poisson structures. Numerical results for the Korteweg de Vries (KdV) equation and for the Ito type coupled KdV equation confirm the

  17. Supersymmetric quantum mechanics approach to a nonlinear lattice

    International Nuclear Information System (INIS)

    Ricotta, Regina Maria; Drigo Filho, Elso

    2011-01-01

    Full text: DNA is one of the most important macromolecules of all biological system. New discoveries about it have open a vast new field of research, the physics of nonlinear DNA. A particular feature that has attracted a lot of attention is the thermal denaturation, i.e., the spontaneous separation of the two strands upon heating. In 1989 a simple lattice model for the denaturation of the DNA was proposed, the Peyrard-Bishop model, PB. The bio molecule is described by two chains of particles coupled by nonlinear springs, simulating the hydrogen bonds that connect the two basis in a pair. The potential for the hydrogen bonds is usually approximated by a Morse potential. The Hamiltonian system generates a partition function which allows the evaluation of the thermodynamical quantities such as mean strength of the basis pairs. As a byproduct the Hamiltonian system was shown to be a NLSE (nonlinear Schroedinger equation) having soliton solutions. On the other hand, a reflectionless potential with one bound state, constructed using supersymmetric quantum mechanics, SQM, can be shown to be identical to a soliton solution of the KdV equation. Thus, motivated by this Hamiltonian problem and inspired by the PB model, we consider the Hamiltonian of a reflectionless potential through SQM, in order to evaluate thermodynamical quantities of a unidimensional lattice with possible biological applications. (author)

  18. Nonholonomic deformation of generalized KdV-type equations

    International Nuclear Information System (INIS)

    Guha, Partha

    2009-01-01

    Karasu-Kalkani et al (2008 J. Math. Phys. 49 073516) recently derived a new sixth-order wave equation KdV6, which was shown by Kupershmidt (2008 Phys. Lett. 372A 2634) to have an infinite commuting hierarchy with a common infinite set of conserved densities. Incidentally, this equation was written for the first time by Calogero and is included in the book by Calogero and Degasperis (1982 Lecture Notes in Computer Science vol 144 (Amsterdam: North-Holland) p 516). In this paper, we give a geometric insight into the KdV6 equation. Using Kirillov's theory of coadjoint representation of the Virasoro algebra, we show how to obtain a large class of KdV6-type equations equivalent to the original equation. Using a semidirect product extension of the Virasoro algebra, we propose the nonholonomic deformation of the Ito equation. We also show that the Adler-Kostant-Symes scheme provides a geometrical method for constructing nonholonomic deformed integrable systems. Applying the Adler-Kostant-Symes scheme to loop algebra, we construct a new nonholonomic deformation of the coupled KdV equation.

  19. Deriving average soliton equations with a perturbative method

    International Nuclear Information System (INIS)

    Ballantyne, G.J.; Gough, P.T.; Taylor, D.P.

    1995-01-01

    The method of multiple scales is applied to periodically amplified, lossy media described by either the nonlinear Schroedinger (NLS) equation or the Korteweg--de Vries (KdV) equation. An existing result for the NLS equation, derived in the context of nonlinear optical communications, is confirmed. The method is then applied to the KdV equation and the result is confirmed numerically

  20. Exact solutions for modified Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Sarma, Jnanjyoti

    2009-01-01

    Using the simple wave or traveling wave solution technique, many different types of solutions are derived for modified Korteweg-de Vries (KdV) equation. The solutions are obtained from the set of nonlinear algebraic equations, which can be derived from the modified Korteweg-de Vries (KdV) equation by using the hyperbolic transformation method. The method can be applicable for similar nonlinear wave equations.

  1. Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations

    CERN Document Server

    Riotto, Antonio

    1998-01-01

    The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...

  2. Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2004-01-01

    A bridge going from Wronskian solutions to generalized Wronskian solutions of the Korteweg-de Vries (KdV) equation is built. It is then shown that generalized Wronskian solutions can be viewed as Wronskian solutions. The idea is used to generate positons, negatons and their interaction solutions to the KdV equation. Moreover, general positons and negatons are constructed through the Wronskian formulation. A few new exact solutions to the KdV equation are explicitly presented as examples of Wronskian solutions

  3. Supersymmetry, reflectionless symmetric potentials and the inverse method

    International Nuclear Information System (INIS)

    Bagchi, B.

    1990-01-01

    The role of inverse scattering method is illustrated to examine the connection between the multi-soliton solutions of Korteweg-de Vries (KdV) equation and discrete eigenvalues of Schrodinger equation. The necessity of normalization of the Schrodinger wave functions, which are constructed purely from a supersymmetric consideration is pointed out

  4. Solving (1,q) KdV gravity

    International Nuclear Information System (INIS)

    Montano, D.; Rivlis, G.

    1991-01-01

    In this paper we explicitly compute the correlation functions of the (1, q) series of the KdV hierarchy, i.e. models with q-1 primary fields. We also find from algebraic considerations a ghost number conservation law for the (1, q) models. All the results in this paper follow from the algebraic properties of the KdV hierarchy without using any extraneous information from a field theory interpretation. We find the interesting result that some correlation functions vanish even when they conserve ghost number. This is an indication for further selection rules. (orig.)

  5. Integrable discretization s of derivative nonlinear Schroedinger equations

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki

    2002-01-01

    We propose integrable discretizations of derivative nonlinear Schroedinger (DNLS) equations such as the Kaup-Newell equation, the Chen-Lee-Liu equation and the Gerdjikov-Ivanov equation by constructing Lax pairs. The discrete DNLS systems admit the reduction of complex conjugation between two dependent variables and possess bi-Hamiltonian structure. Through transformations of variables and reductions, we obtain novel integrable discretizations of the nonlinear Schroedinger (NLS), modified KdV (mKdV), mixed NLS, matrix NLS, matrix KdV, matrix mKdV, coupled NLS, coupled Hirota, coupled Sasa-Satsuma and Burgers equations. We also discuss integrable discretizations of the sine-Gordon equation, the massive Thirring model and their generalizations. (author)

  6. Interacting fields of arbitrary spin and N > 4 supersymmetric self-dual Yang-Mills equations

    International Nuclear Information System (INIS)

    Devchand, Ch.; Ogievetsky, V.

    1996-06-01

    We show that the self-dual Yang-Mills equations afford supersymmetrization to systems of equations invariant under global N-extended super-Poincare transformations for arbitrary values of N, without the limitation (N ≤ 4) applicable to standard non-self-dual Yang-Mills theories. These systems of equations provide novel classically consistent interactions for vector supermultiplets containing fields of spin up to N-2/2. The equations of motion of the component fields of spin greater than 1/2 are interacting variants of the first-order Dirac-Fierz equations for zero rest-mass fields of arbitrary spin. The interactions are governed by conserved currents which are constructed by an iterative procedure. In (arbitrarily extended) chiral superspace, the equations of motion for the (arbitrarily large) self-dual supermultiplet are shown to be completely equivalent to the set of algebraic supercurvature defining the self-dual superconnection. (author). 25 refs

  7. Comment on connections between nonlinear evolution equations

    International Nuclear Information System (INIS)

    Fuchssteiner, B.; Hefter, E.F.

    1981-01-01

    An open problem raised in a recent paper by Chodos is treated. We explain the reason for the interrelation between the conservation laws of the Korteweg-de Vries (KdV) and sine-Gordon equations. We point out that it is due to a corresponding connection between the infinite-dimensional Abelian symmetry groups of these equations. While it has been known for a long time that a Baecklund transformation (in this case the Miura transformation) connects corresponding members of the KdV and the sine-Gordon families, it is quite obvious that no Baecklund transformation can exist between different members of these families. And since the KdV and sine-Gordon equations do not correspond to each other, one cannot expect a Baecklund transformation between them; nevertheless we can give explicit relations between their two-soliton solutions. No inverse scattering techniques are used in this paper

  8. Simple Numerical Schemes for the Korteweg-deVries Equation

    International Nuclear Information System (INIS)

    McKinstrie, C. J.; Kozlov, M.V.

    2000-01-01

    Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves

  9. Simple Numerical Schemes for the Korteweg-deVries Equation

    Energy Technology Data Exchange (ETDEWEB)

    C. J. McKinstrie; M. V. Kozlov

    2000-12-01

    Two numerical schemes, which simulate the propagation of dispersive non-linear waves, are described. The first is a split-step Fourier scheme for the Korteweg-de Vries (KdV) equation. The second is a finite-difference scheme for the modified KdV equation. The stability and accuracy of both schemes are discussed. These simple schemes can be used to study a wide variety of physical processes that involve dispersive nonlinear waves.

  10. Generalized Miura transformations, two-bosons KP hierarchies and their reduction to KdV hierarchies

    International Nuclear Information System (INIS)

    Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Medeiros, R.T.; Zimerman, A.H.

    1993-02-01

    Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies. (author). 16 refs

  11. Generalized Miura transformations, two-bosons KP hierarchies and their reduction to KdV hierarchies

    Energy Technology Data Exchange (ETDEWEB)

    Aratyn, H. [Illinois Univ., Chicago, IL (United States). Dept. of Physics; Ferreira, L.A.; Gomes, J.F.; Medeiros, R.T.; Zimerman, A.H.

    1993-02-01

    Bracket preserving gauge equivalence is established between several two-boson generated KP type of hierarchies. These KP hierarchies reduce under symplectic reduction (via Dirac constraints) to KdV and Schwarzian KdV hierarchies. Under this reduction the gauge equivalence is taking form of the conventional Miura maps between the above KdV type of hierarchies. (author). 16 refs.

  12. KdV hierarchy via Abelian coverings and operator identities

    OpenAIRE

    Eichinger, Benjamin; VandenBoom, Tom; Yuditskii, Peter

    2018-01-01

    We establish precise spectral criteria for potential functions $V$ of reflectionless Schr\\"odinger operators $L_V = -\\partial_x^2 + V$ to admit solutions to the Korteweg de-Vries (KdV) hierarchy with $V$ as an initial value. More generally, our methods extend the classical study of algebro-geometric solutions for the KdV hierarchy to noncompact Riemann surfaces by defining generalized Abelian integrals and analogues of the Baker-Akhiezer function on infinitely connected domains with a uniform...

  13. Bihamiltonian Cohomology of KdV Brackets

    NARCIS (Netherlands)

    Carlet, G.; Posthuma, H.; Shadrin, S.

    2016-01-01

    Using spectral sequences techniques we compute the bihamiltonian cohomology groups of the pencil of Poisson brackets of dispersionless KdV hierarchy. In particular, this proves a conjecture of Liu and Zhang about the vanishing of such cohomology groups.

  14. Supersymmetric extensions of Schrodinger-invariance

    International Nuclear Information System (INIS)

    Henkel, Malte; Unterberger, Jeremie

    2006-01-01

    The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values

  15. Completely integrable operator evolutionary equations

    International Nuclear Information System (INIS)

    Chudnovsky, D.V.

    1979-01-01

    The authors present natural generalizations of classical completely integrable equations where the functions are replaced by arbitrary operators. Among these equations are the non-linear Schroedinger, the Korteweg-de Vries, and the modified KdV equations. The Lax representation and the Baecklund transformations are presented. (Auth.)

  16. Renormalization of supersymmetric theories

    International Nuclear Information System (INIS)

    Pierce, D.M.

    1998-06-01

    The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses

  17. On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Bytsko, A.G.; Shenderovich, I.E.

    2007-12-01

    The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)

  18. On string solutions of Bethe equations in N=4 supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Bytsko, A.G. [Rossijskaya Akademiya Nauk, St. Petersburg (Russian Federation). Inst. Matematiki]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Shenderovich, I.E. [St. Petersburg State Univ. (Russian Federation). Physics Dept.

    2007-12-15

    The Bethe equations, arising in description of the spectrum of the dilatation operator for the su(2) sector of the N=4 supersymmetric Yang-Mills theory, are considered in the anti-ferromagnetic regime. These equations are deformation of those for the Heisenberg XXX magnet. It is proven that in the thermodynamic limit roots of the deformed equations group into strings. It is proven that the corresponding Yang's action is convex, which implies uniqueness of solution for centers of the strings. The state formed of strings of length (2n+1) is considered and the density of their distribution is found. It is shown that the energy of such a state decreases as n grows. It is observed that non-analyticity of the left hand side of the Bethe equations leads to an additional contribution to the density and energy of strings of even length. Whence it is concluded that the structure of the anti-ferromagnetic vacuum is determined by the behaviour of exponential corrections to string solutions in the thermodynamic limit and possibly involves strings of length 2. (orig.)

  19. Exact solutions to the time-fractional differential equations via local fractional derivatives

    Science.gov (United States)

    Guner, Ozkan; Bekir, Ahmet

    2018-01-01

    This article utilizes the local fractional derivative and the exp-function method to construct the exact solutions of nonlinear time-fractional differential equations (FDEs). For illustrating the validity of the method, it is applied to the time-fractional Camassa-Holm equation and the time-fractional-generalized fifth-order KdV equation. Moreover, the exact solutions are obtained for the equations which are formed by different parameter values related to the time-fractional-generalized fifth-order KdV equation. This method is an reliable and efficient mathematical tool for solving FDEs and it can be applied to other non-linear FDEs.

  20. Higher dimensional supersymmetric quantum mechanics and Dirac ...

    Indian Academy of Sciences (India)

    We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with specific examples. We also discuss the `physical' significance of the supersymmetric states in this formalism.

  1. Division algebras and extended super KdVs

    International Nuclear Information System (INIS)

    Toppan, F.

    2001-05-01

    The division algebras R, C, H, O are used to construct and analyze the N = 1, 2, 4, 8 supersymmetric extensions of the KdV hamiltonian equation. In particular a global N = 8 super-KdV system is introduced and shown to admit a Poisson bracket structure given by the 'Non-Associate N = 8 Superconformal Algebra'. (author)

  2. Analytical Solutions of the KDV-KZK Equation

    Science.gov (United States)

    Gan, W. S.

    The KdV-KZK equation for fluids developed by me was presented at the ICSV 11 in St. Petersburg in July 2004. In this paper, I made an attempt on the analytical solutions of this equation using the perturbation method. Some physical interpretation of the solutions is given. A brief introduction to KdV-KZK equation for solids is given

  3. Super Virasoro algebra and solvable supersymmetric quantum field theories

    International Nuclear Information System (INIS)

    Yamanaka, Itaru; Sasaki, Ryu.

    1987-09-01

    Interesting and deep relationships between super Virasoro algebras and super soliton systems (super KdV, super mKdV and super sine-Gordon equations) are investigated at both classical and quantum levels. An infinite set of conserved quantities responsible for solvability is characterized by super Virasoro algebras only. Several members of the infinite set of conserved quantities are derived explicitly. (author)

  4. A new auxiliary equation and exact travelling wave solutions of nonlinear equations

    International Nuclear Information System (INIS)

    Sirendaoreji

    2006-01-01

    A new auxiliary ordinary differential equation and its solutions are used for constructing exact travelling wave solutions of nonlinear partial differential equations in a unified way. The main idea of this method is to take full advantage of the auxiliary equation which has more new exact solutions. More new exact travelling wave solutions are obtained for the quadratic nonlinear Klein-Gordon equation, the combined KdV and mKdV equation, the sine-Gordon equation and the Whitham-Broer-Kaup equations

  5. Dissipative behavior of some fully non-linear KdV-type equations

    Science.gov (United States)

    Brenier, Yann; Levy, Doron

    2000-03-01

    The KdV equation can be considered as a special case of the general equation u t+f(u) x-δg(u xx) x=0, δ>0, where f is non-linear and g is linear, namely f( u)= u2/2 and g( v)= v. As the parameter δ tends to 0, the dispersive behavior of the KdV equation has been throughly investigated (see, e.g., [P.G. Drazin, Solitons, London Math. Soc. Lect. Note Ser. 85, Cambridge University Press, Cambridge, 1983; P.D. Lax, C.D. Levermore, The small dispersion limit of the Korteweg-de Vries equation, III, Commun. Pure Appl. Math. 36 (1983) 809-829; G.B. Whitham, Linear and Nonlinear Waves, Wiley/Interscience, New York, 1974] and the references therein). We show through numerical evidence that a completely different, dissipative behavior occurs when g is non-linear, namely when g is an even concave function such as g( v)=-∣ v∣ or g( v)=- v2. In particular, our numerical results hint that as δ→0 the solutions strongly converge to the unique entropy solution of the formal limit equation, in total contrast with the solutions of the KdV equation.

  6. Energy invariant for shallow-water waves and the Korteweg-de Vries equation: Doubts about the invariance of energy

    Science.gov (United States)

    Karczewska, Anna; Rozmej, Piotr; Infeld, Eryk

    2015-11-01

    It is well known that the Korteweg-de Vries (KdV) equation has an infinite set of conserved quantities. The first three are often considered to represent mass, momentum, and energy. Here we try to answer the question of how this comes about and also how these KdV quantities relate to those of the Euler shallow-water equations. Here Luke's Lagrangian is helpful. We also consider higher-order extensions of KdV. Though in general not integrable, in some sense they are almost so within the accuracy of the expansion.

  7. Efficiency of High-Order Accurate Difference Schemes for the Korteweg-de Vries Equation

    Directory of Open Access Journals (Sweden)

    Kanyuta Poochinapan

    2014-01-01

    Full Text Available Two numerical models to obtain the solution of the KdV equation are proposed. Numerical tools, compact fourth-order and standard fourth-order finite difference techniques, are applied to the KdV equation. The fundamental conservative properties of the equation are preserved by the finite difference methods. Linear stability analysis of two methods is presented by the Von Neumann analysis. The new methods give second- and fourth-order accuracy in time and space, respectively. The numerical experiments show that the proposed methods improve the accuracy of the solution significantly.

  8. A supersymmetric Skyrme model

    International Nuclear Information System (INIS)

    Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin

    2016-01-01

    Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.

  9. Conserved quantities for generalized KdV equations

    International Nuclear Information System (INIS)

    Calogero, F.; Rome Univ.; Degasperis, A.; Rome Univ.

    1980-01-01

    It is noted that the nonlinear evolution equation usub(t) = α(t)usub(xxx) - 6ν(t) usub(x)u, u is identical to u(x,t), possesses three (and, in some cases, four) conserved quantities, that are explicitly displayed. These results are of course relevant only to the cases in which this evolution equation is not known to possess an infinite number of conserved quantities. Purpose and scope of this paper is to report three or four simple conservation laws possessed by the evolution equation usub(t) = α(t)usub(xxx) - 6ν(t)usub(x)u, u is identical to u(x,t). (author)

  10. Dispersive and damping properties of supersymmetric sound. 2

    International Nuclear Information System (INIS)

    Lebedev, V.V.; Smilga, A.V.

    1988-01-01

    This paper is the second part of the work devoted to the massless fermionic collective excitation in supersymmetric media at nonzero temperature. The solution to generalized kinetic equations for the Wess-Zumino model at low temperatures is presented and the situation at high temperatures is discussed. Supersymmetric gauge models are also discussed

  11. Supersymmetric symplectic quantum mechanics

    Science.gov (United States)

    de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.

    2018-02-01

    Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.

  12. Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method

    Institute of Scientific and Technical Information of China (English)

    Tang Wen-Lin; Tian Gui-Hua

    2011-01-01

    The spheroidal wave functions are found to have extensive applications in many branches of physics and mathematics. We use the perturbation method in supersymmetric quantum mechanics to obtain the analytic ground eigenvalue and the ground eigenfunction of the angular spheroidal wave equation at low frequency in a series form. Using this approach, the numerical determinations of the ground eigenvalue and the ground eigenfunction for small complex frequencies are also obtained.

  13. The Multi-Wave Method for Exact Solutions of Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2018-02-01

    Full Text Available In this research, we use the multi-wave method to obtain new exact solutions for generalized forms of 5th order KdV equation and fth order KdV (fKdV equation with power law nonlinearity. Computations are performed with the help of the mathematics software Mathematica. Then, periodic wave solutions, bright soliton solutions and rational function solutions with free parameters are obtained by this approach. It is shown that this method is very useful and effective.

  14. 1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2

    International Nuclear Information System (INIS)

    Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)

    1980-01-01

    The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived

  15. Hamiltonian structures and integrability for a discrete coupled KdV-type equation hierarchy

    International Nuclear Information System (INIS)

    Zhao Haiqiong; Zhu Zuonong; Zhang Jingli

    2011-01-01

    Coupled Korteweg-de Vries (KdV) systems have many important physical applications. By considering a 4 × 4 spectral problem, we derive a discrete coupled KdV-type equation hierarchy. Our hierarchy includes the coupled Volterra system proposed by Lou et al. (e-print arXiv: 0711.0420) as the first member which is a discrete version of the coupled KdV equation. We also investigate the integrability in the Liouville sense and the multi-Hamiltonian structures for the obtained hierarchy. (authors)

  16. Infinite sets of conservation laws for linear and non-linear field equations

    International Nuclear Information System (INIS)

    Niederle, J.

    1984-01-01

    The work was motivated by a desire to understand group theoretically the existence of an infinite set of conservation laws for non-interacting fields and to carry over these conservation laws to the case of interacting fields. The relation between an infinite set of conservation laws of a linear field equation and the enveloping algebra of its space-time symmetry group was established. It is shown that in the case of the Korteweg-de Vries (KdV) equation to each symmetry of the corresponding linear equation delta sub(o)uxxx=u sub() determined by an element of the enveloping algebra of the space translation algebra, there corresponds a symmetry of the full KdV equation

  17. A new sub-equation method applied to obtain exact travelling wave solutions of some complex nonlinear equations

    International Nuclear Information System (INIS)

    Zhang Huiqun

    2009-01-01

    By using a new coupled Riccati equations, a direct algebraic method, which was applied to obtain exact travelling wave solutions of some complex nonlinear equations, is improved. And the exact travelling wave solutions of the complex KdV equation, Boussinesq equation and Klein-Gordon equation are investigated using the improved method. The method presented in this paper can also be applied to construct exact travelling wave solutions for other nonlinear complex equations.

  18. Analytic method for solitary solutions of some partial differential equations

    International Nuclear Information System (INIS)

    Ugurlu, Yavuz; Kaya, Dogan

    2007-01-01

    In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation

  19. Nonlinear integrodifferential equations as discrete systems

    Science.gov (United States)

    Tamizhmani, K. M.; Satsuma, J.; Grammaticos, B.; Ramani, A.

    1999-06-01

    We analyse a class of integrodifferential equations of the `intermediate long wave' (ILW) type. We show that these equations can be formally interpreted as discrete, differential-difference systems. This allows us to link equations of this type with previous results of ours involving differential-delay equations and, on the basis of this, propose new integrable equations of ILW type. Finally, we extend this approach to pure difference equations and propose ILW forms for the discrete lattice KdV equation.

  20. A supersymmetric SYK-like tensor model

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence, RI, 02912 (United States)

    2017-05-11

    We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.

  1. A supersymmetric SYK-like tensor model

    International Nuclear Information System (INIS)

    Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia

    2017-01-01

    We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.

  2. Analytic method for solitary solutions of some partial differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Ugurlu, Yavuz [Firat University, Department of Mathematics, 23119 Elazig (Turkey); Kaya, Dogan [Firat University, Department of Mathematics, 23119 Elazig (Turkey)], E-mail: dkaya@firat.edu.tr

    2007-10-22

    In this Letter by considering an improved tanh function method, we found some exact solutions of the clannish random walker's parabolic equation, the modified Korteweg-de Vries (KdV) equation, and the Sharma-Tasso-Olver (STO) equation with its fission and fusion, the Jaulent-Miodek equation.

  3. Integrable coupling system of fractional soliton equation hierarchy

    Energy Technology Data Exchange (ETDEWEB)

    Yu Fajun, E-mail: yfajun@163.co [College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034 (China)

    2009-10-05

    In this Letter, we consider the derivatives and integrals of fractional order and present a class of the integrable coupling system of the fractional order soliton equations. The fractional order coupled Boussinesq and KdV equations are the special cases of this class. Furthermore, the fractional AKNS soliton equation hierarchy is obtained.

  4. Multiphase averaging of periodic soliton equations

    International Nuclear Information System (INIS)

    Forest, M.G.

    1979-01-01

    The multiphase averaging of periodic soliton equations is considered. Particular attention is given to the periodic sine-Gordon and Korteweg-deVries (KdV) equations. The periodic sine-Gordon equation and its associated inverse spectral theory are analyzed, including a discussion of the spectral representations of exact, N-phase sine-Gordon solutions. The emphasis is on physical characteristics of the periodic waves, with a motivation from the well-known whole-line solitons. A canonical Hamiltonian approach for the modulational theory of N-phase waves is prescribed. A concrete illustration of this averaging method is provided with the periodic sine-Gordon equation; explicit averaging results are given only for the N = 1 case, laying a foundation for a more thorough treatment of the general N-phase problem. For the KdV equation, very general results are given for multiphase averaging of the N-phase waves. The single-phase results of Whitham are extended to general N phases, and more importantly, an invariant representation in terms of Abelian differentials on a Riemann surface is provided. Several consequences of this invariant representation are deduced, including strong evidence for the Hamiltonian structure of N-phase modulational equations

  5. The spinorial method of classifying supersymmetric backgrounds

    NARCIS (Netherlands)

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2006-01-01

    We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046

  6. A new supersymmetric index

    International Nuclear Information System (INIS)

    Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.

    1992-01-01

    We show that Tr(-1) F F e -βH is an index for N = 2 supersymmetric theories in two dimensions, in the sense that it is independent of almost all deformations of the theory. This index is related to the geometry of the vacua (Berry's curvature) and satisfies an exact differential equation as a function of β. For integrable theories we can also compute the index thermodynamically, using the exact S-matrix. The equivalence of these two results implies a highly non-trivial equivalence of a set of coupled integral equations with these differential equations, among them Painleve III and the affine Toda equations. (orig.)

  7. Exact solitary wave solutions for some nonlinear evolution equations via Exp-function method

    International Nuclear Information System (INIS)

    Ebaid, A.

    2007-01-01

    Based on the Exp-function method, exact solutions for some nonlinear evolution equations are obtained. The KdV equation, Burgers' equation and the combined KdV-mKdV equation are chosen to illustrate the effectiveness of the method

  8. Soliton solutions of some nonlinear evolution equations with time ...

    Indian Academy of Sciences (India)

    Abstract. In this paper, we obtain exact soliton solutions of the modified KdV equation, inho- mogeneous nonlinear Schrödinger equation and G(m, n) equation with variable coefficients using solitary wave ansatz. The constraint conditions among the time-dependent coefficients turn out as necessary conditions for the ...

  9. Supersymmetric self-dual Yang-Mills fields

    International Nuclear Information System (INIS)

    Zhao Liu

    1994-01-01

    A new four dimensional (4d) N = 1 supersymmetric integrable model, i.e. the supersymmetric self-dual Yang-Mills model is constructed. The equations of motion for this model are shown to be equivalent to the zero curvature condition on some superplane in the 4d superspace, the superplane being characterized by a point in the project space CP 3,4 . The linear systems are established according to this geometrical interpretation, and the effective action is also proposed in order to explain the dynamical content of the model

  10. Reduction of infinite dimensional equations

    Directory of Open Access Journals (Sweden)

    Zhongding Li

    2006-02-01

    Full Text Available In this paper, we use the general Legendre transformation to show the infinite dimensional integrable equations can be reduced to a finite dimensional integrable Hamiltonian system on an invariant set under the flow of the integrable equations. Then we obtain the periodic or quasi-periodic solution of the equation. This generalizes the results of Lax and Novikov regarding the periodic or quasi-periodic solution of the KdV equation to the general case of isospectral Hamiltonian integrable equation. And finally, we discuss the AKNS hierarchy as a special example.

  11. Stochastic quantization of field theories on the lattice and supersymmetrical models

    International Nuclear Information System (INIS)

    Aldazabal, Gerardo.

    1984-01-01

    Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es

  12. Vacuum fluctuations of the supersymmetric field in curved background

    International Nuclear Information System (INIS)

    Bilić, Neven; Domazet, Silvije; Guberina, Branko

    2012-01-01

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  13. Vacuum fluctuations of the supersymmetric field in curved background

    Energy Technology Data Exchange (ETDEWEB)

    Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)

    2012-01-16

    We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.

  14. Automatic calculation of supersymmetric renormalization group equations and loop corrections

    Science.gov (United States)

    Staub, Florian

    2011-03-01

    SARAH is a Mathematica package for studying supersymmetric models. It calculates for a given model the masses, tadpole equations and all vertices at tree-level. This information can be used by SARAH to write model files for CalcHep/ CompHep or FeynArts/ FormCalc. In addition, the second version of SARAH can derive the renormalization group equations for the gauge couplings, parameters of the superpotential and soft-breaking parameters at one- and two-loop level. Furthermore, it calculates the one-loop self-energies and the one-loop corrections to the tadpoles. SARAH can handle all N=1 SUSY models whose gauge sector is a direct product of SU(N) and U(1) gauge groups. The particle content of the model can be an arbitrary number of chiral superfields transforming as any irreducible representation with respect to the gauge groups. To implement a new model, the user has just to define the gauge sector, the particle, the superpotential and the field rotations to mass eigenstates. Program summaryProgram title: SARAH Catalogue identifier: AEIB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 97 577 No. of bytes in distributed program, including test data, etc.: 2 009 769 Distribution format: tar.gz Programming language: Mathematica Computer: All systems that Mathematica is available for Operating system: All systems that Mathematica is available for Classification: 11.1, 11.6 Nature of problem: A supersymmetric model is usually characterized by the particle content, the gauge sector and the superpotential. It is a time consuming process to obtain all necessary information for phenomenological studies from these basic ingredients. Solution method: SARAH calculates the complete Lagrangian for a given model whose

  15. Planarizable Supersymmetric Quantum Toboggans

    Czech Academy of Sciences Publication Activity Database

    Znojil, Miloslav

    2011-01-01

    Roč. 7, - (2011), 018/1-018/23 ISSN 1815-0659. [Workshop on Supersymmetric Quantum Mechanics and Spectral Design. Benasque, 18.07.2010-30.07. 2010] R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : supersymmetry * Schrodinger equation * complexified coordinates Subject RIV: BE - Theoretical Physics Impact factor: 1.071, year: 2011

  16. Integrability and boundary conditions of supersymmetric systems

    International Nuclear Information System (INIS)

    Yue Ruihong; Liang Hong

    1996-01-01

    By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms

  17. Spontaneous baryogenesis in supersymmetric models

    International Nuclear Information System (INIS)

    Abel, S.A.; Cottingham, W.N.; Whittingham, I.B.

    1993-01-01

    In this paper we extent the results of previous work on spontaneous baryogenesis to general models involving charge-parity (CP) violation in the Higgs sector. We show how to deal with Chern-Simons terms appearing in the effective potential arising from phase changes in the vacuum expectation values of the Higgs fields. In particular, this enables us to apply this mechanism to general supersymmetric models including the minimal supersymmetric standard model, and the extended model with a gauge singlet. A comparison is made between this approach, and that in which one solves the equations of motion for Higgs winding modes. As anticipated in earlier work, the effect of the latter approach is found to be small. (Author)

  18. Dynamics of supersymmetric chameleons

    International Nuclear Information System (INIS)

    Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy

    2013-01-01

    We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons

  19. Functional integral in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Ktitarev, D.V.

    1990-01-01

    The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs

  20. Reparametrization invariance and the Schroedinger equation

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    1999-01-01

    A time-dependent Schroedinger equation for systems invariant under the reparametrization of time is considered. We develop the two-stage procedure of construction such systems from a given initial ones, which are not invariant under the time reparametrization. One of the first-class constraints of the systems in such description becomes the time-dependent Schroedinger equation. The procedure is applicable in the supersymmetric theories as well. The n = 2 supersymmetric quantum mechanics is coupled to world-line supergravity, and the local supersymmetric action is constructed leading to the square root representation of the time-dependent Schroedinger equation

  1. Dynamics of supersymmetric chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2013-10-01

    We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.

  2. Multi-component WKI equations and their conservation laws

    Energy Technology Data Exchange (ETDEWEB)

    Qu Changzheng [Department of Mathematics, Northwest University, Xi' an 710069 (China) and Center for Nonlinear Studies, Northwest University, Xi' an 710069 (China)]. E-mail: qu_changzheng@hotmail.com; Yao Ruoxia [Department of Computer Sciences, East China Normal University, Shanghai 200062 (China); Department of Computer Sciences, Weinan Teacher' s College, Weinan 715500 (China); Liu Ruochen [Department of Mathematics, Northwest University, Xi' an 710069 (China)

    2004-10-25

    In this Letter, a two-component WKI equation is obtained by using the fact that when curvature and torsion of a space curve satisfy the vector modified KdV equation, a graph of the curve satisfies the two-component WKI equation, which is a natural generalization to the WKI equation. It is shown that the two-component WKI equation can be solved in terms of the extended WKI scheme, and it admits an infinite number of conservation laws. In the same vein, a n-component generalization to the WKI equation is proposed.

  3. Rogue periodic waves of the modified KdV equation

    Science.gov (United States)

    Chen, Jinbing; Pelinovsky, Dmitry E.

    2018-05-01

    Rogue periodic waves stand for rogue waves on a periodic background. Two families of travelling periodic waves of the modified Korteweg–de Vries (mKdV) equation in the focusing case are expressed by the Jacobian elliptic functions dn and cn. By using one-fold and two-fold Darboux transformations of the travelling periodic waves, we construct new explicit solutions for the mKdV equation. Since the dn-periodic wave is modulationally stable with respect to long-wave perturbations, the new solution constructed from the dn-periodic wave is a nonlinear superposition of an algebraically decaying soliton and the dn-periodic wave. On the other hand, since the cn-periodic wave is modulationally unstable with respect to long-wave perturbations, the new solution constructed from the cn-periodic wave is a rogue wave on the cn-periodic background, which generalizes the classical rogue wave (the so-called Peregrine’s breather) of the nonlinear Schrödinger equation. We compute the magnification factor for the rogue cn-periodic wave of the mKdV equation and show that it remains constant for all amplitudes. As a by-product of our work, we find explicit expressions for the periodic eigenfunctions of the spectral problem associated with the dn and cn periodic waves of the mKdV equation.

  4. Soliton-like solutions to the GKdV equation by extended mapping method

    International Nuclear Information System (INIS)

    Wu Ranchao; Sun Jianhua

    2007-01-01

    In this note, many new exact solutions of the generalized KdV equation, such as rational solutions, periodic solutions like Jacobian elliptic and triangular functions, soliton-like solutions, are constructed by symbolic computation and the extended mapping method, with the auxiliary ordinary equation replaced by a more general one

  5. An Algebraic Method for Constructing Exact Solutions to Difference-Differential Equations

    International Nuclear Information System (INIS)

    Wang Zhen; Zhang Hongqing

    2006-01-01

    In this paper, we present a method to solve difference differential equation(s). As an example, we apply this method to discrete KdV equation and Ablowitz-Ladik lattice equation. As a result, many exact solutions are obtained with the help of Maple including soliton solutions presented by hyperbolic functions sinh and cosh, periodic solutions presented by sin and cos and rational solutions. This method can also be used to other nonlinear difference-differential equation(s).

  6. The hyper-Kaehler supersymmetric sigma-model in six dimensions

    International Nuclear Information System (INIS)

    Sierra, G.; Townsend, P.K.

    1983-01-01

    The maximally supersymmetric, hyper-Kaehler, sigma-model is given in six-dimensional superfield form. The hyper-Kaehler condition follows from the requirements that the equations of motion be derivable from an action. (orig.)

  7. Two- and three dimensional electrons and photons and their supersymmetric partners

    International Nuclear Information System (INIS)

    Steringa, J.J.

    1989-01-01

    This thesis contains a study of supersymmetric gauge theories in two and tree spacetime dimensions. Supersymmetric gauge theories in less than four spacetime dimensions are useful for trying out field theoretical methods which ultimately will be applied to realistic models. In ch. 1 all the aspects of field theory that are necessary for later chapters are treated. In ch. 2 sypersymmetry in two- and three-dimensional space time is treated, and superfields and superspace techniques are introduced. With these a simple Abelian supersymmetric gauge theory in two spacetime dimensions is constructed, the Schwinger model. Ch. 3 deals with general properties and a perturbative analysis of the model. Ch. 4 contains a non-perturbative analysis by means of Dyson-Schwinger equations. A supersummetric extension of theSalam-Delbourgo Gauge Technique is presented and is applied with some seccess to the supersymmetric Schwinger model. In ch. 5 prperties of three-dimensional supersymmetric gauge theories are investigated. (author). 55 refs.; 7 figs.; schemes

  8. Supersymmetric deformations of 3D SCFTs from tri-Sasakian truncation

    Energy Technology Data Exchange (ETDEWEB)

    Karndumri, Parinya [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)

    2017-02-15

    We holographically study supersymmetric deformations of N = 3 and N = 1 superconformal field theories in three dimensions using four-dimensional N = 4 gauged supergravity coupled to three-vector multiplets with non-semisimple SO(3) x (T{sup 3},T{sup 3}) gauge group. This gauged supergravity can be obtained from a truncation of 11-dimensional supergravity on a tri-Sasakian manifold and admits both N = 1,3 supersymmetric and stable non-supersymmetric AdS{sub 4} critical points. We analyze the BPS equations for SO(3) singlet scalars in detail and study possible supersymmetric solutions. A number of RG flows to non-conformal field theories and half-supersymmetric domain walls are found, and many of them can be given analytically. Apart from these ''flat'' domain walls, we also consider AdS{sub 3}-sliced domain wall solutions describing two-dimensional conformal defects with N = (1,0) supersymmetry within the dual N = 1 field theory while this type of solutions does not exist in the N = 3 case. (orig.)

  9. Soliton equations and Hamiltonian systems

    CERN Document Server

    Dickey, L A

    2002-01-01

    The theory of soliton equations and integrable systems has developed rapidly during the last 30 years with numerous applications in mechanics and physics. For a long time, books in this field have not been written but the flood of papers was overwhelming: many hundreds, maybe thousands of them. All this output followed one single work by Gardner, Green, Kruskal, and Mizura on the Korteweg-de Vries equation (KdV), which had seemed to be merely an unassuming equation of mathematical physics describing waves in shallow water. Besides its obvious practical use, this theory is attractive also becau

  10. Exact traveling wave solutions of modified KdV-Zakharov-Kuznetsov equation and viscous Burgers equation.

    Science.gov (United States)

    Islam, Md Hamidul; Khan, Kamruzzaman; Akbar, M Ali; Salam, Md Abdus

    2014-01-01

    Mathematical modeling of many physical systems leads to nonlinear evolution equations because most physical systems are inherently nonlinear in nature. The investigation of traveling wave solutions of nonlinear partial differential equations (NPDEs) plays a significant role in the study of nonlinear physical phenomena. In this article, we construct the traveling wave solutions of modified KDV-ZK equation and viscous Burgers equation by using an enhanced (G '/G) -expansion method. A number of traveling wave solutions in terms of unknown parameters are obtained. Derived traveling wave solutions exhibit solitary waves when special values are given to its unknown parameters. 35C07; 35C08; 35P99.

  11. Chiral rings and anomalies in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Witten, Edward; Seiberg, Nathan; Douglas, Michael R.

    2002-01-01

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  12. The supersymmetric configurations of N=2, d=4 supergravity coupled to vector supermultiplets

    CERN Document Server

    Meessen, P

    2006-01-01

    We classify all the supersymmetric configurations of ungauged N=2,d=4 supergravity coupled to n vector multiplets and determine under which conditions they are also classical solutions of the equations of motion. The supersymmetric configurations fall into two classes, depending on the timelike or null nature of the Killing vector constructed from Killing spinor bilinears. The timelike class configurations are essentially the ones found by Behrndt, Luest and Sabra, which exhaust this class and are the ones that include supersymmetric black holes. The null class configurations include pp-waves and cosmic strings.

  13. Painleve analysis, conservation laws, and symmetry of perturbed nonlinear equations

    International Nuclear Information System (INIS)

    Basak, S.; Chowdhury, A.R.

    1987-01-01

    The authors consider the Lie-Backlund symmetries and conservation laws of a perturbed KdV equation and NLS equation. The arbitrary coefficients of the perturbing terms can be related to the condition of existence of nontrivial LB symmetry generators. When the perturbed KdV equation is subjected to Painleve analysis a la Weiss, it is found that the resonance position changes compared to the unperturbed one. They prove the compatibility of the overdetermined set of equations obtained at the different stages of recursion relations, at least for one branch. All other branches are also indicated and difficulties associated them are discussed considering the perturbation parameter epsilon to be small. They determine the Lax pair for the aforesaid branch through the use of Schwarzian derivative. For the perturbed NLS equation they determine the conservation laws following the approach of Chen and Liu. From the recurrence of these conservation laws a Lax pair is constructed. But the Painleve analysis does not produce a positive answer for the perturbed NLS equation. So here they have two contrasting examples of perturbed nonlinear equations: one passes the Painleve test and its Lax pair can be found from the analysis itself, but the other equation does not meet the criterion of the Painleve test, though its Lax pair is found in another way

  14. Supersymmetric versions of the Fokas–Gel’fand formula for immersion

    International Nuclear Information System (INIS)

    Bertrand, S; Grundland, A M

    2016-01-01

    In this paper, we construct and investigate two supersymmetric versions of the Fokas–Gel’fand formula for the immersion of 2D surfaces associated with a supersymmetric integrable system. The first version involves an infinitesimal deformation of the zero-curvature condition and the linear spectral problem associated with this system. This deformation leads the surfaces to be represented in terms of a bosonic supermatrix immersed in a Lie superalgebra. The second supersymmetric version is obtained by using a fermionic parameter deformation to construct surfaces expressed in terms of a fermionic supermatrix immersed in a Lie superalgebra. For both extensions, we provide a geometrical characterization of deformed surfaces using the super Killing form as an inner product and a super moving frame formalism. The theoretical results are applied to the supersymmetric sine-Gordon equation in order to construct super soliton surfaces associated with five different symmetries. We find integrated forms of these surfaces which represent constant Gaussian curvature surfaces and nonlinear Weingarten-type surfaces. (paper)

  15. BCKLUND TRANSFORMATION AND LAX REPRESENTATION FOR A NONLINEAR DIFFERENTIAL EQUATION

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    In this paper, the Hirota bilinear method is applied to a nonlinear equation which is a deformation to a KdV equation with a source. Using the Hirota’s bilinear operator, we obtain its bilinear form and construct its bilinear Bcklund transformation. And then we obtain the Lax representation for the equation from the bilinear Bcklund transformation and testify the Lax representation by the compatibility condition.

  16. On W∞ algebras, gauge equivalence of K P hierarchies, two-bosons realizations and their KdV reductions

    International Nuclear Information System (INIS)

    Aratyn, H.; Ferreira, L.A.; Gomes, J.F.; Zimerman, A.H.

    1994-01-01

    The gauge equivalence between basic KP hierarchies is discussed. The first two Hamiltonian structures for KP hierarchies leading to the linear and non-linear W ∞ algebras are derived. The realization of the corresponding generators in terms of two boson currents is presented and it is shown to be related to many integrable models which are bi-Hamiltonian. We can also realize those generators by adding extra currents, coupled in a particular way allowing for instance a description of multi-layered Benney equations or multi- component non-linear Schroedinger equation. In this case we can have a second Hamiltonian bracket structure which violates Jacobi identity. We consider the reduction to one-boson systems leading to KdV and mKdV hierarchies. A Miura transformation relating these two hierarchies is obtained by restricting gauge transformation between corresponding two-boson hierarchies. Connection to Drinfeld-Sokolov approach is also discussed in the SL (2, IR) gauge theory. (author)

  17. On timelike supersymmetric solutions of gauged minimal 5-dimensional supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Chimento, Samuele; Ortín, Tomás [Instituto de Física Teórica UAM/CSIC,C/Nicolás Cabrera, 13-15, C.University Cantoblanco, E-28049 Madrid (Spain)

    2017-04-04

    We analyze the timelike supersymmetric solutions of minimal gauged 5-dimensional supergravity for the case in which the Kähler base manifold admits a holomorphic isometry and depends on two real functions satisfying a simple second-order differential equation. Using this general form of the base space, the equations satisfied by the building blocks of the solutions become of, at most, fourth degree and can be solved by simple polynomic ansatzs. In this way we construct two 3-parameter families of solutions that contain almost all the timelike supersymmetric solutions of this theory with one angular momentum known so far and a few more: the (singular) supersymmetric Reissner-Nordström-AdS solutions, the three exact supersymmetric solutions describing the three near-horizon geometries found by Gutowski and Reall, three 1-parameter asymptotically-AdS{sub 5} black-hole solutions with those three near-horizon geometries (Gutowski and Reall’s black hole being one of them), three generalizations of the Gödel universe and a few potentially homogenous solutions. A key rôle in finding these solutions is played by our ability to write AdS{sub 5}’s Kähler base space ( (ℂℙ)-bar {sup 2} or SU(1,2)/U(2)) is three different, yet simple, forms associated to three different isometries. Furthermore, our ansatz for the Kähler metric also allows us to study the dimensional compactification of the theory and its solutions in a systematic way.

  18. On the supersymmetric sine-Gordon model

    International Nuclear Information System (INIS)

    Hruby, J.

    1977-01-01

    The sine-Gordon model as the theory of a massless scalar field in one space and one time dimension with interaction Lagrangian density proportional to cosβsub(phi) is generalized for a scalar superfield and it is shown that the solution of the supercovariant sine-Gordon equation is the ''supersoliton'', it is the superfield, which has all ordinary fields in two dimensions as a type of the soliton solution. We also obtain the massive Thirring model and the new equations of motion coupling the Fermi field and the Bose field. The notice about supersymmetric ''SLAC-BAG'' model is done

  19. Supersymmetric Dirac particles in Riemann-Cartan space-time

    International Nuclear Information System (INIS)

    Rumpf, H.

    1981-01-01

    A natural extension of the supersymmetric model of Di Vecchia and Ravndal yields a nontrivial coupling of classical spinning particles to torsion in a Riemann-Cartan geometry. The equations of motion implied by this model coincide with a consistent classical limit of the Heisenberg equations derived from the minimally coupled Dirac equation. Conversely, the latter equation is shown to arise from canonical quantization of the classical system. The Heisenberg equations are obtained exact in all powers of h/2π and thus complete the partial results of previous WKB calculations. The author also considers such matters of principle as the mathematical realization of anticommuting variables, the physical interpretation of supersymmetry transformations, and the effective variability of rest mass. (Auth.)

  20. Supersymmetric mechanics

    International Nuclear Information System (INIS)

    Stelle, Kellogg S

    2007-01-01

    With the development of the electronic archives in high-energy physics, there has been increasing questioning of the role of traditional publishing styles, particularly in the production of conference books. One aspect of traditional publishing that still receives wide appreciation, however, is in the production of well-focussed pedagogical material. The present two-volume edition, 'Supersymmetric Mechanics-Vol 1', edited by S Bellucci and 'Supersymmetric Mechanics-Vol 2', edited by S Bellucci, S Ferrara and A Marrani, is a good example of the kind of well-digested presentation that should still find its way into university libraries. This two-volume set presents the material of a set of pedagogical lectures presented at the INFN National Laboratory in Frascati over a two-year period on the subject of supersymmetric mechanics. The articles include the results of discussions with the attending students after the lectures. Overall, this makes for a useful compilation of material on a subject that underlies much of the current effort in supersymmetric approaches to cosmology and the unification programme. The first volume comprises articles on 'A journey through garden algebras' by S Bellucci, S J Gates Jr and E Orazi on linear supermultiplet realizations in supersymmetric mechanics,'Supersymmetric mechanics in superspace' by S Bellucci and S Krivonos, 'Noncommutative mechanics, Landau levels, twistors and Yang-Mills amplitudes' by V P Nair, 'Elements of (super) Hamiltonian formalism' by A Nersessian and 'Matrix mechanics' by C Sochichiu. The second volume consists entirely of a masterful presentation on 'The attractor mechanism and space time singularities' by S Ferrara. This presents a comprehensive and detailed overview of the structure of supersymmetric black hole solutions in supergravity, critical point structure in the scalar field moduli space and the thermodynamic consequences. This second volume alone makes the set a worthwhile addition to the research

  1. Supersymmetric black holes in N = 2 supergravity theory

    International Nuclear Information System (INIS)

    Aichelburg, P.C.

    1982-01-01

    We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)

  2. Supersymmetric closed string tachyon cosmology: a first approach

    International Nuclear Information System (INIS)

    Vázquez-Báez, V; Ramírez, C

    2014-01-01

    We give a worldline supersymmetric formulation for the effective action of closed string tachyon in a FRW background. This is done considering that, as shown by Vafa, the effective theory of closed string tachyons can have worldsheet supersymmetry. The Hamiltonian is constructed by means of the Dirac procedure and written in a quantum version. By using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations

  3. The improved fractional sub-equation method and its applications to the space–time fractional differential equations in fluid mechanics

    International Nuclear Information System (INIS)

    Guo, Shimin; Mei, Liquan; Li, Ying; Sun, Youfa

    2012-01-01

    By introducing a new general ansätz, the improved fractional sub-equation method is proposed to construct analytical solutions of nonlinear evolution equations involving Jumarie's modified Riemann–Liouville derivative. By means of this method, the space–time fractional Whitham–Broer–Kaup and generalized Hirota–Satsuma coupled KdV equations are successfully solved. The obtained results show that the proposed method is quite effective, promising and convenient for solving nonlinear fractional differential equations. -- Highlights: ► We propose a novel method for nonlinear fractional differential equations. ► Two important fractional differential equations in fluid mechanics are solved successfully. ► Some new exact solutions of the fractional differential equations are obtained. ► These solutions will advance the understanding of nonlinear physical phenomena.

  4. Exactly integrable two-dimensional dynamical systems related with supersymmetric algebras

    International Nuclear Information System (INIS)

    Leznov, A.N.

    1983-01-01

    A wide class of exactly integrable dynamical systems in two-dimensional space related with superalgebras, which generalize supersymmetric Liouville equation, is constructed. The equations can be interpretated as nonlinearly interacting Bose and Fermi fields belonging within classical limit to even and odd parts of the Grassman space. Explicit expressions for the solutions of the constructed systems are obtained on the basis of standard perturbation theory

  5. Supersymmetric color superconductivity

    International Nuclear Information System (INIS)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

    2003-01-01

    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential μ, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ > Λ. We find that for N F c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f = N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c + 1 (le) N f c and find that baryon number is broken dynamically for μ > μ c . We also give a qualitative description of the phases in the ''conformal window'', 3/2 N c f c , at finite density

  6. Supersymmetric color superconductivity

    International Nuclear Information System (INIS)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

    2004-01-01

    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ f c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f =N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c +1≤ N f c and find that baryon number is broken dynamically for μ > mu c . We also give a qualitative description of the phases in the 'conformal window', 3/2 N c f c , at finite density. (author)

  7. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

    International Nuclear Information System (INIS)

    Tsuchida, Takayuki; Wolf, Thomas

    2005-01-01

    We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made

  8. Classification of polynomial integrable systems of mixed scalar and vector evolution equations: I

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchida, Takayuki [Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337 (Japan); Wolf, Thomas [Department of Mathematics, Brock University, St Catharines, ON L2S 3A1 (Canada)

    2005-09-02

    We perform a classification of integrable systems of mixed scalar and vector evolution equations with respect to higher symmetries. We consider polynomial systems that are homogeneous under a suitable weighting of variables. This paper deals with the KdV weighting, the Burgers (or potential KdV or modified KdV) weighting, the Ibragimov-Shabat weighting and two unfamiliar weightings. The case of other weightings will be studied in a subsequent paper. Making an ansatz for undetermined coefficients and using a computer package for solving bilinear algebraic systems, we give the complete lists of second-order systems with a third-order or a fourth-order symmetry and third-order systems with a fifth-order symmetry. For all but a few systems in the lists, we show that the system (or, at least a subsystem of it) admits either a Lax representation or a linearizing transformation. A thorough comparison with recent work of Foursov and Olver is made.

  9. Supersymmetric Adler-Bardeen anomaly in N=1 super-Yang-Mills theories

    International Nuclear Information System (INIS)

    Baulieu, Laurent; Martin, Alexis

    2008-01-01

    We provide a study of the supersymmetric Adler-Bardeen anomaly in the N=1, d=4,6,10 super-Yang-Mills theories. We work in the component formalism that includes shadow fields, for which Slavnov-Taylor identities can be independently set for both gauge invariance and supersymmetry. We find a method with improved descent equations for getting the solutions of the consistency conditions of both Slavnov-Taylor identities and finding the local field polynomials for the standard Adler-Bardeen anomaly and its supersymmetric counterpart. We give the explicit solution for the ten-dimensional case

  10. Supersymmetric quantum spin chains and classical integrable systems

    International Nuclear Information System (INIS)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-01-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  11. Higher order nonlinear equations for the dust-acoustic waves in a dusty plasma with two temperature-ions and nonextensive electrons

    International Nuclear Information System (INIS)

    Emamuddin, M.; Yasmin, S.; Mamun, A. A.

    2013-01-01

    The nonlinear propagation of dust-acoustic waves in a dusty plasma whose constituents are negatively charged dust, Maxwellian ions with two distinct temperatures, and electrons following q-nonextensive distribution, is investigated by deriving a number of nonlinear equations, namely, the Korteweg-de-Vries (K-dV), the modified Korteweg-de-Vries (mK-dV), and the Gardner equations. The basic characteristics of the hump (positive potential) and dip (negative potential) shaped dust-acoustic (DA) Gardner solitons are found to exist beyond the K-dV limit. The effects of two temperature ions and electron nonextensivity on the basic features of DA K-dV, mK-dV, and Gardner solitons are also examined. It has been observed that the DA Gardner solitons exhibit negative (positive) solitons for q c (q>q c ) (where q c is the critical value of the nonextensive parameter q). The implications of our results in understanding the localized nonlinear electrostatic perturbations existing in stellar polytropes, quark-gluon plasma, protoneutron stars, etc. (where ions with different temperatures and nonextensive electrons exist) are also briefly addressed.

  12. Geometry of all supersymmetric four-dimensional N = 1 supergravity backgrounds

    International Nuclear Information System (INIS)

    Gran, U.; Gutowski, J.; Papadopoulos, G.

    2008-01-01

    We solve the Killing spinor equations of N = 1 supergravity, with four supercharges, coupled to any number of vector and scalar multiplets in all cases. We find that backgrounds with N = 1 supersymmetry admit a null, integrable, Killing vector field. There are two classes of N = 2 backgrounds. The spacetime in the first class admits a parallel null vector field and so it is a pp-wave. The spacetime of the other class admits three Killing vector fields, and a vector field that commutes with the three Killing directions. These backgrounds are of cohomogeneity one with homogenous sections either R 2,1 or AdS 3 and have an interpretation as domain walls. The N = 3 backgrounds are locally maximally supersymmetric. There are N = 3 backgrounds which arise as discrete identifications of maximally supersymmetric ones. The maximally supersymmetric backgrounds are locally isometric to either R 3,1 or AdS 4 .

  13. Supersymmetric quantum mechanics method for the Fokker-Planck equation with applications to protein folding dynamics

    Science.gov (United States)

    Polotto, Franciele; Drigo Filho, Elso; Chahine, Jorge; Oliveira, Ronaldo Junio de

    2018-03-01

    This work developed analytical methods to explore the kinetics of the time-dependent probability distributions over thermodynamic free energy profiles of protein folding and compared the results with simulation. The Fokker-Planck equation is mapped onto a Schrödinger-type equation due to the well-known solutions of the latter. Through a semi-analytical description, the supersymmetric quantum mechanics formalism is invoked and the time-dependent probability distributions are obtained with numerical calculations by using the variational method. A coarse-grained structure-based model of the two-state protein Tm CSP was simulated at a Cα level of resolution and the thermodynamics and kinetics were fully characterized. Analytical solutions from non-equilibrium conditions were obtained with the simulated double-well free energy potential and kinetic folding times were calculated. It was found that analytical folding time as a function of temperature agrees, quantitatively, with simulations and experiments from the literature of Tm CSP having the well-known 'U' shape of the Chevron Plots. The simple analytical model developed in this study has a potential to be used by theoreticians and experimentalists willing to explore, quantitatively, rates and the kinetic behavior of their system by informing the thermally activated barrier. The theory developed describes a stochastic process and, therefore, can be applied to a variety of biological as well as condensed-phase two-state systems.

  14. A perturbation expansion for the nonlinear Schroedinger equation with application to the influence of nonlinear Landau damping

    International Nuclear Information System (INIS)

    Weiland, J.; Ichikawa, Y.H.; Wilhelmsson, H.

    1977-12-01

    The Bogoliubov-Mitropolsky perturbation method has been applied to the study of a perturbation on soliton solutions to the nonlinear Schroedinger equation. The results are compared to those of Karpman and Maslov using the inverse scattering method and to those by Ott and Sudan on the KdV equation. (auth.)

  15. The relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations

    International Nuclear Information System (INIS)

    Liu Chunping; Liu Xiaoping

    2004-01-01

    First, we investigate the solitary wave solutions of the Burgers equation and the KdV equation, which are obtained by using the hyperbolic function method. Then we present a theorem which will not only give us a clear relation among the hyperbolic-function-type exact solutions of nonlinear evolution equations, but also provide us an approach to construct new exact solutions in complex scalar field. Finally, we apply the theorem to the KdV-Burgers equation and obtain its new exact solutions

  16. N=12 supersymmetric four-dimensional nonlinear σ-models from nonanticommutative superspace

    International Nuclear Information System (INIS)

    Hatanaka, Tomoya; Ketov, Sergei V.; Kobayashi, Yoshishige; Sasaki, Shin

    2005-01-01

    The component structure of a generic N=1/2 supersymmetric nonlinear sigma-model (NLSM) defined in the four-dimensional (Euclidean) nonanticommutative (NAC) superspace is investigated in detail. The most general NLSM is described in terms of arbitrary Kahler potential, and chiral and antichiral superpotentials. The case of a single chiral superfield gives rise to splitting of the NLSM potentials, whereas the case of several chiral superfields results in smearing (or fuzziness) of the NLSM potentials, while both effects are controlled by the auxiliary fields. We eliminate the auxiliary fields by solving their algebraic equations of motion, and demonstrate that the results are dependent upon whether the auxiliary integrations responsible for the fuzziness are performed before or after elimination of the auxiliary fields. There is no ambiguity in the case of splitting, i.e., for a single chiral superfield. Fully explicit results are derived in the case of the N=1/2 supersymmetric NAC-deformed CP n NLSM in four dimensions. Here we find another surprise that our results differ from the N=1/2 supersymmetric CP n NLSM derived by the quotient construction from the N=1/2 supersymmetric NAC-deformed gauge theory. We conclude that an N=1/2 supersymmetric deformation of a generic NLSM from the NAC superspace is not unique

  17. N =4 supersymmetric mechanics on curved spaces

    Science.gov (United States)

    Kozyrev, Nikolay; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen; Sutulin, Anton

    2018-04-01

    We present N =4 supersymmetric mechanics on n -dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N =4 superconformal mechanics in flat space can be lifted to s o (n )-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.

  18. Summation of all-loop UV divergences in maximally supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Borlakov, A.T.; Kazakov, D.I.; Tolkachev, D.M.; Vlasenko, D.E.

    2016-01-01

    We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in D=6,8,10 supersymmetric Yang-Mills theories in the planar limit. These theories belong to the class of maximally supersymmetric gauge theories and presumably possess distinguished properties beyond perturbation theory. In the previous works, we obtained the recursive relations that allow one to get the leading and subleading divergences in all loops in a pure algebraic way. The all loop summation of the leading divergences is performed with the help of the differential equations which are the generalization of the RG equations for non-renormalizable theories. Here we mainly focus on solving and analyzing these equations. We discuss the properties of the obtained solutions and interpretation of the results. The key issue is that the summation of infinite series for the leading and the subleading divergences does improve the situation and does not allow one to remove the regularization and obtain the finite answer. This means that despite numerous cancellations of divergent diagrams these theories remain non-renormalizable.

  19. Summation of all-loop UV divergences in maximally supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Borlakov, A.T. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,Dubna (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny (Russian Federation); Kazakov, D.I. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,Dubna (Russian Federation); Alikhanov Institute for Theoretical and Experimental Physics,Moscow (Russian Federation); Moscow Institute of Physics and Technology,Dolgoprudny (Russian Federation); Tolkachev, D.M. [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,Dubna (Russian Federation); Stepanov Institute of Physics,Minsk (Belarus); Vlasenko, D.E. [Department of Physics, South Federal State University,Rostov-Don (Russian Federation)

    2016-12-29

    We consider the leading and subleading UV divergences for the four-point on-shell scattering amplitudes in D=6,8,10 supersymmetric Yang-Mills theories in the planar limit. These theories belong to the class of maximally supersymmetric gauge theories and presumably possess distinguished properties beyond perturbation theory. In the previous works, we obtained the recursive relations that allow one to get the leading and subleading divergences in all loops in a pure algebraic way. The all loop summation of the leading divergences is performed with the help of the differential equations which are the generalization of the RG equations for non-renormalizable theories. Here we mainly focus on solving and analyzing these equations. We discuss the properties of the obtained solutions and interpretation of the results. The key issue is that the summation of infinite series for the leading and the subleading divergences does improve the situation and does not allow one to remove the regularization and obtain the finite answer. This means that despite numerous cancellations of divergent diagrams these theories remain non-renormalizable.

  20. Linear superposition solutions to nonlinear wave equations

    International Nuclear Information System (INIS)

    Liu Yu

    2012-01-01

    The solutions to a linear wave equation can satisfy the principle of superposition, i.e., the linear superposition of two or more known solutions is still a solution of the linear wave equation. We show in this article that many nonlinear wave equations possess exact traveling wave solutions involving hyperbolic, triangle, and exponential functions, and the suitable linear combinations of these known solutions can also constitute linear superposition solutions to some nonlinear wave equations with special structural characteristics. The linear superposition solutions to the generalized KdV equation K(2,2,1), the Oliver water wave equation, and the k(n, n) equation are given. The structure characteristic of the nonlinear wave equations having linear superposition solutions is analyzed, and the reason why the solutions with the forms of hyperbolic, triangle, and exponential functions can form the linear superposition solutions is also discussed

  1. Supersymmetric classical mechanics

    International Nuclear Information System (INIS)

    Biswas, S.N.; Soni, S.K.

    1986-01-01

    The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)

  2. A Chargeless Complex Vector Matter Field in Supersymmetric Scenario

    Directory of Open Access Journals (Sweden)

    L. P. Colatto

    2015-01-01

    Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.

  3. Higher conservation laws for ten-dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Abdalla, E.; Forger, M.; Freiburg Univ.; Jacques, M.

    1988-01-01

    It is shown that ten-dimensional supersymmetric Yang-Mills theories are integrable systems, in the (weak) sense of admitting a (superspace) Lax representation for their equations of motion. This is achieved by means of an explicit proof that the equations of motion are not only a consequence of but in fact fully equivalent to the superspace constraint F αβ =0. Moreover, a procedure for deriving infinite series of non-local conservation laws is outlined. (orig.)

  4. The wave model of mesothermal plasma near wakes and korteweg-de vries equation

    International Nuclear Information System (INIS)

    Shen, C.; Liu, V.C.

    1982-01-01

    The stationary two-dimensional (x,z) near wakes behind a flat-based projectile which moves at a constant mesothermal speed (V sub(infinity)) along a z-axis in a rarefied, fully ionized, plasma is studied using the wave model previously proposed by one of the authors (VCL). One-fluid theory is used to depict the free expansion of ambient plasma into the vacuum produced behind a fast-moving projectile. This nonstationary, one-dimensional (x,t) flow which is approximated by the K-dV equation can be transformed, through substitution, t=z/V sub(infinity), into a stationary two-dimensional(x,z) near wake flow seen by an observer moving with the body velocity (V sub(infinity)). The initial value problem of the K-dV equation in (x,t) variables is solved by a specially devised numerical method. Comparisons of the present numerical solution for the asymptotically small and large times with available analytical solutions are made and found in satisfactory agreements. (author)

  5. Recursive representation of Wronskians in confluent supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2017-01-01

    A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation. (paper)

  6. On N = 4 supersymmetric Yang-Mills in harmonic superspace

    International Nuclear Information System (INIS)

    Ahmed, E.; Bedding, S.; Card, C.T.; Dumbrell, M.; Nouri-Moghadam, M.; Taylor, J.G.

    1985-01-01

    An analysis of N=4 supersymmetric Yang-Mills theory is presented using a construction involving additional bosonic variables in the coset space SU(4)/H. No choice of H can be shown to lead to an analytic formulation of the theory. by introducing an analysis on dual planes the theory is reduced (including the reality constraint) to one involving N=2 symmetry. This approach has to be extended to include truly harmonic derivatives. For the typical case of SU(4)/SU(2)xU(1) prepotentials are introduced which solve the constraints. It has not been possible, however, to construct an action which leads to the equation of motion for the original N=4 supersymmetric Yang-Mills theory (at the linearised level). (author)

  7. Topics in supersymmetric theories

    International Nuclear Information System (INIS)

    Nemeschansky, D.D.

    1984-01-01

    This thesis discusses four different topics in supersymmetric theories. In the first part models in which supersymmetry is broken by the Fayet-Iliopoulos mechanism are considered. The possibility that scalar quark and lepton masses might arise radiatively in such theories is explored. In the second part supersymmetric grand unified models with a sliding singlet are considered. The author reviews the argument that the sliding singlet does not work in models with large supersymmetry breaking. Then he considers the possibility of using a sliding singlet with low energy supersymmetry breaking. The third part of the thesis deals with the entropy problem of supersymmetric theories. Most supersymmetric models possess a decoupled particle with mass of order 100 GeV which is copiously produced in the early universe and whose decay produces huge amounts of entropy. The author shows how this problem can be avoided in theories in which the hidden sector contains several light fields. In the fourth part effective Lagrangians for supersymmetric theories are studied. The anomalous pion interaction for supersymmetric theories is written down. General properties of this term are studied both on compact and non-compact manifolds

  8. Chiral symmetry breaking is permitted in supersymmetric QED

    International Nuclear Information System (INIS)

    Walker, M.

    2000-01-01

    Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result

  9. Application of He’s Variational Iteration Method to Nonlinear Helmholtz Equation and Fifth-Order KDV Equation

    DEFF Research Database (Denmark)

    Miansari, Mo; Miansari, Me; Barari, Amin

    2009-01-01

    In this article, He’s variational iteration method (VIM), is implemented to solve the linear Helmholtz partial differential equation and some nonlinear fifth-order Korteweg-de Vries (FKdV) partial differential equations with specified initial conditions. The initial approximations can be freely c...

  10. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  11. Modulating functions-based method for parameters and source estimation in one-dimensional partial differential equations

    KAUST Repository

    Asiri, Sharefa M.

    2016-10-20

    In this paper, modulating functions-based method is proposed for estimating space–time-dependent unknowns in one-dimensional partial differential equations. The proposed method simplifies the problem into a system of algebraic equations linear in unknown parameters. The well-posedness of the modulating functions-based solution is proved. The wave and the fifth-order KdV equations are used as examples to show the effectiveness of the proposed method in both noise-free and noisy cases.

  12. On the Schroedinger equation for the minisuperspace models

    International Nuclear Information System (INIS)

    Tkach, V.I.; Pashnev, A.I.; Rosales, J.J.

    2000-01-01

    We obtain a time-dependent Schroedinger equation for the Friedmann-Robertson-Walker (FRW) model interacting with a homogeneous scalar matter field. We show that for this purpose it is necessary to include an additional action invariant under the reparametrization of time. The last one does not change the equations of motion of the system, but changes only the constraint which at the quantum level becomes time-dependent Schroedinger equation. The same procedure is applied to the supersymmetric case and the supersymmetric quantum constraints are obtained, one of them is a square root of the Schroedinger operator

  13. Spin analysis of supersymmetric particles

    International Nuclear Information System (INIS)

    Choi, S.Y.; Martyn, H.U.

    2006-12-01

    The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)

  14. (3 + 1)-dimensional cylindrical Korteweg-de Vries equation for nonextensive dust acoustic waves: Symbolic computation and exact solutions

    International Nuclear Information System (INIS)

    Guo Shimin; Wang Hongli; Mei Liquan

    2012-01-01

    By combining the effects of bounded cylindrical geometry, azimuthal and axial perturbations, the nonlinear dust acoustic waves (DAWs) in an unmagnetized plasma consisting of negatively charged dust grains, nonextensive ions, and nonextensive electrons are studied in this paper. Using the reductive perturbation method, a (3 + 1)-dimensional variable-coefficient cylindrical Korteweg-de Vries (KdV) equation describing the nonlinear propagation of DAWs is derived. Via the homogeneous balance principle, improved F-expansion technique and symbolic computation, the exact traveling and solitary wave solutions of the KdV equation are presented in terms of Jacobi elliptic functions. Moreover, the effects of the plasma parameters on the solitary wave structures are discussed in detail. The obtained results could help in providing a good fit between theoretical analysis and real applications in space physics and future laboratory plasma experiments where long-range interactions are present.

  15. Properties of supersymmetric particles and processes

    International Nuclear Information System (INIS)

    Barnett, R.M.

    1986-01-01

    The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs

  16. Backlund transformations as canonical transformations

    International Nuclear Information System (INIS)

    Villani, A.; Zimerman, A.H.

    1977-01-01

    Toda and Wadati as well as Kodama and Wadati have shown that the Backlund transformations, for the exponential lattice equation, sine-Gordon equation, K-dV (Korteweg de Vries) equation and modifies K-dV equation, are canonical transformation. It is shown that the Backlund transformation for the Boussinesq equation, for a generalized K-dV equation, for a model equation for shallow water waves and for the nonlinear Schroedinger equation are also canonical transformations [pt

  17. Bethe ansatz solution of the closed anisotropic supersymmetric U model with quantum supersymmetry

    International Nuclear Information System (INIS)

    Hibberd, Katrina; Roditi, Itzhak; Links, Jon; Foerster, Angela

    1999-11-01

    The nested algebraic Bethe Ansatz is presented for the anisotropic supersymmetric U model maintaining quantum a supersymmetry. The Bethe Ansatz equations of the model are obtained on a one-dimensional closed lattice and an expression for the energy is given. (author)

  18. A third-order KdV solution for internal solitary waves and its application in the numerical wave tank

    Directory of Open Access Journals (Sweden)

    Qicheng Meng

    2016-04-01

    Full Text Available A third-order KdV solution to the internal solitary wave is derived by a new method based on the weakly nonlinear assumptions in a rigid-lid two-layer system. The solution corrects an error by Mirie and Su (1984. A two-dimensional numerical wave tank has been established with the help of the open source CFD library OpenFOAM and the third-party software waves2Foam. Various analytical solutions, including the first-order to third-order KdV solutions, the eKdV solution and the MCC solution, have been used to initialise the flow fields in the CFD simulations of internal solitary waves. Two groups including 11 numerical cases have been carried out. In the same group, the initial wave amplitudes are the same but the implemented analytical solutions are different. The simulated wave profiles at different moments have been presented. The relative errors in terms of the wave amplitude between the last time step and the initial input have been analysed quantitatively. It is found that the third-order KdV solution results in the most stable internal solitary wave in the numerical wave tank for both small-amplitude and finite-amplitude cases. The finding is significant for the further simulations involving internal solitary waves.

  19. Supersymmetric particles at LEP

    International Nuclear Information System (INIS)

    Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.

    1979-10-01

    The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)

  20. Supersymmetric models without R parity

    International Nuclear Information System (INIS)

    Ross, G.G.; Valle, J.W.F.

    1985-01-01

    We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)

  1. Nonlinear waves in plasma with negative ion

    International Nuclear Information System (INIS)

    Saito, Maki; Watanabe, Shinsuke; Tanaca, Hiroshi.

    1984-01-01

    The propagation of nonlinear ion wave is investigated theoretically in a plasma with electron, positive ion and negative ion. The ion wave of long wavelength is described by a modified K-dV equation instead of a K-dV equation when the nonlinear coefficient of the K-dV equation vanishes at the critical density of negative ion. In the vicinity of the critical density, the ion wave is described by a coupled K-dV and modified K-dV equation. The transition from a compressional soliton to a rarefactive soliton and vice versa are examined by the coupled equation as a function of the negative ion density. The ion wave of short wavelength is described by a nonlinear Schroedinger equation. In the plasma with a negative ion, the nonlinear coefficient of the nonlinear Schroedinger equation changes the sign and the ion wave becomes modulationally unstable. (author)

  2. A nonstandard numerical method for the modified KdV equation

    Indian Academy of Sciences (India)

    Ayhan Aydin

    2017-10-25

    Oct 25, 2017 ... Nonstandard finite difference; modified Korteweg–de Vries equation; local truncation error. PACS Nos 02.70.Bf; 02.30.Jr; 02.60.Lj. 1. Introduction. Many physical phenomena in various fields of science such as fluid mechanics and quantum field theory can be described by the modified Koreteweg–de Vries ...

  3. Division algebras and extended N = 2, 4, 8 super KdVs

    International Nuclear Information System (INIS)

    Carrion, H.L.; Rojas, M.; Toppan, F.

    2001-09-01

    The first example of an N = 8 supersymmetric extension of the KdV equation is here explicitly constructed. It involves 8 bosonic and 8 fermionic fields. It corresponds to the unique N = 8 solution based a generalized hamiltonian dynamics with (generalized) Poisson brackets given by the Non-associate N = 8 Superconformal Algebra. The complete list of inequivalent classes of parametric-dependent N = 3 and N = 4 superKdVs obtained from the 'Non-associative N= 8 SCA' is also furnished. Furthermore, a fundamental domain characterizing the class of inequivalent N = 4 superKdVs based on the 'minimal N = 4 SCA' is given. (author)

  4. Supersymmetric extensions of K field theories

    Science.gov (United States)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2012-02-01

    We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.

  5. Generalized differential transform method to differential-difference equation

    International Nuclear Information System (INIS)

    Zou Li; Wang Zhen; Zong Zhi

    2009-01-01

    In this Letter, we generalize the differential transform method to solve differential-difference equation for the first time. Two simple but typical examples are applied to illustrate the validity and the great potential of the generalized differential transform method in solving differential-difference equation. A Pade technique is also introduced and combined with GDTM in aim of extending the convergence area of presented series solutions. Comparisons are made between the results of the proposed method and exact solutions. Then we apply the differential transform method to the discrete KdV equation and the discrete mKdV equation, and successfully obtain solitary wave solutions. The results reveal that the proposed method is very effective and simple. We should point out that generalized differential transform method is also easy to be applied to other nonlinear differential-difference equation.

  6. Soliton solutions for ABS lattice equations: I. Cauchy matrix approach

    Science.gov (United States)

    Nijhoff, Frank; Atkinson, James; Hietarinta, Jarmo

    2009-10-01

    In recent years there have been new insights into the integrability of quadrilateral lattice equations, i.e. partial difference equations which are the natural discrete analogues of integrable partial differential equations in 1+1 dimensions. In the scalar (i.e. single-field) case, there now exist classification results by Adler, Bobenko and Suris (ABS) leading to some new examples in addition to the lattice equations 'of KdV type' that were known since the late 1970s and early 1980s. In this paper, we review the construction of soliton solutions for the KdV-type lattice equations and use those results to construct N-soliton solutions for all lattice equations in the ABS list except for the elliptic case of Q4, which is left to a separate treatment.

  7. Supersymmetric M3-branes and G2 manifolds

    International Nuclear Information System (INIS)

    Cvetic, M.; Gibbons, G.W.; Lue, H.; Pope, C.N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G 2 holonomy on (R 4 xS 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G 2 metric, and λ={-1,1} are related to this by an S 3 automorphism of the SU(2) 3 isometry group that acts on the S 3 xS 3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G 2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G 2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric

  8. Supersymmetric M3-branes and G2 manifolds

    Science.gov (United States)

    Cvetič, M.; Gibbons, G. W.; Lü, H.; Pope, C. N.

    2002-01-01

    We obtain a generalisation of the original complete Ricci-flat metric of G2 holonomy on R4×S 3 to a family with a nontrivial parameter λ. For generic λ the solution is singular, but it is regular when λ={-1,0,+1}. The case λ=0 corresponds to the original G2 metric, and λ={-1,1} are related to this by an S3 automorphism of the SU(2) 3 isometry group that acts on the S3× S3 principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G2 metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G2 holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  9. Nonlinear propagation of ion-acoustic solitary waves in relativistic ion-beam plasma with negative ions

    International Nuclear Information System (INIS)

    Singh, Kh.I.; Das, G.C.

    1993-01-01

    Soliton propagations are studied in a relativistic multicomponent ion-beam plasma through the derivation of Korteweg-deVries (K-dV) and modified K-dV (mK-dV) equations. A generalization of the mK-dV equation involving higher order nonlinearities gives a transitive link between the K-dV and mK-dV equations for isothermal plasma, and the validity of this generalized equation throughout the whole range of negative ion concentrations is investigated through the derivation of Sagdeev potential. Parallel discussion of various K-dV solitons enlightening the experimental implications is also made. (author). 22 refs

  10. Supersymmetric quantum mechanics on n-dimensional manifolds

    International Nuclear Information System (INIS)

    O'Connor, M.

    1990-01-01

    In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics

  11. A premier analysis of supersymmetric closed string tachyon cosmology

    Science.gov (United States)

    Vázquez-Báez, V.; Ramírez, C.

    2018-04-01

    From a previously found worldline supersymmetric formulation for the effective action of the closed string tachyon in a FRW background, the Hamiltonian of the theory is constructed, by means of the Dirac procedure, and written in a quantum version. Using the supersymmetry algebra we are able to find solutions to the Wheeler-DeWitt equation via a more simple set of first order differential equations. Finally, for the k = 0 case, we compute the expectation value of the scale factor with a suitably potential also favored in the present literature. We give some interpretations of the results and state future work lines on this matter.

  12. Supersymmetric Yang-Mills fields as an integrable system and connections with other non-linear systems

    International Nuclear Information System (INIS)

    Chau, L.L.

    1983-01-01

    Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references

  13. New Generalized Hyperbolic Functions to Find New Exact Solutions of the Nonlinear Partial Differential Equations

    Directory of Open Access Journals (Sweden)

    Yusuf Pandir

    2013-01-01

    Full Text Available We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE, we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.

  14. Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons

    Energy Technology Data Exchange (ETDEWEB)

    Braathen, Johannes; Goodsell, Mark D. [LPTHE, UPMC Univ. Paris 6, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)

    2017-11-15

    The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called ''Goldstone Boson Catastrophe'', where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models. We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached. (orig.)

  15. Collisional processes in supersymmetric plasma

    International Nuclear Information System (INIS)

    Czajka, Alina; Mrowczynski, Stanislaw

    2011-01-01

    Collisional processes in ultrarelativistic N=1 supersymmetric QED plasma are studied and compared to those in an electromagnetic plasma of electrons, positrons and photons. Cross sections of all binary interactions which occur in the supersymmetric plasma at the order of e 4 are computed. Some processes, in particular, the Compton scattering on selectrons, appear to be independent of momentum transfer and thus they are qualitatively different from processes in an electromagnetic plasma. It suggests that the transport properties of the supersymmetric plasma are different than those of its nonsupersymmetric counterpart. Energy loss and momentum broadening of a particle traversing the supersymmetric plasma are discussed in detail and the characteristics are shown to be surprisingly similar to those of QED plasma.

  16. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  17. Family of fish-eye-related models and their supersymmetric partners

    International Nuclear Information System (INIS)

    Makowski, Adam J.

    2010-01-01

    A large family of potentials related to the Maxwell fish-eye model is derived with the help of conformal mappings. It is shown that the whole family admits square-integrable E=0 solutions of the Schroedinger equation for discrete values of the coupling constant. A corresponding supersymmetric family of partner potentials to the preceding ones is derived as well. Some applications of the considered potentials are also discussed.

  18. Duality in supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs

  19. Approach in Theory of Nonlinear Evolution Equations: The Vakhnenko-Parkes Equation

    Directory of Open Access Journals (Sweden)

    V. O. Vakhnenko

    2016-01-01

    Full Text Available A variety of methods for examining the properties and solutions of nonlinear evolution equations are explored by using the Vakhnenko equation (VE as an example. The VE, which arises in modelling the propagation of high-frequency waves in a relaxing medium, has periodic and solitary traveling wave solutions some of which are loop-like in nature. The VE can be written in an alternative form, known as the Vakhnenko-Parkes equation (VPE, by a change of independent variables. The VPE has an N-soliton solution which is discussed in detail. Individual solitons are hump-like in nature whereas the corresponding solution to the VE comprises N-loop-like solitons. Aspects of the inverse scattering transform (IST method, as applied originally to the KdV equation, are used to find one- and two-soliton solutions to the VPE even though the VPE’s spectral equation is third-order and not second-order. A Bäcklund transformation for the VPE is used to construct conservation laws. The standard IST method for third-order spectral problems is used to investigate solutions corresponding to bound states of the spectrum and to a continuous spectrum. This leads to N-soliton solutions and M-mode periodic solutions, respectively. Interactions between these types of solutions are investigated.

  20. The massless limit of supersymmetric QCD

    International Nuclear Information System (INIS)

    Davis, A.C.; Dine, M.; Seiberg, N.

    1983-01-01

    We construct an effective lagrangian for supersymmetric QCD, using a simple set of rules. The model with non-zero quark mass, msub(q), has at least N supersymmetric vacua, where N is the number of colors (in agreement with Witten's index). These vacua move to infinity as msub(q)->0. We study the possibility of supersymmetric breaking at msub(q)=0. (orig.)

  1. Duality in supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  2. On Direct Transformation Approach to Asymptotical Analytical Solutions of Perturbed Partial Differential Equation

    International Nuclear Information System (INIS)

    Liu Hongzhun; Pan Zuliang; Li Peng

    2006-01-01

    In this article, we will derive an equality, where the Taylor series expansion around ε = 0 for any asymptotical analytical solution of the perturbed partial differential equation (PDE) with perturbing parameter ε must be admitted. By making use of the equality, we may obtain a transformation, which directly map the analytical solutions of a given unperturbed PDE to the asymptotical analytical solutions of the corresponding perturbed one. The notion of Lie-Baecklund symmetries is introduced in order to obtain more transformations. Hence, we can directly create more transformations in virtue of known Lie-Baecklund symmetries and recursion operators of corresponding unperturbed equation. The perturbed Burgers equation and the perturbed Korteweg-de Vries (KdV) equation are used as examples.

  3. Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    International Nuclear Information System (INIS)

    Eichmann, U.A.; Draayer, J.P.; Ludu, A.

    2002-01-01

    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class. (author)

  4. New generalized and improved (G′/G-expansion method for nonlinear evolution equations in mathematical physics

    Directory of Open Access Journals (Sweden)

    Hasibun Naher

    2014-10-01

    Full Text Available In this article, new extension of the generalized and improved (G′/G-expansion method is proposed for constructing more general and a rich class of new exact traveling wave solutions of nonlinear evolution equations. To demonstrate the novelty and motivation of the proposed method, we implement it to the Korteweg-de Vries (KdV equation. The new method is oriented toward the ease of utilize and capability of computer algebraic system and provides a more systematic, convenient handling of the solution process of nonlinear equations. Further, obtained solutions disclose a wider range of applicability for handling a large variety of nonlinear partial differential equations.

  5. Ultraviolet divergences in higher dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Howe, P.S.; Stelle, K.S.

    1984-01-01

    We determine the loop orders for the onset of allowed ultra-violet divergences in higher dimensional supersymmetric Yang-Mills theories. Cancellations are controlled by the non-renormalization theorems for the linearly realizable supersymmetries and by the requirement that counterterms display the full non-linear supersymmetries when the classical equations of motion are imposed. The first allowed divergences in the maximal super Yang-Mills theories occur at four loops in five dimensions, three loops in six dimensions and two loops in seven dimensions. (orig.)

  6. Supersymmetric Quantum Mechanics and Topology

    International Nuclear Information System (INIS)

    Wasay, Muhammad Abdul

    2016-01-01

    Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.

  7. How to quantize supersymmetric theories

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1985-01-01

    A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe

  8. A bivariate Chebyshev spectral collocation quasilinearization method for nonlinear evolution parabolic equations.

    Science.gov (United States)

    Motsa, S S; Magagula, V M; Sibanda, P

    2014-01-01

    This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs). The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  9. A Bivariate Chebyshev Spectral Collocation Quasilinearization Method for Nonlinear Evolution Parabolic Equations

    Directory of Open Access Journals (Sweden)

    S. S. Motsa

    2014-01-01

    Full Text Available This paper presents a new method for solving higher order nonlinear evolution partial differential equations (NPDEs. The method combines quasilinearisation, the Chebyshev spectral collocation method, and bivariate Lagrange interpolation. In this paper, we use the method to solve several nonlinear evolution equations, such as the modified KdV-Burgers equation, highly nonlinear modified KdV equation, Fisher's equation, Burgers-Fisher equation, Burgers-Huxley equation, and the Fitzhugh-Nagumo equation. The results are compared with known exact analytical solutions from literature to confirm accuracy, convergence, and effectiveness of the method. There is congruence between the numerical results and the exact solutions to a high order of accuracy. Tables were generated to present the order of accuracy of the method; convergence graphs to verify convergence of the method and error graphs are presented to show the excellent agreement between the results from this study and the known results from literature.

  10. Supersymmetry and quantum mechanics

    International Nuclear Information System (INIS)

    Cooper, F.; Sukhatme, U.

    1995-01-01

    In the past ten years, the ideas of supersymmetry have been profitably applied to many nonrelativistic quantum mechanical problems. In particular, there is now a much deeper understanding of why certain potentials are analytically solvable and an array of powerful new approximation methods for handling potentials which are not exactly solvable. In this report, we review the theoretical formulation of supersymmetric quantum mechanics and discuss many applications. Exactly solvable potentials can be understood in terms of a few basic ideas which include supersymmetric partner potentials, shape invariance and operator transformations. Familiar solvable potentials all have the property of shape invariance. We describe new exactly solvable shape invariant potentials which include the recently discovered self-similar potentials as a special case. The connection between inverse scattering, isospectral potentials and supersymmetric quantum mechanics is discussed and multi-soliton solutions of the KdV equation are constructed. Approximation methods are also discussed within the framework of supersymmetric quantum mechanics and in particular it is shown that a supersymmetry inspired WKB approximation is exact for a class of shape invariant potentials. Supersymmetry ideas give particularly nice results for the tunneling rate in a double well potential and for improving large N expansions. We also discuss the problem of a charged Dirac particle in an external magnetic field and other potentials in terms of supersymmetric quantum mechanics. Finally, we discuss structures more general than supersymmetric quantum mechanics such as parasupersymmetric quantum mechanics in which there is a symmetry between a boson and a para-fermion of order p. ((orig.))

  11. Supersymmetric lattices

    International Nuclear Information System (INIS)

    Catterall, Simon

    2013-01-01

    Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.

  12. Non-supersymmetric orientifolds of Gepner models

    Energy Technology Data Exchange (ETDEWEB)

    Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl

    2009-01-12

    Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.

  13. From topological quantum field theories to supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Bossard, G.

    2007-10-01

    This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the β function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)

  14. Non-perturbative approach to 2D-supergravity and super-Virasoro constraints

    CERN Document Server

    Becker, M

    1994-01-01

    The coupling of N=1 SCFT of type (4m,2) to two-dimensional supergravity can be formulated non-perturbatively in terms of a discrete super-eigenvalue model proposed by Alvarez-Gaum\\'e, et al. We derive the superloop equations that describe, in the double scaling limit, the non-perturbative solution of this model. These equations are equivalent to the double scaled super-Virasoro constraints satisfied by the partition function. They are formulated in terms of a \\widehat c=1 theory, with a \\IZ_2-twisted scalar field and a Weyl-Majorana fermion in the Ramond sector. We have solved the superloop equations to all orders in the genus expansion and obtained the explicit expressions for the correlation functions of gravitationally dressed scaling operators in the NS- and R-sector. In the double scaling limit, we obtain a formulation of the model in terms of a new supersymmetric extension of the KdV hierarchy.

  15. Chaos and random matrices in supersymmetric SYK

    Science.gov (United States)

    Hunter-Jones, Nicholas; Liu, Junyu

    2018-05-01

    We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.

  16. Minimal Liouville gravity on the torus via the Douglas string equation

    International Nuclear Information System (INIS)

    Spodyneiko, Lev

    2015-01-01

    In this paper we assume that the partition function in minimal Liouville gravity (MLG) obeys the Douglas string equation. This conjecture makes it possible to compute the torus correlation numbers in (3,p) MLG. We perform this calculation using also the resonance relations between the coupling constants in the KdV frame and in the Liouville frame. We obtain explicit expressions for the torus partition function and for the one- and two-point correlation numbers. (paper)

  17. Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Institute for Materials Research, University of Salford, Salford M5 4WT (United Kingdom) ; Chamorro-Posada, P [Departmento de TeorIa de la Senal y Comunicaciones e IngenierIa Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2006-12-15

    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations.

  18. Korteweg-de Vries description of Helmholtz-Kerr dark solitons

    International Nuclear Information System (INIS)

    Christian, J M; McDonald, G S; Chamorro-Posada, P

    2006-01-01

    A wide variety of different physical systems can be described by a relatively small set of universal equations. For example, small-amplitude nonlinear Schroedinger dark solitons can be described by a Korteweg-de Vries (KdV) equation. Reductive perturbation theory, based on linear boosts and Gallilean transformations, is often employed to establish connections to and between such universal equations. Here, a novel analytical approach reveals that the evolution of small-amplitude Helmholtz-Kerr dark solitons is also governed by a KdV equation. This broadens the class of nonlinear systems that are known to possess KdV soliton solutions, and provides a framework for perturbative analyses when propagation angles are not negligibly small. The derivation of this KdV equation involves an element that appears new to weakly nonlinear analyses, since transformations are required to preserve the rotational symmetry inherent to Helmholtz-type equations

  19. The supersymmetric Pegg-Barnett oscillator

    International Nuclear Information System (INIS)

    Shen, Jian Qi

    2005-01-01

    The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons

  20. Low-temperature specific heat of the degenerate supersymmetric t-J model in one dimension

    International Nuclear Information System (INIS)

    Lee, K.; Schlottmann, P.

    1996-01-01

    We consider the one-dimensional SU(N)-invariant t-J model, which consists of electrons with N spin components on a lattice with nearest-neighbor hopping t constrained by the excluded multiple occupancy of the sites and spin-exchange J between neighboring lattice sites. The model is integrable and has been diagonalized in terms of nested Bethe ansatze at the supersymmetric point t=J. The low-T specific heat is proportional to T. The γ-coefficient is extracted from the thermodynamic Bethe-ansatz equations and is expressed in terms of the spin wave velocities and the group velocity of the charges for arbitrary N, band filling, and splitting of the levels (magnetic and crystalline fields). Our results contain the following special cases: (i) For N=2 the traditional spin-1/2 supersymmetric t-J model, (ii) for exactly one electron per site the SU(N)-Heisenberg chain, and (iii) for N=4 the two-band supersymmetric t-J model with crystalline field splitting. copyright 1996 American Institute of Physics

  1. Ultraviolet divergences in non-renormalizable supersymmetric theories

    International Nuclear Information System (INIS)

    Smilga, A.

    2017-01-01

    We present a pedagogical review of our current understanding of the ultraviolet structure of N =(1, 1) 6D supersymmetric Yang-Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higher-dimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially of extended supersymmetric theories) is that these counterterms may not be invariant off-shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on-shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behavior.

  2. Supersymmetric gauge field theories

    International Nuclear Information System (INIS)

    Slavnov, A.A.

    1976-01-01

    The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models

  3. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  4. The matreoshka of supersymmetric self-dual theories

    International Nuclear Information System (INIS)

    Devchand, C.; Ogievetsky, V.

    1993-06-01

    Extended super self-dual systems have a structure reminiscent of a 'matreoshka'. For instance, solutions for N=0 are embedded in solutions for N=1, which are in turn embedded in solutions for N=2, and so on. Consequences of this phenomenon are explored. In particular, we present an explicit construction of local solutions of the higher-N super self-duality equations starting from any N=0 self-dual solution. Our construction uses N=0 solution data to produce N=1 solution data, which in turn yields N=2 solution data, and so on; each stage introducing a dependence of the solution on sufficiently many additional arbitrary functions to yield the most general supersymmetric solution having the initial N=0 solution as the helicity +1 component. The problem of finding the general local solution of the N>0 super self-duality equations. Another consequence of the matreoshka phenomenon is the vanishing of many conserved currents, including the supercurrents, for super self-dual systems. (orig.)

  5. (Non-)decoupled supersymmetric field theories

    International Nuclear Information System (INIS)

    Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar

    2014-01-01

    We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)

  6. Classification of supersymmetric backgrounds of string theory

    International Nuclear Information System (INIS)

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2007-01-01

    We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds. We then demonstrate its effectiveness by classifying the maximally supersymmetric IIB G-backgrounds and by showing that N=31 IIB solutions do not exist. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  7. Non-renormalization theorems andN=2 supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Butter, Daniel; Wit, Bernard de; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed

  8. Nonlinear dynamics of a soliton gas: Modified Korteweg–de Vries equation framework

    Energy Technology Data Exchange (ETDEWEB)

    Shurgalina, E.G., E-mail: eshurgalina@mail.ru [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Pelinovsky, E.N. [Department of Nonlinear Geophysical Processes, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod (Russian Federation); Department of Applied Mathematics, Nizhny Novgorod State Technical University, Nizhny Novgorod (Russian Federation)

    2016-05-27

    Dynamics of random multi-soliton fields within the framework of the modified Korteweg–de Vries equation is considered. Statistical characteristics of a soliton gas (distribution functions and moments) are calculated. It is demonstrated that the results sufficiently depend on the soliton gas properties, i.e., whether it is unipolar or bipolar. It is shown that the properties of a unipolar gas are qualitatively similar to the properties of a KdV gas [Dutykh and Pelinovsky (2014) [1

  9. Supersymmetric partition functions and the three-dimensional A-twist

    Energy Technology Data Exchange (ETDEWEB)

    Closset, Cyril [Theory Department, CERN,CH-1211, Geneva 23 (Switzerland); Kim, Heeyeon [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada); Willett, Brian [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States)

    2017-03-14

    We study three-dimensional N=2 supersymmetric gauge theories on M{sub g,p}, an oriented circle bundle of degree p over a closed Riemann surface, Σ{sub g}. We compute the M{sub g,p} supersymmetric partition function and correlation functions of supersymmetric loop operators. This uncovers interesting relations between observables on manifolds of different topologies. In particular, the familiar supersymmetric partition function on the round S{sup 3} can be understood as the expectation value of a so-called “fibering operator” on S{sup 2}×S{sup 1} with a topological twist. More generally, we show that the 3d N=2 supersymmetric partition functions (and supersymmetric Wilson loop correlation functions) on M{sub g,p} are fully determined by the two-dimensional A-twisted topological field theory obtained by compactifying the 3d theory on a circle. We give two complementary derivations of the result. We also discuss applications to F-maximization and to three-dimensional supersymmetric dualities.

  10. Supersymmetric flaxion

    Science.gov (United States)

    Ema, Yohei; Hagihara, Daisuke; Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori

    2018-04-01

    Recently, a new minimal extension of the Standard Model has been proposed, where a spontaneously broken, flavor-dependent global U(1) symmetry is introduced. It not only explains the hierarchical flavor structure in the quark and lepton sector, but also solves the strong CP problem by identifying the Nambu-Goldstone boson as the QCD axion, which we call flaxion. In this work, we consider supersymmetric extensions of the flaxion scenario. We study the CP and flavor violations due to supersymmetric particles, the effects of R-parity violations, the cosmological gravitino and axino problems, and the cosmological evolution of the scalar partner of the flaxion, sflaxion. We also propose an attractor-like inflationary model where the flaxion multiplet contains the inflaton field, and show that a consistent cosmological scenario can be obtained, including inflation, leptogenesis, and dark matter.

  11. Equivalent construction of the infinitesimal time translation operator in algebraic dynamics algorithm for partial differential evolution equation

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    We give an equivalent construction of the infinitesimal time translation operator for partial differential evolution equation in the algebraic dynamics algorithm proposed by Shun-Jin Wang and his students. Our construction involves only simple partial differentials and avoids the derivative terms of δ function which appear in the course of computation by means of Wang-Zhang operator. We prove Wang’s equivalent theorem which says that our construction and Wang-Zhang’s are equivalent. We use our construction to deal with several typical equations such as nonlinear advection equation, Burgers equation, nonlinear Schrodinger equation, KdV equation and sine-Gordon equation, and obtain at least second order approximate solutions to them. These equations include the cases of real and complex field variables and the cases of the first and the second order time derivatives.

  12. Peculiar symmetry structure of some known discrete nonautonomous equations

    International Nuclear Information System (INIS)

    Garifullin, R N; Habibullin, I T; Yamilov, R I

    2015-01-01

    We study the generalized symmetry structure of three known discrete nonautonomous equations. One of them is the semidiscrete dressing chain of Shabat. Two others are completely discrete equations defined on the square lattice. The first one is a discrete analogue of the dressing chain introduced by Levi and Yamilov. The second one is a nonautonomous generalization of the potential discrete KdV equation or, in other words, the H1 equation of the well-known Adler−Bobenko−Suris list. We demonstrate that these equations have generalized symmetries in both directions if and only if their coefficients, depending on the discrete variables, are periodic. The order of the simplest generalized symmetry in at least one direction depends on the period and may be arbitrarily high. We substantiate this picture by some theorems in the case of small periods. In case of an arbitrarily large period, we show that it is possible to construct two hierarchies of generalized symmetries and conservation laws. The same picture should take place in case of any nonautonomous equation of the Adler−Bobenko−Suris list. (paper)

  13. Lattice formulations of supersymmetric gauge theories with matter fields

    International Nuclear Information System (INIS)

    Joseph, Anosh

    2014-12-01

    Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.

  14. (Non-)decoupled supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)

    2014-04-10

    We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)

  15. Quantum-mechanical scattering in one dimension

    International Nuclear Information System (INIS)

    Boya, Luis J.

    2008-01-01

    The purpose of this mainly pedagogical review is to fill a lacuna in the usual treatment of scattering in quantum mechanics, by showing the essential of it in the simplest, one-dimensional setting. We define in this situation amplitudes and scattering coefficients and deal with optical and Levinson' theorems as consequences of unitarity in coordinate or momentum space. Parity waves en lieu of partial waves, integral equations and Born series, etc., are defined naturally in this frame. Several solvable examples are shown. Two topics best studied in 1d are transparent potentials and supersymmetric quantum mechanics. Elementary analytical properties and general behaviour of amplitudes give rise to study inverse problems, that is, recovering the potential from scattering data. Isospectral deformations of the wave equation give relations with some nonlinear evolution equations (Lax), solvable by the inverse scattering method (Kruskal), and we consider the KdV equation as an example. We also refer briefly to some singular potentials, where, e.g., the essence of renormalization can be read off again in the simplest setting. The whole paper emphasizes the tutorial and introductory aspects

  16. A Coupled Korteweg-de Vries System and Mass Exchanges among Solitons

    DEFF Research Database (Denmark)

    Miller, P. D.; Christiansen, Peter Leth

    2000-01-01

    V and the solution of a linear equation with nonconstant coefficients. The coupled KdV system may be viewed as a phenomenological model for the sharing of mass among interacting solitons of the (one-component) KdV equation. Results for the scattering theory of solutions of the nonconstant coefficient linear equation...

  17. Supersymmetric and non-supersymmetric Seiberg-like dualities for gauged Wess–Zumino–Witten theories, realised on branes

    Directory of Open Access Journals (Sweden)

    E. Ireson

    2016-01-01

    Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.

  18. Supersymmetric technicolor

    International Nuclear Information System (INIS)

    Srednicki, M.

    1981-01-01

    I will discuss some work I recently completed with M. Dine and W. Fischler on supersymmetric technicolor. E. Witten and S. Dimopoulos and S. Raby have considered similar ideas. Our central idea is to combine supersymmetry and technicolor to produce a natural theory which is capable of reproducing all the known phenomenology of particle physics, especially the quark-lepton mass spectrum and the absence of flavor changing neutral currents. Supersymmetry allows us to introduce fundamental scalars which are naturally light. Some of these scalars play the role of Higgs fields, and give mass to quarks and leptons via ordinary Yukawa couplings (which are chosen so that we get the correct masses and mixing angles). The supersymmetric partners of all known particles turn out to be too heavy to have been observed in experiments to data; many of them, however, weigh less than 100 GeV

  19. Analysis of Ward identities in supersymmetric Yang-Mills theory

    Science.gov (United States)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp

    2018-05-01

    In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.

  20. Additional symmetries of supersymmetric KP hierarchies

    International Nuclear Information System (INIS)

    Stanciu, S.

    1993-09-01

    We investigate the additional symmetries of several supersymmetric KP hierarchies: The SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. The main technical tool is the supersymmetric generalisation of a map originally due to Radul between the Lie algebra of superdifferential operators and the Lie algebra of vector fields on the space of supersymmetric Lax operators. In the case of the Manin-Radul SKP hierarchy we identify additional symmetries which form an algebra isomorphic to a subalgebra of superdifferential operators; whereas in the case of the Jacobian SKP, the (additional) symmetries are identified with the algebra itself. (orig.)

  1. Travelling wave solutions in a class of generalized Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Shen Jianwei; Xu Wei

    2007-01-01

    In this paper, we consider a new generalization of KdV equation u t = u x u l-2 + α[2u xxx u p + 4pu p-1 u x u xx + p(p - 1)u p-2 (u x ) 3 ] and investigate its bifurcation of travelling wave solutions. From the above analysis, we know that there exists compacton and cusp waves in the system. We explain the reason that these non-smooth travelling wave solution arise by using the bifurcation theory

  2. Supersymmetric M3-branes and G{sub 2} manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Cvetic, M. E-mail: cvetic@cvetic.hep.upenn.edu; Gibbons, G.W.; Lue, H.; Pope, C.N

    2002-01-07

    We obtain a generalisation of the original complete Ricci-flat metric of G{sub 2} holonomy on R{sup 4}xS{sup 3} to a family with a nontrivial parameter {lambda}. For generic {lambda} the solution is singular, but it is regular when {lambda}={l_brace}-1,0,+1{r_brace}. The case {lambda}=0 corresponds to the original G{sub 2} metric, and {lambda}={l_brace}-1,1{r_brace} are related to this by an S{sub 3} automorphism of the SU(2){sup 3} isometry group that acts on the S{sup 3}xS{sup 3} principal orbits. We then construct explicit supersymmetric M3-brane solutions in D=11 supergravity, where the transverse space is a deformation of this class of G{sub 2} metrics. These are solutions of a system of first-order differential equations coming from a superpotential. We also find M3-branes in the deformed backgrounds of new G{sub 2} holonomy metrics that include one found by A. Brandhuber, J. Gomis, S. Gubser and S. Gukov, and show that they also are supersymmetric.

  3. Supersymmetric probes on the conifold

    International Nuclear Information System (INIS)

    Arean, Daniel; Crooks, David E.; Ramallo, Alfonso V.

    2004-01-01

    We study the supersymmetric embeddings of different D-brane probes in the AdS 5 xT 1,1 geometry. The main tool employed is kappa symmetry and the cases studied include D3-, D5- and D7-branes. We find a family of three-cycles of the T 1,1 space over which a D3-brane can be wrapped supersymmetrically and we determine the field content of the corresponding gauge theory duals. Supersymmetric configurations of D5-branes wrapping a two-cycle and of spacetime filling D7-branes are also found. The configurations in which the entire T 1,1 space is wrapped by a D5-brane (baryon vertex) and a D7-brane are also studied. Some other embeddings which break supersymmetry but are nevertheless stable are also determined. (author)

  4. The particle interpretation of N = 1 supersymmetric spin foams

    Energy Technology Data Exchange (ETDEWEB)

    Baccetti, Valentina [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Livine, Etera R [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69007 Lyon (France); Ryan, James P, E-mail: baccetti@neve.fis.uniroma3.i, E-mail: etera.livine@ens-lyon.f, E-mail: james.ryan@aei.mpg.d [MPI fuer Gravitationsphysik, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Potsdam (Germany)

    2010-11-21

    We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.

  5. The particle interpretation of N = 1 supersymmetric spin foams

    International Nuclear Information System (INIS)

    Baccetti, Valentina; Livine, Etera R; Ryan, James P

    2010-01-01

    We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.

  6. On the supersymmetric solitons and monopoles

    International Nuclear Information System (INIS)

    Hruby, J.

    1978-01-01

    The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension

  7. Supersymmetric models and their phenomenology

    International Nuclear Information System (INIS)

    Ross, G.G.

    1995-01-01

    The prospects for unification of the Standard Model are considered and the need for supersymmetry discussed. The prediction of the gauge couplings, the electroweak breaking scale, the fermion masses and the dark matter abundance are all consistent with simple unification if there is a stage of supersymmetric unification below the TeV scale. The prospects for discovery of the new SUSY states is considered, both in the minimal supersymmetric standard model and in non-minimal extensions. (author)

  8. Supersymmetric sigma models

    International Nuclear Information System (INIS)

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model

  9. Supersymmetric sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  10. On maximally supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Movshev, M.; Schwarz, A.

    2004-01-01

    We consider ten-dimensional supersymmetric Yang-Mills theory (10D SUSY YM theory) and its dimensional reductions, in particular, BFSS and IKKT models. We formulate these theories using algebraic techniques based on application of differential graded Lie algebras and associative algebras as well as of more general objects, L ∞ - and A ∞ -algebras. We show that using pure spinor formulation of 10D SUSY YM theory equations of motion and isotwistor formalism one can interpret these equations as Maurer-Cartan equations for some differential Lie algebra. This statement can be used to write BV action functional of 10D SUSY YM theory in Chern-Simons form. The differential Lie algebra we constructed is closely related to differential associative algebra (Ω,∂) of (0,k)-forms on some supermanifold; the Lie algebra is tensor product of (Ω,) and matrix algebra. We construct several other algebras that are quasiisomorphic to (Ω,∂) and, therefore, also can be used to give BV formulation of 10D SUSY YM theory and its reductions. In particular, (Ω,∂) is quasiisomorphic to the algebra (B,d), constructed by Berkovits. The algebras (Ω 0 ,∂) and (B 0 ,d) obtained from (Ω,∂) and (B,d) by means of reduction to a point can be used to give a BV-formulation of IKKT model. We introduce associative algebra SYM as algebra where relations are defined as equations of motion of IKKT model and show that Koszul dual to the algebra (B 0 ,d) is quasiisomorphic to SYM

  11. Classification of supersymmetric backgrounds of string theory

    NARCIS (Netherlands)

    Gran, Ulf; Gutowski, Jan; Papadopoulos, George; Roest, Diederik

    2007-01-01

    We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds.We then demonstrate

  12. Patterns of flavor signals in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    2007-11-15

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  13. Patterns of flavor signals in supersymmetric models

    International Nuclear Information System (INIS)

    Goto, T.; Tanaka, M.

    2007-11-01

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b→s(d) transition observables in B d and B s decays, taking the constraint from the B s - anti B s mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes μ → eγ, τ → μγ and τ → eγ for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  14. Non-local deformation of a supersymmetric field theory

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)

    2017-09-15

    In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)

  15. Exactly solvable position dependent mass schroedinger equation

    International Nuclear Information System (INIS)

    Koc, R.; Tuetuencueler, H.; Koercuek, E.

    2002-01-01

    Exact solution of the Schrodinger equation with a variable mass is presented. We have derived general expressions for the eigenstates and eigenvalues of the position dependent mass systems. We provide supersymmetric and Lie algebraic methods to discuss the position dependent mass systems

  16. Spectral properties in supersymmetric matrix models

    International Nuclear Information System (INIS)

    Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro

    2012-01-01

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  17. Vector supersymmetric multiplets in two dimensions

    International Nuclear Information System (INIS)

    Khattab, Mohammad

    1990-01-01

    Author.The invariance of both, N=1 supersymmetric yang-Mills theory and N-1 supersymmetric off-shell Wess-Zumino model in four dimensions is proved. Dimensional reduction is then applied to obtain super Yang-Mills theory with extended supersymmetry, N=2, in two dimensions. The resulting theory is then truncated to N=1 super Yang-Mills and with further truncation, N=1/2 supersymmetry is shown to be possible. Then, using the duality transformations, we find the off-shell supersymmetry algebra is closed and that the auxiliary fields are replaced by four-rank antisymmetric tensors with Gauge symmetry. Finally, the mechanism of dimensional reduction is then applied to obtain N=2 extended off-shell supersymmetric model with two gauge vector fields

  18. Solution of Fractional Partial Differential Equations in Fluid Mechanics by Extension of Some Iterative Method

    Directory of Open Access Journals (Sweden)

    A. A. Hemeda

    2013-01-01

    Full Text Available An extension of the so-called new iterative method (NIM has been used to handle linear and nonlinear fractional partial differential equations. The main property of the method lies in its flexibility and ability to solve nonlinear equations accurately and conveniently. Therefore, a general framework of the NIM is presented for analytical treatment of fractional partial differential equations in fluid mechanics. The fractional derivatives are described in the Caputo sense. Numerical illustrations that include the fractional wave equation, fractional Burgers equation, fractional KdV equation, fractional Klein-Gordon equation, and fractional Boussinesq-like equation are investigated to show the pertinent features of the technique. Comparison of the results obtained by the NIM with those obtained by both Adomian decomposition method (ADM and the variational iteration method (VIM reveals that the NIM is very effective and convenient. The basic idea described in this paper is expected to be further employed to solve other similar linear and nonlinear problems in fractional calculus.

  19. Supersymmetric regulators and supercurrent anomalies

    International Nuclear Information System (INIS)

    Majumdar, P.; Poggio, E.C.; Schnitzer, H.J.

    1980-01-01

    The supercurrent anomalies of the supercurrent deltasub(μ) of the supersymmetric Yang-Mills theory in Wess-Zumino gauge are computed using the supersymmetric dimensional regulator of Siegel. It is shown that γsub(μ)deltasup(μ) = 0 and deltasub(μ)deltasup(μ) unequal 0 in agreement with an earlier calculation based on the Adler-Rosenberg method. The problem of exhibiting the chiral anomaly and a regulator for local supersymmetry suggests that the interpretation of dimensional reduction in component language is incomplete. (orig.)

  20. The gauge technique in supersymmetric QED2

    NARCIS (Netherlands)

    Roo, M. de; Steringa, J.J.

    1988-01-01

    We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge

  1. N=2, 4 supersymmetric gauge field theory in two-time physics

    International Nuclear Information System (INIS)

    Bars, Itzhak; Kuo, Y.-C.

    2009-01-01

    In the context of two-time physics in 4+2 dimensions we construct the most general N=2, 4 supersymmetric Yang-Mills gauge theories for any gauge group G. This builds on our previous work for N=1 supersymmetry (SUSY). The action, the conserved SUSY currents, and the SU(N) covariant SUSY transformation laws are presented for both N=2 and N=4. When the equations of motion are used the SUSY transformations close to the supergroup SU(2,2|N) with N=1, 2, 4. The SU(2,2)=SO(4,2) subsymmetry is realized linearly on 4+2 dimensional flat spacetime. All fields, including vectors and spinors, are in 4+2 dimensions. The extra gauge symmetries in 2T field theory, together with the kinematic constraints that follow from the action, remove all the ghosts to give a unitary theory. By choosing gauges and solving the kinematic equations, the 2T field theory in 4+2 flat spacetime can be reduced to various shadows in various 3+1 dimensional (generally curved) spacetimes. These shadows are related to each other by dualities. The conformal shadows of our theories in flat 3+1 dimensions coincide with the well known counterpart N=1, 2, 4 supersymmetric massless renormalizable field theories in 3+1 dimensions. It is expected that our more symmetric new structures in 4+2 spacetime may be useful for nonperturbative or exact solutions of these theories.

  2. Strong/weak coupling duality relations for non-supersymmetric string theories

    International Nuclear Information System (INIS)

    Blum, J.D.; Dienes, K.R.

    1998-01-01

    Both the supersymmetric SO(32) and E 8 x E 8 heterotic strings in ten dimensions have known strong-coupling duals. However, it has not been known whether there also exist strong-coupling duals for the non-supersymmetric heterotic strings in ten dimensions. In this paper, we construct explicit open-string duals for the circle compactifications of several of these non-supersymmetric theories, among them the tachyon-free SO(16) x SO(16) string. Our method involves the construction of heterotic and open-string interpolating models that continuously connect non-supersymmetric strings to supersymmetric strings. We find that our non-supersymmetric dual theories have exactly the same massless spectra as their heterotic counterparts within a certain range of our interpolations. We also develop a novel method for analyzing the solitons of non-supersymmetric open-string theories, and find that the solitons of our dual theories also agree with their heterotic counterparts. These are therefore the first known examples of strong/weak coupling duality relations between non-supersymmetric, tachyon-free string theories. Finally, the existence of these strong-coupling duals allows us to examine the non-perturbative stability of these strings, and we propose a phase diagram for the behavior of these strings as a function of coupling and radius. (orig.)

  3. Instantons in supersymmetric theories

    International Nuclear Information System (INIS)

    Novikov, V.A.; Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.

    1982-01-01

    Instanton effects are considered for a sample of supersymmetric theories: quantum mechanics, gluodynamics. Higgs model. The problem is how to reconcile the apparent lack of the boson-fermion symmetry in the effective instanton induced interaction with supersymmetry of the corresponding lagrangians. It is shown that in case of quantum mechanics and Higgs model there is no conflict between supersymmetry and the instanton calculus since the Ward identities, associated with the supersymmetry transformations, are satisfied. In case of supersymmetric gluodynamics the standard instanton calculus explicity violates the Ward identities. This is due to the lack of symmetry in the standard class of classical solutions used in the instanton calculus

  4. Third-order differential ladder operators and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Mateo, J; Negro, J

    2008-01-01

    Hierarchies of one-dimensional Hamiltonians in quantum mechanics admitting third-order differential ladder operators are studied. Each Hamiltonian has associated three-step Darboux (pseudo)-cycles and Painleve IV equations as a closure condition. The whole hierarchy is generated applying some operations on the cycles. These operations are investigated in the frame of supersymmetric quantum mechanics and mainly involve algebraic manipulations. A consistent geometric representation for the hierarchy and cycles is built that also helps in understanding the operations. Three kinds of hierarchies are distinguished and a realization based on the harmonic oscillator Hamiltonian is supplied, giving an interpretation for the spectral properties of the Hamiltonians of each hierarchy

  5. On the maximal superalgebras of supersymmetric backgrounds

    International Nuclear Information System (INIS)

    Figueroa-O'Farrill, Jose; Hackett-Jones, Emily; Moutsopoulos, George; Simon, Joan

    2009-01-01

    In this paper we give a precise definition of the notion of a maximal superalgebra of certain types of supersymmetric supergravity backgrounds, including the Freund-Rubin backgrounds, and propose a geometric construction extending the well-known construction of its Killing superalgebra. We determine the structure of maximal Lie superalgebras and show that there is a finite number of isomorphism classes, all related via contractions from an orthosymplectic Lie superalgebra. We use the structure theory to show that maximally supersymmetric waves do not possess such a maximal superalgebra, but that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the explicit geometric construction of the maximal superalgebra of AdS 4 X S 7 and find that it is isomorphic to osp(1|32). We propose an algebraic construction of the maximal superalgebra of any background asymptotic to AdS 4 X S 7 and we test this proposal by computing the maximal superalgebra of the M2-brane in its two maximally supersymmetric limits, finding agreement.

  6. Leptogenesis in the left-right supersymmetric model

    International Nuclear Information System (INIS)

    Frank, M.

    2004-01-01

    We analyze the effects of the current neutrino data on thermal leptogenesis and 0νββ decay in a fully left-right extension of the minimal supersymmetric model. The model has several additional phases compared to the minimal supersymmetric model. These phases appear from both the heavy and light neutrino sectors: two CKM-type phases and four Majorana phases which give new contributions to CP-violating parameters and leptogenesis. We study observable effects of these phases on leptogenesis in most general neutrino mixing scenarios, with either hierarchical, inverse hierarchical, or quasidegenerate light and heavy neutrinos. We comment on the effects of these scenarios on the 0νββ decay. The CP-violating phases in both the heavy and light neutrino sectors of the left-right supersymmetric model have unique features, resulting in bounds on heavy neutrino masses different from the minimal scenario in leptogenesis, and which may distinguish the model from other supersymmetric scenarios

  7. Solution of second order supersymmetrical intertwining relations in Minkowski plane

    Energy Technology Data Exchange (ETDEWEB)

    Ioffe, M. V., E-mail: m.ioffe@spbu.ru; Kolevatova, E. V., E-mail: e.v.kolev@yandex.ru [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Nishnianidze, D. N., E-mail: cutaisi@yahoo.com [Saint Petersburg State University, 7/9 Universitetskaya nab., St. Petersburg 199034 (Russian Federation); Akaki Tsereteli State University, 4600 Kutaisi, Georgia (United States)

    2016-08-15

    Supersymmetrical (SUSY) intertwining relations are generalized to the case of quantum Hamiltonians in Minkowski space. For intertwining operators (supercharges) of second order in derivatives, the intertwined Hamiltonians correspond to completely integrable systems with the symmetry operators of fourth order in momenta. In terms of components, the intertwining relations correspond to the system of nonlinear differential equations which are solvable with the simplest—constant—ansatzes for the “metric” matrix in second order part of the supercharges. The corresponding potentials are built explicitly both for diagonalizable and nondiagonalizable form of “metric” matrices, and their properties are discussed.

  8. Instantons and Borel resummability for the perturbed supersymmetric anharmonic oscillator

    International Nuclear Information System (INIS)

    Verbaarschot, J.J.M.; West, P.

    1991-01-01

    In this paper we give an analytical derivation of the large-order behavior of the perturbation series for both the ground state and the excited states of the supersymmetric anharmonic oscillator and of the anharmonic oscillator obtained from the supersymmetric case by varying the strength of the fermion coupling. The results which are obtained with the help of instanton calculus coincide with those obtained numerically in previous work. The large-order perturbation series of the ground state vanishes in the supersymmetric case, whereas away from the supersymmetric point the perturbation series diverges factorially. The perturbation series of the excited states diverges factorially both at the supersymmetric point and away from this point

  9. Supersymmetric quantum corrections and Poisson-Lie T-duality

    International Nuclear Information System (INIS)

    Assaoui, F.; Lhallabi, T.; Abdus Salam International Centre for Theoretical Physics, Trieste

    2000-07-01

    The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric nonlinear sigma model in the sense of Poisson-Lie T-duality. (author)

  10. Nearly Supersymmetric Dark Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  11. Infinitely many conservation laws for two integrable lattice hierarchies associated with a new discrete Schroedinger spectral problem

    International Nuclear Information System (INIS)

    Zhu, Zuo-nong; Tam, Hon-Wah; Ding, Qing

    2003-01-01

    In this Letter, by means of considering matrix form of a new Schroedinger discrete spectral operator equation, and constructing opportune time evolution equations, and using discrete zero curvature representation, two discrete integrable lattice hierarchies proposed by Boiti et al. [J. Phys. A: Math. Gen. 36 (2003) 139] are re-derived. From the matrix Lax representations, we demonstrate the existence of infinitely many conservation laws for the two lattice hierarchies and give the corresponding conserved densities and the associated fluxes by means of formulae. Thus their integrability is further confirmed. Specially we obtain the infinitely many conservation laws for a new discrete version of the KdV equation. A connection between the conservation laws of the discrete KdV equation and the ones of the KdV equation is discussed by two examples

  12. Precision LEP data, supersymmetric GUTs and string unification

    International Nuclear Information System (INIS)

    Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center

    1990-01-01

    The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)

  13. Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)

    2016-03-14

    We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.

  14. Production and decay of supersymmetric particles at future colliders

    International Nuclear Information System (INIS)

    Bartl, A.; Majerotto, W.; Moesslacher, B.

    1991-01-01

    We describe how supersymmetric particles could be detected at the new colliders HERA, LEP 200, LHC, SSC, and at the possible future linear e + e - collider. We shall present theoretical predictions for production cross sections and decay probabilities, as well as for the important signatures. Our calculations will be based on the Minimal Supersymmetric Standard Model (MSSM) which is the simplest supersymmetric extension of the Standard Model. (authors)

  15. N=1 supersymmetric yang-mills theory in Ito Calculus

    International Nuclear Information System (INIS)

    Nakazawa, Naohito

    2003-01-01

    The stochastic quantization method is applied to N = 1 supersymmetric Yang-Mills theory, in particular in 4 and 10 dimensions. In the 4 dimensional case, based on Ito calculus, the Langevin equation is formulated in terms of the superfield formalism. The stochastic process manifestly preserves both the global N = 1 supersymmetry and the local gauge symmetry. The expectation values of the local gauge invariant observables in SYM 4 are reproduced in the equilibrium limit. In the superfield formalism, it is impossible in SQM to choose the so-called Wess-Zumino gauge in such a way to gauge away the auxiliary component fields in the vector multiplet, while it is shown that the time development of the auxiliary component fields is determined by the Langevin equations for the physical component fields of the vector multiplet in an ''almost Wess-Zumino gauge''. The physical component expressions of the superfield Langevin equation are naturally extended to the 10 dimensional case, where the spinor field is Majorana-Weyl. By taking a naive zero volume limit of the SYM 10 , the IIB matrix model is studied in this context. (author)

  16. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    In this paper, by using a transformation and an application of Fan subequation, we study a class of generalized Korteweg–de Vries (KdV) equation with generalized evolution. As a result, more types of exact solutions to the generalized KdV equation with generalized evolution are obtained, which include more general ...

  17. Unconstrained off-shell N=3 supersymmetric Yang-Mills theory

    International Nuclear Information System (INIS)

    Galperin, A.; Ivanov, E.; Kalitzin, S.; Ogievetsky, V.; Sokatchev, E.

    1984-01-01

    The harmonic superspace is used to build up an unconstrained off-shell formulation of N=3 supersymmetric Yang-Mills theory. The theory is defined in an analytic N=3 superspace having M 4 x(SU(3)/U(1)xU(1) as an even part. The basic objects are the analytic potentials which serve as gauge connections entering harmonic derivatives. The action is an integral over analytic superspace. The Lagrange density is surprisingly simple and it is gauge invariant up to total harmonic derivative. The equations of motion are integrability conditions on the internal space SU(3)/U(1)xU(1). The jumping over the ''N=3 barrier'' became possible due to the infinite number of auxiliary fields

  18. A new gauge for supersymmetric abelian gauge theories

    International Nuclear Information System (INIS)

    Smith, A.W.; Barcelos Neto, J.

    1984-01-01

    A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt

  19. On quantization of supersymmetric theories

    International Nuclear Information System (INIS)

    Smilga, A.V.

    1985-01-01

    A recipe to resolve ordering ambiguities in the quantum hamiltonian of supersymmetric theories is suggested. The Weyl ordering prescription for supercharge operators should be employed to preserve SUSY algebra on the quantum level. The quantum hamiltonian does not generally coincide with the Weyl ordered classical hamiltonian, the difference being due to the fact that the Weyl symbol of anticommutator of supercharges does not generally coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The suggested procedure is applied in the examples of N=1 and N=2 supersymmetric σ-models analyzed in the constant field limit

  20. N=2 supersymmetric dynamics for pedestrians

    CERN Document Server

    Tachikawa, Yuji

    2015-01-01

    Understanding the dynamics of gauge theories is crucial, given the fact that all known interactions are based on the principle of local gauge symmetry. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dimensions with extended N=2 supersymmetry are further constrained and have therefore been a fertile field of research in theoretical physics for quite some time. Moreover, there are far-reaching mathematical ramifications that have led to a successful dialogue with differential and algebraic geometry. These lecture notes aim to introduce students of modern theoretical physics to the fascinating developments in the understanding of N=2 supersymmetric gauge theories in a coherent fashion. Starting with a gentle introduction to electric-magnetic duality, the author guides r...

  1. Beltrami algebra and symmetry of Beltrami equation on Riemann surfaces

    International Nuclear Information System (INIS)

    Guo Hanying; Xu Kaiwen; Shen Jianmin; Wang Shikun

    1989-12-01

    It is shown that the Beltrami equation has an infinite dimensional symmetry, namely the Beltrami algebra, on its solution spaces. The Beltrami algebra with central extension and its supersymmetric version are explicitly found. (author). 12 refs

  2. Solvable potentials derived from supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Levai, G.

    1994-01-01

    The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)

  3. Two-dimensional interaction of a shear flow with a free surface in a stratified fluid and its solitary-wave solutions via mathematical methods

    Science.gov (United States)

    Seadawy, Aly R.

    2017-12-01

    In this study, we presented the problem formulations of models for internal solitary waves in a stratified shear flow with a free surface. The nonlinear higher order of extended KdV equations for the free surface displacement is generated. We derived the coefficients of the nonlinear higher-order extended KdV equation in terms of integrals of the modal function for the linear long-wave theory. The wave amplitude potential and the fluid pressure of the extended KdV equation in the form of solitary-wave solutions are deduced. We discussed and analyzed the stability of the obtained solutions and the movement role of the waves by making graphs of the exact solutions.

  4. Cluster-enriched Yang-Baxter equation from SUSY gauge theories

    Science.gov (United States)

    Yamazaki, Masahito

    2018-04-01

    We propose a new generalization of the Yang-Baxter equation, where the R-matrix depends on cluster y-variables in addition to the spectral parameters. We point out that we can construct solutions to this new equation from the recently found correspondence between Yang-Baxter equations and supersymmetric gauge theories. The S^2 partition function of a certain 2d N=(2,2) quiver gauge theory gives an R-matrix, whereas its FI parameters can be identified with the cluster y-variables.

  5. Symmetries of the Schrodinger Equation and Algebra/Superalgebra Duality

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2014-12-01

    Some key features of the symmetries of the Schroedinger equation that are common to a much broader class of dynamical systems (some under construction) are illustrated. I discuss the algebra/superalgebra duality involving rst and second-order differential operators. It provides different viewpoints for the spectrum-generating subalgebras. The representation dependent notion of on-shell symmetry is introduced. The difference in associating the time derivative symmetry operator with either a root or a Cartan generator of the sl(2) subalgebra is discussed. In application to one-dimensional Lagrangian superconformal sigma-models it implies superconformal actions which are either supersymmetric or non-supersymmetric. (author)

  6. Supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Crombrugghe, M. de; Rittenberg, V.

    1982-12-01

    We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)

  7. N=1 supersymmetric extension of the baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2011-01-01

    We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.

  8. Fun with supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Freedman, B.; Cooper, F.

    1984-04-01

    One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup α/ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index Δ which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if Δ is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate Δ for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references

  9. New dualities of supersymmetric gauge theories

    CERN Document Server

    2016-01-01

    This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...

  10. Cosmological consequences of supersymmetric flat directions

    CERN Document Server

    Riva, Francesco; Sarkar, Subir; Giudice, Gian

    In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...

  11. Supersymmetric Janus solutions in four dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Bobev, Nikolay [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Pilch, Krzysztof [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Warner, Nicholas P. [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Institut de Physique Théorique, CEA Saclay,CNRS-URA 2306, 91191 Gif sur Yvette (France); Institut des Hautes Etudes Scientifiques,Le Bois-Marie, 35 route de Chartres, Bures-sur-Yvette, 91440 (France)

    2014-06-10

    We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS{sub 4} vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G{sub 2} global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G{sub 2} global symmetry. In eleven dimensions, this G{sub 2} to G{sub 2} solution corresponds to a domain wall across which a magnetic flux reverses orientation.

  12. Supersymmetric Janus solutions in four dimensions

    International Nuclear Information System (INIS)

    Bobev, Nikolay; Pilch, Krzysztof; Warner, Nicholas P.

    2014-01-01

    We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS 4 vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G 2 global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G 2 global symmetry. In eleven dimensions, this G 2 to G 2 solution corresponds to a domain wall across which a magnetic flux reverses orientation

  13. Small numbers in supersymmetric theories of nature

    International Nuclear Information System (INIS)

    Graesser, Michael L.

    1999-01-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject

  14. Supersymmetric flipped SU(5) revitalized

    Energy Technology Data Exchange (ETDEWEB)

    Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.

    1987-08-06

    We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.

  15. Renormalization of supersymmetric models without using auxiliary fields

    International Nuclear Information System (INIS)

    Urbanek, P.

    1986-01-01

    Previously a linear representation of supersymmetry (Ss) was used in investigations of renormalizability. There auxiliary fields have been introduced in order that the Ss-algebra closes 'off-shell'. When the auxiliary fields are eliminated by their equations of motion, the Ss representation becomes nonlinear and Ss closes only 'on-shell'. Following O.Piguet and K.Sibold 1984 Ss is expressed through Ward identities which are formulated as functional variations of the generating functional of the Green functions. These functional operators form a closed algebra, a fact essential for the proof of renormalizability, which is given. It is not necessary to use a specific subtraction scheme in the Green functions. The procedure is applied to the Wess-Zumino model and the supersymmetric extension of the quantum electrodynamics. 15 refs. (qui)

  16. Supersymmetric sigma models and composite Yang-Mills theory

    International Nuclear Information System (INIS)

    Lukierski, J.

    1980-04-01

    We describe two types of supersymmetric sigma models: with field values in supercoset space and with superfields. The notion of Riemannian symmetric pair (H,G/H) is generalized to supergroups. Using the supercoset approach the superconformal-invariant model of composite U(n) Yang-Mills fields in introduced. In the framework of the superfield approach we present with some details two versions of the composite N=1 supersymmetric Yang-Mills theory in four dimensions with U(n) and U(m) x U(n) local invariance. We argue that especially the superfield sigma models can be used for the description of pre-QCD supersymmetric dynamics. (author)

  17. Supersymmetric leptogenesis with a light hidden sector

    International Nuclear Information System (INIS)

    De Simone, Andrea

    2010-04-01

    Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we pro- pose a simple way to circumvent this tension and accommodate naturally ther- mal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed. (orig.)

  18. On integrability of a noncommutative q-difference two-dimensional Toda lattice equation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C.X., E-mail: trisha_li2001@163.com [School of Mathematical Sciences, Capital Normal University, Beijing 100048 (China); Department of Mathematics, College of Charleston, Charleston, SC 29401 (United States); Nimmo, J.J.C., E-mail: jonathan.nimmo@glasgow.ac.uk [School of Mathematics and Statistics, University of Glasgow, Glasgow G12 8QW (United Kingdom); Shen, Shoufeng, E-mail: mathssf@zjut.edu.cn [Department of Applied Mathematics, Zhejiang University of Technology, Hangzhou 310023 (China)

    2015-12-18

    In our previous work (C.X. Li and J.J.C. Nimmo, 2009 [18]), we presented a generalized type of Darboux transformations in terms of a twisted derivation in a unified form. The twisted derivation includes ordinary derivatives, forward difference operators, super derivatives and q-difference operators as its special cases. This result not only enables one to recover the known Darboux transformations and quasideterminant solutions to the noncommutative KP equation, the non-Abelian two-dimensional Toda lattice equation, the non-Abelian Hirota–Miwa equation and the super KdV equation, but also inspires us to investigate quasideterminant solutions to q-difference soliton equations. In this paper, we first construct the bilinear Bäcklund transformations for the known bilinear q-difference two-dimensional Toda lattice equation (q-2DTL) and then derive a Lax pair whose compatibility gives a formally different nonlinear q-2DTL equation and finally obtain its quasideterminant solutions by iterating its Darboux transformations. - Highlights: • Examples are given to illustrate the extensive applications of twisted derivations. • Bilinear Bäcklund transformation is constructed for the known q-2DTL equation. • Lax pair is obtained for an equivalent q-2DTL equation. • Quasideterminant solutions are found for the nc q-2DTL equation.

  19. On Fay identity

    International Nuclear Information System (INIS)

    Michev, Iordan P.

    2006-01-01

    In the first part of this paper we consider the transformation of the cubic identities for general Korteweg-de Vries (KdV) tau functions from [Mishev, J. Math. Phys. 40, 2419-2428 (1999)] to the specific identities for trigonometric KdV tau functions. Afterwards, we consider the Fay identity as a functional equation and provide a wide set of solutions of this equation. The main result of this paper is Theorem 3.4, where we generalize the identities from Mishev. An open problem is the transformation of the cubic identities from Mishev to the specific identities for elliptic KdV tau functions

  20. Duality and supersymmetric monopoles

    International Nuclear Information System (INIS)

    Gauntlett, J.P.

    1998-01-01

    Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spaces of BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of these investigations. (orig.)

  1. Symmetries of supersymmetric integrable hierarchies of KP type

    International Nuclear Information System (INIS)

    Nissimov, E.; Pacheva, S.

    2002-01-01

    This article is devoted to the systematic study of additional (non-isospectral) symmetries of constrained (reduced) supersymmetric integrable hierarchies of KP type--the so-called SKP (R;M B ,M F ) models. The latter are supersymmetric extensions of ordinary constrained KP hierarchies which contain as special cases basic integrable systems such as (m)KdV, AKNS, Fordy-Kulish, Yajima-Oikawa, etc. As a first main result it is shown that any SKP (R;M B ,M F ) hierarchy possesses two different mutually (anti-)commuting types of superloop superalgebra additional symmetries corresponding to the positive- and negative-grade parts of certain superloop superalgebras. The second main result is the systematic construction of the full algebra of additional Virasoro symmetries of SKP (R;M B ,M F ) hierarchies, which requires nontrivial modifications of the Virasoro flows known from the general case of unconstrained Manin-Radul super-KP hierarchies (the latter flows do not define symmetries for constrained SKP (R;M B ,M F ) hierarchies). As a third main result we provide systematic construction of the supersymmetric analogs of multi-component (matrix) KP hierarchies and show that the latter contain, among others, the supersymmetric version of the Davey-Stewartson system. Finally, we present an explicit derivation of the general Darboux-Baecklund solutions for the SKP (R;M B ,M F ) super-tau functions (supersymmetric 'soliton'-like solutions) which preserve the additional (non-isospectral) symmetries

  2. Multichannel coupling with supersymmetric quantum mechanics and exactly-solvable model for the Feshbach resonance

    International Nuclear Information System (INIS)

    Sparenberg, Jean-Marc; Samsonov, Boris F; Foucart, Francois; Baye, Daniel

    2006-01-01

    A new type of supersymmetric transformations of the coupled-channel radial Schroedinger equation is introduced, which do not conserve the vanishing behaviour of solutions at the origin. Contrary to the usual transformations, these 'non-conservative' transformations allow, in the presence of thresholds, the construction of well-behaved potentials with coupled scattering matrices from uncoupled potentials. As an example, an exactly-solvable potential matrix is obtained which provides a very simple model of the Feshbach-resonance phenomenon. (letter to the editor)

  3. Solution of the Korteweg--de Vries equation in a half-space bounded by a wall

    International Nuclear Information System (INIS)

    Moses, H.E.

    1976-01-01

    A solution of the Korteweg--de Vries equation in the half-space 0 less than r less than infinity with the boundary condition V(0) = 0 is given. The boundary condition may be interpreted as the requirement that the plane which bounds the half-space be a rigid wall. Aside from possible physical interest, this solution, which is obtained from one of the potentials for the radial Schroedinger equation which do not scatter, appears to indicate that the radial Schroedinger equation and the corresponding Gel'fand--Levitan equation play a role in the case of the half-space bounded by a wall similar to that of the one-dimensional Schroedinger equation (-- infinity less than x less than infinity) and its corresponding Gel'fand--Levitan equation in the more usual full space treatment of the KdV equation. A possible interpretation of the solution presented is that it corresponds to the reflection of a wave by a wall, in which the incident wave is singular and the reflected wave is nonsingular but highly dispersive

  4. Calabi-Yau compactifications of non-supersymmetric heterotic string theory

    International Nuclear Information System (INIS)

    Blaszczyk, Michael; Groot Nibbelink, Stefan

    2015-07-01

    Phenomenological explorations of heterotic strings have conventionally focused primarily on the E 8 x E 8 theory. We consider smooth compactifications of all three ten-dimensional heterotic theories to exhibit the many similarities between the non-supersymmetric SO(16) x SO(16) theory and the related supersymmetric E 8 x E 8 and SO(32) theories. In particular, we exploit these similarities to determine the bosonic and fermionic spectra of Calabi-Yau compactifications with line bundles of the nonsupersymmetric string. We use elements of four-dimensional supersymmetric effective field theory to characterize the non-supersymmetric action at leading order and determine the Green-Schwarz induced axion-couplings. Using these methods we construct a non-supersymmetric Standard Model(SM)-like theory. In addition, we show that it is possible to obtain SM-like models from the standard embedding using at least an order four Wilson line. Finally, we make a proposal of the states that live on five branes in the SO(16) x SO(16) theory and find under certain assumptions the surprising result that anomaly factorization only admits at most a single brane solution.

  5. On the WDVV equations in five-dimensional gauge theories

    NARCIS (Netherlands)

    Hoevenaars, L.K.; Martini, Ruud

    2003-01-01

    It is well known that the perturbative prepotentials of four-dimensional N = 2 supersymmetric Yang–Mills theories satisfy the generalized WDVV equations, regardless of the gauge group. In this Letter we study perturbative prepotentials of the five-dimensional theories for some classical gauge groups

  6. Grassmann expansion of the classical N=2 supergravity field equations

    International Nuclear Information System (INIS)

    Embacher, F.

    1984-01-01

    The classical field equations of N=2 supergravity are expanded with respect to an infinite dimensional Grassmann algebra. The general freedom in constructing classical solution is exhibited. As an application, a uniqueness theorem for supersymmetric extreme black holes is given. (Author)

  7. Supersymmetric axial anomalies and the Wess-Zumino action

    International Nuclear Information System (INIS)

    Harada, K.; Shizuya, K.

    1988-01-01

    We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)

  8. Dark matter asymmetry in supersymmetric Dirac leptogenesis

    International Nuclear Information System (INIS)

    Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub

    2013-01-01

    We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis

  9. Supersymmetric models with light higgsinos

    International Nuclear Information System (INIS)

    Bruemmer, F.

    2012-05-01

    In the Minimal Supersymmetric Standard Model, the higgsinos can have masses around the electroweak scale, while the other supersymmetric particles have TeV-scale masses. This happens in models of gauge-mediated SUSY breaking with a high messenger scale, which are motivated from string theory. For particular choices of the messenger eld content, multi-TeV squark and gluino masses naturally lead to a much lower electroweak scale, somewhat similar to focus point supersymmetry. They also induce Higgs masses of 124-126 GeV, while making the discovery of supersymmetry at the LHC unlikely. The light higgsinos will be di cult to see at the LHC but may eventually be discovered at a linear collider.

  10. Level comparison theorems and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Baumgartner, B.; Grosse, H.

    1986-01-01

    The sign of the Laplacian of the spherical symmetric potential determines the order of energy levels with the same principal Coulomb quantum number. This recently derived theorem has been generalized, extended and applied to various situations in particle, nuclear and atomic physics. Besides a comparison theorem the essential step was the use of supersymmetric quantum mechanics. Recently worked out applications of supersymmetric quantum mechanics to index problems of Dirac operators are mentioned. (Author)

  11. Formation of double layers: shocklike solutions of an mKdV-equation

    International Nuclear Information System (INIS)

    Raadu, M.A.; Chanteur, G.

    1985-10-01

    Small amplitude double layers (DLs) in a plasma with a suitable electron distribution may be identified with shocklike solutions of a modified Korteweg-deVries (mKdV) equation. A thought experiment for the formation of such DLs is specified to clarify the physical constraints and to demonstrate the emergence of a DL from an initial disturbance. A scattering formulation of the mKdV initial value problem may be diagonalised to give a pair of Schroedinger equations with a scattering potential satisfying the ordinary KdV equation. The initial value problem can then be treated using Khruslov's generalisation of the inverse scattering method which allows a difference in the asymptotic values of the potential. A necessary and sufficient condition for the emergence of a shocklike soliton (wave) train and of a finite number of isolated solitons may also be determined from the scattering properties of the initial potential. With 26 refs and 5 figures. (Author)

  12. Metric-independent measures for supersymmetric extended object theories on curved backgrounds

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2014-01-01

    For Green–Schwarz superstring σ-model on curved backgrounds, we introduce a non-metric measure Φ≡ϵ ij ϵ IJ (∂ i φ I )(∂ j φ J ) with two scalars φ I (I=1,2) used in ‘Two-Measure Theory’ (TMT). As in the flat-background case, the string tension T=(2πα ′ ) −1 emerges as an integration constant for the A i -field equation. This mechanism is further generalized to supermembrane theory, and to super-p-brane theory, both on general curved backgrounds. This shows the universal applications of dynamical measure of TMT to general supersymmetric extended objects on general curved backgrounds

  13. Cylindrical and spherical solitary waves in an electron-acoustic plasma with vortex electron distribution

    Science.gov (United States)

    Demiray, Hilmi; El-Zahar, Essam R.

    2018-04-01

    We consider the nonlinear propagation of electron-acoustic waves in a plasma composed of a cold electron fluid, hot electrons obeying a trapped/vortex-like distribution, and stationary ions. The basic nonlinear equations of the above described plasma are re-examined in the cylindrical (spherical) coordinates by employing the reductive perturbation technique. The modified cylindrical (spherical) KdV equation with fractional power nonlinearity is obtained as the evolution equation. Due to the nature of nonlinearity, this evolution equation cannot be reduced to the conventional KdV equation. A new family of closed form analytical approximate solution to the evolution equation and a comparison with numerical solution are presented and the results are depicted in some 2D and 3D figures. The results reveal that both solutions are in good agreement and the method can be used to obtain a new progressive wave solution for such evolution equations. Moreover, the resulting closed form analytical solution allows us to carry out a parametric study to investigate the effect of the physical parameters on the solution behavior of the modified cylindrical (spherical) KdV equation.

  14. Theory for nonlinear magnetosonic waves in a two-ion-species plasma

    International Nuclear Information System (INIS)

    Toida, Mieko; Ohsawa, Yukiharu

    1997-01-01

    Magnetosonic waves propagating perpendicular to a magnetic field in a plasma containing two ion species is studied theoretically. The magnetosonic wave is split into two modes in a two-ion-species plasma; low- and high- frequency modes. The frequency of the low-frequency mode tends to zero as the wave number k goes to zero. A KdV equation is derived for this mode by the conventional reductive perturbation method. The frequency of high-frequency mode does not go to zero as k → 0. However, using a new expansion scheme, a KdV equation for the nonlinear high-frequency mode has also been derived. This shows that KdV equations are not limited to waves whose frequencies tend to zero as k → 0. The KdV equation for the low-frequency mode is valid when the amplitudes ε are quite small, while that for the high-frequency mode is valid when (m. e /m. i ) 1/2 e /m. i is a measure of electron-to-ion mass ratios. The characteristic soliton widths are the ion inertia length for the low-frequency mode and the electron skin depth for the high-frequency mode. (author)

  15. Supersymmetric U boson and the old U(1) problem

    International Nuclear Information System (INIS)

    Kim, B.R.

    1983-01-01

    In the supersymmetric SU(3)xSU(2)xU(1)xUsup(')(1) model the new gauge group Usup(')(1) enforces the introduction of mirror fermions. In this note we address the inverse question. If one starts with SU(3)xSU(2)xU(1) including mirror fermions, what physical arguments other than the supersymmetric require the introduction of a new gauge group Usup(')(1). It turns out that the old U(1) problem is closely related with this question. Further we give an estimate for the upper bound for the parameter of the supersymmetric U boson r and x. (orig.)

  16. Flavour changing decays of Z0 in supersymmetric models

    International Nuclear Information System (INIS)

    Gamberini, G.; Ridolfi, G.

    1987-01-01

    The possible existence of detectable flavour-changing branching modes of the Z 0 boson is examined in the context of supersymmetric models of currrent interest. An explicit calculation shows that in the so-called minimal version of the supersymmetric standard model the branching ratios for Z 0 →banti s or tanti c are not larger than in the standard model itself and are as such unobservable. On the contrary, we find that in a recently proposed extension of the supersymmetric standard model the mode Z 0 →tanti c may be at the order of being detectable. (orig.)

  17. Baecklund transformation for supersymmetric self-dual theories for semisimple gauge groups and a hierarchy of A1 solutions

    International Nuclear Information System (INIS)

    Devchand, C.

    1994-01-01

    We present a Baecklund transformation (a discrete symmetry transformation) for the self-duality equations for supersymmetric gauge theories in N-extended super-Minkowski space M 4vertical stroke 4N for an arbitrary semisimple gauge group. For the case of an A 1 gauge algebra we integrate the transformation starting with a given solution and iterating the process we construct a hierarchy of explicit solutions. (orig.)

  18. Webs of domain walls in supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Eto, Minoru; Isozumi, Youichi; Nitta, Muneto; Ohashi, Keisuke; Sakai, Norisuke

    2005-01-01

    Webs of domain walls are constructed as 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) states in d=4, N=2 supersymmetric U(N C ) gauge theories with N F hypermultiplets in the fundamental representation. Webs of walls can contain any numbers of external legs and loops like (p,q) string/5-brane webs. We find the moduli space M of a 1/4 BPS equation for wall webs to be the complex Grassmann manifold. When moduli spaces of 1/2 BPS states (parallel walls) and the vacua are removed from M, the noncompact moduli space of genuine 1/4 BPS wall webs is obtained. All the solutions are obtained explicitly and exactly in the strong gauge coupling limit. In the case of Abelian gauge theory, we work out the correspondence between configurations of wall web and the moduli space CP N F -1

  19. Aspects of the supersymmetric Goldstone formalism

    International Nuclear Information System (INIS)

    Lerche, W.

    1985-01-01

    The present thesis deal with the discussion of general properties of Goldstone excitations in global N=1 supersymmetric theories. The results can become relevant in the framework of theories which interpret quarks and leptons as composite 'quasi-Goldstone fermions'. The thesis is arranged in two main parts: the first is occupied by group-theoretical aspects, i.e. by the spectrum of supersymmetric Goldstone excitations as well as by geometrical considerations which are connected with effective Lagrangian densities. In the second main part dynamic questions like for instance mass generation are treated. For this a suitable formalism is developed. (orig.) [de

  20. Higher equations of motion in N=2 superconformal Liouville field theory

    International Nuclear Information System (INIS)

    Ahn, Changrim; Stanishkov, Marian; Stoilov, Michail

    2011-01-01

    We present an infinite set of higher equations of motion in N=2 supersymmetric Liouville field theory. They are in one to one correspondence with the degenerate representations and are enumerated in addition to the U(1) charge ω by the positive integers m or (m,n) respectively. We check that in the classical limit these equations hold as relations among the classical fields.

  1. An off-shell formulation of N=4 supersymmetric Yang-Mills theory in twistor harmonic superspace

    International Nuclear Information System (INIS)

    Sokatchev, E.

    1989-01-01

    Twistor-like harmonic variables which parametrize the coset space SO(1, 4)/SO(1, 2)xSO(2) are introduced. With their help the on-shell constraints for N=4, d=5 supersymmetric Yang-Mills theory are rewritten as conditions for flatness in the harmonic directions of superspace. A Chern-Simons off-shell action leading to those equations is proposed. There are indications that the off-shell theory might be finite, despite the fact that the on-shell one seems non-renormalizable. (orig.)

  2. Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc; Pupasov-Maksimov, Andrey M; Samsonov, Boris F

    2014-01-01

    The present status of the three-dimensional inverse-scattering method with supersymmetric transformations is reviewed for the coupled-channel case. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete, efficient and elegant solution to the inverse-scattering problem for the radial Schrödinger equation with short-range interactions. A special emphasis is put on the differences between conservative and non-conservative transformations, i.e. transformations that do or do not conserve the behaviour of solutions of the radial Schrödinger equation at the origin. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron–proton triplet eigenphase shifts for the S- and D-waves. We then summarize and extend our previous works on the coupled-channel case, i.e. on systems of coupled radial Schrödinger equations, and stress remaining difficulties and open questions of this problem by putting it in perspective with the single-channel case. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the important difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations in the two-channel case are studied and shown to lead to practical algorithms for inversion. A convenient particular technique where the mixing parameter can be fitted without modifying the eigenphases is developed with iterations of pairs of conjugate transformations. This technique is applied to the neutron–proton triplet S–D scattering matrix, for which exactly-solvable matrix potential models are constructed

  3. Supersymmetric reflection matrices

    International Nuclear Information System (INIS)

    Moriconi, M.; Schoutens, K.

    1997-04-01

    We briefly review the general structure of integrable particle theories in 1 + 1 dimensions having N = 1 supersymmetry. Examples are specific perturbed superconformal field theories (of Yang-Lee type) and the N = 1 supersymmetric sine-Gordon theory. We comment on the modifications that are required when the N = 1 supersymmetry algebra contains non-trivial topological charges. (author). 8 refs, 2 figs

  4. On Darboux transformation of the supersymmetric sine-Gordon equation

    International Nuclear Information System (INIS)

    Siddiq, M; Hassan, M; Saleem, U

    2006-01-01

    Darboux transformation is constructed for superfields of the super sine-Gordon equation and the superfields of the associated linear problem. The Darboux transformation is shown to be related to the super Baecklund transformation and is further used to obtain N super soliton solutions

  5. Hidden-Sector Dynamics and the Supersymmetric Seesaw

    CERN Document Server

    Campbell, Bruce A; Maybury, David W

    2008-01-01

    In light of recent analyses that have shown that nontrivial hidden-sector dynamics in models of supersymmetry breaking can lead to a significant impact on the predicted low-energy supersymmetric spectrum, we extend these studies to consider hidden-sector effects in extensions of the MSSM to include a seesaw model for neutrino masses. A dynamical hidden sector in an interval of mass scales below the seesaw scale would yield renormalization-group running involving both the anomalous dimension from the hidden sector and the seesaw-extended MSSM renormalization group equations (RGEs). These effects interfere in general, altering the generational mixing of the sleptons, and allowing for a substantial change to the expected level of charged-lepton flavour violation in seesaw-extended MSSM models. These results provide further support for recent theoretical observations that knowledge of the hidden sector is required in order to make concrete low-energy predictions, if the hidden sector is strongly coupled. In parti...

  6. Bethe Ansatz and supersymmetric vacua

    International Nuclear Information System (INIS)

    Nekrasov, Nikita; Shatashvili, Samson

    2009-01-01

    Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.

  7. Non-perturbative supersymmetry anomaly in supersymmetric QCD

    International Nuclear Information System (INIS)

    Shamir, Y.

    1991-03-01

    The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs

  8. Revisit to self-organization of solitons for dissipative Korteweg-de Vries equation

    International Nuclear Information System (INIS)

    Kondoh, Y.; Van Dam, J.W.

    1995-03-01

    The process by which self-organization occurs for solitons described by the Korteweg-de Vries (KdV) equation with a viscous dissipation term is reinvestigated theoretically, with the use of numerical simulations in a periodic system. It is shown that, during nonlinear interactions, two basic processes for the self-organization of solitons are energy transfer and selective dissipation among the eigenmodes of the dissipative operator. It is also clarified that an important process during nonlinear self-organization is an interchange between the dominant operators, which has hitherto been overlooked in conventional self-organization theories and which leads to a final self-similar coherent structure determined uniquely by the dissipative operator

  9. Globally and locally supersymmetric effective theories for light fields

    International Nuclear Information System (INIS)

    Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.

  10. Indirect detection of heavy supersymmetric dark matter

    International Nuclear Information System (INIS)

    Kamionkowski, M.

    1991-02-01

    If neutralinos reside in the galactic halo they will be captured in the Sun and annihilate therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark-matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. 10 refs., 2 figs

  11. N=4 supersymmetric Yang Mills scattering amplitudes at high energies. The Regge cut contribution

    International Nuclear Information System (INIS)

    Bartels, J.; Sabio Vera, A.

    2008-07-01

    We further investigate, in N=4 supersymmetric Yang Mills theories, the high energy Regge behavior of six-point scattering amplitudes. In particular, for the new Regge cut contribution found in our previous paper, we compute in the leading logarithmic approximation (LLA) the energy spectrum of the BFKL equation in the color octet channel, and we calculate explicitly the two loop corrections to the discontinuities of the amplitudes for the transitions 2→4 and 3→3. We find an explicit solution of the BFKL equation for the octet channel for arbitrary momentum transfers and investigate the intercepts of the Regge singularities in this channel. As an important result we find that the universal collinear and infrared singularities of the BDS formula are not affected by this Regge-cut contribution. (orig.)

  12. (4,0) supersymmetric sigma-model and t-duality

    International Nuclear Information System (INIS)

    Lhallabi, T.

    1997-08-01

    The conserved supercurrents J ++ and J -- are deduced for the (4,0) supersymmetric sigma model on harmonic superspace with arbitrary background gauge connection. These are introduced in the Lagrangian density of the model by their couplings to the analytic gauge superfields Γ -- and Γ ++ . The T-duality transformations are obtained by integrating out the analytic gauge superfields. Finally the (4,0) supersymmetric anomaly is derived. (author). 20 refs

  13. Three-body Supersymmetric Top Decays

    CERN Document Server

    Belyaev, A; Lola, S; Belyaev, Alexander; Ellis, John; Lola, Smaragda

    2000-01-01

    We discuss three-body supersymmetric top decays, in schemes both with andwithout R-parity conservation, assuming that sfermion masses are larger thanm_t. We find that MSSM top decays into chargino/neutralino pairs have a strongkinematic suppression in the region of the supersymmetric parameter spaceconsistent with the LEP limits, with a decay width =< 10^{-5} GeV. MSSM topdecays into neutralino pairs have less kinematical suppression, but require aflavour-changing vertex, and are likely to have a smaller rate. On the otherhand, R-violating decays to single charginos, neutralinos and conventionalfermions can be larger for values of the R-violating couplings still permittedby other upper limits. The cascade decays of the charginos and neutralinos maylead to spectacular signals with explicit lepton-number violation, such aslike-sign lepton events.

  14. On the stochastic structure of globally supersymmetric field theories

    International Nuclear Information System (INIS)

    Flume, R.; Lechtenfeld, O.

    1983-09-01

    We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)

  15. One-instanton calculations in N=2 supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Ito, Katsushi

    1998-01-01

    We study the low-energy effective action of N=2 supersymmetric gauge theories in the Coulomb branch. Using microscopic instanton calculus, we compute the one-instanton contribution to the pre potential for N=2 supersymmetric SU(N c ) Yang-Mills theory. We show that the microscopic result agrees with the exact solution. (Author). 23 refs

  16. On the supersymmetrization of Galileon theories in four dimensions

    Science.gov (United States)

    Elvang, Henriette; Hadjiantonis, Marios; Jones, Callum R. T.; Paranjape, Shruti

    2018-06-01

    We use on-shell amplitude techniques to study the possible N = 1 supersymmetrizations of Galileon theories in 3 + 1 dimensions, both in the limit of decoupling from DBI and without. Our results are that (1) the quartic Galileon has a supersymmetrization compatible with Galileon shift symmetry (ϕ → ϕ + c +bμxμ) for the scalar sector and a constant shift symmetry (ψ → ψ + ξ) for the fermion sector, and it is unique at least at 6th order in fields, but possibly not beyond; (2) the enhanced "special Galileon" symmetry is incompatible with supersymmetry; (3) there exists a quintic Galileon with a complex scalar preserving Galileon shift symmetry; (4) one cannot supersymmetrize the cubic and quintic Galileon while preserving the Galileon shift symmetry for the complex scalar; and (5) for the quartic and quintic Galileon, we present evidence for a supersymmetrization in which the real Galileon scalar is partnered with an R-axion to form a complex scalar which only has an ordinary shift symmetry.

  17. Classifying supersymmetric solutions in 3D maximal supergravity

    Science.gov (United States)

    de Boer, Jan; Mayerson, Daniel R.; Shigemori, Masaki

    2014-12-01

    String theory contains various extended objects. Among those, objects of codimension two (such as the D7-brane) are particularly interesting. Codimension-two objects carry non-Abelian charges which are elements of a discrete U-duality group and they may not admit a simple spacetime description, in which case they are known as exotic branes. A complete classification of consistent codimension-two objects in string theory is missing, even if we demand that they preserve some supersymmetry. As a step toward such a classification, we study the supersymmetric solutions of 3D maximal supergravity, which can be regarded as an approximate description of the geometry near codimension-two objects. We present a complete classification of the types of supersymmetric solutions that exist in this theory. We found that this problem reduces to that of classifying nilpotent orbits associated with the U-duality group, for which various mathematical results are known. We show that the only allowed supersymmetric configurations are 1/2, 1/4, 1/8, and 1/16 BPS, and determine the nilpotent orbits that they correspond to. One example of 1/16 BPS configurations is a generalization of the MSW system, where momentum runs along the intersection of seven M5-branes. On the other hand, it turns out exceedingly difficult to translate this classification into a simple criterion for supersymmetry in terms of the non-Abelian (monodromy) charges of the objects. For example, it can happen that a supersymmetric solution exists locally but cannot be extended all the way to the location of the object. To illustrate the various issues that arise in constructing supersymmetric solutions, we present a number of explicit examples.

  18. Supersymmetric Higgs boson production in Z decays

    International Nuclear Information System (INIS)

    Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1987-01-01

    The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)

  19. Numerical approximations of nonlinear fractional differential difference equations by using modified He-Laplace method

    Directory of Open Access Journals (Sweden)

    J. Prakash

    2016-03-01

    Full Text Available In this paper, a numerical algorithm based on a modified He-Laplace method (MHLM is proposed to solve space and time nonlinear fractional differential-difference equations (NFDDEs arising in physical phenomena such as wave phenomena in fluids, coupled nonlinear optical waveguides and nanotechnology fields. The modified He-Laplace method is a combined form of the fractional homotopy perturbation method and Laplace transforms method. The nonlinear terms can be easily decomposed by the use of He’s polynomials. This algorithm has been tested against time-fractional differential-difference equations such as the modified Lotka Volterra and discrete (modified KdV equations. The proposed scheme grants the solution in the form of a rapidly convergent series. Three examples have been employed to illustrate the preciseness and effectiveness of the proposed method. The achieved results expose that the MHLM is very accurate, efficient, simple and can be applied to other nonlinear FDDEs.

  20. Contraction-based classification of supersymmetric extensions of kinematical lie algebras

    International Nuclear Information System (INIS)

    Campoamor-Stursberg, R.; Rausch de Traubenberg, M.

    2010-01-01

    We study supersymmetric extensions of classical kinematical algebras from the point of view of contraction theory. It is shown that contracting the supersymmetric extension of the anti-de Sitter algebra leads to a hierarchy similar in structure to the classical Bacry-Levy-Leblond classification.

  1. N = 1 supersymmetric indices and the four-dimensional A-model

    Science.gov (United States)

    Closset, Cyril; Kim, Heeyeon; Willett, Brian

    2017-08-01

    We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.

  2. Relations between nonlinear Riccati equations and other equations in fundamental physics

    International Nuclear Information System (INIS)

    Schuch, Dieter

    2014-01-01

    Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract ''quantizations'' such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown

  3. Supersymmetric Higgs bosons and beyond

    International Nuclear Information System (INIS)

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose

    2010-01-01

    We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.

  4. IIB solutions with N>28 Killing spinors are maximally supersymmetric

    International Nuclear Information System (INIS)

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2007-01-01

    We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries

  5. arXiv B-branes and supersymmetric quivers in 2d

    CERN Document Server

    Closset, Cyril; Sharpe, Eric

    2018-02-08

    We study 2d $ \\mathcal{N} $ = (0, 2) supersymmetric quiver gauge theories that describe the low-energy dynamics of D1-branes at Calabi-Yau fourfold (CY$_{4}$) singularities. On general grounds, the holomorphic sector of these theories — matter content and (classical) superpotential interactions — should be fully captured by the topological B-model on the CY$_{4}$. By studying a number of examples, we confirm this expectation and flesh out the dictionary between B-brane category and supersymmetric quiver: the matter content of the supersymmetric quiver is encoded in morphisms between B-branes (that is, Ext groups of coherent sheaves), while the superpotential interactions are encoded in the A$_{∞}$ algebra satisfied by the morphisms. This provides us with a derivation of the supersymmetric quiver directly from the CY$_{4}$ geometry. We also suggest a relation between triality of $ \\mathcal{N} $ = (0,2) gauge theories and certain mutations of exceptional collections of sheaves. 0d $ \\mathcal{N} $ = 1 supe...

  6. Basic hypergeometry of supersymmetric dualities

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar, E-mail: ilmar.gahramanov@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D14476 Potsdam (Germany); Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 6, D12489 Berlin (Germany); Institute of Radiation Problems ANAS, B.Vahabzade 9, AZ1143 Baku (Azerbaijan); Department of Mathematics, Khazar University, Mehseti St. 41, AZ1096, Baku (Azerbaijan); Rosengren, Hjalmar, E-mail: hjalmar@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg (Sweden)

    2016-12-15

    We introduce several new identities combining basic hypergeometric sums and integrals. Such identities appear in the context of superconformal index computations for three-dimensional supersymmetric dual theories. We give both analytic proofs and physical interpretations of the presented identities.

  7. Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters

    International Nuclear Information System (INIS)

    Golterman, Maarten; Shamir, Yigal

    2010-01-01

    It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.

  8. Generalized supersymmetric cosmological term in N=1 supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Via Pietro Giuria 1, 10125 Torino (Italy); Salgado, P. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)

    2015-08-04

    An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N=1, D=4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.

  9. Aspects of supersymmetric inflation

    International Nuclear Information System (INIS)

    Lindblom, P.R.

    1987-01-01

    A new supersymmetric inflationary model is presented and shown to possess the following features: a successful slow rollover produced by quantum corrections; an acceptable pattern of supersymmetry breaking leading to the correct value of the electroweak scale; and a stable slow rollover transition to a minimum with vanishing cosmological constant. It is demonstrated that there is a class of GUT models which are compatible with an inflationary universe scenario in which: (a) the GUT and inflationary phase transitions are distinct (as in supersymmetric inflation); and (b) an observable number of GUT monopoles are created thermally due to reheating of the GUT sector after inflation. This provides one of the few ways of reconciling an observation of GUT monopoles with inflation. New techniques are developed for constructing inflationary models with multiple inflation fields, such as generalizing the one-dimensional slow rollover constraints and estimating the contribution to δρ/ρ from fluctuations transverse to the path of the slow rollover. A new method for ending the slow rollover portion of the inflationary transition is developed

  10. Construction of local and non-local conservation laws for non-linear field equations

    International Nuclear Information System (INIS)

    Vladimirov, V.S.; Volovich, I.V.

    1984-08-01

    A method of constructing conserved currents for non-linear field equations is presented. More explicitly for non-linear equations, which can be derived from compatibility conditions of some linear system with a parameter, a procedure of obtaining explicit expressions for local and non-local currents is developed. Some examples such as the classical Heisenberg spin chain and supersymmetric Yang-Mills theory are considered. (author)

  11. The supersymmetric Adler-Bardeen theorem and regularization by dimensional reduction

    International Nuclear Information System (INIS)

    Ensign, P.; Mahanthappa, K.T.

    1987-01-01

    We examine the subtraction scheme dependence of the anomaly of the supersymmetric, gauge singlet axial current in pure and coupled supersymmetric Yang-Mills theories. Preserving supersymmetry and gauge invariance explicitly by using supersymmetric background field theory and dimensional reduction, we show that only the one-loop value of the axial anomaly is subtraction scheme independent, and that one can always define a subtraction scheme in which the Adler-Bardeen theorem is satisfied to all orders in perturbation theory. In general this subtraction scheme may be non-minimal, but in both the pure and the coupled theories, the Adler-Bardeen theorem is satisfied to two loops in minimal subtraction. (orig.)

  12. Search for supersymmetric particles at CDF

    International Nuclear Information System (INIS)

    Wagner, R.G.

    1989-01-01

    Analyses of events with large unbalanced transverse energy from the 1987 and 1988-89 CDF data runs have set limits on the masses of supersymmetric squarks and gluinos. In a simple model with a stable photino as the lightest supersymmetric particle, the 1987 data with an integrated luminosity of 25.3 nb -1 have excluded at the 90% CL, squarks of mass less than 73 GeV/c 2 and gluinos of mass less than 74 GeV/c 2 . Preliminary results from an analysis of 1 pb -1 of data from the current 1988-89 run imply that the existence of a squark of mass less than 150 GeV/c 2 is unlikely. 4 refs., 2 fig., 1 tab

  13. The G2 spinorial geometry of supersymmetric IIB backgrounds

    International Nuclear Information System (INIS)

    Gran, U; Gutowski, J; Papadopoulos, G

    2006-01-01

    We solve the Killing spinor equations of supersymmetric IIB backgrounds which admit one supersymmetry and the Killing spinor has stability subgroup G 2 in Spin(9, 1) x U(1). We find that such backgrounds admit a timelike Killing vector field and the geometric structure of the spacetime reduces from Spin(9, 1) x U(1) to G 2 . We determine the type of G 2 structure that the spacetime admits by computing the covariant derivatives of the spacetime forms associated with the Killing spinor bilinears. We also solve the Killing spinor equations of backgrounds with two supersymmetries and Spin(7) x R 8 -invariant spinors, and four supersymmetries with SU(4) x R 8 - and with G 2 -invariant spinors. We show that the Killing spinor equations factorize in two sets, one involving the geometry and the 5-form flux, and the other the 3-form flux and the scalars. In the Spin(7) x R 8 and SU(4) x R 8 cases, the spacetime admits a parallel null vector field and so the spacetime metric can be locally described in terms of Penrose coordinates adapted to the associated rotation free, null, geodesic congruence. The transverse space of the congruence is a Spin(7) and a SU(4) holonomy manifold, respectively. In the G 2 case, all the fluxes vanish and the spacetime is the product of a three-dimensional Minkowski space with a holonomy G 2 manifold

  14. Nonlinear realization of supersymmetric AdS space isometries

    International Nuclear Information System (INIS)

    Clark, T. E.; Love, S. T.

    2006-01-01

    The isometries of AdS 5 space and supersymmetric AdS 5 xS 1 space are nonlinearly realized on four-dimensional Minkowski space. The resultant effective actions in terms of the Nambu-Goldstone modes are constructed. The dilatonic mode governing the motion of the Minkowski space probe brane into the covolume of supersymmetric AdS 5 space is found to be unstable and the bulk of the AdS 5 space is unable to sustain the brane. No such instability appears in the nonsupersymmetric case

  15. Supersymmetric inflation, baryon asymmetry and the gravitino problem

    International Nuclear Information System (INIS)

    Ovrut, B.A.; Pennsylvania Univ., Philadelphia; Steinhardt, P.J.

    1984-01-01

    A special class of locally supersymmetric models has been found which can produce a phase transition that meets all the conditions necessary for the inflationary universe scenario and which sets, via spontaneous supersymmetry breaking, a mass hierarchy consistent with the electroweak unification scale. In this paper we show that the same models can produce a baryon asymmetry after inflation that is consistent with astrophysical observations and can avoid the cosmological problems caused by gravitinos that appear in almost all other locally supersymmetric models. (orig.)

  16. Low energy dynamics of monopoles in supersymmetric Yang-Mills theories with hypermultiplets

    International Nuclear Information System (INIS)

    Kim, Chanju

    2006-01-01

    We derive the low energy dynamics of monopoles and dyons in N = 2 supersymmetric Yang-Mills theories with hypermultiplets in arbitrary representations by utilizing a collective coordinate expansion. We consider the most general case that Higgs fields both in the vector multiplet and in the hypermultiplets have nonzero vacuum expectation values. The resulting theory is a supersymmetric quantum mechanics which has been obtained by a nontrivial dimensional reduction of two-dimensional (4,0) supersymmetric sigma models with potentials

  17. Continuous degeneracy of non-supersymmetric vacua

    International Nuclear Information System (INIS)

    Sun Zheng

    2009-01-01

    In global supersymmetric Wess-Zumino models with minimal Kaehler potentials, F-type supersymmetry breaking always yields instability or continuous degeneracy of non-supersymmetric vacua. As a generalization of the original O'Raifeartaigh's result, the existence of instability or degeneracy is true to any higher order corrections at tree level for models even with non-renormalizable superpotentials. The degeneracy generically coincides the R-axion direction under some assumptions of R-charge assignment, but generally requires neither R-symmetries nor any assumption of generic superpotentials. The result also confirms the well-known fact that tree level supersymmetry breaking is a very rare occurrence in global supersymmetric theories with minimal Kaehler potentials. The implication for effective field theory method in the landscape is discussed and we point out that choosing models with minimal Kaehler potentials may result in unexpected answers to the vacuum statistics. Supergravity theories or theories with non-minimal Kaehler potentials in general do not suffer from the existence of instability or degeneracy. But very strong gauge dynamics or small compactification dimension reduces the Kaehler potential from non-minimal to minimal, and gravity decoupling limit reduces supergravity to global supersymmetry. Instability or degeneracy may appear in these limits. Away from these limits, a large number of non-SUSY vacua may still be found in an intermediate region.

  18. Proton and neutron decay rates in conventional and supersymmetric guts

    International Nuclear Information System (INIS)

    Salati, P.; Wallet, J.C.

    1982-01-01

    We present a general calculation of the two body decay rates of the nucleon, for the most general form of four-fermion ΔB = ΔL operators, in the framework of the SU(6) non-relativistic quark model. We have applied our general formulas to Higgs mediated decays in conventional and in supersymmetric SU(5) models. Lower bounds upon, the exchanged particles masses are given. We point out that the hierarchies of branching ratios in decays mediated by Higgs bosons are different from those of gauge boson decay modes (in the former case, neutrinos modes are dominant). We give, in conclusion, an experimental way to distinguish non-supersymmetric GUTs from supersymmetric ones, if the nucleon decays via Higgs bosons

  19. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  20. Supersymmetric Recipes (1/3)

    CERN Multimedia

    CERN. Geneva

    2011-01-01

    In these lectures, I shall describe the theory of supersymmetry accessible to people with a knowledge of basic quantum field theory. The lectures will contain recipes of how to calculate which interactions (and which special relations) are in supersymmetry, without providing detailed proofs of where they come from. We shall also cover: motivation for weak-scale supersymmetry and the minimal supersymmetric standard model.

  1. Moduli stabilization, large-volume dS minimum without D3-branes, (non-)supersymmetric black hole attractors and two-parameter Swiss cheese Calabi–Yau’s

    CERN Document Server

    Misra, A

    2008-01-01

    We consider two sets of issues in this paper. The first has to do with moduli stabilization, existence of “area codes” [A. Giryavets, New attractors and area codes, JHEP 0603 (2006) 020, hep-th/0511215] and the possibility of getting a non-supersymmetric dS minimum without the addition of -branes as in KKLT for type II flux compactifications. The second has to do with the “inverse problem” [K. Saraikin, C. Vafa, Non-supersymmetric black holes and topological strings, hep-th/0703214] and “fake superpotentials” [A. Ceresole, G. Dall'Agata, Flow equations for non-BPS extremal black holes, JHEP 0703 (2007) 110, hep-th/0702088] for extremal (non-)supersymmetric black holes in type II compactifications. We use (orientifold of) a “Swiss cheese” Calabi–Yau [J.P. Conlon, F. Quevedo, K. Suruliz, Large-volume flux compactifications: Moduli spectrum and D3/D7 soft supersymmetry breaking, JHEP 0508 (2005) 007, hep-th/0505076] expressed as a degree-18 hypersurface in WCP4[1,1,1,6,9] in the “large-volume...

  2. Bound state solution of Dirac equation for 3D harmonics oscillator plus trigonometric scarf noncentral potential using SUSY QM approach

    Energy Technology Data Exchange (ETDEWEB)

    Cari, C., E-mail: carinln@yahoo.com; Suparmi, A., E-mail: carinln@yahoo.com [Physics Department, Sebelas Maret University, Jl. Ir. Sutami no 36A Kentingan Surakarta 57126 (Indonesia)

    2014-09-30

    Dirac equation of 3D harmonics oscillator plus trigonometric Scarf non-central potential for spin symmetric case is solved using supersymmetric quantum mechanics approach. The Dirac equation for exact spin symmetry reduces to Schrodinger like equation. The relativistic energy and wave function for spin symmetric case are simply obtained using SUSY quantum mechanics method and idea of shape invariance.

  3. Deviations from Newton's law in supersymmetric large extra dimensions

    International Nuclear Information System (INIS)

    Callin, P.; Burgess, C.P.

    2006-01-01

    Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case

  4. Supersymmetric classical mechanics: free case

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica

    2001-06-01

    We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)

  5. Two-loop anomalous dimensions for four-Fermi operators in supersymmetric theories

    Directory of Open Access Journals (Sweden)

    Junji Hisano

    2017-09-01

    Full Text Available We derive two-loop anomalous dimensions for four-Fermi operators in supersymmetric theories using the effective Kähler potential. We introduce the general forms in generic gauge theories and apply our results to the flavor-changing operators in (minimal supersymmetric standard models.

  6. Supersymmetric seesaw inflection

    International Nuclear Information System (INIS)

    Aulakh, Charanjit S.; Garg, Ila

    2013-01-01

    We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)

  7. Supersymmetric quantum mechanics and new potentials

    International Nuclear Information System (INIS)

    Drigo Filho, E.

    1988-01-01

    Using the supersymmetric quantum mechanics the following potential are generalized. The particle in the box, Poeschl-Teller and Rosen-Morse. The new potentials are evaluated and their eigenfunctions and spectra are indicated. (author) [pt

  8. A review of supersymmetric GUT and its implication to proton decay

    International Nuclear Information System (INIS)

    Sakai, N.

    1983-01-01

    Supersymmetric grand unification and its implication to proton decay are reviewed. The author discusses prototype models and reviews recent studies of model building, in particular models with an intermediate scale (10/sup 10/ -- 10/sup 12/ Gev) supersymmetry breaking. Finally proton decay in supersymmetric models is reviewed

  9. Exactness of supersymmetric WKB method for translational shape invariant potentials

    International Nuclear Information System (INIS)

    Cheng, K M; Leung, P T; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs

  10. Exactness of supersymmetric WKB method for translational shape invariant potentials

    CERN Document Server

    Cheng, K M; Pang, C S

    2003-01-01

    By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.

  11. Supersymmetrically transformed periodic potentials

    OpenAIRE

    C, David J. Fernandez

    2003-01-01

    The higher order supersymmetric partners of a stationary periodic potential are studied. The transformation functions associated to the band edges do not change the spectral structure. However, when the transformation is implemented for factorization energies inside of the forbidden bands, the final potential will have again the initial band structure but it can have bound states encrusted into the gaps, giving place to localized periodicity defects.

  12. Supersymmetric U(1)' model with multiple dark matters

    International Nuclear Information System (INIS)

    Hur, Taeil; Lee, Hye-Sung; Nasri, Salah

    2008-01-01

    We consider a scenario where a supersymmetric model has multiple dark matter particles. Adding a U(1) ' gauge symmetry is a well-motivated extension of the minimal supersymmetric standard model (MSSM). It can cure the problems of the MSSM such as the μ problem or the proton decay problem with high-dimensional lepton number and baryon number violating operators which R parity allows. An extra parity (U parity) may arise as a residual discrete symmetry after U(1) ' gauge symmetry is spontaneously broken. The lightest U-parity particle (LUP) is stable under the new parity becoming a new dark matter candidate. Up to three massive particles can be stable in the presence of the R parity and the U parity. We numerically illustrate that multiple stable particles in our model can satisfy both constraints from the relic density and the direct detection, thus providing a specific scenario where a supersymmetric model has well-motivated multiple dark matters consistent with experimental constraints. The scenario provides new possibilities in the present and upcoming dark matter searches in the direct detection and collider experiments

  13. The supercharge and superconformal symmetry for N=1 supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.; Nowling, S.R.

    2002-01-01

    The superspace Lagrangian formulation of N=1 supersymmetric quantum mechanics is presented. The general Lagrangian constructed out of chiral and antichiral supercoordinates containing up to two derivatives and with a canonically normalized kinetic energy term describes the motion of a nonrelativistic spin 1/2 particle with Lande g-factor 2 moving in two spatial dimensions under the influence of a static but spatially dependent magnetic field. Noether's theorem is derived for the general case and is used to construct superspace dependent charges whose lowest components give the superconformal generators. The supercoordinates of charges containing an R symmetry charge, the supersymmetry charges and the Hamiltonian are combined to form a supercharge supercoordinate. Superconformal Ward identities for the quantum effective action are derived from the conservation equations and the source of potential symmetry breaking terms are identified

  14. Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Assel, Benjamin; Martelli, Dario; Murthy, Sameer; Yokoyama, Daisuke [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom)

    2017-03-17

    We study supersymmetric gauge theories with an R-symmetry, defined on non-compact, hyperbolic, Riemannian three-manifolds, focusing on the case of a supersymmetry-preserving quotient of Euclidean AdS{sub 3}. We compute the exact partition function in these theories, using the method of localization, thus reducing the problem to the computation of one-loop determinants around a supersymmetric locus. We evaluate the one-loop determinants employing three different techniques: an index theorem, the method of pairing of eigenvalues, and the heat kernel method. Along the way, we discuss aspects of supersymmetry in manifolds with a conformal boundary, including supersymmetric actions and boundary conditions.

  15. SO(10) supersymmetric grand unified theories

    Science.gov (United States)

    Dermisek, Radovan

    The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.

  16. Properties of some nonlinear Schroedinger equations motivated through information theory

    International Nuclear Information System (INIS)

    Yuan, Liew Ding; Parwani, Rajesh R

    2009-01-01

    We update our understanding of nonlinear Schroedinger equations motivated through information theory. In particular we show that a q-deformation of the basic nonlinear equation leads to a perturbative increase in the energy of a system, thus favouring the simplest q = 1 case. Furthermore the energy minimisation criterion is shown to be equivalent, at leading order, to an uncertainty maximisation argument. The special value η = 1/4 for the interpolation parameter, where leading order energy shifts vanish, implies the preservation of existing supersymmetry in nonlinearised supersymmetric quantum mechanics. Physically, η might be encoding relativistic effects.

  17. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Jannat, N., E-mail: nilimajannat74@gmail.com; Ferdousi, M.; Mamun, A. A. [Jahangirnagar University, Department of Physics (Bangladesh)

    2016-07-15

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg−deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  18. Ion-acoustic Gardner solitons in a four-component nonextensive multi-ion plasma

    International Nuclear Information System (INIS)

    Jannat, N.; Ferdousi, M.; Mamun, A. A.

    2016-01-01

    The nonlinear propagation of ion-acoustic (IA) solitary waves (SWs) in a four-component non-extensive multi-ion plasma system containing inertial positively charged light ions, negatively charged heavy ions, as well as noninertial nonextensive electrons and positrons has been theoretically investigated. The reductive perturbation method has been employed to derive the nonlinear equations, namely, Korteweg−deVries (KdV), modified KdV (mKdV), and Gardner equations. The basic features (viz. polarity, amplitude, width, etc.) of Gardner solitons are found to exist beyond the KdV limit and these IA Gardner solitons are qualitatively different from the KdV and mKdV solitons. It is observed that the basic features of IA SWs are modified by various plasma parameters (viz. electron and positron nonextensivity, electron number density to ion number density, and electron temperature to positron temperature, etc.) of the considered plasma system. The results obtained from this theoretical investigation may be useful in understanding the basic features of IA SWs propagating in both space and laboratory plasmas.

  19. Dispersive and damping properties of supersymmetric sound. 1

    International Nuclear Information System (INIS)

    Lebedev, V.V.; Smilga, A.V.

    1988-01-01

    It is shown that a supersymmetric medium at nonzero temperature possesses necessarily the massless fermionic collective excitation which we call phonino. Its appearance is due to the spontaneous SUSY breaking at T ≠ and is as general as the appearance of the sound. The phase velocity of phonino is C=P/E where P is the pressure and E is the energy density of the medium. The Wess-Zumino model is studied in detail. In the case of small temperature, T 2 , where g<<1 is the coupling constant, and small. The gauge supersymmetric theories are also discussed

  20. Supersymmetric hybrid inflation with non-minimal Kahler potential

    International Nuclear Information System (INIS)

    Bastero-Gil, M.; King, S.F.; Shafi, Q.

    2007-01-01

    Minimal supersymmetric hybrid inflation based on a minimal Kahler potential predicts a spectral index n s ∼>0.98. On the other hand, WMAP three year data prefers a central value n s ∼0.95. We propose a class of supersymmetric hybrid inflation models based on the same minimal superpotential but with a non-minimal Kahler potential. Including radiative corrections using the one-loop effective potential, we show that the prediction for the spectral index is sensitive to the small non-minimal corrections, and can lead to a significantly red-tilted spectrum, in agreement with WMAP

  1. Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model

    International Nuclear Information System (INIS)

    Haba, Naoyuki; Seto, Osamu

    2011-01-01

    We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.

  2. G2-structures for N  =  1 supersymmetric AdS4 solutions of M-theory

    Science.gov (United States)

    Grigorian, Sergey

    2018-04-01

    We study the N  =  1 supersymmetric solutions of D  =  11 supergravity obtained as a warped product of four-dimensional anti-de Sitter space with a seven-dimensional Riemannian manifold M. Using the octonion bundle structure on M we reformulate the Killing spinor equations in terms of sections of the octonion bundle on M. The solutions then define a single complexified G 2-structure on M or equivalently two real G 2-structures. We then study the torsion of these G 2-structures and the relationships between them.

  3. Second Hopf map and supersymmetric mechanics with Yang monopole

    International Nuclear Information System (INIS)

    Gonzales, M.; Toppan, F.; Kuznetsova, Z.; Nersessian, F.; Yeghikyan, V.

    2009-01-01

    We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)

  4. Supersymmetric contributions to the decay of an extra Z boson

    International Nuclear Information System (INIS)

    Gherghetta, T.; Kaeding, T.A.; Kane, G.L.

    1998-01-01

    We analyze in detail the supersymmetric contributions to the decay of an extra Z boson in effective rank 5 models, including the important effect of D terms on sfermion masses. The inclusion of supersymmetric decay channels will reduce the Z ' branching ratio to standard model particles, resulting in lower Z ' mass limits than those often quoted. In particular, the supersymmetric parameter space motivated by the recent Fermilab eeγγ event and other suggestive evidence results in a branching fraction B(Z ' →e + e - )≅2 endash 4%. The expected cross sections and branching ratios could give a few events in the present data and we speculate on the connection to the three e + e - events observed at Fermilab with large dielectron invariant mass. copyright 1998 The American Physical Society

  5. Structure of UV divergences in maximally supersymmetric gauge theories

    Science.gov (United States)

    Kazakov, D. I.; Borlakov, A. T.; Tolkachev, D. M.; Vlasenko, D. E.

    2018-06-01

    We consider the UV divergences up to sub-subleading order for the four-point on-shell scattering amplitudes in D =8 supersymmetric Yang-Mills theory in the planar limit. We trace how the leading, subleading, etc divergences appear in all orders of perturbation theory. The structure of these divergences is typical for any local quantum field theory independently on renormalizability. We show how the generalized renormalization group equations allow one to evaluate the leading, subleading, etc. contributions in all orders of perturbation theory starting from one-, two-, etc. loop diagrams respectively. We focus then on subtraction scheme dependence of the results and show that in full analogy with renormalizable theories the scheme dependence can be absorbed into the redefinition of the couplings. The only difference is that the role of the couplings play dimensionless combinations like g2s2 or g2t2, where s and t are the Mandelstam variables.

  6. Supersymmetric gauged scale covariance in ten and lower dimensions

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash

    2004-01-01

    We present globally supersymmetric models of gauged scale covariance in ten, six, and four dimensions. This is an application of a recent similar gauging in three dimensions for a massive self-dual vector multiplet. In ten dimensions, we couple a single vector multiplet to another vector multiplet, where the latter gauges the scale covariance of the former. Due to scale covariance, the system does not have a Lagrangian formulation, but has only a set of field equations, like Type IIB supergravity in ten dimensions. As by-products, we construct similar models in six dimensions with N=(2,0) supersymmetry, and four dimensions with N=1 supersymmetry. We finally get a similar model with N=4 supersymmetry in four dimensions with consistent interactions that have never been known before. We expect a series of descendant theories in dimensions lower than ten by dimensional reductions. This result also indicates that similar mechanisms will work for other vector and scalar multiplets in space-time lower than ten dimensions

  7. Quantum integrability and supersymmetric vacua

    International Nuclear Information System (INIS)

    Nekrasov, Nikita; Shatashvili, Samson

    2009-01-01

    Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)

  8. Precision calculations in supersymmetric extensions of the Standard Model

    International Nuclear Information System (INIS)

    Slavich, P.

    2013-01-01

    This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)

  9. Globally and locally supersymmetric effective theories for light fields

    CERN Document Server

    Brizi, Leonardo; Scrucca, Claudio A

    2009-01-01

    We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...

  10. Coexistence of supersymmetric and supersymmetry-breaking states in spherical spin-glasses

    International Nuclear Information System (INIS)

    Annibale, Alessia; Gualdi, Giulia; Cavagna, Andrea

    2004-01-01

    The structure of states of the perturbed p-spin spherical spin-glass is analysed. At low enough free energy, metastable states have a supersymmetric structure, while at higher free energies the supersymmetry is broken. The transition between the supersymmetric and the supersymmetry-breaking phase is triggered by a change in the stability of states

  11. Searches for supersymmetric partners of third-generation quarks with CMS

    CERN Document Server

    Jansova, Marketa

    2017-01-01

    Supersymmetric partners of top and bottom quarks are among the most promising candidates for the next-to-lightest supersymmetric particle. Searches for the pair production of top and bottom squarks have been performed in final states with 0, 1, or 2 charged leptons, jets, and missing transverse energy. The results are obtained using proton-proton collisions at $\\sqrt{s}$ = 13 TeV, recorded by the CMS experiment in 2016.

  12. Extended supersymmetric BMS{sub 3} algebras and their free field realisations

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Nabamita [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India); Jatkar, Dileep P. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad, 211019 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Lodato, Ivano; Mukhi, Sunil; Neogi, Turmoli [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India)

    2016-11-09

    We study N=(2,4,8) supersymmetric extensions of the three dimensional BMS algebra (BMS{sub 3}) with most generic possible central extensions. We find that N-extended supersymmetric BMS{sub 3} algebras can be derived by a suitable contraction of two copies of the extended superconformal algebras. Extended algebras from all the consistent contractions are obtained by scaling left-moving and right-moving supersymmetry generators symmetrically, while Virasoro and R-symmetry generators are scaled asymmetrically. On the way, we find that the BMS/GCA correspondence does not in general hold for supersymmetric systems. Using the β-γ and the b-c systems, we construct free field realisations of all the extended super-BMS{sub 3} algebras.

  13. Applications of supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Rietdijk, R.H.

    1992-01-01

    The central subject of the thesis is the spinning particle model. It is a theory describing in a pseudoclassical way a Dirac particle which moves in an arbitrary d-dimensional space-time.In addition to space-time coordinates, the particle has spin which is described in terms of anti-commuting coordinates. Along the particles world line there is a super-symmetry between the fermionic spin variables and the bosonic position coordinates of the particle. It is straightforward to quantisize this model giving rise to supersymmetric quantum mechanics. The model does indeed describe a particle with spin 1/2, like a quark or an electron. There are two aspects of this model which is studied extensively in this thesis. First, to investigate the symmetries of the spinning particle on an arbitrary Riemannian manifold. Second, attention is drawn to the application of supersymmetric quantum mechanical models (i.e. spinning particle models) defined on an arbitrary Riemannian manifold to the calculation of anomalies in quantum field theories defined on the same manifold. (author). 49 refs.; 7 figs

  14. Higher-order predictions for supersymmetric particle decays

    Energy Technology Data Exchange (ETDEWEB)

    Landwehr, Ananda Demian Patrick

    2012-06-12

    We analyze particle decays including radiative corrections at the next-to-leading order (NLO) within the Minimal Supersymmetric Standard Model (MSSM). If the MSSM is realized at the TeV scale, squark and gluino production and decays yield relevant rates at the LHC. Hence, in the first part of this thesis, we compute decay widths including QCD and electroweak NLO corrections to squark and gluino decays. Furthermore, the Higgs sector of the MSSM is enhanced compared to the one of the Standard Model. Thus, the additional Higgs bosons decay also into supersymmetric particles. These decays and the according NLO corrections are analyzed in the second part of this thesis. The calculations are performed within a common renormalization framework and numerically evaluated in specific benchmark scenarios.

  15. Supersymmetric construction of exactly solvable potentials and nonlinear algebras

    International Nuclear Information System (INIS)

    Junker, G.; Roy, P.

    1998-01-01

    Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator

  16. Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ensign, P.W.

    1987-01-01

    By the Adler-Bardeen theorem, only one-loop Feynman diagrams contribute to the anomalous divergences of quantum axial currents. The anomalous nature of scale transformations is manifested by an anomalous trace of the energy-momentum tensor, T/sup μ//sub μ/. Renormalization group arguments show that the quantum T/sup μ//sub μ/ must be proportional to the β-function. Since the β-function receives contributions at all loop levels, the Adler-Bardeen theorem appears to conflict with supersymmetry. Recently Grisaru, Milewski and Zanon constructed a supersymmetric axial current for pure supersymmetric Yang-Mills theory which satisfies the Adler-Bardeen theorem to two-loops. They used supersymmetric background field theory and regularization by dimensional reduction to maintain manifest supersymmetry and gauge invariance. In this thesis, their construction is extended to supersymmetric Yang-Mills theory coupled to chiral matter fields. The Adler-Bardeen theorem is then proven to all orders in perturbation theory for both the pure and coupled theories. The extension to coupled supersymmetric Yang-Mills supports the general validity of these techniques, and adds considerable insight into the structure of the anomalies. The all orders proof demonstrates that there is no conflict between supersymmetry and the Adler-Bardeen theorem

  17. Defect networks and supersymmetric loop operators

    Energy Technology Data Exchange (ETDEWEB)

    Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)

    2015-02-10

    We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.

  18. A constrained supersymmetric left-right model

    Energy Technology Data Exchange (ETDEWEB)

    Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)

    2016-03-02

    We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.

  19. The supersymmetric Dirac equation the application to hydrogenic atoms

    CERN Document Server

    Hirshfeld, Allen

    2012-01-01

    The solution of the Dirac equation for an electron in a Coulomb field is systematically treated here by utilizing new insights provided by supersymmetry. It is shown that each of the concepts has its analogue in the non-relativistic case. Indeed, the non-relativistic case is developed first, in order to introduce the new concepts in a familiar context. The symmetry of the non-relativistic model is already present in the classical limit, so the classical Kepler problem is first discussed in order to bring out the role played by the Laplace vector, one of the central concepts of the whole book.

  20. Supersymmetric quantum mechanics in three-dimensional space, 1

    International Nuclear Information System (INIS)

    Ui, Haruo

    1984-01-01

    As a direct generalization of the model of supersymmetric quantum mechanics by Witten, which describes the motion of a spin one-half particle in the one-dimensional space, we construct a model of the supersymmetric quantum mechanics in the three-dimensional space, which describes the motion of a spin one-half particle in central and spin-orbit potentials in the context of the nonrelativistic quantum mechanics. With the simplest choice of the (super) potential, this model is shown to reduce to the model of the harmonic oscillator plus constant spin-orbit potential of unit strength of both positive and negative signs, which was studied in detail in our recent paper in connection with ''accidental degeneracy'' as well as the ''graded groups''. This simplest model is discussed in some detail as an example of the three-dimensional supersymmetric quantum mechanical system, where the supersymmetry is an exact symmetry of the system. More general choice of a polynomial superpotential is also discussed. It is shown that the supersymmetry cannot be spontaneously broken for any polynomial superpotential in our three-dimensional model; this result is contrasted to the corresponding one in the one-dimensional model. (author)

  1. Generalized symmetries of an 𝓝 = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system

    Science.gov (United States)

    Wang, Jian-Yong; Tang, Xiao-Yan; Liang, Zu-Feng; Lou, Sen-Yue

    2015-05-01

    The formal series symmetry approach (FSSA), a quite powerful and straightforward method to establish infinitely many generalized symmetries of classical integrable systems, has been successfully extended in the supersymmetric framework to explore series of infinitely many generalized symmetries for supersymmetric systems. Taking the 𝒩 = 1 supersymmetric Boiti-Leon-Manna-Pempinelli system as a concrete example, it is shown that the application of the extended FSSA to this supersymmetric system leads to a set of infinitely many generalized symmetries with an arbitrary function f (t). Some interesting special cases of symmetry algebras are presented, including a limit case f (t) = 1 related to the commutativity of higher order generalized symmetries. Project supported by the National Natural Science Foundation of China (Grant Nos. 11275123, 11175092, 11475052, and 11435005), the Shanghai Knowledge Service Platform for Trustworthy Internet of Things, China (Grant No. ZF1213), and the Talent Fund and K CWong Magna Fund in Ningbo University, China.

  2. Hamiltonian reduction and supersymmetric mechanics with Dirac monopole

    International Nuclear Information System (INIS)

    Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen

    2006-01-01

    We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out

  3. Supersymmetric SO(10) models inspired by deconstruction

    International Nuclear Information System (INIS)

    Huang Chaoshang; Jiang Jing; Li Tianjun

    2004-01-01

    We consider 4-dimensional N=1 supersymmetric SO(10) models inspired by deconstruction of 5-dimensional N=1 supersymmetric orbifold SO(10) models and high-dimensional non-supersymmetric SO(10) models with Wilson line gauge symmetry breaking. We discuss the SO(10)xSO(10) models with bi-fundamental link fields where the gauge symmetry can be broken down to the Pati-Salam, SU(5)xU(1), flipped SU(5)xU(1)' or the Standard Model like gauge symmetry. We also propose an SO(10)xSO(6)xSO(4) model with bi-fundamental link fields where the gauge symmetry is broken down to the Pati-Salam gauge symmetry, and an SO(10)xSO(10) model with bi-spinor link fields where the gauge symmetry is broken down to the flipped SU(5)xU(1)' gauge symmetry. In these two models, the Pati-Salam and flipped SU(5)xU(1)' gauge symmetry can be further broken down to the Standard Model gauge symmetry, the doublet-triplet splittings can be obtained by the missing partner mechanism, and the proton decay problem can be solved. We also study the gauge coupling unification. We briefly comment on the interesting variation models with gauge groups SO(10)xSO(6) and SO(10)xflippedSU(5)xU(1)' in which the proton decay problem can be solved

  4. Predictions for mt and MW in minimal supersymmetric models

    International Nuclear Information System (INIS)

    Buchmueller, O.; Ellis, J.R.; Flaecher, H.; Isidori, G.

    2009-12-01

    Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m t , and the W boson mass, m W . We find that the supersymmetric predictions for both m t and m W , obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)

  5. Supersymmetric gauged double field theory: systematic derivation by virtue of twist

    International Nuclear Information System (INIS)

    Cho, Wonyoung; Fernández-Melgarejo, J.J.; Jeon, Imtak; Park, Jeong-Hyuck

    2015-01-01

    In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the D=10 ungauged maximal and half-maximal supersymmetric double field theories constructed previously within the so-called semi-covariant formalism. The twisting ansatz may not satisfy the section condition. Nonetheless, all the features of the semi-covariant formalism, including its complete covariantizability, are still valid after the twist under alternative consistency conditions. The twist allows gaugings as supersymmetry preserving deformations of the D=10 untwisted theories after Scherk-Schwarz-type dimensional reductions. The maximal supersymmetric twist requires an extra condition to ensure both the Ramond-Ramond gauge symmetry and the 32 supersymmetries unbroken.

  6. Supersymmetric black holes in AdS4 from very special geometry

    International Nuclear Information System (INIS)

    Gnecchi, Alessandra; Halmagyi, Nick

    2014-01-01

    Supersymmetric black holes in AdS spacetime are inherently interesting for the AdS/CFT correspondence. Within a four dimensional gauged supergravity theory coupled to vector multiplets, the only analytic solutions for regular, supersymmetric, static black holes in AdS 4 are those in the STU-model due to Cacciatori and Klemm. We study a class of U(1)-gauged supergravity theories coupled to vector multiplets which have a cubic prepotential, the scalar manifold is then a very special Kähler manifold. When the resulting very special Kähler manifold is a homogeneous space, we find analytic solutions for static, supersymmetric AdS 4 black holes with vanishing axions. The horizon geometries of our solutions are constant curvature Riemann surfaces of arbitrary genus

  7. Supersymmetric extension of the Adler-Bardeen theorem

    International Nuclear Information System (INIS)

    Novikov, V.A.; Zakharov, V.I.; Shifman, M.A.; Vainshtein, A.I.

    1985-01-01

    A supersymmetric generalization of the Adler-Bardeen theorem in SUSY gauge theories is given. We show that within the Adler-Bardeen procedure, both the conformal and axial anomalies are exhausted by one loop. (orig.)

  8. The electric dipole moment of the neutron in the left-right supersymmetric model

    International Nuclear Information System (INIS)

    Frank, M.

    1999-01-01

    We calculate the neutron electric dipole moment (EDM) in the left-right supersymmetric model, including one-loop contributions from the chargino, the neutralino and the gluino diagrams. We discuss the dependence of the EDM on the phases of the model, as well as on the mass parameters in the left and right sectors. The neutron EDM imposes different conditions on the supersymmetric spectrum from either the electron EDM, or the neutron EDM in the minimal supersymmetric standard model. The neutron EDM may be a clue to an extended gauge structure in supersymmetry. (author)

  9. Supersymmetric hadronic mechanics and procedures for isosupersymmetrization

    International Nuclear Information System (INIS)

    Ntibashirakandi, L.; Callebaut, D.K.

    1994-01-01

    In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs

  10. Higgs bosons in supersymmetric models. Pt. 1

    International Nuclear Information System (INIS)

    Gunion, J.F.

    1986-01-01

    We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)

  11. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  12. Inverse scattering with supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Baye, Daniel; Sparenberg, Jean-Marc

    2004-01-01

    The application of supersymmetric quantum mechanics to the inverse scattering problem is reviewed. The main difference with standard treatments of the inverse problem lies in the simple and natural extension to potentials with singularities at the origin and with a Coulomb behaviour at infinity. The most general form of potentials which are phase-equivalent to a given potential is discussed. The use of singular potentials allows adding or removing states from the bound spectrum without contradicting the Levinson theorem. Physical applications of phase-equivalent potentials in nuclear reactions and in three-body systems are described. Derivation of a potential from the phase shift at fixed orbital momentum can also be performed with the supersymmetric inversion by using a Bargmann-type approximation of the scattering matrix or phase shift. A unique singular potential without bound states can be obtained from any phase shift. A limited number of bound states depending on the singularity can then be added. This inversion procedure is illustrated with nucleon-nucleon scattering

  13. Supersymmetric relations among electromagnetic dipole operators

    International Nuclear Information System (INIS)

    Graesser, Michael; Thomas, Scott

    2002-01-01

    Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β

  14. B-L violating supersymmetric couplings

    International Nuclear Information System (INIS)

    Ramond, P.

    1983-01-01

    We consider two problems: one is the possible effect of the breaking of Peccei-Quinn symmetry on the inflationary universe scenario; the other is the remark that even the minimal supersymmetric SU 5 theory contains B-L violating couplings which give rise to neutrino masses and family-diagonal proton decay. However the strength of these couplings is limited by the gauge hierarchy

  15. Supersymmetric many-particle quantum systems with inverse-square interactions

    International Nuclear Information System (INIS)

    Ghosh, Pijush K

    2012-01-01

    The development in the study of supersymmetric many-particle quantum systems with inverse-square interactions is reviewed. The main emphasis is on quantum systems with dynamical OSp(2|2) supersymmetry. Several results related to the exactly solved supersymmetric rational Calogero model, including shape invariance, equivalence to a system of free superoscillators and non-uniqueness in the construction of the Hamiltonian, are presented in some detail. This review also includes a formulation of pseudo-Hermitian supersymmetric quantum systems with a special emphasis on the rational Calogero model. There are quite a few number of many-particle quantum systems with inverse-square interactions which are not exactly solved for a complete set of states in spite of the construction of infinitely many exact eigenfunctions and eigenvalues. The Calogero–Marchioro model with dynamical SU(1, 1|2) supersymmetry and a quantum system related to the short-range Dyson model belong to this class and certain aspects of these models are reviewed. Several other related and important developments are briefly summarized. (topical review)

  16. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    International Nuclear Information System (INIS)

    McGarrie, Moritz

    2013-03-01

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  17. 5D maximally supersymmetric Yang-Mills in 4D superspace. Applications

    Energy Technology Data Exchange (ETDEWEB)

    McGarrie, Moritz

    2013-03-15

    We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.

  18. Exact Solutions of a High-Order Nonlinear Wave Equation of Korteweg-de Vries Type under Newly Solvable Conditions

    Directory of Open Access Journals (Sweden)

    Weiguo Rui

    2014-01-01

    Full Text Available By using the integral bifurcation method together with factoring technique, we study a water wave model, a high-order nonlinear wave equation of KdV type under some newly solvable conditions. Based on our previous research works, some exact traveling wave solutions such as broken-soliton solutions, periodic wave solutions of blow-up type, smooth solitary wave solutions, and nonsmooth peakon solutions within more extensive parameter ranges are obtained. In particular, a series of smooth solitary wave solutions and nonsmooth peakon solutions are obtained. In order to show the properties of these exact solutions visually, we plot the graphs of some representative traveling wave solutions.

  19. Supersymmetric asymptotic safety is not guaranteed

    DEFF Research Database (Denmark)

    Intriligator, Kenneth; Sannino, Francesco

    2015-01-01

    in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...

  20. Quantization conditions and functional equations in ABJ(M) theories

    International Nuclear Information System (INIS)

    Grassi, Alba; Marino, Marcos; Hatsuda, Yasuyuki

    2014-12-01

    The partition function of ABJ(M) theories on the three-sphere can be regarded as the canonical partition function of an ideal Fermi gas with a non-trivial Hamiltonian. We propose an exact expression for the spectral determinant of this Hamiltonian, which generalizes recent results obtained in the maximally supersymmetric case. As a consequence, we find an exact WKB quantization condition determining the spectrum which is in agreement with numerical results. In addition, we investigate the factorization properties and functional equations for our conjectured spectral determinants. These functional equations relate the spectral determinants of ABJ theories with consecutive ranks of gauge groups but the same Chern-Simons coupling.

  1. Supersymmetric Hybrid Inflation with Non-Minimal Kähler potential

    CERN Document Server

    Bastero-Gil, M; Shafi, Q

    2007-01-01

    Minimal supersymmetric hybrid inflation based on a minimal Kahler potential predicts a spectral index n_s\\gsim 0.98. On the other hand, WMAP three year data prefers a central value n_s \\approx 0.95. We propose a class of supersymmetric hybrid inflation models based on the same minimal superpotential but with a non-minimal Kahler potential. Including radiative corrections using the one-loop effective potential, we show that the prediction for the spectral index is sensitive to the small non-minimal corrections, and can lead to a significantly red-tilted spectrum, in agreement with WMAP.

  2. Finiteness of Ricci flat supersymmetric non-linear sigma-models

    International Nuclear Information System (INIS)

    Alvarez-Gaume, L.; Ginsparg, P.

    1985-01-01

    Combining the constraints of Kaehler differential geometry with the universality of the normal coordinate expansion in the background field method, we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear sigma-models with target space an arbitrary riemannian manifold M. We show that the constraint of N=2 supersymmetry requires that all counterterms to the metric beyond one-loop order are cohomologically trivial. It follows that such supersymmetric non-linear sigma-models defined on locally symmetric spaces are super-renormalizable and that N=4 models are on-shell ultraviolet finite to all orders of perturbation theory. (orig.)

  3. Supersymmetric SU(11), the invisible axion, and proton decay

    International Nuclear Information System (INIS)

    Alwis, S.P. de; Kim, J.E.

    1981-09-01

    We supersymmetrize the very attractive flavour unification model SU(11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (tausub(p) is approximately 10 33 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a unique U(1)sub(A) symmetry, and hence there are no true Nambu-Goldstone bosons. The U(1)sub(A) is broken at the GUT scale and there result an invisible axion and neutrino masses. (author)

  4. Electric dipole moments as a test of supersymmetric unification

    CERN Document Server

    Dimopoulos, Savas K; Dimopoulos, S; Hall, L J

    1995-01-01

    In a class of supersymmetric grand unified theories, including those based on the gauge group SO(10), there are new contributions to the electric dipole moments of the neutron and electron, which arise as a heavy top quark effect. These contributions arise from CKM-like phases, not from phases of the supersymmetry breaking operators, and can be reliably computed in terms of the parameters of the weak scale supersymmetric theory. For the expected ranges of these parameters, the electric dipole moments of the neutron and the electron are predicted to be close to present experimental limits.

  5. Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Ensign, P.; Mahanthappa, K.T.

    1987-01-01

    We construct the supercurrent and a supersymmetric current which satisfies the Adler-Bardeen theorem in supersymmetric Yang-Mills theory coupled to non-self-interacting chiral matter. Using the formulation recently developed by Grisaru, Milewski, and Zanon, supersymmetry and gauge invariance are maintained with supersymmetric background-field theory and regularization by dimensional reduction. We verify the finiteness of the supercurrent to one loop, and the Adler-Bardeen theorem to two loops by explicit calculations in the minimal-subtraction scheme. We then demonstrate the subtraction-scheme independence of the one-loop Adler-Bardeen anomaly and prove the existence of a subtraction scheme in which the Adler-Bardeen theorem is satisfied to all orders in perturbation theory

  6. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)

    2017-02-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)

  7. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others

    2016-10-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.

  8. Variational identities and Hamiltonian structures

    International Nuclear Information System (INIS)

    Ma Wenxiu

    2010-01-01

    This report is concerned with Hamiltonian structures of classical and super soliton hierarchies. In the classical case, basic tools are variational identities associated with continuous and discrete matrix spectral problems, targeted to soliton equations derived from zero curvature equations over general Lie algebras, both semisimple and non-semisimple. In the super case, a supertrace identity is presented for constructing Hamiltonian structures of super soliton equations associated with Lie superalgebras. We illustrate the general theories by the KdV hierarchy, the Volterra lattice hierarchy, the super AKNS hierarchy, and two hierarchies of dark KdV equations and dark Volterra lattices. The resulting Hamiltonian structures show the commutativity of each hierarchy discussed and thus the existence of infinitely many commuting symmetries and conservation laws.

  9. Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering

    Science.gov (United States)

    Pelinovsky, Dmitry E.; Sulem, Catherine

    A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.

  10. Supersymmetric Dirac-Born-Infeld action with self-dual mass term

    International Nuclear Information System (INIS)

    Nishino, Hitoshi; Rajpoot, Subhash; Reed, Kevin

    2005-01-01

    We introduce a Dirac-Born-Infeld action to a self-dual N = 1 supersymmetric vector multiplet in three dimensions. This action is based on the supersymmetric generalized self-duality in odd dimensions developed originally by Townsend, Pilch and van Nieuwenhuizen. Even though such a self-duality had been supposed to be very difficult to generalize to a supersymmetrically interacting system, we show that the Dirac-Born-Infeld action is actually compatible with supersymmetry and self-duality in three dimensions, even though the original self-duality receives corrections by the Dirac-Born-Infeld action. The interactions can be further generalized to arbitrary (non)polynomial interactions. As a by-product, we also show that a third-rank field strength leads to a more natural formulation of self-duality in 3D. We also show an interesting role played by the third-rank field strength leading to supersymmetry breaking, in addition to accommodating a Chern-Simons form

  11. Supersymmetric gauge theories with classical groups via M theory fivebrane

    International Nuclear Information System (INIS)

    Terashima, S.

    1998-01-01

    We study the moduli space of vacua of four-dimensional N=1 and N=2 supersymmetric gauge theories with the gauge groups Sp(2N c ), SO(2N c ) and SO(2N c +1) using the M theory fivebrane. Higgs branches of the N=2 supersymmetric gauge theories are interpreted in terms of the M theory fivebrane and the type IIA s-rule is realized in it. In particular, we construct the fivebrane configuration which corresponds to a special Higgs branch root. This root is analogous to the baryonic branch root in the SU(N c ) theory which remains as a vacuum after the adjoint mass perturbation to break N=2 to N=1. Furthermore, we obtain the monopole condensations and the meson vacuum expectation values in the confining phase of N=1 supersymmetric gauge theories using the fivebrane technique. These are in complete agreement with the field theory results for the vacua in the phase with a single confined photon. (orig.)

  12. Chargino and neutralino production at the Large Hadron Collider in left-right supersymmetric models

    CERN Document Server

    Alloul, Adam; Fuks, Benjamin; Rausch de Traubenberg, Michel

    2013-10-04

    We present a complete and extensive analysis of associated chargino and neutralino production in the framework of a supersymmetric theory augmented by left-right symmetry. This model provides additional gaugino and higgsino states in both the neutral and charged sectors, thus potentially enhancing new physics signals at the LHC. For a choice of benchmark scenarios, we calculate cross sections for 7, 8 and 14 TeV. We then simulate events expected to be produced at the LHC, and classify them according to the number of leptons in the final state. We devise methods to reduce the background and compare the signals with consistently simulated events for the Minimal Supersymmetric Standard Model. We pinpoint promising scenarios where left-right symmetric supersymmetric signals can be distinguished both from background and from the Minimal Supersymmetric Standard Model events.

  13. Fermion number in supersymmetric models

    International Nuclear Information System (INIS)

    Mainland, G.B.; Tanaka, K.

    1975-01-01

    The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)

  14. Supersymmetric quantum mechanics an introduction

    CERN Document Server

    Gangopadhyaya, Asim; Rasinariu, Constantin

    2017-01-01

    We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.

  15. Supersymmetric composite models on intersecting D-branes

    International Nuclear Information System (INIS)

    Kitazawa, Noriaki

    2004-01-01

    We construct supersymmetric composite models of quarks and leptons from type IIA T6/(Z2xZ2) orientifold with intersecting D6-branes. In case of T6=T2xT2xT2 with no tilted T2, a composite model of supersymmetric SU(5) grand unified theory with four generations is constructed. In case of that one T2 is tilted, a composite model with SU(3)cxSU(2)LxU(1)Y gauge symmetry with three generations of left-handed quarks and leptons is constructed. These models are not realistic, but contain relatively fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The masses of some exotic particles are naturally generated through the Yukawa interactions among 'preons'

  16. Formal scattering theory approach to S-matrix relations in supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Amado, R.D.; Cannata, F.; Dedonder, J.P.

    1988-01-01

    Combining the methods of scattering theory and supersymmetric quantum mechanics we obtain relations between the S matrix and its supersymmetric partner. These relations involve only asymptotic quantities and do not require knowledge of the dynamical details. For example, for coupled channels with no threshold differences the relations involve the asymptotic normalization constant of the bound state removed by supersymmetry

  17. Oblique Propagation of Electrostatic Waves in a Magnetized Electron-Positron-Ion Plasma in the Presence of Heavy Particles

    Science.gov (United States)

    Sarker, M.; Hossen, M. R.; Shah, M. G.; Hosen, B.; Mamun, A. A.

    2018-06-01

    A theoretical investigation is carried out to understand the basic features of nonlinear propagation of heavy ion-acoustic (HIA) waves subjected to an external magnetic field in an electron-positron-ion plasma that consists of cold magnetized positively charged heavy ion fluids and superthermal distributed electrons and positrons. In the nonlinear regime, the Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations describing the propagation of HIA waves are derived. The latter admits a solitary wave solution with both positive and negative potentials (for K-dV equation) and only positive potential (for mK-dV equation) in the weak amplitude limit. It is observed that the effects of external magnetic field (obliqueness), superthermal electrons and positrons, different plasma species concentration, heavy ion dynamics, and temperature ratio significantly modify the basic features of HIA solitary waves. The application of the results in a magnetized EPI plasma, which occurs in many astrophysical objects (e.g. pulsars, cluster explosions, and active galactic nuclei) is briefly discussed.

  18. A Specific N=2 Supersymmetric Quantum Mechanical Model: Supervariable Approach

    Directory of Open Access Journals (Sweden)

    Aradhya Shukla

    2017-01-01

    Full Text Available By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1-dimensional N=2 supersymmetric quantum mechanical model which is considered on a (1, 2-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (θ,θ¯. We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N=2 SUSY quantum mechanical model is a model for Hodge theory.

  19. The supersymmetric Higgs pseudoscalar and its production in toponium decay

    International Nuclear Information System (INIS)

    Gamberini, G.; Giudice, G.F.; Ridolfi, G.

    1987-01-01

    In the minimal supersymmetric extension of the standard model one scalar Higgs boson is forced to be lighter than the Z 0 . We consider here the bounds, imposed by supersymmetry, on the mass of the physical Higgs pseudoscalar. It turns out that, although fairly stringent limits are found, it is still conveivable that this particle is light enough to be discovered at SLC and LEP. Its production rate in toponium decay is computed and discussed in view of the bounds on the supersymmetric Higgs sector parameters. (orig.)

  20. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  1. Upper bounds of supersymmetric particle masses in a gaugino-originated radiative breaking scenario

    International Nuclear Information System (INIS)

    Goto, T.

    1993-01-01

    The mass spectrum of supersymmetric particles is studied in the radiative breaking scenario of the minimal supersymmetric standard model, with an assumption that all soft supersymmetry-breaking parameters other than the gaugino masses are vanishing at the Planck scale. The U(1) gaugino mass M 1X is taken to be an independent parameter, while the SU(2) and SU(3) gaugino masses are supposed to be unified. Within the ''natural'' range, the whole parameter space is scanned numerically and the consistent particle mass spectra with the experimental bounds are obtained. The supersymmetric particle masses are tightly bounded above as m eR approx-lt 100 GeV, etc., if the top quark is sufficiently heavy m top approx-gt 100 GeV and the minimal grand unified theory relation for three gaugino masses is satisfied. For a large |M 1X |, there is no restriction other than the naturalness for the upper bounds of supersymmetric particle masses

  2. Half-supersymmetric solutions in five-dimensional supergravity

    International Nuclear Information System (INIS)

    Gutowski, Jan B.; Sabra, Wafic

    2007-01-01

    We present a systematic classification of half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which at least one of the Killing spinors generate a time-like Killing vector

  3. SEARCHES FOR (NON-SUPERSYMMETRIC) NEW PHYSICS

    CERN Document Server

    Brooijmans, G; The ATLAS collaboration

    2013-01-01

    Recent results from the LHC experiments in searches for non-supersymmetric new physics are presented. The LHC experiments are probing scales of order 700 GeV for vector-like quarks, 1.5-2 TeV for electroweakly produced resonances, and 3-4 TeV for quark excitations, pushing naturalness into a corner.

  4. Supersymmetric D3/D7 for holographic flavors on curved space

    International Nuclear Information System (INIS)

    Karch, Andreas; Robinson, Brandon; Uhlemann, Christoph F.

    2015-01-01

    We derive a new class of supersymmetric D3/D7 brane configurations, which allow to holographically describe N=4 SYM coupled to massive N=2 flavor degrees of freedom on spaces of constant curvature. We systematically solve the κ-symmetry condition for D7-brane embeddings into AdS_4-sliced AdS_5×S"5, and find supersymmetric embeddings in a simple closed form. Up to a critical mass, these embeddings come in surprisingly diverse families, and we present a first study of their (holographic) phenomenology. We carry out the holographic renormalization, compute the one-point functions and attempt a field-theoretic interpretation of the different families. To complete the catalog of supersymmetric D3/D7 configurations, we construct analogous embeddings for flavored N=4 SYM on S"4 and dS_4.

  5. From topological quantum field theories to supersymmetric gauge theories; Des theories quantiques de champ topologiques aux theories de jauge supersymetriques

    Energy Technology Data Exchange (ETDEWEB)

    Bossard, G

    2007-10-15

    This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the {beta} function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)

  6. Supersymmetric electro-weak effects on gsub(μ)-2

    International Nuclear Information System (INIS)

    Yuan, T.C.; Arnowitt, R.; Chamseddine, A.H.; Nath, P.

    1984-01-01

    A model independent analysis of the supersymmetric electroweak contribution to gsub(μ)-2 is discussed within the framework of N=1 Supergravity unified theory. A detailed comparison with existing experiment of two models (R.G. and T.B.) is carried out. The supersymmetric electro-weak contributions are found to be characteristically different and generally larger than the electro-weak contributions of the standard theory, and in many cases significantly larger. Effects of the hidden sector and the photino mass dependence of gsub(μ)-2 are also investigated. Present data already eliminates some choices of parameters. Reduction of existing experimental errors by a factor of 3 will make contact with most R.G. models and by a factor of 10 with most T.B. models. (orig.)

  7. F-theory Yukawa couplings and supersymmetric quantum mechanics

    International Nuclear Information System (INIS)

    Oikonomou, V.K.

    2012-01-01

    The localized fermions on the intersection curve Σ of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.

  8. Supersymmetric Majoron inflation

    Energy Technology Data Exchange (ETDEWEB)

    King, Stephen F.; Ludl, Patrick Otto [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)

    2017-03-31

    We propose supersymmetric Majoron inflation in which the Majoron field Φ responsible for generating right-handed neutrino masses may also be suitable for giving low scale “hilltop” inflation, with a discrete lepton number ℤ{sub N} spontaneously broken at the end of inflation, while avoiding the domain wall problem. In the framework of non-minimal supergravity, we show that a successful spectral index can result with small running together with small tensor modes. We show that a range of heaviest right-handed neutrino masses can be generated, m{sub N}∼10{sup 1}−10{sup 16} GeV, consistent with the constraints from reheating and domain walls.

  9. Non-Abelian, supersymmetric black holes and strings in 5 dimensions

    International Nuclear Information System (INIS)

    Meessen, Patrick; Ortín, Tomás; Ramírez, Pedro F.

    2016-01-01

    We construct and study the first supersymmetric black-hole and black-string solutions of non-Abelian-gauged N=1,d=5 supergravity (N=1,d=5 Super-Einstein-Yang-Mills theory) with non-trivial SU(2) gauge fields: BPST instantons for black holes and BPS monopoles of different kinds (’t Hooft-Polyakov, Wu-Yang and Protogenov) for black strings and also for certain black holes that are well defined solutions only for very specific values of all the moduli. Instantons, as well as colored monopoles do not contribute to the masses and tensions but do contribute to the entropies. The construction is based on the characterization of the supersymmetric solutions of gauged N=1,d=5 supergravity coupled to vector multiplets achieved in ref. http://dx.doi.org/10.1088/1126-6708/2007/08/096 which we elaborate upon by finding the rules to construct supersymmetric solutions with one additional isometry, both for the timelike and null classes. These rules automatically connect the timelike and null non-Abelian supersymmetric solutions of N=1,d=5 SEYM theory with the timelike ones of N=2,d=4 SEYM theory http://dx.doi.org/10.1103/PhysRevD.78.065031; http://dx.doi.org/10.1088/1126-6708/2008/09/099 by dimensional reduction and oxidation. In the timelike-to-timelike case the singular Kronheimer reduction recently studied in ref. http://dx.doi.org/10.1016/j.physletb.2015.04.065 plays a crucial role.

  10. Detection of Moving Targets Using Soliton Resonance Effect

    Science.gov (United States)

    Kulikov, Igor K.; Zak, Michail

    2013-01-01

    The objective of this research was to develop a fundamentally new method for detecting hidden moving targets within noisy and cluttered data-streams using a novel "soliton resonance" effect in nonlinear dynamical systems. The technique uses an inhomogeneous Korteweg de Vries (KdV) equation containing moving-target information. Solution of the KdV equation will describe a soliton propagating with the same kinematic characteristics as the target. The approach uses the time-dependent data stream obtained with a sensor in form of the "forcing function," which is incorporated in an inhomogeneous KdV equation. When a hidden moving target (which in many ways resembles a soliton) encounters the natural "probe" soliton solution of the KdV equation, a strong resonance phenomenon results that makes the location and motion of the target apparent. Soliton resonance method will amplify the moving target signal, suppressing the noise. The method will be a very effective tool for locating and identifying diverse, highly dynamic targets with ill-defined characteristics in a noisy environment. The soliton resonance method for the detection of moving targets was developed in one and two dimensions. Computer simulations proved that the method could be used for detection of singe point-like targets moving with constant velocities and accelerations in 1D and along straight lines or curved trajectories in 2D. The method also allows estimation of the kinematic characteristics of moving targets, and reconstruction of target trajectories in 2D. The method could be very effective for target detection in the presence of clutter and for the case of target obscurations.

  11. GUTs and supersymmetric GUTs in the very early universe

    International Nuclear Information System (INIS)

    Ellis, J.

    1982-10-01

    This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record

  12. The Supersymmetric Top-Ten Lists

    OpenAIRE

    Haber, Howard E.

    1993-01-01

    Ten reasons are given why supersymmetry is the leading candidate for physics beyond the Standard Model. Ultimately, the experimental discovery of supersymmetric particles at future colliders will determine whether supersymmetry is relevant for TeV scale physics. The grand hope of supersymmetry enthusiasts is to connect TeV scale supersymmetry with Planck scale physics. The ten most pressing theoretical problems standing in the way of this goal are briefly described.

  13. Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory

    International Nuclear Information System (INIS)

    Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok

    2017-01-01

    We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.

  14. Enhanced lepton flavour violation in the supersymmetric inverse seesaw

    International Nuclear Information System (INIS)

    Weiland, C

    2013-01-01

    In minimal supersymmetric seesaw models, the contribution to lepton flavour violation from Z-penguins is usually negligible. In this study, we consider the supersymmetric inverse seesaw and show that, in this case, the Z-penguin contribution dominates in several lepton flavour violating observables due to the low scale of the inverse seesaw mechanism. Among the observables considered, we find that the most constraining one is the μ-e conversion rate which is already restricting the otherwise allowed parameter space of the model. Moreover, in this framework, the Z-penguins exhibit a non-decoupling behaviour, which has previously been noticed in lepton flavour violating Higgs decays

  15. Quantum SU(2|1) supersymmetric Calogero-Moser spinning systems

    Science.gov (United States)

    Fedoruk, Sergey; Ivanov, Evgeny; Lechtenfeld, Olaf; Sidorov, Stepan

    2018-04-01

    SU(2|1) supersymmetric multi-particle quantum mechanics with additional semi-dynamical spin degrees of freedom is considered. In particular, we provide an N=4 supersymmetrization of the quantum U(2) spin Calogero-Moser model, with an intrinsic mass parameter coming from the centrally-extended superalgebra \\widehat{su}(2\\Big|1) . The full system admits an SU(2|1) covariant separation into the center-of-mass sector and the quotient. We derive explicit expressions for the classical and quantum SU(2|1) generators in both sectors as well as for the total system, and we determine the relevant energy spectra, degeneracies, and the sets of physical states.

  16. Nonlattice Simulation for Supersymmetric Gauge Theories in One Dimension

    International Nuclear Information System (INIS)

    Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo

    2007-01-01

    Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture

  17. Effects of the supersymmetric phases on the neutral Higgs sector

    International Nuclear Information System (INIS)

    Demir, D.A.

    1999-01-01

    By using the effective potential approximation and taking into account the dominant top quark and scalar top quark loops, radiative corrections to MSSM Higgs potential are computed in the presence of the supersymmetric CP-violating phases. It is found that, the lightest Higgs scalar remains essentially CP-even as in the CP-invariant theory whereas the other two scalars are heavy and do not have definite CP properties. The supersymmetric CP-violating phases are shown to modify significantly the decay rates of the scalars to fermion pairs. (author)

  18. Topological solitons in the supersymmetric Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)

    2017-01-04

    A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

  19. Pseudoclassical supersymmetrical model for 2+1 Dirac particle

    OpenAIRE

    Gitman, D. M.; Gonçalves, A. E.; Tyutin, I. V.

    1996-01-01

    A new pseudoclassical supersymmetrical model of a spinning particle in 2+1 dimensions is proposed. Different ways of its quantization are discussed. They all reproduce the minimal quantum theory of the particle.

  20. A Completeness Study on Certain 2×2 Lax Pairs Including Zero Terms

    Directory of Open Access Journals (Sweden)

    Mike C. Hay

    2011-09-01

    Full Text Available We expand the completeness study instigated in [J. Math. Phys. 50 (2009, 103516, 29 pages] which found all 2×2 Lax pairs with non-zero, separable terms in each entry of each Lax matrix, along with the most general nonlinear systems that can be associated with them. Here we allow some of the terms within the Lax matrices to be zero. We cover all possible Lax pairs of this type and find a new third order equation that can be reduced to special cases of the non-autonomous lattice KdV and lattice modified KdV equations among others.

  1. Weak nonlinear matter waves in a trapped two-component Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Yong Wenmei; Xue Jukui

    2008-01-01

    The dynamics of the weak nonlinear matter solitary waves in two-component Bose-Einstein condensates (BEC) with cigar-shaped external potential are investigated analytically by a perturbation method. In the small amplitude limit, the two-components can be decoupled and the dynamics of solitary waves are governed by a variable-coefficient Korteweg-de Vries (KdV) equation. The reduction to the KdV equation may be useful to understand the dynamics of nonlinear matter waves in two-component BEC. The analytical expressions for the evolution of soliton, emitted radiation profiles and soliton oscillation frequency are also obtained

  2. Search for supersymmetric particles with R-parity violation

    International Nuclear Information System (INIS)

    Jacquet, M.

    1995-12-01

    Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e + e - collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic Ζ decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs

  3. Anomaly matching conditions and the moduli space of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    Dotti, G.; Manohar, A.V.

    1998-01-01

    The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case. (orig.)

  4. Bardeen-anomaly and Wess-Zumino term in the supersymmetric standard model

    CERN Document Server

    Ferrara, Sergio; Porrati, Massimo; Stora, Raymond Félix

    1994-01-01

    We construct the Bardeen anomaly and its related Wess-Zumino term in the supersymmetric standard model. In particular we show that it can be written in terms of a composite linear superfield related to supersymmetrized Chern-Simons forms, in very much the same way as the Green-Schwarz term in four-dimensional string theory. Some physical applications, such as the contribution to the g-2 of gauginos when a heavy top is integrated out, are briefly discussed.

  5. Supersymmetric theories of neutrino dark energy

    International Nuclear Information System (INIS)

    Fardon, Rob; Nelson, Ann E.; Weiner, Neal

    2006-01-01

    We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos

  6. The rho-parameter in supersymmetric models

    International Nuclear Information System (INIS)

    Lim, C.S.; Inami, T.; Sakai, N.

    1983-10-01

    The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)

  7. Massive and massless supersymmetric black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ortin, T. [European Organization for Nuclear Research, Geneva (Switzerland). TH-Div.

    1998-02-01

    We give a brief overview of black-hole solutions in supergravity theories and their extremal and supersymmetric limits. We also address problems like cosmic censorship and no-hair theorems in supergravity theories. While supergravity by itself seems not to be enough to enforce cosmic censorhip and absence of primary scalar hair, superstring theory may be. (orig.). 17 refs.

  8. The gauge-invariant N=2 supersymmetric sigma-model with general scalar potential

    International Nuclear Information System (INIS)

    Sierra, G.; Townsend, P.K.

    1984-01-01

    We construct the supersymmetric sigma-model, in six dimensions, for an arbitrary hyper-Kaehler manifold, and its minimal coupling to super-Yang-Mills theory. Non-trivial reduction to five or four dimensions yields the corresponding five- or four-dimensional N=2 supersymmetric model with general scalar potential. We discuss briefly the coupling to supergravity in six dimensions and we give the on-shell supergravity torsion constraints. (orig.)

  9. Kinetic treatment of nonlinear ion-acoustic waves in multi-ion plasma

    Science.gov (United States)

    Ahmad, Zulfiqar; Ahmad, Mushtaq; Qamar, A.

    2017-09-01

    By applying the kinetic theory of the Valsove-Poisson model and the reductive perturbation technique, a Korteweg-de Vries (KdV) equation is derived for small but finite amplitude ion acoustic waves in multi-ion plasma composed of positive and negative ions along with the fraction of electrons. A correspondent equation is also derived from the basic set of fluid equations of adiabatic ions and isothermal electrons. Both kinetic and fluid KdV equations are stationary solved with different nature of coefficients. Their differences are discussed both analytically and numerically. The criteria of the fluid approach as a limiting case of kinetic theory are also discussed. The presence of negative ion makes some modification in the solitary structure that has also been discussed with its implication at the laboratory level.

  10. Generalized Hermite polynomials in superspace as eigenfunctions of the supersymmetric rational CMS model

    CERN Document Server

    Desrosiers, P; Mathieu, P; Desrosiers, Patrick; Lapointe, Luc; Mathieu, Pierre

    2003-01-01

    We present two constructions of the orthogonal eigenfunctions of the supersymmetric extension of the rational Calogero-Moser-Sutherland model with harmonic confinement. These eigenfunctions are the superspace extension of the generalized Hermite (or Hi-Jack) polynomials. The conserved quantities of the rational supersymmetric model are first related to their trigonometric relatives through a similarity transformation. This leads to a simple expression for the generalized Hermite superpolynomials as a differential operator acting on the corresponding Jack superpolynomials. The second construction relies on the action of the Hamiltonian on the supermonomial basis. This translates into determinantal expressions for the Hamiltonian's eigenfunctions. As an aside, the maximal superintegrability of the supersymmetric rational Calogero-Moser-Sutherland model is demonstrated.

  11. Supersymmetric enhancement factor for the 1-jet cross-section in p-anti p reactions

    International Nuclear Information System (INIS)

    Antoniadis, I.; Baulieu, L.; Delduc, F.

    1984-01-01

    We compare the 1-jet inclusive cross-section at high psub(perpendicular to) in proton-antiproton reaction at SPS collider predicted by standard QCD and by its simplest supersymmetric extension (SQCD). We first compute the total enhancement factor K between QCD and SQCD jets as a function of psub(perpendicular to). Then we compute the observable enhancement factor which is smaller than K since the transverse momentum of supersymmetric particles is not fully observable. We have analyzed two cases (i) psub(perpendicular to) is small compared to the masses of squarks and only light gluinos (2 GeV) are considered (ii) psub(perpendicular to) is large compared to the masses of squarks (17 GeV in our analysis) and both gluinos and squarks are taken into account. The observable enhancement factor between QCD and SQCD is found to be small (of order 1.3 to 1.5 for psub(perpendicular to)=100 GeV). Missing psub(perpendicular to) events with one ordinary jet and one jet due to the production of a supersymmetric particle are found to be non negligible with respect to those with two supersymmetric jets. We also display some interesting supersymmetric relations among parton cross-sections. (orig.)

  12. Analytical solution to DGLAP integro-differential equation in a simple toy-model with a fixed gauge coupling

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Gustavo [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Concepcion Univ. (Chile). Dept. de Fisica; Cvetic, Gorazd [Univ. Tecnica Federico Santa Maria, Valparaiso (Chile). Dept. de Fisica; Kniehl, Bernd A. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Kondrashuk, Igor [Univ. del Bio-Bio, Chillan (Chile). Grupo de Matematica Aplicada; Univ. del Bio-Bio, Chillan (Chile). Grupo de Fisica de Altas Energias; Parra-Ferrada, Ivan [Talca Univ. (Chile). Inst. de Matematica y Fisica

    2016-11-15

    We consider a simple model for QCD dynamics in which DGLAP integro-differential equation may be solved analytically. This is a gauge model which possesses dominant evolution of gauge boson (gluon) distribution and in which the gauge coupling does not run. This may be N=4 supersymmetric gauge theory with softly broken supersymmetry, other finite supersymmetric gauge theory with lower level of supersymmetry, or topological Chern-Simons field theories. We maintain only one term in the splitting function of unintegrated gluon distribution and solve DGLAP analytically for this simplified splitting function. The solution is found by use of the Cauchy integral formula. The solution restricts form of the unintegrated gluon distribution as function of transfer momentum and of Bjorken x. Then we consider an almost realistic splitting function of unintegrated gluon distribution as an input to DGLAP equation and solve it by the same method which we have developed to solve DGLAP equation for the toy-model. We study a result obtained for the realistic gluon distribution and find a singular Bessel-like behaviour in the vicinity of the point x=0 and a smooth behaviour in the vicinity of the point x=1.

  13. Constrained Supersymmetric Flipped SU(5) GUT Phenomenology

    CERN Document Server

    Ellis, John; Olive, Keith A

    2011-01-01

    We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...

  14. Supersymmetric solutions of N =(1 ,1 ) general massive supergravity

    Science.gov (United States)

    Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.

    2018-05-01

    We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.

  15. Exact Results in Non-Supersymmetric Large N Orientifold Field Theories

    CERN Document Server

    Armoni, Adi; Veneziano, Gabriele

    2003-01-01

    We consider non-supersymmetric large N orientifold field theories. Specifically, we discuss a gauge theory with a Dirac fermion in the anti-symmetric tensor representation. We argue that, at large N and in a large part of its bosonic sector, this theory is non-perturbatively equivalent to N=1 SYM, so that exact results established in the latter (parent) theory also hold in the daughter orientifold theory. In particular, the non-supersymmetric theory has an exactly calculable bifermion condensate, exactly degenerate parity doublets, and a vanishing cosmological constant (all this to leading order in 1/N).

  16. Supersymmetric quantum mechanics: another nontrivial quantum superpotential

    International Nuclear Information System (INIS)

    Cervero, J.M.

    1991-01-01

    A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)

  17. Solitons and Weakly Nonlinear Waves in Plasmas

    DEFF Research Database (Denmark)

    Pécseli, Hans

    1985-01-01

    Theoretical descriptions of solitons and weakly nonlinear waves propagating in plasma media are reviewed, with particular attention to the Korteweg-de Vries (KDV) equation and the Nonlinear Schrödinger equation (NLS). The modifications of these basic equations due to the effects of resonant...

  18. Compressive and rarefactive dust-ion-acoustic Gardner solitons in a multi-component dusty plasma

    International Nuclear Information System (INIS)

    Ema, S. A.; Ferdousi, M.; Mamun, A. A.

    2015-01-01

    The linear and nonlinear propagations of dust-ion-acoustic solitary waves (DIASWs) in a collisionless four-component unmagnetized dusty plasma system containing nonextensive electrons, inertial negative ions, Maxwellian positive ions, and negatively charged static dust grains have been investigated theoretically. The linear properties are analyzed by using the normal mode analysis and the reductive perturbation method is used to derive the nonlinear equations, namely, the Korteweg-de Vries (K-dV), the modified K-dV (mK-dV), and the Gardner equations. The basic features (viz., polarity, amplitude, width, etc.) of Gardner solitons (GS) are found to exist beyond the K-dV limit and these dust-ion-acoustic GS are qualitatively different from the K-dV and mK-dV solitons. It is observed that the basic features of DIASWs are affected by various plasma parameters (viz., electron nonextensivity, negative-to-positive ion number density ratio, electron-to-positive ion number density ratio, electron-to-positive ion temperature ratio, etc.) of the considered plasma system. The findings of our results obtained from this theoretical investigation may be useful in understanding the nonlinear structures and the characteristics of DIASWs propagating in both space and laboratory plasmas

  19. Supersymmetric localization for BPS black hole entropy: 1-loop partition function from vector multiplets

    International Nuclear Information System (INIS)

    Gupta, Rajesh Kumar; Ito, Yuto; Jeon, Imtak

    2015-01-01

    We use the techniques of supersymmetric localization to compute the BPS black hole entropy in N=2 supergravity. We focus on the n_v+1 vector multiplets on the black hole near horizon background which is AdS_2× S"2 space. We find the localizing saddle point of the vector multiplets by solving the localization equations, and compute the exact one-loop partition function on the saddle point. Furthermore, we propose the appropriate functional integration measure. Through this measure, the one-loop determinant is written in terms of the radius of the physical metric, which depends on the localizing saddle point value of the vector multiplets. The result for the one-loop determinant is consistent with the logarithmic corrections to the BPS black hole entropy from vector multiplets.

  20. Supersymmetric states in M5/M2 CFTs

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz

    2007-01-01

    We propose an exact, finite N formula for the partition function over 1/4 th BPS states in the conformal field theory on the world volume of N coincident M5 branes, and 1/8 th BPS states in the theory of N conincident M2 branes. We obtain our partition function by performing the radial quantization of the Coulomb Branches of these theories and rederive the same formula from the quantization of supersymmetric giant and dual giant gravitons in AdS 7 x S 4 and AdS 4 x S 7 . Our partition function is qualitatively similar to the analogous quantity in N = 4 Yang Mills. It reduces to the sum over supersymmetric multi gravitons at low energies, but deviates from this supergravity formula at energies that scale like a positive power of N