SO(10) supersymmetric grand unified theories
Dermisek, Radovan
The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Supersymmetric grand unified theories and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1983-01-01
By examining the behavior of supersymmetric grand unified theories (GUT's) in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUT's. In the second class of models, the superheavy GUT scale is related to the supersymmetry-breaking scale in the manner of Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out
Softening the supersymmetric flavor problem in orbifold grand unified theories
International Nuclear Information System (INIS)
Kajiyama, Yuji; Terao, Haruhiko; Kubo, Jisuke
2004-01-01
The infrared attractive force of the bulk gauge interactions is applied to soften the supersymmetric flavor problem in the orbifold SU(5) grand unified theory of Kawamura. Then this force aligns in the infrared regime the soft supersymmetry breaking terms out of their anarchical disorder at a fundamental scale, in such a way that flavor-changing neutral currents as well as dangerous CP-violating phases are suppressed at low energies. It is found that this dynamical alignment is sufficiently good compared with the current experimental bounds, as long as the diagonalization matrices of the Yukawa couplings are CKM-like
Gauge hierarchy in an SO(10) supersymmetric grand unified model
International Nuclear Information System (INIS)
Zhiyong, Z.
1982-01-01
An SO(10) supersymmetric grand unified model is constructed in which the gauge hierarchy problem may be solved. Using Higgs superfields belonging to the SO(10) representations 16, 10 and 54, it is found that if SO(10) is broken down to SU(3)sub(c)xSU(2)sub(L)xU(1) via SO(6)xSO(4)approximately equal to SU(4)sub(c)xSU(2)sub(L)xSU(2)sub(R) at unification mass scales without supersymmetry breaking, the gauge hierarchy puzzle might be carried away. It is also shown that the colour-triplet Higgs, which mediates proton decay, is superheavy by an incredibly accurate, but 'natural' adjustment of parameters in the potential. (author)
Sfermion mass degeneracy, superconformal dynamics, and supersymmetric grand unified theories
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Noguchi, Tatsuya; Nakano, Hiroaki; Terao, Haruhiko
2002-01-01
We discuss issues in a scenario where hierarchical Yukawa couplings are generated through the strong dynamics of superconformal field theories (SCFTs). Independently of the mediation mechanism of supersymmetry breaking, the infrared convergence property of SCFTs can provide an interesting solution to the supersymmetric flavor problem; sfermion masses are suppressed around the decoupling scale of SCFTs and eventually become degenerate to some degree, thanks to family-independent radiative corrections governed by the gaugino masses of the minimal supersymmetric standard model (MSSM). We discuss under what conditions the degeneracy of the sfermion mass can be estimated in a simple manner. We also discuss the constraints from lepton flavor violations. We then explicitly study sfermion mass degeneracy within the framework of grand unified theories coupled to SCFTs. It is found that the degeneracy for right-handed sleptons becomes worse in the conventional SU(5) model than in the MSSM. On the other hand, in the flipped SU(5)xU(1) model, each right-handed lepton is still an SU(5) singlet, whereas the B-ino mass M 1 is determined by two independent gaugino masses of SU(5)xU(1). These two properties enable us to have an improved degeneracy for the right-handed sleptons. We also speculate on how further improvement can be obtained in the SCFT approach
On two-particle N=1 supersymmetric composite grand unified models
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1984-01-01
A class of two-particle N=1 supersymmetric composite grand unified models, satisfying the anomaly matching and cancellation conditions, n-independence and survival hypothesis is considered. A unique admissible set of the light states, containing spectator states on a par with the composite ones is found. At low mass scales this set contains exactly four families of ordinary fermions without any additional exotics. The interactions of the light states at distances greater than the compositeness radius are described by the N=1 sypersymmetric chiral grand unified model [SU(6)] 2 (or [SU(8)] 2 with a fixed set of four second-rank tensors as matter fields
Inverted hierarchy and asymptotic freedom in grand unified supersymmetric theories
International Nuclear Information System (INIS)
Aratyn, H.
1983-01-01
The interrelation between an inverted hierarchy mechanism and asymptotic freedom in supersymmetric theories is analyzed in two models for which we performed a detailed analysis of the effective potentials and effective couplings. We find it difficult to accommodate an inverted hierarchy together with asymptotic freedom for the matter-Yukawa couplings. (orig.)
Grand unified supersymmetric Higgs bosons as pseudo-Goldstone particles
International Nuclear Information System (INIS)
Barbieri, R.; Dvali, G.; Strumia, A.
1993-01-01
We reconsider the possibility that the Higgs doublet responsible for the breaking of the electroweak gauge group be quasi-Goldstone bosons of a spontaneously broken approximate global symmetry of the theory. Supersymmetric SU(5) and SO(10) gauge models are discussed. The main phenomenological consequence of this viewpoint is the possible existence at the Fermi scale of a quasi-stable particle, most likely a Lorentz scalar, with the same colour and charge as a down quark. Its existence is a generic feature of models based on SO(10). The associated phenomoenological is illustrated. We also show how the phenomenology of the minimal SU(5) theory, already proposed, gets tightly constrained by the consideration of coupling constant unification without any assumption, otherwise crucial, on the superheavy threshold effects. (orig.)
Minimal supersymmetric grand unified theory: Symmetry breaking and the particle spectrum
International Nuclear Information System (INIS)
Bajc, Borut; Melfo, Alejandra; Senjanovic, Goran; Vissani, Francesco
2004-01-01
We discuss in detail the symmetry breaking and related issues in the minimal renormalizable supersymmetric grand unified theory. We find all the possible patterns of symmetry breaking, compute the associated particle spectrum and study its impact on the physical scales of the theory. In particular, the complete mass matrices of the SU(2) doublets and the color triplets are computed in connection with the doublet-triplet splitting and the d=5 proton decay. We explicitly construct the two light Higgs doublets as a function of the Higgs superpotential parameters. This provides a framework for the analysis of phenomenological implications of the theory, to be carried out in a second paper
Supersymmetric grand unified theories from quarks to strings via SUSY GUTs
Raby, Stuart
2017-01-01
These course-tested lectures provide a technical introduction to Supersymmetric Grand Unified Theories (SUSY GUTs), as well as a personal view on the topic by one of the pioneers in the field. While the Standard Model of Particle Physics is incredibly successful in describing the known universe it is, nevertheless, an incomplete theory with many free parameters and open issues. An elegant solution to all of these quandaries is the proposed theory of SUSY GUTs. In a GUT, quarks and leptons are related in a simple way by the unifying symmetry and their electric charges are quantized, further the relative strength of the strong, weak and electromagnetic forces are predicted. SUSY GUTs additionally provide a framework for understanding particle masses and offer candidates for dark matter. Finally, with the extension of SUSY GUTs to string theory, a quantum-mechanically consistent unification of the four known forces (including gravity) is obtained. The book is organized in three sections: the first section contai...
A supersymmetric grand unified theory of flavour with PSL2(7)xSO(10)
International Nuclear Information System (INIS)
King, Stephen F.; Luhn, Christoph
2010-01-01
We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL 2 (7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL 2 (7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL 2 (7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL 2 (7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.
A non Supersymmetric SO(10) Grand Unified Model for All the Physics below $M_{GUT}$
Altarelli, Guido
2013-01-01
We present a renormalizable non supersymmetric Grand Unified SO(10) model which, at the price of a large fine tuning, is compatible with all compelling phenomenological requirements below the unification scale and thus realizes a minimal extension of the SM, unified in SO(10) and describing all known physics below $M_{GUT}$. These requirements include coupling unification at a large enough scale to be compatible with the bounds on proton decay; a Yukawa sector in agreement with all the data on quark and lepton masses and mixings and with leptogenesis as the origin of the baryon asymmetry of the Universe; an axion arising from the Higgs sector of the model, suitable to solve the strong CP problem and to account for the observed amount of Dark Matter. The above constraints imposed by the data are very stringent and single out a particular breaking chain with the Pati-Salam group at an intermediate scale $M_I\\sim10^{11}$ GeV.
Third-generation effects on fermion mass predictions in supersymmetric grand unified theories
International Nuclear Information System (INIS)
Naculich, S.G.
1993-01-01
Relations among fermion masses and mixing angles at the scale of grand unification are modified at lower energies by renormalization group running induced by gauge and Yukawa couplings. In supersymmetric theories, the b quark and τ lepton Yukawa couplings, as well as the t quark coupling, may cause significant running if tanβ, the ratio of Higgs field expectation values, is large. We present approximate analytic expressions for the scaling factors for fermion masses and CKM matrix elements induced by all three third generation Yukawa couplings. We then determine how running caused by the third generation of fermions affects the predictions arising from three possible forms for the Yukawa coupling matrices at the GUT scale: the Georgi-Jarlskog, Giudice, and Fritzsch textures
N-anti N oscillation in SO(10) and SU(6) supersymmetric grand unified models
International Nuclear Information System (INIS)
Fujimoto, Y.; Zhiyong, Z.
1982-06-01
N-anti N oscillation in SO(10) and SU(6) S.G.U.M. is considered. We find a new type of diagram leading to a faster oscillation rate than in non-supersymmetric case. It is also noted that in SO(10) S.G.U.M. with intermediate SU(4)sub(C)xSU(2)sub(L)xSU(2)sub(R) symmetry N-anti N oscillation would be highly suppressed, which may not necessarily be the case for SU(6) S.G.U.M. (author)
Aspects of extra dimensional supersymmetric unified theories
International Nuclear Information System (INIS)
Fichet, S.
2011-09-01
The purpose of this work is to investigate Grand Unified Theories (GUTs) and to make the link with passed and upcoming experiments. The structure of this thesis is as follows. In the first chapter, we will briefly review the sequence of arguments leading to the Higgs mechanism, then to the different concepts underlying physics beyond the Standard Model, and to the paradigm of extra dimensional supersymmetric grand unified theories. At each level of the argumentation, we will mention the different solutions available. The second chapter introduces more formally supersymmetry and extra dimensions, focusing in particular on the aspects of symmetry breaking. Then, in the third chapter, we present in details the two frameworks of extra dimensional theories in which we worked, called supersymmetric gauge-Higgs unification (GHU) and holographic grand unification (HGU) as well as the developments and modifications we brought to them. The fourth chapter is devoted to the low energy viability of the GHU framework, as well as its phenomenological implications. The fifth chapter presents a more generic study of the property of GUT-scale degenerate Higgs mass matrix, common to both frameworks. Finally, the sixth chapter is devoted to the viability and phenomenological implications of the HGU framework, with special emphasis on lepton flavour violation. This quantitative study takes properly into account effects of matrix anarchy, as well as exact flavour observables. The results obtained should generalize, at least qualitatively, to any other model with similar localization and supersymmetry breaking features
International Nuclear Information System (INIS)
Calibbi, L.; Faccia, A.; Masiero, A.; Vempati, S. K.
2006-01-01
We analyze the complementarity between lepton flavor violation (LFV) and LHC experiments in probing the supersymmetric (SUSY) grand unified theories (GUT) when neutrinos get a mass via the seesaw mechanism. Our analysis is performed in an SO(10) framework, where at least one neutrino Yukawa coupling is necessarily as large as the top Yukawa coupling. Our study thoroughly takes into account the whole renormalization group running, including the GUT and the right-handed neutrino mass scales, as well as the running of the observable neutrino spectrum. We find that the upcoming (MEG, SuperKEKB) and future (PRISM/PRIME, super flavor factory) LFV experiments will be able to test such SUSY framework for SUSY masses to be explored at the LHC and, in some cases, even beyond the LHC sensitivity reach
International Nuclear Information System (INIS)
Langacker, P.
1981-01-01
In this talk I discuss the present status of these theories and of their observational and experimental implications. In section II, I briefly review the standard SU 3 sup(c) x SU 2 x U 1 model of the strong and electroweak interactions. Although phenomenologically successful, the standard model leaves many questions unanswered. Some of these questions are addressed by grand unified theories, which are defined and discussed in Section III. The Georgi-Glashow SU 5 model is described, as are theories based on larger groups such as SO 10 , E 6 , or SO 16 . It is emphasized that there are many possible grand unified theories and that it is an experimental problem not only to test the basic ideas but to discriminate between models. (orig./HSI)
International Nuclear Information System (INIS)
Ellis, J.
1982-01-01
The author gives an introduction to the construction of grand unified theories on the base of the SU(3)xSU(2)xU(1) model of the strong, weak, and electromagnetic interactions. Especially he discusses the proton decay, neutrino masses and oscillations, and cosmological implications in connection with grand unified theories. (orig./HSI)
Proton decay in grand unified theories
International Nuclear Information System (INIS)
Lucha, W.
1984-01-01
Interactions which violate the conservation of baryon and lepton number represent an intrinsic part of all grand unified theories (GUTs) of strong and electroweak interactions. These new interactions - predicted within the framework of GUTs - generate B and L violating four-fermion interactions via the exchange of superheavy particles which cannot be ascribed a well-defined baryon or lepton number. The effective coupling constant of these four-fermion interactions might be large enough to make the proton decay detectable by the present generation of experiments. In this review the basic concepts of conventional as well as supersymmetric GUTs relevant for proton decay are sketched. The baryon number violating sector of grand unified theories is discussed in more detail. Special emphasis is laid on the various selection rules arising as consequences of low-energy gauge invariance and supersymmetry for proton decay. These selection rules already determine the coarse pattern of the resulting decay modes and branching ratios without any reference to or detailed knowledge of the underlying grand unified theory. Finally the numerous theoretical predictions are summarized and confronted with experiment. (Author)
Effective Higgs theories in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)
2017-09-15
The effective Higgs theories at the TeV scale in supersymmetric SU(5) grand unification models are systematically derived. Restricted to extensions on 5{sub H} containing the Higgs sector we show that only two types of real (vector-like) models and one type of chiral model are found to be consistent with perturbative grand unification. While the chiral model has been excluded by the LHC data, the fate of perturbative unification will be uniquely determined by the two classes of vector-like models. (orig.)
Stability of mass hierarchy in locally supersymmetric grand unification
International Nuclear Information System (INIS)
Nishino, H.; Helayel-Neto, J.A.; Koh, I.G.
1984-06-01
Some locally supersymmetric SU(5) grand unified models with a sliding singlet and two pairs of 5sub(tilde) and 5sub(tilde)* Higgs multiplets are considered from the viewpoint of universal baryon asymmetry and the one-loop stability of mass hierarchy. A new mechanism based on ''sliding singlet reflection symmetry'' to avoid the problem of the mass hierarchical stability is proposed. The stability is shown up to two-loop levels for some models. All order stability is also discussed. (author)
International Nuclear Information System (INIS)
Rosner, J.L.
1987-01-01
This paper reports on a pedagogical introduction that attempts to unify the strong and electroweak interactions. Unifying groups discussed include SU(5), SO(10), and E 6 . Particular attention is paid to the questions of whether the low-energy gauge group (that accessible at accelerator experiments in the foreseeable future) extends beyond SU(3) x SU(2) L x U(1). Low-energy studies of neutral-current effects, direct production of gauge bosons, and new fermions all can shed light on this question. Brief remarks are made concerning the role of monopoles, cosmic strings, baryogenesis, supersymmetry, and higher dimensions in this program
Higgsless grand unified theory breaking and trinification
International Nuclear Information System (INIS)
Carone, Christopher D.; Conroy, Justin M.
2004-01-01
Boundary conditions on an extra dimensional interval can be chosen to break bulk gauge symmetries and to reduce the rank of the gauge group. We consider this mechanism in models with gauge trinification. We determine the boundary conditions necessary to break the trinified gauge group directly down to that of the standard model. Working in an effective theory for the gauge-symmetry-breaking parameters on a boundary, we examine the limit in which the grand-unified theory-breaking-sector is Higgsless and show how one may obtain the low-energy particle content of the minimal supersymmetric standard model. We find that gauge unification is preserved in this scenario, and that the differential gauge coupling running is logarithmic above the scale of compactification. We compare the phenomenology of our model to that of four dimensional 'trinified' theories
LEP constraints on grand unified theories
International Nuclear Information System (INIS)
Sarkar, Utpal
1993-01-01
Recent developments on grand unified theories (GUTs) in the context of the LEP measurements of the coupling constants are reviewed. The three coupling constants at the electroweak scale have been measured at LEP quite precisely. One can allow these couplings to evolve with energy following the renormalization group equations for the various groups and find out whether all the coupling constants meet at any energy. It was pointed out that the minimal SU(5) grand unified theory fails to satisfy this test. However, various extensions of the theory are still allowed. These extensions include (i) supersymmetric SU(5) GUT, with some arbitrariness in the susy breaking scale arising from the threshold corrections, (ii) non-susy SU(5) GUTs with additional fermions as well as Higgs multiplets, which has masses of the order of TeV, and (iii) non-renormalizable effect of gravity with a fine tuned relation among the coupling constants at the unification energy. The LEP results also constrain GUTs with an intermediate symmetry breaking scale. By adjusting the intermediate symmetry breaking scale, one usually can have unification, but these theories get constrained. For example, the left-right symmetric theories coming from GUTs can be broken only at energies higher than about ∼10 10 GeV. This implies that if right handed gauge bosons are found at energies lower than this scale, then that will rule out the possibility of grand unification. Another recent interesting development on the subject, namely, low energy unification, is discussed in this context. All the coupling constants are unified at energies of the order of ∼10 8 GeV when they are embedded in an SU(15)GUT, with some particular symmetry breaking pattern. But even in this case the results of the intermediate symmetry breaking scale remain unchanged. (author). 16 refs., 3 figs
New aspects of flavour model building in supersymmetric grand unification
International Nuclear Information System (INIS)
Spinrath, Martin
2010-01-01
We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan β-enhanced threshold corrections which can be sizeable if tan β is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y μ /y s =9/2 or 6 or y τ /y b =3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan β where θ u 13 =θ d 13 =0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases δ u 12 and δ d 12 and the right unitarity triangle angle α which suggests a simple phase structure for the quark mass matrices where one matrix element is purely imaginary and the remaining ones are purely real. To complement
New aspects of flavour model building in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Spinrath, Martin
2010-05-19
We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan {beta}-enhanced threshold corrections which can be sizeable if tan {beta} is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y{sub {mu}}/y{sub s}=9/2 or 6 or y{sub {tau}}/y{sub b}=3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan {beta} where {theta}{sup u}{sub 13}={theta}{sup d}{sub 13}=0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases {delta}{sup u}{sub 12} and {delta}{sup d}{sub 12} and the right unitarity triangle angle {alpha} which suggests a simple phase structure for the quark mass matrices where
A Unified Grand Tour of Theoretical Physics
Lawrie, Ian D
2002-01-01
A unified account of the principles of theoretical physics, A Unified Grand Tour of Theoretical Physics, Second Edition stresses the inter-relationships between areas that are usually treated as independent. The profound unifying influence of geometrical ideas, the powerful formal similarities between statistical mechanics and quantum field theory, and the ubiquitous role of symmetries in determining the essential structure of physical theories are emphasized throughout.This second edition conducts a grand tour of the fundamental theories that shape our modern understanding of the physical wor
Squark and slepton mass relations in grand unified theories
International Nuclear Information System (INIS)
Cheng, H.; Hall, L.J.
1995-01-01
In the minimal supersymmetric standard model, assuming universal scalar masses at large energies, there are four intragenerational relations between the masses of the squarks and sleptons for each light generation. In this paper we study the scalar mass relations which follow only from the assumption that at large energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle. Two new intragenerational mass relations for each of the light generations are derived. In addition, a third mass relation is found which relates the Higgs boson masses, the masses of the third generation scalars, and the masses of the scalars of the lighter generations. Verification of a fourth mass relation, involving only the charged slepton masses, provides a signal for SO(10) unification
Neutrino mixing in a grand unified theory
International Nuclear Information System (INIS)
Milton, K.; Tanaka, K.
1980-01-01
Neutrino mixing in a grand unified theory in which the neutrino mass matrix is determined by the Gell-Mann-Ramond-Slansky mechanism was investigated. With an arbitrary real right-handed Majorana mass matrix which incorporates three neutrino mass scales, the effects of the up-quark mass matrix are found to be dominant and as a result no significant mixing of ν/sub e/ occurs, while ν/sub μ/ - ν/sub γ/ mixing can be substantial
Pseudo-Goldstone Higgs Doublets from Non-Vectorlike Grand Unified Higgs Sector
Hernández, A E Cárcamo
2016-01-01
We present a novel way of realizing the pseudo-Nambu-Goldstone boson mechanism for the doublet-triplet splitting in supersymmetric grand unified theories. The global symmetries of the Higgs sector are attributed to a non-vectorlike Higgs content, which is consistent with unbroken supersymmetry in a scenario with flat extra dimensions and branes. We also show how in such a model one can naturally obtain a realistic pattern for the Standard Model fermion masses and mixings.
Cosmological implications of grand unified theories
International Nuclear Information System (INIS)
Nanopoulos, D.V.
1982-01-01
These lectures, mainly devoted to the cosmological implications of GUTs, also include the essential ingredients of GUTs and some of their important applications to particle physics. Section 1 contains some basic points concerning the structure of the standard strong and electroweak interactions prior to grand unification. A detailed expose of GUTs is attempted in sect. 2, including their basci principles and their consequences for particle physics. The minimal, simplest GUT, SU 5 is analysed in some detail and it will be used throughout these lectures as the GUT prototype. Finally, sect. 3 contains the most important cosmological implications of GUTs, including baryon number generation in the early Universe (in rather lengthy detail), dissipative processes in the very early Universe, grand unified monopoles, etc. (orig./HSI)
A unified grand tour of theoretical physics
Lawrie, Ian D
2013-01-01
A Unified Grand Tour of Theoretical Physics invites its readers to a guided exploration of the theoretical ideas that shape our contemporary understanding of the physical world at the fundamental level. Its central themes, comprising space-time geometry and the general relativistic account of gravity, quantum field theory and the gauge theories of fundamental forces, and statistical mechanics and the theory of phase transitions, are developed in explicit mathematical detail, with an emphasis on conceptual understanding. Straightforward treatments of the standard models of particle physics and cosmology are supplemented with introductory accounts of more speculative theories, including supersymmetry and string theory. This third edition of the Tour includes a new chapter on quantum gravity, focusing on the approach known as Loop Quantum Gravity, while new sections provide extended discussions of topics that have become prominent in recent years, such as the Higgs boson, massive neutrinos, cosmological perturba...
Introduction to Grand Unified Theories. 12
International Nuclear Information System (INIS)
Wali, K.C.
1989-01-01
This chapter presents an introduction into Grand Unified Theories. After a discussion of the general features to be expected in any such theory, and of the motivations for them, a detailed presentation of SU(5) theory is given. The group structures, particle multiplets, gauge and Higgs bosons are explained. The two stages of spontaneous symmetry breaking via the Higgs model, are calculated individually and in combination. Fermion mass matrices and relations between quark and lepton masses are derived. predictions of SU(5) theory, calculated using renormalization group methods, are derived. The chapter ends with discussions that bring together particle physics and cosmology, including the baryon asymmetry problem, phase transitions in the very early universe, and singularities like domain walls, vortex lines and monopoles. (author). 9 refs.; 4 figs.; 5 tabs
Preface to a GUT (Grand Unified Theory)
International Nuclear Information System (INIS)
Honig, W.
1982-01-01
A Grand Unified Theory (GUT) is proposed exhibiting relativistic invariance and based on a physical model for vacuum space consisting of the superposition of oppositely charged continuous fluids. Models for the photon, electron, neutrino, proton, etc., consist of separate unique variations in the relative densities of the fluids and their flow patterns. This GUT is also based on the use of transfinite axiomatic number forms and on a concept of metrical relativity which hopefully reconciles the many logical dichotomies in and between Special Relativity and Quantum Mechanics. These ideas result in a number of experimental proposals and predicted results which appear to be underivable from present paradigms, first among which is a physical model for the hidden variable of Quantum Mechanics. It is on these features that attention should rest. (Auth.)
Grand unified models including extra Z bosons
International Nuclear Information System (INIS)
Li Tiezhong
1989-01-01
The grand unified theories (GUT) of the simple Lie groups including extra Z bosons are discussed. Under authors's hypothesis there are only SU 5+m SO 6+4n and E 6 groups. The general discussion of SU 5+m is given, then the SU 6 and SU 7 are considered. In SU 6 the 15+6 * +6 * fermion representations are used, which are not same as others in fermion content, Yukawa coupling and broken scales. A conception of clans of particles, which are not families, is suggested. These clans consist of extra Z bosons and the corresponding fermions of the scale. The all of fermions in the clans are down quarks except for the standard model which consists of Z bosons and 15 fermions, therefore, the spectrum of the hadrons which are composed of these down quarks are different from hadrons at present
Constraints on grand unified superstring theories
International Nuclear Information System (INIS)
Ellis, J.; Lopez, J.L.; Nanopoulos, D.V.; Houston Advanced Research Center
1990-01-01
We evaluate some constraints on the construction of grand unified superstring theories (GUSTs) using higher level Kac-Moody algebras on the world-sheet. In the most general formulation of the heterotic string in four dimensions, an analysis of the basic GUST model-building constraints, including a realistic hidden gauge group, reveals that there are no E 6 models and any SO(10) models can only exist at level-5. Also, any such SU(5) models can exist only for levels 4≤k≤19. These SO(10) and SU(5) models risk having many large, massless, phenomenologically troublesome representations. We also show that with a suitable hidden sector gauge group, it is possible to avoid free light fractionally charged particles, which are endemic to string derived models. We list all such groups and their representations for the flipped SU(5)xU(1) model. We conclude that a sufficiently binding hidden sector gauge group becomes a basic model-building constraint. (orig.)
A unified grand tour of theoretical physics
Griffiths, J
2002-01-01
Anyone offering a grand tour is faced with several options. Should they concentrate on what may be considered to be essential features, or should they attempt to present a brief glimpse of almost everything? The present offering is a compromise between these two extremes. The area considered - theoretical physics - is now such a vast subject that some kind of compromise is essential. Indeed, the field is now so wide that few could even attempt to review it in a single-authored work. My task here is to assess how well this book has succeeded in its main aim of providing a unified (though introductory) tour of this subject. Constrained within a single volume, this is clearly not an updated Landau-Lifschitz. It cannot be expected to take any particular topic to the level of recent research. Nevertheless, it does seem to cover the broad range of essential topics which now constitute the subject. It starts (most appropriately in my opinion) with geometry. It then covers classical physics, general relativity and qu...
Constructing 5d orbifold grand unified theories from heterotic strings
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Raby, Stuart; Zhang Renjie
2004-01-01
A three-generation Pati-Salam model is constructed by compactifying the heterotic string on a particular T 6 /Z 6 Abelian symmetric orbifold with two discrete Wilson lines. The compactified space is taken to be the Lie algebra lattice G 2 -bar SU(3)-bar SO(4). When one dimension of the SO(4) lattice is large compared to the string scale, this model reproduces many features of a 5d SO(10) grand unified theory compactified on an S 1 /Z 2 orbifold. (Of course, with two large extra dimensions we can obtain a 6d SO(10) grand unified theory.) We identify the orbifold parities and other ingredients of the orbifold grand unified theories in the string model. Our construction provides a UV completion of orbifold grand unified theories, and gives new insights into both field theoretical and string theoretical constructions
Restrictions on SU(5) as a grand unified theory
International Nuclear Information System (INIS)
Shellard, R.C.
1984-01-01
Some restrictions imposed upon Grand Unified Theories by dynamical symetry breakdown are examined. They are shown that, in particular, theories SU(5) as symmetry group, with 3 or more fermion families undergo dynamical symmetry breakdown, and some of the fermions will acquire mass at the Grand Unified scale. On the other hand, the SO(10) group, with 3 families is free from this problem. (Author) [pt
MEG studies prohibited muon decays to explore grand unified theories of elementary particles
International Nuclear Information System (INIS)
Mori, Toshinori
2009-01-01
The MEG experiment, designed and proposed by Japanese physicists, is being carried out at Paul Scherrer Institute (PSI) in Switzerland, in collaboration with physicists from Italy, Switzerland, Russia and U.S.A. The experiment will make an extensive search for a muon's two-body decay into an electron and a gamma ray, μ→eγ, which is prohibited in the Standard Model of elementary particles, to explore Supersymmetric Grand Unified Theories. This article gives a brief description of the MEG experiment with an emphasis on the innovative experimental techniques developed to achieve the unprecedented experimental sensitivity. (author)
Phase transitions at finite chemical potential in grand unified theories
International Nuclear Information System (INIS)
Bailin, D.; Love, A.
1984-01-01
We discuss the circumstances in which non-zero chemical potentials might prevent symmetry restoration in phase transitions in the early universe at grand unification or partial unification scales. The general arguments are illustrated by consideration of SO(10) and SU(5) grand unified theories. (orig.)
Masses of particles in the SO(18) grand unified model
International Nuclear Information System (INIS)
Asatryan, G.M.
1984-01-01
The grand unified model based on the orthogonal group SO(18) is treated. The model involves four familiar and four mirror families of fermions. Arising of masses of familiar and mirror particles is studied. The mass of the right-handed Wsub(R) boson interacting via right-handed current way is estimated
Lie groups and grand unified theories
International Nuclear Information System (INIS)
Gubitoso, M.D.
1987-01-01
This work presents some concepts in group theory and Lie algebras and, at same time, shows a method to study and work with semisimple Lie groups, based on Dynkin diagrams. The aproach taken is not completely formal, but it presents the main points of the elaboration of the method, so its mathematical basis is designed with the purpose of making the reading not so cumbersome to those who are interested only in a general picture of the method and its usefulness. At the end it is shown a brief review of gauge theories and two grand-unification models based on SO(13) and E 7 gauge groups. (author) [pt
Gauge hierarchy problem in grand unified theories
International Nuclear Information System (INIS)
Alhendi, H.A.A.
1982-01-01
In grand unification schemes, several mass scales are to be introduced, with some of them much larger than all the others, to cope with experimental observations, in which elementary particles of higher masses require higher energy to observe them than elementary particles of lower masses. There have been controversial arguments in the literature on such hierarchical scale structure, when radiative corrections are taken into account. It has been asserted that the gauge hierarchy depends on the choice of the subtraction point (in the classical field space), of the four-point function at zero external momentum. It also has been asserted that the gauge hierarchy problem whenever it is possible to be maintained in one sector of particles, it also is possible to be maintained in the other sectors. These two problems have been studied in a prototype model, namely an 0(3)-model with two triplets of real scalar Higgs fields. Our analysis shows that, within ordinary perturbation theory, none of these two problems is quite correct
Low-energy neutral current phenomenology and grand unified theories
International Nuclear Information System (INIS)
Del Aguila, F.; Mendez, A.
1981-01-01
We derive necessary and sufficient conditions to be satisfied by any expanded electroweak gauge model in order to reproduce the standard model low-energy neutral current predictions. These conditions imply several constraints on the neutral gauge boson masses and the quantum number assignments for the ordinary fermions. Using these conditions, we prove that the popular grand unified theories based on the gauge groups SO(10) and E6 can only accommodate trivial extensions of the standard model. As a consequence, if any of these grand unified models works at some energy scale, present low-energy neutral current phenomenology implies that the Z-boson must be produced with the expected mass and couplings to the ordinary fermions. Any additional neutral gauge boson (with the possible exception of very heavy ones) could only be produced in hadronic collisions and it would not decay in e + e - . (orig.)
Radiative breaking of cosmologically acceptable grand unified theories
International Nuclear Information System (INIS)
Gato, B.; Leon, J.; Quiros, M.
1984-01-01
We present a cosmologically acceptable grand unified model where the breaking of SU(5) proceeds through radiative corrections induced by supergravity soft-breaking terms. The breaking scale is determined by dimensional transmutation. The model is compatible with the radiative breaking of SU(2)sub(L)xU(1)sub(Y) which provides an experimentally accessible low energy particle spectrum and small top quark mass. (orig.)
Z2 vortex strings in grand unified theories
International Nuclear Information System (INIS)
Olive, D.; Turok, N.
1982-01-01
Spontaneously broken gauge theories may display distinct vortex string solutions for the disconnected components of the exact gauge symmetry group. A type of Higgs mechanism thought to apply in grand unified theories as being responsible for fermion masses yields Z 2 vortex lines, irrespectively of the group. These could seed galaxy formation if the corresponding fermion masses are superheavy. More generally a Higgs mechanism producing Zsub(n) vortex strings is presented. (orig.)
New grand unified models with intersecting D6-branes, neutrino masses, and flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Cvetic, Mirjam [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States)]. E-mail: cvetic@cvetic.hep.upenn.edu; Langacker, Paul [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104-6396 (United States); School of Natural Sciences, Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)
2007-07-30
We construct new supersymmetric SU(5) grand unified models based on Z{sub 4}xZ{sub 2} orientifolds with intersecting D6-branes. Unlike constructions based on Z{sub 2}xZ{sub 2} orientifolds, the orbifold images of the three-cycles wrapped by D6-branes correspond to new configurations and thus allow for models in which, in addition to the chiral sector in 10 and 5-bar representations of SU(5), only, there can be new sectors with (15+15-bar) and (10+10-bar) vector-pairs. We construct an example of such a globally consistent, supersymmetric model with four-families, two Standard Model Higgs pair-candidates and the gauge symmetry U(5)xU(1)xSp(4). In an N=2 sector, there are 5x(15+15-bar) and 1x(10+10-bar) vector-pairs, while another N=1 sector contains one vector-pair of 15-plets. The N=2 vector-pairs can obtain a large mass dynamically by parallel D6-brane splitting in a particular two-torus. The 15-vector-pairs provide, after symmetry breaking to the Standard Model (via parallel D-brane splitting), triplet pair candidates which can in principle play a role in generating Majorana-type masses for left-handed neutrinos, though the necessary Yukawa couplings are absent in the specific construction. This model can also be interpreted as a flipped SU(5)xU(1){sub X} grand unified model where the 10-vector-pairs can play the role of Higgs fields, though again there are phenomenological difficulties for the specific construction.
Baryon-number generation in supersymmetric unified models: the effect of supermassive fermions
International Nuclear Information System (INIS)
Kolb, E.W.; Raby, S.
1983-01-01
In supersymmetric unified models, baryon-number-violating reactions may be mediated by supermassive fermions in addition to the usual supermassive bosons. The effective low-energy baryon-number-violating cross section for fermion-mediated reactions is sigma/sub DeltaB/approx.g 4 /m 2 , where g is a coupling constant and m is the supermassive fermion mass, as opposed to sigma/sub DeltaB/approx.g 4 s/m 4 for scalar- or vector-mediated reactions (√s is the center-of-mass energy). Since the fermion-mediated cross section is larger at low energy, it is more effective at damping the baryon number produced in decay of the supermassive particles. In this paper we calculate baryon-number generation in models with fermion-mediated baryon-number-violating reactions, and discuss implications for supersymmetric model building
Radial and Regge excitations in unified, grand unified and subconstituent models
International Nuclear Information System (INIS)
Schnitzer, H.J.
1981-01-01
Necessary group theoretic conditions for all elementary gauge bosons and fermions of an arbitrary renormalizable gauge theory to lie on Regge trajectories are reviewed. It is then argued that in properly unified gauge theories all particles of a given spin lie on Regge trajectories. This then implies that a properly unified gauge theory has no local U(1) factor groups, and no massive fermion singlets. A consideration of the general pattern of Regge and radial recurrences to be expected in quantum field theories suggests that the presence or absence of spin 3/2 quarks and/or leptons in the TeV region will provide crucial clues to enable one to distinguish between various classes of unified, grand unified, and subconstituent models. The correct interpretation of such excited fermions will require correlation with the higgs boson mass and possible radial and Regge excitations of the weak vector bosons. (orig.)
Low energy gauge couplings in grand unified theories and high precision physics
International Nuclear Information System (INIS)
Lynn, B.W.
1993-09-01
I generalize the leading log relations between low energy SU(3) QCD , SU(2) rvec I and U(l) Y effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3) QCD x U(L) QED subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs' masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs' or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the τ and ν τ can affect the relation between gauge couplings for |q 2 | → m b 2 as can hadronic resonances and multi-hadron states for lower |q 2 |. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations
Low energy gauge couplings in grand unified theories and high precision physics
Energy Technology Data Exchange (ETDEWEB)
Lynn, B.W. [Stanford Univ., CA (United States). Dept. of Physics]|[Superconducting Super Collider Lab., Dallas, TX (United States)
1993-09-01
I generalize the leading log relations between low energy SU(3){sub QCD}, SU(2){sub {rvec I}} and U(l){sub Y} effective gauge couplings to include all one-loop threshold effects of matter fields in oblique vector self energy quantum corrections for both supersymmetric and non-supersymmetric SU(5) grand unified theories. These always involve an exactly conserved current from the unbroken SU(3){sub QCD} {times} U(L){sub QED} subgroup; this fact strongly constrains any non-decoupling of heavy states as well as the generic character of threshold effects. Relations between low energy gauge couplings depend on the details of the spectra of both the superheavy and low mass sectors; I display the common origin of the logs appropriate to superheavy matter states, which can be found with well known renormalization group techniques, and the combination of logs and polynomials appropriate for light matter states, which cannot. Relations between any two or all three low energy effective gauge couplings do not depend on the top quark or standard model Higgs` masses. Neither do they depend on neutral color singlet states such as other neutral color singlet Higgs` or higgsinos, neutrinos, zinos or photinos. Further, they do not depend on degenerate SU(5) matter representations, of either spin 0 or spin 1/2 of any mass; matter representations of SU(5) can affect such relations only if there is mass splitting within them. The b quark splitting from the {tau} and {nu}{sub {tau}} can affect the relation between gauge couplings for {vert_bar}q{sub 2}{vert_bar} {yields} m{sub b}{sup 2} as can hadronic resonances and multi-hadron states for lower {vert_bar}q{sub 2}{vert_bar}. New mass-split representations of light states, such as occur in supersymmetric theories, can also affect such relations.
Fermion Masses and Mixing in SUSY Grand Unified Gauge Models with Extended Gut Gauge Groups
Energy Technology Data Exchange (ETDEWEB)
Chou, Chih-Lung
2005-04-05
The authors discuss a class of supersymmetric (SUSY) grand unified gauge (GUT) models based on the GUT symmetry G x G or G x G x G, where G denotes the GUT group that has the Standard Model symmetry (SU(3){sub c} x SU(2){sub L} x U(1){sub Y}) embedded as a subgroup. As motivated from string theory, these models are constructed without introducing any Higgs field of rani two or higher. Thus all the Higgs fields are in the fundamental representations of the extended GUT symmetry or, when G = SO(10), in the spinorial representation. These Higgs fields, when acquiring their vacuum expectation values, would break the extended GUT symmetry down to the Standard Model symmetry. In this dissertation, they argue that the features required of unified models, such as the Higgs doublet-triplet splitting, proton stability, and the hierarchy of fermion masses and mixing angles, could have natural explanations in the framework of the extended SUSY GUTs. Furthermore, they argue that the frameworks used previously to construct SO(10) GUT models using adjoint Higgs fields can naturally arise from the SO(10) x SO(10) and SO(10) x SO(10) x SO(10) models by integrating out heavy fermions. This observation thus suggests that the traditional SUSY GUT SO(10) theories can be viewed as the low energy effective theories generated by breaking the extended GUT symmetry down to the SO(10) symmetry.
Light grand unified theory triplets and Yukawa splitting
International Nuclear Information System (INIS)
Rakshit, Subhendu; Shadmi, Yael; Raz, Guy; Roy, Sourov
2004-01-01
Triplet-mediated proton decay in grand unified theories (GUTs) is usually suppressed by arranging a large triplet mass. Here we explore instead a mechanism for suppressing the couplings of the triplets to the first and second generations compared to the Yukawa couplings, so that the triplets can be light. This mechanism is based on a 'triplet symmetry' in the context of product-group GUTs. We study two possibilities. The first possibility, which requires the top Yukawa coupling to arise from a nonrenormalizable operator at the GUT scale, is that all triplet couplings to matter are negligible, so that the triplets can be at the weak scale, giving new evidence for grand unification. The second possibility is that some triplet couplings, and in particular Ttb and Tt-barl-bar, are equal to the corresponding Yukawa couplings. This would give a distinct signature of grand unification if the triplets were sufficiently light. However, we derive a model-independent bound on the triplet mass in this case, which is at least 10 6 GeV. Finally, we construct an explicit viable GUT model based on Yukawa splitting, with the triplets at 10 14 GeV, as required for coupling unification to work. This model requires no additional thresholds below the GUT scale
Pattern of neutrino mixing in grand unified theories
International Nuclear Information System (INIS)
Milton, K.; Tanaka, K.
1981-01-01
It was found previously in SO(10) grand unified theories that if the neutrinos have a Dirac mass and a right-handed Majorana mass (approx. 10 15 GeV) but no left-handed Majorana mass, there is small ν/sub e/ mixing but ν/sub μ/ - ν/sub tau/ mixing can be substantial. This problem is reexamined on the basis of a formalism that assumes that the up, down, lepton, and neutrino mass matrices arise from a single complex 10 and a single 126 Higgs boson. This formalism determines the Majorana mass matrix in terms of quark mass matrices. Adopting three different sets of quark mass matrices that produce acceptable fermion mass ratios and Cabbibo mixing produces results consistent with the above; however, in the optimum case, ν/sub e/ - ν/sub μ/ mixing can be of the order of the Cabbibo angle
International Nuclear Information System (INIS)
Senjanovic, G.
1982-07-01
It is demonstrated that the spontaneous breakdown of CP invariance in grand unified theories requires the presence of intermediate mass scales. The simplest realization is provided by weakly broken left-right symmetry in the context of SU(2)sub(L) x SU(2)sub(R) x U(1)sub(B-L) model embedded in grand unified theories. (author)
Towards a Grand Unified Theory of sports performance.
Glazier, Paul S
2017-12-01
Sports performance is generally considered to be governed by a range of interacting physiological, biomechanical, and psychological variables, amongst others. Despite sports performance being multi-factorial, however, the majority of performance-oriented sports science research has predominantly been monodisciplinary in nature, presumably due, at least in part, to the lack of a unifying theoretical framework required to integrate the various subdisciplines of sports science. In this target article, I propose a Grand Unified Theory (GUT) of sports performance-and, by elaboration, sports science-based around the constraints framework introduced originally by Newell (1986). A central tenet of this GUT is that, at both the intra- and inter-individual levels of analysis, patterns of coordination and control, which directly determine the performance outcome, emerge from the confluence of interacting organismic, environmental, and task constraints via the formation and self-organisation of coordinative structures. It is suggested that this GUT could be used to: foster interdisciplinary research collaborations; break down the silos that have developed in sports science and restore greater disciplinary balance to the field; promote a more holistic understanding of sports performance across all levels of analysis; increase explanatory power of applied research work; provide stronger rationale for data collection and variable selection; and direct the development of integrated performance monitoring technologies. This GUT could also provide a scientifically rigorous basis for integrating the subdisciplines of sports science in applied sports science support programmes adopted by high-performance agencies and national governing bodies for various individual and team sports. Copyright © 2017 Elsevier B.V. All rights reserved.
A grand unified model for liganded gold clusters
Xu, Wen Wu; Zhu, Beien; Zeng, Xiao Cheng; Gao, Yi
2016-12-01
A grand unified model (GUM) is developed to achieve fundamental understanding of rich structures of all 71 liganded gold clusters reported to date. Inspired by the quark model by which composite particles (for example, protons and neutrons) are formed by combining three quarks (or flavours), here gold atoms are assigned three `flavours' (namely, bottom, middle and top) to represent three possible valence states. The `composite particles' in GUM are categorized into two groups: variants of triangular elementary block Au3(2e) and tetrahedral elementary block Au4(2e), all satisfying the duet rule (2e) of the valence shell, akin to the octet rule in general chemistry. The elementary blocks, when packed together, form the cores of liganded gold clusters. With the GUM, structures of 71 liganded gold clusters and their growth mechanism can be deciphered altogether. Although GUM is a predictive heuristic and may not be necessarily reflective of the actual electronic structure, several highly stable liganded gold clusters are predicted, thereby offering GUM-guided synthesis of liganded gold clusters by design.
Topics in supersymmetric theories
International Nuclear Information System (INIS)
Nemeschansky, D.D.
1984-01-01
This thesis discusses four different topics in supersymmetric theories. In the first part models in which supersymmetry is broken by the Fayet-Iliopoulos mechanism are considered. The possibility that scalar quark and lepton masses might arise radiatively in such theories is explored. In the second part supersymmetric grand unified models with a sliding singlet are considered. The author reviews the argument that the sliding singlet does not work in models with large supersymmetry breaking. Then he considers the possibility of using a sliding singlet with low energy supersymmetry breaking. The third part of the thesis deals with the entropy problem of supersymmetric theories. Most supersymmetric models possess a decoupled particle with mass of order 100 GeV which is copiously produced in the early universe and whose decay produces huge amounts of entropy. The author shows how this problem can be avoided in theories in which the hidden sector contains several light fields. In the fourth part effective Lagrangians for supersymmetric theories are studied. The anomalous pion interaction for supersymmetric theories is written down. General properties of this term are studied both on compact and non-compact manifolds
Violation of the Appelquist-Carazzone decoupling in a nonsupersymmetric grand unified theory
International Nuclear Information System (INIS)
Chankowski, Piotr H.; Wagner, Jakub
2008-01-01
We point out that in nonsupersymmetric grand unified theories, in which the SU(5) gauge symmetry is broken down to the standard model gauge group by a 24 Higgs multiplet the Appelquist-Carazzone decoupling is violated. This is because the SU(2) L Higgs triplet contained in the 24 acquires a dimension-full coupling to the SU(2) L Higgs doublets which is proportional to the grand unified symmetry breaking vacuum expectation value. As a result, at one-loop heavy gauge and Higgs fields contribution to tadpoles generates a vacuum expectation value of the triplet which is not suppressed for V→∞ and violates the custodial symmetry
Oasis in the desert: weakly broken parity in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1981-07-01
A discussion of low energy parity restoration in simple grand unified theories, such as SO(10), is presented. The consistency of phenomenological requirements and unification constraints is emphasized and various predictions of the theory are stressed, in particular: substantially lighter W and Z bosons than in the standard model and increased stability of the proton with tau/sub p/ approx. = 10 38 years
Asymptotically safe grand unification
Energy Technology Data Exchange (ETDEWEB)
Bajc, Borut [J. Stefan Institute,1000 Ljubljana (Slovenia); Sannino, Francesco [CP-Origins & the Danish IAS, University of Southern Denmark,Campusvej 55, DK-5230 Odense M (Denmark); Université de Lyon, France, Université Lyon 1, CNRS/IN2P3, UMR5822 IPNL,F-69622 Villeurbanne Cedex (France)
2016-12-28
Phenomenologically appealing supersymmetric grand unified theories have large gauge representations and thus are not asymptotically free. Their ultraviolet validity is limited by the appearance of a Landau pole well before the Planck scale. One could hope that these theories save themselves, before the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility for a broad class of prime candidates of phenomenologically relevant supersymmetric grand unified theories. We also uncover candidates passing these tests, which have either exotic matter or contain one field decoupled from the superpotential. The latter class of theories contains a model with the minimal matter content required by phenomenology.
Dynkin weights and global supersymmetry in grand unification
International Nuclear Information System (INIS)
Frampton, P.H.; Kephart, T.W.
1982-01-01
The requirement that supersymmetry be unbroken in a supersymmetrized gauge theory is shown to imply vanishing Dynkin weight of the components of the Higgs field representation receiving vacuum expectation values. As a corollary a compact expression is obtained for the Dynkin weights of general SU(N) representations. Examples are given for supersymmetrized grand unified theories
Some consequences of embedding heavy color in grand unified theories
International Nuclear Information System (INIS)
Elias, V.
1980-01-01
I show that ''standard'' embedding constraints cannot accommodate an empirically motivated value for the heavy-color (HC) momentum scale Λ/sub HC/ if the heavy-color group is SU(N>3). The heavy-color group can be SU(3), provided such constraints are relaxed in order to allow fermions to contribute differentially to SU(3)/sub HC/ and SU(3)/sub QCD/ β-functions (QCD=quantum chromodynamics). Theories successfully embedding G/sub HC/>SU(3) along with the known interactions are shown to require vastly reduced unification mass scales. As an example, empirically acceptable values for Λ/sub HC/, sin 2 theta/sub W/, and α/sub s/(m/sub W/) as well as a unification mass scale within an order of magnitude of Λ/sub HC/ are accommodated within very large models based on [SU(2n)] 4 unifying symmetry
Superforce the search for a grand unified theory of nature
Davies, Paul
1985-01-01
Many scientists believe we are on the verge of a "Theory of Everything" - a complete unification of all the fundamental forces and particles of nature. In this book, the physicist and author Paul Davies gives an account of the quest for a superforce that will explain how the physical universe is put together. The book describes the bewildering array of subatomic particles that have been discovered in recent years, and shows how their properties form abstract patterns and mathematical symmetries, hinting at deep linkages. It explains how the forces that act between these particles may require the existence of unseen extra dimensions of space, and why the latest bizarre theory suggests that the basic entities out of which all matter is built may not be particles at all, but strings. Aimed at the general reader, this account shows that a unified theory may be within our grasp, and that a single superforce may acmcount not only for the nature of matter, but even for the manner in which the universe came into exis...
Domain walls and fermion scattering in grand unified models
International Nuclear Information System (INIS)
Steer, D.A.; Vachaspati, T.
2006-01-01
Motivated by grand unification, we study the properties of domain walls formed in a model with SU(5)xZ 2 symmetry which is spontaneously broken to SU(3)xSU(2)xU(1)/Z 6 , and subsequently to SU(3)xU(1)/Z 3 . Even after the first stage of symmetry breaking, the SU(3) symmetry is broken to SU(2)xU(1)/Z 2 on the domain wall. In a certain range of parameters, flux tubes carrying color- and hyper-charge live on the domain wall and appear as 'boojums' when viewed from one side of the domain wall. Magnetic monopoles are also formed in the symmetry breaking and those carrying color and hyper-charge can be repelled from the wall due to the Meissner effect, or else their magnetic flux can penetrate the domain wall in quantized units. After the second stage of symmetry breaking, fermions can transmute when they scatter with the domain wall, providing a simpler version of fermion-monopole scattering: for example, neutrinos can scatter into d-quarks, leaving behind electric charge and color which is carried by gauge field excitations living on the domain wall
General analysis of corrections to the standard seesaw formula in grand unified models
International Nuclear Information System (INIS)
Barr, S.M.; Kyae, Bumseok
2004-01-01
In realistic grand unified models there are typically extra vectorlike matter multiplets at the GUT-scale that are needed to explain the family hierarchy. These contain neutrinos that, when integrated out, can modify the usual neutrino seesaw formula. A general analysis is given. It is noted that such modifications can explain why the neutrinos do not exhibit a strong family hierarchy like the other types of fermions
On grand unified SU(8)sub(L)xSU(8)sub(R) model
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1980-01-01
A set of general prjnciples justifying the choice of the group SU(N)sub(L)xSU(N)sub(R) with N=8 as the grand unified symmetry group is considered. Accordjng to these principles the group SU(N)sub(L)xSU(N)sub(R) is one of the most natural unified groups. Namely this group is maximum symmetry group of kinetic term of the Lagrangian of one family, which conserves fermion number. A new principle has been introduced according to which one of the manifestations of extended conformal invariance at small distances is mirror doubling of set of fermions, which is necessary on the other hand for renormalizability of the given unified model
Patterns of flavor signals in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2007-11-15
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Patterns of flavor signals in supersymmetric models
International Nuclear Information System (INIS)
Goto, T.; Tanaka, M.
2007-11-01
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b→s(d) transition observables in B d and B s decays, taking the constraint from the B s - anti B s mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes μ → eγ, τ → μγ and τ → eγ for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
On the possibility of magnetic monopoles lighter than 1/α Msub(x) in grand unified theories
International Nuclear Information System (INIS)
Scott, D.M.
1980-04-01
It is argued that in special cases monopoles may have masses significantly less than 1/αMsub(x) where Msub(x) is the mass of the heaviest vector boson in the grand unified theory under consideration. (author)
Revisiting top-bottom-tau Yukawa unification in supersymmetric grand unified theories
International Nuclear Information System (INIS)
Tobe, Kazuhiro; Wells, James D.
2003-01-01
Third family Yukawa unification, as suggested by minimal SO(10) unification, is revisited in light of recent experimental measurements and theoretical progress. We characterize unification in a semi-model-independent fashion, and conclude that finite b quark mass corrections from superpartners must be non-zero, but much smaller than naively would be expected. We show that a solution that does not require cancellations of dangerously large tanβ effects in observables implies that scalar superpartner masses should be substantially heavier than the Z scale, and perhaps inaccessible to all currently approved colliders. On the other hand, gauginos must be significantly lighter than the scalars. We demonstrate that a spectrum of anomaly-mediated gaugino masses and heavy scalars works well as a theory compatible with third family Yukawa unification and dark matter observations
Supersymmetric SU(5) GUT with Stabilized Moduli
Antoniadis, Ignatios; Panda, Binata
2008-01-01
We construct a minimal example of a supersymmetric grand unified model in a toroidal compactification of type I string theory with magnetized D9-branes. All geometric moduli are stabilized in terms of the background internal magnetic fluxes which are of "oblique" type (mutually non-commuting). The gauge symmetry is just SU(5) and the gauge non-singlet chiral spectrum contains only three families of quarks and leptons transforming in the $10+{\\bar 5}$ representations.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
Kitano, Ryuichiro; Li, Tianjun
2003-06-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group.
Flavor hierarchy in SO(10) grand unified theories via 5-dimensional wave-function localization
International Nuclear Information System (INIS)
Kitano, Ryuichiro; Li Tianjun
2003-01-01
A mechanism to generate fermion-mass hierarchy in SO(10) grand unified theories is considered. We find that the lopsided family structure, which is suitable to the large angle Mikheyev-Smirnov-Wolfenstein solution to solar neutrino oscillation, is realized without introducing extra matter fields if the hierarchy originates from the wave-function profile in an extra dimension. Unlike the Froggatt-Nielsen mechanism, the SO(10) breaking effect may directly contribute to the source of the hierarchy, i.e., the bulk mass terms. It naturally explains the difference of the hierarchical patterns between the quark and the lepton sectors. We also find the possibility of horizontal unification, in which three generations of matter fields are unified to a 3-dimensional representation of an SU(2) gauge group
Higgs mass scales and matter-antimatter oscillations in grand unified theories
International Nuclear Information System (INIS)
Senjanovic, G.
1982-01-01
A general discussion of mass scales in grand unified theories is presented, with special emphasis on Higgs scalars which mediate neutron-antineutron (n-anti n) and hydrogen-antihydrogen (H-anti H) oscillations. It is shown that the analogue of survival hypothesis for fermions naturally makes such particles superheavy, thus leading to unobservable lifetimes. If this hypothesis is relaxed, an interesting possibility of potentially observable n-anti n and H-anti H transitions, mutually related arises in the context of SU(5) theory with spontaneously broken B-L symmetry
Supersymmetric seesaw inflection
International Nuclear Information System (INIS)
Aulakh, Charanjit S.; Garg, Ila
2013-01-01
We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)
Chiral symmetry and eta, eta' → 3π decays. Grand unified theories
International Nuclear Information System (INIS)
Roiesnel, C.
1982-11-01
Two different topics related to symmetry breaking are discussed. First the eta, eta' → 3π decays are presented. The amplitudes eta, eta' → 3π are calculated with the square root threshold singularity induced by the strong pion-pion final state interaction properly taken into account. It is shown that the eta' → 3π decay rate depends sensitively upon an improved treatment of the pseudoscalar nonet mass matrix. Then symmetry-breaking effects in grand unified theories are discussed. The threshold effects in a spontaneously broken gauge theory are studied. In particular a computation of the symmetry-breaking effects in the SU(5) grand unified theory including those of the breaking of SU(2)xU(1) is presented. As an application a precise value of the superheavy gauge boson mass Mx is given. It is possible in SU(5) to define a natural effective weak angle theta w(μ) for any scale μ, below as well as above Mw, and the predicted curve for sin 2 theta w(μ) is given [fr
International Nuclear Information System (INIS)
Schrempp, B.
1994-10-01
The two loop 'top-down' renormalization group flow for the top, bottom and tau Yukawa couplings, from μ=M GUT ≅O(10 16 GeV) to μ≅m t , is explored in the framework of supersymmetric grand unification; reproduction of the physical bottom and tau masses is required. Instead of following the recent trend of implementing exact Yukawa coupling unification i) a search for infrared (IR) fixed lines and fixed points in the m t pole -tan β plane is performed and ii) the extent to which these imply approximate Yukawa unification is determined. In the m t pole -tan β plane two IR fixed lines, intersecting in an IR fixed point, are located. The more attractive fixed line has a branch of almost constant top mass, m t pole ≅168≅180 GeV (close to the experimental value), for the large interval 2.5 GUT approximately. The less attractive fixed line as well as the fixed point at m t pole ≅170 GeV, tan β≅55 implement approximate top-bottom Yukawa unification at all scales μ. The renormalization group flow is attracted towards the IR fixed point by way of the more attractive IR fixed line. The fixed point and lines are distinct from the much quoted effective IR fixed point m t pole ≅O(200 GeV) sin β. (orig.)
Supersymmetry and supergravity: Phenomenology and grand unification
International Nuclear Information System (INIS)
Arnowitt, R.; Nath, P.
1993-01-01
A survey is given of supersymmetry and supergravity and their phenomenology. Some of the topics discussed are the basic ideas of global supersymmetry, the minimal supersymmetric Standard Model (MSSM) and its phenomenology, the basic ideas of local supersymmetry (supergravity), grand unification, supersymmetry breaking in supergravity grand unified models, radiative breaking of SU(2) x U(1), proton decay, cosmological constraints, and predictions of supergravity grand unified models. While the number of detailed derivations are necessarily limited, a sufficient number of results are given so that a reader can get a working knowledge of this field
Some topics in grand unified models and the cosmological baryon asymmetry
International Nuclear Information System (INIS)
Reiss, D.B.
1981-01-01
In part I of this thesis some of the parameters relevant to the production of a cosmological baryon number asymmetry are considered in the context of grand unified models. General expressions for the average baryon number generated in the free decays of bosons are derived. The CP violation necessary for the generation of a baryon excess is discussed for a variety of SU(5) models. The kinematics of baryon number production in an illustrative SO(10) model is discussed in detail. In part II a viable SO(10) model is constructed which reproduces the phenomenological fermion mass and mixing angle values. A detailed discussion of the beta function for this model is presented. This analysis includes the effects of scalars
An SU(5) grand unified model with hadrons as nontopological solitons. Pt. 1
International Nuclear Information System (INIS)
Chen Shihao
1994-01-01
A new grand unified model containing the known three generations of quark and lepton in which hadrons are regarded as nontopological solitons formed from quarks is presented. According to the model leptons and quarks are the same in essence. The differences between them are caused by spontaneous symmetry breaking. When a quark is located inside a hadron, its properties will be the same as those of a known quark and its mass very small. When a quark is outside hadrons, its properties will be the same as those of a known lepton, its mass very large and it will rapidly decay. Except defining charge Q 0 and fermion number F 0 which are exactly conserved, we also define interior colour, interior charge and interior fermion number approximately conserved inside a hadron. The (L-B) conservation in the known SU(5) model corresponds to the fermion number F 0 conservation in the present model
Neutrino masses and large mixings as a indirect signature of grand unified theory
International Nuclear Information System (INIS)
Maekawa, Nobuhiro
2015-01-01
Grand unified theory (GUT) unifies not only three forces (electromagnetic force, strong force and weak force) but also quarks and leptons. As an experimental support for the unification of forces, it is well-known that three gauge couplings meet at a scale (the GUT scale). However, it is not so well-known that there is an experimental support even for the unification of matters (quarks and leptons). We explain the indirect support in this document and show that the important key is what the neutrino experiments have revealed for 20 years. Concretely, for the unification of matters in SU(5) GUT, various observed hierarchies of quark and lepton masses and mixings can be understood only from one assumption that '10 dimensional fields of SU(5) induce stronger hierarchy for the Yukawa couplings than 5-bar fields'. For this explanation, the knowledges on neutrino masses and mixings are critical. In the end, we comment E 6 unification in which the above assumption in the SU(5) GUT can be induced. (author)
Electric dipole moments as a test of supersymmetric unification
Dimopoulos, Savas K; Dimopoulos, S; Hall, L J
1995-01-01
In a class of supersymmetric grand unified theories, including those based on the gauge group SO(10), there are new contributions to the electric dipole moments of the neutron and electron, which arise as a heavy top quark effect. These contributions arise from CKM-like phases, not from phases of the supersymmetry breaking operators, and can be reliably computed in terms of the parameters of the weak scale supersymmetric theory. For the expected ranges of these parameters, the electric dipole moments of the neutron and the electron are predicted to be close to present experimental limits.
A supersymmetric flipped SU(5) intersecting brane world
Energy Technology Data Exchange (ETDEWEB)
Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu (and others)
2005-03-31
We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The spectrum contains a complete grand unified and electroweak Higgs sector. In addition, it contains extra exotic matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)
Finite-temperature behavior of mass hierarchies in supersymmetric theories
International Nuclear Information System (INIS)
Ginsparg, P.
1982-01-01
It is shown that Witten's mechanism for producing a large gauge hierarchy in supersymmetric theories leads to a novel symmetry behavior at finite temperature. The exponentially large expectation value in such models develops at a critical temperature of order of the small (supersymmetry-breaking) scale. The phase transition can proceed without need of vacuum tunnelling. Models based on Witten's mechanism thus require a reexamination of the standard cosmological treatment of grand unified theories. (orig.)
Small numbers in supersymmetric theories of nature
International Nuclear Information System (INIS)
Graesser, Michael L.
1999-01-01
The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject
On SU(8)sub(L)xSU(8)sub(R) grand unified model
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1981-01-01
A set of general propositions is considered which ground the choice of the SU(8)sub(L)xSU(8)sub(R) group as a unified symmetry group. According to these propositions the group SU(8)sub(L)xSU(8)sub(R) is the most natural unified group, it is the maximal symmetry group of the kinetic term of the lagrangian single family which conserves the fermion number. A new principle is introduced. According to this principle, the mirror doubling of the fermion spectrum, necessary for renormalizability of the given unified model is, on the other hand, a manifestation of the extended conformal invariance at short distances [ru
Scalar mass relations and flavor violations in supersymmetric theories
International Nuclear Information System (INIS)
Cheng, Hsin-Chia; California Univ., Berkeley, CA
1996-01-01
Supersymmetry provides the most promising solution to the gauge hierarchy problem. For supersymmetry to stablize the hierarchy, it must be broken at the weak scale. The combination of weak scale supersymmetry and grand unification leads to a successful prediction of the weak mixing angle to within 1% accuracy. If supersymmetry is a symmetry of nature, the mass spectrum and the flavor mixing pattern of the scalar superpartners of all the quarks and leptons will provide important information about a more fundamental theory at higher energies. We studied the scalar mass relations which follow from the assumption that at high energies there is a grand unified theory which leads to a significant prediction of the weak mixing angle; these will serve as important tests of grand unified theories. Two intragenerational mass relations for each of the light generations are derived. A third relation is also found which relates the Higgs masses and the masses of all three generation scalars. In a realistic supersymmetric grand unified theory, nontrivial flavor mixings are expected to exist at all gaugino vertices. This could lead to important contributions to the neutron electric dipole moment, the decay mode p → K 0 μ + , weak scale radiative corrections to the up-type quark masses, and lepton flavor violating signals such as μ → eγ. These also provide important probes of physics at high energy scales. Supersymmetric theories involving a spontaneously broken flavor symmetry can provide a solution to the supersymmetric flavor-changing problem and an understanding of the fermion masses and mixings. We studied the possibilities and the general conditions under which some fermion masses and mixings can be obtained radiatively. We also constructed theories of flavor in which the first generation fermion masses arise from radiative corrections while flavor-changing constraints are satisfied. 69 refs., 19 figs., 9 tabs
Grand unification and supergravity
International Nuclear Information System (INIS)
Nanopoulos, D.V.
Grand Unified Theories (GUTs) are very successful, but they suffer from fine-tuning or hierarchy problems. It seems that more symmetry beyond the gauge symmetry is needed and indeed supersymmetric GUTs may provide the correct framework in solving the hierarchy problems. These are reviewed. From the results discussed, it is seen that for the first time in particle physics, gravity seems to play a dominant role. It may be responsible for GUT breaking, SU(2) x U(1) breaking, fermion masses, proton decay and a consistent cosmological picture. Supergravity seems to offer a consistent, effective theory for energies below the Planck scale to N=1 local SUSY but also, in the context of N=8 extended supergravity with a dynamically realized SU(8), there may be a consistent fundamental unified theory of all interactions. (U.K.)
Finite Unified Theories and the Higgs boson
Heinemeyer, Sven; Zoupanos, George
2012-01-01
All-loop Finite Unified Theories (FUTs) are very interesting N = 1 supersymmetric Grand Unified Theories (GUTs) realising an old field theory dream, and moreover have a remarkable predictive power due to the required reduction of couplings. Based on this theoretical framework phenomenologically consistent FUTs have been constructed. Here we review two FUT models based on the SU(5) gauge group, which can be seen as special, restricted and thus very predictive versions of the MSSM. We show that from the requirement of correct prediction of quark masses and other experimental constraints a light Higgs-boson mass in the range M_h ~ 121 - 126 GeV is predicted, in striking agreement with recent experimental results from ATLAS and CMS. The model furthermore naturally predicts a relatively heavy spectrum with colored supersymmetric particles above ~ 1.5 TeV in agreement with the non-observation of those particles at the LHC.
Grand unification theory and technicolor
International Nuclear Information System (INIS)
Rubakov, V.A.; Shaposhnikov, M.E.
1983-01-01
The lecture course can be considered as introduction to the problems concerning grand unification models. The course is incomplete. Such problems as CP-violations in strong interactions and the problem of gravitational interaction inclusion in the scheme of grand unification theory are not touched upon. Models of early unification, in which strong, weak and electromagnetic interactions are compared according to the ''strength'' at energies of about 10 5 -10 6 GeV, are not discussed. Models with horizontal symmetry, considering different generations of quarks and leptons from one viewpoint, are not analyzed. Cosmological applications of supersymmetric unified theories are not considered. Certain problems of standard elementary particle theory, philosophy of the great unification, general properties of the grand unification models and the main principles of the construction of models: the SU(5) model, models on the SO(10) groups, have been considered. The problem of supersymmetric unification hierarchies, supersymmetric generalization of the minimum SU(5) model, supersymmetry violation and the problem of hierarchies, phenomenology of the o.rand unification models, cosmological application and technicolour, are discussed
Flipped version of the supersymmetric strongly coupled preon model
Energy Technology Data Exchange (ETDEWEB)
Fajfer, S. (Institut za Fiziku, University of Sarajevo, Sarajevo, (Yugoslavia)); Milekovic, M.; Tadic, D. (Zavod za Teorijsku Fiziku, Prirodoslovno-Matematicki Fakultet, University of Zagreb, Croatia, (Yugoslavia))
1989-12-01
In the supersymmetric SU(5) (SUSY SU(5)) composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5){direct product}U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.
Grand unification: quo vadis domine
International Nuclear Information System (INIS)
Senjanovic, G.
1985-01-01
The present theoretical and experimental situation with grand unification is summarized. The issues of proton decay and the Weinberg angle are addressed, going through the predictions of both the standard SU(5) theory and its supersymmetric extension. The SO(10) theory, which provides a minimal one family model, is then studied. The gravitational characteristics of domain walls and strings are then discussed. It is argued that there is a need to go beyond SO(10) in order to incorporate a unified picture of families. This leads to the prediction of mirror fermions, whose physics is analyzed. 31 refs
Grand unified theory precursors and nontrivial fixed points in higher-dimensional gauge theories
International Nuclear Information System (INIS)
Dienes, Keith R.; Dudas, Emilian; Gherghetta, Tony
2003-01-01
Within the context of traditional logarithmic grand unification at M GUT ≅10 16 GeV, we show that it is nevertheless possible to observe certain GUT states such as X and Y gauge bosons at lower scales, perhaps even in the TeV range. We refer to such states as 'GUT precursors'. These states offer an interesting alternative possibility for new physics at the TeV scale, and could be used to directly probe GUT physics even though the scale of gauge coupling unification remains high. Our results also give rise to a Kaluza-Klein realization of nontrivial fixed points in higher-dimensional gauge theories
Supersymmetric composite models on intersecting D-branes
International Nuclear Information System (INIS)
Kitazawa, Noriaki
2004-01-01
We construct supersymmetric composite models of quarks and leptons from type IIA T6/(Z2xZ2) orientifold with intersecting D6-branes. In case of T6=T2xT2xT2 with no tilted T2, a composite model of supersymmetric SU(5) grand unified theory with four generations is constructed. In case of that one T2 is tilted, a composite model with SU(3)cxSU(2)LxU(1)Y gauge symmetry with three generations of left-handed quarks and leptons is constructed. These models are not realistic, but contain relatively fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The masses of some exotic particles are naturally generated through the Yukawa interactions among 'preons'
On grand unified SU(8)sub(L) x SU(8)sub(R) model
International Nuclear Information System (INIS)
Pirogov, Yu.F.
1980-01-01
In the model of early chiral grand unification SU(8)sub(L)xSU(8)sub(R) with intermediate symmetry hierarchies the radiation corrections for sinsup(2)thetasub(W)(μ) and α(μ) are calculated and unification mass M 8 is found in the one loop approximation with Higgs fields contribution being neglected. It is shown that there exists a natural hierarchy, leading to the decrease of sinsup(2)thetasub(W)(Msub(W)) down to the value sinsup(2)thetasub(W)=1/5-1/4 and simultaneous decrease of M 8 down to M 8 =(10 6 -10 7 ) GeV as compared with the values when there is no hierarchy [ru
The grand unified link between the Peccei-Quinn mechanism and the generation puzzle
International Nuclear Information System (INIS)
Davidson, A.; Wali, K.C.
1982-03-01
The essential ingredients of the Peccei-Quinn mechanism are shown to be dictated by a proper choice of a grand unification scheme. The presence of U(1)sub(PQ) gives rise to the possibility that the same physics which resolves the strong CP-violation problem may decode the generation puzzle with no extra cost. Multigenerational signatures of the invisible axion scenario, such as the canonical fermion mass matrix, are discussed. The uniqueness and the special values of the quantized PQ-assignments, namely 1,-3,5-7,... for successive generations, acquire an automatic explanation once the idea of ''horizontal compositeness'' is invoked. A characteristic feature then is that the muon appears to have a less complicated structure than the electron. Furthermore, U(1)sub(PQ) chooses SO(10) to be its only tenable gauge symmetry partner, and at the same time crucially restricts the associated Higgs system. All this finally results in a consistent fermion mass hierarchy with log m, to the crudest estimation, varying linearly with respect to the generation index. (author)
Quantum numbers of anti-grand-unified-theory Higgs fields from the quark-lepton spectrum
International Nuclear Information System (INIS)
Froggatt, C.D.; Nielsen, H.B.; Smith, D.J.
2002-01-01
A series of Higgs field quantum numbers in the anti-grand-unification model, based on the gauge group SMG 3 xU(1) f , is tested against the spectrum of quark and lepton masses and mixing angles. A more precise formulation of the statement that the couplings are assumed of order unity is given. It is found that the corrections coming from this more precise assumption do not contain factors of the order of the number of colors, N c =3, as one could have feared. We also include a combinatorial correction factor, taking account of the distinct internal orderings within the chain Feynman diagrams in our statistical estimates. Strictly speaking our model predicts that the uncertainty in its predictions and thus the accuracy of our fits should be ±60%. Many of the best fitting quantum numbers give a higher accuracy fit to the masses and mixing angles, although within the expected fluctuations in a χ 2 . This means that our fit is as good as it can possibly be
International Nuclear Information System (INIS)
Marciano, W.J.
1983-01-01
Topics discussed include coupling constants; minimal SU(5) predictions (sin 2 theta/sub W/, m/sub W/ and m/sub Z/, proton decay, and magnetic monopoles); Higgs scalar effects including proton decay and flavor changing and oscillation phenomena; and supersymmetry. 31 references
Upper bounds of supersymmetric particle masses in a gaugino-originated radiative breaking scenario
International Nuclear Information System (INIS)
Goto, T.
1993-01-01
The mass spectrum of supersymmetric particles is studied in the radiative breaking scenario of the minimal supersymmetric standard model, with an assumption that all soft supersymmetry-breaking parameters other than the gaugino masses are vanishing at the Planck scale. The U(1) gaugino mass M 1X is taken to be an independent parameter, while the SU(2) and SU(3) gaugino masses are supposed to be unified. Within the ''natural'' range, the whole parameter space is scanned numerically and the consistent particle mass spectra with the experimental bounds are obtained. The supersymmetric particle masses are tightly bounded above as m eR approx-lt 100 GeV, etc., if the top quark is sufficiently heavy m top approx-gt 100 GeV and the minimal grand unified theory relation for three gaugino masses is satisfied. For a large |M 1X |, there is no restriction other than the naturalness for the upper bounds of supersymmetric particle masses
International Nuclear Information System (INIS)
Stelle, Kellogg S
2007-01-01
With the development of the electronic archives in high-energy physics, there has been increasing questioning of the role of traditional publishing styles, particularly in the production of conference books. One aspect of traditional publishing that still receives wide appreciation, however, is in the production of well-focussed pedagogical material. The present two-volume edition, 'Supersymmetric Mechanics-Vol 1', edited by S Bellucci and 'Supersymmetric Mechanics-Vol 2', edited by S Bellucci, S Ferrara and A Marrani, is a good example of the kind of well-digested presentation that should still find its way into university libraries. This two-volume set presents the material of a set of pedagogical lectures presented at the INFN National Laboratory in Frascati over a two-year period on the subject of supersymmetric mechanics. The articles include the results of discussions with the attending students after the lectures. Overall, this makes for a useful compilation of material on a subject that underlies much of the current effort in supersymmetric approaches to cosmology and the unification programme. The first volume comprises articles on 'A journey through garden algebras' by S Bellucci, S J Gates Jr and E Orazi on linear supermultiplet realizations in supersymmetric mechanics,'Supersymmetric mechanics in superspace' by S Bellucci and S Krivonos, 'Noncommutative mechanics, Landau levels, twistors and Yang-Mills amplitudes' by V P Nair, 'Elements of (super) Hamiltonian formalism' by A Nersessian and 'Matrix mechanics' by C Sochichiu. The second volume consists entirely of a masterful presentation on 'The attractor mechanism and space time singularities' by S Ferrara. This presents a comprehensive and detailed overview of the structure of supersymmetric black hole solutions in supergravity, critical point structure in the scalar field moduli space and the thermodynamic consequences. This second volume alone makes the set a worthwhile addition to the research
Quark and lepton masses at the GUT scale including supersymmetric threshold corrections
International Nuclear Information System (INIS)
Antusch, S.; Spinrath, M.
2008-01-01
We investigate the effect of supersymmetric (SUSY) threshold corrections on the values of the running quark and charged lepton masses at the grand unified theory (GUT) scale within the large tanβ regime of the minimal supersymmetric standard model. In addition to the typically dominant SUSY QCD contributions for the quarks, we also include the electroweak contributions for quarks and leptons and show that they can have significant effects. We provide the GUT scale ranges of quark and charged lepton Yukawa couplings as well as of the ratios m μ /m s , m e /m d , y τ /y b and y t /y b for three example ranges of SUSY parameters. We discuss how the enlarged ranges due to threshold effects might open up new possibilities for constructing GUT models of fermion masses and mixings.
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Ema, Yohei; Hagihara, Daisuke; Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori
2018-04-01
Recently, a new minimal extension of the Standard Model has been proposed, where a spontaneously broken, flavor-dependent global U(1) symmetry is introduced. It not only explains the hierarchical flavor structure in the quark and lepton sector, but also solves the strong CP problem by identifying the Nambu-Goldstone boson as the QCD axion, which we call flaxion. In this work, we consider supersymmetric extensions of the flaxion scenario. We study the CP and flavor violations due to supersymmetric particles, the effects of R-parity violations, the cosmological gravitino and axino problems, and the cosmological evolution of the scalar partner of the flaxion, sflaxion. We also propose an attractor-like inflationary model where the flaxion multiplet contains the inflaton field, and show that a consistent cosmological scenario can be obtained, including inflation, leptogenesis, and dark matter.
International Nuclear Information System (INIS)
Srednicki, M.
1981-01-01
I will discuss some work I recently completed with M. Dine and W. Fischler on supersymmetric technicolor. E. Witten and S. Dimopoulos and S. Raby have considered similar ideas. Our central idea is to combine supersymmetry and technicolor to produce a natural theory which is capable of reproducing all the known phenomenology of particle physics, especially the quark-lepton mass spectrum and the absence of flavor changing neutral currents. Supersymmetry allows us to introduce fundamental scalars which are naturally light. Some of these scalars play the role of Higgs fields, and give mass to quarks and leptons via ordinary Yukawa couplings (which are chosen so that we get the correct masses and mixing angles). The supersymmetric partners of all known particles turn out to be too heavy to have been observed in experiments to data; many of them, however, weigh less than 100 GeV
Gauge coupling unification from unified theories in higher dimensions
International Nuclear Information System (INIS)
Hall, Lawrence J.; Nomura, Yasunori
2002-01-01
Higher dimensional grand unified theories, with gauge symmetry breaking by orbifold compactification, possess SU(5) breaking at fixed points, and do not automatically lead to tree-level gauge coupling unification. A new framework is introduced that guarantees precise unification--even the leading loop threshold corrections are predicted, although they are model dependent. Precise agreement with the experimental result, α s exp =0.117±0.002, occurs only for a unique theory, and gives α s KK =0.118±0.004±0.003. Remarkably, this unique theory is also the simplest, with SU(5) gauge interactions and two Higgs hypermultiplets propagating in a single extra dimension. This result is more successful and precise than that obtained from conventional supersymmetric grand unification, α s SGUT =0.130±0.004±Δ SGUT . There is a simultaneous solution to the three outstanding problems of 4D supersymmetric grand unified theories: a large mass splitting between Higgs doublets and their color triplet partners is forced, proton decay via dimension five operators is automatically forbidden, and the absence of fermion mass relations amongst light quarks and leptons is guaranteed, while preserving the successful m b /m τ relation. The theory necessarily has a strongly coupled top quark located on a fixed point and part of the lightest generation propagating in the bulk. The string and compactification scales are determined to be around 10 17 GeV and 10 15 GeV, respectively
International Nuclear Information System (INIS)
Feldman, G.; Fulton, T.
1982-01-01
A technique, using the orthonormal basis for roots and weights of compact Lie groups, introduced by Van der Waerden and developed by Dynkin (Am. Math. Soc. Transl.; 17: (1950) and Sec 2,6:111 (1957)) provides a convenient framework for discussing mass relations in grand unification theories. The structure constants Nsub(αβ) for SU(R + 1), O(2R + 1), Sp(2R), O(2R) and G(2) are obtained in an appendix, using an approach arising from this basis. The method for obtaining generators of non-regular subalgebras, in terms of generators of the original algebras, is discussed in terms of the basis. It is necessary to know this structure in order to trace the history of particles, originally in some grand unification group, through the various chains of decompositions into subgroups. As an illustration, the methods are applied to finding the minimal, non-trivial, mass relations for fermions in the O(10) grand unification scheme. (author)
Supersymmetric family unification
International Nuclear Information System (INIS)
Frampton, P.H.; Kephart, T.W.
1983-01-01
The superheavy symmetry breaking of the gauge group in supersymmetrized unified theories is studied. The requirement that supersymmetry be unbroken strongly constrains the possible gauge group breaking, and we systematize such constraints group theoretically. In model building, one issue is whether to permit an adjoint matter superfield with concomitant color exotic fermions. A second issue is that of naturalness which is complicated by the well-known supersymmetry non-renormalization theorems. Both with and without an adjoint matter superfield, the most promising group appears to be SU(9) where three families can be naturally accommodated, at least for low-energy gauge group SU(3) x SU(2) x U(1). With an extra U(1) factor, as advocated by Fayet, the non-renormalization theorem must be exploited. (orig.)
Hilltop supernatural inflation and SUSY unified models
Kohri, Kazunori; Lim, C. S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is ns = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
Energy Technology Data Exchange (ETDEWEB)
Kohri, Kazunori [Cosmophysics Group, Theory Center, IPNS KEK, and The Graduate University for Advanced Studies (Sokendai), 1-1 Oho, Tsukuba, 305-0801 (Japan); Lim, C.S. [Department of Mathematics, Tokyo Woman' s Christian University, Tokyo, 167-8585 (Japan); Lin, Chia-Min [Department of Physics, Chuo University, Bunkyo-ku, Tokyo, 112 (Japan); Mimura, Yukihiro, E-mail: kohri@post.kek.jp, E-mail: lim@lab.twcu.ac.jp, E-mail: lin@chuo-u.ac.jp, E-mail: mimura@hep1.phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei, 10617 Taiwan (China)
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n{sub s} = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton.
Hilltop supernatural inflation and SUSY unified models
International Nuclear Information System (INIS)
Kohri, Kazunori; Lim, C.S.; Lin, Chia-Min; Mimura, Yukihiro
2014-01-01
In this paper, we consider high scale (100TeV) supersymmetry (SUSY) breaking and realize the idea of hilltop supernatural inflation in concrete particle physics models based on flipped-SU(5)and Pati-Salam models in the framework of supersymmetric grand unified theories (SUSY GUTs). The inflaton can be a flat direction including right-handed sneutrino and the waterfall field is a GUT Higgs. The spectral index is n s = 0.96 which fits very well with recent data by PLANCK satellite. There is no both thermal and non-thermal gravitino problems. Non-thermal leptogenesis can be resulted from the decay of right-handed sneutrino which plays (part of) the role of inflaton
Geometry of supersymmetric gauge theories
International Nuclear Information System (INIS)
Gieres, F.
1988-01-01
This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
Supersymmetric classical mechanics
International Nuclear Information System (INIS)
Biswas, S.N.; Soni, S.K.
1986-01-01
The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Early universe cosmology. In supersymmetric extensions of the standard model
International Nuclear Information System (INIS)
Baumann, Jochen Peter
2012-01-01
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the
Higgs, Top, and Bottom Mass Predictions in Finite Unified Theories
Heinemeyer, Sven; Zoupanos, George
2014-01-01
All-loop Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) based on the principle of reduction of couplings, which have a remarkable predictive power. The reduction of couplings implies the existence of renormalization group invariant relations among them, which guarantee the vanishing of the beta functions at all orders in perturbation theory in particular N = 1 GUTs. In the soft breaking sector these relations imply the existence of a sum rule among the soft scalar masses. The confrontation of the predictions of a SU(5) FUT model with the top and bottom quark masses and other low-energy experimental constraints leads to a prediction of the light Higgs-boson mass in the rangeMh ∼ 121−126 GeV, in remarkable agreement with the discovery of the Higgs boson with a mass around ∼ 125.7 GeV. Also a relatively heavy spectrum with coloured supersymmetric particles above ∼ 1.5 TeV is predicted, consistent with the non-observation of those particles at the LHC.
Supersymmetric particles at LEP
International Nuclear Information System (INIS)
Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.
1979-10-01
The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)
A K-theory anomaly free supersymmetric flipped SU(5) model from intersecting branes
Energy Technology Data Exchange (ETDEWEB)
Chen, C.-M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: cchen@physics.tamu.edu; Kraniotis, G.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: kraniotis@physics.tamu.edu; Mayes, V.E. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: eric@physics.tamu.edu; Nanopoulos, D.V. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States) and Astroparticle Physics Group, Houston Advanced Research Center (HARC), Mitchell Campus, Woodlands, TX 77381 (United States) and Academy of Athens, Division of Natural Sciences, 28 Panepistimiou Avenue, Athens 10679 (Greece)]. E-mail: dimitri@physics.tamu.edu; Walker, J.W. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics, Texas A and M University, College Station, TX 77843 (United States)]. E-mail: jwalker@physics.tamu.edu
2005-10-06
We construct an N=1 supersymmetric three-family flipped SU(5) model from type IIA orientifolds on T{sup 6}/(Z{sub 2}xZ{sub 2}) with D6-branes intersecting at general angles. The model is constrained by the requirement that Ramond-Ramond tadpoles cancel, the supersymmetry conditions, and that the gauge boson coupled to the U(1){sub X} factor does not get a string-scale mass via a generalised Green-Schwarz mechanism. The model is further constrained by requiring cancellation of K-theory charges. The spectrum contains a complete grand unified and electroweak Higgs sector, however the latter in a non-minimal number of copies. In addition, it contains extra matter both in bi-fundamental and vector-like representations as well as two copies of matter in the symmetric representation of SU(5)
The Supersymmetric Top-Ten Lists
Haber, Howard E.
1993-01-01
Ten reasons are given why supersymmetry is the leading candidate for physics beyond the Standard Model. Ultimately, the experimental discovery of supersymmetric particles at future colliders will determine whether supersymmetry is relevant for TeV scale physics. The grand hope of supersymmetry enthusiasts is to connect TeV scale supersymmetry with Planck scale physics. The ten most pressing theoretical problems standing in the way of this goal are briefly described.
Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio
2012-01-01
We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of
Localized fermions on domain walls and extended supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Oikonomou, V K
2014-01-01
We study fermionic fields localized on topologically unstable domain walls bounded by strings in a grand unified theory theoretical framework. Particularly, we found that the localized fermionic degrees of freedom, which are up and down-quarks as well as charged leptons, are connected to three independent N = 2, d = 1 supersymmetric quantum mechanics algebras. As we demonstrate, these algebras can be combined to form higher order representations of N = 2, d = 1 supersymmetry. Due to the uniform coupling of the domain wall solutions to the down-quarks and leptons, we also show that a higher order N = 2, d = 1 representation of the down-quark–lepton system is invariant under a duality transformation between the couplings. In addition, the two N = 2, d = 1 supersymmetries of the down-quark–lepton system, combine at the coupling unification scale to form an N = 4, d = 1 supersymmetry. Furthermore, we present the various extra geometric and algebraic attributes that the fermionic systems acquire, owing to the underlying N = 2, d = 1 algebras. (paper)
A review of supersymmetric GUT and its implication to proton decay
International Nuclear Information System (INIS)
Sakai, N.
1983-01-01
Supersymmetric grand unification and its implication to proton decay are reviewed. The author discusses prototype models and reviews recent studies of model building, in particular models with an intermediate scale (10/sup 10/ -- 10/sup 12/ Gev) supersymmetry breaking. Finally proton decay in supersymmetric models is reviewed
Supersymmetric quasipotential equations
International Nuclear Information System (INIS)
Zaikov, R.P.
1981-01-01
A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru
The neutralino sector in the U(1)-extended supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Choi, S.Y. [Chonbuk National Univ., Jeonju (Korea). Dept. of Physics and RIPC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Haber, H.E. [California Univ., Santa Cruz, CA (United States). SCIPP; Kalinowski, J. [Warsaw Univ. (Poland). Inst. of Theoretical Physics; Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[California Univ., Santa Cruz, CA (United States). SCIPP
2006-12-15
Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e{sup +}e{sup -} colliders are also discussed. (orig.)
Low energy supersymmetric models for several generations and proton decay
International Nuclear Information System (INIS)
Deo, B.B.; Sarkar, U.
1983-08-01
It is found that by invoking additional horizontal gauge symmetries required to explain the generational structure the low energy standard supersymmetric unified theories avoid the renormalizable unsuppressed baryon number violating interactions in a natural way. Theories considered here are anomaly-free by construction. (author)
Unified composite model of all fundamental particles and forces
International Nuclear Information System (INIS)
Terazawa, H.
2000-01-01
The unified supersymmetric composite model of all fundamental particles (and forces) including not only the fundamental fermions (quarks and leptons) but also the fundamental bosons (gauge bosons and Higgs scalars) is reviewed in detail
Duality and supersymmetric monopoles
International Nuclear Information System (INIS)
Gauntlett, J.P.
1998-01-01
Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spaces of BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of these investigations. (orig.)
International Nuclear Information System (INIS)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model
Energy Technology Data Exchange (ETDEWEB)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.
Renormalization of supersymmetric theories
International Nuclear Information System (INIS)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses
Supersymmetric color superconductivity
International Nuclear Information System (INIS)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2004-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ f c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f =N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c +1≤ N f c and find that baryon number is broken dynamically for μ > mu c . We also give a qualitative description of the phases in the 'conformal window', 3/2 N c f c , at finite density. (author)
Supersymmetric color superconductivity
International Nuclear Information System (INIS)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2003-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential μ, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ > Λ. We find that for N F c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f = N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c + 1 (le) N f c and find that baryon number is broken dynamically for μ > μ c . We also give a qualitative description of the phases in the ''conformal window'', 3/2 N c f c , at finite density
Proton hexality in local grand unification
Energy Technology Data Exchange (ETDEWEB)
Foerste, Stefan; Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics and Physikalisches Institut; Ramos-Sanchez, Saul [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Vaudrevange, Patrick K.S. [Muenchen Univ. (Germany). Arnold Sommerfeld Center for Theoretical Physics
2010-07-15
Proton hexality is a discrete symmetry that avoids the problem of too fast proton decay in the supersymmetric extension of the standard model. Unfortunately it is inconsistent with conventional grand unification. We show that proton hexality can be incorporated in the scheme of ''Local Grand Unification'' discussed in the framework of model building in (heterotic) string theory. (orig.)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
Instantons in supersymmetric theories
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.
1982-01-01
Instanton effects are considered for a sample of supersymmetric theories: quantum mechanics, gluodynamics. Higgs model. The problem is how to reconcile the apparent lack of the boson-fermion symmetry in the effective instanton induced interaction with supersymmetry of the corresponding lagrangians. It is shown that in case of quantum mechanics and Higgs model there is no conflict between supersymmetry and the instanton calculus since the Ward identities, associated with the supersymmetry transformations, are satisfied. In case of supersymmetric gluodynamics the standard instanton calculus explicity violates the Ward identities. This is due to the lack of symmetry in the standard class of classical solutions used in the instanton calculus
Supersymmetric models without R parity
International Nuclear Information System (INIS)
Ross, G.G.; Valle, J.W.F.
1985-01-01
We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)
Supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Crombrugghe, M. de; Rittenberg, V.
1982-12-01
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)
Supersymmetric reflection matrices
International Nuclear Information System (INIS)
Moriconi, M.; Schoutens, K.
1997-04-01
We briefly review the general structure of integrable particle theories in 1 + 1 dimensions having N = 1 supersymmetry. Examples are specific perturbed superconformal field theories (of Yang-Lee type) and the N = 1 supersymmetric sine-Gordon theory. We comment on the modifications that are required when the N = 1 supersymmetry algebra contains non-trivial topological charges. (author). 8 refs, 2 figs
Kravos, Urban
2011-01-01
In the modern business world, communication are becoming more and more complex. As a solution to this problem unified communications occurred. Using a single communication approach unified communications are the integration of various communication technologies (eg, telephony, unified messaging, audio, video and web conferencing and collaboration tools). Unified Messaging, which represents only part of the unified communications means the integration of different non real time communication t...
Classification of three-family grand unification in string theory. II. The SU(5) and SU(6) models
International Nuclear Information System (INIS)
Kakushadze, Z.; Tye, S.H.
1997-01-01
Requiring that supersymmetric SU(5) and SU(6) grand unifications in the heterotic string theory must have three chiral families, adjoint (or higher representation) Higgs fields in the grand unified gauge group, and a non-Abelian hidden sector, we construct such string models within the framework of free conformal field theory and asymmetric orbifolds. Within this framework, we construct all such string models via Z 6 asymmetric orbifolds that include a Z 3 outerautomorphism, the latter yielding a level-three current algebra for the grand unification gauge group SU(5) or SU(6). We then classify all such Z 6 asymmetric orbifolds that result in models with a non-Abelian hidden sector. All models classified in this paper have only one adjoint (but no other higher representation) Higgs field in the grand unified gauge group. This Higgs field is neutral under all other gauge symmetries. The list of hidden sectors for three-family SU(6) string models are SU(2), SU(3), and SU(2)circle-times SU(2). In addition to these, three-family SU(5) string models can also have an SU(4) hidden sector. Some of the models have an apparent anomalous U(1) gauge symmetry. copyright 1997 The American Physical Society
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
Nearly Supersymmetric Dark Atoms
Energy Technology Data Exchange (ETDEWEB)
Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP
2011-08-12
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.
International Nuclear Information System (INIS)
Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin
2016-01-01
Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.
Supersymmetrically transformed periodic potentials
C, David J. Fernandez
2003-01-01
The higher order supersymmetric partners of a stationary periodic potential are studied. The transformation functions associated to the band edges do not change the spectral structure. However, when the transformation is implemented for factorization energies inside of the forbidden bands, the final potential will have again the initial band structure but it can have bound states encrusted into the gaps, giving place to localized periodicity defects.
Planarizable Supersymmetric Quantum Toboggans
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2011-01-01
Roč. 7, - (2011), 018/1-018/23 ISSN 1815-0659. [Workshop on Supersymmetric Quantum Mechanics and Spectral Design. Benasque, 18.07.2010-30.07. 2010] R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : supersymmetry * Schrodinger equation * complexified coordinates Subject RIV: BE - Theoretical Physics Impact factor: 1.071, year: 2011
Dynamics of supersymmetric chameleons
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy
2013-01-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons
Dynamics of supersymmetric chameleons
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-10-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.
Local grand unification in the heterotic landscape
International Nuclear Information System (INIS)
Schmidt, Jonas
2009-06-01
We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)
Local grand unification in the heterotic landscape
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Jonas
2009-07-15
We consider the possibility that the unification of the electroweak interactions and the strong force arises from string theory, at energies significantly lower than the string scale. As a tool, an effective grand unified field theory in six dimensions is derived from an anisotropic orbifold compactification of the heterotic string. It is explicitly shown that all anomalies cancel in the model, though anomalous Abelian gauge symmetries are present locally at the boundary singularities. In the supersymmetric vacuum additional interactions arise from higher-dimensional operators. We develop methods that relate the couplings of the effective theory to the location of the vacuum, and find that unbroken discrete symmetries play an important role for the phenomenology of orbifold models. An efficient algorithm for the calculation of the superpotential to arbitrary order is developed, based on symmetry arguments. We furthermore present a correspondence between bulk fields of the orbifold model in six dimensions, and the moduli fields that arise from compactifying four internal dimensions on a manifold with non-trivial gauge background. (orig.)
Spin analysis of supersymmetric particles
International Nuclear Information System (INIS)
Choi, S.Y.; Martyn, H.U.
2006-12-01
The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)
Precision LEP data, supersymmetric GUTs and string unification
International Nuclear Information System (INIS)
Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center
1990-01-01
The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)
Supersymmetric reciprocal transformation and its applications
International Nuclear Information System (INIS)
Liu, Q. P.; Popowicz, Ziemowit; Tian Kai
2010-01-01
The supersymmetric analog of the reciprocal transformation is introduced. This is used to establish a transformation between one of the supersymmetric Harry Dym equations and the supersymmetric modified Korteweg-de Vries equation. The reciprocal transformation, as a Baecklund-type transformation between these two equations, is adopted to construct a recursion operator for the supersymmetric Harry Dym equation. By proper factorization of the recursion operator, a bi-Hamiltonian structure is found for the supersymmetric Harry Dym equation. Furthermore, a supersymmetric Kawamoto equation is proposed and is associated with the supersymmetric Sawada-Kotera equation. The recursion operator and odd bi-Hamiltonian structure of the supersymmetric Kawamoto equation are also constructed.
International Nuclear Information System (INIS)
Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.
1992-01-01
We show that Tr(-1) F F e -βH is an index for N = 2 supersymmetric theories in two dimensions, in the sense that it is independent of almost all deformations of the theory. This index is related to the geometry of the vacua (Berry's curvature) and satisfies an exact differential equation as a function of β. For integrable theories we can also compute the index thermodynamically, using the exact S-matrix. The equivalence of these two results implies a highly non-trivial equivalence of a set of coupled integral equations with these differential equations, among them Painleve III and the affine Toda equations. (orig.)
Supersymmetric inflation: Recent progress
International Nuclear Information System (INIS)
Ovrut, B.A.; Steinhardt, P.J.
1986-01-01
The new inflationary universe scenario is, in principle, a simple and powerful approach to resolving a large number of fundamental cosmological problems. However, in order for the scenario to be considered a complete theory, one critical question remains to be answered: What is the physics responsible for the phase transition that triggers the exponential expansion (inflation) of the universe? One possibility that the authors and several other groups have been pursuing is that the physics responsible for the phase transition involves (local) supersymmetry. The goal of this paper is to review the present status of ''Supersymmetric Inflation'', particularly emphasizing some very exciting results that they recently obtained
Aspects of supersymmetric inflation
International Nuclear Information System (INIS)
Lindblom, P.R.
1987-01-01
A new supersymmetric inflationary model is presented and shown to possess the following features: a successful slow rollover produced by quantum corrections; an acceptable pattern of supersymmetry breaking leading to the correct value of the electroweak scale; and a stable slow rollover transition to a minimum with vanishing cosmological constant. It is demonstrated that there is a class of GUT models which are compatible with an inflationary universe scenario in which: (a) the GUT and inflationary phase transitions are distinct (as in supersymmetric inflation); and (b) an observable number of GUT monopoles are created thermally due to reheating of the GUT sector after inflation. This provides one of the few ways of reconciling an observation of GUT monopoles with inflation. New techniques are developed for constructing inflationary models with multiple inflation fields, such as generalizing the one-dimensional slow rollover constraints and estimating the contribution to δρ/ρ from fluctuations transverse to the path of the slow rollover. A new method for ending the slow rollover portion of the inflationary transition is developed
Deformed supersymmetric quantum mechanics with spin variables
Fedoruk, Sergey; Ivanov, Evgeny; Sidorov, Stepan
2018-01-01
We quantize the one-particle model of the SU(2|1) supersymmetric multiparticle mechanics with the additional semi-dynamical spin degrees of freedom. We find the relevant energy spectrum and the full set of physical states as functions of the mass-dimension deformation parameter m and SU(2) spin q\\in (Z_{>0,}1/2+Z_{≥0}) . It is found that the states at the fixed energy level form irreducible multiplets of the supergroup SU(2|1). Also, the hidden superconformal symmetry OSp(4|2) of the model is revealed in the classical and quantum cases. We calculate the OSp(4|2) Casimir operators and demonstrate that the full set of the physical states belonging to different energy levels at fixed q are unified into an irreducible OSp(4|2) multiplet.
Two-loop renormalization group analysis of supersymmetric SO(10) models with an intermediate scale
International Nuclear Information System (INIS)
Bastero-Gil, M.; Brahmachari, B.
1996-03-01
Two-loop evolutions of the gauge couplings in a class of intermediate scale supersymmetric SO(10) models including the effect of third generation Yukawa couplings are studied. The unification scale, the intermediate scale and the value of the unification gauge coupling in these models are calculated and the gauge boson mediated proton decay rates are estimated. In some cases the predicted proton lifetime turns out to be in the border-line of experimental limit. The predictions of the top quark mass, the mass ratio m b (m b )/m τ (m τ ) from the two-loop evolution of Yukawa couplings and the mass of the left handed neutrino via see-saw mechanism are summarized. The lower bounds on the ratio of the VEVs of the two low energy doublets (tan β) from the requirement of the perturbative unitarity of the top quark Yukawa coupling up to the grand unification scale are also presented. All the predictions have been compared with those of the one-step unified theory. (author). 33 refs, 5 figs, 1 tab
Supersymmetric models for quarks and leptons with nonlinearly realized E8 symmetry
International Nuclear Information System (INIS)
Ong, C.L.
1985-01-01
We propose three supersymmetric nonlinear sigma models with global symmetry E 8 . The models can accommodate three left-handed families of quarks and leptons without incurring the Adler-Bell-Jackiw anomaly with respect to either the standard SU(3) x SU(2) x U(1) gauge group, or the SU(5), or SO(10) grand unifying gauge group. They also predict unambiguously a right-handed, fourth family of quarks and leptons. In order to explore the structure of the models, we develop a differential-form formulation of the Kahler manifolds, resulting in general expressions for the curvature tensors and other geometrical objects in terms of the structure constants of the algebra, and the squashing parameters. These results, in turn, facilitate a general method for determining the Lagrangian to quartic order, and so the structure of the inherent four-fermion interactions of the models. We observe that the Kahlerian condition dω = 0 on the fundamental two-form ω greatly reduces the number of the independent squashing parameters. We also point out two plausible mechanisms for symmetry breaking, involving gravity
Gravitino and scalar {tau}-lepton decays in supersymmetric models with broken R-parity
Energy Technology Data Exchange (ETDEWEB)
Hajer, Jan
2010-06-15
Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1){sub Q} flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar {tau}-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar {tau}-leptons in collider experiments. (orig.)
Gravitino and scalar τ-lepton decays in supersymmetric models with broken R-parity
International Nuclear Information System (INIS)
Hajer, Jan
2010-01-01
Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1) Q flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar τ-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar τ-leptons in collider experiments. (orig.)
Supersymmetric theories and finiteness
International Nuclear Information System (INIS)
Helayel-Neto, J.A.
1989-01-01
We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)
Supersymmetric Majoron inflation
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F.; Ludl, Patrick Otto [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2017-03-31
We propose supersymmetric Majoron inflation in which the Majoron field Φ responsible for generating right-handed neutrino masses may also be suitable for giving low scale “hilltop” inflation, with a discrete lepton number ℤ{sub N} spontaneously broken at the end of inflation, while avoiding the domain wall problem. In the framework of non-minimal supergravity, we show that a successful spectral index can result with small running together with small tensor modes. We show that a range of heaviest right-handed neutrino masses can be generated, m{sub N}∼10{sup 1}−10{sup 16} GeV, consistent with the constraints from reheating and domain walls.
New Supersymmetric String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit
2002-11-25
We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.
Supersymmetric GUTs and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1982-06-01
By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)
Deformed supersymmetric mechanics
International Nuclear Information System (INIS)
Ivanov, E.; Sidorov, S.
2013-01-01
Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry
Supersymmetric Quantum Mechanics and Topology
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul
2016-01-01
Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Properties of supersymmetric particles and processes
International Nuclear Information System (INIS)
Barnett, R.M.
1986-01-01
The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs
Relations between grand unified and monopole theories
International Nuclear Information System (INIS)
Olive, D.I.
1983-01-01
Two kinds of interrelationships between GUTs and monopole theories are discussed: how the duality conjectures could have a bearing on understanding GUTs, and how some of the mathematical technology used in monopole studies can yield simple (Dynkin) diagrammatic rules for some of the common GUT group theory calculations. A compact notation for semisimple Lie algebras is supplied by Dynkin diagrams. Minimal fundamental weights are seen to define minimal representations into which matter may be placed, and also define a special direction for the adjoint Higgs field. Minimal weights play a special role, therefore, both in defining matter multiplets and in symmetry breaking. After considering gauge groups G broken down to U(1) X K/Z (with K semisimple) by an adjoint representation (AR) Higgs, it is asked how the representations of G will look when decomposed into irreducible representations of U(1) X K, by proving two theorems as given. The point is pedagogical: using concepts like the Weyl group, practical calculations can be performed with simple Dynkin diagrams
Collisional processes in supersymmetric plasma
International Nuclear Information System (INIS)
Czajka, Alina; Mrowczynski, Stanislaw
2011-01-01
Collisional processes in ultrarelativistic N=1 supersymmetric QED plasma are studied and compared to those in an electromagnetic plasma of electrons, positrons and photons. Cross sections of all binary interactions which occur in the supersymmetric plasma at the order of e 4 are computed. Some processes, in particular, the Compton scattering on selectrons, appear to be independent of momentum transfer and thus they are qualitatively different from processes in an electromagnetic plasma. It suggests that the transport properties of the supersymmetric plasma are different than those of its nonsupersymmetric counterpart. Energy loss and momentum broadening of a particle traversing the supersymmetric plasma are discussed in detail and the characteristics are shown to be surprisingly similar to those of QED plasma.
Basic hypergeometry of supersymmetric dualities
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, Ilmar, E-mail: ilmar.gahramanov@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D14476 Potsdam (Germany); Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 6, D12489 Berlin (Germany); Institute of Radiation Problems ANAS, B.Vahabzade 9, AZ1143 Baku (Azerbaijan); Department of Mathematics, Khazar University, Mehseti St. 41, AZ1096, Baku (Azerbaijan); Rosengren, Hjalmar, E-mail: hjalmar@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg (Sweden)
2016-12-15
We introduce several new identities combining basic hypergeometric sums and integrals. Such identities appear in the context of superconformal index computations for three-dimensional supersymmetric dual theories. We give both analytic proofs and physical interpretations of the presented identities.
How to quantize supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe
Supersymmetric two-particle equations
International Nuclear Information System (INIS)
Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.
1986-01-01
In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found
Supersymmetric models and their phenomenology
International Nuclear Information System (INIS)
Ross, G.G.
1995-01-01
The prospects for unification of the Standard Model are considered and the need for supersymmetry discussed. The prediction of the gauge couplings, the electroweak breaking scale, the fermion masses and the dark matter abundance are all consistent with simple unification if there is a stage of supersymmetric unification below the TeV scale. The prospects for discovery of the new SUSY states is considered, both in the minimal supersymmetric standard model and in non-minimal extensions. (author)
Supersymmetric electro-weak effects on gsub(μ)-2
International Nuclear Information System (INIS)
Yuan, T.C.; Arnowitt, R.; Chamseddine, A.H.; Nath, P.
1984-01-01
A model independent analysis of the supersymmetric electroweak contribution to gsub(μ)-2 is discussed within the framework of N=1 Supergravity unified theory. A detailed comparison with existing experiment of two models (R.G. and T.B.) is carried out. The supersymmetric electro-weak contributions are found to be characteristically different and generally larger than the electro-weak contributions of the standard theory, and in many cases significantly larger. Effects of the hidden sector and the photino mass dependence of gsub(μ)-2 are also investigated. Present data already eliminates some choices of parameters. Reduction of existing experimental errors by a factor of 3 will make contact with most R.G. models and by a factor of 10 with most T.B. models. (orig.)
Impact of the muon anomalous magnetic moment on supersymmetric models
International Nuclear Information System (INIS)
Baer, Howard; Balazs, Csaba; Ferrandis, Javier; Tata, Xerxes
2001-01-01
The recent measurement of a μ =(g μ -2)/2 by the E821 Collaboration at Brookhaven deviates from the quoted standard model (SM) central value prediction by 2.6σ. The difference between SM theory and experiment may be easily accounted for in a variety of particle physics models employing weak scale supersymmetry (SUSY). Other supersymmetric models are distinctly disfavored. We evaluate a μ for various supersymmetric models, including minimal supergravity, Yukawa unified SO(10) SUSY GUT's, models with inverted mass hierarchies, models with nonuniversal gaugino masses, gauge mediated SUSY breaking models, anomaly-mediated SUSY breaking models and models with gaugino mediated SUSY breaking. Models with Yukawa coupling unification or multi-TeV first and second generation scalars are disfavored by the a μ measurement
Supersymmetric and supergravity theories
International Nuclear Information System (INIS)
Pernici, M.
1986-01-01
The author addressed problems in Kaluza-Klein supergravity, in supersymmetric theories and in string theories. They constructed the following supergravity theories in higher dimensions: the maximal gauged supergravities in five and seven dimensions, both related to the respective ungauged theory, though the latter cannot be obtained by putting the coupling constant of the gauged version to zero (gauge discontinuity); the ten-dimensional N = 2 non-chiral and the six-dimensional N = 4 supergravities, through trivial dimensional reduction of higher dimensional theories. They studied the Kaluza-Klein compactifications of the seven-dimensional supergravity theories and of the ten-dimensional, N = 2 non-chiral supergravity. They obtained the non-compact gaugings and the critical points of the potential of the maximal gauged supergravity in seven dimensions. They computed the non-abelian chiral anomaly in super Yang-Mills theories, using a variation of the Fujikawa method. The covariant action of the SU(2) spinning string is obtained together with its extension to non-linear sigma models. A covariant action for the free open spinning string field theory is constructed by analyzing the BRST transformations
International Nuclear Information System (INIS)
Tian, Kai; Liu, Q.P.
2012-01-01
A new N=1 supersymmetric Harry Dym equation is constructed by applying supersymmetric reciprocal transformation to a trivial supersymmetric Harry Dym equation, and its recursion operator and Lax formulation are also obtained. Within the framework of symmetry approach, a class of 3rd order supersymmetric equations of Harry Dym type are considered. In addition to five known integrable equations, a new supersymmetric equation, admitting 5th order generalized symmetry, is shown to be linearizable through supersymmetric reciprocal transformation. Furthermore, its Lax representation and recursion operator are given so that the integrability of this new equation is confirmed. -- Highlights: ► A new supersymmetric Harry Dym equation is constructed through supersymmetric reciprocal transformations. ► The recursion operator and Lax formulation are established for the new supersymmetric Harry Dym equation. ► A supersymmetric equation of Harry Dym type is shown to be linearized through supersymmetric reciprocal transformation.
New supersymmetrizations of the generalized KDV hierarchies
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Stanciu, S.
1993-03-01
Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, expect for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy. (orig.)
Supersymmetric probes on the conifold
International Nuclear Information System (INIS)
Arean, Daniel; Crooks, David E.; Ramallo, Alfonso V.
2004-01-01
We study the supersymmetric embeddings of different D-brane probes in the AdS 5 xT 1,1 geometry. The main tool employed is kappa symmetry and the cases studied include D3-, D5- and D7-branes. We find a family of three-cycles of the T 1,1 space over which a D3-brane can be wrapped supersymmetrically and we determine the field content of the corresponding gauge theory duals. Supersymmetric configurations of D5-branes wrapping a two-cycle and of spacetime filling D7-branes are also found. The configurations in which the entire T 1,1 space is wrapped by a D5-brane (baryon vertex) and a D7-brane are also studied. Some other embeddings which break supersymmetry but are nevertheless stable are also determined. (author)
From Minimal to Realistic Supersymmetric SU(5) Grand Unification
Altarelli, Guido; Masina, I; Altarelli, Guido; Feruglio, Ferruccio; Masina, Isabella
2000-01-01
We construct and discuss a "realistic" example of SUSY SU(5) GUT model, with an additional U(1) flavour symmetry, that is not plagued by the need of large fine tunings, like those associated with doublet-triplet splitting in the minimal model, and that leads to an acceptable phenomenology. This includes coupling unification with a value of alpha_s(m_Z) in much better agreement with the data than in the minimal version, an acceptable hierarchical pattern for fermion masses and mixing angles, also including neutrino masses and mixings, and a proton decay rate compatible with present limits (but the discovery of proton decay should be within reach of the next generation of experiments). In the neutrino sector the preferred solution is one with nearly maximal mixing both for atmospheric and solar neutrinos.
Supersymmetric Grand Unification and Lepton Universality in $K \\to l\
Ellis, Jonathan Richard; Raidal, Martti
2009-01-01
in the near future, one may nevertheless obtain significant constraints on the model parameters and unknown aspects of right-handed fermion and sfermion mixing. Motivated by the prospects for an improved test of lepton universality in K -> l \
Supersymmetric extensions of K field theories
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Supersymmetric flipped SU(5) revitalized
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.
1987-08-06
We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.
Supersymmetric regulators and supercurrent anomalies
International Nuclear Information System (INIS)
Majumdar, P.; Poggio, E.C.; Schnitzer, H.J.
1980-01-01
The supercurrent anomalies of the supercurrent deltasub(μ) of the supersymmetric Yang-Mills theory in Wess-Zumino gauge are computed using the supersymmetric dimensional regulator of Siegel. It is shown that γsub(μ)deltasup(μ) = 0 and deltasub(μ)deltasup(μ) unequal 0 in agreement with an earlier calculation based on the Adler-Rosenberg method. The problem of exhibiting the chiral anomaly and a regulator for local supersymmetry suggests that the interpretation of dimensional reduction in component language is incomplete. (orig.)
On quantization of supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe to resolve ordering ambiguities in the quantum hamiltonian of supersymmetric theories is suggested. The Weyl ordering prescription for supercharge operators should be employed to preserve SUSY algebra on the quantum level. The quantum hamiltonian does not generally coincide with the Weyl ordered classical hamiltonian, the difference being due to the fact that the Weyl symbol of anticommutator of supercharges does not generally coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The suggested procedure is applied in the examples of N=1 and N=2 supersymmetric σ-models analyzed in the constant field limit
Supersymmetric classical mechanics: free case
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica
2001-06-01
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)
CERN. Geneva
2011-01-01
In these lectures, I shall describe the theory of supersymmetry accessible to people with a knowledge of basic quantum field theory. The lectures will contain recipes of how to calculate which interactions (and which special relations) are in supersymmetry, without providing detailed proofs of where they come from. We shall also cover: motivation for weak-scale supersymmetry and the minimal supersymmetric standard model.
Directory of Open Access Journals (Sweden)
Magnus Kelly Moura da Cunha
2011-06-01
Full Text Available O objetivo deste artigo é discutir as representações sociais acerca de "saúde nas relações sexuais" de mulheres atendidas pelo SUS. Cento e cinquenta pesquisadas foram submetidas ao Teste de Evocação Livre de Palavras (TELP, adotando-se como estímulo "saúde nas relações sexuais". As mulheres foram questionadas também a respeito da origem das informações acessíveis sobre o tema. Os resultados foram obtidos utilizando-se a análise de conteúdo e o programa EVOC. Foram identificadas três dimensões representacionais: prevenção, relação com o parceiro e qualidade de vida. O núcleo central da representação social mostrou-se constituído pelos elementos prevenção e camisinha. As prováveis fontes doadoras de elementos para a representação foram a TV, a unidade de saúde e as interlocuções com a família e o parceiro. As representações são compostas por conceitos relativos à prevenção, à boa relação com o parceiro e ao bem-estar geral. Esses resultados são indicadores da necessidade de ampliação dos aspectos abordados pelo SUS em relação à saúde sexual feminina.The aim of this article is to discuss the social representations of "health in sexual relations" as reported by women treated under the Unified National Health System (SUS in Natal, Rio Grande do Norte, Brazil. A total of 150 women were tested using the free word recall test, with "health in sexual relations" as the stimulus. Women were also asked about their sources of information on the subject. The results were obtained with content analysis and the EVOC software. We identified three representational dimensions: prevention, relationship with the partner, and quality of life. The central nucleus of social representation consisted of the elements "prevention" and "condoms". Likely sources for representation were television, health services, and dialogue with family members and partners. Representations were composed of concepts related to
DEFF Research Database (Denmark)
Torgersen, Mads
This thesis presents the RUNE language, a semantic construction of related and tightly coupled programming constructs presented in the shape of a programming language. The major contribution is the succesfull design of a highly unified and general programming model, capable of expressing some of ...... a unified name declaration mechanism. The resulting expressiveness allows for argument covariance, dependent types and module types, plus a solution to the so-called expression problem of two way extensibility in object-oriented languages....... of the most complex type relations put forth in type systems research, without compromising such fundamental qualities as conceptuality, modularity and static typing. While many new constructs and unifications are put forth to substantiate their conceptual validity, type rules are given to support...
International Nuclear Information System (INIS)
Georgi, H.
1980-01-01
Unified gauge theories such as SU(5) of particle interactions are built on the colour SU(3) and SU(2) x U(1) gauge theories which apparently describe strong and weak and electromagnetic interactions at distances as small as 10 -16 cm. In this article the classical reasons for going beyond SU(3)xSU(2)xU(1) to a fully unified theory such as SU(5) are reviewed, and a new reason formulated. A class of imaginary worlds similar to our own is considered and it is shown that unification is possible only in ours. This suggests that the low-energy interactions are unique in that they are constructed to make unification possible. (author)
Particle physics models of inflation in supergravity and grand unification
International Nuclear Information System (INIS)
Kostka, Philipp Manuel
2010-01-01
In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the η-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the η-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the production of stable
Particle physics models of inflation in supergravity and grand unification
Energy Technology Data Exchange (ETDEWEB)
Kostka, Philipp Manuel
2010-12-03
In the first part of this thesis, we study classes of hybrid and chaotic inflation models in four-dimensional N=1 supergravity. Therein, the {eta}-problem can be resolved relying on fundamental symmetries in the Kaehler potential. Concretely, we investigate explicit realizations of superpotentials, in which the flatness of the inflaton potential is protected at tree level by a shift symmetry or a Heisenberg symmetry in the Kaehler potential. In the latter case, the associated modulus field can be stabilized during inflation by supergravity effects. In the context of hybrid inflation, a novel class of models, to which we refer as ''tribrid inflation,'' turns out to be particularly compatible with such symmetry solutions to the {eta}-problem. Radiative corrections due to operators in the superpotential, which break the respective symmetry, generate the required small slope of the inflaton potential. Additional effective operators in the Kaehler potential can reduce the predicted spectral index so that it agrees with latest observational data. Within a model of chaotic inflation in supergravity with a quadratic potential, we apply the Heisenberg symmetry to allow for viable inflation with super-Planckian field values, while the associated modulus is stabilized. We show that radiative corrections are negligible in this context. In the second part, the tribrid inflation models are extended to realize gauge non-singlet inflation. This is applied to the matter sector of supersymmetric Grand Unified Theories based on the Pati-Salam gauge group. For the specific scenario in which the right-handed sneutrino is the inflaton, we study the scalar potential in a D-flat valley. We show that despite potentially dangerous two-loop corrections, the required flatness of the potential can be maintained. The reason for this is the strong suppression of gauge interactions of the inflaton field due to its symmetry breaking vacuum expectation value. In addition, the
Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons
Energy Technology Data Exchange (ETDEWEB)
Braathen, Johannes; Goodsell, Mark D. [LPTHE, UPMC Univ. Paris 6, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)
2017-11-15
The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called ''Goldstone Boson Catastrophe'', where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models. We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached. (orig.)
Supersymmetric models with light higgsinos
International Nuclear Information System (INIS)
Bruemmer, F.
2012-05-01
In the Minimal Supersymmetric Standard Model, the higgsinos can have masses around the electroweak scale, while the other supersymmetric particles have TeV-scale masses. This happens in models of gauge-mediated SUSY breaking with a high messenger scale, which are motivated from string theory. For particular choices of the messenger eld content, multi-TeV squark and gluino masses naturally lead to a much lower electroweak scale, somewhat similar to focus point supersymmetry. They also induce Higgs masses of 124-126 GeV, while making the discovery of supersymmetry at the LHC unlikely. The light higgsinos will be di cult to see at the LHC but may eventually be discovered at a linear collider.
Supersymmetric Higgs bosons and beyond
International Nuclear Information System (INIS)
Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose
2010-01-01
We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.
Spontaneous baryogenesis in supersymmetric models
International Nuclear Information System (INIS)
Abel, S.A.; Cottingham, W.N.; Whittingham, I.B.
1993-01-01
In this paper we extent the results of previous work on spontaneous baryogenesis to general models involving charge-parity (CP) violation in the Higgs sector. We show how to deal with Chern-Simons terms appearing in the effective potential arising from phase changes in the vacuum expectation values of the Higgs fields. In particular, this enables us to apply this mechanism to general supersymmetric models including the minimal supersymmetric standard model, and the extended model with a gauge singlet. A comparison is made between this approach, and that in which one solves the equations of motion for Higgs winding modes. As anticipated in earlier work, the effect of the latter approach is found to be small. (Author)
Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky
Energy Technology Data Exchange (ETDEWEB)
Kim, Ju Min
2010-09-15
We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)
Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky
International Nuclear Information System (INIS)
Kim, Ju Min
2010-09-01
We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)
Fun with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup α/ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index Δ which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if Δ is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate Δ for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references
Fermion number in supersymmetric models
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
1975-01-01
The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)
Supersymmetric quantum mechanics an introduction
Gangopadhyaya, Asim; Rasinariu, Constantin
2017-01-01
We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.
A unified theory in higher dimensions
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (National Research Centre for the Physical Sciences Democritos, Athens (Greece)); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1990-10-11
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space (Su(3)/U(1)xU(1))/Z{sub 2} giving in four dimensions the standard model. (orig.).
A unified theory in higher dimensions
International Nuclear Information System (INIS)
Kapetanakis, D.; Zoupanos, G.
1990-01-01
We present a grand unified model defined in ten dimensions and based on the group SO(13). The model is dimensionally reduced over the non-simply-connected space [Su(3)/U(1)xU(1)]/Z 2 giving in four dimensions the standard model. (orig.)
Classification of supersymmetric backgrounds of string theory
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds. We then demonstrate its effectiveness by classifying the maximally supersymmetric IIB G-backgrounds and by showing that N=31 IIB solutions do not exist. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
The massless limit of supersymmetric QCD
International Nuclear Information System (INIS)
Davis, A.C.; Dine, M.; Seiberg, N.
1983-01-01
We construct an effective lagrangian for supersymmetric QCD, using a simple set of rules. The model with non-zero quark mass, msub(q), has at least N supersymmetric vacua, where N is the number of colors (in agreement with Witten's index). These vacua move to infinity as msub(q)->0. We study the possibility of supersymmetric breaking at msub(q)=0. (orig.)
Duality in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.
Duality in supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs
Chaos and random matrices in supersymmetric SYK
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
A low αs and its consequences for unified model building
International Nuclear Information System (INIS)
Brahmachari, B.; Mohapatra, R.N.
1995-08-01
We review various ways of obtaining consistency between the idea of supersymmetric grand unification and an apparent low value of α s ∼ 0.112 indicated by several low energy experiments. We argue that to reconcile the low value of α s with the predictions of supersymmetric GUTs, we need to go beyond the standard minimal supersymmetric GUT scenario and invoke new physics either at 10 11 - 10 12 GeV, or at the GUT scale. (author). 35 refs, 3 figs, 4 tabs
Ultraviolet divergences and supersymmetric theories
International Nuclear Information System (INIS)
Sagnotti, A.
1984-09-01
This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references
Supersymmetric gyratons in five dimensions
Energy Technology Data Exchange (ETDEWEB)
Caldarelli, Marco M [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy); Klemm, Dietmar [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy); Zorzan, Emanuele [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy)
2007-03-07
We obtain the gravitational and electromagnetic field of a spinning radiation beam-pulse (a gyraton) in minimal five-dimensional gauged supergravity and show under which conditions the solution preserves part of the supersymmetry. The configurations represent generalizations of Lobatchevski waves on AdS with nonzero angular momentum, and possess a Siklos-Virasoro reparametrization invariance. We compute the holographic stress-energy tensor of the solutions and show that it transforms without anomaly under these reparametrizations. Furthermore, we present supersymmetric gyratons both in gauged and ungauged five-dimensional supergravity coupled to an arbitrary number of vector supermultiplets, which include gyratons on domain walls.
Supersymmetric Adler functions and holography
Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu
2016-09-01
We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.
Directory of Open Access Journals (Sweden)
Editorial, Equipo
1961-07-01
Full Text Available El empleo creciente del material pesado auxiliar en la construcción de obras de ingeniería civil ha motivado la fabricación de grandes plataformas, capaces de transportar toda clase de maquinaria auxiliar. En general, este tipo de maquinaria requiere medios de transporte, pues su circulación por carreteras es lenta, obstructiva y cara, siempre que se trate de grandes distancias, caso presente en la mayoría de ocasiones en que se exige un traslado de esta maquinaria de una a otra obra.
Higher dimensional supersymmetric quantum mechanics and Dirac ...
Indian Academy of Sciences (India)
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
On the supersymmetric solitons and monopoles
International Nuclear Information System (INIS)
Hruby, J.
1978-01-01
The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension
The supersymmetric Pegg-Barnett oscillator
International Nuclear Information System (INIS)
Shen, Jian Qi
2005-01-01
The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons
The gauge technique in supersymmetric QED2
Roo, M. de; Steringa, J.J.
1988-01-01
We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge
Classification of supersymmetric backgrounds of string theory
Gran, Ulf; Gutowski, Jan; Papadopoulos, George; Roest, Diederik
2007-01-01
We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds.We then demonstrate
Reduction of parameters in Finite Unified Theories and the MSSM
Heinemeyer, Sven; Mondragón, Myriam; Tracas, Nicholas; Zoupanos, George
2018-02-01
The method of reduction of couplings developed by W. Zimmermann, combined with supersymmetry, can lead to realistic quantum field theories, where the gauge and Yukawa sectors are related. It is the basis to find all-loop Finite Unified Theories, where the β-function vanishes to all-loops in perturbation theory. It can also be applied to the Minimal Supersymmetric Standard Model, leading to a drastic reduction in the number of parameters. Both Finite Unified Theories and the reduced MSSM lead to successful predictions for the masses of the third generation of quarks and the Higgs boson, and also predict a heavy supersymmetric spectrum, consistent with the non-observation of supersymmetry so far.
Goradia, Shantilal
2013-04-01
Century old GR fails to unify quantum physics, nuclear force or distinguish between the mass of living bodies from inert mass. Probabilistic gravity [1] explains strong coupling (nuclear force). The natural log of the age of the universe, 10E60 in Planck times, equaling 137 (1/Alpha) extends physics to deeper science, if we stand on the shoulders of giants like Feynman and Gamow. Implications of [1] are that it is not the earth, but M and S numbers of the particles of the earth are remotely interacting with corresponding numbers of the particles of the moon and the sun respectively, neglecting other heavenly bodies in this short draft. This new physics is likely to enable creative scientific minds to throw light on a theoretical basis for an otherwise arbitrary cosmological constant, uniformity of microwave background, further vindication of Boltzmann, quantum informatics, Einstein’s later publicized views and more, eliminating the need to spend money for implicitly nonexistent quantum gravity and graviton.[4pt] [1] Journal of Physical Science and Applications 2 (7) (2012) 265-268.
Applications of supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Rietdijk, R.H.
1992-01-01
The central subject of the thesis is the spinning particle model. It is a theory describing in a pseudoclassical way a Dirac particle which moves in an arbitrary d-dimensional space-time.In addition to space-time coordinates, the particle has spin which is described in terms of anti-commuting coordinates. Along the particles world line there is a super-symmetry between the fermionic spin variables and the bosonic position coordinates of the particle. It is straightforward to quantisize this model giving rise to supersymmetric quantum mechanics. The model does indeed describe a particle with spin 1/2, like a quark or an electron. There are two aspects of this model which is studied extensively in this thesis. First, to investigate the symmetries of the spinning particle on an arbitrary Riemannian manifold. Second, attention is drawn to the application of supersymmetric quantum mechanical models (i.e. spinning particle models) defined on an arbitrary Riemannian manifold to the calculation of anomalies in quantum field theories defined on the same manifold. (author). 49 refs.; 7 figs
Grand unification: status report
International Nuclear Information System (INIS)
Georgi, H.
1983-01-01
Grand unification is reviewed with regard to the flavor puzzle and the hierarchy puzzle. Progress in CP and the PQWWKDFS axion is reviewed. The neutrino mass and B-L research, the understanding and assimilation of the language of effective theories (which divide the momentum scale up into regions), with focus on the models, are surveyed. Various unified models are organized according to whether they address the hierarchy puzzle or the flavor puzzle. SU(5), SO(10), E6, and Higgs are considered simple and explicit models. Global symmetry addresses hierarchy puzzle, but the rules are unclear. In SO (18), with regard to hierarchy, perturbation theory breaks down. SO (14) fails for hierarchy because of GIM, b and t problems. Supersymmetry and technicolor with regard to flavor puzzle are questioned. The CP solution of ETC and Composite C models (addressing both flavor and hierarchy) is a minus. Composite A model has no evident virtues, and the basic idea of ETC model needs checking
Neutron electric dipole moment in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Inui, T.; Mimura, Y.; Sakai, N.; Sasaki, T.
1995-01-01
The neutron electric dipole moment (EDM) due to the single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in the parameters of soft supersymmetry breaking at low energies. The chargino one-loop diagram is found to give the dominant contribution of the order of 10 -27 similar 10 -29 e.cm for the quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. The gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions. (orig.)
Supersymmetric models with tan β close to unity
International Nuclear Information System (INIS)
Ananthanarayan, B.; Babu, K.S.; Shafi, Q.
1994-01-01
Within the framework of supersymmetric grand unification, estimates of the b quark mass based on the asymptotic relation m b similar eqm τ single out the region with tan β close to unity, particularly if m t (m t ) < or ∼170 GeV. We explore the radiative breaking of the electroweak symmetry and the associated sparticle and higgs spectroscopy in models with 1 < tan β< or ∼1.6. The lightest scalar higgs is expected to have a mass below 100 GeV, while the remaining four higgs masses exceed 300 GeV. The lower bounds on some of the sparticle masses are within the range of LEP 200. ((orig.))
Directory of Open Access Journals (Sweden)
García de Castro, Emilio
1957-11-01
Full Text Available Se describen en este artículo una serie de aparatos para grandes cocinas, vistos por los autores durante un rápido viaje por Alemania. Aprovechando los datos obtenidos se analizan brevemente las necesidades de una gran cocina moderna, comentando los planos de las instalaciones en varios hoteles o instituciones de todo el mundo. La mayoría de la información.
On the supersymmetric BKP hierarchy
International Nuclear Information System (INIS)
Ramos, Eduardo; Stanciu, Sonia
1994-01-01
We prove that the supersymmetric BKP-hierarchy of Yu (SBKP 2 ) is hamiltonian with respect to a nonlinear extension of the N=1 super-Virasoro algebra (W SBKP ) by fields of spin k, where k>[3]/[2] and 2k≡0,3 (mod 4). Moreover, we show how to associate in a similar manner an N=1 W-superalgebra with every integrable hierarchy of the SKdV-type. We also show using dressing transformations how to extend, in a way which is compatible with the hamiltonian structure, the SBKP 2 hierarchy by odd flows, as well as the equivalence of this extended hierarchy to the SBKP-hierarchy of Manin-Radul. ((orig.))
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1993-09-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: The SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. The main technical tool is the supersymmetric generalisation of a map originally due to Radul between the Lie algebra of superdifferential operators and the Lie algebra of vector fields on the space of supersymmetric Lax operators. In the case of the Manin-Radul SKP hierarchy we identify additional symmetries which form an algebra isomorphic to a subalgebra of superdifferential operators; whereas in the case of the Jacobian SKP, the (additional) symmetries are identified with the algebra itself. (orig.)
Unified Gauge Theories and Reduction of Couplings: from Finiteness to Fuzzy Extra Dimensions
Directory of Open Access Journals (Sweden)
George Zoupanos
2008-02-01
Full Text Available Finite Unified Theories (FUTs are N = 1 supersymmetric Grand Unified Theories, which can be made all-loop finite, both in the dimensionless (gauge and Yukawa couplings and dimensionful (soft supersymmetry breaking terms sectors. This remarkable property, based on the reduction of couplings at the quantum level, provides a drastic reduction in the number of free parameters, which in turn leads to an accurate prediction of the top quark mass in the dimensionless sector, and predictions for the Higgs boson mass and the supersymmetric spectrum in the dimensionful sector. Here we examine the predictions of two such FUTs. Next we consider gauge theories defined in higher dimensions, where the extra dimensions form a fuzzy space (a finite matrix manifold. We reinterpret these gauge theories as four-dimensional theories with Kaluza-Klein modes. We then perform a generalized à la Forgacs-Manton dimensional reduction. We emphasize some striking features emerging such as (i the appearance of non-Abelian gauge theories in four dimensions starting from an Abelian gauge theory in higher dimensions, (ii the fact that the spontaneous symmetry breaking of the theory takes place entirely in the extra dimensions and (iii the renormalizability of the theory both in higher as well as in four dimensions. Then reversing the above approach we present a renormalizable four dimensional SU(N gauge theory with a suitable multiplet of scalar fields, which via spontaneous symmetry breaking dynamically develops extra dimensions in the form of a fuzzy sphere SN2. We explicitly find the tower of massive Kaluza-Klein modes consistent with an interpretation as gauge theory on M4 × S2, the scalars being interpreted as gauge fields on S2. Depending on the parameters of the model the low-energy gauge group can be SU(n, or broken further to SU(n1 × SU(n2 × U(1. Therefore the second picture justifies the first one in a renormalizable framework but in addition has the potential to
Energy Technology Data Exchange (ETDEWEB)
Jimenez, M.; Bego, L.; Douls, Y.; Le Dean, P.; Paradowski, V. [Gaz de France, GDF, Dir. de la Recherche, 75 - Paris (France)
2000-07-01
Builders now have perfect command of the natural gas heating technique used for large-volume buildings. However, the sizing of heating facilities still leaves grounds for discussion, whatever the energies actually used. Accordingly, between 1997 and 1999, the ATG (technical association of the Gas industry in France), seven French manufacturers of 'large volume' heating equipment, the Chaleur Et Rayonnement (CER) association and Gaz de France decided to collaborate and develop a 'unified sizing method' for heating facilities using radiating emitters. During the first year of the study, the above partners worked on the said method (theoretical thermal study of the radiative phenomena, and then adaptation to the methods currently used by the various manufacturers). In 1998, with the support of the ADEME (the French environment and energy control agency), the partners tested the method on five industrial buildings (studying the thermal behavior and making air renewal measurements with search gases). This work made it possible to either confirm or adapt the theoretical evaluations which had been made originally. In 1999, a software program was produced to make the developed method more user friendly. The program can be used to determine the power to be installed, but also to assess the quality of the chosen configuration of the emitters (unit power, inclination, orientation) for optimum customer comfort. (authors)
Supersymmetric quantum mechanics and new potentials
International Nuclear Information System (INIS)
Drigo Filho, E.
1988-01-01
Using the supersymmetric quantum mechanics the following potential are generalized. The particle in the box, Poeschl-Teller and Rosen-Morse. The new potentials are evaluated and their eigenfunctions and spectra are indicated. (author) [pt
Integrability and boundary conditions of supersymmetric systems
International Nuclear Information System (INIS)
Yue Ruihong; Liang Hong
1996-01-01
By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms
A new flavour imprint of SU(5-like grand unification and its LHC signatures
Directory of Open Access Journals (Sweden)
S. Fichet
2015-03-01
Full Text Available We point out that the hypothesis of an SU(5-like supersymmetric Grand Unified Theory (GUT implies a generic relation within the flavour structure of up-type squarks. Contrary to other well-known SU(5 relations between the down-quark and charged lepton sectors, this relation remains exact in the presence of any corrections and extra operators. Moreover it remains valid to a good precision at the electroweak scale, and opens thus new possibilities for testing SU(5-like GUTs. We derive the low-energy effective theory of observable light up-type squarks, that also constitutes a useful tool for squark phenomenology. We use this effective theory to determine how to test SU(5 relations at the LHC. Focusing on scenarios with light stops, compatible with Natural SUSY, it appears that simple tests involving ratios of event rates are sufficient to test the hypothesis of an SU(5-like GUT theory. The techniques of charm-tagging and top-polarimetry are a crucial ingredient of these tests.
Level comparison theorems and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baumgartner, B.; Grosse, H.
1986-01-01
The sign of the Laplacian of the spherical symmetric potential determines the order of energy levels with the same principal Coulomb quantum number. This recently derived theorem has been generalized, extended and applied to various situations in particle, nuclear and atomic physics. Besides a comparison theorem the essential step was the use of supersymmetric quantum mechanics. Recently worked out applications of supersymmetric quantum mechanics to index problems of Dirac operators are mentioned. (Author)
N=2 extended supersymmetric GUTs
International Nuclear Information System (INIS)
Fayet, P.
1984-01-01
We construct N = 2 extended SUSY GUTs which provide a general association between massive spin-1 gauge bosons, spin-1/2 inos and spin-0 Higgs bosons. The corresponding gauge hypermultiplets are of four different types, while leptons and quarks are associated with mirror and spin-0 partners. The anticommutators of the two supersymmetry generators provide two spin-0 symmetry generators Zsub(s) and Zsub(p), which do not commute. Their field-independent parts and do commute, however, and appear as central charges in the symmetry algebra of the spontaneously broken gauge theory. These central charges and are linear combinations of global symmetry generators with grand unification generators such as the weak hypercharge (but not the electrical charge). They survive the electroweak symmetry breaking. They do not vanish for massive gauge hypermultiplets of types II and III, which verify M 2 = 2 + 2 > 0 and M 2 > 2 + 2 > 0, respectively. The formula M 2 approx.= 2 + 2 determines the mass spectrum on the grand unification scale, up to electroweak corrections. Finally, we indicate how our mass relations can be interpreted in a 5- or 6-dimensional formalism, the central charges appearing as the extra components of the covariant momentum along the compact fifth or sixth dimensions; and how to evaluate the grand unification mass msub(x) in terms of the lengths of the latter (msub(x)approx.=(h/2π)/Lsub(5(6))c). (orig./HSI)
Neutral Supersymmetric Higgs Boson Searches
Energy Technology Data Exchange (ETDEWEB)
Robinson, Stephen Luke [Imperial College, London (United Kingdom)
2008-07-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL
Cosmic strings in unified gauge theories
International Nuclear Information System (INIS)
Everett, A.E.
1981-01-01
Some spontaneously broken gauge theories can give rise to stringlike vacuum structures (vortices). It has been pointed out by Vilenkin that in grand unified theories these can be sufficiently massive to have cosmological implications, e.g., in explaining the formation of galaxies. The circumstances in which such structures occur are examined. They do not occur in the simplest grand unified theories, but can occur in some more elaborate models which have been proposed. The cross section for the scattering of elementary particles by strings is estimated. This is used to evaluate the effect of collisions on the dynamics of a collapsing circular string, with particular attention to the question of whether energy dissipation by collision can reduce the rate of formation of black holes by collapsed strings, which may be unacceptably large in models where strings occur. It is found that the effect of collisions is not important in the case of grand unified strings, although it can be important for lighter strings
Healy, Paul; Barber, Declan
2015-01-01
As telephony services, mobile services and internet services continue to converge, the prospect of providing Unified Messaging and even Unified Communications becomes increasingly achievable. This paper discusses the growing importance of IP-based networks to Unified Messaging developments and examines some of the key services and protocols that are likely to make Unified Messaging more widely available. In this initial paper, we limit ourselves initially to the unification of text-based mess...
Quantum integrability and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)
Bethe Ansatz and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.
Decaying dark matter in supersymmetric SU(5) models
International Nuclear Information System (INIS)
Luo Mingxing; Wang Liucheng; Wu Wei; Zhu Guohuai
2010-01-01
Motivated by recent observations from PAMELA, Fermi and H.E.S.S., we consider dark matter decays in the framework of supersymmetric SU(5) grand unification theories. An SU(5) singlet S is assumed to be the main component of dark matters, which decays into visible particles through dimension six operators suppressed by the grand unification scale. Under certain conditions, S decays dominantly into a pair of sleptons with universal coupling for all generations. Subsequently, electrons and positrons are produced from cascade decays of these sleptons. These cascade decay chains smooth the e + +e - spectrum, which permit naturally a good fit to the Fermi-LAT data. The observed positron fraction upturn by PAMELA can be reproduced simultaneously. We have also calculated diffuse gamma-ray spectra due to the e ± excesses and compared them with the preliminary Fermi-LAT data from 0.1 GeV to 10 GeV in the region 0 deg. ≤l≤ 360 deg., 10 deg. ≤|b|≤20 deg. The photon spectrum of energy above 100 GeV, mainly from final state radiations, may be checked in the near future.
Top-down approach to unified supergravity models
International Nuclear Information System (INIS)
Hempfling, R.
1994-03-01
We introduce a new approach for studying unified supergravity models. In this approach all the parameters of the grand unified theory (GUT) are fixed by imposing the corresponding number of low energy observables. This determines the remaining particle spectrum whose dependence on the low energy observables can now be investigated. We also include some SUSY threshold corrections that have previously been neglected. In particular the SUSY threshold corrections to the fermion masses can have a significant impact on the Yukawa coupling unification. (orig.)
Search skip specific nav links Home arrow Unified Federal Review Three logos: 1) Executive Office of the Homeland Security. Unified Federal Environmental and Historic Preservation Review Process Please visit the new location for the Unified Federal Review located here: http://www.fema.gov/environmental-historic
Supersymmetric quantum mechanics on n-dimensional manifolds
International Nuclear Information System (INIS)
O'Connor, M.
1990-01-01
In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics
Prospects for discovery of supersymmetric No-Scale F-SU(5) at the once and future LHC
Li, Tianjun; Maxin, James A.; Nanopoulos, Dimitri V.; Walker, Joel W.
2012-06-01
We present the reach of the Large Hadron Collider (LHC) into the parameter space of No-Scale F-SU(5), starting our analysis with the current operating energy of √{s}=7 TeV, and extending it on through the bright future of a 14 TeV beam. No-Scale F-SU(5) is a model defined by the confluence of the F-lipped SU(5) Grand Unified Theory, two pairs of hypothetical TeV scale vector-like supersymmetric multiplets with origins in F-theory, and the dynamically established boundary conditions of No-Scale Supergravity. When searching for a five standard deviation signal, we find that the CMS experiment at the √{s}=7 TeV LHC began to penetrate the phenomenologically viable parameter space of this model at just under 1 fb of integrated luminosity, and that the majority of this space remains intact, subsequent to analyses of the first 1.1 fb of CMS data. On the contrary, the ATLAS experiment had not reached the F-SU(5) parameter space in its first 1.34 fb of luminosity. Since the CMS and ATLAS detectors have now each amassed a milestone of 5 fb of collected luminosity, the current LHC is presently effectively probing No-Scale F-SU(5). Upon the crossing of the 5 fb threshold, the 7 TeV LHC will have achieved five standard deviation discoverability for a unified gaugino mass of up to about 532 GeV, a light stop of 577 GeV, a gluino of 728 GeV, and heavy squarks of just over 1 TeV. Extending the analysis to include a future LHC center-of-mass beam energy of √{s}=14 TeV, the full model space of No-Scale F-SU(5) should be visible to CMS at about 30 fb of integrated luminosity. We stress that the F-SU(5) discoverability thresholds discussed here are contingent upon retaining only those events with nine jets or more for the CMS experiment and seven jets or more for the ATLAS experiment.
Non-supersymmetric orientifolds of Gepner models
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl
2009-01-12
Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.
Bubbles of nothing and supersymmetric compactifications
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)
2016-10-03
We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.
Cosmology and unified gauge theory
Oraifeartaigh, L.
1981-09-01
Theoretical points in common between cosmology and unified gauge theory (UGT) are reviewed, with attention given to areas of one which have proven useful for the other. The underlying principles for both theoretical frameworks are described, noting the differences in scale, i.e., 10 to the 25th cm in cosmology and 10 to the -15th cm for UGT. Cosmology has produced bounds on the number of existing neutrino species, and also on the mass of neutrinos, two factors of interest in particle physics. Electrons, protons, and neutrinos, having been spawned from the same massive leptons, each composed of three quarks, have been predicted to be present in equal numbers in the Universe by UGT, in line with necessities of cosmology. The Grand UGT also suggests specific time scales for proton decay, thus accounting for the observed baryon assymmetry.
Phenomenology of unified gauge theories
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
Part I of these lectures treats the standard Glashow-Weinberg-Salam model of weak and electromagnetic interactions, discussing in turn its basic structure and weak neutral currents, charged currents, mixing angles and CP violation, and the phenomenology of weak vector and Higgs bosons. Part II of the lectures discusses the structure of theories of dynamical symmetry breaking such as technicolour, phenomenological consequences, frustrations and alternatives. The third part of these lectures offers the standard menu of grand unified theories (GUTs) of the strong, weak and electromagnetic interactions, including an hors d'oeuvre of constraints on the parameters of the standard model, a main course of baryon number violating processes, and desserts which violate lepton number and CP. The fourth and final part goes through different attempts to remedy the inadequacies of previous theories by invoking supersymmetry and reaching out towards gravitation. (orig./HSI)
Supersymmetric leptogenesis with a light hidden sector
International Nuclear Information System (INIS)
De Simone, Andrea
2010-04-01
Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we pro- pose a simple way to circumvent this tension and accommodate naturally ther- mal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed. (orig.)
Solvable potentials derived from supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Levai, G.
1994-01-01
The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)
New dualities of supersymmetric gauge theories
2016-01-01
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...
Spectral properties in supersymmetric matrix models
International Nuclear Information System (INIS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2012-01-01
We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.
Supersymmetric Janus solutions in four dimensions
International Nuclear Information System (INIS)
Bobev, Nikolay; Pilch, Krzysztof; Warner, Nicholas P.
2014-01-01
We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS 4 vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G 2 global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G 2 global symmetry. In eleven dimensions, this G 2 to G 2 solution corresponds to a domain wall across which a magnetic flux reverses orientation
Vector supersymmetric multiplets in two dimensions
International Nuclear Information System (INIS)
Khattab, Mohammad
1990-01-01
Author.The invariance of both, N=1 supersymmetric yang-Mills theory and N-1 supersymmetric off-shell Wess-Zumino model in four dimensions is proved. Dimensional reduction is then applied to obtain super Yang-Mills theory with extended supersymmetry, N=2, in two dimensions. The resulting theory is then truncated to N=1 super Yang-Mills and with further truncation, N=1/2 supersymmetry is shown to be possible. Then, using the duality transformations, we find the off-shell supersymmetry algebra is closed and that the auxiliary fields are replaced by four-rank antisymmetric tensors with Gauge symmetry. Finally, the mechanism of dimensional reduction is then applied to obtain N=2 extended off-shell supersymmetric model with two gauge vector fields
N=2 supersymmetric dynamics for pedestrians
Tachikawa, Yuji
2015-01-01
Understanding the dynamics of gauge theories is crucial, given the fact that all known interactions are based on the principle of local gauge symmetry. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dimensions with extended N=2 supersymmetry are further constrained and have therefore been a fertile field of research in theoretical physics for quite some time. Moreover, there are far-reaching mathematical ramifications that have led to a successful dialogue with differential and algebraic geometry. These lecture notes aim to introduce students of modern theoretical physics to the fascinating developments in the understanding of N=2 supersymmetric gauge theories in a coherent fashion. Starting with a gentle introduction to electric-magnetic duality, the author guides r...
Dark matter asymmetry in supersymmetric Dirac leptogenesis
International Nuclear Information System (INIS)
Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub
2013-01-01
We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis
N=1 supersymmetric extension of the baby Skyrme model
International Nuclear Information System (INIS)
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2011-01-01
We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.
Supersymmetric Higgs boson production in Z decays
International Nuclear Information System (INIS)
Gamberini, G.; Giudice, G.F.; Ridolfi, G.
1987-01-01
The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)
Aspects of the supersymmetric Goldstone formalism
International Nuclear Information System (INIS)
Lerche, W.
1985-01-01
The present thesis deal with the discussion of general properties of Goldstone excitations in global N=1 supersymmetric theories. The results can become relevant in the framework of theories which interpret quarks and leptons as composite 'quasi-Goldstone fermions'. The thesis is arranged in two main parts: the first is occupied by group-theoretical aspects, i.e. by the spectrum of supersymmetric Goldstone excitations as well as by geometrical considerations which are connected with effective Lagrangian densities. In the second main part dynamic questions like for instance mass generation are treated. For this a suitable formalism is developed. (orig.) [de
A supersymmetric SYK-like tensor model
Energy Technology Data Exchange (ETDEWEB)
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence, RI, 02912 (United States)
2017-05-11
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
Indirect detection of heavy supersymmetric dark matter
International Nuclear Information System (INIS)
Kamionkowski, M.
1991-02-01
If neutralinos reside in the galactic halo they will be captured in the Sun and annihilate therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark-matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. 10 refs., 2 figs
A supersymmetric SYK-like tensor model
International Nuclear Information System (INIS)
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia
2017-01-01
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
The particle interpretation of N = 1 supersymmetric spin foams
Energy Technology Data Exchange (ETDEWEB)
Baccetti, Valentina [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Livine, Etera R [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69007 Lyon (France); Ryan, James P, E-mail: baccetti@neve.fis.uniroma3.i, E-mail: etera.livine@ens-lyon.f, E-mail: james.ryan@aei.mpg.d [MPI fuer Gravitationsphysik, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Potsdam (Germany)
2010-11-21
We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.
The particle interpretation of N = 1 supersymmetric spin foams
International Nuclear Information System (INIS)
Baccetti, Valentina; Livine, Etera R; Ryan, James P
2010-01-01
We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.
Supersymmetric quantum mechanics: another nontrivial quantum superpotential
International Nuclear Information System (INIS)
Cervero, J.M.
1991-01-01
A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)
Liouville supersymmetrical equation for a quantum case
International Nuclear Information System (INIS)
Leznov, A.N.; Khrushev, V.V.
1982-01-01
The relation between coupling constants of interacting nonlinear scalar and spinor fields was established which leads to finite series of perturbation theory for the dynamical variable esup(-phi). In the classical limit h/2π→0 the system under consideration turns out to be described by supersymmetric Luiville equation
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
Supersymmetric theories of neutrino dark energy
International Nuclear Information System (INIS)
Fardon, Rob; Nelson, Ann E.; Weiner, Neal
2006-01-01
We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos
Partition functions for supersymmetric black holes
Manschot, J.
2008-01-01
This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a
Functional integral in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Ktitarev, D.V.
1990-01-01
The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs
SEARCHES FOR (NON-SUPERSYMMETRIC) NEW PHYSICS
Brooijmans, G; The ATLAS collaboration
2013-01-01
Recent results from the LHC experiments in searches for non-supersymmetric new physics are presented. The LHC experiments are probing scales of order 700 GeV for vector-like quarks, 1.5-2 TeV for electroweakly produced resonances, and 3-4 TeV for quark excitations, pushing naturalness into a corner.
On the maximal superalgebras of supersymmetric backgrounds
International Nuclear Information System (INIS)
Figueroa-O'Farrill, Jose; Hackett-Jones, Emily; Moutsopoulos, George; Simon, Joan
2009-01-01
In this paper we give a precise definition of the notion of a maximal superalgebra of certain types of supersymmetric supergravity backgrounds, including the Freund-Rubin backgrounds, and propose a geometric construction extending the well-known construction of its Killing superalgebra. We determine the structure of maximal Lie superalgebras and show that there is a finite number of isomorphism classes, all related via contractions from an orthosymplectic Lie superalgebra. We use the structure theory to show that maximally supersymmetric waves do not possess such a maximal superalgebra, but that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the explicit geometric construction of the maximal superalgebra of AdS 4 X S 7 and find that it is isomorphic to osp(1|32). We propose an algebraic construction of the maximal superalgebra of any background asymptotic to AdS 4 X S 7 and we test this proposal by computing the maximal superalgebra of the M2-brane in its two maximally supersymmetric limits, finding agreement.
The spinorial method of classifying supersymmetric backgrounds
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2006-01-01
We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046
Massive and massless supersymmetric black holes
Energy Technology Data Exchange (ETDEWEB)
Ortin, T. [European Organization for Nuclear Research, Geneva (Switzerland). TH-Div.
1998-02-01
We give a brief overview of black-hole solutions in supergravity theories and their extremal and supersymmetric limits. We also address problems like cosmic censorship and no-hair theorems in supergravity theories. While supergravity by itself seems not to be enough to enforce cosmic censorhip and absence of primary scalar hair, superstring theory may be. (orig.). 17 refs.
The rho-parameter in supersymmetric models
International Nuclear Information System (INIS)
Lim, C.S.; Inami, T.; Sakai, N.
1983-10-01
The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)
Lattice formulations of supersymmetric gauge theories with matter fields
International Nuclear Information System (INIS)
Joseph, Anosh
2014-12-01
Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.
Analysis of Ward identities in supersymmetric Yang-Mills theory
Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-05-01
In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.
(Non-)decoupled supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-04-10
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
(Non-)decoupled supersymmetric field theories
International Nuclear Information System (INIS)
Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar
2014-01-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Loopholes in Z ' searches at the LHC: exploring supersymmetric and leptophobic scenarios
Araz, Jack Y.; Corcella, Gennaro; Frank, Mariana; Fuks, Benjamin
2018-02-01
Searching for heavy vector bosons Z ', predicted in models inspired by Grand Unification Theories, is among the challenging objectives of the LHC. The ATLAS and CMS collaborations have looked for Z ' bosons assuming that they can decay only into Standard Model channels, and have set exclusion limits by investigating dilepton, dijet and, to a smaller extent, top-antitop final states. In this work we explore possible loopholes in these Z ' searches, by studying supersymmetric as well as leptophobic scenarios. We demonstrate the existence of realizations in which the Z ' boson automatically evades the typical bounds derived from the analyses of the Drell-Yan invariant-mass spectrum. Dileptonic final states can in contrast only originate from supersymmetric Z ' decays and are thus accompanied by additional effects. This feature is analyzed in the context of judiciously chosen bench-mark configurations, for which visible signals could be expected in future LHC data with a 4 σ - 7 σ significance. Our results should hence motivate an extension of the current Z ' search program to account for supersymmetric and leptophobic models.
On the use of statistical concepts in grand unified theories
International Nuclear Information System (INIS)
Dresden, M.
1982-01-01
The study raises the question-whether the use of traditional statistical mechanical concepts is legitimate in the early epochs of the development of the univese (from approx. equal to10 -40 s after the big bang, until about 10 -30 s). Several current procedures are examined in detail; the use of the equilibrium notion, the use of Boltzmann-like rate equations, the use of ideas from the theory of phase transitions. It is stressed that from the general viewpoint of statistical mechanics there is no convincing evidence that dynamical systems described by spontaneously broken gauge theories necessarily approach equilibrium. Techniques are suggested whereby this question might be approached. It is noted that the usual treatment by starting from the assumption of a homogeneous, isotropic universe is in principle incapable of discussing local non-equilibrium features. It is very questionable whether this assumption is valid for the epochs considered. Attention is called to the circumstance that if the phase transition picture is taken literally, the presence of both fermions and bosons indicates that a consistent treatment requires the existence of a critical line Tsub(c)(xi), rather than a critical temperature, xi is the ratio of the Fermi to Bose concentrations. This might well alter the qualitative picture of successive stages in the development of the universe. (orig.)
On the primordial monopole problem in grand unified theories
International Nuclear Information System (INIS)
Salomonson, P.; Stern, A.; Skagerstam, B.S.
1984-11-01
It is shown that spontaneously broken gauge symmetries are not necessarily restored at very high temperatures in which case an unacceptably large production of magnetic monopoles may be prohibited. (orig.)
The neutrino masses in SO(10) grand unified theory
International Nuclear Information System (INIS)
Leontaris, G.K.; Vergados, J.D.; Ioannina Univ.
1987-01-01
The neutrino masses and mixing are investigated in an SO(10) model in which the ten-dimensional and 126-dimensional representations are allowed to obtain vacuum expectation values. The parameters specifying the heavy Majorana neutrino mass matrix are constrained from the cosmological bound of light neutrino masses and the limits from ν μ ↔ ν τ oscillations. The implications of our model on 0ν-ββ decay and muon-number violating processes are explored. (orig.)
Fermion masses and Higgs physics in grand unified theories
Energy Technology Data Exchange (ETDEWEB)
Bhatti, Abdul Aziz
2010-03-12
The Standard model of particle physics is a very successful theory of strong weak and electromagnetic interactions. This theory is perturbative at sufficiently high energies and renormalizable thus it describes these interactions at quantum level. However it has a number of limitations, one being the fact that it has 28 free parameters assuming massive neutrinos. Within the Standard model these parameters can not be explained, however they can be accommodated in the standard theory. Particularly the masses of the fermions are not predicted by the theory. The existence of the neutrino masses can be regarded as the first glimpse of the physics beyond the standard model. In this thesis we have described the quark and lepton masses and mixings in context of non-SUSY SO(10) and four zero texture (FZT). In the four zero texture case the fermion masses and mixing can be related. We have made some predictions using tribimaximal mixing, the near tribimaximal (TBM) mixing and the triminimal parameterization. Our results show that under the TBM the neutrinos have normal, but weak hierarchy. Under near tribimaximal mixing and the triminimal parameterization we find that the neutrino masses in general increase, if the value of solar angle increases from its TBM value and vice versa. It appears that the neutrinos become more and more degenerate for solar angle values higher than TBM value and hierarchical for lower values of solar angle. We also briefly discuss neutrino parameters in the SUSY SO(10) theories. An overview of SUSY SO(10) theories and proton decay is also presented. (orig.)
Low-energy lepton violation from supersymmetric flipped SU(5)
Energy Technology Data Exchange (ETDEWEB)
Brahm, D.E.; Hall, L.J. (Physics Department, University of California, Berkeley, California 94720 (US) Theoretical Physics Group, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720)
1989-10-01
We construct a supersymmetric flipped SU(5){direct product}U(1) model which violates {ital R} parity and electron number at low energies, through a superpotential term (1/2{ital C}{sup {ital ijk}}L{sub i}L{sub j}E{sub k}{sup c}). Rotation of the electron and Higgs superfields makes this term also responsible for charged-lepton masses. The model employs a missing-partners mechanism for the Higgs fields and a seesaw mechanism for the neutrinos. It correctly predicts the approximate electron mass and several mass relations, as well as numerical values for the grand unification scale and the {ital C}{sup {ital ijk}} coefficients. The electron-neutrino Majorana mass is close to experimental limits, and provides constraints. Interesting {ital Z}{sup 0} decays are predicted: e.g., {ital Z}{sup 0}{r arrow}e{sup {minus}}{mu}{sup +}e{sup +}{mu}{sup {minus}} with invariant-mass peaks in the ({ital e},{mu}) channels.
Probes of Yukawa unification in supersymmetric SO(10) models
Energy Technology Data Exchange (ETDEWEB)
Westhoff, Susanne
2009-10-23
This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.
A constrained supersymmetric left-right model
Energy Technology Data Exchange (ETDEWEB)
Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)
2016-03-02
We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.
Three-body Supersymmetric Top Decays
Belyaev, A; Lola, S; Belyaev, Alexander; Ellis, John; Lola, Smaragda
2000-01-01
We discuss three-body supersymmetric top decays, in schemes both with andwithout R-parity conservation, assuming that sfermion masses are larger thanm_t. We find that MSSM top decays into chargino/neutralino pairs have a strongkinematic suppression in the region of the supersymmetric parameter spaceconsistent with the LEP limits, with a decay width =< 10^{-5} GeV. MSSM topdecays into neutralino pairs have less kinematical suppression, but require aflavour-changing vertex, and are likely to have a smaller rate. On the otherhand, R-violating decays to single charginos, neutralinos and conventionalfermions can be larger for values of the R-violating couplings still permittedby other upper limits. The cascade decays of the charginos and neutralinos maylead to spectacular signals with explicit lepton-number violation, such aslike-sign lepton events.
Supersymmetric hadronic mechanics and procedures for isosupersymmetrization
International Nuclear Information System (INIS)
Ntibashirakandi, L.; Callebaut, D.K.
1994-01-01
In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs
Search for supersymmetric particles at CDF
International Nuclear Information System (INIS)
Wagner, R.G.
1989-01-01
Analyses of events with large unbalanced transverse energy from the 1987 and 1988-89 CDF data runs have set limits on the masses of supersymmetric squarks and gluinos. In a simple model with a stable photino as the lightest supersymmetric particle, the 1987 data with an integrated luminosity of 25.3 nb -1 have excluded at the 90% CL, squarks of mass less than 73 GeV/c 2 and gluinos of mass less than 74 GeV/c 2 . Preliminary results from an analysis of 1 pb -1 of data from the current 1988-89 run imply that the existence of a squark of mass less than 150 GeV/c 2 is unlikely. 4 refs., 2 fig., 1 tab
Defect networks and supersymmetric loop operators
Energy Technology Data Exchange (ETDEWEB)
Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2015-02-10
We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.
Higgs bosons in supersymmetric models. Pt. 1
International Nuclear Information System (INIS)
Gunion, J.F.
1986-01-01
We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)
Topological solitons in the supersymmetric Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)
2017-01-04
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Is supersymmetric origin of monojets viable
International Nuclear Information System (INIS)
Nandi, S.
1985-01-01
The laboratory and cosmological bounds on the masses of the scalar leptons and the photino are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP exclude the scalar quarks, of masses up to 45 GeV, as the origin of these monojets; the cosmological bounds, for a stable photino, exclude the mass range necessary for the gq production interpretation
On negative norm states in supersymmetric theories
International Nuclear Information System (INIS)
Ellwanger, U.
1983-01-01
We study the effective kinetic energy of scalar fields for two classes of supersymmetric theories. In theories with very large VEVs of scalar fields, as proposed by Witten, the use of the renormalization group improved effective action prevents the appearance of negative norm states. For simpler theories a general criterium for the absence of negative norm states is given, which is violated in a model with O(N)-symmetry proposed recently. (orig.)
Shadow fields and local supersymmetric gauges
International Nuclear Information System (INIS)
Baulieu, L.; Bossard, G.; Sorella, S.P.
2006-01-01
To control supersymmetry and gauge invariance in super-Yang-Mills theories we introduce new fields, called shadow fields, which enable us to enlarge the conventional Faddeev-Popov framework and write down a set of useful Slavnov-Taylor identities. These identities allow us to address and answer the issue of the supersymmetric Yang-Mills anomalies, and to perform the conventional renormalization programme in a fully regularization-independent way
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1994-01-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: the SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries is isomorphic to the algebra of superdifferential operators, or equivalently SW 1+∞ . These results seem to suggest that despite their realization depending on the dynamics, the additional symmetries are kinematical in nature. (orig.)
Supersymmetric Extension of Technicolor & Fermion Mass Generation
DEFF Research Database (Denmark)
Antola, Matti; Di Chiara, Stefano; Sannino, Francesco
2012-01-01
We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....
Utilitarian supersymmetric gauge model of particle interactions
International Nuclear Information System (INIS)
Ma, Ernest
2010-01-01
A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
The massless supersymmetric ladder with L rungs
International Nuclear Information System (INIS)
Rossi, G.C.; Stanev, Ya.S.
2009-01-01
We show that in the massless N=1 supersymmetric Wess-Zumino theory it is possible to devise a computational strategy by which the x-space calculation of the ladder 4-point correlators can be carried out without introducing any regularization. As an application we derive a representation valid at all loop orders in terms of conformal invariant integrals. We obtain an explicit expression of the 3-loop ladder diagram for collinear external points
On supersymmetric effective theories of axion
Energy Technology Data Exchange (ETDEWEB)
Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kitano, Ryuichiro [Tohoku Univ., Sendai (Japan). Dept. of Physics
2011-04-15
We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework. (orig.)
B-L violating supersymmetric couplings
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
We consider two problems: one is the possible effect of the breaking of Peccei-Quinn symmetry on the inflationary universe scenario; the other is the remark that even the minimal supersymmetric SU 5 theory contains B-L violating couplings which give rise to neutrino masses and family-diagonal proton decay. However the strength of these couplings is limited by the gauge hierarchy
Hierarchy generation in compactified supersymmetric models
International Nuclear Information System (INIS)
Ross, G.G.
1988-01-01
The problem of generating a large hierarchy in compactified supersymmetric models is re-examined. It is shown how, even for the class of models for which Str M 2 is non-vanishing, a combination of non-perturbative effects and radiative corrections may lead to an exponentially large hierarchy. A corollary is that the couplings of the effective field theory in the visible sector should be small, i.e., perturbation theory should be applicable. (orig.)
Supersymmetric solutions for non-relativistic holography
International Nuclear Information System (INIS)
Donos, Aristomenis; Gauntlett, Jerome P.
2009-01-01
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Planar Quantum Mechanics: an Intriguing Supersymmetric Example
Veneziano, Gabriele
2006-01-01
After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.
Supersymmetric field theories at finite temperature
International Nuclear Information System (INIS)
Dicus, D.A.; Tata, X.R.
1983-01-01
We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry
Cosmological origin of the grand-unification mass scale
International Nuclear Information System (INIS)
Brout, R.; Englert, F.; Spindel, P.
1979-01-01
The origin of the universe as a quantum phenomenon leads to a self-consistently generated space-time structure in which the mass of the created particles is O (kappa/sup -1/2/). We interpret the origin of the universe as a phase transition in which the grand unified symmetry is spontaneously broken
Supersymmetric Janus solutions in four dimensions
Energy Technology Data Exchange (ETDEWEB)
Bobev, Nikolay [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Pilch, Krzysztof [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Warner, Nicholas P. [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Institut de Physique Théorique, CEA Saclay,CNRS-URA 2306, 91191 Gif sur Yvette (France); Institut des Hautes Etudes Scientifiques,Le Bois-Marie, 35 route de Chartres, Bures-sur-Yvette, 91440 (France)
2014-06-10
We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS{sub 4} vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G{sub 2} global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G{sub 2} global symmetry. In eleven dimensions, this G{sub 2} to G{sub 2} solution corresponds to a domain wall across which a magnetic flux reverses orientation.
Supersymmetric SO(10) models inspired by deconstruction
International Nuclear Information System (INIS)
Huang Chaoshang; Jiang Jing; Li Tianjun
2004-01-01
We consider 4-dimensional N=1 supersymmetric SO(10) models inspired by deconstruction of 5-dimensional N=1 supersymmetric orbifold SO(10) models and high-dimensional non-supersymmetric SO(10) models with Wilson line gauge symmetry breaking. We discuss the SO(10)xSO(10) models with bi-fundamental link fields where the gauge symmetry can be broken down to the Pati-Salam, SU(5)xU(1), flipped SU(5)xU(1)' or the Standard Model like gauge symmetry. We also propose an SO(10)xSO(6)xSO(4) model with bi-fundamental link fields where the gauge symmetry is broken down to the Pati-Salam gauge symmetry, and an SO(10)xSO(10) model with bi-spinor link fields where the gauge symmetry is broken down to the flipped SU(5)xU(1)' gauge symmetry. In these two models, the Pati-Salam and flipped SU(5)xU(1)' gauge symmetry can be further broken down to the Standard Model gauge symmetry, the doublet-triplet splittings can be obtained by the missing partner mechanism, and the proton decay problem can be solved. We also study the gauge coupling unification. We briefly comment on the interesting variation models with gauge groups SO(10)xSO(6) and SO(10)xflippedSU(5)xU(1)' in which the proton decay problem can be solved
Cosmological consequences of supersymmetric flat directions
Riva, Francesco; Sarkar, Subir; Giudice, Gian
In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...
Continuous degeneracy of non-supersymmetric vacua
International Nuclear Information System (INIS)
Sun Zheng
2009-01-01
In global supersymmetric Wess-Zumino models with minimal Kaehler potentials, F-type supersymmetry breaking always yields instability or continuous degeneracy of non-supersymmetric vacua. As a generalization of the original O'Raifeartaigh's result, the existence of instability or degeneracy is true to any higher order corrections at tree level for models even with non-renormalizable superpotentials. The degeneracy generically coincides the R-axion direction under some assumptions of R-charge assignment, but generally requires neither R-symmetries nor any assumption of generic superpotentials. The result also confirms the well-known fact that tree level supersymmetry breaking is a very rare occurrence in global supersymmetric theories with minimal Kaehler potentials. The implication for effective field theory method in the landscape is discussed and we point out that choosing models with minimal Kaehler potentials may result in unexpected answers to the vacuum statistics. Supergravity theories or theories with non-minimal Kaehler potentials in general do not suffer from the existence of instability or degeneracy. But very strong gauge dynamics or small compactification dimension reduces the Kaehler potential from non-minimal to minimal, and gravity decoupling limit reduces supergravity to global supersymmetry. Instability or degeneracy may appear in these limits. Away from these limits, a large number of non-SUSY vacua may still be found in an intermediate region.
Supersymmetric extensions of Schrodinger-invariance
International Nuclear Information System (INIS)
Henkel, Malte; Unterberger, Jeremie
2006-01-01
The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values
Local grand unification and string theory
International Nuclear Information System (INIS)
Nilles, Hans Peter; Vaudrevange, Patrick K.S.
2009-09-01
The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the m-problem and the strong CP-problem. (orig.)
Production and decay of supersymmetric particles at future colliders
International Nuclear Information System (INIS)
Bartl, A.; Majerotto, W.; Moesslacher, B.
1991-01-01
We describe how supersymmetric particles could be detected at the new colliders HERA, LEP 200, LHC, SSC, and at the possible future linear e + e - collider. We shall present theoretical predictions for production cross sections and decay probabilities, as well as for the important signatures. Our calculations will be based on the Minimal Supersymmetric Standard Model (MSSM) which is the simplest supersymmetric extension of the Standard Model. (authors)
Non-local deformation of a supersymmetric field theory
Energy Technology Data Exchange (ETDEWEB)
Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)
2017-09-15
In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)
Non-renormalization theorems andN=2 supersymmetric backgrounds
International Nuclear Information System (INIS)
Butter, Daniel; Wit, Bernard de; Lodato, Ivano
2014-01-01
The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed
Asymptotically Safe Grand Unification
DEFF Research Database (Denmark)
Bajc, Borut; Sannino, Francesco
2016-01-01
the inclusion of gravity, by generating an interacting ultraviolet fixed point, similar to the one recently discovered in non-supersymmetric gauge-Yukawa theories. Employing a-maximization, a-theorem, unitarity bounds, as well as positivity of other central charges we nonperturbatively rule out this possibility...
International Nuclear Information System (INIS)
Grab, Sebastian
2009-08-01
The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b→sγ, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p T muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background at the LHC
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2017-02-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others
2016-10-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Production of supersymmetric pairs at antipp colliders
International Nuclear Information System (INIS)
Peschanski, R.
1985-02-01
Production and decay rates of squarks and gluinos at antipp colliders are shown to depend not only on the mass scale but on the ratio of squark to gluino mass. In the degenerate case which is shown to be natural in a large class of broken Supergravity models with minimal field content the predicted cross-sections are enhanced by a sizeable factor. This gives an improved bound on the squark mass (70 GeV) from the analysis of Cern monojets and indications for the search of squark decay modes of supersymmetric pairs at antipp colliders in the near future
Problems with False Vacua in Supersymmetric Theories
Bajc, Borut; Senjanovic, Goran
2011-01-01
It has been suggested recently that in a consistent theory any Minkowski vacuum must be exactly stable. As a result, a large class of theories that in ordinary treatment would appear sufficiently long-lived, in reality make no sense. In particular, this applies to supersymmetric models in which global supersymmetry is broken in a false vacuum. We show that in any such theory the dynamics of supersymmetry breaking cannot be decoupled from the Planck scale physics. This finding poses an obvious challenge for the idea of low-scale metastable (for example gauge) mediation.
On the supersymmetric sine-Gordon model
International Nuclear Information System (INIS)
Hruby, J.
1977-01-01
The sine-Gordon model as the theory of a massless scalar field in one space and one time dimension with interaction Lagrangian density proportional to cosβsub(phi) is generalized for a scalar superfield and it is shown that the solution of the supercovariant sine-Gordon equation is the ''supersoliton'', it is the superfield, which has all ordinary fields in two dimensions as a type of the soliton solution. We also obtain the massive Thirring model and the new equations of motion coupling the Fermi field and the Bose field. The notice about supersymmetric ''SLAC-BAG'' model is done
Twist deformations of the supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G.; Chakraborty, B.; Toppan, F., E-mail: pgcastro@cbpf.b, E-mail: biswajit@bose.res.i, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)
2009-07-01
The N-extended supersymmetric quantum mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its universal enveloping superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed. (author)
The minimally tuned minimal supersymmetric standard model
International Nuclear Information System (INIS)
Essig, Rouven; Fortin, Jean-Francois
2008-01-01
The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV
Asymptotically Free Natural Supersymmetric Twin Higgs Model
Badziak, Marcin; Harigaya, Keisuke
2018-05-01
Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.
The eikonal phase of supersymmetric Coulomb partners
Lassaut, M; Lombard, R J
1998-01-01
We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)
Cromatografia unificada Unified chromatography
Directory of Open Access Journals (Sweden)
Carin von Mühlen
2004-10-01
Full Text Available The scope of this study encompasses an overview of the principles of unified chromatography as well as the principles of chromatographic techniques as applied to unified systems, which include gas chromatography, liquid chromatography, supercritical fluid chromatography, high temperature and high pressure liquid chromatography, micro-liquid chromatography, enhanced fluidity chromatography, and solvating gas chromatography. Theoretical considerations and individual instrumental parameters such as mobile phase, sample introduction system, columns, and detection system are also discussed. Future applications of this separation approach are discussed.
Supersymmetric axial anomalies and the Wess-Zumino action
International Nuclear Information System (INIS)
Harada, K.; Shizuya, K.
1988-01-01
We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
IIB solutions with N>28 Killing spinors are maximally supersymmetric
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries
One-instanton calculations in N=2 supersymmetric gauge theories
International Nuclear Information System (INIS)
Ito, Katsushi
1998-01-01
We study the low-energy effective action of N=2 supersymmetric gauge theories in the Coulomb branch. Using microscopic instanton calculus, we compute the one-instanton contribution to the pre potential for N=2 supersymmetric SU(N c ) Yang-Mills theory. We show that the microscopic result agrees with the exact solution. (Author). 23 refs
On the stochastic structure of globally supersymmetric field theories
International Nuclear Information System (INIS)
Flume, R.; Lechtenfeld, O.
1983-09-01
We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)
Dispersive and damping properties of supersymmetric sound. 2
International Nuclear Information System (INIS)
Lebedev, V.V.; Smilga, A.V.
1988-01-01
This paper is the second part of the work devoted to the massless fermionic collective excitation in supersymmetric media at nonzero temperature. The solution to generalized kinetic equations for the Wess-Zumino model at low temperatures is presented and the situation at high temperatures is discussed. Supersymmetric gauge models are also discussed
Ultraviolet divergences in non-renormalizable supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.
2017-01-01
We present a pedagogical review of our current understanding of the ultraviolet structure of N =(1, 1) 6D supersymmetric Yang-Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higher-dimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially of extended supersymmetric theories) is that these counterterms may not be invariant off-shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on-shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behavior.
Instantons and Borel resummability for the perturbed supersymmetric anharmonic oscillator
International Nuclear Information System (INIS)
Verbaarschot, J.J.M.; West, P.
1991-01-01
In this paper we give an analytical derivation of the large-order behavior of the perturbation series for both the ground state and the excited states of the supersymmetric anharmonic oscillator and of the anharmonic oscillator obtained from the supersymmetric case by varying the strength of the fermion coupling. The results which are obtained with the help of instanton calculus coincide with those obtained numerically in previous work. The large-order perturbation series of the ground state vanishes in the supersymmetric case, whereas away from the supersymmetric point the perturbation series diverges factorially. The perturbation series of the excited states diverges factorially both at the supersymmetric point and away from this point
Constrained supersymmetric flipped SU(5) GUT phenomenology
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [CERN, TH Division, PH Department, Geneva 23 (Switzerland); King' s College London, Theoretical Physics and Cosmology Group, Department of Physics, London (United Kingdom); Mustafayev, Azar [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Olive, Keith A. [University of Minnesota, William I. Fine Theoretical Physics Institute, Minneapolis, MN (United States); Stanford University, Department of Physics and SLAC, Palo Alto, CA (United States)
2011-07-15
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M{sub in}, above the GUT scale, M{sub GUT}. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino {chi} and the lighter stau {tau}{sub 1} is sensitive to M{sub in}, as is the relationship between m{sub {chi}} and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m{sub 1/2},m{sub 0}) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M{sub in}, as we illustrate for several cases with tan {beta}=10 and 55. However, these features do not necessarily disappear at large M{sub in}, unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)
Supersymmetric quantum mechanics of the flux tube
Belitsky, A. V.
2016-12-01
The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.
Inverse scattering with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baye, Daniel; Sparenberg, Jean-Marc
2004-01-01
The application of supersymmetric quantum mechanics to the inverse scattering problem is reviewed. The main difference with standard treatments of the inverse problem lies in the simple and natural extension to potentials with singularities at the origin and with a Coulomb behaviour at infinity. The most general form of potentials which are phase-equivalent to a given potential is discussed. The use of singular potentials allows adding or removing states from the bound spectrum without contradicting the Levinson theorem. Physical applications of phase-equivalent potentials in nuclear reactions and in three-body systems are described. Derivation of a potential from the phase shift at fixed orbital momentum can also be performed with the supersymmetric inversion by using a Bargmann-type approximation of the scattering matrix or phase shift. A unique singular potential without bound states can be obtained from any phase shift. A limited number of bound states depending on the singularity can then be added. This inversion procedure is illustrated with nucleon-nucleon scattering
Toward precision holography with supersymmetric Wilson loops
Energy Technology Data Exchange (ETDEWEB)
Faraggi, Alberto [Instituto de Física, Pontificia Universidad Católica de Chile,Casilla 306, Santiago (Chile); Zayas, Leopoldo A. Pando [The Abdus Salam International Centre for Theoretical Physics,Strada Costiera 11, 34014 Trieste (Italy); Michigan Center for Theoretical Physics, Department of Physics,University of Michigan, Ann Arbor, MI 48109 (United States); Silva, Guillermo A. [Instituto de Física de La Plata - CONICET & Departamento de Física - UNLP,C.C. 67, 1900 La Plata (Argentina); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)
2016-04-11
We consider certain 1/4 BPS Wilson loop operators in SU(N)N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS{sub 5}×S{sup 5}. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Supersymmetric chiral electrodynamics as a renormalized theory
International Nuclear Information System (INIS)
Ansel'm, A.A.; Iogansen, A.A.
1991-01-01
It is well know that the QED of chiral fermions is a nonrenormalizable theory, inasmuch as the gauge current in it is not conserved because of the presence of an anomaly. It is evident that in this theory unitarity is also violated. The principal object of investigation in the present paper is supersymmetric chiral QED, supersymmetric QED is a renormalizable theory. This happens because the radiative corrections generate here a charged current of a chiral fermion that appears in the chiral (i.e., longitudinal) part of the vector supermultiplet. At first sight, the chiral part of the vector multiplet is unphysical and contains only supergauge degrees of freedom. However, this is valid only at the classical level, whereas, because of the anomaly, the radiative corrections lead to nonconservation of the gauge current, as a result of which the degrees of freedom associated with the chiral part of the vector multiplet become physical. On the other hand, owing to the nonconservation of the gauge charge, the apparently neutral fermion appearing int he chiral (longitudinal) part of the vector superfield becomes charged
Constrained Supersymmetric Flipped SU(5) GUT Phenomenology
Ellis, John; Olive, Keith A
2011-01-01
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, $M_{in}$, above the GUT scale, $M_{GUT}$. We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino and the lighter stau is sensitive to $M_{in}$, as is the relationship between the neutralino mass and the masses of the heavier Higgs bosons. For these reasons, prominent features in generic $(m_{1/2}, m_0)$ planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to $M_{in}$, as we illustrate for several cases with tan(beta)...
Constrained supersymmetric flipped SU(5) GUT phenomenology
International Nuclear Information System (INIS)
Ellis, John; Mustafayev, Azar; Olive, Keith A.
2011-01-01
We explore the phenomenology of the minimal supersymmetric flipped SU(5) GUT model (CFSU(5)), whose soft supersymmetry-breaking (SSB) mass parameters are constrained to be universal at some input scale, M in , above the GUT scale, M GUT . We analyze the parameter space of CFSU(5) assuming that the lightest supersymmetric particle (LSP) provides the cosmological cold dark matter, paying careful attention to the matching of parameters at the GUT scale. We first display some specific examples of the evolutions of the SSB parameters that exhibit some generic features. Specifically, we note that the relationship between the masses of the lightest neutralino χ and the lighter stau τ 1 is sensitive to M in , as is the relationship between m χ and the masses of the heavier Higgs bosons A,H. For these reasons, prominent features in generic (m 1/2 ,m 0 ) planes such as coannihilation strips and rapid-annihilation funnels are also sensitive to M in , as we illustrate for several cases with tan β=10 and 55. However, these features do not necessarily disappear at large M in , unlike the case in the minimal conventional SU(5) GUT. Our results are relatively insensitive to neutrino masses. (orig.)
Supersymmetric relations among electromagnetic dipole operators
International Nuclear Information System (INIS)
Graesser, Michael; Thomas, Scott
2002-01-01
Supersymmetric contributions to all leptonic electromagnetic dipole operators have essentially identical diagrammatic structure. With approximate slepton universality this allows the muon anomalous magnetic moment to be related to the electron electric dipole moment in terms of supersymmetric phases, and to radiative flavor changing lepton decays in terms of small violations of slepton universality. If the current discrepancy between the measured and standard model values of the muon anomalous magnetic moment is due to supersymmetry, the current bound on the electron electric dipole moment then implies that the phase of the electric dipole operator is less than 2x10 -3 . Likewise the current bound on μ→eγ decay implies that the fractional selectron-smuon mixing in the left-left mass squared matrix, δm μ-tildee-tilde) 2 /m l-tilde) 2 , is less than 10 -4 . These relations and constraints are fairly insensitive to details of the superpartner spectrum for moderate to large tan β
Phenomenology of quintessino dark matter: Production of next lightest supersymmetric particles
International Nuclear Information System (INIS)
Bi Xiaojun; Wang Jianxiong; Zhang Chao; Zhang Xinmin
2004-01-01
In the model of quintessino as the dark matter particle, the dark matter and dark energy are unified in one superfield, where the dynamics of the Quintessence drives the Universe acceleration and its superpartner, quintessino, makes up the dark matter of the Universe. This scenario predicts the existence of long-lived τ-tilde as the next lightest supersymmetric particle. In this paper we study the possibility of detecting τ-tilde produced by the high energy cosmic neutrinos interacting with the earth matter. By a detailed calculation we find that the event rate is one to several hundred per year at a detector with an effective area of 1 km 2 . The study in this paper can be also applied to models of gravitino or axino dark matter particles
International Nuclear Information System (INIS)
Anon
2011-01-01
A unified European electricity market means a unification and harmonisation of functioning of the national electricity market into one European Market or into one entity. It gives an opportunity to Slovenske elektrarne to open room for their wider activity within Europe where common rules for cross-boarder trade and markets functioning will apply. (author)
International Nuclear Information System (INIS)
Prasad, R.
1975-01-01
Results of researches into Unified Field Theory over the past seven years are presented. The subject is dealt with in chapters entitled: the choice of affine connection, algebraic properties of the vector fields, field laws obtained from the affine connection based on the path integral method, application to quantum theory and cosmology, interpretation of physical theory in terms of geometry. (U.K.)
Energy Technology Data Exchange (ETDEWEB)
Kapetanakis, D. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Mondragon, M. (Technische Univ. Muenchen, Garching (Germany). Physik Dept.); Zoupanos, G. (National Technical Univ., Athens (Greece). Physics Dept.)
1993-09-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
International Nuclear Information System (INIS)
Kapetanakis, D.; Mondragon, M.; Zoupanos, G.
1993-01-01
We present phenomenologically viable SU(5) unified models which are finite to all orders before the spontaneous symmetry breaking. In the case of two models with three families the top quark mass is predicted to be 178.8 GeV. (orig.)
Unified cyber threat intelligence
Félix, Marisa Tomé
2018-01-01
Tese de mestrado, Informática, Universidade de Lisboa, Faculdade de Ciências, 2018 Ao longo dos anos, a preocupação com a Ciber Seguranc¸a (a proteção de sistemas, redes e de informações num ciber espaço) nas grandes empresas tem vindo a aumentar, isto porque, atualmente a maioria das organizações depende de dados informatizados e partilham grandes quantidades de informação por todo o globo, tornando-se em alvos mais fáceis para muitas formas de ataque. Consequentemente, um ciberataque pod...
Chung, Ding-Yu
2002-01-01
The unified theory of physics unifies various phenomena in our observable universe and other universes. The unified theory is based on the zero-energy universe and the space-object structures. Different universes in different developmental stages are the different expressions of the space-object structures. The unified theory is divided into five parts: the space-object structures, cosmology, the periodic table of elementary particles, the galaxy formation, and the extreme force field. The sp...
Higgs inflation, reheating and gravitino production in no-scale Supersymmetric GUTs
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [Theoretical Particle Physics and Cosmology Group,Department of Physics, King’s College London,London WC2R 2LS (United Kingdom); Theoretical Physics Department, CERN,CH-1211 Geneva 23 (Switzerland); He, Hong-Jian [Institute of Modern Physics and Center for High Energy Physics, Tsinghua University,Beijing 100084 (China); Center for High Energy Physics, Peking University,Beijing 100871 (China); Xianyu, Zhong-Zhi [Center of Mathematical Sciences and Applications andDepartment of Physics, Harvard University,Massachusetts 02138 (United States)
2016-08-30
We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of e-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, as well as discussing the gravitino production following inflation.
Higgs Inflation, Reheating and Gravitino Production in No-Scale Supersymmetric GUTs
Ellis, John; Xianyu, Zhong-Zhi
2016-08-30
We extend our previous study of supersymmetric Higgs inflation in the context of no-scale supergravity and grand unification, to include models based on the flipped SU(5) and the Pati-Salam group. Like the previous SU(5) GUT model, these yield a class of inflation models whose inflation predictions interpolate between those of the quadratic chaotic inflation and Starobinsky-like inflation, while also avoiding tension with proton decay limits. We further analyse the reheating process in these models, and derive the number of $e$-folds, which is independent of the reheating temperature. We derive the corresponding predictions for the scalar tilt and the tensor-to-scalar ratio in cosmic microwave background perturbations, and also discuss gravitino production following inflation.
A Minimal Supersymmetric Model of Particle Physics and the Early Universe
Buchmüller, W; Kamada, K; Schmitz, K
2014-01-01
We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local $B$$-$$L$, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken $B$$-$$L$ symmetry, which ends in tachyonic preheating, i.e.\\ the decay of the false vacuum, followed by a matter dominated phase with heavy $B$$-$$L$ Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of g...
1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)
1980-01-01
The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived
The transformations between N= 2 supersymmetric Korteweg-de Vries and Harry Dym equations
International Nuclear Information System (INIS)
Tian Kai; Liu, Q. P.
2012-01-01
The N= 2 supercomformal transformations are employed to study supersymmetric integrable systems. It is proved that two known N= 2 supersymmetric Harry Dym equations are transformed into two N= 2 supersymmetric modified Korteweg-de Vries equations, thus are connected with two N= 2 supersymmetric Korteweg-de Vries equations.
Chiral anomalies in higher dimensional supersymmetric theories
International Nuclear Information System (INIS)
Bonora, L.; Pasti, P.; Tonin, M.
1987-01-01
We derive explicit formulas for pure gauge anomalies in a SYM theory in 6D as well as in 10D. Each anomaly consists of two terms: a gauge cocycle and a cocycle of the superdiffeomorphisms. The derivation is based essentially on a remarkable property of supersymmetric theories which we call Weil triviality and is directly connected with the constraints. The analogous problem for Lorentz anomalies is stated in the same way. However, in general, there are difficulties concerning Weil triviality. We prove that for pure SUGRA in 6D as well as in 10D it is possible to prove Weil triviality and, consequently, to obtain explict expressions for pure Lorentz anomalies. However, as far as SUGRA coupled to SYM a la Chapline-Manton or a la Green-Schwarz is concerned, no self-evident solution is available. (orig.)
Supersymmetric interpretations of the neutrino anomalies
Valle, José W F
2002-01-01
Solar and atmospheric neutrino data strongly indicate the need for physics beyond the standard model. The neutrino oscillation interpretation of the atmospheric data is rather unambiguous, with more options still open for the solar data. After a brief summary of the latest global fits of neutrino data, I discuss theoretical neutrino mass models. This is done first from a top-bottom approach inspired by unification ideas involving a see-saw mechanism or high dimension operators. Then I consider bottom-up approaches, with especial emphasis on the idea that the origin of neutrino mass and mixing is intrinsically supersymmetric. Models involve effective bilinear breaking of R-parity. This allows for the possibility of probing the neutrino mixing also in the context of high-energy collider experiments such as the LHC. (41 refs).
Effective action of softly broken supersymmetric theories
International Nuclear Information System (INIS)
Groot Nibbelink, S.; Nyawelo, T.S
2006-12-01
We study the renormalization of (softly) broken supersymmetric theories at the one loop level in detail. We perform this analysis in a superspace approach in which the supersymmetry breaking interactions are parameterized using spurion insertions. We comment on the uniqueness of this parameterization. We compute the one loop renormalization of such theories by calculating superspace vacuum graphs with multiple spurion insertions. To preform this computation efficiently we develop algebraic properties of spurion operators, that naturally arise because the spurions are often surrounded by superspace projection operators. Our results are general apart from the restrictions that higher super covariant derivative terms and some finite effects due to non-commutativity of superfield dependent mass matrices are ignored. One of the soft potentials induces renormalization of the Kaehler potential. (author)
N =4 supersymmetric mechanics on curved spaces
Kozyrev, Nikolay; Krivonos, Sergey; Lechtenfeld, Olaf; Nersessian, Armen; Sutulin, Anton
2018-04-01
We present N =4 supersymmetric mechanics on n -dimensional Riemannian manifolds constructed within the Hamiltonian approach. The structure functions entering the supercharges and the Hamiltonian obey modified covariant constancy equations as well as modified Witten-Dijkgraaf-Verlinde-Verlinde equations specified by the presence of the manifold's curvature tensor. Solutions of original Witten-Dijkgraaf-Verlinde-Verlinde equations and related prepotentials defining N =4 superconformal mechanics in flat space can be lifted to s o (n )-invariant Riemannian manifolds. For the Hamiltonian this lift generates an additional potential term which, on spheres and (two-sheeted) hyperboloids, becomes a Higgs-oscillator potential. In particular, the sum of n copies of one-dimensional conformal mechanics results in a specific superintegrable deformation of the Higgs oscillator.
Supersymmetric quantum mechanics for string-bits
International Nuclear Information System (INIS)
Thorn, C.B.
1997-01-01
The authors develop possible versions of supersymmetric single particle quantum mechanics, with application to superstring-bit models in view. The authors focus principally on space dimensions d = 1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 7, 10 space-time dimensions. These are the cases for which classical superstring makes sense, and also the values of d for which Hooke's force law is compatible with the simplest superparticle dynamics. The basic question they address is: when is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string-bits that do not fall off with distance will almost certainly destroy cluster decomposition. They show that the answer is affirmative for d = 1,2, negative for d = 8, and so far inconclusive for d = 4
Supersymmetric null-like holographic cosmologies
International Nuclear Information System (INIS)
Lin Fengli; Wen Wenyu
2006-01-01
We construct a new class of 1/4-BPS time dependent domain-wall solutions with null-like metric and dilaton in type II supergravities, which admit a null-like big bang singularity. Based on the domain-wall/QFT correspondence, these solutions are dual to 1/4-supersymmetric quantum field theories living on a boundary cosmological background with time dependent coupling constant and UV cutoff. In particular we evaluate the holographic c function for the 2-dimensional dual field theory living on the corresponding null-like cosmology. We find that this c function runs in accordance with the c-theorem as the boundary universe evolves, this means that the number of degrees of freedom is divergent at big bang and suggests the possible resolution of big bang singularity
Branes and Six Dimensional Supersymmetric Theories
Hanany, Amihay; Hanany, Amihay; Zaffaroni, Alberto
1998-01-01
We consider configurations of sixbranes, fivebranes and eightbranes in various superstring backgrounds. These configurations give rise to $(0,1)$ supersymmetric theories in six dimensions. The condition for RR charge conservation of a brane configuration translates to the condition that the corresponding field theory is anomaly free. Sets of infinitely many models with non trivial RG fixed points at strong coupling are demonstrated. Some of them reproduce and generalise the world-volume theories of SO(32) and $E_8\\times E_8$ small instantons. All the models are shown to be connected by smooth transitions. In particular, the small instanton transition for which a tensor multiplet is traded for 29 hypermultiplets is explicitly demonstrated. The particular limit in which these theories can be considered as six dimensional string theories without gravity are discussed. New fixed points (string theories) associated with $E_n$ global symmetries are discovered by taking the strong string coupling limit.
DEFF Research Database (Denmark)
Codello, Alessandro; Jain, Rajeev Kumar
2018-01-01
We present a unified evolution of the universe from very early times until the present epoch by including both the leading local correction R2 and the leading non-local term R1□2R to the classical gravitational action. We find that the inflationary phase driven by R2 term gracefully exits...... in a transitory regime characterized by coherent oscillations of the Hubble parameter. The universe then naturally enters into a radiation dominated epoch followed by a matter dominated era. At sufficiently late times after radiation–matter equality, the non-local term starts to dominate inducing an accelerated...... expansion of the universe at the present epoch. We further exhibit the fact that both the leading local and non-local terms can be obtained within the covariant effective field theory of gravity. This scenario thus provides a unified picture of inflation and dark energy in a single framework by means...
Supersymmetric dark matter above the W mass
Griest, Kim; Kamionkowski, Marc; Turner, Michael S.
1989-01-01
The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
Metzger, St.
2005-12-01
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
DEFF Research Database (Denmark)
Buhl, Kenneth Øhlenschlæger
2012-01-01
Formålet med denne artikel er at se nærmere på erfaringerne fra den maritime kampagne under den militære indsats i konflikten i Libyen i 2011, som i NATO regi blev kendt som Operation Unified Protector (OUP). Dækningen i de danske medier fokuserede primært på luftkampagnen, hvilket må tilskrives,...
Unified Engineering Software System
Purves, L. R.; Gordon, S.; Peltzman, A.; Dube, M.
1989-01-01
Collection of computer programs performs diverse functions in prototype engineering. NEXUS, NASA Engineering Extendible Unified Software system, is research set of computer programs designed to support full sequence of activities encountered in NASA engineering projects. Sequence spans preliminary design, design analysis, detailed design, manufacturing, assembly, and testing. Primarily addresses process of prototype engineering, task of getting single or small number of copies of product to work. Written in FORTRAN 77 and PROLOG.
Kopal, Nils
2016-01-01
In this German seminar paper, which was written in the year 2011 at the University of Duisburg for a Bachelor Colloquium in Applied computer science, we show a brief overview of the Rational Unified Process (RUP). Thus, interested students or generally interested people in software development gain a first impression of RUP. The paper includes a survey and overview of the underlying process structure, the phases of the process, its workflows, and describes the always by the RUP developers pos...
Flavour changing decays of Z0 in supersymmetric models
International Nuclear Information System (INIS)
Gamberini, G.; Ridolfi, G.
1987-01-01
The possible existence of detectable flavour-changing branching modes of the Z 0 boson is examined in the context of supersymmetric models of currrent interest. An explicit calculation shows that in the so-called minimal version of the supersymmetric standard model the branching ratios for Z 0 →banti s or tanti c are not larger than in the standard model itself and are as such unobservable. On the contrary, we find that in a recently proposed extension of the supersymmetric standard model the mode Z 0 →tanti c may be at the order of being detectable. (orig.)
Vacuum fluctuations of the supersymmetric field in curved background
International Nuclear Information System (INIS)
Bilić, Neven; Domazet, Silvije; Guberina, Branko
2012-01-01
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Vacuum fluctuations of the supersymmetric field in curved background
Energy Technology Data Exchange (ETDEWEB)
Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)
2012-01-16
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Supersymmetric quantum corrections and Poisson-Lie T-duality
International Nuclear Information System (INIS)
Assaoui, F.; Lhallabi, T.; Abdus Salam International Centre for Theoretical Physics, Trieste
2000-07-01
The quantum actions of the (4,4) supersymmetric non-linear sigma model and its dual in the Abelian case are constructed by using the background superfield method. The propagators of the quantum superfield and its dual and the gauge fixing actions of the original and dual (4,4) supersymmetric sigma models are determined. On the other hand, the BRST transformations are used to obtain the quantum dual action of the (4,4) supersymmetric nonlinear sigma model in the sense of Poisson-Lie T-duality. (author)
Supersymmetric U boson and the old U(1) problem
International Nuclear Information System (INIS)
Kim, B.R.
1983-01-01
In the supersymmetric SU(3)xSU(2)xU(1)xUsup(')(1) model the new gauge group Usup(')(1) enforces the introduction of mirror fermions. In this note we address the inverse question. If one starts with SU(3)xSU(2)xU(1) including mirror fermions, what physical arguments other than the supersymmetric require the introduction of a new gauge group Usup(')(1). It turns out that the old U(1) problem is closely related with this question. Further we give an estimate for the upper bound for the parameter of the supersymmetric U boson r and x. (orig.)
Supersymmetric sigma models and composite Yang-Mills theory
International Nuclear Information System (INIS)
Lukierski, J.
1980-04-01
We describe two types of supersymmetric sigma models: with field values in supercoset space and with superfields. The notion of Riemannian symmetric pair (H,G/H) is generalized to supergroups. Using the supercoset approach the superconformal-invariant model of composite U(n) Yang-Mills fields in introduced. In the framework of the superfield approach we present with some details two versions of the composite N=1 supersymmetric Yang-Mills theory in four dimensions with U(n) and U(m) x U(n) local invariance. We argue that especially the superfield sigma models can be used for the description of pre-QCD supersymmetric dynamics. (author)
Energy Technology Data Exchange (ETDEWEB)
Liebler, Stefan Rainer
2011-09-15
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and
International Nuclear Information System (INIS)
Liebler, Stefan Rainer
2011-09-01
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the μνSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in
Grand Hotel prijutil hudozhnikov
2004-01-01
Raadioajakirjanik Lea Veelmaa lindistas "Kunstikanali" 2004. a. esimese saate Grand Hotel Viljandis. Saatekülaliseks oli maalikunstnik Andres Tolts. Toltsi kaheksa akrüülmaali on eksponeeritud hotelli fuajees ja restoranis
... grand mal seizures include: A family history of seizure disorders Any injury to the brain from trauma, a ... the risk of birth defects. If you have epilepsy and plan to become pregnant, work with your ...
The GRACE system for the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Tanaka, H.; Kaneko, T.; Jimbo, M.; Kon, T.
1997-01-01
The algorithm of constructing the Feynman amplitudes for the GRACE system is extended to processes involving supersymmetric particles. New vertex amplitude subroutines needed to compute these processes are now part of the CHANEL library. (orig.)
Pseudoclassical supersymmetrical model for 2+1 Dirac particle
Gitman, D. M.; Gonçalves, A. E.; Tyutin, I. V.
1996-01-01
A new pseudoclassical supersymmetrical model of a spinning particle in 2+1 dimensions is proposed. Different ways of its quantization are discussed. They all reproduce the minimal quantum theory of the particle.
Leptogenesis in the left-right supersymmetric model
International Nuclear Information System (INIS)
Frank, M.
2004-01-01
We analyze the effects of the current neutrino data on thermal leptogenesis and 0νββ decay in a fully left-right extension of the minimal supersymmetric model. The model has several additional phases compared to the minimal supersymmetric model. These phases appear from both the heavy and light neutrino sectors: two CKM-type phases and four Majorana phases which give new contributions to CP-violating parameters and leptogenesis. We study observable effects of these phases on leptogenesis in most general neutrino mixing scenarios, with either hierarchical, inverse hierarchical, or quasidegenerate light and heavy neutrinos. We comment on the effects of these scenarios on the 0νββ decay. The CP-violating phases in both the heavy and light neutrino sectors of the left-right supersymmetric model have unique features, resulting in bounds on heavy neutrino masses different from the minimal scenario in leptogenesis, and which may distinguish the model from other supersymmetric scenarios
On the problem of axial anomaly in supersymmetric gauge theories
International Nuclear Information System (INIS)
Kazakov, D.I.
1984-01-01
The explicit relation is found between the axial current obeying the Adler-Bardeen theorem and the supersymmetric one belonging to a supermultiplet. It is shown that the axial and superconformal anomalies are consistent in all orders of perturbation theory
Supersymmetric extension of the Adler-Bardeen theorem
International Nuclear Information System (INIS)
Novikov, V.A.; Zakharov, V.I.; Shifman, M.A.; Vainshtein, A.I.
1985-01-01
A supersymmetric generalization of the Adler-Bardeen theorem in SUSY gauge theories is given. We show that within the Adler-Bardeen procedure, both the conformal and axial anomalies are exhausted by one loop. (orig.)
Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation
International Nuclear Information System (INIS)
Znojil, Miloslav
2004-01-01
Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations
The N=2 supersymmetric Ward-identities on harmonic superspace
International Nuclear Information System (INIS)
Lhallabi, T.
1986-09-01
The quantization of N=2 supersymmetric Yang-Mills theory coupled to matter hypermultiplet has been done in the harmonic superspace, by requiring BRS and anti-BRS invariance. Also the corresponding Ward-identities have been derived. (author)
Proceedings of the fourth workshop on grand unification
Energy Technology Data Exchange (ETDEWEB)
Weldon, H.A.; Langacker, P.; Steinhardt, P.J.
1983-01-01
This book compiles the papers presented at the fourth conference of grand unified theories of nuclear physics held in University of Pennsylvania April 1983. The topics covered were proton decay theory; angular distribution and flux of atmospheric neutrinos; atmospheric neutrinos and astrophysical neutrinos in proton decay experiments; review of future nucleon decay experiments; monopole experiments; searches for magnetic monopole; monopoles, gauge, fields and anomalies; darkmatter, galaxies and voids; adiabatic fluctuations; supersymmetry, supergravity, and Kaluza-Klein theories; superstring theory and superunification.
Exactness of supersymmetric WKB method for translational shape invariant potentials
International Nuclear Information System (INIS)
Cheng, K M; Leung, P T; Pang, C S
2003-01-01
By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs
Second Hopf map and supersymmetric mechanics with Yang monopole
International Nuclear Information System (INIS)
Gonzales, M.; Toppan, F.; Kuznetsova, Z.; Nersessian, F.; Yeghikyan, V.
2009-01-01
We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)
Generalized supersymmetric cosmological term in N=1 supergravity
Energy Technology Data Exchange (ETDEWEB)
Concha, P.K.; Rodríguez, E.K. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile); Dipartimento di Scienza Applicata e Tecnologia (DISAT), Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN) Sezione di Torino,Via Pietro Giuria 1, 10125 Torino (Italy); Salgado, P. [Departamento de Física, Universidad de Concepción,Casilla 160-C, Concepción (Chile)
2015-08-04
An alternative way of introducing the supersymmetric cosmological term in a supergravity theory is presented. We show that the AdS-Lorentz superalgebra allows to construct a geometrical formulation of supergravity containing a generalized supersymmetric cosmological constant. The N=1, D=4 supergravity action is built only from the curvatures of the AdS-Lorentz superalgebra and corresponds to a MacDowell-Mansouri like action. The extension to a generalized AdS-Lorentz superalgebra is also analyzed.
Exactness of supersymmetric WKB method for translational shape invariant potentials
Cheng, K M; Pang, C S
2003-01-01
By examining the generic form of the superpotential of translational shape invariant potentials (TSIPs), we explicitly show the exactness of the lowest order supersymmetric WKB (SWKB) formula for TSIPs. Remarkably, our method applies to both unbroken and broken supersymmetric systems. We also demonstrate the equivalence of one-parameter and multi-parameter TSIPs, thus establishing the exactness of the SWKB formula for all TSIPs.
International Nuclear Information System (INIS)
Dawson, S.
1997-01-01
In these lectures, the author discusses the theoretical motivation for supersymmetric theories and introduce the minimal low energy effective supersymmetric theory, (MSSM). I consider only the MSSM and its simplest grand unified extension here. Some of the other possible low-energy SUSY models are summarized. The particles and their interactions are examined in detail in the next sections and a grand unified SUSY model presented which gives additional motivation for pursuing supersymmetric theories
Unified Symmetry of Hamilton Systems
International Nuclear Information System (INIS)
Xu Xuejun; Qin Maochang; Mei Fengxiang
2005-01-01
The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results.
Energy Technology Data Exchange (ETDEWEB)
Kos, L. [LECAD Laboratory, Faculty of Mechanical Engineering, University of Ljubljana, SI-1000 Ljubljana (Slovenia); Tskhakaya, D. D.; Jelić, N. [Institute for Theoretical Physics, Fusion@ÖAW, University of Innsbruck, A-6020 Innsbruck (Austria)
2015-09-15
Recent decades have seen research into the conditions necessary for the formation of the monotonic potential shape in the sheath, appearing at the plasma boundaries like walls, in fluid, and kinetic approximations separately. Although either of these approaches yields a formulation commonly known as the much-acclaimed Bohm criterion (BC), the respective results involve essentially different physical quantities that describe the ion gas behavior. In the fluid approach, such a quantity is clearly identified as the ion directional velocity. In the kinetic approach, the ion behavior is formulated via a quantity (the squared inverse velocity averaged by the ion distribution function) without any clear physical significance, which is, moreover, impractical. In the present paper, we try to explain this difference by deriving a condition called here the Unified Bohm Criterion, which combines an advanced fluid model with an upgraded explicit kinetic formula in a new form of the BC. By introducing a generalized polytropic coefficient function, the unified BC can be interpreted in a form that holds, irrespective of whether the ions are described kinetically or in the fluid approximation.
Frauendorf, S.
2018-04-01
The key elements of the Unified Model are reviewed. The microscopic derivation of the Bohr Hamiltonian by means of adiabatic time-dependent mean field theory is presented. By checking against experimental data the limitations of the Unified Model are delineated. The description of the strong coupling between the rotational and intrinsic degrees of freedom in framework of the rotating mean field is presented from a conceptual point of view. The classification of rotational bands as configurations of rotating quasiparticles is introduced. The occurrence of uniform rotation about an axis that differs from the principle axes of the nuclear density distribution is discussed. The physics behind this tilted-axis rotation, unknown in molecular physics, is explained on a basic level. The new symmetries of the rotating mean field that arise from the various orientations of the angular momentum vector with respect to the triaxial nuclear density distribution and their manifestation by the level sequence of rotational bands are discussed. Resulting phenomena, as transverse wobbling, rotational chirality, magnetic rotation and band termination are discussed. Using the concept of spontaneous symmetry breaking the microscopic underpinning of the rotational degrees is refined.
Supersymmetric quantum mechanics for string bits
International Nuclear Information System (INIS)
Thorn, C.B.
1997-01-01
We develop possible versions of supersymmetric single-particle quantum mechanics, with application to superstring-bit models in view. We focus principally on space dimensions d=1,2,4,8, the transverse dimensionalities of superstring in 3, 4, 6, and 10 space-time dimensions. These are the cases for which open-quotes classicalclose quotes superstring makes sense, and also the values of d for which Hooke close-quote s force law is compatible with the simplest superparticle dynamics. The basic question we address is the following: When is it possible to replace such harmonic force laws with more general ones, including forces which vanish at large distances? This is an important question because forces between string bits that do not fall off with distance will almost certainly destroy cluster decomposition. We show that the answer is affirmative for d=1,2, negative for d=8, and so far inconclusive for d=4. copyright 1997 The American Physical Society
Lepton radiative decays in supersymmetric standard model
International Nuclear Information System (INIS)
Volkov, G.G.; Liparteliani, A.G.
1988-01-01
Radiative decays of charged leptons l i →l j γ(γ * ) have been discussed in the framework of the supersymmetric generalization of the standard model. The most general form of the formfactors for the one-loop vertex function is written. Decay widths of the mentioned radiative decays are calculated. Scalar lepton masses are estimated at the maximal mixing angle in the scalar sector proceeding from the present upper limit for the branching of the decay μ→eγ. In case of the maximal mixing angle and the least mass degeneration of scalar leptons of various generations the following lower limit for the scalar electron mass m e-tilde >1.5 TeV has been obtained. The mass of the scalar neutrino is 0(1) TeV, in case the charged calibrino is lighter than the scalar neutrino. The result obtained sensitive to the choice of the lepton mixing angle in the scalar sector, namely, in decreasing the value sin 2 θ by an order of magnitude, the limitation on the scalar electron mass may decrease more than 3 times. In the latter case the direct observation of electrons at the e + e - -collider (1x1 TeV) becomes available
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.
2017-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Supersymmetric Dark Matter after LHC Run 1
Bagnaschi, E.A.; Cavanaugh, R.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Malik, S.; Martínez Santos, D.; Olive, K.A.; Sakurai, K.; de Vries, K.J.; Weiglein, G.
2015-10-23
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be exp...
Liberating methodological thinking in human sciences from grand theories
DEFF Research Database (Denmark)
Kharlamov, Nikita; Baldursson, Einar Baldvin
2016-01-01
focus on the necessity of a “grand unified theory” at the expense of any and all alternative perspectives. Properties of grand theories are discussed on the examples of Giddens and Bourdieu. It is argued that grand theories hamper a more productive focus on concrete phenomena. Robert Merton’s focus......Many humanistic and social disciplines are naturally inclined to seek for human-, person-, self- centered focus, and develop a holistic theory of such. Such disciplines continually engage with philosophical, metaphysical and meta-theoretical perspectives. This engagement often leads to a singular...... on “middle range” theories is revisited and its continuing relevance is highlighted. The level of abstraction characteristic of such theories, as well as the way they engage with the empirical social reality, are discussed. The article concludes by considering the paradoxical reductionism that can...
Direction: unified theory of interactions
International Nuclear Information System (INIS)
Valko, P.
1987-01-01
Briefly characterized are the individual theories, namely, the general relativity theory, the Kaluza-Klein theory, the Weyl theory, the unified theory of electromagnetic and weak interactions, the supergravity theory, and the superstring theory. The history is recalled of efforts aimed at creating a unified theory of interactions, and future prospects are outlined. (M.D.). 2 figs
Phenomenology with supersymmetric flipped SU(6)
Energy Technology Data Exchange (ETDEWEB)
Shafi, Qaisar E-mail: shafi@bartol.udel.edu; Tavartkiladze, Zurab E-mail: tavzur@axpfe1.fe.infn.it
1999-07-12
The supersymmetric flipped SU(6) x U(1) gauge symmetry can arise through compactification of the ten-dimensional E{sub 8} x E{sub 8} superstring theory. We show how realistic phenomenology can emerge from this theory by supplementing it with the symmetry R x U(1), where R denotes a discrete 'R'-symmetry. The well-known doublet-triplet splitting problem is resolved to 'all orders' via the pseudo-Goldstone mechanism, and the GUT scale arises from an interplay of the Planck and supersymmetry breaking scales. The symmetry R x U(1) is also important for understanding the fermion mass hierarchies as well as the magnitudes of the CKM matrix elements. Furthermore, the well-known MSSM parameter tan {beta} is estimated to be of order unity, while the proton lifetime ({tau}{sub p} {approx} 10{sup 2}{tau}{sub pSU(5)}) is consistent with observations. Depending on some parameters, p {yields} K{mu}{sup +} can be the dominant decay mode. Finally, the observed solar and atmospheric neutrino 'anomalies' requir us to introduce a 'sterile' neutrino state. Remarkably, the R x U(1) symmetry protects it from becoming heavy, so that maximal angle {nu}{sub {mu}} oscillations into a sterile state can explain the atmospheric anomaly, while the solar neutrino puzzle is resolved via the small angle {nu}{sub e} - {nu}{sub {tau}} MSW oscillations. The existence of some ({approx} 15-20% of critical energy density) neutrino hot dark matter is also predicted.
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
On maximally supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Movshev, M.; Schwarz, A.
2004-01-01
We consider ten-dimensional supersymmetric Yang-Mills theory (10D SUSY YM theory) and its dimensional reductions, in particular, BFSS and IKKT models. We formulate these theories using algebraic techniques based on application of differential graded Lie algebras and associative algebras as well as of more general objects, L ∞ - and A ∞ -algebras. We show that using pure spinor formulation of 10D SUSY YM theory equations of motion and isotwistor formalism one can interpret these equations as Maurer-Cartan equations for some differential Lie algebra. This statement can be used to write BV action functional of 10D SUSY YM theory in Chern-Simons form. The differential Lie algebra we constructed is closely related to differential associative algebra (Ω,∂) of (0,k)-forms on some supermanifold; the Lie algebra is tensor product of (Ω,) and matrix algebra. We construct several other algebras that are quasiisomorphic to (Ω,∂) and, therefore, also can be used to give BV formulation of 10D SUSY YM theory and its reductions. In particular, (Ω,∂) is quasiisomorphic to the algebra (B,d), constructed by Berkovits. The algebras (Ω 0 ,∂) and (B 0 ,d) obtained from (Ω,∂) and (B,d) by means of reduction to a point can be used to give a BV-formulation of IKKT model. We introduce associative algebra SYM as algebra where relations are defined as equations of motion of IKKT model and show that Koszul dual to the algebra (B 0 ,d) is quasiisomorphic to SYM
More on homological supersymmetric quantum mechanics
Behtash, Alireza
2018-03-01
In this work, we first solve complex Morse flow equations for the simplest case of a bosonic harmonic oscillator to discuss localization in the context of Picard-Lefschetz theory. We briefly touch on the exact non-BPS solutions of the bosonized supersymmetric quantum mechanics on algebraic geometric grounds and report that their complex phases can be accessed through the cohomology of WKB 1-form of the underlying singular spectral curve subject to necessary cohomological corrections for nonzero genus. Motivated by Picard-Lefschetz theory, we write down a general formula for the index of N =4 quantum mechanics with background R -symmetry gauge fields. We conjecture that certain symmetries of the refined Witten index and singularities of the moduli space may be used to determine the correct intersection coefficients. A few examples, where this conjecture holds, are shown in both linear and closed quivers with rank-one quiver gauge groups. The R -anomaly removal along the "Morsified" relative homology cycles also called "Lefschetz thimbles" is shown to lead to the appearance of Stokes lines. We show that the Fayet-Iliopoulos parameters appear in the intersection coefficients for the relative homology of the quiver quantum mechanics resulting from dimensional reduction of 2 d N =(2 ,2 ) gauge theory on a circle and explicitly calculate integrals along the Lefschetz thimbles in N =4 C Pk -1 model. The Stokes jumping of coefficients and its relation to wall crossing phenomena is briefly discussed. We also find that the notion of "on-the-wall" index is related to the invariant Lefschetz thimbles under Stokes phenomena. An implication of the Lefschetz thimbles in constructing knots from quiver quantum mechanics is indicated.
Supersymmetric dark matter after LHC run 1
International Nuclear Information System (INIS)
Bagnaschi, E.A.; Buchmueller, O.; Cavanaugh, R.; Illinois Univ., Chicago, IL
2015-08-01
Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ 0 1 , assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau τ 1 , stop t 1 or chargino χ ± 1 , resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ 1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E T events and long-lived charged particles, whereas their H/A funnel, focus-point and χ ± 1 coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is χ ± 1 coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.
Symmetries of supersymmetric integrable hierarchies of KP type
International Nuclear Information System (INIS)
Nissimov, E.; Pacheva, S.
2002-01-01
This article is devoted to the systematic study of additional (non-isospectral) symmetries of constrained (reduced) supersymmetric integrable hierarchies of KP type--the so-called SKP (R;M B ,M F ) models. The latter are supersymmetric extensions of ordinary constrained KP hierarchies which contain as special cases basic integrable systems such as (m)KdV, AKNS, Fordy-Kulish, Yajima-Oikawa, etc. As a first main result it is shown that any SKP (R;M B ,M F ) hierarchy possesses two different mutually (anti-)commuting types of superloop superalgebra additional symmetries corresponding to the positive- and negative-grade parts of certain superloop superalgebras. The second main result is the systematic construction of the full algebra of additional Virasoro symmetries of SKP (R;M B ,M F ) hierarchies, which requires nontrivial modifications of the Virasoro flows known from the general case of unconstrained Manin-Radul super-KP hierarchies (the latter flows do not define symmetries for constrained SKP (R;M B ,M F ) hierarchies). As a third main result we provide systematic construction of the supersymmetric analogs of multi-component (matrix) KP hierarchies and show that the latter contain, among others, the supersymmetric version of the Davey-Stewartson system. Finally, we present an explicit derivation of the general Darboux-Baecklund solutions for the SKP (R;M B ,M F ) super-tau functions (supersymmetric 'soliton'-like solutions) which preserve the additional (non-isospectral) symmetries
Globally and locally supersymmetric effective theories for light fields
International Nuclear Information System (INIS)
Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.
Energy Technology Data Exchange (ETDEWEB)
Grab, Sebastian
2009-08-15
The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background
Democracy and "Grand" Corruption.
Rose-Ackerman, Susan
1996-01-01
Defines "grand" corruption as that occurring at the higher levels of a political system and involving large sums of money. Discusses the impact and incentives for this level of corruption as well as various government responses. Identifies multinational corporations as the major malefactors. (MJP)
International Nuclear Information System (INIS)
Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.
1990-01-01
In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)
International Nuclear Information System (INIS)
Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.
1990-01-01
A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)
African Journals Online (AJOL)
Geo
l'estuaire du fleuve Comoé (Grand-Bassam, Côte d'Ivoire). Kouassi Laurent ADOPO1*, Apie Colette AKOBE1, Etche Mireille AMANI2,. Sylvain MONDE3 et Kouamé AKA3. (1)Laboratoire de Géologie Marine, Sédimentologie et Environnement, Centre de Recherche en Ecologie,. Université Felix Houphouet Boigny Abidjan, ...
Energy Technology Data Exchange (ETDEWEB)
Pati, J C [Department of Physics, University of Maryland, College Park (United States) and Stanford Linear Accelerator Center, Menlo Park (United States)
2002-09-15
It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference {delta}m{sup 2}({nu}{sub {mu}} - {nu}{sub {tau}}) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V{sub cb} and the largeness of {theta}{sub {nu}{sub {mu}{nu}}{sub {tau}}}{sup osc}, and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10{sup 34} years, with {nu}-barK{sup +} being the dominant decay mode, and quite possibly {mu}{sup p}+K{sup 0} and e
International Nuclear Information System (INIS)
Pati, J.C.
2002-01-01
It is noted that one is now in possession of a set of facts, which may be viewed as the matching pieces of a puzzle; in that all of them can be resolved by just one idea - that is grand unification. These include: (i) the observed family-structure, (ii) quantization of electric charge, (iii) meeting of the three gauge couplings, (iv) neutrino oscillations; in particular the mass squared-difference Δm 2 (ν μ - ν τ ) (suggested by SuperK), (v) the intricate pattern of the masses and mixings of the fermions, including the smallness of V cb and the largeness of θ ν μ ν τ osc , and (vi) the need for B-L as a generator to implement baryogenesis (via leptogenesis). All these pieces fit beautifully together within a single puzzle board framed by supersymmetric unification, based on SO(10) or a string-unified G(224)-symmetry. The two notable pieces of the puzzle still missing, however, are proton decay and supersymmetry. A concrete proposal is presented, within a predictive SO(10)/G(224)- framework, that successfully describes the masses and mixings of all fermions, including the neutrinos - with eight predictions, all in agreement with observation. Within this framework, a systematic study of proton decay is carried out, which (a) pays special attention to its dependence on the fermion masses, including the superheavy Majorana masses of the right-handed neutrinos, and (b) limits the threshold corrections so as to preserve natural coupling unification. The study updates prior work by Babu, Pati and Wilczek, in the context of both MSSM and its (interesting) variant, the so-called ESSM, by allowing for improved values of the matrix elements and of the short and long-distance renormalization effects. It shows that a conservative upper limit on the proton lifetime is about (1/3 - 2) x 10 34 years, with ν-barK + being the dominant decay mode, and quite possibly μ p +K 0 and e + π 0 being prominent. This in turn strongly suggests that an improvement in the current
Non-perturbative supersymmetry anomaly in supersymmetric QCD
International Nuclear Information System (INIS)
Shamir, Y.
1991-03-01
The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs
Supersymmetric contributions to the decay of an extra Z boson
International Nuclear Information System (INIS)
Gherghetta, T.; Kaeding, T.A.; Kane, G.L.
1998-01-01
We analyze in detail the supersymmetric contributions to the decay of an extra Z boson in effective rank 5 models, including the important effect of D terms on sfermion masses. The inclusion of supersymmetric decay channels will reduce the Z ' branching ratio to standard model particles, resulting in lower Z ' mass limits than those often quoted. In particular, the supersymmetric parameter space motivated by the recent Fermilab eeγγ event and other suggestive evidence results in a branching fraction B(Z ' →e + e - )≅2 endash 4%. The expected cross sections and branching ratios could give a few events in the present data and we speculate on the connection to the three e + e - events observed at Fermilab with large dielectron invariant mass. copyright 1998 The American Physical Society
Precision calculations in supersymmetric extensions of the Standard Model
International Nuclear Information System (INIS)
Slavich, P.
2013-01-01
This dissertation is organized as follows: in the next chapter I will summarize the structure of the supersymmetric extensions of the standard model (SM), namely the MSSM (Minimal Supersymmetric Standard Model) and the NMSSM (Next-to-Minimal Supersymmetric Standard Model), I will provide a brief overview of different patterns of SUSY (supersymmetry) breaking and discuss some issues on the renormalization of the input parameters that are common to all calculations of higher-order corrections in SUSY models. In chapter 3 I will review and describe computations on the production of MSSM Higgs bosons in gluon fusion. In chapter 4 I will review results on the radiative corrections to the Higgs boson masses in the NMSSM. In chapter 5 I will review the calculation of BR(B → X s γ in the MSSM with Minimal Flavor Violation (MFV). Finally, in chapter 6 I will briefly summarize the outlook of my future research. (author)
Invariant solutions of the supersymmetric sine-Gordon equation
International Nuclear Information System (INIS)
Grundland, A M; Hariton, A J; Snobl, L
2009-01-01
A comprehensive symmetry analysis of the N=1 supersymmetric sine-Gordon equation is performed. Two different forms of the supersymmetric system are considered. We begin by studying a system of partial differential equations corresponding to the coefficients of the various powers of the anticommuting independent variables. Next, we consider the super-sine-Gordon equation expressed in terms of a bosonic superfield involving anticommuting independent variables. In each case, a Lie (super)algebra of symmetries is determined and a classification of all subgroups having generic orbits of codimension 1 in the space of independent variables is performed. The method of symmetry reduction is systematically applied in order to derive invariant solutions of the supersymmetric model. Several types of algebraic, hyperbolic and doubly periodic solutions are obtained in explicit form.
Proton and neutron decay rates in conventional and supersymmetric guts
International Nuclear Information System (INIS)
Salati, P.; Wallet, J.C.
1982-01-01
We present a general calculation of the two body decay rates of the nucleon, for the most general form of four-fermion ΔB = ΔL operators, in the framework of the SU(6) non-relativistic quark model. We have applied our general formulas to Higgs mediated decays in conventional and in supersymmetric SU(5) models. Lower bounds upon, the exchanged particles masses are given. We point out that the hierarchies of branching ratios in decays mediated by Higgs bosons are different from those of gauge boson decay modes (in the former case, neutrinos modes are dominant). We give, in conclusion, an experimental way to distinguish non-supersymmetric GUTs from supersymmetric ones, if the nucleon decays via Higgs bosons
Globally and locally supersymmetric effective theories for light fields
Brizi, Leonardo; Scrucca, Claudio A
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...
Algebraic renormalization of supersymmetric gauge theories with dimensionful parameters
International Nuclear Information System (INIS)
Golterman, Maarten; Shamir, Yigal
2010-01-01
It is usually believed that there are no perturbative anomalies in supersymmetric gauge theories beyond the well-known chiral anomaly. In this paper we revisit this issue, because previously given arguments are incomplete. Specifically, we rule out the existence of soft anomalies, i.e., quantum violations of supersymmetric Ward identities proportional to a mass parameter in a classically supersymmetric theory. We do this by combining a previously proven theorem on the absence of hard anomalies with a spurion analysis, using the methods of algebraic renormalization. We work in the on-shell component formalism throughout. In order to deal with the nonlinearity of on-shell supersymmetry transformations, we take the spurions to be dynamical, and show how they nevertheless can be decoupled.
International Nuclear Information System (INIS)
1991-01-01
This report discusses research in high energy physics on the following topics: rare b decays; flavor changing top decays;neutrino physics; standard model; cp violation; heavy ion collisions; electron-positron interactions; electron-hadron interactions; hadron-hadron interactions; deep inelastic scattering; and grand unified models
Two-dimensional nonlinear equations of supersymmetric gauge theories
International Nuclear Information System (INIS)
Savel'ev, M.V.
1985-01-01
Supersymmetric generalization of two-dimensional nonlinear dynamical equations of gauge theories is presented. The nontrivial dynamics of a physical system in the supersymmetry and supergravity theories for (2+2)-dimensions is described by the integrable embeddings of Vsub(2/2) superspace into the flat enveloping superspace Rsub(N/M), supplied with the structure of a Lie superalgebra. An equation is derived which describes a supersymmetric generalization of the two-dimensional Toda lattice. It contains both super-Liouville and Sinh-Gordon equations
The supersymmetric Higgs pseudoscalar and its production in toponium decay
International Nuclear Information System (INIS)
Gamberini, G.; Giudice, G.F.; Ridolfi, G.
1987-01-01
In the minimal supersymmetric extension of the standard model one scalar Higgs boson is forced to be lighter than the Z 0 . We consider here the bounds, imposed by supersymmetry, on the mass of the physical Higgs pseudoscalar. It turns out that, although fairly stringent limits are found, it is still conveivable that this particle is light enough to be discovered at SLC and LEP. Its production rate in toponium decay is computed and discussed in view of the bounds on the supersymmetric Higgs sector parameters. (orig.)
Supersymmetric SU(11), the invisible axion, and proton decay
International Nuclear Information System (INIS)
Alwis, S.P. de; Kim, J.E.
1981-09-01
We supersymmetrize the very attractive flavour unification model SU(11). As with other supersymmetric GUTs the gauge hierarchy problem is simplified, but we may also have observable (tausub(p) is approximately 10 33 yrs) proton decay. The required split multiplets are obtained by making the adjoint take a particular direction. Supersymmetry is broken softly at the TeV scale. There is a unique U(1)sub(A) symmetry, and hence there are no true Nambu-Goldstone bosons. The U(1)sub(A) is broken at the GUT scale and there result an invisible axion and neutrino masses. (author)
Enhanced lepton flavour violation in the supersymmetric inverse seesaw
International Nuclear Information System (INIS)
Weiland, C
2013-01-01
In minimal supersymmetric seesaw models, the contribution to lepton flavour violation from Z-penguins is usually negligible. In this study, we consider the supersymmetric inverse seesaw and show that, in this case, the Z-penguin contribution dominates in several lepton flavour violating observables due to the low scale of the inverse seesaw mechanism. Among the observables considered, we find that the most constraining one is the μ-e conversion rate which is already restricting the otherwise allowed parameter space of the model. Moreover, in this framework, the Z-penguins exhibit a non-decoupling behaviour, which has previously been noticed in lepton flavour violating Higgs decays
Predictions for mt and MW in minimal supersymmetric models
International Nuclear Information System (INIS)
Buchmueller, O.; Ellis, J.R.; Flaecher, H.; Isidori, G.
2009-12-01
Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m t , and the W boson mass, m W . We find that the supersymmetric predictions for both m t and m W , obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)
Dispersive and damping properties of supersymmetric sound. 1
International Nuclear Information System (INIS)
Lebedev, V.V.; Smilga, A.V.
1988-01-01
It is shown that a supersymmetric medium at nonzero temperature possesses necessarily the massless fermionic collective excitation which we call phonino. Its appearance is due to the spontaneous SUSY breaking at T ≠ and is as general as the appearance of the sound. The phase velocity of phonino is C=P/E where P is the pressure and E is the energy density of the medium. The Wess-Zumino model is studied in detail. In the case of small temperature, T 2 , where g<<1 is the coupling constant, and small. The gauge supersymmetric theories are also discussed
A Specific N=2 Supersymmetric Quantum Mechanical Model: Supervariable Approach
Directory of Open Access Journals (Sweden)
Aradhya Shukla
2017-01-01
Full Text Available By exploiting the supersymmetric invariant restrictions on the chiral and antichiral supervariables, we derive the off-shell nilpotent symmetry transformations for a specific (0 + 1-dimensional N=2 supersymmetric quantum mechanical model which is considered on a (1, 2-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables (θ,θ¯. We also provide the geometrical meaning to the symmetry transformations. Finally, we show that this specific N=2 SUSY quantum mechanical model is a model for Hodge theory.
Supersymmetric construction of exactly solvable potentials and nonlinear algebras
International Nuclear Information System (INIS)
Junker, G.; Roy, P.
1998-01-01
Using algebraic tools of supersymmetric quantum mechanics we construct classes of conditionally exactly solvable potentials being the supersymmetric partners of the linear or radial harmonic oscillator. With the help of the raising and lowering operators of these harmonic oscillators and the SUSY operators we construct ladder operators for these new conditionally solvable systems. It is found that these ladder operators together with the Hamilton operator form a nonlinear algebra which is of quadratic and cubic type for the SUSY partners of the linear and radial harmonic oscillator
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2006-01-01
We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out
Nonlinear realization of supersymmetric AdS space isometries
International Nuclear Information System (INIS)
Clark, T. E.; Love, S. T.
2006-01-01
The isometries of AdS 5 space and supersymmetric AdS 5 xS 1 space are nonlinearly realized on four-dimensional Minkowski space. The resultant effective actions in terms of the Nambu-Goldstone modes are constructed. The dilatonic mode governing the motion of the Minkowski space probe brane into the covolume of supersymmetric AdS 5 space is found to be unstable and the bulk of the AdS 5 space is unable to sustain the brane. No such instability appears in the nonsupersymmetric case
Supersymmetric hybrid inflation with non-minimal Kahler potential
International Nuclear Information System (INIS)
Bastero-Gil, M.; King, S.F.; Shafi, Q.
2007-01-01
Minimal supersymmetric hybrid inflation based on a minimal Kahler potential predicts a spectral index n s ∼>0.98. On the other hand, WMAP three year data prefers a central value n s ∼0.95. We propose a class of supersymmetric hybrid inflation models based on the same minimal superpotential but with a non-minimal Kahler potential. Including radiative corrections using the one-loop effective potential, we show that the prediction for the spectral index is sensitive to the small non-minimal corrections, and can lead to a significantly red-tilted spectrum, in agreement with WMAP
Dark matter and dark forces from a supersymmetric hidden sector
Energy Technology Data Exchange (ETDEWEB)
Andreas, S.; Goodsell, M.D.; Ringwald, A.
2011-09-15
We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)
Supersymmetric self-dual Yang-Mills fields
International Nuclear Information System (INIS)
Zhao Liu
1994-01-01
A new four dimensional (4d) N = 1 supersymmetric integrable model, i.e. the supersymmetric self-dual Yang-Mills model is constructed. The equations of motion for this model are shown to be equivalent to the zero curvature condition on some superplane in the 4d superspace, the superplane being characterized by a point in the project space CP 3,4 . The linear systems are established according to this geometrical interpretation, and the effective action is also proposed in order to explain the dynamical content of the model
Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model
International Nuclear Information System (INIS)
Haba, Naoyuki; Seto, Osamu
2011-01-01
We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.
Nonlattice Simulation for Supersymmetric Gauge Theories in One Dimension
International Nuclear Information System (INIS)
Hanada, Masanori; Nishimura, Jun; Takeuchi, Shingo
2007-01-01
Lattice simulation of supersymmetric gauge theories is not straightforward. In some cases the lack of manifest supersymmetry just necessitates cumbersome fine-tuning, but in the worse cases the chiral and/or Majorana nature of fermions makes it difficult to even formulate an appropriate lattice theory. We propose circumventing all these problems inherent in the lattice approach by adopting a nonlattice approach for one-dimensional supersymmetric gauge theories, which are important in the string or M theory context. In particular, our method can be used to investigate the gauge-gravity duality from first principles, and to simulate M theory based on the matrix theory conjecture
Effects of the supersymmetric phases on the neutral Higgs sector
International Nuclear Information System (INIS)
Demir, D.A.
1999-01-01
By using the effective potential approximation and taking into account the dominant top quark and scalar top quark loops, radiative corrections to MSSM Higgs potential are computed in the presence of the supersymmetric CP-violating phases. It is found that, the lightest Higgs scalar remains essentially CP-even as in the CP-invariant theory whereas the other two scalars are heavy and do not have definite CP properties. The supersymmetric CP-violating phases are shown to modify significantly the decay rates of the scalars to fermion pairs. (author)
Supersymmetric inflation, baryon asymmetry and the gravitino problem
International Nuclear Information System (INIS)
Ovrut, B.A.; Pennsylvania Univ., Philadelphia; Steinhardt, P.J.
1984-01-01
A special class of locally supersymmetric models has been found which can produce a phase transition that meets all the conditions necessary for the inflationary universe scenario and which sets, via spontaneous supersymmetry breaking, a mass hierarchy consistent with the electroweak unification scale. In this paper we show that the same models can produce a baryon asymmetry after inflation that is consistent with astrophysical observations and can avoid the cosmological problems caused by gravitinos that appear in almost all other locally supersymmetric models. (orig.)
Seven Deadliest Unified Communications Attacks
York, Dan
2010-01-01
Do you need to keep up with the latest hacks, attacks, and exploits effecting Unified Communications technology? Then you need Seven Deadliest Unified Communication Attacks. This book pinpoints the most dangerous hacks and exploits specific to Unified Communications, laying out the anatomy of these attacks including how to make your system more secure. You will discover the best ways to defend against these vicious hacks with step-by-step instruction and learn techniques to make your computer and network impenetrable. Attacks featured in this book include: UC Ecosystem Attacks Insecure Endpo
Proton decay: Numerical simulations confront grand unification
International Nuclear Information System (INIS)
Brower, R.C.; Maturana, G.; Giles, R.C.; Moriarty, K.J.M.; Samuel, S.
1985-01-01
The Grand Unified Theories of the electromagnetic, weak and strong interactions constitute a far reaching attempt to synthesize our knowledge of theoretical particle physics into a consistent and compelling whole. Unfortunately, many quantitative predictions of such unified theories are sensitive to the analytically intractible effects of the strong subnuclear theory (Quantum Chromodynamics or QCD). The consequence is that even ambitious experimental programs exploring weak and super-weak interaction effects often fail to give definitive theoretical tests. This paper describes large-scale calculations on a supercomputer which can help to overcome this gap between theoretical predictions and experimental results. Our focus here is on proton decay, though the methods described are useful for many weak processes. The basic algorithms for the numerical simulation of QCD are well known. We will discuss the advantages and challenges of applying these methods to weak transitions. The algorithms require a very large data base with regular data flow and are natural candidates for vectorization. Also, 32-bit floating point arithmetic is adequate. Thus they are most naturally approached using a supercomputer alone or in combination with a dedicated special purpose processor. (orig.)
Grand unification in the projective plane
International Nuclear Information System (INIS)
Hebecker, A.
2004-01-01
A 6-dimensional grand unified theory with the compact space having the topology of a real projective plane, i.e., a 2-sphere with opposite points identified, is considered. The space is locally flat except for two conical singularities where the curvature is concentrated. One supersymmetry is preserved in the effective 4d theory. The unified gauge symmetry, for example SU(5), is broken only by the non-trivial global topology. In contrast to the Hosotani mechanism, no adjoint Wilson-line modulus associated with this breaking appears. Since, locally, SU(5) remains a good symmetry everywhere, no UV-sensitive threshold corrections arise and SU(5)-violating local operators are forbidden. Doublet-triplet splitting can be addressed in the context of a 6d N=2 super Yang-Mills theory with gauge group SU(6). If this symmetry is first broken to SU(5) at a fixed point and then further reduced to the standard model group in the above non-local way, the two light Higgs doublets of the MSSM are predicted by the group-theoretical and geometrical structure of the model. (author)
Guarino, Adolfo
2018-03-01
Supersymmetric {AdS}4, {AdS}2 × Σ 2 and asymptotically AdS4 black hole solutions are studied in the context of non-minimal N=2 supergravity models involving three vector multiplets (STU-model) and Abelian gaugings of the universal hypermultiplet moduli space. Such models correspond to consistent subsectors of the {SO}(p,q) and {ISO}(p,q) gauged maximal supergravities that arise from the reduction of 11D and massive IIA supergravity on {H}^{(p,q)} spaces down to four dimensions. A unified description of all the models is provided in terms of a square-root prepotential and the gauging of a duality-hidden symmetry pair of the universal hypermultiplet. Some aspects of M-theory and massive IIA holography are mentioned in passing.
UPQC (Unified power Quality Conditioner)
Indian Academy of Sciences (India)
First page Back Continue Last page Graphics. UPQC (Unified power Quality Conditioner). Hybrid of Shunt and Series compensator. Compensate both Current Quality and Voltage Quality. Costlier Solution as it involves two set of Inverters.
The ﬁrst endcap disc of CMS being lowered slowly and carefully 100 m underground into the experimental cavern. The disc is one of 15 large pieces to make the grand descent. The uniquely shaped slice, 16 m high, about 50 cm thick weighs 400 tonnes. The two HF that were lowered earlier in November can also be seen in the foreground and background.
International Nuclear Information System (INIS)
Leite Lopes, J.
1998-04-01
In this work, we discuss the physical ideas which represents the basis for the unified gauge field model. Despite of the difficulties that we presently have for embodying in a natural manner muons and hadrons in that model, we have the feeling that we are on the way which seems to lead to the construction of a theory in which the Maxwell electromagnetic field and the Fermi weak interaction field are manifestations of a unique subjacent physical entity - the unified gauge fields. (author)
Stochastic variables in N=1 supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Lechtenfeld, O.
1984-06-01
The stochastic structure of N=1 supersymmetric Yang-Mills theory is rederived by using a previously developed method for the construction of the (nonlocal) Nicolai map. The stochastic variables correspond to the fixed points of this mapping. The relations are derived in a light cone gauge and in general covariant gauges. (orig.)
Recursive representation of Wronskians in confluent supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Contreras-Astorga, Alonso; Schulze-Halberg, Axel
2017-01-01
A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation. (paper)
Nonlinear Supersymmetric General Relativity and Unity of Nature
Shima, Kazunari; Tsuda, Motomu
2008-01-01
The basic idea and some physical implications of nonlinear supersymmetric general relativity (NLSUSY GR) are discussed, which give new insights into the origin of mass and the mysterious relations between the cosmology and the low energy particle physics, e.g. the spontaneous SUSY breaking scale, the cosmological constant, the (dark) energy density of the universe and the neutrino mass.
Non-supersymmetric deformations of non-critical superstrings
International Nuclear Information System (INIS)
Itzhaki, Nissan; Kutasov, David; Seiberg, Nathan
2005-01-01
We study certain supersymmetry breaking deformations of linear dilaton backgrounds in different dimensions. In some cases, the deformed theory has bulk closed strings tachyons. In other cases there are no bulk tachyons, but there are localized tachyons. The real time condensation of these localized tachyons is described by an exactly solvable worldsheet CFT. We also find some stable, non-supersymmetric backgrounds
Analytic stochastic regularization in QCD and its supersymmetric extension
International Nuclear Information System (INIS)
Abdalla, E.; Vianna, R.L.
1987-08-01
We outline some features of stochastic quantization and regularization of fermionic fields with applications to spinor QCD, showing the appearence of a non-gauge invariant counterterm. We also show that non-invariant terms cancel in supersymmetric multiplets. (Author) [pt
Exterior calculus and two-dimensional supersymmetric models
International Nuclear Information System (INIS)
Sciuto, S.
1980-01-01
An important property of the calculus of differential forms on superspace is pointed out, and an economical way to treat the linear problem associated with certain supersymmetric two-dimensional models is discussed. A generalization of the super sine-Gordon model is proposed; its bosonic limit is a new model whose associate linear set has an SU(3) structure. (orig.)
Supersymmetric black holes in N = 2 supergravity theory
International Nuclear Information System (INIS)
Aichelburg, P.C.
1982-01-01
We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)
Half-supersymmetric solutions in five-dimensional supergravity
International Nuclear Information System (INIS)
Gutowski, Jan B.; Sabra, Wafic
2007-01-01
We present a systematic classification of half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which at least one of the Killing spinors generate a time-like Killing vector
General supersymmetric solutions of five-dimensional supergravity
International Nuclear Information System (INIS)
Gutowski, Jan B.; Sabra, Wafic
2005-01-01
The classification of 1/4-supersymmetric solutions of five dimensional gauged supergravity coupled to arbitrary many abelian vector multiplets, which was initiated elsewhere, is completed. The structure of all solutions for which the Killing vector constructed from the Killing spinor is null is investigated in both the gauged and the ungauged theories and some new solutions are constructed
Deviations from Newton's law in supersymmetric large extra dimensions
International Nuclear Information System (INIS)
Callin, P.; Burgess, C.P.
2006-01-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case
Charged and neutral minimal supersymmetric standard model Higgs ...
Indian Academy of Sciences (India)
physics pp. 759–763. Charged and neutral minimal supersymmetric standard model Higgs boson decays and measurement of tan β at the compact linear collider. E CONIAVITIS and A FERRARI∗. Department of Nuclear and Particle Physics, Uppsala University, 75121 Uppsala, Sweden. ∗E-mail: ferrari@tsl.uu.se. Abstract.
Testing the supersymmetric QCD Yukawa coupling in a combined ...
Indian Academy of Sciences (India)
843–847. Testing the supersymmetric QCD Yukawa coupling ... we will only consider a scenario where the mass difference m˜g − m˜qL is sufficiently large to .... Based on the simulations for squark production at the LHC and the ILC presented.
The spectra of supersymmetric states in string theory
Cheng, M.C.N.
2008-01-01
In this thesis we study the spectra of supersymmetric states in string theory compactifications with eight and sixteen supercharges, with special focus placed on the quantum states of black holes and the phenomenon of wall-crossing in these theories. A self-contained introduction to the relevant
A mini review on CP-violating minimal supersymmetric Standard
Indian Academy of Sciences (India)
We discuss the present status of the Higgs sector of the CP-violating minimal supersymmetric Standard Model (CPVMSSM). In the Standard Model (SM) of particle physics, the only source of CP violation is the complex phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix. By now we all know that this singlephase is ...
GUTs and supersymmetric GUTs in the very early universe
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)
Prospects for detecting supersymmetric dark matter in the Galactic halo
Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.
2008-01-01
Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at
Dark matter, constrained minimal supersymmetric standard model, and lattice QCD.
Giedt, Joel; Thomas, Anthony W; Young, Ross D
2009-11-13
Recent lattice measurements have given accurate estimates of the quark condensates in the proton. We use these results to significantly improve the dark matter predictions in benchmark models within the constrained minimal supersymmetric standard model. The predicted spin-independent cross sections are at least an order of magnitude smaller than previously suggested and our results have significant consequences for dark matter searches.
90 - GeV Higgs boson in supersymmetric models
International Nuclear Information System (INIS)
Grzadkowski, B.; Kalinowski, J.; Pokorski, S.
1989-07-01
We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)
On the supersymmetrization of Galileon theories in four dimensions
Elvang, Henriette; Hadjiantonis, Marios; Jones, Callum R. T.; Paranjape, Shruti
2018-06-01
We use on-shell amplitude techniques to study the possible N = 1 supersymmetrizations of Galileon theories in 3 + 1 dimensions, both in the limit of decoupling from DBI and without. Our results are that (1) the quartic Galileon has a supersymmetrization compatible with Galileon shift symmetry (ϕ → ϕ + c +bμxμ) for the scalar sector and a constant shift symmetry (ψ → ψ + ξ) for the fermion sector, and it is unique at least at 6th order in fields, but possibly not beyond; (2) the enhanced "special Galileon" symmetry is incompatible with supersymmetry; (3) there exists a quintic Galileon with a complex scalar preserving Galileon shift symmetry; (4) one cannot supersymmetrize the cubic and quintic Galileon while preserving the Galileon shift symmetry for the complex scalar; and (5) for the quartic and quintic Galileon, we present evidence for a supersymmetrization in which the real Galileon scalar is partnered with an R-axion to form a complex scalar which only has an ordinary shift symmetry.
Stationary Configurations and Geodesic Description of Supersymmetric Black Holes
Käppeli, Jürg
2003-01-01
This thesis contains a detailed study of various properties of supersymmetric black holes. In chapter I an overview over some of the fascinating aspects of black hole physics is provided. In particular, the string theory approach to black hole entropy is discussed. One of the consequences of the
Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD
DEFF Research Database (Denmark)
Ryttov, Thomas A.
2016-01-01
order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...
Alternative approaches to maximally supersymmetric field theories
International Nuclear Information System (INIS)
Broedel, Johannes
2010-01-01
The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated
Supersymmetric contribution to the electroweak ρ parameter
International Nuclear Information System (INIS)
Drees, M.; Hagiwara, K.
1990-01-01
Contributions to the electroweak ρ parameter, the ratio of the neutral- and charged-current strengths at zero-momentum transfer, are studied in the minimal extension of the standard model (SM) with softly broken supersymmetry. The effects of the extended Higgs sector, the gaugino-Higgsino sector, the light-squark--slepton sector and that of the stop-sbottom sector are studied separately, and the role of the custodial SU(2) V symmetry in each sector is clarified. The stop-sbottom sector is found to give potentially a most significant contribution to δρ which can double the standard-model contribution from the top-bottom sector, whereas all the remaining sectors contribute to δρ at the level of at most a few x10 -3 . In the supergravity model with radiative electroweak gauge symmetry breaking there are no extra sources of the SU(2) V breaking at the grand unification scale other than those present already in the SM, and the resulting δρ is found to be significantly smaller than in the general case. Constraints on the allowed range of δρ in the supergravity models are given by taking account of existing and prospective experimental mass limits of additional particles at CERN LEP and Sp bar pS and Fermilab Tevatron
Supersymmetric Yang-Mills theory on conformal supergravity backgrounds in ten dimensions
Energy Technology Data Exchange (ETDEWEB)
Medeiros, Paul de; Figueroa-O’Farrill, José [Maxwell Institute and School of Mathematics, The University of Edinburgh,James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD (United Kingdom)
2016-03-14
We consider bosonic supersymmetric backgrounds of ten-dimensional conformal supergravity. Up to local conformal isometry, we classify the maximally supersymmetric backgrounds, determine their conformal symmetry superalgebras and show how they arise as near-horizon geometries of certain half-BPS backgrounds or as a plane-wave limit thereof. We then show how to define Yang-Mills theory with rigid supersymmetry on any supersymmetric conformal supergravity background and, in particular, on the maximally supersymmetric backgrounds. We conclude by commenting on a striking resemblance between the supersymmetric backgrounds of ten-dimensional conformal supergravity and those of eleven-dimensional Poincaré supergravity.
Classifying supersymmetric solutions in 3D maximal supergravity
de Boer, Jan; Mayerson, Daniel R.; Shigemori, Masaki
2014-12-01
String theory contains various extended objects. Among those, objects of codimension two (such as the D7-brane) are particularly interesting. Codimension-two objects carry non-Abelian charges which are elements of a discrete U-duality group and they may not admit a simple spacetime description, in which case they are known as exotic branes. A complete classification of consistent codimension-two objects in string theory is missing, even if we demand that they preserve some supersymmetry. As a step toward such a classification, we study the supersymmetric solutions of 3D maximal supergravity, which can be regarded as an approximate description of the geometry near codimension-two objects. We present a complete classification of the types of supersymmetric solutions that exist in this theory. We found that this problem reduces to that of classifying nilpotent orbits associated with the U-duality group, for which various mathematical results are known. We show that the only allowed supersymmetric configurations are 1/2, 1/4, 1/8, and 1/16 BPS, and determine the nilpotent orbits that they correspond to. One example of 1/16 BPS configurations is a generalization of the MSW system, where momentum runs along the intersection of seven M5-branes. On the other hand, it turns out exceedingly difficult to translate this classification into a simple criterion for supersymmetry in terms of the non-Abelian (monodromy) charges of the objects. For example, it can happen that a supersymmetric solution exists locally but cannot be extended all the way to the location of the object. To illustrate the various issues that arise in constructing supersymmetric solutions, we present a number of explicit examples.
Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large N
Energy Technology Data Exchange (ETDEWEB)
Morita, Takeshi [Department of Physics, Shizuoka University,836 Ohya, Suruga-ku, Shizuoka 422-8529 (Japan); Department of Physics and Astronomy, University of Kentucky,Lexington, KY 40506 (United States); Shiba, Shotaro [Maskawa Institute for Science and Culture, Kyoto Sangyo University,Kamigamo-Motoyama, Kita-ku, Kyoto 603-8555 (Japan); Wiseman, Toby [Theoretical Physics Group, Blackett Laboratory, Imperial College,Exhibition Road, London SW7 2AZ (United Kingdom); Withers, Benjamin [Mathematical Sciences and STAG Research Centre, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom)
2015-07-09
Maximally supersymmetric (p+1)-dimensional Yang-Mills theory at large N and finite temperature, with possibly compact spatial directions, has a rich phase structure. Strongly coupled phases may have holographic descriptions as black branes in various string duality frames, or there may be no gravity dual. In this paper we provide tools in the gauge theory which give a simple and unified picture of the various strongly coupled phases, and transitions between them. Building on our previous work we consider the effective theory describing the moduli of the gauge theory, which can be computed precisely when it is weakly coupled far out on the Coulomb branch. Whilst for perturbation theory naive extrapolation from weak coupling to strong gives little information, for this moduli theory naive extrapolation from its weakly to its strongly coupled regime appears to encode a surprising amount of information about the various strongly coupled phases. We argue it encodes not only the parametric form of thermodynamic quantities for these strongly coupled phases, but also certain transcendental factors with a geometric origin, and allows one to deduce transitions between the phases. We emphasise it also gives predictions for the behaviour of other observables in these phases.
Geometrical Lagrangian for a Supersymmetric Yang-Mills Theory on the Group Manifold
International Nuclear Information System (INIS)
Borges, M. F.
2002-01-01
Perhaps one of the main features of Einstein's General Theory of Relativity is that spacetime is not flat itself but curved. Nowadays, however, many of the unifying theories like superstrings on even alternative gravity theories such as teleparalell geometric theories assume flat spacetime for their calculations. This article, an extended account of an earlier author's contribution, it is assumed a curved group manifold as a geometrical background from which a Lagrangian for a supersymmetric N=2, d=5 Yang-Mills - SYM, N=2, d=5 - is built up. The spacetime is a hypersurface embedded in this geometrical scenario, and the geometrical action here obtained can be readily coupled to the five-dimensional supergravity action. The essential idea that underlies this work has its roots in the Einstein-Cartan formulation of gravity and in the 'group manifold approach to gravity and supergravity theories'. The group SYM, N=2, d=5, turns out to be the direct product of supergravity and a general gauge group G:G=GxSU(2,2/1)-bar
Moduli dynamics as a predictive tool for thermal maximally supersymmetric Yang-Mills at large N
International Nuclear Information System (INIS)
Morita, Takeshi; Shiba, Shotaro; Wiseman, Toby; Withers, Benjamin
2015-01-01
Maximally supersymmetric (p+1)-dimensional Yang-Mills theory at large N and finite temperature, with possibly compact spatial directions, has a rich phase structure. Strongly coupled phases may have holographic descriptions as black branes in various string duality frames, or there may be no gravity dual. In this paper we provide tools in the gauge theory which give a simple and unified picture of the various strongly coupled phases, and transitions between them. Building on our previous work we consider the effective theory describing the moduli of the gauge theory, which can be computed precisely when it is weakly coupled far out on the Coulomb branch. Whilst for perturbation theory naive extrapolation from weak coupling to strong gives little information, for this moduli theory naive extrapolation from its weakly to its strongly coupled regime appears to encode a surprising amount of information about the various strongly coupled phases. We argue it encodes not only the parametric form of thermodynamic quantities for these strongly coupled phases, but also certain transcendental factors with a geometric origin, and allows one to deduce transitions between the phases. We emphasise it also gives predictions for the behaviour of other observables in these phases.
Directory of Open Access Journals (Sweden)
E. Ireson
2016-01-01
Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.
International Nuclear Information System (INIS)
Buchbinder, I.L.; Odintsov, S.D.; Lichtzier, I.M.
1989-01-01
The question of the behaviour of effective coupling constants in one-loop 'finite' grand unification theories in curved spacetime is investigated. It is shown that in strong gravitational fields the effective coupling constant, corresponding to the parameter of non-minimal interaction of scalar and gravitational fields, tends to the conformal value or increases in an exponential fashion. The one-loop effective potential is obtained with accuracy to linear curvature terms. It is shown that, in external supergravity, supersymmetric finite theories admit asymptotic conformal invariance. (Author)
Vector-like quarks and leptons, SU(5) ⊗ SU(5) grand unification, and proton decay
International Nuclear Information System (INIS)
Lee, Chang-Hun; Mohapatra, Rabindra N.
2017-01-01
SU(5) ⊗ SU(5) provides a minimal grand unification scheme for fermions and gauge forces if there are vector-like quarks and leptons in nature. We explore the gauge coupling unification in a non-supersymmetric model of this type, and study its implications for proton decay. The properties of vector-like quarks and intermediate scales that emerge from coupling unification play a central role in suppressing proton decay. We find that in this model, the familiar decay mode p→e + π 0 may have a partial lifetime within the reach of currently planned experiments.
Directory of Open Access Journals (Sweden)
Denis Alcides-Rezende
2008-01-01
Full Text Available The objective of this work is to analyse the integration of information systems and information technology resources in the municipal planning of 14 small cities of Rio Grande do Sul (Brazil. The research methodology consisted of a multiple case study together with a convenient non-probabilistic sample chosen through a research protocol. The results demonstrate the difficulties of these cities to organise the municipal data as well as their struggle for accessibility of information and planning for management and control.
PREFACE: Progress in supersymmetric quantum mechanics
Aref'eva, I.; Fernández, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.
2004-10-01
The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models
Search for Higgs bosons and for Supersymmetric particles at particle collider experiments
Muanza, Steve
The corner stone of the Standard Model (SM) of Particle Physics is the Higgs mechanism. It explains how the bosons W, Z and H acquire a mass via weak interactions. In addition it explains how the charged fermions also acquire a mass through Yukawa interactions. And on top of this, it regularizes the scattering of longitudinal W and Z bosons at high energy. The discovery of a Higgs boson by the ATLAS and the CMS collaborations in 2012 marked the culminating success of the SM at explaining most of the known phenomena. However a few other phenomena such as the Dark Matter and the Dark energy cannot be explained by the SM particles. What's more, the SM leaves several open questions such as a quest for a quantum theory for gravity, the naturalness in the Higgs sector, a possible Grand Unification,... The common thread in topics presented in this habilitation thesis is the search for manifestations of a TeV scale supersymmetric (SUSY) extension of the Standard Model at particle collider experiments. Among the predi...
A minimal supersymmetric model of particle physics and the early universe
International Nuclear Information System (INIS)
Buchmueller, W.; Domcke, V.; Kamada, K.; Schmitz, K.
2013-11-01
We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.
A minimal supersymmetric model of particle physics and the early universe
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS
2013-11-15
We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.
Experimental status of unified theories
International Nuclear Information System (INIS)
Bilen'kij, S.M.
1979-01-01
A standard SU(2)xU(1) theory is discussed. It is based on an assumption that the left components of fields form doublets, and the rignt ones - singlets. From the weak interaction lagrangian an expression is obtained for the effective hamiltonian describing neutrino-lepton processes. The results of discussing the experimental status of the unified theories of weak and electromagnetic interactions are in agreement with the simplest version of the unified theories - the Weinberg-Salam theory. It has been noted that the accuracy of the experiments (not exceeding 20%) is insufficient and no information is available on diagonal terms of the hamiltonian
The Simplest Unified Growth Theory
DEFF Research Database (Denmark)
Strulik, Holger; Weisdorf, Jacob Louis
This paper provides a unified growth theory, i.e. a model that explains the very long-run economic and demographic development path of industrialized economies, stretching from the pre-industrial era to present-day and beyond. Making strict use of Malthus' (1798) so-called preventive check...... hypothesis - that fertility rates vary inversely with the price of food - the current study offers a new and straightforward explanation for the demographic transition and the break with the Malthusian era. The current framework lends support to existing unified growth theories and is well in tune...
Dark matter constraints in the minimal and nonminimal supersymmetric standard model
International Nuclear Information System (INIS)
Stephan, A.
1998-01-01
We determine the allowed parameter space and the particle spectra of the minimal SUSY standard model (MSSM) and nonminimal SUSY standard model (NMSSM) imposing correct electroweak gauge symmetry breaking and recent experimental constraints. The parameters of the models are evolved with the SUSY renormalization group equations assuming universality at the grand unified scale. Applying the new unbounded from below constraints we can exclude the lightest SUSY particle singlinos and light scalar and pseudoscalar Higgs singlets of the NMSSM. This exclusion removes the experimental possibility to distinguish between the MSSM and NMSSM via the recently proposed search for an additional cascade produced in the decay of the B-ino into the LSP singlino. Furthermore, the effects of the dark matter condition for the MSSM and NMSSM are investigated and the differences concerning the parameter space, the SUSY particle, and Higgs sector are discussed. thinsp copyright 1998 The American Physical Society
Grand Unification as a Bridge Between String Theory and Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Pati, Jogesh C.
2006-06-09
In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Grand Unification as a Bridge Between String Theory and Phenomenology
Pati, Jogesh C.
In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Grand Unification as a Bridge Between String Theory and Phenomenology
International Nuclear Information System (INIS)
Pati, J
2006-01-01
In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2) L x SU(2) R x SU(4) c or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism
Cassini's Grand Finale Overview
Spilker, L. J.
2017-12-01
After 13 years in orbit, the Cassini-Huygens Mission to Saturn ended in a science-rich blaze of glory. Cassini sent back its final bits of unique science data on September 15, 2017, as it plunged into Saturn's atmosphere, vaporizing and satisfying planetary protection requirements. Cassini's final phase covered roughly ten months and ended with the first time exploration of the region between the rings and planet. In late 2016 Cassini transitioned to a series of 20 Ring Grazing orbits with peripases just outside Saturn's F ring, providing close flybys of tiny ring moons, including Pan, Daphnis and Atlas, and high-resolution views of Saturn's A and F rings. A final Titan flyby in late April 2017 propelled Cassini across Saturn's main rings and into its Grand Finale orbits. Comprised of 22 orbits, Cassini repeatedly dove between Saturn's innermost rings and upper atmosphere to answer fundamental questions unattainable earlier in the mission. The last orbit turned the spacecraft into the first Saturn atmosphere probe. The Grand Finale orbits provided highest resolution observations of both the rings and Saturn, and in-situ sampling of the ring particle composition, Saturn's atmosphere, plasma, and innermost radiation belts. The gravitational field was measured to unprecedented accuracy, providing information on the interior structure of the planet, winds in the deeper atmosphere, and mass of the rings. The magnetic field provided insight into the physical nature of the magnetic dynamo and structure of the internal magnetic field. The ion and neutral mass spectrometer sampled the upper atmosphere for molecules that escape the atmosphere in addition to molecules originating from the rings. The cosmic dust analyzer directly sampled the composition from different parts of the main rings for the first time. Fields and particles instruments directly measured the plasma environment between the rings and planet. Science highlights and new mysteries collected in the Grand
Supersymmetric standard model from the heterotic string (II)
International Nuclear Information System (INIS)
Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.
2006-06-01
We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
SCYNet. Testing supersymmetric models at the LHC with neural networks
Energy Technology Data Exchange (ETDEWEB)
Bechtle, Philip; Belkner, Sebastian; Hamer, Matthias [Universitaet Bonn, Bonn (Germany); Dercks, Daniel [Universitaet Hamburg, Hamburg (Germany); Keller, Tim; Kraemer, Michael; Sarrazin, Bjoern; Schuette-Engel, Jan; Tattersall, Jamie [RWTH Aachen University, Institute for Theoretical Particle Physics and Cosmology, Aachen (Germany)
2017-10-15
SCYNet (SUSY Calculating Yield Net) is a tool for testing supersymmetric models against LHC data. It uses neural network regression for a fast evaluation of the profile likelihood ratio. Two neural network approaches have been developed: one network has been trained using the parameters of the 11-dimensional phenomenological Minimal Supersymmetric Standard Model (pMSSM-11) as an input and evaluates the corresponding profile likelihood ratio within milliseconds. It can thus be used in global pMSSM-11 fits without time penalty. In the second approach, the neural network has been trained using model-independent signature-related objects, such as energies and particle multiplicities, which were estimated from the parameters of a given new physics model. (orig.)
Higher-order predictions for supersymmetric particle decays
Energy Technology Data Exchange (ETDEWEB)
Landwehr, Ananda Demian Patrick
2012-06-12
We analyze particle decays including radiative corrections at the next-to-leading order (NLO) within the Minimal Supersymmetric Standard Model (MSSM). If the MSSM is realized at the TeV scale, squark and gluino production and decays yield relevant rates at the LHC. Hence, in the first part of this thesis, we compute decay widths including QCD and electroweak NLO corrections to squark and gluino decays. Furthermore, the Higgs sector of the MSSM is enhanced compared to the one of the Standard Model. Thus, the additional Higgs bosons decay also into supersymmetric particles. These decays and the according NLO corrections are analyzed in the second part of this thesis. The calculations are performed within a common renormalization framework and numerically evaluated in specific benchmark scenarios.
Supersymmetric solutions of N =(1 ,1 ) general massive supergravity
Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.
2018-05-01
We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.
Supersymmetric states in M5/M2 CFTs
International Nuclear Information System (INIS)
Bhattacharyya, Sayantani; Minwalla, Shiraz
2007-01-01
We propose an exact, finite N formula for the partition function over 1/4 th BPS states in the conformal field theory on the world volume of N coincident M5 branes, and 1/8 th BPS states in the theory of N conincident M2 branes. We obtain our partition function by performing the radial quantization of the Coulomb Branches of these theories and rederive the same formula from the quantization of supersymmetric giant and dual giant gravitons in AdS 7 x S 4 and AdS 4 x S 7 . Our partition function is qualitatively similar to the analogous quantity in N = 4 Yang Mills. It reduces to the sum over supersymmetric multi gravitons at low energies, but deviates from this supergravity formula at energies that scale like a positive power of N