New aspects of flavour model building in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Spinrath, Martin
2010-05-19
We derive predictions for Yukawa coupling ratios within Grand Unified Theories generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the Standard Model. The Yukawa couplings of the down-type quarks and charged leptons are affected within supersymmetric models by tan {beta}-enhanced threshold corrections which can be sizeable if tan {beta} is large. In this case their careful inclusion in the renormalisation group evolution is mandatory. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft supersymmetry breaking parameters. Especially, they determine the overall sign of the corrections and therefore if the affected Yukawa couplings are enhanced or suppressed. In the minimal supersymmetric extension of the Standard Model many free parameters are introduced by supersymmetry breaking about which we make some plausible assumptions in our first simplified approach. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within the second approach, we apply various phenomenological constraints on the supersymmetric parameters and find in this way new viable Yukawa coupling relations, for example y{sub {mu}}/y{sub s}=9/2 or 6 or y{sub {tau}}/y{sub b}=3/2 in SU(5). Furthermore, we study a special class of quark mass matrix textures for small tan {beta} where {theta}{sup u}{sub 13}={theta}{sup d}{sub 13}=0. We derive sum rules for the quark mixing parameters and find a simple relation between the two phases {delta}{sup u}{sub 12} and {delta}{sup d}{sub 12} and the right unitarity triangle angle {alpha} which suggests a simple phase structure for the quark mass matrices where
Patterns of Flavour Violation in the RSc Model, the LHT Model and Supersymmetric Flavour Models
Buras, Andrzej J
2009-01-01
We summarize the results on patterns of flavour violation in a Randall-Sundrum model with custodial protection (RSc) and compare them with those identified in the Littlest Higgs Model with T--parity (LHT) and in a number of SUSY Flavour Models. While K decays play in this presentation a prominent role, the inclusion of B physics and lepton flavour violation is crucial in the distinction between these three popular extensions of the Standard Model (SM) by means of flavour physics.
Supersymmetric Lepton Flavour Violation in Low-Scale Seesaw Models
Ilakovac, Amon
2009-01-01
We study a new supersymmetric mechanism for lepton flavour violation in \\mu and \\tau decays and \\mu -> e conversion in nuclei, within a minimal extension of the MSSM with low-mass heavy singlet neutrinos and sneutrinos. We find that the decays \\mu -> e\\gamma$, \\tau -> e\\gamma and \\tau -> \\mu\\gamma are forbidden in the supersymmetric limit of the theory, whereas other processes, such as \\mu -> eee, \\mu -> e conversion, \\tau -> eee and \\tau -> e\\mu\\mu, are allowed and can be dramatically enhanced several orders of magnitude above the observable level by potentially large neutrino Yukawa coupling effects. The profound implications of supersymmetric lepton flavour violation for present and future experiments are discussed.
Lepton Flavour Violation in a Supersymmetric Model with A4 Flavour Symmetry
Feruglio, Ferruccio; Lin, Yin; Merlo, Luca
2009-01-01
We compute the branching ratios for mu-> e gamma, tau-> mu gamma and tau -> e gamma in a supersymmetric model invariant under the flavour symmetry group A4 X Z3 X U(1)_{FN}, in which near tri-bimaximal lepton mixing is naturally predicted. At leading order in the small symmetry breaking parameter u, which is of the same order as the reactor mixing angle theta_{13}, we find that the branching ratios generically scale as u^2. Applying the current bound on the branching ratio of mu -> e gamma shows that small values of u or tan(beta) are preferred in the model for mass parameters m_{SUSY} and m_{1/2} smaller than 1000 GeV. The bound expected from the on-going MEG experiment will provide a severe constraint on the parameter space of the model either enforcing u approx 0.01 and small tan(beta) or m_{SUSY} and m_{1/2} above 1000 GeV. In the special case of universal soft supersymmetry breaking terms in the flavon sector a cancellation takes place in the amplitudes and the branching ratios scale as u^4, allowing for...
New Aspects of Flavour Model Building in Supersymmetric Grand Unification
Spinrath, Martin
2010-01-01
We derive predictions for Yukawa coupling ratios within GUTs generated from operators with mass dimension four and five. These relations are a characteristic property of unified flavour models and can reduce the large number of free parameters related to the flavour sector of the SM. The Yukawa couplings of the down-type quarks and charged leptons are affected within SUSY models by tan beta-enhanced threshold corrections. We analyse these corrections and give simple analytic expressions and numerical estimates for them. The threshold corrections sensitively depend on the soft SUSY breaking parameters. Especially, they determine if the affected Yukawa couplings are enhanced or suppressed. In a first approach, we make some plausible assumptions about the soft SUSY parameters. In a second, more sophisticated approach we use three common breaking schemes in which all the soft breaking parameters at the electroweak scale can be calculated from only a handful of parameters. Within this approach, we apply various ph...
Weiland, Cédric
2012-01-01
We study the impact of the inverse seesaw mechanism on several leptonic and hadronic low-energy flavour-violating observables in the context of the Minimal Supersymmetric Standard Model. Indeed, the contributions of the light right-handed sneutrinos from the inverse seesaw significantly enhance the Higgs-mediated penguin diagrams. We find that this can increase the different branching ratios by as much as two orders of magnitude.
DEFF Research Database (Denmark)
Hagedorn, C.
2014-01-01
be detected by future experiments, thanks to the presence of a flavour symmetry Gf which constrains the form of the relevant couplings. The symmetry Gf is chosen to be finite, discrete and non-abelian and also helps to predict the peculiar lepton mixing pattern. © 2014 Elsevier B.V....
Dynamics of Non-supersymmetric Flavours
Alam, M Sohaib; Kundu, Arnab; Kundu, Sandipan
2013-01-01
We continue investigating the effect of the back-reaction by non-supersymmetric probes in the Kuperstein-Sonnenschein model. In the limit when the back-reaction is small, we discuss physical properties of the back-reacted geometry. We further introduce additional probe flavours in this back-reacted geometry and study in detail the phase structure of this sector when a constant electromagnetic field or a chemical potential are present. We find that the Landau pole, which serves as the UV cut-off of the background geometry, also serves as an important scale in the corresponding thermodynamics of the additional flavour sector. We note that since this additional probe flavours are indistinguishable from the back-reacting flavours, the results we obtain point to a much richer phase structure of the system.
The supersymmetric Higgs boson with flavoured A-terms
Directory of Open Access Journals (Sweden)
Andrea Brignole
2015-09-01
Full Text Available We consider a supersymmetric scenario with large flavour violating A-terms in the stop/scharm sector and study their impact on the Higgs mass, the electroweak ρ parameter and the effective Higgs couplings to gluons, photons and charm quarks. For each observable we present explicit analytical expressions which exhibit the relevant parametric dependences, both in the general case and in specific limits. We find significant effects and comment on phenomenological implications for the LHC and future colliders.
The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fichet, S.; Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie
2011-09-15
We study supersymmetric models with a GUT-sized extra dimension, where both the Higgs fields and the SUSY breaking hidden sector are localized on a 4D brane. Exponential wave function profiles of the matter fields give rise to hierarchical structures in the Yukawa couplings and soft terms. Such structures can naturally explain hierarchical fermion masses and mixings, while at the same time alleviating the supersymmetric flavour problem. We discuss two sources of supersymmetry breaking, radion mediation and brane fields, and perform a detailed numerical analysis, thoroughly taking into account the proliferation of unknown O(1) coefficients that occurs in this class of models. It turns out that additional assumptions on supersymmetry breaking are necessary to evade the stringent experimental bounds on lepton flavour violation. The favourable regions of parameter space are then examined with regards to their LHC phenomenology. They generically feature heavy gluinos and squarks beyond current bounds. Lepton flavour violation in SUSY cascade decays can give interesting signatures. (orig.)
A T' Flavour Model for Fermions and its Phenomenology
Merlo, Luca
2011-01-01
We present a supersymmetric flavour model based on the T' discrete group, which explains fermion masses and mixings. The flavour symmetry, acting in the supersymmetric sector, provides well defined sfermion mass matrices and the resulting supersymmetric spectrum accounts for sufficiently light particles that could be seen at LHC. Furthermore, several contributions to FCNC processes are present and they can be useful to test the model in the present and future experiments. We will review the main results for both leptons and quarks.
SuSeFLAV: A program for calculating supersymmetric spectra and lepton flavour violation
Indian Academy of Sciences (India)
Debtosh Chowdhury; Raghuveer Garani; Sudhir K Vempti
2012-10-01
The program $\\mathnormal{SuSeFLAV}$ is introduced for computing supersymmetric mass spectra with flavour violation in various supersymmetric breaking scenarios with/without see-saw mechanism. A short user guide summarizing the compilation, executables and the input files is provided.
Energy Technology Data Exchange (ETDEWEB)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.
Lepton Flavour Violation in Models with A4 Flavour Symmetry
Feruglio, Ferruccio; Lin, Yin; Merlo, Luca
2008-01-01
We analyze lepton flavour violating transitions, leptonic magnetic dipole moments (MDMs) and electric dipole moments (EDMs) in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_{FN}, whose choice is motivated by the approximate tri-bimaximal mixing observed in neutrino oscillations. We construct the relevant low-energy effective Lagrangian where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. We separately analyze both a supersymmetric and a general case. While the observed discrepancy delta a_mu in the anomalous MDM of the muon suggests M of order of a few TeV, several data require M above 10 TeV, in particular the limit on EDM of the electron. In the general case also the present limit on BR(mu -> e gamma) requires M >10 TeV, at least. The branching ratios for mu -> e gamma, tau -> mu gamma and tau -> e gamma are all expecte...
Lepton flavour violation in models with A flavour symmetry
Feruglio, Ferruccio; Hagedorn, Claudia; Lin, Yin; Merlo, Luca
2009-03-01
We analyze lepton flavour violating transitions, leptonic magnetic dipole moments (MDMs) and electric dipole moments (EDMs) in a class of models characterized by the flavour symmetry A×Z×U(1, whose choice is motivated by the approximate tri-bimaximal mixing observed in neutrino oscillations. We construct the relevant low-energy effective Lagrangian where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. We separately analyze both a supersymmetric and a general case. While the observed discrepancy δa in the anomalous MDM of the muon suggests M of order of a few TeV, several data require M above 10 TeV, in particular the limit on EDM of the electron. In the general case also the present limit on BR(μ→eγ) requires M>10 TeV, at least. The branching ratios for μ→eγ, τ→μγ and τ→eγ are all expected to be of the same order. In the supersymmetric case the constraint from μ→eγ is softened and it can be satisfied by a smaller scale M. In this case both the observed δa and the current bound on BR(μ→eγ) can be satisfied, at the price of a rather small value for ||, of the order of a few percents, that reflects on a similar value for θ.
Gudnason, Sven Bjarke; Sasaki, Shin
2015-01-01
Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,C)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,C), we find explicitly a nontrivial solution to th...
Fu, Wenbo; Maldacena, Juan; Sachdev, Subir
2016-01-01
We discuss a supersymmetric generalization of the Sachdev-Ye-Kitaev model. These are quantum mechanical models involving $N$ Majorana fermions. The supercharge is given by a polynomial expression in terms of the Majorana fermions with random coefficients. The Hamiltonian is the square of the supercharge. The ${\\cal N}=1$ model with a single supercharge has unbroken supersymmetry at large $N$, but non-perturbatively spontaneously broken supersymmetry in the exact theory. We analyze the model by looking at the large $N$ equation, and also by performing numerical computations for small values of $N$. We also compute the large $N$ spectrum of "singlet" operators, where we find a structure qualitatively similar to the ordinary SYK model. We also discuss an ${\\cal N}=2$ version. In this case, the model preserves supersymmetry in the exact theory and we can compute a suitably weighted Witten index to count the number of ground states, which agrees with the large $N$ computation of the entropy. In both cases, we disc...
Study of baryon number and lepton flavour violation in the new minimal supersymmetric SO(10)GUT
Kaur, Charanjit
2015-01-01
We study the so-called new minimal supersymmetric SO(10) GUT(NMSGUT) where explicit spontaneous symmetry breaking allows determination of superheavy spectrum and thus threshold corrections to the effective MSSM couplings. This provides a generic mechanism to resolve the long standing super fast proton decay in Susy GUTs. We estimate lepton flavor violation associated with realistic charged fermion and (Type I seesaw) neutrino fit and show compatibility with baryon number and lepton flavour violation limits. We improve NMSGUT fits by including important loop corrections to sparticle spectra. Our fits use 5 GUT compatible soft supersymmetry breaking parameters of the Supergravity with Non-Universal Higgs Masses(SUGRY-NUHM) type. We calculate the full two loop NMSGUT gauge-Yukawa beta functions to study feasibility of the NUHM parameters via strong renormalization of SO(10) Higgs soft masses. Focus on MSSM Higgs allows formulation of a "Yukawonification" strategy for gauged flavour unification.
The Supersymmetric Standard Model
Fayet, Pierre
2016-10-01
The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout-Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W± and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying on R-parity and other discrete symmetries, may determine both the supersymmetrybreaking and grand-unification scales.
The Supersymmetric Standard Model
Fayet, Pierre
2016-01-01
The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout- Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W$^\\pm$ and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying ...
Radiative fermion mass matrix generation in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Papantonopoulos, E.; Zoupanos, G.
1984-01-01
Supersymmetric SU(2)sub(L)xU(1) horizontal models are studied. The non-renormalisation theorems of sypersymmetry are used to make the mass generation and flavour mixing natural. For three families, the fermion mass matrix generation mechanism is studied as a radiative effect due to horizontal interactions, using various representations of the gauge horizontal groups SU(2)sub(H) and SU(3)sub(H). An attractive possibility leading to a realistic mass matrix is found.
Neutrino Mass and Flavour Models
King, Stephen F
2009-01-01
We survey some of the recent promising developments in the search for the theory behind neutrino mass and tri-bimaximal mixing, and indeed all fermion masses and mixing. We focus in particular on models with discrete family symmetry and unification, and show how such models can also solve the SUSY flavour and CP problems. We also discuss the theoretical implications of the measurement of a non-zero reactor angle, as hinted at by recent experimental measurements.
n = 4 supersymmetric FRW model
Energy Technology Data Exchange (ETDEWEB)
Rosales, J.J.; Pashnev, A. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 (Russian Federation); Tkach, V.I. [Instituto de Fisica, Universidad de Guanajuato, 05315-970 Leon, 66318 Guanajuato (Mexico)]. e-mail: juan@ifug3.ugto.mx, pashnev@thsun1.jinr.ru, vladimir@ifug3.ugto.mx
2003-07-01
In this work we have constructed the n = 4 extended local conformal time supersymmetry for the Friedmann-Robertson-Walker cosmological models. This is based on the superfield construction of the action, which is invariant under world line local n = 4 supersymmetry with SU(2){sub local} X SU(2){sub global} internal subgroup. It is shown that the supersymmetric action has the form of the localized (or superconformal) version of the action for n = 4 supersymmetric quantum mechanics. This superfield procedure provides a well defined scheme for including super matter. (Author)
Exploring the Supersymmetric $\\sigma$ Model
De Oliveira-Imbiriba, B C
1999-01-01
The purpose of this work is to present some basic concepts about the non-linear sigma model in a simple and direct way. We start with showing the bosonic model and the Wess-Zumino-Witten term, making some comments about its topological nature, and its association with the torsion. It is also shown that to cancel the quantum conformal anomaly the model should obey the Einstein equations. We provide a quick introduction about supersymmetry in chapter 2 to help the understanding the supersymmetric extension of the model. In the last chapter we present the supersymmetric model and its equations of motion. Finally we work-out the two-supersymmetry case, introducing the chiral as well as the twisted chiral fields, expliciting the very specific $SU(2)\\otimes U(1)$ case.
Supersymmetric Sigma Model Geometry
Ulf Lindström
2012-01-01
This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyper)k\\"ahler reduction; projective superspace; the generalized Legendre construction; generalized K\\"ahler geometry and constructions of hyperk\\"ahler metrics on Hermitean symmetric spaces.
Supersymmetric Sigma Model geometry
Lindström, Ulf
2012-01-01
This is a review of how sigma models formulated in Superspace have become important tools for understanding geometry. Topics included are: The (hyper)k\\"ahler reduction; projective superspace; the generalized Legendre construction; generalized K\\"ahler geometry and constructions of hyperk\\"ahler metrics on Hermitean symmetric spaces.
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
Flavour physics and CP violation
Nir, Y
2010-01-01
This is a written version of a series of lectures aimed at graduate students in particle theory/string theory/particle experiment familiar with the basics of the Standard Model. We explain the many reasons for the interest in flavour physics. We describe flavour physics and the related CP violation within the Standard Model, and explain how the B-factories proved that the Kobayashi- Maskawa mechanism dominates the CP violation that is observed in meson decays. We explain the implications of flavour physics for new physics. We emphasize the “new physics flavour puzzle”. As an explicit example, we explain how the recent measurements ofD0−D 0 mixing constrain the supersymmetric flavour structure. We explain how the ATLAS and CMS experiments can solve the new physics flavour puzzle and perhaps shed light on the standard model flavour puzzle. Finally, we describe various interpretations of the neutrino flavour data and their impact on flavour models.
A Maximally Supersymmetric Kondo Model
Energy Technology Data Exchange (ETDEWEB)
Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC
2012-02-17
We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.
Energy Technology Data Exchange (ETDEWEB)
Fuks, B
2007-06-15
Cross sections for supersymmetric particles production at hadron colliders have been extensively studied in the past at leading order and also at next-to-leading order of perturbative QCD. The radiative corrections include large logarithms which have to be re-summed to all orders in the strong coupling constant in order to get reliable perturbative results. In this work, we perform a first and extensive study of the resummation effects for supersymmetric particle pair production at hadron colliders. We focus on Drell-Yan like slepton-pair and slepton-sneutrino associated production in minimal supergravity and gauge-mediated supersymmetry-breaking scenarios, and present accurate transverse-momentum and invariant-mass distributions, as well as total cross sections. In non-minimal supersymmetric models, novel effects of flavour violation may occur. In this case, the flavour structure in the squark sector cannot be directly deduced from the trilinear Yukawa couplings of the fermion and Higgs supermultiplets. We perform a precise numerical analysis of the experimentally allowed parameter space in the case of minimal supergravity scenarios with non-minimal flavour violation, looking for regions allowed by low-energy, electroweak precision, and cosmological data. Leading order cross sections for the production of squarks and gauginos at hadron colliders are implemented in a flexible computer program, allowing us to study in detail the dependence of these cross sections on flavour violation. (author)
A supersymmetric grand unified theory of flavour with PSL{sub 2}(7)xSO(10)
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F., E-mail: king@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@soton.ac.u [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)
2010-06-11
We construct a realistic Supersymmetric Grand Unified Theory of Flavour based on PSL{sub 2}(7)xSO(10), where the quarks and leptons in the 16 of SO(10) are assigned to the complex triplet representation of PSL{sub 2}(7), while the flavons are assigned to a combination of sextets and anti-triplets of PSL{sub 2}(7). Using a D-term vacuum alignment mechanism, we require the flavon sextets of PSL{sub 2}(7) to be aligned along the 3-3 direction leading to the third family Yukawa couplings, while the flavon anti-triplets describe the remaining Yukawa couplings. Other sextets are aligned along the neutrino flavour symmetry preserving directions leading to tri-bimaximal neutrino mixing via a type II see-saw mechanism, with predictions for neutrinoless double beta decay and cosmology.
A Grand Delta(96) x SU(5) Flavour Model
King, Stephen F; Stuart, Alexander J
2012-01-01
Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of theta_13 approximately 9 degrees. This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on Delta(96) x SU(5), together with a U(1) x Z3 symmetry, including a full discussion of Delta(96) in a convenient basis. The Grand Delta(96) x SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: theta_23=36...
Inverse neutrino mass hierarchy in a flavour GUT model
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan, E-mail: stefan.antusch@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, D-80805 München (Germany); Gross, Christian, E-mail: christian.gross@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Maurer, Vinzenz, E-mail: vinzenz.maurer@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Sluka, Constantin, E-mail: constantin.sluka@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)
2014-02-15
We construct a supersymmetric SU(5)×A{sub 4} flavour GUT model in which an inverse neutrino mass hierarchy is realised without fine-tuning of parameters. The model shares some properties with the normal hierarchy model which we presented in (arXiv:1305.6612) – in particular the relation θ{sub 13}{sup PMNS}≃θ{sub C}/√(2). Besides these shared features, there are also important differences, mainly due to the different neutrino sector. These differences not only change the predictions in the lepton sector, but also in the quark sector, and will allow to discriminate between the two models using the results of present and future experiments. From a Markov Chain Monte Carlo fit we find that the inverse hierarchy model is in excellent agreement with the present experimental data.
Inverse neutrino mass hierarchy in a flavour GUT model
Antusch, Stefan; Maurer, Vinzenz; Sluka, Constantin
2014-01-01
We construct a supersymmetric SU(5) x A_4 flavour GUT model in which an inverse neutrino mass hierarchy is realised without fine-tuning of parameters. The model shares some properties with the normal hierarchy model which we presented in arXiv:1305.6612 - in particular the relation theta_13^PMNS = theta_C / sqrt(2). Besides these shared features, there are also important differences, mainly due to the different neutrino sector. These differences not only change the predictions in the lepton sector, but also in the quark sector, and will allow to discriminate between the two models using the results of present and future experiments. From a Markov Chain Monte Carlo fit we find that the inverse hierarchy model is in excellent agreement with the present experimental data.
Patterns of flavor signals in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2007-11-15
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
The Minimal Supersymmetric Fat Higgs Model
Harnik, R; Larson, D T; Murayama, H; Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi
2003-01-01
We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.
Generalized Kahler Geometry from supersymmetric sigma models
Bredthauer, A; Persson, J; Zabzine, M; Bredthauer, Andreas; Lindstrom, Ulf; Persson, Jonas; Zabzine, Maxim
2006-01-01
We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.
General squark flavour mixing: constraints, phenomenology and benchmarks
De Causmaecker, Karen; Herrmann, Bjoern; Mahmoudi, Farvah; O'Leary, Ben; Porod, Werner; Sekmen, Sezen; Strobbe, Nadja
2015-01-01
We present an extensive study of non-minimal flavour violation in the squark sector in the framework of the Minimal Supersymmetric Standard Model. We investigate the effects of multiple non-vanishing flavour-violating elements in the squark mass matrices by means of a Markov Chain Monte Carlo scanning technique and identify parameter combinations that are favoured by both current data and theoretical constraints. We then detail the resulting distributions of the flavour-conserving and flavour-violating model parameters. Based on this analysis, we propose a set of benchmark scenarios relevant for future studies of non-minimal flavour violation in the Minimal Supersymmetric Standard Model.
General squark flavour mixing: constraints, phenomenology and benchmarks
Energy Technology Data Exchange (ETDEWEB)
Causmaecker, Karen De [Theoretische Natuurkunde, IIHE/ELEM and International Solvay Institutes,Vrije Universiteit Brussel,Pleinlaan 2, B-1050 Brussels (Belgium); Fuks, Benjamin [Sorbonne Universités, UPMC University Paris 06, UMR 7589, LPTHE,F-75005 Paris (France); CNRS, UMR 7589, LPTHE,F-75005 Paris (France); Institut Pluridisciplinaire Hubert Curien/Département Recherches Subatomiques,Université de Strasbourg/CNRS-IN2P3, 23 Rue du Loess, F-67037 Strasbourg (France); Herrmann, Björn [LAPTh, Université Savoie Mont Blanc, CNRS,9 Chemin de Bellevue, F-74941 Annecy-le-Vieux (France); Mahmoudi, Farvah [Université de Lyon, Université Lyon 1, Centre de Recherche Astrophysique de Lyon,CNRS, UMR 5574, Saint-Genis Laval Cedex, F-69561 (France); Ecole Normale Supérieure de Lyon,46 allée d’Italie, F-69007 Lyon (France); Physics Department, CERN Theory Division,CH-1211 Geneva 23 (Switzerland); O’Leary, Ben; Porod, Werner [Institut für Theoretische Physik und Astrophysik, Universität Würzburg,D-97074 Würzburg (Germany); Sekmen, Sezen [Department of Physics, Kyungpook National University,Daegu, 702-701 (Korea, Republic of); Strobbe, Nadja [Department of Physics and Astronomy, Ghent University,Proeftuinstraat 86, B-9000 Gent (Belgium); Fermi National Accelerator Laboratory,Batavia, 60510-5011 (United States)
2015-11-19
We present an extensive study of non-minimal flavour violation in the squark sector in the framework of the Minimal Supersymmetric Standard Model. We investigate the effects of multiple non-vanishing flavour-violating elements in the squark mass matrices by means of a Markov Chain Monte Carlo scanning technique and identify parameter combinations that are favoured by both current data and theoretical constraints. We then detail the resulting distributions of the flavour-conserving and flavour-violating model parameters. Based on this analysis, we propose a set of benchmark scenarios relevant for future studies of non-minimal flavour violation in the Minimal Supersymmetric Standard Model.
Flavour symmetries in a renormalizable SO(10) model
Ferreira, P M; Jurčiukonis, D; Lavoura, L
2015-01-01
In the context of a renormalizable supersymmetric SO(10) Grand Unified Theory, we consider the fermion mass matrices generated by the Yukawa couplings to a $\\mathbf{10} \\oplus \\mathbf{120} \\oplus \\overline{\\mathbf{126}}$ representation of scalars. We perform a complete investigation of the possibilities of imposing flavour symmetries in this scenario; the purpose is to reduce the number of Yukawa coupling constants in order to identify potentially predictive models. We have found that there are only 14 inequivalent cases of Yukawa coupling matrices, out of which 13 cases are generated by $Z_n$ symmetries, with suitable $n$, and one case is generated by a $Z_2 \\times Z_2$ symmetry. A numerical analysis of the 14 cases reveals that only two of them---dubbed A and B in the present paper---allow good fits to the experimentally known fermion masses and mixings.
Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination
Energy Technology Data Exchange (ETDEWEB)
Krauss, Manuel Ernst
2015-12-18
physics signals or just background fluctuations. In a careful evaluation of the loop-corrected scalar potential we then identify parameter regions in which the vacuum with the phenomenologically correct symmetry-breaking properties is stable. Conveniently, those regions favour low left-right symmetry breaking scales which are accessible at the LHC. In a slightly modified version of this model where a U(1){sub R} x U(1){sub B-L} gauge symmetry survives down to the TeV scale, we implement a minimal gauge-mediated supersymmetry breaking mechanism for which we calculate the boundary conditions in the presence of gauge kinetic mixing. We show how the presence of the extended gauge group raises the tree-level Higgs mass considerably so that the need for heavy supersymmetric spectra is relaxed. Taking the constraints from the Higgs sector into account, we then explore the LHC phenomenology of this model and point out where the expected collider signatures can be distinguished from standard scenarios. In particular if neutrino masses are explained by low-scale seesaw mechanisms as is done throughout this work, there are potentially spectacular signals at low-energy experiments which search for charged lepton flavour violation. The last part of this thesis is dedicated to the detailed exploration of processes like μ→eγ, μ→3e or μ-e conversion in nuclei in a supersymmetric framework with an inverse seesaw mechanism. In particular, we disprove claims about a non-decoupling effect in Z-mediated three-body decays and study the prospects for discovering and distinguishing signals at near-future experiments. In this context we identify the possibility to deduce from ratios like BR(τ→3μ)/BR(τ→μe{sup +}e{sup -}) whether the contributions from ν-W loops dominate over supersymmetric contributions or vice versa.
Constraining multi-Higgs flavour models
Energy Technology Data Exchange (ETDEWEB)
Gonzalez Felipe, R.; Silva, Joao P. [Rua Conselheiro Emidio Navarro 1, Instituto Superior de Engenharia de Lisboa-ISEL, Lisbon (Portugal); Universidade de Lisboa, Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Lisbon (Portugal); Ivanov, I.P. [Universite de Liege, IFPA, Liege (Belgium); Sobolev Institute of Mathematics, Novosibirsk (Russian Federation); Ghent University, Department of Physics and Astronomy, Ghent (Belgium); Nishi, C.C. [Universidade Federal do ABC-UFABC, Santo Andre, SP (Brazil); Serodio, Hugo [Universitat de Valencia-CSIC, Departament de Fisica Teorica and IFIC, Burjassot (Spain)
2014-07-15
To study a flavour model with a non-minimal Higgs sector one must first define the symmetries of the fields; then identify what types of vacua exist and how they may break the symmetries; and finally determine whether the remnant symmetries are compatible with the experimental data. Here we address all these issues in the context of flavour models with any number of Higgs doublets. We stress the importance of analysing the Higgs vacuum expectation values that are pseudo-invariant under the generators of all subgroups. It is shown that the only way of obtaining a physical CKM mixing matrix and, simultaneously, non-degenerate and non-zero quark masses is requiring the vacuum expectation values of the Higgs fields to break completely the full flavour group, except possibly for some symmetry belonging to baryon number. The application of this technique to some illustrative examples, such as the flavour groups Δ(27), A{sub 4} and S{sub 3}, is also presented. (orig.)
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio, E-mail: feruglio@pd.infn.it; Paradisi, Paride, E-mail: paride.paradisi@pd.infn.it [Sezione di Padova, Dipartimento di Fisica e Astronomia ‘G. Galilei’, INFN, Università di Padova, Via Marzolo 8, 35131, Padua (Italy); Pattori, Andrea, E-mail: pattori@physik.uzh.ch [Physik-Institut, Universität Zürich, 8057, Zurich (Switzerland)
2015-12-08
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ→e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis.
Lepton flavour violation in composite Higgs models
Energy Technology Data Exchange (ETDEWEB)
Feruglio, Ferruccio; Paradisi, Paride [Universita di Padova, Dipartimento di Fisica e Astronomia ' G. Galilei' , Padua (Italy); INFN, Padua (Italy); Pattori, Andrea [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland)
2015-12-15
We discuss in detail the constraints on the partial compositeness coming from flavour and CP violation in the leptonic sector. In the first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well above 10 TeV. However, if in the composite sector the mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged leptons, μ → e conversion in nuclei and the electric dipole moment of the electron. In the second part we explicitly compute the Wilson coefficients of the relevant dimension-six operators in the so-called two-site model, embodying the symmetry breaking pattern discussed in our first part, and we compare the results with those of the general spurion analysis. (orig.) 7.
Lepton-flavour violation in a Pati-Salam model with gauged flavour symmetry
Feldmann, Thorsten; Moch, Paul
2016-01-01
Combining Pati-Salam (PS) and flavour symmetries in a renormalisable setup, we devise a scenario which produces realistic masses for the charged leptons. Flavour-symmetry breaking scalar fields in the adjoint representations of the PS gauge group are responsible for generating different flavour structures for up- and down-type quarks as well as for leptons. The model is characterised by new heavy fermions which mix with the Standard Model quarks and leptons. In particular, the partners for the third fermion generation induce sizeable sources of flavour violation. Focusing on the charged-lepton sector, we scrutinise the model with respect to its implications for lepton-flavour violating processes such as $\\mu \\rightarrow e\\gamma$, $\\mu\\rightarrow 3e$ and muon conversion in nuclei.
Spectral properties in supersymmetric matrix models
Energy Technology Data Exchange (ETDEWEB)
Boulton, Lyonell, E-mail: L.Boulton@hw.ac.uk [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Garcia del Moral, Maria Pilar, E-mail: garciamormaria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain); Restuccia, Alvaro, E-mail: arestu@usb.ve [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas (Venezuela, Bolivarian Republic of); Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain)
2012-03-21
We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.
LFV and Dipole Moments in Models with A4 Flavour Symmetry
Merlo, Luca
2009-01-01
It is presented an analysis on lepton flavour violating transitions, leptonic magnetic dipole moments and electric dipole moments in a class of models characterized by the flavour symmetry A4 x Z3 x U(1)_FN, whose choice is motivated by the approximate Tri-Bimaximal mixing observed in neutrino oscillations. A low-energy effective Lagrangian is constructed, where these effects are dominated by dimension six operators, suppressed by the scale M of new physics. All the flavour breaking effects are universally described by the vacuum expectation values of a set of spurions. Two separate cases, a supersymmetric and a general one, are described. An upper limit on the reactor angle of a few percent is concluded.
Supersymmetric defect models and mirror symmetry
Energy Technology Data Exchange (ETDEWEB)
Hook, Anson; Kachru, Shamit; Torroba, Gonzalo
2013-11-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Supersymmetric Defect Models and Mirror Symmetry
Hook, Anson; Torroba, Gonzalo
2013-01-01
We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d N=4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d N=2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of N=4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.
Just so oscillations in supersymmetric standard model
Joshipura, A S; Anjan S Joshipura; Marek Nowakowski
1995-01-01
We analyze the spectrum and mixing among neutrinos in the minimal supersymmetric standard model with explicit breaking of R parity. It is shown that ({\\em i}) the mixing among neutrinos is naturally large and ({\\em ii}) the non zero neutrino mass is constrained to be \\leq 10^{-5} eV from arguments based on baryogenesis. Thus vacuum oscillations of neutrinos in this model may offer a solution of the solar neutrino problem. The allowed space of the supersymmetric parameters consistent with this solution is determined.
A renormalizable supersymmetric SO(10) model
Chen, Ying-Kang
2015-01-01
A realistic grand unified model has never been constructed in the literature due to three major difficulties: the seesaw mechanism without spoiling gauge coupling unification, the doublet-triplet splitting and the proton decay suppression. We propose a renormalizable supersymmetric SO(10) model with all these difficulties solved naturally.
Lepton flavour violation in the RS model
Energy Technology Data Exchange (ETDEWEB)
Moch, Paul; Beneke, Martin [Physik Department T31, Technische Universitaet Muenchen, 85748 Garching (Germany); Rohrwild, Juergen [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)
2015-07-01
We consider charged lepton flavour observables in the Randall-Sundrum (RS) model with and without custodial protection.To this end, we apply a fully five dimensional (5D) framework to calculate the matching coefficients of the effective field theory at the electroweak scale. This enables us to compute predictions for the radiative decay μ → eγ as well as the decay μ → 3e and μ → e conversion in nuclei.
Lepton-Flavour Violation in Ordinary and Supersymmetric Grand Unified Theories
Lim, C S; Taga, Bungo
2000-01-01
By an explicit calculation we show that in ordinary SU(5) logarithmic divergence in the amplitude of $\\mu \\to e\\gamma$ cancels among diagrams and remaining finite part is suppressed by at least $1/M_{GUT}^2$. In SUSY SU(5), when the effect of flavour changing wave function renormalization is taken into account such logarithmic correction disappears, provided a condition is met among SUSY breaking masses. In SUGRA-inspired SUSY GUT the remaining logarithmic effect is argued not to be taken as a prediction of the theory.
A constrained supersymmetric left-right model
Hirsch, Martin; Opferkuch, Toby; Porod, Werner; Staub, Florian
2016-01-01
We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.
Utilitarian Supersymmetric Gauge Model of Particle Interactions
Ma, Ernest
2010-01-01
A remarkable U(1) gauge extension of the supersymmetric standard model was proposed eight years ago. It is anomaly-free, has no mu term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
Flavor Mixing Phenomenology in Supersymmetric Models
Rehman, Muhammad
2016-01-01
This dissertation investigates the flavor mixing effects in supersymmetric models on electroweak precision observables, Higgs boson mass predictions, B-physics observables, quark flavor violating Higgs decays, lepton flavor violating charged lepton decays and lepton flavor violating Higgs decays. The flavor mixing effects are studied in model independent way i.e. by putting off-diagonal entries in the sfermion mass matrix by hand as well as in the minimal flavor violating constrained MSSM, where mixing can originate from CKM matrix in the case of squarks and from PMNS matrix in the case of sleptons. We found that flavor mixing can have large impact to some observables, enabling us to put new constraints on parameter space in supersymmetric models.
Phenomenology of the Utilitarian Supersymmetric Standard Model
Fraser, Sean; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2016-01-01
We study the 2010 specific version of the 2002 proposed $U(1)_X$ extension of the supersymmetric standard model, which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra $Z_X$ gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.
Phenomenology of the utilitarian supersymmetric standard model
Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza
2016-08-01
We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.
Topological solitons in the supersymmetric Skyrme model
Gudnason, Sven Bjarke; Sasaki, Shin
2016-01-01
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Non-supersymmetric Orientifolds of Gepner Models
Gato-Rivera, B
2008-01-01
Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings -- bulk supersymmetry, automorphism invariants or Klein bottle projection -- we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly ...
Approximate Flavor Symmetry in Supersymmetric Model
Tao, Zhijian
1998-01-01
We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...
SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM
Porod, W.; Staub, F.
2012-11-01
We describe recent extensions of the program SPhenoincluding flavour aspects, CP-phases, R-parity violation and low energy observables. In case of flavour mixing all masses of supersymmetric particles are calculated including the complete flavour structure and all possible CP-phases at the 1-loop level. We give details on implemented seesaw models, low energy observables and the corresponding extension of the SUSY Les Houches Accord. Moreover, we comment on the possibilities to include MSSM extensions in SPheno. Catalogue identifier: ADRV_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADRV_v2_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154062 No. of bytes in distributed program, including test data, etc.: 1336037 Distribution format: tar.gz Programming language: Fortran95. Computer: PC running under Linux, should run in every Unix environment. Operating system: Linux, Unix. Classification: 11.6. Catalogue identifier of previous version: ADRV_v1_0 Journal reference of previous version: Comput. Phys. Comm. 153(2003)275 Does the new version supersede the previous version?: Yes Nature of problem: The first issue is the determination of the masses and couplings of supersymmetric particles in various supersymmetric models, the R-parity conserved MSSM with generation mixing and including CP-violating phases, various seesaw extensions of the MSSM and the MSSM with bilinear R-parity breaking. Low energy data on Standard Model fermion masses, gauge couplings and electroweak gauge boson masses serve as constraints. Radiative corrections from supersymmetric particles to these inputs must be calculated. Theoretical constraints on the soft SUSY breaking parameters from a high scale theory are imposed and the parameters at the electroweak scale are obtained from the
Leptonic CP violation in supersymmetric standard model
Joshipura, A S
1995-01-01
We point out the possibility of spontaneous and hard CP-violation in the scalar potential of R-parity broken supersymmetric Standard Model. The existence of spontaneous CP-violation depends crucially on the R-parity breaking terms in the superpotential and, in addition, on the choice of the soft supersymmetry breaking terms. Unlike in theories with R-parity conservation, it is natural, in the context of the present model, for the sneutrinos to acquire (complex) vacuum expectation values. In the context of this model we examine here the global implications, like the strength of the CP-violating interactions and the neutrino masses.
Geometry and duality in Supersymmetric $\\sigma$-Models
Curtright, T L; Zachos, C K; Curtright, Thomas; Uematsu, Tsuneo; Zachos, Cosmas
1996-01-01
The Supersymmetric Dual Sigma Model (SDSM) is a local field theory introduced to be nonlocally equivalent to the Supersymmetric Chiral nonlinear sigma-Model (SCM), this dual equivalence being proven by explicit canonical transformation in tangent space. This model is here reconstructed in superspace and identified as a chiral-entwined supersymmetrization of the Dual Sigma Model (DSM). This analysis sheds light on the Boson-Fermion Symphysis of the dual transition, and on the new geometry of the DSM.
Minimal flavour violation and multi-Higgs models
Energy Technology Data Exchange (ETDEWEB)
Botella, F.J., E-mail: fbotella@uv.e [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot (Spain); Branco, G.C., E-mail: gustavo.branco@cern.c [Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Rebelo, M.N., E-mail: margarida.rebelo@cern.c [Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)
2010-04-12
We propose an extension of the hypothesis of Minimal Flavour Violation (MFV) to general multi-Higgs models without the assumption of Natural Flavour Conservation (NFC) in the Higgs sector. We study in detail under what conditions the neutral Higgs couplings are only functions of V{sub CKM} and propose a MFV expansion for the neutral Higgs couplings to fermions.
Beyond the supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Hall, L.J.
1988-02-01
The possibility of baryon number violation at the weak scale and an alternative primordial nucleosynthesis scheme arising from the decay of gravitations are discussed. The minimal low energy supergravity model is defined and a few of its features are described. Renormalization group scaling and flavor physics are mentioned.
Lepton flavour violating processes in an S_3-symmetric model
Mondragón, A; Peinado, E
2008-01-01
A variety of lepton flavour violating effects related to the recent discovery of neutrino oscillations and mixings is here systematically discussed in terms of an S_3-flavour permutational symmetry. After presenting some relevant results on lepton masses and mixings, previously derived in a minimal S_3-invariant extension of the Standard Model, we compute the branching ratios of some selected flavour-changing neutral current processes (FCNC) as well as the contribution of the exchange of neutral flavour-changing scalar to the anomaly of the magnetic moment of the muon. We found that the minimal S_3-invariant extension of the Standard Model describes successfully masses and mixings, as well as, all flavour changing neutral current processes in excellent agreement with experiment.
Probes of Yukawa unification in supersymmetric SO(10) models
Energy Technology Data Exchange (ETDEWEB)
Westhoff, Susanne
2009-10-23
This work is composed as follows: In Chapter 1, the disposed reader is made familiar with the foundations of flavourphysics and Grand Unification, including group-theoretical aspects of SO(10). In Chapter 2, we introduce a specific supersymmetric GUT model based on SO(10) and designed to probe down-quark-lepton Yukawa unification. Within this framework we explore the effects of large atmospheric neutrino mixing in bottom-strange transitions on the mass difference and CP phase in B{sub s}- anti B{sub s} meson mixing. Chapter 3 is devoted to corrections to Yukawa unification. We derive constraints on Yukawa corrections for light fermions from K- anti K and B{sub d}- anti B {sub d} mixing. As an application we study implications of neutrino mixing effects in CP-violating K and B{sub d} observables on the unitrity triangle. Finally, in Chapter 4, we discuss effects of large tan {beta} in B{yields}(D){tau}{nu} decays with respect to their potential to discover charged Higgs bosons and to discriminate between different GUT models of flavour.
Lepton flavor violation in supersymmetric low-scale seesaw models
Popov, Luka
2013-01-01
The minimal supersymmetric standard model with a low scale see-saw mechanism is presented. Within this framework, the lepton flavour violation in the charged lepton sector is thoroughly studied. Special attention is paid to the individual loop contributions due to the heavy neutrinos $N_{1,2,3}$, sneutrinos $\\tilde{N}_{1,2,3}$ and soft SUSY-breaking terms. For the first time, the complete set of box diagrams is included, in addition to the photon and $Z$-boson mediated interactions. The complete set of chiral amplitudes and their associate form-factors related to the neutrinoless three-body charged lepton flavor violating decays of the muon and tau, such as $\\mu \\to eee$, $\\tau \\to \\mu\\mu\\mu$, $\\tau \\to e\\mu\\mu$ and $\\tau \\to ee\\mu$, as well as the coherent $\\mu \\to e$ conversion in nuclei, were derived. The obtained analytical results are general and can be applied to most of the New Physics models with charged lepton flavor violation. This systematic analysis has revealed the existence of two new box form f...
Yukawa matrix unification in the Minimal Supersymmetric Standard Model
Iskrzyński, Mateusz
2015-01-01
In this dissertation, the Minimal Supersymmetric Standard Model (MSSM) is studied as a low-energy theory stemming from the $SU(5)$ Grand Unified Theory (GUT). We investigate the possibility of satisfying the minimal $SU(5)$ boundary condition $\\mathbf{Y}^d=\\mathbf{Y}^{e\\,T}$ for the full $3\\!\\times\\!3$ down-quark and lepton Yukawa matrices at the GUT scale within the $R$-parity conserving MSSM. We give numerical evidence in favour of the statement: There exist regions in the parameter space of the R-parity conserving MSSM for which the unification of the down-quark and lepton Yukawa matrices takes place, while the predicted values of flavour, electroweak and other collider observables are consistent with experimental constraints. Furthermore, we find evidence that the bottom-tau and strange-muon Yukawa unification is possible with a stable MSSM vacuum in the standard form. We investigate two separate scenarios of the soft supersymmetry breaking terms at the GUT scale. In the first one, it is assumed that the ...
CP Violation in Supersymmetric U(1)' Models
Demir, D A
2004-01-01
The supersymmetric CP problem is studied within superstring-motivated extensions of the MSSM with an additional U(1)' gauge symmetry broken at the TeV scale. This class of models offers an attractive solution to the mu problem of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an effective mu parameter is generated by the vacuum expectation value of a Standard Model singlet S which has superpotential coupling of the form SH_uH_d to the electroweak Higgs doublets. The effective mu parameter is thus dynamically determined as a function of the soft supersymmetry breaking parameters, and can be complex if the soft parameters have nontrivial CP-violating phases. We examine the phenomenological constraints on the reparameterization invariant phase combinations within this framework, and find that the supersymmetric CP problem can be greatly alleviated in models in which the phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar mass parameter associated with the ...
Flavour-changing neutral currents in models with extra ' boson
Indian Academy of Sciences (India)
S Sahoo; L Maharana
2004-09-01
New neutral gauge bosons ' are the features of many models addressing the physics beyond the standard model. Together with the existence of new neutral gauge bosons, models based on extended gauge groups (rank > 4) often predict new charged fermions also. A mixing of the known fermions with new states, with exotic weak-isospin assignments (left-handed singlets and right-handed doublets) will induce tree-level flavour-changing neutral interactions mediated by exchange, while if the mixing is only with new states with ordinary weak-isospin assignments, the flavour-changing neutral currents are mainly due to the exchange of the new neutral gauge boson '. We review flavour-changing neutral currents in models with extra ' boson. Then we discuss some flavour-changing processes forbidden in the standard model and new contributions to standard model processes.
Lepton Flavour Violation in Composite Higgs Models
Feruglio, Ferruccio; Pattori, Andrea
2015-01-01
We discuss in detail the constraints on partial compositeness coming from flavour and CP violation in the leptonic sector. In a first part we present a formulation of partial compositeness in terms of a flavour symmetry group and a set of spurions, whose background values specify the symmetry breaking pattern. In such a framework we construct the complete set of dimension-six operators describing lepton flavour violation and CP violation. By exploiting the existing bounds, we derive limits on the compositeness scale in different scenarios, characterised by increasing restrictions on the spurion properties. We confirm that in the most general case the compositeness scale should lie well-above 10 TeV. However, if in the composite sectors mass parameters and Yukawa couplings are universal, such a bound can be significantly lowered, without necessarily reproducing the case of minimal flavour violation. The most sensitive processes are decays of charged leptons either of radiative type or into three charged lepton...
On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Klimčík, Ctirad [Aix Marseille Université, CNRS, Centrale Marseille I2M, UMR 7373, 13453 Marseille (France)
2015-12-15
We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.
Flavour Dependent Gauged Radiative Neutrino Mass Model
Baek, Seungwon; Yagyu, Kei
2015-01-01
We propose a one-loop induced radiative neutrino mass model with anomaly free flavour dependent gauge symmetry: $\\mu$ minus $\\tau$ symmetry $U(1)_{\\mu-\\tau}$. A neutrino mass matrix satisfying current experimental data can be obtained by introducing a weak isospin singlet scalar boson that breaks $U(1)_{\\mu-\\tau}$ symmetry, an inert doublet scalar field, and three right-handed neutrinos in addition to the fields in the standard model. We find that a characteristic structure appears in the neutrino mass matrix: two-zero texture form which predicts three non-zero neutrino masses and three non-zero CP-phases which can be determined five well measured experimental inputs of two squared mass differences and three mixing angles. Furthermore, it is clarified that only the inverted mass hierarchy is allowed in our model. In a favored parameter set from the neutrino sector, the discrepancy in the muon anomalous magnetic moment between the experimental data and the the standard model prediction can be explained by the ...
Gauge Unification from Split Supersymmetric String Models
Kokorelis, Christos
2016-01-01
We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.
Supersymmetric One-family Model without Higgsinos
Mira, J M; Restrepo, D A; Sánchez, L A; Mira, Jesus M.; Ponce, William A.; Restrepo, Diego A.; Sanchez, Luis A.
2003-01-01
The Higgs potential and the mass spectrum of the N=1 supersymmetric extension of a recently proposed one-family model based on the local gauge group $SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X$, which is a subgroup of the electroweak-strong unification group $E_6$, is analyzed. In this model the slepton multiplets play the role of the Higgs scalars and no Higgsinos are needed, with the consequence that the sneutrino, the selectron and six other sleptons play the role of the Goldstone bosons. We show how the $\\mu$ problem is successfully addressed in the context of this model which also predicts the existence of a light CP-odd scalar.
Simple supersymmetric strongly coupled preon model
Fajfer, S.; Tadić, D.
1988-08-01
This supersymmetric-SU(5) composite model is a natural generalization of the usual strong-coupling models. Preon superfields are in representations 5* and 10. The product representations 5*×10, 5×10, 5×5, and 5*×5 contain only those strongly hypercolor bound states which are needed in the standard electroweak theory. There are no superfluous quarklike states. The neutrino is massless. Only one strongly hypercolor bound singlet (10×10*) can exist as a free particle. At higher energies one should expect to see a plethora of new particles. Grand unification happens at the scale M~1014 GeV. Cabibbo mixing can be incorporated by using a transposed Kobayashi-Maskawa mixing matrix.
Supersymmetric Microscopic Theory of the Standard Model
Ter-Kazarian, G T
2000-01-01
We promote the microscopic theory of standard model (MSM, hep-ph/0007077) into supersymmetric framework in order to solve its technical aspects of vacuum zero point energy and hierarchy problems, and attempt, further, to develop its realistic viable minimal SUSY extension. Among other things that - the MSM provides a natural unification of geometry and the field theory, has clarified the physical conditions in which the geometry and particles come into being, in microscopic sense enables an insight to key problems of particle phenomenology and answers to some of its nagging questions - a present approach also leads to quite a new realization of the SUSY yielding a physically realistic particle spectrum. It stems from the special subquark algebra, from which the nilpotent supercharge operators are derived. The resulting theory makes plausible following testable implications for the current experiments at LEP2, at the Tevatron and at LHC drastically different from those of the conventional MSSM models: 1. All t...
Area law violations in a supersymmetric model
Huijse, Liza; Swingle, Brian
2013-01-01
We study the structure of entanglement in a supersymmetric lattice model of fermions on certain types of decorated graphs with quenched disorder. In particular, we construct models with controllable ground-state degeneracy protected by supersymmetry and the choice of Hilbert space. We show that in certain special limits, these degenerate ground states are associated with local impurities and that there exists a basis of the ground-state manifold in which every basis element satisfies a boundary law for entanglement entropy. On the other hand, by considering incoherent mixtures or coherent superpositions of these localized ground states, we can find regions that violate the boundary law for entanglement entropy over a wide range of length scales. More generally, we discuss various criteria for constructing violations of the boundary law for entanglement entropy and discuss possible relations of our work to recent holographic studies.
SO(10) models with flavour symmetries: classification and examples
Ivanov, I. P.; Lavoura, L.
2016-10-01
Renormalizable SO(10) grand unified theory (GUT) models equipped with flavour symmetries are a popular framework for addressing the flavour puzzle. Usually, the flavour symmetry group has been an ad hoc choice, and no general arguments limiting this choice were known. In this paper, we establish the full list of flavour symmetry groups which may be enforced, without producing any further accidental symmetry, on the Yukawa-coupling matrices of an SO(10) GUT with arbitrary numbers of scalar multiplets in the {{10}}, \\bar{{{126}}}, and {{120}} representations of SO(10). For each of the possible discrete non-Abelian symmetry groups, we present examples of minimal models which do not run into obvious contradiction with the phenomenological fermion masses and mixings.
A tool box for implementing supersymmetric models
Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian
2012-10-01
We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The
The geometry of supersymmetric coset models and superconformal algebras
Papadopoulos, G
1993-01-01
An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.
A Grand {Delta}(96) Multiplication-Sign SU(5) Flavour Model
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F., E-mail: king@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom); Luhn, Christoph, E-mail: christoph.luhn@durham.ac.uk [Institute for Particle Physics Phenomenology, University of Durham, Durham, DH1 3LE (United Kingdom); Stuart, Alexander J., E-mail: a.stuart@soton.ac.uk [School of Physics and Astronomy, University of Southampton, Southampton, SO17 1BJ (United Kingdom)
2013-02-11
Recent results from the Daya Bay and RENO reactor experiments have measured the smallest lepton mixing angle and found it to have a value of {theta}{sub 13} Almost-Equal-To 9 Degree-Sign . This result presents a new challenge for the existing paradigms of discrete flavour symmetries which attempt to describe all quark and lepton masses and mixing angles. Here we propose a Supersymmetric Grand Unified Theory of Flavour based on {Delta}(96) Multiplication-Sign SU(5), together with a U(1) Multiplication-Sign Z{sub 3} symmetry, including a full discussion of {Delta}(96) in a convenient basis. The Grand {Delta}(96) Multiplication-Sign SU(5) Flavour Model relates the quark mixing angles and masses in the form of the Gatto-Sartori-Tonin relation and realises the Georgi-Jarlskog mass relations between the charged leptons and down-type quarks. We predict a Bi-trimaximal (not Tri-bimaximal) form of neutrino mixing matrix, which, after including charged lepton corrections with zero phase, leads to the following GUT scale predictions for the atmospheric, solar, and reactor mixing angles: {theta}{sub 23} Almost-Equal-To 36.9 Degree-Sign , {theta}{sub 12} Almost-Equal-To 32.7 Degree-Sign and {theta}{sub 13} Almost-Equal-To 9.6 Degree-Sign , in good agreement with recent global fits, and a zero Dirac CP phase {delta} Almost-Equal-To 0.
LHC phenomenology of supersymmetric models beyond the MSSM
Porod, Werner
2010-01-01
We discuss various phenomenological aspects of supersymmetric models beyond the MSSM. A particular focus is on models which can correctly explain neutrino data and the possiblities of LHC to identify the underlying scenario.
Particle Physics And Cosmology In Supersymmetric Models
Morrissey, D E
2005-01-01
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...
Invariants and flavour in the general Two Higgs Doublet Model
Energy Technology Data Exchange (ETDEWEB)
Botella, F.J., E-mail: fbotella@uv.es [Departament de Física Teòrica and IFIC, Universitat de València-CSIC, E-46100, Burjassot (Spain); Branco, G.C., E-mail: gustavo.branco@cern.ch [Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal); Rebelo, M.N., E-mail: margarida.rebelo@cern.ch [Universidade Técnica de Lisboa, Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico, Av. Rovisco Pais, P-1049-001 Lisboa (Portugal)
2013-05-13
The flavour structure of the general Two Higgs Doublet Model (2HDM) is analysed and a detailed study of the parameter space is presented, showing that flavour mixing in the 2HDM can be parametrized by various unitary matrices which arise from the misalignment in flavour space between pairs of various Hermitian flavour matrices which can be constructed within the model. This is entirely analogous to the generation of the CKM matrix in the Standard Model (SM). We construct weak basis invariants which can give insight into the physical implications of any flavour model, written in an arbitrary weak basis (WB) in the context of 2HDM. We apply this technique to two special cases, models with MFV and models with NNI structures. In both cases non-trivial CP-odd WB invariants arise in a mass power order much smaller than what one encounters in the SM, which can have important implications for baryogenesis in the framework of the general 2HDM.
A supersymmetric composite model of quarks and leptons
Luty, Markus A.; Mohapatra, Rabindra N.
1997-02-01
We present a class of supersymmetric models with complete generations of composite quarks and leptons using recent non-perturbative results for the low energy dynamics of supersymmetric QCD. In these models, the quarks arise as composite ``mesons'' and the leptons emerge as composite ``baryons''. The quark and lepton flavor symmetries are linked at the preon level. Baryon number violation is automatically suppressed by accidental symmetries. We give some speculations on how this model might be made realistic.
Controlled flavour changing neutral couplings in two Higgs Doublet models
Alves, Joao M.; Botella, Francisco J.; Branco, Gustavo C.; Cornet-Gomez, Fernando; Nebot, Miguel
2017-09-01
We propose a class of two Higgs doublet models where there are flavour changing neutral currents (FCNC) at tree level, but under control due to the introduction of a discrete symmetry in the full Lagrangian. It is shown that in this class of models, one can have simultaneously FCNC in the up and down sectors, in contrast to the situation encountered in the renormalisable and minimal flavour violating 2HDM models put forward by Branco et al. (Phys Lett B 380:119, 1996). The intensity of FCNC is analysed and it is shown that in this class of models one can respect all the strong constraints from experiment without unnatural fine-tuning. It is pointed out that the additional sources of flavour and CP violation are such that they can enhance significantly the generation of the Bbaryon asymmetry of the Universe, with respect to the standard model.
Supersymmetric Q-Lumps in the Grassmannian nonlinear sigma models
Bak, D; Lee, J; Oh, P; Bak, Dongsu; Hahn, Sang-Ok; Lee, Joohan; Oh, Phillial
2007-01-01
We construct the N=2 supersymmetric Grassmannian nonlinear sigma model for the massless case and extend it to massive N=2 model by adding an appropriate superpotential. We then study their BPS equations leading to supersymmetric Q-lumps carrying both topological and Noether charges. These solutions are shown to be always time dependent even sometimes involving multiple frequencies. Thus we illustrate explicitly that the time dependence is consistent with remaining supersymmetries of solitons.
Fermion masses and mixing in $\\Delta(27)$ flavour model
Abbas, Mohammed
2014-01-01
An extension of the Standard Model (SM) based on the non-Abelian discrete group $\\Delta(27)$ is considered. The $\\Delta(27)$ flavour symmetry is spontaneously broken only by gauge singlet scalar fields, therefore our model is free from any flavour changing neural current. We show that the model accounts simultaneously for the observed quark and lepton masses and their mixing. In the quark sector, we find that the up quark mass matrix is flavour diagonal and the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix arises from down quarks. In the lepton sector, we show that the charged lepton mass matrix is almost diagonal. We also adopt type-I seesaw mechanism to generate neutrino masses. A deviated mixing matrix from tri-bimaximal Maki-Nakagawa-Sakata (MNS), with $\\sin\\theta_{13} \\sim 0.13$ and $\\sin^2 \\theta_{23} \\sim 0.41$, is naturally produced.
Particle physics and cosmology in supersymmetric models
Morrissey, David Edgar
The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model parameter space. The strongest constraints on this scenario come from the lower bound on the Higgs boson mass, and the upper bound on the electric dipole moment of the electron. Moreover, upcoming experiments will probe the remaining allowed parameter space in the near future. Some of these constraints may be relaxed by going beyond the MSSM. With this in mind, we also investigate the nMSSM, a minimal singlet extension of the MSSM. We find that this model can also explain both the dark matter and the baryon asymmetry.
Universal Constraints on Low-Energy Flavour Models
Calibbi, Lorenzo; Pokorski, Stefan; Ziegler, Robert
2012-01-01
It is pointed out that in a general class of flavour models one can identify certain universally present FCNC operators, induced by the exchange of heavy flavour messengers. Their coefficients depend on the rotation angles that connect flavour and fermion mass basis. The lower bounds on the messenger scale are derived using updated experimental constraints on the FCNC operators. The obtained bounds are different for different operators and in addition they depend on the chosen set of rotations. Given the sensitivity expected in the forthcoming experiments, the present analysis suggests interesting room for discovering new physics. As the highlights emerge the leptonic processes, $\\mu\\rightarrow e\\gamma$, $\\mu\\rightarrow eee$ and $\\mu\\rightarrow e$ conversion in nuclei.
Flavour alignment in physics beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Braeuninger, Carolin Barbara
2012-11-21
There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple
Flavour Democracy in Strong Unification
Abel, S A; Abel, Steven; King, Steven
1998-01-01
We show that the fermion mass spectrum may naturally be understood in terms of flavour democratic fixed points in supersymmetric theories which have a large domain of attraction in the presence of "strong unification". Our approach provides an alternative to the approximate Yukawa texture zeroes of the Froggatt-Nielsen mechanism. We discuss a particular model based on a broken gauged $SU(3)_L\\times SU(3)_R$ family symmetry which illustrates our approach.
Loop formulation of the supersymmetric nonlinear O(N) sigma model
Steinhauer, Kyle
2013-01-01
We derive the fermion loop formulation for the supersymmetric nonlinear O$(N)$ sigma model by performing a hopping expansion using Wilson fermions. In this formulation the fermionic contribution to the partition function becomes a sum over all possible closed non-oriented fermion loop configurations. The interaction between the bosonic and fermionic degrees of freedom is encoded in the constraints arising from the supersymmetry and induces flavour changing fermion loops. For $N \\ge 3$ this leads to fermion loops which are no longer self-avoiding and hence to a potential sign problem. Since we use Wilson fermions the bare mass needs to be tuned to the chiral point. For $N=2$ we determine the critical point and present boson and fermion masses in the critical regime.
Flavour alignment in physics beyond the standard model
Energy Technology Data Exchange (ETDEWEB)
Braeuninger, Carolin Barbara
2012-11-21
There are numerous reasons to think that the Standard Model of physics is not the ultimate theory of nature on very small scales. However, attempts to construct theories that go beyond the Standard Model generically lead to high rates of flavour changing neutral processes that are in conflict with experiment: Quarks are the fundamental constituents of protons and neutrons. Together with electrons they form the visible matter of the universe1. They come in three generations or ''flavours''. In interactions, quarks of different generations can mix, i.e. a quark of one flavour can transform into a quark of another flavour. In the Standard Model, at first order in perturbation theory, such processes occur only via the exchange of a charged particle. Flavour changing neutral processes can only arise in processes involving loops of charged particles. This is due to the fact that all couplings of two quarks to a neutral particle are diagonal in the basis of the mass eigenstates of the quarks. There is thus no mixing of quarks of different flavour at first order. Since the loop processes are suppressed by a loop factor, the Standard Model predicts very low rates for neutral processes that change the flavour of quarks. So far, this is in agreement with experiment. In extensions of the Standard Model, new couplings to the quarks are usually introduced. In general there is no reason why the new coupling matrices should be diagonal in the mass basis of the quarks. These models therefore predict high rates for processes that mix quarks of different flavour. Extensions of the Standard Model must therefore have a non-trivial flavour structure. A possibility to avoid flavour violation is to assume that the new couplings are aligned with the mass matrices of the quarks, i.e. diagonal in the same basis. This alignment could be due to a flavour symmetry. In this thesis, two extensions of the Standard Model with alignment are studied. The first is a simple
Supersymmetric Fits after the Higgs Discovery and Implications for Model Building
Ellis, John
2014-01-01
The data from the first run of the LHC at 7 and 8 TeV, together with the information provided by other experiments such as precision electroweak measurements, flavour measurements, the cosmological density of cold dark matter and the direct search for the scattering of dark matter particles in the LUX experiment, provide important constraints on supersymmetric models. Important information is provided by the ATLAS and CMS measurements of the mass of the Higgs boson, as well as the negative results of searches at the LHC for events with missing transverse energy accompanied by jets, and the LHCb and CMS measurements off BR($B_s \\to \\mu^+ \\mu^-$). Results are presented from frequentist analyses of the parameter spaces of the CMSSM and NUHM1. The global $\\chi^2$ functions for the supersymmetric models vary slowly over most of the parameter spaces allowed by the Higgs mass and the missing transverse energy search, with best-fit values that are comparable to the $\\chi^2$ for the Standard Model. The $95\\%$ CL lower...
D-brane Solitons in Supersymmetric Sigma-Models
Gauntlett, J P; Tong, D; Townsend, P K; Gauntlett, Jerome P.; Portugues, Rubén; Tong, David; Townsend, Paul K.
2001-01-01
Massive D=4 N=2 supersymmetric sigma models typically admit domain wall (Q-kink) solutions and string (Q-lump) solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric `kink-lump' solution in which a string ends on a wall, and show that it has an effective realization as a BIon of the D=4 super DBI-action. It is also shown to have a time-dependent Q-kink-lump generalization which reduces to the Q-lump in a limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric sigma-model solitons are shown to be realized in M-theory as calibrated, or `Q-calibrated', M5-branes in an M-monopole background.
A review of Higgs mass calculations in supersymmetric models
DEFF Research Database (Denmark)
Draper, P.; Rzehak, H.
2016-01-01
related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...... in the Minimal Supersymmetric Standard Model, in particular the large radiative corrections required to lift mh to 125 GeV and their calculation via Feynman-diagrammatic and effective field theory techniques. This review is intended as an entry point for readers new to the field, and as a summary of the current...
Constraint on the scale-unifying supersymmetric preon model from ? - ? mixing
Kim, Jongbae
1997-06-01
We study the flavour changing neutral current process in 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mixing in the supersymmetric preon model (SPM). Compared to the minimal supersymmetric standard model (MSSM), one distinguishing feature of 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mixing in the SPM is that there are new contributions from box diagrams involving two vector-like families of quarks and their supersymmetric (SUSY) partners with masses of order 1 TeV. Another special feature of the process in the SPM, in contrast to the MSSM, is that left - right squark 0954-3899/23/6/005/img7 - 0954-3899/23/6/005/img8 mixing is highly suppressed owing to symmetries of the underlying model. We calculate the SUSY box diagrams for 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mixing for the case of the SPM, using observed 0954-3899/23/6/005/img3 - 0954-3899/23/6/005/img4 mass splitting, and obtain the constraint of 0954-3899/23/6/005/img13 on the squark mass degeneracy in the model. This upper limit is smaller by about a factor of 3.6 than the corresponding limit for the MSSM. The difference arises because of the absence of 0954-3899/23/6/005/img7 - 0954-3899/23/6/005/img8 mixing in the the preon model.
Single top production in a non-minimal supersymmetric model
Herquet, M.; Knegjens, R.; Laenen, E.L.M.P.
2010-01-01
We study single top production at the LHC in a SUSY-QCD model with a heavy Dirac gluino. The presence of a heavy Dirac gluino allows for notable top-up flavour changing neutral currents. In this scenario, we find that the process ug->tg gives the largest contribution to single top production via FCN
Single top production in a non-minimal supersymmetric model
Herquet, M.; Knegjens, R.; Laenen, E.
2010-01-01
We study single top production at the LHC in a SUSY-QCD model with a heavy Dirac gluino. The presence of a heavy Dirac gluino allows for notable top-up flavour changing neutral currents. In this scenario, we find that the process ug→tg gives the largest contribution to single top production via FCNC
Diphoton Revelation of the Utilitarian Supersymmetric Standard Model
Ma, Ernest
2016-01-01
In 2002, I proposed a unique $U(1)$ extension of the supersymmetric standard model which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. This model, ${without~any~change}$, has all the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC).
The flavour problem and family symmetry beyond the Standard Model
Dziewit, Bartosz; Richter, Monika; Zając, Sebastian; Zrałek, Marek
2016-01-01
In the frame of two Higgs doublet model we try to explain the lepton masses and mixing matrix elements assuming that neutrinos are Dirac particles. Discrete family symmetry groups, which are subgroups of U(3) up to the 1025 order are considered. Like in the one Higgs Standard Model, we found that discrete family symmetries do not give satisfactory answer for this basic questions in the flavour problem.
The Minimal Supersymmetric Model without a mu term
Nelson, A E; Sanz, V; Unsal, M; Nelson, Ann E.; Rius, Nuria; Sanz, Veronica; Unsal, Mithat
2002-01-01
We propose a supersymmetric extension of the standard model which is a realistic alternative to the MSSM, and which has several advantages. No ``mu'' supersymmetric Higgs/Higgsino mass parameter is needed for sufficiently heavy charginos. An approximate U(1) R symmetry naturally guarantees that tan beta is large, explaining the top/bottom quark mass hierarchy. This symmetry also suppresses supersymmetric contributions to anomalous magnetic moments, b to s gamma, and proton decay, and these processes place no lower bounds on superpartner masses, even at large tan beta. The soft supersymmetry breaking mass parameters can easily be obtained from either gauge or Planck scale mediation, without the usual mu problem. Unlike in the MSSM, there are significant upper bounds on the masses of superpartners, including an upper bound of 114 GeV on the mass of the lightest chargino. However the MSSM bound on the lightest Higgs mass does not apply.
Metastable Vacua in Deformed N=2 Supersymmetric Models
Halyo, Edi
2009-01-01
We show that supersymmetric Abelian models that are obtained from deformations of those with ${\\cal N}=2$ supersymmetry also contain metastable vacua for a wide range of parameters. The deformations we consider are combinations of masses for charged and singlet fields, a singlet F--term and an anomalous D--term. We find that, in all cases, the nonsupersymmetric vacua are parametrically far from the supersymmetric ones and therefore metastable. Using retrofitting, we show that these metastable vacua may lead to semi--realistic phenomenology.
Open flavour charmed mesons in a quantum chromodynamics potential model
Indian Academy of Sciences (India)
Krishna Kingkar Pathak; D K Choudhury
2012-12-01
We modify the mesonic wave function by using a short distance scale 0 in analogy with hydrogen atom and estimate the values of masses and decay constants of the open flavour charm mesons , $D_{s}$ and $B_{c}$ within the framework of a QCD potential model. We also calculate leptonic decay widths of these mesons to study branching ratios and lifetime. The results are in good agreement with experimental and other theoretical values.
Violation of lepton flavour universality in composite Higgs models
Niehoff, Christoph; Straub, David M
2015-01-01
We investigate whether the the $2.6\\sigma$ deviation from lepton flavour universality in $B^+\\to K^+\\ell^+\\ell^-$ decays recently observed at the LHCb experiment can be explained in minimal composite Higgs models. We show that a visible departure from universality is indeed possible if left-handed muons have a sizable degree of compositeness. Constraints from $Z$-pole observables are avoided by a custodial protection of the muon coupling.
Neutrino masses within the minimal supersymmetric Standard Model
Cvetic, M; Cvetic, Mirjam; Langacker, Paul
1992-01-01
We investigate the possibility of accommodating neutrino masses compatible with the MSW study of the Solar neutrino deficit within the minimal supersymmetric Standard Model. The ``gravity-induced'' seesaw mechanism based on an interplay of nonrenormalizable and renormalizable terms in the superpotential allows neutrino masses $m_\
Large BR(h -> tau mu) in Supersymmetric Models
Hammad, Ahmed; Un, Cem Salih
2016-01-01
We analyze the Lepton Flavor Violating (LFV) Higgs decay h -> tau mu in three supersymmetric models: Minimal Supersymmetric Standard Model (MSSM), Supersymmetric Seesaw Model (SSM), and Supersymmetric B-L model with Inverse Seesaw (BLSSM-IS). We show that in generic MSSM, with non-universal slepton masses and/or trilinear couplings, it is not possible to enhance BR(h -> tau mu) without violating the experimental bound on the BR(tau -> mu gamma). In SSM, where flavor mixing is radiatively generated, the LFV process mu -> e gamma strictly constrains the parameter space and the maximum value of BR(h -> tau mu) is of order 10^-10, which is extremely smaller than the recent results reported by the CMS and ATLAS experiments. In BLSSM-IS, with universal soft SUSY breaking terms at the grand unified scale, we emphasize that the measured values of BR(h -> tau mu) can be accommodated in a wide region of parameter space without violating LFV constraints. Thus, confirming the LFV Higgs decay results will be a clear signa...
Continuous media interpretation of supersymmetric Wess-Zumino type models
Energy Technology Data Exchange (ETDEWEB)
Letelier, P.S. [Universidade Estadual de Campinas (Brazil). Departamento de Matematica Aplicada; Zanchin, V.T. [Departamento de Fisica-CCNE, Universidade Federal de Santa Maria, 97119, Santa Maria, R.S. (Brazil)
1995-02-20
Supersymmetric Wess-Zumino type models are considered as classical material media that can be interpreted as fluids of ordered strings with heat flow along the strings, or a mixture of fluids of ordered strings with either a cloud of particles or a flux of directed radiation. ((orig.))
Lepton-flavour violating $B$ decays in generic $Z'$ models
Crivellin, Andreas; Matias, Joaquim; Nierste, Ulrich; Pokorski, Stefan; Rosiek, Janusz
2015-01-01
LHCb has reported deviations from the SM expectations in $B\\to K^* \\mu^+\\mu^-$ angular observables, in $B_s\\to\\phi\\mu^+\\mu^-$ and in ratio $R(K)=Br[B\\to K \\mu^+\\mu^-]/Br[B\\to K e^+e^-]$. For all three decays, a heavy neutral gauge boson mediating $b\\to s\\mu^+\\mu^-$ transitions is a prime candidate for an explanation. As $R(K)$ measures violation of lepton-flavour universality, it is interesting to examine the possibility that also lepton flavour is violated. In this article, we investigate the perspectives to discover the lepton-flavour violating modes $B\\to K^{(*)}\\tau^\\pm\\mu^\\mp$, $B_s\\to \\tau^\\pm\\mu^\\mp$ and $B\\to K^{(*)} \\mu^\\pm e^\\mp$, $B_s\\to \\mu^\\pm e^\\mp$. For this purpose we consider a simplified model in which new-physics effects originate from an additional neutral gauge boson ($Z^\\prime$) with generic couplings to quarks and leptons. The constraints from $\\tau\\to3\\mu$, $\\tau\\to\\mu\
Constraint on the scale-unifying supersymmetric preon model from K{sup 0} - anti-K{sup 0} mixing
Energy Technology Data Exchange (ETDEWEB)
Kim, Jongbae [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Research Department, ETRI, Yusong PO Box 106, Taejon 305-600 (Korea, Republic of)
1997-06-01
We study the flavour changing neutral current process in K{sup 0} - anti-K{sup 0} mixing in the supersymmetric preon model (SPM). Compared to the minimal supersymmetric standard model (MSSM), one distinguishing feature of K{sup 0} - anti-K{sup 0} mixing in the SPM is that there are new contributions from box diagrams involving two vector-like families of quarks and their supersymmetric (SUSY) partners with masses of order 1 TeV. Another special feature of the process in the SPM, in contrast to the MSSM, is that left-right squark (q-tilde{sub L} - q-tilde{sub R}) mixing is highly suppressed owing to symmetries of the underlying model. We calculate the SUSY box diagrams for K{sup 0} - anti-K{sup 0} mixing for the case of the SPM, using observed K{sup 0} - anti-K{sup 0} mass splitting, and obtain the constraint of ({delta}m-tilde{sub ds}{sup 2}/m-tilde{sub q}{sup 2}){sup 2} < or approx. 1.44x10{sup -5} on the squark mass degeneracy in the model. This upper limit is smaller by about a factor of 3.6 than the corresponding limit for the MSSM. The difference arises because of the absence of (q-tilde{sub L} - q-tilde{sub R}) mixing in the preon model. (author)
Higher-Rank Supersymmetric Models and Topological Field Theory
Kawai, T; Yang, S K; Kawai, Toshiya; Uchino, Taku; Yang, Sung-Kil
1993-01-01
In the first part of this paper we investigate the operator aspect of higher-rank supersymmetric model which is introduced as a Lie theoretic extension of the $N=2$ minimal model with the simplest case $su(2)$ corresponding to the $N=2$ minimal model. In particular we identify the analogs of chirality conditions and chiral ring. In the second part we construct a class of topological conformal field theories starting with this higher-rank supersymmetric model. We show the BRST-exactness of the twisted stress-energy tensor, find out physical observables and discuss how to make their correlation functions. It is emphasized that in the case of $su(2)$ the topological field theory constructed in this paper is distinct from the one obtained by twisting the $N=2$ minimal model through the usual procedure.
Quasicomplex N=2, d=1 Supersymmetric Sigma Models
Directory of Open Access Journals (Sweden)
Evgeny A. Ivanov
2013-11-01
Full Text Available We derive and discuss a new type of N=2 supersymmetric quantum mechanical sigma models which appear when the superfield action of the (1,2,1 multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric N=2 sigma models built on the multiplets (2,2,0 and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden N=4 supersymmetry.
Supersymmetric Composite Models on Intersecting D-branes
Kitazawa, N
2004-01-01
We construct supersymmetric composite models of quarks and leptons from type IIA T^6/(Z_2 x Z_2) orientifolds with intersecting D6-branes. In case of T^6 = T^2 x T^2 x T^2 with no tilted T^2, a composite model of the supersymmetric SU(5) grand unified theory with three generations is constructed. In case of that one T^2 is tilted, a composite model with SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry with three generations is constructed. These models are not realistic, but contain fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The mu-term of Higgs fields can be naturally generated through the exponentially suppressed Yukawa interaction among "preons".
Supersymmetric standard model from the heterotic string (II)
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.
2006-06-15
We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
Neutralino Relic Density in a Supersymmetric U(1)' Model
Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung
2004-01-01
We study properties of the lightest neutralino (\\chi) and calculate its cosmological relic density in a supersymmetric U(1)' model with a secluded U(1)' breaking sector (the S-model). The lightest neutralino mass is smaller than in the minimal supersymmetric standard model; for instance, m_\\chi < 100 GeV in the limit that the U(1)' gaugino mass is large compared to the electroweak scale. We find that the Z-\\chi-\\chi coupling can be enhanced due to the singlino components in the extended neutralino sector. Neutralino annihilation through the Z-resonance then reproduces the measured cold dark matter density over broad regions of the model parameter space.
N=2 supersymmetric sigma-models in AdS
Butter, Daniel
2011-01-01
We construct the most general N=2 supersymmetric nonlinear sigma-model in four-dimensional anti-de Sitter (AdS) space in terms of N=1 chiral superfields. The target space is shown to be a non-compact hyperkahler manifold restricted to possess a special Killing vector field. A remarkable property of the sigma-model constructed is that the algebra of OSp(2|4) transformations is closed off the mass shell.
Supersymmetric Extension of the Standard Model with Naturally Stable Proton
Aoki, M; Aoki, Mayumi; Oshimo, Noriyuki
2000-01-01
A new supersymmetric standard model based on N=1 supergravity is constructed, aiming at natural explanation for the proton stability without invoking an ad hoc discrete symmetry through R parity. The proton is protected from decay by an extra U(1) gauge symmetry. Particle contents are necessarily increased to be free from anomalies, making it possible to incorporate the superfields for right-handed neutrinos and an SU(2)-singlet Higgs boson. The vacuum expectation value of this Higgs boson, which induces spontaneous breakdown of the U(1) symmetry, yields large Majorana masses for the right-handed neutrinos, leading to small masses for the ordinary neutrinos. The linear coupling of SU(2)-doublet Higgs superfields, which is indispensable to the superpotential of the minimal supersymmetric standard model, is replaced by a trilinear coupling of the Higgs superfields, so that there is no mass parameter in the superpotential. The energy dependencies of the model parameters are studied, showing that gauge symmetry b...
Checking Flavour Models at Neutrino Facilities
Meloni, Davide
2013-01-01
In the recent years, the industry of model building has been the subject of the intense activity, especially after the measurement of a relatively large values of the reactor angle. Special attention has been devoted to the use of non-abelian discrete symmetries, thanks to their ability of reproducing some of the relevant features of the neutrino mixing matrix. In this paper, we consider two special relations between the leptonic mixing angles, arising from models based on S4 and A4, and study whether, and to which extent, they can be distinguished at superbeam facilities, namely T2K, NOvA and T2HK.
Checking flavour models at neutrino facilities
Energy Technology Data Exchange (ETDEWEB)
Meloni, Davide, E-mail: meloni@fis.uniroma3.it
2014-01-20
In the recent years, the industry of model building has been the subject of the intense activity, especially after the measurement of a relatively large values of the reactor angle. Special attention has been devoted to the use of non-abelian discrete symmetries, thanks to their ability of reproducing some of the relevant features of the neutrino mixing matrix. In this Letter, we consider two special relations between the leptonic mixing angles, arising from models based on S{sub 4} and A{sub 4}, and study whether, and to which extent, they can be distinguished at superbeam facilities, namely T2K, NOνA and T2HK.
Supersymmetric Theory of Stochastic ABC Model: A Numerical Study
Ovchinnikov, Igor V; Ensslin, Torsten A; Wang, Kang L
2016-01-01
In this paper, we investigate numerically the stochastic ABC model, a toy model in the theory of astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics (STS). STS characterises stochastic differential equations (SDEs) by the spectrum of the stochastic evolution operator (SEO) on elements of the exterior algebra or differentials forms over the system's phase space, X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the phenomenon of stochastic chaos with the spontaneously broken topological supersymmetry that all SDEs possess. We demonstrate the following three properties of the SEO, deduced previously analytically and from physical arguments: the SEO spectra for zeroth and top degree forms never break topological supersymmetry, all SDEs possesses pseudo-time-reversal symmetry, and each de Rahm cohomology class provides one supersymmetric eigenstate. Our results also suggests that the SEO spectra for forms of complementary degrees, i.e., k and ...
Electric Dipole Moments of Neutron and Electron in Supersymmetric Model
Aoki, Mayumi; Kadoyoshi, Tomoko; Sugamoto, Akio; Oshimo, Noriyuki
1997-01-01
The electric dipole moments (EDMs) of the neutron and the electron are reviewed within the framework of the supersymmetric standard model (SSM) based on grand unified theories coupled to N=1 supergravity. Taking into account one-loop and two-loop contributions to the EDMs, we explore SSM parameter space consistent with experiments and discuss predicted values for the EDMs. Implications of baryon asymmetry of our universe for the EDMs are also discussed.
Matrix models, topological strings, and supersymmetric gauge theories
Dijkgraaf, Robbert; Vafa, Cumrun
2002-11-01
We show that B-model topological strings on local Calabi-Yau threefolds are large- N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover ( p, q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Update of the flavour-physics constraints in the NMSSM
Energy Technology Data Exchange (ETDEWEB)
Domingo, Florian [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Universidad Autonoma de Madrid, Instituto de Fisica Teorica (UAM/CSIC), Madrid (Spain)
2016-08-15
We consider the impact of several flavour-changing observables in the B- and the Kaon sectors on the parameter space of the NMSSM, in a minimal flavour violating version of this model. Our purpose consists in updating our previous results in [4] and designing an up-to-date flavour test for the public package NMSSMTools. We provide details concerning our implementation of the constraints in a series of brief reviews of the current status of the considered channels. Finally, we present a few consequences of these flavour constraints for the NMSSM, turning to two specific scenarios: one is characteristic of the MSSM-limit and illustrates the workings of charged-Higgs and genuinely supersymmetric contributions to flavour-changing processes; the second focus is a region where a light CP-odd Higgs is present. Strong limits are found whenever an enhancement factor - large tanβ, light H{sup ±}, resonant pseudoscalar - comes into play. (orig.)
Ellis, John; Savage, Christopher; Spanos, Vassilis C
2010-01-01
We evaluate the neutrino fluxes to be expected from neutralino LSP annihilations inside the Sun, within the minimal supersymmetric extension of the Standard Model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the GUT scale (the CMSSM). We find that there are large regions of typical CMSSM $(m_{1/2}, m_0)$ planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM $(m_{1/2}, m_0)$ planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large $m_{1/2}$ along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct ...
Minimum Supersymmetric Standard Model on the Noncommutative Geometry
Ishihara, Satoshi; Matsukawa, Atsuko; Sato, Hikaru; Shimojo, Masafumi
2013-01-01
We have obtained the supersymmetric extension of spectral triple which specify a noncommutative geometry(NCG). We assume that the functional space H constitutes of wave functions of matter fields and their superpartners included in the minimum supersymmetric standard model(MSSM). We introduce the internal fluctuations to the Dirac operator on the manifold as well as on the finite space by elements of the algebra A in the triple. So, we obtain not only the vector supermultiplets which meditate SU(3)xSU(2)xU(1)_Y gauge degrees of freedom but also Higgs supermultiplets which appear in MSSM on the same standpoint. Accoding to the supersymmetric version of the spectral action principle, we calculate the square of the fluctuated total Dirac operator and verify that the Seeley-DeWitt coeffients give the correct action of MSSM. We also verify that the relation between coupling constants of $SU(3)$,$SU(2)$ and $U(1)_Y$ is same as that of SU(5) unification theory.
Flipped version of the supersymmetric strongly coupled preon model
Fajfer, S.; Mileković, M.; Tadić, D.
1989-12-01
In the supersymmetric SU(5) [SUSY SU(5)] composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5)⊗U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.
Required experimental accuracy to select between supersymmetrical models
Indian Academy of Sciences (India)
David Grellscheid
2004-03-01
We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. Ths talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).
Discrete Flavour Groups, \\theta_13 and Lepton Flavour Violation
Altarelli, Guido; Merlo, Luca; Stamou, Emmanuel
2012-01-01
Discrete flavour groups have been studied in connection with special patterns of neutrino mixing suggested by the data, such as Tri-Bimaximal mixing (groups A4, S4...) or Bi-Maximal mixing (group S4...) etc. We review the predictions for sin(\\theta_13) in a number of these models and confront them with the experimental measurements. We compare the performances of the different classes of models in this respect. We then consider, in a supersymmetric framework, the important implications of these flavour symmetries on lepton flavour violating processes, like \\mu -> e gamma and similar processes. We discuss how the existing limits constrain these models, once their parameters are adjusted so as to optimize the agreement with the measured values of the mixing angles. In the simplified CMSSM context, adopted here just for indicative purposes, the small tan(beta) range and heavy SUSY mass scales are favoured by lepton flavour violating processes, which makes it even more difficult to reproduce the reported muon g-2...
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Anomaly mediated supersymmetric models and Higgs data from the LHC
Arbey, A; Mahmoudi, F; Tarhini, A
2013-01-01
Anomaly mediation models are well motivated supersymmetry breaking scenarios which appear as alternatives to the mSUGRA paradigm. These models are quite compelling from the theoretical point of view and it is therefore important to test if they are also viable models for phenomenology. We perform a study of these models in the light of all standard flavour, collider and dark matter constraints, including also the recent Higgs boson measurements for the mass and signal strengths in the different decay channels. The minimal AMSB scenario can satisfy in part of its parameter space the dark matter requirement but is only marginally consistent with the current Higgs boson mass value. The HyperCharge-AMSB and Mixed Moduli-AMSB scenarios can better describe present data from dark matter, flavour, low energy physics and are consistent with the measured mass of the Higgs boson. The inclusion of the preferred signal strengths for the Higgs boson decay channels shows that for tan(beta) > 5 the HC-AMSB and MM-AMSB models...
Supersymmetric Matrix model on Z-orbifold
Miyake, A
2003-01-01
We find that the IIA Matrix models defined on the non-compact $C^3/Z_6$, $C^2/Z_2$ and $C^2/Z_4$ orbifolds preserve supersymmetry where the fermions are on-mass-shell Majorana-Weyl fermions. In these examples supersymmetry is preserved both in the orbifolded space and in the non-orbifolded space at the same time. The Matrix model on $C^3/Z_6$ orbifold has the same ${\\cal N}=2$ supersymmetry as the case of $C^3/Z_3$ orbifold, whose particular case was previously pointed out. On the other hand the Matrix models on $C^2/Z_2$ and $C^2/Z_4$ orbifold have a half of the ${\\cal N}=2$ supersymmetry. We further find that the Matrix model on $C^2/Z_2$ orbifold with parity-like identification preserves ${\\cal N}=2$ supersymmetry both in the orbifolded space and non-orbifolded space, and furthermore has ${\\cal N}=4$ supersymmetry parameters in the total space.
Bimaximal Neutrino Mixing with Discrete Flavour Symmetries
Merlo, Luca
2011-01-01
In view of the fact that the data on neutrino mixing are still compatible with a situation where Bimaximal mixing is valid in first approximation and it is then corrected by terms of order of the Cabibbo angle, we present examples where these properties are naturally realized. The models are supersymmetric in 4-dimensions and based on the discrete non-Abelian flavour symmetry S4.
Supersymmetric extension of the minimal dark matter model
Institute of Scientific and Technical Information of China (English)
CHANG Xue; LIU Chun; MA Feng-Cai; YANG Shuo
2012-01-01
The minimal dark matter model is given a supersymmetric extension.A super SU(2)L quintuplet is introduced with its fermionic neutral component still being the dark matter,and the dark matter mass is about 19.7 TeV.Mass splitting among the quintplet due to supersymmetry particles is found to be negligibly small compared to the electroweak corrections.Other properties of this supersymmetry model are studied,it has the solutions to the PAMELA and Fermi-LAT anomaly,and the predictions in higher energies need further experimental data to verify them.
Supersymmetric structures in topological field models
Pisar, T
2000-01-01
formalism with the latter proposed method. Besides the calculation of the vector supersymmetry the formalism admits the derivation of another scalar supersymmetry which is present in some particular models. The work is organized as follows. In Chapter 2 we give the technical details, Chapter 3 presents a review of the relevant aspects of topological field theories, in Chapter 4 we introduce a formalism which admits the calculation of the vectorial supersymmetry of the basic fields, and the following Chapter 5 demonstrates its application in the case of a six-dimensional Witten type model. Chapter 6 combines this method with the Batalin-Vilkovisky formalism, also including the BRST doublets and Chapter 7 gives three different applications of the latter procedure. During the eighties topological quantum field theory appears the first time as a new link between topology and quantum field theory. In the actual understanding we distinguish two types of topological field theories, the first one originally introduce...
Maximal sfermion flavour violation in super-GUTs
Energy Technology Data Exchange (ETDEWEB)
Ellis, John [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Olive, Keith A. [CERN, Theoretical Physics Department, Geneva (Switzerland); University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Velasco-Sevilla, L. [University of Bergen, Department of Physics and Technology, PO Box 7803, Bergen (Norway)
2016-10-15
We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses m{sub 0} specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses m{sub 1/2}, as is expected in no-scale models, the dominant effects of renormalisation between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to m{sub 1/2} and generation independent. In this case, the input scalar masses m{sub 0} may violate flavour maximally, a scenario we call MaxSFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity. (orig.)
Maximal sfermion flavour violation in super-GUTs
AUTHOR|(CDS)2108556; Velasco-Sevilla, Liliana
2016-01-01
We consider supersymmetric grand unified theories with soft supersymmetry-breaking scalar masses $m_0$ specified above the GUT scale (super-GUTs) and patterns of Yukawa couplings motivated by upper limits on flavour-changing interactions beyond the Standard Model. If the scalar masses are smaller than the gaugino masses $m_{1/2}$, as is expected in no-scale models, the dominant effects of renormalization between the input scale and the GUT scale are generally expected to be those due to the gauge couplings, which are proportional to $m_{1/2}$ and generation-independent. In this case, the input scalar masses $m_0$ may violate flavour maximally, a scenario we call MaxFV, and there is no supersymmetric flavour problem. We illustrate this possibility within various specific super-GUT scenarios that are deformations of no-scale gravity.
Phenomenology of non-minimal supersymmetric models at linear colliders
Energy Technology Data Exchange (ETDEWEB)
Porto, Stefano
2015-06-15
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
Flavour-changing Higgs couplings in a class of two Higgs doublet models
Energy Technology Data Exchange (ETDEWEB)
Botella, F.J. [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Branco, G.C. [Universitat de Valencia-CSIC, Departament de Fisica Teorica y IFIC, Burjassot (Spain); Instituto Superior Tecnico (IST), Lisboa Univ., Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Lisbon (Portugal); Nebot, M. [Instituto Superior Tecnico (IST), Lisboa Univ., Centro de Fisica Teorica de Particulas (CFTP), Lisbon (Portugal); Rebelo, M.N. [Instituto Superior Tecnico (IST), Lisboa Univ., Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Lisbon (Portugal)
2016-03-15
We analyse various flavour-changing processes like t → hu, hc, h → τe, τμ as well as hadronic decays h @→ bs, bd, in the framework of a class of two Higgs doublet models where there are flavour-changing neutral scalar currents at tree level. These models have the remarkable feature of having these flavour-violating couplings entirely determined by the CKM and PMNS matrices as well as tan β. The flavour structure of these scalar currents results from a symmetry of the Lagrangian and there fore it is natural and stable under the renormalisation group. We show that in some of the models the rates of the above flavour-changing processes can reach the discovery level at the LHC at 13 TeV even taking into account the stringent bounds on low energy processes, in particular μ @→ eγ. (orig.)
E6 inspired supersymmetric models with exact custodial symmetry
Nevzorov, Roman
2013-01-01
The breakdown of E6 gauge symmetry at high energies may lead to supersymmetric models based on the standard model gauge group together with extra U(1)ψ and U(1)χ gauge symmetries. To ensure anomaly cancellation the particle content of these E6 inspired models involves extra exotic states that generically give rise to nondiagonal flavor transitions and rapid proton decay. We argue that a single discrete Z˜2H symmetry can be used to forbid tree-level flavor changing transitions, as well as the most dangerous baryon and lepton number violating operators. We present 5D and 6D orbifold grand unified theory constructions that lead to the E6 inspired supersymmetric models of this type. The breakdown of U(1)ψ and U(1)χ gauge symmetries that preserves E6 matter parity assignment guarantees that ordinary quarks and leptons and their superpartners, as well as the exotic states which originate from 27 representations of E6, survive to low energies. These E6 inspired models contain two dark matter candidates and must also include additional TeV scale vectorlike lepton or vectorlike down-type quark states to render the lightest exotic quark unstable. We examine gauge coupling unification in these models and discuss their implications for collider phenomenology and cosmology.
Muon Anomalous Magnetic Moment in a Supersymmetric U(1)' Model
Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung
2005-01-01
We study the muon anomalous magnetic moment a_\\mu = (g_\\mu - 2)/2 in a supersymmetric U(1)' model. The neutralino sector has extra components from the superpartners of the U(1)' gauge boson and the extra Higgs singlets that break the U(1)' symmetry. The theoretical maximum bound on the lightest neutralino mass is much smaller than that of the Minimal Supersymmetric Standard Model (MSSM) because of the mixing pattern of the extra components. In a U(1)' model where the U(1)' symmetry is broken by a secluded sector (the S-model), tan\\beta is required to be < 3 to have realistic electroweak symmetry breaking. These facts suggest that the a_\\mu prediction may be meaningfully different from that of the MSSM. We evaluate and compare the muon anomalous magnetic moment in this model and the MSSM and discuss the constraints on tan\\beta and relevant soft breaking terms. There are regions of the parameter space that can explain the experimental deviation of a_\\mu from the Standard Model calculation and yield an accept...
N= 4 Supersymmetric Quantum Mechanical Model: Novel Symmetries
Krishna, S
2016-01-01
We discuss a set of novel discrete symmetry transformations of the N = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions onto (1, 4)-dimensional supermanifold.
𝒩 = 4 supersymmetric quantum mechanical model: Novel symmetries
Krishna, S.
2017-04-01
We discuss a set of novel discrete symmetry transformations of the 𝒩 = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent 𝒩 = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions 𝜃α and 𝜃¯α onto (1, 4)-dimensional supermanifold.
Lepton Flavour at the Electroweak Scale: A Complete A4 Model
Holthausen, Martin; Schmidt, Michael A
2012-01-01
Apparent regularities in fermion masses and mixings are often associated with physics at a high flavour scale, especially in the context of discrete flavour symmetries. One of the main reasons for that is that the correct vacuum alignment requires usually some high scale mechanism to be phenomenologically acceptable. Contrary to this expectation, we present in this paper a renormalizable radiative neutrino mass model with an A4 flavour symmetry in the lepton sector, which is broken at the electroweak scale. For that we use a novel way to achieve the VEV alignment via an extended symmetry in the flavon potential proposed before by two of the authors. We discuss various phenomenological consequences for the lepton sector and show how the remnants of the flavour symmetry suppress large lepton flavour violating processes. The model naturally includes a dark matter candidate, whose phenomenology we outline. Finally, we sketch possible extensions to the quark sector and discuss its implications for the LHC, especia...
Dark matter candidates in the constrained exceptional supersymmetric standard model
Athron, P.; Thomas, A. W.; Underwood, S. J.; White, M. J.
2017-02-01
The exceptional supersymmetric standard model is a low energy alternative to the minimal supersymmetric standard model (MSSM) with an extra U (1 ) gauge symmetry and three generations of matter filling complete 27-plet representations of E6. This provides both new D and F term contributions that raise the Higgs mass at tree level, and a compelling solution to the μ -problem of the MSSM by forbidding such a term with the extra U (1 ) symmetry. Instead, an effective μ -term is generated from the vacuum expectation value of an SM singlet which breaks the extra U (1 ) symmetry at low energies, giving rise to a massive Z'. We explore the phenomenology of the constrained version of this model in substantially more detail than has been carried out previously, performing a ten dimensional scan that reveals a large volume of viable parameter space. We classify the different mechanisms for generating the measured relic density of dark matter found in the scan, including the identification of a new mechanism involving mixed bino/inert-Higgsino dark matter. We show which mechanisms can evade the latest direct detection limits from the LUX 2016 experiment. Finally we present benchmarks consistent with all the experimental constraints and which could be discovered with the XENON1T experiment.
Elias, V; Miransky, V A; Shovkovy, I A
1996-01-01
The infrared dynamics in the (3+1)--dimensional supersymmetric and non--supersymmetric Nambu--Jona--Lasinio model in a constant magnetic field is studied. It is shown that while at strong coupling the dynamics in these two models is essentially different, the models become equivalent at weak coupling. In particular, at weak coupling, as the strength of the magnetic field goes to infinity, both the supersymmetric and non--supersymmetric Nambu--Jona--Lasinio models with N_c colors become equivalent to the (1+1)--dimensional Gross-Neveu model with the number of colors \\tilde{N}_c=N_c|eB|S/2\\pi, where S is the area in the plane perpendicular to the magnetic field {\\bf B}. The relevance of these results for cosmological models based on superymmetric dynamics is pointed out.
Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Booth, Peter; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Brett, Nicolas; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Buis, Ernst-Jan; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carpentieri, Carmen; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavallari, Alvise; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip James; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Comune, Gianluca; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dallison, Steve; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dankers, Reinier; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Merlin; Davison, Adam; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Drohan, Janice; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Facius, Katrine; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fasching, Damon; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernandes, Bruno; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flammer, Joachim; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniel Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gieraltowski, Gerry; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Gruwe, Magali; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, Christian Johan; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Kazi, Sandor Istvan; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kilvington, Graham; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith B F G; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Koblitz, Birger; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Henri; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lellouch, Jeremie; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, George; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Macina, Daniela; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikulec, Bettina; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Moneta, Lorenzo; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Orellana, Frederik; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Øye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Paoloni, Alessandro; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandhu, Pawan; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Tevlin, Christopher; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomas; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Triplett, Nathan; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valderanis, Chrysostomos; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vovenko, Anatoly; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zema, Pasquale Federico; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz
2011-01-01
Results are presented of a search for supersymmetric particles decaying into final states with significant missing transverse momentum and exactly two identical flavour leptons (e,$\\mu$) of opposite charge in $\\sqrt{s}$=7 TeV collisions at the Large Hadron Collider. This channel is particularly sensitive to supersymmetric particle cascade decays producing flavour correlated lepton pairs. Flavour uncorrelated backgrounds are subtracted using a sample of opposite flavour lepton pair events. Observation of an excess beyond Standard Model expectations following this subtraction procedure would offer one of the best routes to measuring the masses of supersymmetric particles. In a data sample corresponding to an integrated luminosity of 35 pb$^{-1}$ no such excess is observed. Model-independent limits are set on the contribution to these final states from new physics and are used to exclude regions of a phenomenological supersymmetric parameter space.
Theory and Phenomenology of an Exceptional Supersymmetric Standard Model
King, S F; Nevzorov, R
2006-01-01
We make a comprehensive study of the theory and phenomenology of a low energy supersymmetric standard model originating from a string-inspired $E_6$ grand unified gauge group. The Exceptional Supersymmetric Standard Model (ESSM) considered here is based on the low energy SM gauge group together with an extra $Z'$ corresponding to an extra $U(1)_{N}$ gauge symmetry under which right--handed neutrinos have zero charge. The low energy matter content of the ESSM corresponds to three 27 representations of the $E_6$ symmetry group, to ensure anomaly cancellation, plus an additional pair of Higgs--like doublets as required for high energy gauge coupling unification. The ESSM is therefore a low energy alternative to the MSSM or NMSSM. The ESSM involves extra matter beyond the MSSM contained in three $5+5^*$ representations of SU(5), plus three SU(5) singlets which carry $U(1)_{N}$ charges, one of which develops a VEV, providing the effective $\\mu$ term for the Higgs doublets, as well as the necessary exotic fermion m...
Matrix Models, Topological Strings, and Supersymmetric Gauge Theories
Dijkgraaf, R; Dijkgraaf, Robbert; Vafa, Cumrun
2002-01-01
We show that B-model topological strings on local Calabi-Yau threefolds are large N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Matrix models, topological strings, and supersymmetric gauge theories
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, Robbert E-mail: rhd@science.uva.nl; Vafa, Cumrun
2002-11-11
We show that B-model topological strings on local Calabi-Yau threefolds are large-N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover (p,q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.
Making Supersymmetric Quivers from N =(0,2) Sigma Models
Shifman, Mikhail; Yung, Alexei
2014-01-01
We show how to construct quiver-like (0,2) sigma models starting from n copies of (2,2) CP(N-1) models (or similar more generic models). These "quivers" present a natural generalization of the non-minimally deformed (2,2) model with an extra (0,2) fermion superfield on tangle bundle T[CP(N-1)xC^1] considered previously. A remarkable feature observed is elimination of the spontaneous supersymmetry breaking. We study supersymmetric vacua and determine the particle spectrum in the large-N limit. We then examine the \\beta -functions of our quiver-like (0,2) sigma models and show that under certain conditions they develop an infrared fixed point in the perturbative domain.
Potential of a Linear Collider for Lepton Flavour Violation studies in the SUSY seesaw
Figueiredo, A J R; Romao, J C; Teixeira, A M
2013-01-01
We study the potential of an e+- e- Linear Collider for charged lepton flavour violation studies in a supersymmetric framework where neutrino masses and mixings are explained by a type-I seesaw. Focusing on e-mu flavour transitions, we evaluate the background from standard model and supersymmetric charged currents to the e mu + missing E_T signal. We study the energy dependence of both signal and background, and the effect of beam polarisation in increasing the signal over background significance. Finally, we consider the mu- mu- + missing E_T final state in e- e- collisions that, despite being signal suppressed by requiring two e-mu flavour transitions, is found to be a clear signature of charged lepton flavour violation due to a very reduced standard model background.
Investigating multiple solutions in the constrained minimal supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Allanach, B.C. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); George, Damien P. [DAMTP, CMS, University of Cambridge,Wilberforce Road, Cambridge, CB3 0HA (United Kingdom); Cavendish Laboratory, University of Cambridge,JJ Thomson Avenue, Cambridge, CB3 0HE (United Kingdom); Nachman, Benjamin [SLAC, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States)
2014-02-07
Recent work has shown that the Constrained Minimal Supersymmetric Standard Model (CMSSM) can possess several distinct solutions for certain values of its parameters. The extra solutions were not previously found by public supersymmetric spectrum generators because fixed point iteration (the algorithm used by the generators) is unstable in the neighbourhood of these solutions. The existence of the additional solutions calls into question the robustness of exclusion limits derived from collider experiments and cosmological observations upon the CMSSM, because limits were only placed on one of the solutions. Here, we map the CMSSM by exploring its multi-dimensional parameter space using the shooting method, which is not subject to the stability issues which can plague fixed point iteration. We are able to find multiple solutions where in all previous literature only one was found. The multiple solutions are of two distinct classes. One class, close to the border of bad electroweak symmetry breaking, is disfavoured by LEP2 searches for neutralinos and charginos. The other class has sparticles that are heavy enough to evade the LEP2 bounds. Chargino masses may differ by up to around 10% between the different solutions, whereas other sparticle masses differ at the sub-percent level. The prediction for the dark matter relic density can vary by a hundred percent or more between the different solutions, so analyses employing the dark matter constraint are incomplete without their inclusion.
A Supersymmetric Composite Model with Dynamical Supersymmetry Breaking
Kitazawa, N; Kitazawa, Noriaki; Okada, Nobuchika
1997-01-01
We present a supersymmetric composite model with dynamical supersymmetry breaking. The model is based on the gauge group $SU(2)_S \\times SU(2)_H \\times SU(3)_c \\times SU(2)_L \\times U(1)_Y$. Supersymmetry is dynamically broken by the non-perturbative effect of the $SU(2)_S$ `supercolor' interaction. The large top Yukawa coupling is naturally generated by the $SU(2)_H$ `hypercolor' interaction as recently proposed by Nelson and Strassler. The supersymmetry breaking is mediated to the standard model sector by a new mechanism. The electroweak symmetry breaking is caused by the radiative correction due to the large top Yukawa coupling with the supersymmetry breaking. This is the `radiative breaking scenario', which originates from the dynamics of the supercolor and hypercolor gauge interactions.
Leptonic {ital CP} violation in the supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Joshipura, A.S.; Nowakowski, M. [Theory Group, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India)
1995-05-01
We point out the possibility of spontaneous and hard {ital CP} violation in the scalar potential of the {ital R}-parity broken supersymmetric standard model. The existence of spontaneous {ital CP} violation depends crucially on the {ital R}-parity-breaking terms in the superpotential and, in addition, on the choice of the soft supersymmetry-breaking terms. Unlike in theories with {ital R}-parity conservation, it is natural, in the context of the present model, for the sneutrinos to acquire (complex) vacuum expectation values. In the context of this model we examine here the global implications, such as the strength of the {ital CP}-violating interactions and the neutrino masses.
Nucleon Electric Dipole Moments in High-Scale Supersymmetric Models
Hisano, Junji; Kuramoto, Wataru; Kuwahara, Takumi
2015-01-01
The electric dipole moments (EDMs) of electron and nucleons are the promising probe of the new physics. In the generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we estimated the effect of the CP-violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in these scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron EDM in order to discriminate among the high-scale SUSY models.
Nucleon electric dipole moments in high-scale supersymmetric models
Hisano, Junji; Kobayashi, Daiki; Kuramoto, Wataru; Kuwahara, Takumi
2015-11-01
The electric dipole moments (EDMs) of electron and nucleons are promising probes of the new physics. In generic high-scale supersymmetric (SUSY) scenarios such as models based on mixture of the anomaly and gauge mediations, gluino has an additional contribution to the nucleon EDMs. In this paper, we studied the effect of the CP -violating gluon Weinberg operator induced by the gluino chromoelectric dipole moment in the high-scale SUSY scenarios, and we evaluated the nucleon and electron EDMs in the scenarios. We found that in the generic high-scale SUSY models, the nucleon EDMs may receive the sizable contribution from the Weinberg operator. Thus, it is important to compare the nucleon EDMs with the electron one in order to discriminate among the high-scale SUSY models.
Generalised geometrical CP violation in a T′ lepton flavour model
Energy Technology Data Exchange (ETDEWEB)
Girardi, Ivan [SISSA/INFN,Via Bonomea 265, I-34136 Trieste (Italy); Meroni, Aurora [SISSA/INFN,Via Bonomea 265, I-34136 Trieste (Italy); Dipartimento di Matematica e Fisica, Università di Roma Tre,Via della Vasca Navale 84, I-00146, Rome (Italy); INFN, Laboratori Nazionali di Frascati,Via E. Fermi 40, I-00044 Frascati (Italy); Petcov, S.T. [SISSA/INFN,Via Bonomea 265, I-34136 Trieste (Italy); IPMU, University of Tokyo,5-1-5 Kashiwanoha, 277-8583 Kashiwa (Japan); Spinrath, Martin [SISSA/INFN,Via Bonomea 265, I-34136 Trieste (Italy); Institut für Theoretische Teilchenphysik, Karlsruhe Institute of Technology,Engesserstraße 7, D-76131 Karlsruhe (Germany)
2014-02-12
We analyse the interplay of generalised CP transformations and the non-Abelian discrete group T′ and use the semi-direct product G{sub f}=T′⋊H{sub CP}, as family symmetry acting in the lepton sector. The family symmetry is shown to be spontaneously broken in a geometrical manner. In the resulting flavour model, naturally small Majorana neutrino masses for the light active neutrinos are obtained through the type I see-saw mechanism. The known masses of the charged leptons, lepton mixing angles and the two neutrino mass squared differences are reproduced by the model with a good accuracy. The model allows for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering (IO). For each of the three spectra the absolute scale of neutrino masses is predicted with relatively small uncertainty. The value of the Dirac CP violation (CPV) phase δ in the lepton mixing matrix is predicted to be δ≅π/2 or 3π/2. Thus, the CP violating effects in neutrino oscillations are predicted to be maximal (given the values of the neutrino mixing angles) and experimentally observable. We present also predictions for the sum of the neutrino masses, for the Majorana CPV phases and for the effective Majorana mass in neutrinoless double beta decay. The predictions of the model can be tested in a variety of ongoing and future planned neutrino experiments.
Das, Debottam; Ellwanger, Ulrich; Teixeira, Ana M.
2012-03-01
The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. NMSDECAY will be part of the NMSSMTools package, which computes Higgs, sparticle masses and Higgs decays in the NMSSM. Program summaryProgram title: NMSDECAY Catalogue identifier: AELC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 188 177 No. of bytes in distributed program, including test data, etc.: 1 896 478 Distribution format: tar.gz Programming language: FORTRAN77 Computer: All supporting g77, gfortran, ifort Operating system: All supporting g77, gfortran, ifort Classification: 11.1 External routines: Routines in the NMSSMTools package: At least one of the routines in the directory main (e.g. nmhdecay.f), all routines in the directory sources. (All software is included in the distribution package.) Nature of problem: Calculation of all decay widths and decay branching fractions of all particles in the Next-to-Minimal Supersymmetric Standard Model. Solution method: Suitable generalization of the code SDECAY [1] including the extended Higgs and neutralino sector of the Next-to-Minimal Supersymmetric Standard Model, and slepton 3-body decays. Additional comments: NMSDECAY is interfaced with NMSSMTools, available on the web page http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html. Running time: On an Intel Core i7 with 2.8 GHZ: about 2 seconds per point in parameter space, if all flags flagqcd, flagmulti and flagloop are switched on.
Neutron electric dipole moment in the minimal supersymmetric standard model
Inui, T; Sakai, N; Sasaki, T; Inui, T; Mumura, Y; Sakai, N; Sasaki, T
1995-01-01
Neutron electric dipole moment (EDM) due to single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in parameters of soft supersymmetry breaking at low energies. Chargino one-loop diagram is found to give the dominant contribution of the order of 10^{-27}\\sim 10^{-29}\\:e\\cdotcm for quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. Gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions.
Anatomy of Higgs mass in supersymmetric inverse seesaw models
Energy Technology Data Exchange (ETDEWEB)
Chun, Eung Jin, E-mail: ejchun@kias.re.kr [Korea Institute for Advanced Study, Seoul 130-722 (Korea, Republic of); Mummidi, V. Suryanarayana, E-mail: soori9@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India); Vempati, Sudhir K., E-mail: vempati@cts.iisc.ernet.in [Centre for High Energy Physics, Indian Institute of Science, Bangalore 560012 (India)
2014-09-07
We compute the one loop corrections to the CP-even Higgs mass matrix in the supersymmetric inverse seesaw model to single out the different cases where the radiative corrections from the neutrino sector could become important. It is found that there could be a significant enhancement in the Higgs mass even for Dirac neutrino masses of O(30) GeV if the left-handed sneutrino soft mass is comparable or larger than the right-handed neutrino mass. In the case where right-handed neutrino masses are significantly larger than the supersymmetry breaking scale, the corrections can utmost account to an upward shift of 3 GeV. For very heavy multi TeV sneutrinos, the corrections replicate the stop corrections at 1-loop. We further show that general gauge mediation with inverse seesaw model naturally accommodates a 125 GeV Higgs with TeV scale stops.
An Interacting N = 2 Supersymmetric Quantum Mechanical Model: Novel Symmetries
Krishna, S; Malik, R P
2015-01-01
We demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting N = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realization of the de Rham cohomological operators of differential geometry. We derive the nilpotent N = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our N = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables, obtained after the imposition of the SUSY invariant restrictions, and...
Flavour constraints on the Aligned Two-Higgs-Doublet Model and CP violation
Tuzón, Paula
2010-01-01
The Aligned Two-Higgs-Doublet Model (A2HDM) describes a particular way of enlarging the scalar sector of the Standard Model, with a second Higgs doublet which is aligned to first the one in flavour space. This implies the absence of flavour-changing neutral currents at tree level and the presence of three complex parameters. Within this general approach, we analyze the charged Higgs phenomenology, including CP asymmetries in the K and B systems.
The unified minimal supersymmetric model with large Yukawa couplings
Rattazzi, Riccardo
1996-01-01
The consequences of assuming the third-generation Yukawa couplings are all large and comparable are studied in the context of the minimal supersymmetric extension of the standard model. General aspects of the RG evolution of the parameters, theoretical constraints needed to ensure proper electroweak symmetry breaking, and experimental and cosmological bounds on low-energy parameters are presented. We also present complete and exact semi-analytic solutions to the 1-loop RG equations. Focusing on SU(5) or SO(10) unification, we analyze the relationship between the top and bottom masses and the superspectrum, and the phenomenological implications of the GUT conditions on scalar masses. Future experimental measurements of the superspectrum and of the strong coupling will distinguish between various GUT-scale scenarios. And if present experimental knowledge is to be accounted for most naturally, a particular set of predictions is singled out.
Perturbative unification of gauge couplings in supersymmetric E6 models
Cho, Gi-Chol; Maru, Nobuhito; Yotsutani, Kaho
2016-07-01
We study gauge coupling unification in supersymmetric (SUSY) E6 models where an additional U(1)‧ gauge symmetry is broken near the TeV scale and a number of exotic matter fields from the 27 representations have O(TeV) mass. Solving the two-loop renormalization group equations (RGE) of gauge couplings and a kinetic mixing coupling between the U(1)‧ and U(1)Y gauge fields, we find that the gauge couplings fall into the non-perturbative regime below the grand unified theories (GUT) scale. We examine threshold corrections on the running of gauge couplings from both light and heavy ( ˜ GUT scale) particles and show constraints on the size of corrections to achieve the perturbative unification of gauge couplings.
Supersymmetric models with tan$\\beta$ close to unity
Ananthanarayan, B; Shafi, Qaisar
1994-01-01
Within the framework of supersymmetric grand unification, estimates of the $b$ quark mass based on the asymptotic relation $m_b \\simeq m_\\tau$ single out the region with $\\tan\\beta$ close to unity, particularly if $m_t(m_t) \\stackrel{_<}{_\\sim} 170\\ GeV$. We explore the radiative breaking of the electroweak symmetry and the associated sparticle and higgs spectroscopy in models with $1 < \\tan\\beta \\stackrel{_<}{_\\sim} 1.6$. The lightest scalar higgs is expected to have a mass below $100\\ GeV$, while the remaining four higgs masses exceed $300\\ GeV$. The lower bounds on some of the sparticle masses are within the range of LEP 200.
Fuks, Benjamin; Herrmann, Björn; Klasen, Michael
2009-03-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Fuks, B; Klasen, M
2008-01-01
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large "collider-friendly" regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Hermann-Herder-Strasse 3, D-79106 Freiburg im Breisgau (Germany); Herrmann, Bjoern [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France); Klasen, Michael [Laboratoire de Physique Subatomique et de Cosmologie, Universite Joseph Fourier/CNRS-IN2P3/INPG, 53 Avenue des Martyrs, F-38026 Grenoble (France)], E-mail: klasen@lpsc.in2p3.fr
2009-03-21
We present an extensive analysis of gauge-mediated supersymmetry breaking models with minimal and non-minimal flavour violation. We first demonstrate that low-energy, precision electroweak, and cosmological constraints exclude large 'collider-friendly' regions of the minimal parameter space. We then discuss various possibilities how flavour violation, although naturally suppressed, may still occur in gauge-mediation models. The introduction of non-minimal flavour violation at the electroweak scale is shown to relax the stringent experimental constraints, so that benchmark points, that are also cosmologically viable, can be defined and their phenomenology, i.e. squark and gaugino production cross sections with flavour violation, at the LHC can be studied.
An MCMC study of general squark flavour mixing in the MSSM
Herrmann, Björn; Fuks, Benjamin; Mahmoudi, Farvah; O'Leary, Ben; Porod, Werner; Sekmen, Sezen; Strobbe, Nadja
2015-01-01
We present an extensive study of non-minimally flavour violating (NMFV) terms in the Lagrangian of the Minimal Supersymmetric Standard Model (MSSM). We impose a variety of theoretical and experimental constraints and perform a detailed scan of the parameter space by means of a Markov Chain Monte-Carlo (MCMC) setup. This represents the first study of several non-zero flavour-violating elements within the MSSM. We present the results of the MCMC scan with a special focus on the flavour-violating parameters. Based on these results, we define benchmark scenarios for future studies of NMFV effects at the LHC.
An MCMC Study of General Squark Flavour Mixing in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Björn [Annecy, LAPTH; De Causmaecker, Karen [Intl. Solvay Inst., Brussels; Fuks, Benjamin [UPMC, Paris (main); Mahmoudi, Farvah [Lyon, Ecole Normale Superieure; O' Leary, Ben [Wurzburg U.; Porod, Werner [Wurzburg U.; Sekmen, Sezen [Kyungpook Natl. U.; Strobbe, Nadja [Fermilab
2015-10-05
We present an extensive study of non-minimally flavour violating (NMFV) terms in the Lagrangian of the Minimal Supersymmetric Standard Model (MSSM). We impose a variety of theoretical and experimental constraints and perform a detailed scan of the parameter space by means of a Markov Chain Monte-Carlo (MCMC) setup. This represents the first study of several non-zero flavour-violating elements within the MSSM. We present the results of the MCMC scan with a special focus on the flavour-violating parameters. Based on these results, we define benchmark scenarios for future studies of NMFV effects at the LHC.
R-Parity Conserving Supersymmetric Extension of the Zee Model
Kanemura, Shinya; Sugiyama, Hiroaki
2015-01-01
We extend the Zee model, where tiny neutrino masses are generated at the one loop level, to a supersymmetric model with R-parity conservation. It is found that the neutrino mass matrix can be consistent with the neutrino oscillation data thanks to the nonholomorphic Yukawa interaction generated via one-loop diagrams of sleptons. We find a parameter set of the model, where in addition to the neutrino oscillation data, experimental constraints from the lepton flavor violating decays of charged leptons and current LHC data are also satisfied. In the parameter set, an additional CP-even neutral Higgs boson other than the standard-model-like one, a CP-odd neutral Higgs boson, and two charged scalar bosons are light enough to be produced at the LHC and future lepton colliders. If the lightest charged scalar bosons are mainly composed of the SU(2)_L-singlet scalar boson in the model, they would decay into e nu and mu nu with 50% of a branching ratio for each. In such a case, the relation among the masses of the char...
Impact of squark flavour violation on neutralino dark matter
Energy Technology Data Exchange (ETDEWEB)
Herrmann, Bjoern [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Le Boulc' h, Quentin [Univ. Joseph Fourier/CNRS-IN2P3/INPG, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie
2011-06-15
We discuss the possibility of new sources of flavour violation in the squark sector of supersymmetric models in the context of the dark matter relic density. We show that the corresponding non-minimal flavour violation terms in the squark mass matrices can have an important impact on the thermally averaged (co)annihilation cross section of the neutralino, and in consequence can modify its predicted relic density. We discuss in detail the relevant effects and present a numerical study of neutralino annihilation and coannihilation in this context. We also comment on the LHC phenomenology of the corresponding scenarios. (orig.)
Impact of squark flavour violation on neutralino dark matter
Herrmann, Björn; Boulc'h, Quentin Le
2011-01-01
We discuss the possibility of new sources of flavour violation in the squark sector of supersymmetric models in the context of the dark matter relic density. We show that the corresponding non-minimal flavour violation terms in the squark mass matrices can have an important impact on the thermally averaged (co)annihilation cross section of the neutralino, and in consequence can modify its predicted relic density. We discuss in detail the relevant effects and present a numerical study of neutralino annihilation and coannihilation in this context. We also comment on the LHC phenomenology of the corresponding scenarios.
TeV-scale supersymmetric standard model and brane world
Energy Technology Data Exchange (ETDEWEB)
Kakushadze, Zurab E-mail: zurab@string.harvard.edu
1999-07-12
Recently we proposed a TeV-scale Supersymmetric Standard Model in which the gauge coupling unification is as precise (at one loop) as in the MSSM, and occurs in the TeV range. One of the key ingredients of this model is the presence of new states neutral under SU(3){sub c}xSU(2){sub w} but charged under U(1){sub Y} whose mass scale is around that of the electroweak Higgs doublets. In this paper we show that the introduction of these states allows us to gauge novel anomaly free discrete (as well as continuous) symmetries (similar to 'lepton' and 'baryon' numbers) which suppress dangerous higher dimensional operators and stabilize the proton. Furthermore, the mass hierarchy between the up and down quarks (e.g. t versus b) can be explained without appealing to large tan {beta}, and the {mu}-term for the electroweak Higgs doublets (as well as for the new states) can be generated. We also discuss various phenomenological implications of our model which lead to predictions testable in the present or near future collider experiments. In particular, we point out that signatures of scenarios with high versus low unification (string) scale might be rather different. This suggests the possibility that the collider experiments may distinguish between these scenarios even without a direct production of heavy Kaluza-Klein or string states.
Dark matter candidates in the constrained Exceptional Supersymmetric Standard Model
Athron, P; Underwood, S J; White, M J
2016-01-01
The Exceptional Supersymmetric Standard Model (E$_6$SSM) is a low energy alternative to the MSSM with an extra $U(1)$ gauge symmetry and three generations of matter filling complete 27-plet representations of $E_6$. This provides both new D and F term contributions that raise the Higgs mass at tree level, and a compelling solution to the $\\mu$-problem of the MSSM by forbidding such a term with the extra $U(1)$ symmetry. Instead, an effective $\\mu$-term is generated from the VEV of an SM singlet which breaks the extra $U(1)$ symmetry at low energies, giving rise to a massive $Z^\\prime$. We explore the phenomenology of the constrained version of this model (cE$_6$SSM) in substantially more detail than has been carried out previously, performing a ten dimensional scan that reveals a large volume of viable parameter space. We classify the different mechanisms for generating the measured relic density of dark matter found in the scan, including the identification of a new mechanism involving mixed bino/inert-Higgs...
Ilinskii, K N; Melezhik, V S; Ilinski, K N; Kalinin, G V; Melezhik, V V
1994-01-01
We revise the sequences of SUSY for a cyclic adiabatic evolution governed by the supersymmetric quantum mechanical Hamiltonian. The condition (supersymmetric adiabatic evolution) under which the supersymmetric reductions of Berry (nondegenerated case) or Wilczek-Zee (degenerated case) phases of superpartners are taking place is pointed out. The analogue of Witten index (supersymmetric Berry index) is determined. As the examples of suggested concept of supersymmetric adiabatic evolution the Holomorphic quantum mechanics on complex plane and Meromorphic quantum mechanics on Riemann surface are considered. The supersymmetric Berry indexes for the models are calculated.
WIEDEMANN, A; MULLERKIRSTEN, HJW
1993-01-01
Considering the N = 1 supersymmetry transformations of supersymmetric nonlinear sigma models in 1 + 1 dimensions we construct explicitly conserved Noether currents associated with supersymmetry transformations and derive the associated conserved charges in terms of the basic fields. We compare this
BETHE ANSATZ FOR SUPERSYMMETRIC MODEL WITH?Uq[osp( 1｜2 ) ] SYMMETRY
Institute of Scientific and Technical Information of China (English)
杨文力
2001-01-01
Using the algebraic Bethe ansatz method, we obtain the eigenvalues of the transfer matrix of the supersymmetric model with Uq[osp(1｜2)] symmetry under periodic boundary and twisted boundary conditions.
Solving Two Kinds of JC Models Relating to Two-Photon Process by Supersymmetric Transformation
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; Wei-Jun
2004-01-01
We propose two kinds of new Jaynes Cummings models relating to two-photon process by using the supersymmetric unitary transformation. The corresponding energy eigenvalues and eigenvectors are obtained.
Tomino, Dan
2010-01-01
1-loop vacuum energies of (fuzzy) spacetimes from a supersymmetric reduced model with Filippov 3-algebra are discussed. A_{2,2} algebra, Nambu-Poisson algebra in flat spacetime, and a Lorentzian 3-algebra are examined as 3-algebras.
New Constraints from Electric Dipole Moments on Parameters of the Supersymmetric SO(10) Model
Khriplovich, I. B.; Zyablyuk, K. N.
1996-01-01
We calculate the chromoelectric dipole moment (CEDM) of d- and s-quark in the supersymmetric SO(10) model. CEDM is more efficient than quark electric dipole moment (EDM), in inducing the neutron EDM. New, strict constraints on parameters of the supersymmetric SO(10) model follow in this way from the neutron dipole moment experiments. As strict bounds are derived from the upper limits on the dipole moment of odd isotope of mercury.
Neutralino mass bounds in the next-to-minimal supersymmetric standard model
Franke, F; Bartl, Alfred
1994-01-01
We analyze the experimental data from the search for new particles at LEP 100 and obtain mass bounds for the neutralinos of the Next--To--Minimal Supersymmetric Standard Model (NMSSM). We find that for \\tan\\beta \\gsim 5.5 a massless neutralino is still possible, while the lower mass bound for the second lightest neutralino corresponds approximately to that for the lightest neutralino in the Minimal Supersymmetric Standard Model (MSSM).
Spin Measurements in Supersymmetric Models at the LHC
Lester, C G; The ATLAS collaboration
2009-01-01
I have been asked to talk about the prospects for Spin measurements at the LHC in relation to supersymmetric models. Post 2005 (i.e. post PHYS-2004-017 and ATL-PHYS-PUB-2005-023), the only such ATLAS work with PUB approval is ATL-PHYS-PUB-2007-004. As such, I am taking a very broad remit with this talk - and will mainly be talking about the above three works, and putting them in the context of prospective ideas for spin measurements at LHC experiments in general. My aims are to (1) to EDUCATE (to describe the sorts of methods that have been proposed both within ATLAS and outside to measure spins at the LHC) and (2) to INFORM the audience as to what has already been done in ATLAS. I will give due emphasis and credit to the works (PHYS-2004-017, ATL-PHYS-PUB-2005-023 and ATL-PHYS-PUB-2007-004).
Flat manifold leptogenesis in the supersymmetric standard model
Senami, M; Senami, Masato; Yamamoto, Katsuji
2002-01-01
Flat manifold leptogenesis a la Affleck-Dine is investigated with the slepton and Higgs fields, L, H_u, H_d, in the supersymmetric standard model. The multi-dimensional motion of these scalar fields is realized in the case that the L H_u and H_u H_d directions are comparably flat with the relevant non-renormalizable superpotential terms. Soon after the inflation, the lepton number asymmetry appears to fluctuate due to this multi-dimensional motion involving certain CP violating phases. Then, it is fixed to some significant non-zero value for the successful baryogenesis when the scalar fields begin to oscillate with rotating phases driven by the quartic coupling from the superpotential term h_e L H_d e^c with h_e \\sim 10^-5 - 10^-3. The Hubble parameter H_osc at this epoch for the completion of leptogenesis is much larger than the gravitino mass m_3/2 \\sim 10^3 GeV. The thermal terms may even play a cooperative role in this scenario of early leptogenesis. The lightest neutrino mass can be 10^-4 eV, if the rehe...
On Newton's law in supersymmetric braneworld models
Energy Technology Data Exchange (ETDEWEB)
Palma, G.A.
2007-05-15
We study the propagation of gravitons within 5-D supersymmetric braneworld models with a bulk scalar field. The setup considered here consists of a 5-D bulk spacetime bounded by two 4-D branes localized at the fixed points of an S{sup 1}/Z{sub 2} orbifold. There is a scalar field {phi} in the bulk which, provided a superpotential W({phi}), determines the warped geometry of the 5-D spacetime. This type of scenario is common in string theory, where the bulk scalar field {phi} is related to the volume of small compact extra dimensions. We show that, after the moduli are stabilized by supersymmetry breaking terms localized on the branes, the only relevant degrees of freedom in the bulk consist of a 5-D massive spectrum of gravitons. Then we analyze the gravitational interaction between massive bodies localized at the positive tension brane mediated by these bulk gravitons. It is shown that the Newtonian potential describing this interaction picks up a non-trivial contribution at short distances that depends on the shape of the superpotential W({phi}). We compute this contribution for dilatonic braneworld scenarios W({phi})=e{sup {alpha}}{sup {phi}} (where {alpha} is a constant) and discuss the particular case of 5-D Heterotic M-theory: It is argued that a specific footprint at micron scales could be observable in the near future. (orig.)
Mixed axion/neutralino cold dark matter in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Baer, Howard; Lessa, Andre; Rajagopalan, Shibi; Sreethawong, Warintorn, E-mail: baer@nhn.ou.edu, E-mail: lessa@nhn.ou.edu, E-mail: shibi@nhn.ou.edu, E-mail: wstan@nhn.ou.edu [Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)
2011-06-01
We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter (a Z-tilde {sub 1} CDM). The mixed a Z-tilde {sub 1} CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos (ã) to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as ∼ (f{sub a}/N)/m{sub ã}{sup 3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In a Z-tilde {sub 1} CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.
The Interplay Between GUT and Flavour Symmetries in a Pati-Salam x S4 Model
de Adelhart Toorop, Reinier; Merlo, Luca
2010-01-01
Both Grand Unified symmetries and discrete flavour symmetries are appealing ways to describe apparent structures in the gauge and flavour sectors of the Standard Model. Both symmetries put constraints on the high energy behaviour of the theory. This can give rise to unexpected interplay when building models that possess both symmetries. We investigate on the possibility to combine a Pati-Salam model with the discrete flavour symmetry $S_4$ that gives rise to quark-lepton complementarity. Under appropriate assumptions at the GUT scale, the model reproduces fermion masses and mixings both in the quark and in the lepton sectors. We show that in particular the Higgs sector and the running Yukawa couplings are strongly affected by the combined constraints of the Grand Unified and family symmetries. This in turn reduces the phenomenologically viable parameter space, with high energy mass scales confined to a small region and some parameters in the neutrino sector slightly unnatural. In the allowed regions, we can r...
Running Effects on Lepton Mixing Angles in Flavour Models with Type I Seesaw
Lin, Y; Paris, A
2009-01-01
We study renormalization group running effects on neutrino mixing patterns when a (type I) seesaw model is implemented by suitable flavour symmetries. We are particularly interested in mass-independent mixing patterns to which the widely studied tribimaximal mixing pattern belongs. In this class of flavour models, the running contribution from neutrino Yukawa coupling, which is generally dominant at energies above the seesaw threshold, can be absorbed by a small shift on neutrino mass eigenvalues leaving mixing angles unchanged. Consequently, in the whole running energy range, the change in mixing angles is due to the contribution coming from charged lepton sector. Subsequently, we analyze in detail these effects in an explicit flavour model for tribimaximal neutrino mixing based on an A4 discrete symmetry group. We find that for normally ordered light neutrinos, the tribimaximal prediction is essentially stable under renormalization group evolution. On the other hand, in the case of inverted hierarchy, the d...
Super-Zeeman Embedding Models on N-Supersymmetric World-Lines
Doran, C F; Gates, S J Jr; Hübsch, T; Iga, K M; Landweber, G D
2008-01-01
We construct a model of an electrically charged magnetic dipole with arbitrary N-extended world-line supersymmetry, which exhibits a supersymmetric Zeeman effect. By including supersymmetric constraint terms, the ambient space of the dipole may be tailored into an algebraic variety, and the supersymmetry broken for almost all parameter values. The so exhibited obstruction to supersymmetry breaking refines the standard one, based on the Witten index alone.
Supersymmetry, the flavour puzzle and rare B decays
Energy Technology Data Exchange (ETDEWEB)
Straub, David Michael
2010-07-14
The gauge hierarchy problem and the flavour puzzle belong to the most pressing open questions in the Standard Model of particle physics. Supersymmetry is arguably the most popular framework of physics beyond the Standard Model and provides an elegant solution to the gauge hierarchy problem; however, it aggravates the flavour puzzle. In the first part of this thesis, I discuss several approaches to address the flavour puzzle in the minimal supersymmetric extension of the Standard Model and experimental tests thereof: supersymmetric grand unified theories with a unification of Yukawa couplings at high energies, theories with minimal flavour violation and additional sources of CP violation and theories with gauge mediation of supersymmetry breaking and a large ratio of Higgs vacuum expectation values. In the second part of the thesis, I discuss the phenomenology of two rare B meson decay modes which are promising probes of physics beyond the Standard Model: The exclusive B {yields} K{sup *}l{sup +}l{sup -} decay, whose angular decay distribution will be studied at LHC and gives access to a large number of observables and the b{yields}s{nu}anti {nu} decays, which are in the focus of planned high-luminosity Super B factories. I discuss the predictions for these observables in the Standard Model and their sensitivity to New Physics. (orig.)
Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1
Blanke, Monika; Recksiegel, Stefan
2016-01-01
The Littlest Higgs Model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. We present a new analysis of quark observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare $K$ and $B$ decays are still allowed to depart from their SM values. This includes $K^+\\to\\pi^+\
Deppisch, Frank F; Patra, Sudhanwa; Sahu, Narendra; Sarkar, Utpal
2014-01-01
We propose a class of left-right symmetric models (LRSMs) with spontaneous D parity breaking, where SU(2)_R breaks at the TeV scale while discrete left-right symmetry breaks around 10^9 GeV. By embedding this framework in a non-supersymmetric SO(10) Grand Unified Theory (GUT) with Pati-Salam symmetry as the highest intermediate breaking step, we obtain g_R / g_L ~ 0.6 between the right- and left-handed gauge couplings at the TeV scale. This leads to a suppression of beyond the Standard Model phenomena induced by the right-handed gauge coupling. Here we focus specifically on the consequences for neutrinoless double beta decay, low energy lepton flavour violation and LHC signatures due to the suppressed right handed currents. Interestingly, the reduced g_R allows us to interpret an excess of events observed recently in the range of 1.9 TeV to 2.4 TeV by the CMS group at the LHC as the signature of a right handed gauge boson in LRSMs with spontaneous D parity breaking. Moreover, the reduced right-handed gauge co...
Lepton Flavour Violation Experiments
Directory of Open Access Journals (Sweden)
F. Cei
2014-01-01
Full Text Available Lepton Flavour Violation in the charged lepton sector (CLFV is forbidden in the Minimal Standard model and strongly suppressed in extensions of the model to include finite neutrino mixing. On the other hand, a wide class of Supersymmetric theories, even coupled with Grand Unification models (SUSY-GUT models, predict CLFV processes at a rate within the reach of new experimental searches operated with high resolution detectors at high intensity accelerators. As the Standard model background is negligible, the observation of one or more CLFV events would provide incontrovertible evidence for physics beyond Standard model, while a null effect would severely constrain the set of theory parameters. Therefore, a big experimental effort is currently (and will be for incoming years accomplished to achieve unprecedented sensitivity on several CLFV processes. In this paper we review past and recent results in this research field, with focus on CLFV channels involving muons and tau's. We present currently operating experiments as well as future projects, with emphasis laid on how sensitivity enhancements are accompanied by improvements on detection techniques. Limitations due to systematic effects are also discussed in detail together with the solutions being adopted to overcome them.
A flavour of family symmetries in a family of flavour models
Adelhart Toorop, Reinier de
2012-01-01
The Standard Model of Particle Physics has many (19) free parameters, most of which (13) are related to the masses and mixing angles of the elementary fermions (quarks and leptons). If we include neutrino masses, even 22 of the 28 parameters are related to the fermion mass sector. Although these par
Stein, E; Mankiewicz, L; Schäfer, A
1998-01-01
We analyze power corrections to flavour singlet deep inelastic scattering structure functions in the framework of the infrared renormalon model. Our calculations, together with previous results for the non-singlet contribution, allow to model the x-dependence of higher twist corrections to F_2, F_L and g_1 in the whole x domain.
submitter Flavour-changing neutral currents making and breaking the standard model
Archilli, F; Owen, P; Petridis, K A
2017-01-01
The standard model of particle physics is our best description yet of fundamental particles and their interactions, but it is known to be incomplete. As yet undiscovered particles and interactions might exist. One of the most powerful ways to search for new particles is by studying processes known as flavour-changing neutral current decays, whereby a quark changes its flavour without altering its electric charge. One example of such a transition is the decay of a beauty quark into a strange quark. Here we review some intriguing anomalies in these decays, which have revealed potential cracks in the standard model—hinting at the existence of new phenomena.
Hamiltonian reduction of the U$_{EM}$(1) gauged three flavour WZW model
Paschalis, J E
1995-01-01
The three-flavour Wess-Zumino model coupled to electromagnetism is treated as a constraint system using the Faddeev-Jackiw method. Expanding into series of powers of the Goldstone boson fields and keeping terms up to second and third order we obtain Coulomb-gauge hamiltonian densities.
Flavour Symmetries and Kahler Operators
Espinosa, J R
2004-01-01
Any supersymmetric mechanism to solve the flavour puzzle would generate mixing both in the superpotential Yukawa couplings and in the Kahler potential. In this paper we study, in a model independent way, the impact of the nontrivial structure of the Kahler potential on the physical mixing matrix, after kinetic terms are canonically normalized. We undertake this analysis both for the quark sector and the neutrino sector. For the quark sector, and in view of the experimental values for the masses and mixing angles, we find that the effects of canonical normalization are subdominant. On the other hand, for the leptonic sector we obtain different conclusions depending on the spectrum of neutrinos. In the hierarchical case we obtain similar conclusion as in the quark sector, whereas in the degenerate and inversely hierarchical case, important changes in the mixing angles could be expected.
Searching for beyond the minimal supersymmetric standard model at the laboratory and in the sky
Energy Technology Data Exchange (ETDEWEB)
Kim, Ju Min
2010-09-15
We study the collider signals as well as Dark Matter candidates in supersymmetric models. We show that the collider signatures from a supersymmetric Grand Unification model based on the SO(10) gauge group can be distinguishable from those from the (constrained) minimal supersymmetric Standard Model, even though they share some common features. The N=2 supersymmetry has the characteristically distinct phenomenology, due to the Dirac nature of gauginos, as well as the extra adjoint scalars. We compute the cold Dark Matter relic density including a class of one-loop corrections. Finally, we discuss the detectability of neutralino Dark Matter candidate of the SO(10) model by the direct and indirect Dark Matter search experiments. (orig.)
Implications of Lorentz symmetry violation on a 5D supersymmetric model
García-Aguilar, J. D.; Pérez-Lorenzana, A.
2017-04-01
Field models with n extra spatial dimensions have a larger SO(1, 3 + n) Lorentz symmetry which is broken down to the standard SO(1, 3) four-dimensional one by the compactification process. By considering Lorentz violating operators in a 5D supersymmetric Wess-Zumino model, which otherwise conserve the standard four-dimensional Poincaré invariance, we show that supersymmetry (SUSY) can be restored upon a simple deformation of the supersymmetric transformations. However, SUSY is not preserved in the effective 4D theory that arises after compactification when the 5D Lorentz violating operators do not preserve Z2 : y →-y bulk parity. Our mechanism unveils a possible connection among Lorentz violation and the Scherk-Schwarz mechanism. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.
Implications of Lorentz symmetry violation on a 5D supersymmetric model
García-Aguilar, J D
2016-01-01
Field models with $n$ extra spatial dimensions have a larger $SO(1,3+n)$ Lorentz symmetry which is broken down to the standard $SO(1,3)$ four dimensional symmetry by the compactification process. By considering all Lorentz violating operators in a $5D$ supersymmetric Wess-Zumino mo\\-del, which otherwise conserve standard Poincare invariance in four dimensions, we show that Supersymmetry can be restored upon a simple deformation of the supersymmetric transformations. However, Supersymmetry shall not be preserved in the effective $4D$ theory that arises after compactification when the $5D$ Lorentz violating operators do not preserve $Z_2: y\\rightarrow -y$ bulk parity. We also show that parity preserving models, on the other hand, do provide well defined supersymmetric KK models.
Successful N{sub 2} leptogenesis with flavour coupling effects in realistic unified models
Energy Technology Data Exchange (ETDEWEB)
Bari, Pasquale Di; King, Stephen F. [Department of Physics and Astronomy, University of Southampton,Highfield, Southampton SO17 1BJ (United Kingdom)
2015-10-02
In realistic unified models involving so-called SO(10)-inspired patterns of Dirac and heavy right-handed (RH) neutrino masses, the lightest right-handed neutrino N{sub 1} is too light to yield successful thermal leptogenesis, barring highly fine tuned solutions, while the second heaviest right-handed neutrino N{sub 2} is typically in the correct mass range. We show that flavour coupling effects in the Boltzmann equations may be crucial to the success of such N{sub 2} dominated leptogenesis, by helping to ensure that the flavour asymmetries produced at the N{sub 2} scale survive N{sub 1} washout. To illustrate these effects we focus on N{sub 2} dominated leptogenesis in an existing model, the A to Z of flavour with Pati-Salam, where the neutrino Dirac mass matrix may be equal to an up-type quark mass matrix and has a particular constrained structure. The numerical results, supported by analytical insight, show that in order to achieve successful N{sub 2} leptogenesis, consistent with neutrino phenomenology, requires a “flavour swap scenario” together with a less hierarchical pattern of RH neutrino masses than naively expected, at the expense of some mild fine-tuning. In the considered A to Z model neutrino masses are predicted to be normal ordered, with an atmospheric neutrino mixing angle well into the second octant and the Dirac phase δ≃20{sup ∘}, a set of predictions that will be tested in the next years in neutrino oscillation experiments. Flavour coupling effects may be relevant for other SO(10)-inspired unified models where N{sub 2} leptogenesis is necessary.
Radiative Effects and Electroweak Symmetry Breaking in a Supersymmetric Preon Model
Kim, Jongbae
We construct the low energy effective theory of composite quarks, leptons, and Higgs bosons for a supersymmetric preon model and study the effects of renormalization-group based radiative corrections. The study on the evolution of scalar masses for avoiding color and charge breakings leads us to conclude that Yukawa couplings are bounded from above. The implementation of electroweak symmetry breaking requires that only the purely dynamical symmetry breaking should be needed for the model, but the combined scheme of dynamical and radiative symmetry breaking as well as the purely radiative symmetry breaking scheme be disfavored. Our analysis of (mb)/(m_τ ) including radiative effects shows that, should a discrepancy be found between the observed and the theoretical value of (mb)/(m_τ ) after experimental determination of supersymmetric particle masses, it would imply that the complete quark-lepton universality in the supersymmetric preon model does not hold either for the Yukawa couplings, or for the condensates, or for both.
Supersymmetric O(N) models in d=3 with functional renormalization group (FRG) methods
Energy Technology Data Exchange (ETDEWEB)
Hellwig, Tobias; Heilmann, Marianne; Wipf, Andreas [Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universit Jena, Max-Wien-Platz 1, D-07743 Jena (Germany); Lithim, Daniel F. [Department of Physics and Astronomy, University of Sussex, BN1 9QH, Brighton (United Kingdom)
2013-07-01
While a lot of results concerning scalar O(N) models are known, much less is known for supersymmetric O(N) models. The 1/N expansions were examined in some earlier works with the help of the Hartree-Fock approximation. In this talk results for all N are presented. These results were obtained by using FRG methods and a manifest supersymmetric regulator. For finite N fixed point solutions and critical exponents are obtained. We comment on effects of different truncations in the effective average action. Starting point is the LPA approximation. In a second step a wave function renormalization is included and deviations from LPA solution are discussed. This is done for a field dependent and field independent form of the wave function renormalization. This knowledge could also prove to be helpful for further FRG studies of supersymmetric theories.
Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory
Lee, Bum-Hoon; Yang, Hyun Seok
2016-01-01
We study localization of five-dimensional supersymmetric $U(1)$ gauge theory on $\\mathbb{S}^3 \\times \\mathbb{R}_{\\theta}^{2}$ where $\\mathbb{R}_{\\theta}^{2}$ is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric $U(N \\to \\infty)$ gauge theory on $\\mathbb{S}^3$ using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space $\\mathbb{R}_{\\theta}^{2}$ allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC $U(1)$ gauge theory. The result shows a rich duality between NC $U(1)$ gauge theories and large $N$ matrix models in various dimensions.
Astrophysical aspects of fermion number violation in the supersymmetrical standard model
Manka, R
1993-01-01
The model of the supersymmetrical ball in the supersymmetrical standard model with additional global U(1) fermion symmetry is presented. We show that the supersymmetry breaking scale ( R-parity ), the global U(1) fermion symmetry scale and the electroweak symmetry breaking scale are strictly connected to each other. The realistic ball with $M \\sim 10^5 - 10^9 M_{\\odot} $ and the radius $ R \\sim 10^{12} - 10^{14} cm $ is obtained. Inside the ball all full symmetries are restored. The ball is stabilized by superpartners and right neutrinos which are massless inside.
The custodially protected Randall-Sundrum model. Theoretical aspects and flavour phenomenology
Energy Technology Data Exchange (ETDEWEB)
Blanke, Monika
2009-07-24
Models with a warped extra dimension, so-called Randall-Sundrum models, provide an appealing solution to the gauge and flavour hierarchy problems of the Standard Model. After introducing the theoretical basics of such models, we concentrate on a specific model whose symmetry structure is extended to protect the T parameter and the Zb{sub L} anti b{sub L} coupling from large corrections. We introduce the basic action and discuss in detail effects of electroweak symmetry breaking and the flavour structure of the model. Then we analyse meson-antimeson mixing and rare decays that are affected by new tree level contributions from the Kaluza-Klein modes of the gauge bosons and from the Z boson in an important manner. After deriving analytic expressions for the most important K and B physics observables, we perform a global numerical analysis of the new effects in the model in question. We confirm the recent findings that a stringent constraint on the model is placed by CP-violation in K{sup 0} - anti K{sup 0} mixing. However, even for Kaluza-Klein particles in the reach of the LHC an agreement with all available data can be obtained without significant fine-tuning. We find possible large effects in either CP-violating effects in the B{sub s} - anti B{sub s} system or in the rare K decays, but not simultaneously. In any case the deviations from the Standard Model predictions in the rare B decays are small and difficult to measure. The specific pattern of new flavour effects allows to distinguish this model from other New Physics frameworks, which we demonstrate explicitly for the case of models with Minimal Flavour Violation and for the Littlest Higgs model with T-parity. (orig.)
Analysis of Leptogenesis in Supersymmetric Triplet Seesaw Model
Chun, E J
2007-01-01
We analyze leptogenesis in a supersymmetric triplet seesaw scenario that explains the observed neutrino masses, adopting a phenomenological approach where the decay branching ratios of the triplets and the amount of CP--violation in its different decay channels are assumed as free parameters. We find that the solutions of the relevant Boltzmann equations lead to a rich phenomenology, in particular much more complex compared to the non--supersymmetric case, mainly due to the presence of an additional Higgs doublet. Several unexpected and counter--intuitive behaviors emerge from our analysis: the amount of CP violation in one of the decay channels can prove to be be irrelevant to the final lepton asymmetry, leading to successful leptogenesis even in scenarios with a vanishing CP violation in the leptonic sector; gauge annihilations can be the dominant effect in the determination of the evolution of the triplet density up to very high values of its mass, leading anyway to a sizeable final lepton asymmetry, which...
Boundary Correlation Functions of the gl(1|1) Supersymmetric Vertex Model
Institute of Scientific and Technical Information of China (English)
ZHANG Chen-Jun; ZHOU Jian-Hua; YUE Rui-Hong
2008-01-01
The gl(1|1) supersymmetric vertex model with domain wall boundary conditions (DWBC) on an N×N square lattice is considered.We derive the reduction formulae for the one-point boundary correlation functions of the model.The determinant representation for the boundary correlation functions is also obtained.
Barranco, Alejandro
2012-01-01
We implement relativistic BCS superconductivity in N=1 supersymmetric field theories with a U(1)_R symmetry. The simplest model contains two chiral superfields with a Kahler potential modified by quartic terms. We study the phase diagram of the gap as a function of the temperature and the specific heat. The superconducting phase transition turns out to be first order, due to the scalar contribution to the one-loop potential. By virtue of supersymmetry, the critical curves depend logarithmically with the UV cutoff, rather than quadratically as in standard BCS theory. We comment on the difficulties in having fermion condensates when the chemical potential is instead coupled to a baryonic U(1)_B current. We also discuss supersymmetric models of BCS with canonical Kahler potential constructed by "integrating-in" chiral superfields.
Quinto, A. G.; Ferrari, A. F.; Lehum, A. C.
2016-06-01
In this work, we investigate the consequences of the Renormalization Group Equation (RGE) in the determination of the effective superpotential and the study of Dynamical Symmetry Breaking (DSB) in an N = 1 supersymmetric theory including an Abelian Chern-Simons superfield coupled to N scalar superfields in (2 + 1) dimensional spacetime. The classical Lagrangian presents scale invariance, which is broken by radiative corrections to the effective superpotential. We calculate the effective superpotential up to two-loops by using the RGE and the beta functions and anomalous dimensions known in the literature. We then show how the RGE can be used to improve this calculation, by summing up properly defined series of leading logs (LL), next-to-leading logs (NLL) contributions, and so on... We conclude that even if the RGE improvement procedure can indeed be applied in a supersymmetric model, the effects of the consideration of the RGE are not so dramatic as it happens in the non-supersymmetric case.
Critical behavior of supersymmetric O(N) models in the large-N limit
Litim, Daniel F; Synatschke-Czerwonka, Franziska; Wipf, Andreas
2011-01-01
We derive a supersymmetric renormalization group (RG) equation for the scale-dependent superpotential of the supersymmetric O(N) model in three dimensions. For a supersymmetric optimized regulator function we solve the RG equation for the superpotential exactly in the large-N limit. The fixed-point solutions are classified by an exactly marginal coupling. In the weakly coupled regime there exists a unique fixed point solution, for intermediate couplings we find two separate fixed point solutions and in the strong coupling regime no globally defined fixed-point potentials exist. We determine the exact critical exponents both for the superpotential and the associated scalar potential. Finally we relate the high-temperature limit of the four-dimensional theory to the Wilson-Fisher fixed point of the purely scalar theory.
Modelling the effect of oil/fat content in food systems on flavour absorption by LLDPE.
Dekker, M.; Willige, van R.W.G.; Linssen, J.P.H.; Voragen, A.G.J.
2003-01-01
One of the phenomena in food packaging interactions is flavour absorption. Absorption of flavour compounds from food products into food-packaging materials can result in loss of flavour compounds or an unbalance in the flavour profile changing a product's quality. The food matrix influences the amou
The Boundary States of the q-Deformed Supersymmetric t-J Model with a Boundary
Institute of Scientific and Technical Information of China (English)
YANG Wen-Li; ZHEN Yi
2001-01-01
The q-deformed supersymmetric t J model on a semi-infinite lattice is diagonalized by using the level-one vertex operators of the quantum affine superalgebra Uq[sl(2|1)]. We give the bosonization of the boundary states.``
The Higgs Sector and CoGeNT/DAMA-Like Dark Matter in Supersymmetric Models
Gunnion, John F
2010-01-01
Recent data from CoGeNT and DAMA are roughly consistent with a very light dark matter particle with $m\\sim 4-10\\gev$ and spin-independent cross section of order $\\sigma_{SI} \\sim (1-3)\\times 10^{-4}\\pb$. An important question is whether these observations are compatible with supersymmetric models obeying $\\Omega h^2\\sim 0.11$ without violating existing collider constraints and precision measurements. In this talk, I review the fact the the Minimal Supersymmetric Model allows insufficient flexibility to achieve such compatibility, basically because of the highly constrained nature of the MSSM Higgs sector in relation to LEP limits on Higgs bosons. I then outline the manner in which the more flexible Higgs sectors of the Next-to-Minimal Supersymmetric Model and an Extended Next-to-Minimal Supersymmetric Model allow large $\\sigma_{SI}$ and $\\Omega h^2\\sim 0.11$ at low LSP mass without violating LEP, Tevatron, BaBar and other experimental limits. The relationship of the required Higgs sectors to the NMSSM ``ideal...
Trilinear couplings and scalar bound states in supersymmetric extensions of the standard model
Hernández, Pilar; Sanz, V
2001-01-01
The trilinear terms in minimal supersymmetric extensions of the standard model can be responsible of forming a bound state of scalars. In this talk we outline our results on the study of this bound state using a non-perturbative method, the exact renormalization group. We focus on the trilinear term between the Higgs and stop fields. (4 refs).
Mobini, Sirous; Chambers, Lucy C; Yeomans, Martin R
2007-01-01
This study examined acquired liking of flavour preferences through flavour-flavour and flavour-nutrient learning under hungry or sated conditions in a naturalistic setting. Each participant consumed one of three versions of a test drink at home either before lunch or after lunch: minimally sweetened ( 3% sucrose, 40 kcal), artificially sweetened (3% sucrose 40 kcal plus artificial sweeteners ASPARTAME) and sucrose-sweetened (SUCROSE: 9.9% sugar, 132 kcal). The test drink was an uncarbonated peach-flavoured iced tea served in visually identical drink cans (330 ml). Participants preselected as "sweet likers" evaluated the minimally sweetened flavoured drink (conditioned stimulus, CS) in the same state (hungry or sated) in which they consumed the test drink at home. Overall, liking for the CS flavour increased in participants who consumed the SUCROSE drink, however, this increase in liking was significantly larger when tested and trained hungry than sated, consistent with a flavour-nutrient model. Overall increases in pleasantness for the CS flavour in participants who consumed the SUCROSE drink when sated or the ASPARTAME drink independent of hunger state, suggest that flavour-flavour learning also occurred. These results are discussed in light of current learning models of flavour preference.
Matter inflation with A{sub 4} flavour symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan [Department of Physics, University of Basel, Klingelbergstrasse 82, Basel, CH-4056 Switzerland (Switzerland); Nolde, David, E-mail: stefan.antusch@unibas.ch, E-mail: david.nolde@unibas.ch [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Föhringer Ring 6, München, D-80805 Germany (Germany)
2013-10-01
We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A{sub 4} family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index α{sub s}. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.
Matter inflation with A_4 flavour symmetry breaking
Antusch, Stefan
2013-01-01
We discuss model building in tribrid inflation, which is a framework for realising inflation in the matter sector of supersymmetric particle physics models. The inflaton is a D-flat combination of matter fields, and inflation ends by a phase transition in which some Higgs field obtains a vacuum expectation value. We first describe the general procedure for implementing tribrid inflation in realistic models of particle physics that can be applied to a wide variety of BSM particle physics models around the GUT scale. We then demonstrate how the procedure works for an explicit lepton flavour model based on an A_4 family symmetry. The model is both predictive and phenomenologically viable, and illustrates how tribrid inflation connects cosmological and particle physics parameters. In particular, it predicts a relation between the neutrino Yukawa coupling and the running of the spectral index alpha_s. We also show how topological defects from the flavour symmetry breaking can be avoided automatically.
Anatomy of flavour-changing Z couplings in models with partial compositeness
Straub, David M
2013-01-01
In models with partially composite quarks, the couplings of quarks to the Z boson generically receive non-universal corrections that are not only constrained by electroweak precision tests but also lead to flavour-changing neutral currents at tree level. The impact of these flavour-changing couplings on rare K and B decays is studied in two-site models for three scenarios: an anarchic strong sector with two different choices of fermion representations both leading to a custodial protection of the Z->bb coupling, and for a strong sector invariant under a U(2)^3 flavour symmetry. In the complete numerical analysis, all relevant constraints from Delta(F)=2 processes are taken into account. In all scenarios, visible effects in rare K and B decays like K->pi nu anti-nu, B(s)->mu+mu- and B->K*mu+mu- are possible that can be scrutinized experimentally in the near future. Characteristic correlations between observables allow to distinguish the different cases. To sample the large parameter space of the anarchic model...
Neutral Higgs bosons in the standard model and in the minimal supersymmetric model: Searches at LEP
Indian Academy of Sciences (India)
P Igo-Kemenes
2004-03-01
During the twelve years of operation of the $e^{+}e^{-}$ collider LEP, the associated collaborations, ALEPH, DELPHI, L3 and OPAL, have extensively searched for Higgs bosons over a broad range of masses. We present the final results from LEP for the standard model Higgs boson which are obtained from a statistical combination of the data from the four experiments. We also present preliminary combined results for neutral Higgs bosons in the minimal supersymmetric model (MSSM) where the Higgs sector is assumed to be CP invariant. Finally, we discuss an alternative MSSM scenario including CP violation in the Higgs sector.
Flavour Physics and CP Violation in the Standard Model and Beyond
Castelo-Branco, Gustavo
2014-01-01
We present the invited lectures given at the Third IDPASC School which took place in Santiago de Compostela in January 2013. The students attending the school had very different backgrounds, some of them were doing their PhD in experimental particle physics, others in theory. As a result, and in order to make the lectures useful for most of the students, we focused on basic topics of broad interest, avoiding the more technical aspects of Flavour Physics and CP Violation. We make a brief review of the Standard Model, paying special attention to the generation of fermion masses and mixing, as well as to CP violation. We describe some of the simplest extensions of the SM, emphasising novel flavour aspects which arise in their framework.
Non-minimally flavour violating dark matter
Blanke, Monika
2015-01-01
Flavour symmetries provide an appealing mechanism to stabilize the dark matter particle. I present a simple model of quark flavoured dark matter that goes beyond the framework of minimal flavour violation. I discuss the phenomenological implications for direct and indirect dark matter detection experiments, high energy collider searches as well as flavour violating precision data.
Perspectives for detecting lepton flavour violation in left-right symmetric models
Bonilla, Cesar; Krauss, Manuel E.; Opferkuch, Toby; Porod, Werner
2017-03-01
We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as μ - e conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating τ-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in the immediate future, like Mu3e and BELLE II, or longer-term, such as PRISM/PRIME, will probe significant portions of the currently allowed parameter space.
Perspectives for Detecting Lepton Flavour Violation in Left-Right Symmetric Models
Bonilla, Cesar; Opferkuch, Toby; Porod, Werner
2016-01-01
We investigate lepton flavour violation in a class of minimal left-right symmetric models where the left-right symmetry is broken by triplet scalars. In this context we present a method to consistently calculate the triplet-Yukawa couplings which takes into account the experimental data while simultaneously respecting the underlying symmetries. Analysing various scenarios, we then calculate the full set of tree-level and one-loop contributions to all radiative and three-body flavour-violating fully leptonic decays as well as $\\mu-e$ conversion in nuclei. Our method illustrates how these processes depend on the underlying parameters of the theory. To that end we observe that, for many choices of the model parameters, there is a strong complementarity between the different observables. For instance, in a large part of the parameter space, lepton flavour violating $\\tau$-decays have a large enough branching ratio to be measured in upcoming experiments. Our results further show that experiments coming online in t...
Patterns of Flavour Violation in Models with Vector-Like Quarks
Bobeth, Christoph; Celis, Alejandro; Jung, Martin
2016-01-01
We study the patterns of flavour violation in renormalizable extensions of the Standard Model (SM) that contain vector-like quarks (VLQs) in a single complex representation of either the SM gauge group G_SM or G_SM' = G_SM x U(1)_{L_mu - L_tau}. We first decouple VLQs in the (1 - 10) TeV range and then at the electroweak scale also Z, Z' gauge bosons and additional scalars to study the resulting phenomenology that depends on the relative size of Z- and Z'-induced flavour-changing neutral currents, as well as the size of |Delta F|=2 contributions. In addition to rare decays like M--> l^+l^-, M--> M' l^+l^-, M--> M' vv with M = K, B_s, B_d and |Delta F|=2 observables we analyze the ratio epsilon'/epsilon which appears in the SM to be significantly below the data. We study patterns and correlations between various flavour observables in VLQ models with left-handed (LH) and right-handed currents (RH) including experimental constraints. Among the highlights are large new physics (NP) effects in Kaon observables in...
Implications of improved Higgs mass calculations for supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Dolan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA (United States). Theory Group; Ellis, J. [King' s College, London (United Kingdom). Theoretical Particle Physics and Cosmology Group; and others
2014-03-15
We discuss the allowed parameter spaces of supersymmetric scenarios in light of improved Higgs mass predictions provided by FeynHiggs 2.10.0. The Higgs mass predictions combine Feynman-diagrammatic results with a resummation of leading and subleading logarithmic corrections from the stop/top sector, which yield a significant improvement in the region of large stop masses. Scans in the pMSSM parameter space show that, for given values of the soft supersymmetry-breaking parameters, the new logarithmic contributions beyond the two-loop order implemented in FeynHiggs tend to give larger values of the light CP-even Higgs mass, M{sub h}, in the region of large stop masses than previous predictions that were based on a fixed-order Feynman-diagrammatic result, though the differences are generally consistent with the previous estimates of theoretical uncertainties. We re-analyze the parameter spaces of the CMSSM, NUHM1 and NUHM2, taking into account also the constraints from CMS and LHCb measurements of BR(B{sub s}→μ{sup +}μ{sup -}) and ATLAS searches for E{sub T} events using 20/fb of LHC data at 8 TeV. Within the CMSSM, the Higgs mass constraint disfavours tan β
Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1.
Blanke, Monika; Buras, Andrzej J; Recksiegel, Stefan
2016-01-01
The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard [Formula: see text] and [Formula: see text] gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text]. Taking into account the constraints from [Formula: see text] processes, significant departures from the SM predictions for [Formula: see text] and [Formula: see text] are possible, while the effects in B decays are much smaller. In particular, the LHT model favours [Formula: see text], which is not supported by the data, and the present anomalies in [Formula: see text] decays cannot be explained in this model. With the recent lattice and large N input the imposition of the [Formula: see text] constraint implies a significant suppression of the branching ratio for [Formula: see text] with respect to its SM value while allowing only for small modifications of [Formula: see text]. Finally, we investigate how the LHT physics could be distinguished from other models by means of indirect measurements and
Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1
Blanke, Monika; Buras, Andrzej J.; Recksiegel, Stefan
2016-04-01
The Littlest Higgs model with T-parity (LHT) belongs to the simplest new physics scenarios with new sources of flavour and CP violation. The latter originate in the interactions of ordinary quarks and leptons with heavy mirror quarks and leptons that are mediated by new heavy gauge bosons. Also a heavy fermionic top partner is present in this model which communicates with the SM fermions by means of standard W^± and Z^0 gauge bosons. We present a new analysis of quark flavour observables in the LHT model in view of the oncoming flavour precision era. We use all available information on the CKM parameters, lattice QCD input and experimental data on quark flavour observables and corresponding theoretical calculations, taking into account new lower bounds on the symmetry breaking scale and the mirror quark masses from the LHC. We investigate by how much the branching ratios for a number of rare K and B decays are still allowed to depart from their SM values. This includes K^+→ π ^+ν bar{ν }, KL→ π ^0ν bar{ν }, K_L→ μ ^+μ ^-, B→ X_sγ , B_{s,d}→ μ ^+μ ^-, B→ K^{(*)}ℓ ^+ℓ ^-, B→ K^{(*)}ν bar{ν }, and \\varepsilon '/\\varepsilon . Taking into account the constraints from Δ F=2 processes, significant departures from the SM predictions for K^+→ π ^+ν bar{ν } and KL→ π ^0ν bar{ν } are possible, while the effects in B decays are much smaller. In particular, the LHT model favours B(Bs→ μ ^+μ ^-) ≥ B(Bs→ μ ^+μ ^-)_SM, which is not supported by the data, and the present anomalies in B→ K^{(*)}ℓ ^+ℓ ^- decays cannot be explained in this model. With the recent lattice and large N input the imposition of the \\varepsilon '/\\varepsilon constraint implies a significant suppression of the branching ratio for KL→ π ^0ν bar{ν } with respect to its SM value while allowing only for small modifications of K^+→ π ^+ν bar{ν }. Finally, we investigate how the LHT physics could be distinguished from other models by means of
On the unitarity of gauged non-compact world-sheet supersymmetric WZNW models
Bjornsson, Jonas
2008-01-01
In this paper we generalize our investigation of the unitarity of non-compact WZNW models connected to hermitian symmetric spaces to the N=1 world-sheet supersymmetric extension of these models. We will prove that these models are unitary in a BRST approach for antidominant highest weight representations if, and only if, the level and weights of the gauged subalgebra are integers. We will find new critical string theories in 7 and 9 space-time dimensions.
Bottom-Tau Yukawa Unification in the Next-to-Minimal Supersymmetric Standard Model
Allanach, Benjamin C
1994-01-01
We discuss the unification of the bottom quark and tau lepton Yukawa couplings within the framework of the next-to-minimal supersymmetric standard model. We compare the allowed regions of the $m_t$-$\\tan \\beta$ plane to those in the minimal supersymmetric standard model, and find that over much of the parameter space the deviation between the predictions of two models is small, and nearly always much less than the effect of current theoretical and experimental uncertainties in the bottom quark mass and the strong coupling constant. However over some regions of parameter space top-bottom Yukawa unification cannot be achieved. We also discuss the scaling of the light fermion masses and mixing angles, and show that to within current uncertainties the results of recent texture analyses performed for the minimal model also apply to the next-to-minimal model.
Likelihood Analysis of Supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY; Costa, J. C. [Imperial Coll., London; Sakurai, K. [Warsaw U.; Borsato, M. [Santiago de Compostela U.; Buchmueller, O. [Imperial Coll., London; Cavanaugh, R. [Illinois U., Chicago; Chobanova, V. [Santiago de Compostela U.; Citron, M. [Imperial Coll., London; De Roeck, A. [Antwerp U.; Dolan, M. J. [Melbourne U.; Ellis, J. R. [King' s Coll. London; Flächer, H. [Bristol U.; Heinemeyer, S. [Madrid, IFT; Isidori, G. [Zurich U.; Lucio, M. [Santiago de Compostela U.; Martínez Santos, D. [Santiago de Compostela U.; Olive, K. A. [Minnesota U., Theor. Phys. Inst.; Richards, A. [Imperial Coll., London; de Vries, K. J. [Imperial Coll., London; Weiglein, G. [DESY
2016-10-31
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel ${\\tilde u_R}/{\\tilde c_R} - \\tilde{\\chi}^0_1$ coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ${\\tilde \
The Collider Phenomenology Of Supersymmetric Models (charged Higgs Boson, Tau Leptons)
Müller, D J
1998-01-01
The purpose of this study is to investigate the phenomenology of various supersymmetric models. First, the Minimal Supersymmetric Standard Model (MSSM) is investigated. This model contains an extended Higgs sector that includes a charged boson. The effect that this charged Higgs boson has on the signatures for top quark pair production at the Tevatron is investigated. The rest of the work is devoted to the phenomenology of models with gauge mediated supersymmetry breaking (GMSB). In GMSB models, the lighter stau can be the next to lightest supersymmetric particle. The signals at hadronic colliders for GMSB models with minimal visible sector content are explored for this case. A GMSB model with non-minimal visible sector content is also explored. This is the left-right symmetric GMSB model which contains doubly charged bosons and fermions that could be light enough in mass to be produced at Run II of the Tevatron. Findings and conclusions. The presence of a charged Higgs boson that is lighter than the top quar...
$\\mu\\to e\\gamma$ in a supersymmetric radiative neutrino mass model
Hundi, Raghavendra Srikanth
2016-01-01
We have considered a supersymmetric version of the inert Higgs doublet model, whose motivation is to explain smallness of neutrino masses and existence of dark matter. In this supersymmetric model, due to the presence of discrete symmetries, neutrinos acquire masses at loop level. After computing these neutrino masses, in order to fit the neutrino oscillation data, we have shown that by tuning some supersymmetry breaking soft parameters of the model, neutrino Yukawa couplings can be unsuppressed. In the above mentioned parameter space, we have computed branching ratio of the decay $\\mu\\to e\\gamma$. To be consistent with the current experimental upper bound on $Br(\\mu\\to e\\gamma)$, we have obtained constraints on the right-handed neutrino mass of this model.
Testing the minimal supersymmetric standard model with the mass of the boson
Indian Academy of Sciences (India)
S Heinemeyer; W Hollik; D Stöckinger; A M Weber; G weiglein
2007-11-01
We review the currently most accurate evaluation of the boson mass, , in the minimal supersymmetric standard model (MSSM). It consists of a full one-loop calculation, including the complex phase dependence, all available MSSM two-loop corrections as well as the full standard model result. We analyse the impact of the phases in the scalar quark sector on and compare the prediction for based on all known higher-order contributions with the experimental results.
Higgs Boson Mass and Complex Snuetrino Dark Matter in the Supersymmetric Inverse Seesaw Models
Guo, Jun; Li, Tianjun; Liu, Yandong
2014-01-01
The discovery of a relatively heavy Standard Model (SM) -like Higgs boson challenges naturalness of the minimal supersymmetric standard model (MSSM) from both Higgs and dark matter (DM) sectors. We study these two aspects in the MSSM extended by the low-scale inverse seesaw mechanism. Firstly, it admits a sizable radiative correction on the Higgs boson mass m_h, up to \\sim 4 GeV in the case of an IR-fixed point of the coupling Y_\
Type III Seesaw and Dark Matter in a Supersymmetric Left-Right Model
Borah, Debasish
2009-01-01
We propose a new supersymmetric left right model with Higgs doublets carrying odd B-L charge, higgs bidoublet and heavy Higgs triplets with zero B-L charge and a set of sterile neutrinos which are singlet under the gauge group. We show that spontaneous parity violation can be achieved naturally in this model and the neutrino masses arise from the so called type III seesaw mechanism. We also discuss the possible phenomenology in the context of neutrino masses and dark matter.
A new Supersymmetric $SU(3)_L \\otimes U(1)_X$ gauge model
Díaz, R A; Rodríguez, José Alberto; Diaz, Rodolfo A.
2003-01-01
We present a new supersymmetric version of the $SU(3) \\otimes U(1)$ gauge model using a more economic content of particles. The model has a smaller set of free parameters than other possibilities considered before. The MSSM can be seen as an effective theory of this larger symmetry. We find that the upper bound of the ligthest CP-even Higgs boson can be moved up to 140 GeV.
Dark matter and lepton flavour violation in a hybrid neutrino mass model
Energy Technology Data Exchange (ETDEWEB)
Deppisch, Frank; Huang, Wei-Chih [Department of Physics and Astronomy, University College London,Gower Street, London (United Kingdom)
2015-01-14
We describe a hybrid model in which the light neutrino mass matrix receives both tree-level seesaw and loop-induced contributions. An additional U(1) gauge symmetry is used to stabilize the lightest right-handed neutrino as the Dark Matter candidate. After fitting the experimental neutrino data, we analyze and correlate the phenomenological consequences of the model, namely its impact on electroweak precision measurements, the Dark Matter relic abundance, lepton flavour violating rare decays and neutrinoless double beta decay. We find that natural realizations of the model characterized by large Yukawa couplings are compatible with and close to the current experimental limits.
LEP Higgs boson searches beyond the standard model and minimum supersymmetric standard model
Indian Academy of Sciences (India)
Pauline Gagnon
2004-03-01
Ever since the center-of-mass energy was increased in 1995 above the $Z^{0}$ resonance, the four LEP experiments (ALEPH, DELPHI, OPAL and L3) have renewed their effort to search for the Higgs boson. Data taking ended in the year 2000 with about 130 pb-1 f data collected per experiment above 206 GeV in $e^{+} e^{-}$ collisions but the data analysis is still very active. Most recently, the wealth of theoretical models and predictions has stimulated new analyses and model interpretations which go beyond the standard model and minimal supersymmetric standard model. These include the searches for charged Higgs bosons, models with two Higgs field doublets, searches for ‘fermiophobic’ Higgs decay, invisible Higgs boson decays, decay-mode independent searches, and limits on Yukawa and anomalous Higgs couplings. I review the searches done by the four LEP experiments and present the LEP combined results when they exist.
Alonso, R.; Gavela, M.B.; Grinstein, B.; Merlo, L.; Quilez, P.
2016-12-22
The gauging of the lepton flavour group is considered in the Standard Model context and in its extension with three right-handed neutrinos. The anomaly cancellation conditions lead to a Seesaw mechanism as underlying dynamics for all leptons; requiring in addition a phenomenologically viable setup leads to Majorana masses for the neutral sector: the type I Seesaw Lagrangian in the Standard Model case and the inverse Seesaw in the extended model. Within the minimal extension of the scalar sector, the Yukawa couplings are promoted to scalar fields in the bifundamental of the flavour group. The resulting low-energy Yukawa couplings are proportional to inverse powers of the vacuum expectation values of those scalars; the protection against flavour changing neutral currents differs from that of Minimal Flavor Violation. In all cases, the $\\mu-\\tau$ flavour sector exhibits rich and promising phenomenological signals.
Quasifixed point scenarios and the Higgs mass in the E6 inspired supersymmetric models
Nevzorov, R.
2014-03-01
We analyze the two-loop renormalization group (RG) flow of the gauge and Yukawa couplings within the E6 inspired supersymmetric models with extra U(1)N gauge symmetry under which right-handed neutrinos have zero charge. In these models, single discrete Z stretchy="false">˜2H symmetry forbids the tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We consider two different scenarios A and B that involve extra matter beyond the minimal supersymmetric Standard Model contained in three and four 5+5¯ representations of SU(5), respectively, plus three SU(5) singlets which carry U(1)N charges. In scenario A, the measured values of the SU(2)W and U(1)Y gauge couplings lie near the fixed points of the RG equations. In scenario B, the contribution of two-loop corrections spoils the unification of gauge couplings, resulting in the appearance of the Landau pole below the grand unification scale MX. The solutions for the Yukawa couplings also approach the quasifixed points with increasing their values at the scale MX. We calculate the two-loop upper bounds on the lightest Higgs boson mass in the vicinity of these quasifixed points and compare the results of our analysis with the corresponding ones in the next-to-minimal supersymmetric Standard Model. In all these cases, the theoretical restrictions on the Standard-Model-like Higgs boson mass are rather close to 125 GeV.
Quark flavour conserving violations of the lepton number
Binétruy, Pierre; Lavignac, Stephane; Savoy, C A
1998-01-01
We study supersymmetric models of lepton and baryon number violation based on an abelian family gauge group. Due to possible lepton-Higgs mixing, the lepton violating couplings are related to the Yukawa couplings and may be generated by them even if they were absent in the original theory. Such terms may be dominant and are not given by the naive family charge counting rules. This enhancement mechanism can provide an alignment between lepton-number violating terms and Yukawa couplings: as a result they conserve quark flavour. A natural way of suppressing baryon number violation in this class of models is also proposed.
Kobayashi, K; Ashie, Y; Hosaka, J; Ishihara, K; Itow, Y; Kameda, J; Koshio, Y; Minamino, A; Mitsuda, C; Miura, M; Moriyama, S; Nakahata, M; Namba, T; Nambu, R; Obayashi, Y; Shiozawa, M; Suzuki, Y; Takeuchi, Y; Taki, K; Yamada, S; Ishitsuka, M; Kajita, T; Kaneyuki, K; Nakayama, S; Okada, A; Okumura, K; Ooyabu, T; Saji, C; Takenaga, Y; Desai, S; Kearns, E; Likhoded, S; Stone, J L; Sulak, L R; Wang, W; Goldhaber, M; Casper, D; Cravens, J P; Gajewski, W; Kropp, W R; Liu, D W; Mine, S; Smy, M B; Sobel, H W; Sterner, C W; Vagins, M R; Ganezer, K S; Hill, J E; Keig, W E; Jang, J S; Kim, J Y; Lim, I T; Scholberg, K; Walter, C W; Ellsworth, R W; Tasaka, S; Guillian, G; Kibayashi, A; Learned, J G; Matsuno, S; Takemori, D; Messier, M D; Hayato, Y; Ichikawa, A K; Ishida, T; Ishii, T; Iwashita, T; Kobayashi, T; Maruyama, T; Nakamura, K; Nitta, K; Oyama, Y; Sakuda, M; Totsuka, Y; Suzuki, A T; Hasegawa, M; Hayashi, K; Kato, I; Maesaka, H; Morita, T; Nakadaira, T; Nakaya, T; Nishikawa, K; Sasaki, T; Ueda, S; Yamamoto, S; Yokoyama, M; Haines, T J; Dazeley, S; Hatakeyama, S; Svoboda, R; Blaufuss, E; Goodman, J A; Sullivan, G W; Turcan, D; Habig, A; Fukuda, Y; Jung, C K; Kato, T; Malek, M; Mauger, C; McGrew, C; Sarrat, A; Sharkey, E; Yanagisawa, C; Toshito, T; Miyano, K; Tamura, N; Ishii, J; Kuno, Y; Yoshida, M; Kim, S B; Yoo, J; Okazawa, H; Ishizuka, T; Choi, Y; Seo, H K; Gando, Y; Hasegawa, T; Inoue, K; Shirai, J; Suzuki, A; Koshiba, M; Nakajima, Y; Nishijima, K; Harada, T; Ishino, H; Watanabe, Y; Kielczewska, D; Zalipska, J; Berns, H G; Gran, R; Shiraishi, K K; Stachyra, A; Washburn, K; Wilkes, R J
2005-01-01
We report the results for nucleon decay searches via modes favored by supersymmetric grand unified models in Super-Kamiokande. Using 1489 days of full Super-Kamiokande-I data, we searched for $p \\to \\bar{\
Light third-generation squarks from flavour gauge messengers
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, Felix [International School for Advanced Studies, Trieste (Italy); Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); McGarrie, Moritz [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Univ. of the Witwatersrand, Johannesburg (South Africa). School of Physics and Centre for Theoretical Physics; Weiler, Andreas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); CERN - European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.
2014-04-15
We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3){sub F} symmetry acting on the quark superfields. If SU(3){sub F} is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3){sub F} breaking.
Light third-generation squarks from flavour gauge messengers
Energy Technology Data Exchange (ETDEWEB)
Brümmer, Felix [SISSA/ISAS,Via Bonomea 265, Trieste I-34136 (Italy); Deutsches Elektronen-Synchrotron DESY,Notkestrasse 85, D-22607 Hamburg (Germany); McGarrie, Moritz [Deutsches Elektronen-Synchrotron DESY,Notkestrasse 85, D-22607 Hamburg (Germany); National Institute for Theoretical Physics, School of Physics,and Centre for Theoretical Physics, University of the Witwatersrand,Johannesburg, WITS 2050 (South Africa); Weiler, Andreas [Deutsches Elektronen-Synchrotron DESY,Notkestrasse 85, D-22607 Hamburg (Germany); CERN Theory Division,CH-1211 Geneva 23 (Switzerland)
2014-04-10
We study models of gauge-mediated supersymmetry breaking with a gauged horizontal SU(3){sub F} symmetry acting on the quark superfields. If SU(3){sub F} is broken non-supersymmetrically by F-term vacuum expectation values, the massive gauge bosons and gauginos become messengers for SUSY breaking mediation. These gauge messenger fields induce a flavour-dependent, negative contribution to the soft masses of the squarks at one loop. In combination with the soft terms from standard gauge mediation, one obtains large and degenerate first- and second-generation squark masses, while the stops and sbottoms are light. We discuss the implications of this mechanism for the superparticle spectrum and for flavour precision observables. We also provide an explicit realization in a model with simultaneous SUSY and SU(3){sub F} breaking.
Dark radiation and dark matter in supersymmetric axion models with high reheating temperature
Graf, Peter; Steffen, Frank Daniel
2013-01-01
Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior ...
The HIGGS Boson Mass at 2 Loops in the Finely Tuned Split Supersymmetric Standard Model
Energy Technology Data Exchange (ETDEWEB)
Binger, M
2004-09-08
The mass of the Higgs boson in the finely tuned Split Supersymmetric Standard Model is calculated. All 1 loop threshold effects are included, in addition to the full RG running of the Higgs quartic coupling through 2 loops. The 2 loop corrections are very small, typically less than 1GeV. The 1 loop threshold corrections to the top yukawa coupling and the Higgs mass generally push the Higgs mass down a few GeV.
Impacts of supersymmetric higher derivative terms on inflation models in supergravity
Energy Technology Data Exchange (ETDEWEB)
Aoki, Shuntaro; Yamada, Yusuke [Department of Physics, Waseda University,Tokyo 169-8555 (Japan)
2015-07-14
We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two.
An SU(5) grand unified model with discrete flavour symmetries
Hernández, A E Cárcamo; Schmidt, Iván
2014-01-01
We propose a model based on the $SU(5)$ grand unification with an extra $Z_{2}\\otimes Z_{2}^{\\prime}\\otimes Z_{2}^{\\prime \\prime}\\otimes Z_{4}\\otimes Z_{12}$ flavor symmetry, which successfully describes the observed SM fermion mass and mixing pattern. The observed quark mass and mixing pattern is caused by the $Z_{4}$ and $Z_{12}$ symmetries, which are broken at very high scale by the $SU(5)$ scalar singlets $\\sigma $ and $\\chi $, charged respectively under these symmetries and which acquire VEVs at the GUT scale. The light neutrino masses are generated via a type I seesaw mechanism with three heavy Majorana neutrinos. The model has in total 17 effective free parameters, from which 2 are fixed and 15 are fitted to reproduce the experimental values of the 18 physical parameters in the quark and lepton sectors. The model predictions for both quark and lepton sectors are in excellent agreement with the experimental data.
Joshipura, Anjan S
2010-01-01
The charged fermion mass matrices are always invariant under $U(1)^3$ symmetry linked to the fermion number transformation. A class of two Higgs doublet models (2HDM) can be identified by requiring that the definition of this symmetry in an arbitrary weak basis be independent of Higgs parameters such as the ratio of the Higgs vacuum expectation values. The tree level flavour changing neutral currents normally present in 2HDM are absent in this class of models but unlike the type I or type II Higgs doublet models, the charged Higgs couplings in these models contain additional flavour dependent CP violating phases. These phases can account for the recent hints of the beyond standard model CP violation in the $B_d$ and $B_s$ mixing. In particular, there is a range of parameters in which new phases do not contribute to the $K$ meson CP violation but give identical new physics contribution to the $B_d$ and $B_s$ meson mixing. Specific model realizations of the above scenario are briefly discussed.
S(3) flavoured Higgs model trilinear self-couplings
Barradas-Guevara, E; Jáuregui, E Rodríguez
2014-01-01
In this work a detailed analysis of the Higgs sector of the minimal $S(3)$-invariant extension of the Standard Model is performed. Considering three Higgs fields, which are SU(2) doublets, and CP invariant, we compute the exact and analytical physical Higgs boson masses in terms of the Higgs potential parameters and the scalar Higgs matrix rotation angle $\\theta_S$ and $w_3$ ($\\tan\\theta_P=\\tan\\theta_C=\\tan^{-1}\\omega_3$), related to the pseudoscalar and charged Higgs matrix rotation angles $\\theta_P$ and $\\theta_C$ respectively. Furthermore, within this model we can also write down in an explicit form the trilinear self-couplings $\\lambda_{ijk}$ in terms of the Higgs masses and two free parameters,$\\theta_S$ and $w_3$. Moreover, we show that the Higgs masses and trilinear Higgs bosons self-couplings are closely linked to the Higgs potential structure given by the discrete symmetry $S(3)$, which can be helpful to distinguish this model from other extensions. In our analysis the lightest Higgs boson mass is ta...
Testing the Higgs Sector of the Minimal Supersymmetric Standard Model at Large Hadron Colliders
Kunszt, Zoltán
1992-01-01
We study the Higgs sector of the Minimal Supersymmetric Standard Model, in the context of proton-proton collisions at LHC and SSC energies. We assume a relatively heavy supersymmetric particle spectrum, and include recent results on one-loop radiative corrections to Higgs-boson masses and couplings. We begin by discussing present and future constraints from the LEP experiments. We then compute branching ratios and total widths for the neutral ($h,H,A$) and charged ($H^\\pm$) Higgs particles. We present total cross-sections and event rates for the important discovery channels at the LHC and SSC. Promising physics signatures are given by $h \\to \\gamma \\gamma$, $H \\to \\gamma \\gamma$ or $Z^* Z^*$ or $\\tau^+ \\tau^-$, $A \\to \\tau^+ \\tau^-$, and $t \\to b H^+$ followed by $H^+ \\to \\tau^+ \
QCD corrections to the t$\\to$H+b decay within the minimal supersymmetric standard model
König, H
1994-01-01
I present the contribution of gluinos and scalar quarks to the decay rate of the top quark into a charged Higgs boson and a bottom quark within the minimal supersymmetric standard model, including the mixing of the scalar partners of the left- and right-handed top quark. I show that for certain values of the supersymmetric parameters the standard QCD loop corrections to this decay mode are diminished or enhanced by several 10 per cent. I show that not only a small value of 3 GeV for the gluino mass (small mass window) but also much larger values of several hundreds of GeV's have a non-neglible effect on this decay rate, against general belief. Last but not least, if the ratio of the vacuum expectation values of the Higgs bosons are taken in the limit of $v_1\\ll v_2$ I obtain a drastic enhancement due to a $\\tan\\beta$\\ dependence in the couplings.
Heavy Neutrinos and Lepton Flavour Violation in Left-Right Symmetric Models at the LHC
Das, S P; Kittel, O; Valle, J W F
2012-01-01
We discuss lepton flavour violating processes induced in the production and decay of heavy right-handed neutrinos at the LHC. Such particles appear in left-right symmetrical extensions of the Standard Model as the messengers of neutrino mass generation, and can have masses at the TeV scale. We determine the expected sensitivity on the right-handed neutrino mixing matrix, as well as on the right-handed gauge boson and heavy neutrino masses. By comparing the sensitivity of the LHC with that of searches for low energy LFV processes, we identify favourable areas of the parameter space to explore the complementarity between LFV at low and high energies.
Precise limits from lepton flavour violating processes on the Littlest Higgs model with T-parity
del Águila, F; Jenkins, M D
2009-01-01
We recalculate the leading one-loop contributions to mu -> e gamma and mu -> eee in the Littlest Higgs model with T-parity. When all the Goldstone interactions are taken into account the result is ultraviolet finite. The present experimental limits on these processes require a somewhat heavy effective scale ~2.5 TeV, or the flavour alignment of the Yukawa couplings of light and heavy leptons at the ~10% level, or the splitting of heavy lepton masses to a similar precision. Present limits on tau decays set no bounds on the corresponding parameters involving the tau lepton.
The interplay between grand unified and flavour symmetries in a Pati-Salam x S4 model
Toorop, Reinier de Adelhart
2010-01-01
Both discrete flavour symmetries and Grand Unified symmetries explain apparent structures in the mass sector of the Standard Model. A model that combines both symmetries is therefore very appealing. We construct a model with the $S_4$ flavour symmetry and the Pati-Salam unification. We show that this model can indeed explain many observable relations between the masses of the quarks and leptons and that it is predictive in the neutrino sector. However, the combination of the two symmetries leads to new complications in the Higgs sector and in the running of the renormalisation group equations.
Inclusive Flavour Tagging Algorithm
Likhomanenko, Tatiana; Derkach, Denis; Rogozhnikov, Alex
2016-10-01
Identifying the flavour of neutral B mesons production is one of the most important components needed in the study of time-dependent CP violation. The harsh environment of the Large Hadron Collider makes it particularly hard to succeed in this task. We present an inclusive flavour-tagging algorithm as an upgrade of the algorithms currently used by the LHCb experiment. Specifically, a probabilistic model which efficiently combines information from reconstructed vertices and tracks using machine learning is proposed. The algorithm does not use information about underlying physics process. It reduces the dependence on the performance of lower level identification capacities and thus increases the overall performance. The proposed inclusive flavour-tagging algorithm is applicable to tag the flavour of B mesons in any proton-proton experiment.
Phenomenological Implications of an S4 x SU(5) SUSY GUT of Flavour
Dimou, Maria; Luhn, Christoph
2015-01-01
We discuss the low energy phenomenological implications of an SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) whose flavour structure is controlled by the family symmetry S4 x U(1), which provides a good description of all quark and lepton masses, mixings as well as CP violation. Although the model closely mimics Minimal Flavour Violation (MFV) as shown in arXiv:1511.07886, here we focus on the differences. We first present numerical estimates of the low energy mass insertion parameters, including canonical normalisation and renormalisation group running, for well-defined ranges of SUSY parameters and compare the naive model expectations to the numerical scans and the experimental bounds. Our results are then used to estimate the predictions for Electric Dipole Moments (EDMs), Lepton Flavour Violation (LFV), B and K meson mixing as well as rare B decays. The largest observable deviations from MFV come from the LFV process mu --> e gamma and the EDMs.
CP breaking in $S(3)$ flavoured Higgs model
Barradas-Guevara, E; Rodríguez-Jáuregui, E
2015-01-01
We analyze the Higgs sector of the minimal $S(3)$-invariant extension of the Standard Model including CP violation arising from the spontaneous breaking of the electroweak symmetry. This extended Higgs sector includes three $SU(2)$ doublets Higgs fields with complex vev's provide an interesting scenario to analyze the Higgs masses spectrum, trilinear self-couplings and CP violation. We present how the spontaneous electroweak symmetry breaking coming from three $S(3)$ Higgs fields gives an interesting scenario with nine physical Higgs and three Goldstone bosons when spontaneous CP violation arises from the Higgs field $S(3)$ singlet $H_S$. Furthermore, numerical analysis of the Higgs masses and trilinear self-couplings is presented, particularly we find a physical solution for the scenario in which spontaneous CPB is provided by the single field $H_S$. The scalar Higgs $H_4^0$ is identified whose mass is 125 GeV and $\\lambda_{H_{4}^0 H_{4}^0 H_{4}^0} \\sim \\lambda_{h^0 h^0 h^0}^{SM}$ in good agreement with the ...
Top-Flavoured Dark Matter in Dark Minimal Flavour Violation
Blanke, Monika; Kast, Simon
2017-01-01
We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral $D$ meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consid...
Fermionic Fields with Mass Dimension One as Supersymmetric Extension of the O'Raifeartaigh Model
Wunderle, Kai E.
The objective of this thesis is to derive a supersymmetric Lagrangian for fermionic fields with mass dimension one and to discuss their coupling to the O'Raifeartaigh model which is the simplest model permitting supersymmetry breaking. In addition it will be shown that eigenspinors of the charge conjugation operator (ELKO) exhibit a different transformation behaviour under discrete symmetries than previously assumed. The calculations confirm that ELKO spinors are not eigenspinors of the parity operator and satisfy (CPT)2 = -- I which identifies them as representation of a nonstandard Wigner class. However, it is found that ELKO spinors transform symmetrically under parity instead of the previously assumed asymmetry. Furthermore, it is demonstrated that ELKO spinors transform asymmetrically under time reversal which is opposite to the previously reported symmetric behaviour. These changes affect the (anti)commutation relations that are satisfied by the operators acting on ELKO spinors. Therefore, ELKO spinors satisfy the same (anti)commutation relations as Dirac spinors, even though they belong to two different representations of the Lorentz group. Afterwards, a supersymmetric model for fermionic fields with mass dimension one based on a general superfield with one spinor index is formulated. It includes the systematic derivation of all associated chiral and anti-chiral superfields up to third order in covariant derivatives. Starting from these fundamental superfields a supersymmetric on-shell Lagrangian that contains a kinetic term for the fermionic fields with mass dimension one is constructed. This on-shell Lagrangian is subsequently used to derive the on-shell super-current and to successfully formulate a consistent second quantisation for the component fields. In addition, the Hamiltonian in position space that corresponds to the supersymmetric Lagrangian is calculated. As the Lagrangian is by construction supersymmetric and the second quantisation of the
Feynman Rules in the Type III Natural Flavour-Conserving Two-Higgs Doublet Model
Lin, C; Yang, Y W; Lin, Chilong; Lee, Chien-er; Yang, Yeou-Wei
1994-01-01
We consider a two Higgs-doublet model with $S_3$ symmetry, which implies a $\\pi \\over 2$ rather than 0 relative phase between the vacuum expectation values $$ and $$. The corresponding Feynman rules are derived accordingly and the transformation of the Higgs fields from the weak to the mass eigenstates includes not only an angle rotation but also a phase transformation. In this model, both doublets couple to the same type of fermions and the flavour-changing neutral currents are naturally suppressed. We also demonstrate that the Type III natural flavour-conserving model is valid at tree-level even when an explicit $S_3$ symmetry breaking perturbation is introduced to get a reasonable CKM matrix. In the special case $\\beta = \\alpha$, as the ratio $\\tan\\beta = {v_2 \\over v_1}$ runs from 0 to $\\infty$, the dominant Yukawa coupling will change from the first two generations to the third generation. In the Feynman rules, we also find that the charged Higgs currents are explicitly left-right asymmetric. The ratios ...
Locally supersymmetric D=3 non-linear sigma models
Wit, B. de; Tollsten, A. K.; Nicolai, H.
1992-01-01
We study non-linear sigma models with N local supersymmetries in three space-time dimensions. For N=1 and 2 the target space of these models is Riemannian or Kahler, respectively. All N>2 theories are associated with Einstein spaces. For N=3 the target space is quaternionic, while for N=4 it general
Charged-Lepton Flavour Physics
Hoecker, Andreas
2012-01-01
This writeup of a talk at the 2011 Lepton-Photon symposium in Mumbai, India, summarises recent results in the charged-lepton flavour sector. I review searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation. I also discuss recent progress in tau-lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment.
Charged-lepton flavour physics
Indian Academy of Sciences (India)
Andreas Hoecker
2012-11-01
This write-up on a talk at the 2011 Lepton–Photon symposium in Mumbai, India, summarizes recent results in the charged-lepton flavour sector. Searches for charged-lepton flavour violation, lepton electric dipole moments and flavour-conserving CP violation are reviewed here. Recent progress in -lepton physics and in the Standard Model prediction of the muon anomalous magnetic moment is also discussed.
Fuks, Benjamin; Klasen, Michael
2011-01-01
In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.
Energy Technology Data Exchange (ETDEWEB)
Fuks, Benjamin [Strasbourg Univ. (France). Inst. Pluridisciplinaire Hubert Curien; Herrmann, Bjoern [Savoie Univ., Annecy-le-Vieux (France). LAPTh; Klasen, Michael [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1
2011-12-15
In minimal anomaly-mediated supersymmetry breaking models, tachyonic sleptons are avoided by introducing a common scalar mass similar to the one introduced in minimal supergravity. This may lead to non-minimal flavour-violating interactions, e.g., in the squark sector. In this paper, we analyze the viable anomaly-mediated supersymmetry breaking parameter space in the light of the latest limits on low-energy observables and LHC searches, complete our analytical calculations of flavour-violating supersymmetric particle production at hadron colliders with those related to gluino production, and study the phenomenological consequences of non-minimal flavour violation in anomaly-mediated supersymmetry breaking scenarios at the LHC. Related cosmological aspects are also briefly discussed.
Renormalization of supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M{sub W} and sin{sup 2}{theta}{sup eff}. He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses.
Energy Technology Data Exchange (ETDEWEB)
Liebler, Stefan Rainer
2011-09-15
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and
Supersymmetric quantum cosmology for Bianchi class A models
Macías, A; Socorro, J; Macías, Alfredo; Mielke, Eckehard W.; Socorro, José
1998-01-01
The canonical theory of (N=1) supergravity, with a matrix representation for the gravitino covector-spinor, is applied to the Bianchi class A spatially homogeneous cosmologies. The full Lorentz constraint and its implications for the wave function of the universe are analyzed in detail. We found that in this model no physical states other than the trivial "rest frame" type occur.
Mechanisms of supersymmetry breaking in the minimal supersymmetric standard model
Indian Academy of Sciences (India)
Probir Roy
2003-02-01
We provide a bird’s eyeview of current ideas on supersymmetry breaking mechanisms in the MSSM. The essentials of gauge, gravity, anomaly and gaugino/higgsino mediation mechanisms are covered brieﬂy and the phenomenology of the associated models is touched upon. A few statement are also made on braneworld supersymmetry breaking.
Non-generic couplings in supersymmetric standard models
Directory of Open Access Journals (Sweden)
Evgeny I. Buchbinder
2015-09-01
Full Text Available We study two phases of a heterotic standard model, obtained from a Calabi–Yau compactification of the E8×E8 heterotic string, in the context of the associated four-dimensional effective theories. In the first phase we have a standard model gauge group, an MSSM spectrum, four additional U(1 symmetries and singlet fields. In the second phase, obtained from the first by continuing along the singlet directions, three of the additional U(1 symmetries are spontaneously broken and the remaining one is a B–L symmetry. In this second phase, dimension five operators inducing proton decay are consistent with all symmetries and as such, they are expected to be present. We show that, contrary to this expectation, these operators are forbidden due to the additional U(1 symmetries present in the first phase of the model. We emphasise that such “unexpected” absences of operators, due to symmetry enhancement at specific loci in the moduli space, can be phenomenologically relevant and, in the present case, protect the model from fast proton decay.
Higgs boson couplings in multi-doublet models with natural flavour conservation
Yagyu, Kei
2016-12-01
We investigate the deviation in the couplings of the standard model (SM) like Higgs boson (h) with a mass of 125 GeV from the prediction of the SM in multi-doublet models within the framework where flavour changing neutral currents at the tree level are naturally forbidden. After we present the general expressions for the modified gauge and Yukawa couplings for h, we show the correlation between the deviation in the Yukawa coupling for the tau lepton hτ+τ- and that for the bottom quark hb b bar under the assumption of a non-zero deviation in the hVV (V = W , Z) couplings in two Higgs doublet models (2HDMs) and three Higgs doublet models (3HDMs) as simple examples. We clarify the possible allowed prediction of the deviations in the 3HDMs which cannot be explained in the 2HDMs even taking into account the one-loop electroweak corrections to the Yukawa coupling.
Precision measurements of {\\theta}12 for testing models of discrete leptonic flavour symmetries
Ballett, Peter; Luhn, Christoph; Pascoli, Silvia; Schmidt, Michael A
2014-01-01
Models of leptonic flavour with discrete symmetries can provide an attractive explanation of the pattern of elements found in the leptonic mixing matrix. The next generation of neutrino oscillation experiments will allow the mixing parameters to be tested to a new level of precision, crucially measuring the CP violating phase {\\delta} for the first time. In this contribution, we present results of a systematic survey of the predictions of a class of models based on residual discrete symmetries and the prospects for excluding such models at medium- and long-term oscillation experiments. We place particular emphasis on the complementary role that a future circa 50 km reactor experiment, e.g. JUNO, can play in constraining these models.
Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories
Marino, Marcos
2011-01-01
In these lectures I give a pedagogical presentation of some of the recent progress in supersymmetric Chern-Simons-matter theories, coming from the use of localization and matrix model techniques. The goal is to provide a simple derivation of the exact interpolating function for the free energy of ABJM theory on the three-sphere, which implies in particular the N^{3/2} behavior at strong coupling. I explain in detail part of the background needed to understand this derivation, like holographic renormalization, localization of path integrals, and large N techniques in matrix models
Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories
Mariño, Marcos
2011-11-01
In these lectures, I give a pedagogical presentation of some of the recent progress in supersymmetric Chern-Simons-matter theories, coming from the use of localization and matrix model techniques. The goal is to provide a simple derivation of the exact interpolating function for the free energy of ABJM theory on the three-sphere, which implies in particular the N3/2 behavior at strong coupling. I explain in detail part of the background needed to understand this derivation, like holographic renormalization, localization of path integrals and large N techniques in matrix models.
Constraining the $SU(2)_R$ breaking scale in naturally R-parity conserving supersymmetric models
Huitu, K; Puolamäki, K
1997-01-01
We obtain an upper bound on the right-handed breaking scale in naturally R-parity conserving general left-right supersymmetric models. This translates into an upper bound on the right-handed gauge boson mass, $m_{W_R}\\lsim M_{SUSY}$, where $M_{SUSY}$ is the scale of SUSY breaking. This bound is independent of any assumptions for the couplings of the model, and follows from $SU(3)_c$ and $U(1)_{em}$ gauge invariance of the ground state of the theory.
Two loop effective Kähler potential of (non-)renormalizable supersymmetric models
Nibbelink, S G; Nibbelink, Stefan Groot; Nyawelo, Tino S.
2006-01-01
We perform a supergraph computation of the effective Kaehler potential at one and two loops for general four dimensional N=1 supersymmetric theories described by arbitrary Kaehler potential, superpotential and gauge kinetic function. We only insist on gauge invariance of the Kaehler potential and the superpotential as we heavily rely on its consequences in the quantum theory. However, we do not require gauge invariance for the gauge kinetic functions, so that our results can also be applied to anomalous theories that involve the Green-Schwarz mechanism. We illustrate our two loop results by considering a few simple models: the (non-)renormalizable Wess-Zumino model and Super Quantum Electrodynamics.
Suppression of proton decay in the missing-partner model for supersymmetric SU(5) GUT
Hisano, J; Tobe, K; Yanagida, T
1994-01-01
We construct a missing-partner model for supersymmetric SU(5) GUT assuming the Peccei-Quinn symmetry, in which the SU(5) gauge coupling constant remains in the perturbative regime below the gravitational scale \\sim2.4\\times 10^{18}\\GEV. The Peccei-Quinn symmetry suppresses the dangerous dimension-five operators for the nucleon decay much below the limit from the present proton-decay experiments. We also stress that due to this suppression mechanism our model can accommodate even the large \\tan\\beta_H (\\sim 60) scenario which has been recently suggested to explain the observed value of the m_b/m_\\tau ratio.
Muon g-2 vs LHC in Supersymmetric Models
Endo, Motoi; Iwamoto, Sho; Yoshinaga, Takahiro
2013-01-01
There is more than 3 sigma deviation between the experimental and theoretical results of the muon g-2. This suggests that some of the SUSY particles have a mass of order 100 GeV. We study searches for those particles at the LHC with particular attention to the muon g-2. In particular, the recent results on the searches for the non-colored SUSY particles are investigated in the parameter region where the muon g-2 is explained. The analysis is independent of details of the SUSY models. Future prospects of the collider searches are also discussed.
Muon g−2 vs LHC in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Endo, Motoi; Hamaguchi, Koichi; Iwamoto, Sho; Yoshinaga, Takahiro [Department of Physics, The University of Tokyo,7-3-1 Hongo, Bunkyo, Tokyo 113-0033 (Japan)
2014-01-23
There is more than 3σ deviation between the experimental and theoretical results of the muon g−2. When interpreted in SUSY extensions of the SM, this anomaly suggests that some of the SUSY particles have a mass of order 100 GeV. We study searches for those particles at the LHC with particular attention to the muon g−2. In particular, the recent results on the searches for the non-colored SUSY particles are investigated in the parameter region where the muon g−2 is explained. The analysis is independent of details of the SUSY models. Future prospects of the collider searches are also discussed.
Supersymmetric invariant theories
Esipova, S R; Radchenko, O V
2013-01-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Supersymmetric invariant theories
Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.
2014-04-01
We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.
Radiative breaking of the minimal supersymmetric left–right model
Directory of Open Access Journals (Sweden)
Nobuchika Okada
2016-05-01
Full Text Available We study a variation to the SUSY Left–Right symmetric model based on the gauge group SU(3c×SU(2L×SU(2R×U(1BL. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any SU(2R triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an SU(2R slepton doublet acquires a negative mass squared at low energies, so that the breaking of SU(2R×U(1BL→U(1Y is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the SU(2R×U(1BL sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.
Radiative Breaking of the Minimal Supersymmetric Left-Right Model
Okada, Nobuchika
2016-01-01
We propose a new variation to the SUSY Left-Right symmetric model based on the gauge group $SU(3)_c\\times SU(2)_L\\times SU(2)_R\\times U(1)_{BL}$. Beyond the quark and lepton superfields we only introduce a second Higgs bidoublet to produce realistic fermion mass matrices. This model does not include any $SU(2)_R$ triplets. We calculate renormalization group evolutions of soft SUSY parameters at the one-loop level down to low energy. We find that an $SU(2)_R$ slepton doublet acquires a negative mass squared at low energies, so that the breaking of $SU(2)_R\\times U(1)_{BL}\\rightarrow U(1)_Y$ is realized by a non-zero vacuum expectation value of a right-handed sneutrino. Small neutrino masses are produced through neutrino mixings with gauginos. Mass limits on the $SU(2)_R\\times U(1)_{BL}$ sector are obtained by direct search results at the LHC as well as lepton-gaugino mixing bounds from the LEP precision data.
Van Willige, R W G; Linssen, J P H; Legger-Huysman, A; Voragen, A G J
2003-01-01
The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic films after dark storage at 20 degrees C. Owing to absorption, the amount of flavour compounds in the model solution exposed to LDPE decreased substantially. From the model flavour solution valencene was almost completely absorbed by LDPE, followed to a lesser extent by decanal, hexyl acetate, octanal and nonanone. Less flavour compounds were absorbed from the model solution by PC and PET. In contrast to LDPE, valencene was absorbed in the lowest amounts and decanal in the highest. Limonene was readily absorbed from orange juice by LDPE, while myrcene, valencene, pinene and decanal were absorbed in smaller quantities. Only three flavour compounds were absorbed from orange juice by PC and PET in very small amounts: limonene, myrcene and decanal. Although the flavour content between controls and polymer-treated samples differed substantially, the loss of flavour compounds due to absorption by LDPE, PC and PET did not influence taste perception of a model solution and orange juice significantly up to 29 days of dark storage at 20 degrees C as determined by triangular taste panel tests.
Phenomenological study of the minimal R-symmetric supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip
2016-10-20
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
N=4 Supersymmetric Yang-Mills on S^3 in Plane Wave Matrix Model at Finite Temperature
Kitazawa, Yoshihisa
2008-01-01
We investigate the large N reduced model of gauge theory on a curved spacetime through the plane wave matrix model. We formally derive the action of the N=4 supersymmetric Yang-Mills theory on R \\times S^3 from the plane wave matrix model in the large N limit. Furthermore, we evaluate the effective action of the plane wave matrix model up to the two-loop level at finite temperature. We find that the effective action is consistent with the free energy of the N=4 supersymmetric Yang-Mills theory on S^3 at high temperature limit where the planar contributions dominate. We conclude that the plane wave matrix model can be used as a large N reduced model to investigate nonperturbative aspects of the N=4 supersymmetric Yang-Mills theory on R \\times S^3.
A More Flavored Higgs boson in Supersymmetric models
Díaz-Cruz, J L
2003-01-01
A More flavored Higgs boson arises when the flavor structure encoded in SUSY extensions of the SM is transmited to the Higgs sector. The flavor-Higgs transmition mechanism can have a radiative or mixing origin, as it is illustrated with several examples, and can produce interesting Higgs signatures that can be probed at future high-energy colliders. Within the MSSM, the flavor mediation mechanism can be of radiative type, as it is realized though gaugino-slepton loops, which transmit the flavorstructture of the soft-breaking sector to the Higgs bosons. In particular we focus on evaluating the contributions from the general trilinear terms to the lepton flavor violating Higgs (LFV) vertices. On the other hand, as an example of flavor mediation through mixing, we discuss an E_6 inspired multi-Higgs model, with an abelian flavor symmetry, where LFV as well as lepton flavor conserving Higgs effects are found to arise, though in this case at tree-level. We find that Tevatron and LHC can provide information on the ...
Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.
2003-01-01
The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic
Willige, van R.W.G.; Linssen, J.P.H.; Legger, A.; Voragen, A.G.J.
2003-01-01
The influence of flavour absorption by low-density polyethylene (LDPE), polycarbonate (PC) and polyethylene terephthalate (PET) on taste perception of a model solution containing seven flavour compounds and orange juice in glass bottles was studied with and without pieces of the respective plastic f
Higgs mass and right-handed sneutrino WIMP in a supersymmetric 3 -3 -1 model
Pires, C. A. de S.; da Silva, P. S. Rodrigues; Santos, A. C. O.; Siqueira, Clarissa
2016-09-01
This work deals with the right-handed sneutrino as thermal cold dark matter candidate. This scalar emerges in a supersymmetric version of the S U (3 )c⊗S U (3 )L⊗U (1 )X gauge model where right-handed neutrinos are a natural component of leptonic chiral scalar supermultiplets. We first consider the issue of a 125 GeV Higgs boson mass in this model, showing that constraints on the stop mass and trilinear soft coupling are considerably alleviated compared to the minimal supersymmetric standard model. Then, we investigate the region of parameter space that is consistent with right-handed sneutrino as thermal cold dark matter, under the light of Planck results on the relic abundance and direct detection from the LUX experiment. This sneutrino mainly annihilates through an extra neutral gauge boson, Z', and Higgs exchange so that the physics of dark matter is somewhat related to the parameters determining Higgs and Z' masses. We then obtain that the right-handed sneutrino in this model must be heavier than 400 GeV to conform with Planck and LUX, simultaneously constraining the Z' mass to be above 2400 GeV, which is in perfect agreement with LHC searches in a nonsupersymmetric version of this model.
Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Kadota, Kenji [Center for Theoretical Physics of the Universe, Institute for Basic Science,Daejeon 305-811 (Korea, Republic of); Kawasaki, Masahiro [Institute for Cosmic Ray Research, The University of Tokyo,5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba 277-8582 (Japan); Kavli Institute for the Physics and Mathematics of the Universe (WPI),Todai Institutes for Advanced Study, The University of Tokyo,5-1-5 Kashiwa-no-ha, Kashiwa City, Chiba 277-8582 (Japan); Saikawa, Ken’ichi [Department of Physics, Tokyo Institute of Technology,2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551 (Japan)
2015-10-16
The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.
QCD Corrections to K-Kbar Mixing in R-symmetric Supersymmetric Models
Blechman, Andrew E
2008-01-01
The leading-log QCD corrections to K-Kbar mixing in R-symmetric supersymmetric models are computed using effective field theory techniques. The spectrum topology where the gluino is significantly heavier than the squarks is motivated and focused on. It is found that, like in the MSSM, QCD corrections can tighten the kaon mass difference bound by roughly a factor of three. CP violation is also briefly considered, where QCD corrections can constrain phases to be as much as a factor of ten smaller than the uncorrected value.
QCD Corrections to K-Kbar Mixing in R-symmetric Supersymmetric Models
Blechman, Andrew E.; Ng, Siew-Phang
2008-01-01
The leading-log QCD corrections to K-Kbar mixing in R-symmetric supersymmetric models are computed using effective field theory techniques. The spectrum topology where the gluino is significantly heavier than the squarks is motivated and focused on. It is found that, like in the MSSM, QCD corrections can tighten the kaon mass difference bound by roughly a factor of three. CP violation is also briefly considered, where QCD corrections can constrain phases to be as much as a factor of ten small...
Precise predictions for Higgs-masses in the next-to-minimal supersymmetric standard model (NMSSM)
Energy Technology Data Exchange (ETDEWEB)
Drechsel, Peter; Weiglein, Georg [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Heinemeyer, Sven; Galeta, Leo [Instituto de Fisica de Cantabria, Edificio Juan Jorda, Santander (Spain)
2015-07-01
The NMSSM represents an elegant and well motivated alternative description for the observed phenomenology in high energy physics. In this theory a scalar singlet together with its superpartner is added to the Higgs-sector of the Minimal Supersymmetric Standard Model (MSSM). In order to allow significant testing of the NMSSM by experiments precise predictions for the parameters of the theory are a necessity. The talk focuses on the prediction for the Higgs-masses in the NMSSM up to 2-loop order obtained by diagrammatic methods. The numerical impact of partial contributions is discussed as well as the validity and scope of the presented results.
Light Stop, Heavy Higgs, and Heavy Gluino in Supersymmetric Standard Models with Extra Matters
Hisano, Junji; Kuwahara, Takumi
2016-01-01
We have explored the possibilities of scenarios with heavy gluinos and light stops in the supersymmetric (SUSY) standard models with extra vector-like multiplets. If we assume the hierarchical structure for soft masses of MSSM scalar fields and extra scalars, the light stop and the observed Higgs boson can be realized. While the stau is the lightest SUSY particle (LSP) in broad parameter space, we have found the neutralino LSP is realized in the case that the non-zero soft parameters for the MSSM Higgs doublets or the non-universal gaugino masses are assumed.
Implications of a 125 GeV Higgs for supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Arbey, A. [Universite de Lyon, Universite Lyon 1, CNRS/IN2P3, UMR5822 IPNL, F-69622 Villeurbanne Cedex (France); CERN, CH-1211 Geneva 23 (Switzerland); Observatoire de Lyon, CNRS, UMR5574 CRAL, Ecole Normale Superieure de Lyon, F-69561 Saint-Genis Laval Cedex (France); Battaglia, M. [CERN, CH-1211 Geneva 23 (Switzerland); Santa Cruz Institute of Particle Physics, University of California, Santa Cruz, CA 95064 (United States); Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Djouadi, A., E-mail: abdelhak.djouadi@th.u-psud.fr [CERN, CH-1211 Geneva 23 (Switzerland); Laboratoire de Physique Theorique, Universite Paris XI and CNRS, F-91405 Orsay (France); Mahmoudi, F. [CERN, CH-1211 Geneva 23 (Switzerland); Clermont Universite, Universite Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, 63000 Clermont-Ferrand (France); Quevillon, J. [Laboratoire de Physique Theorique, Universite Paris XI and CNRS, F-91405 Orsay (France)
2012-02-14
Preliminary results of the search for a Standard Model like Higgs boson at the LHC with 5 fb{sup -1} data have just been presented by the ATLAS and CMS Collaborations and an excess of events at a mass of Almost-Equal-To 125 GeV has been reported. If this excess of events is confirmed by further searches with more data, it will have extremely important consequences in the context of supersymmetric extensions of the Standard Model and, in particular the minimal one, the MSSM. We show that for a standard-like Higgs boson with a mass 123
Radiative Symmetry Breaking in the Supersymmetric Minimal B-L Extended Standard Model
Burell, Zachary
2016-01-01
The Standard Model (SM) of particle physics is a precise model of electroweak interactions, however there is growing tension between the SM and observations (neutrino oscillations, dark matter, dark energy, baryogenesis, among others). There is no reason to expect the validity of the ad hoc SM to remain intact at energy scales above a few TeV, thus a more fundamental theory will almost certainly be required. Motivated by these considerations, we investigate a Supersymmetric version of a natural extension of the SM, the $U(1)_{B-L}$ model, that is obtained by gauging the accidental B-L symmetry that exists in the ordinary SM. The Supersymmetric $U(1)_{B-L}$ extended SM can resolve the neutrino mass problem, the dark matter problem, the hierarchy problem, and provides a mechanism for establishing the observed baryon asymmetry of the Universe. When we include quantum corrections to the Higgs potential of the model, we find that Radiative $B-L$ symmetry breaking occurs through the interplay between large Majorana...
Institute of Scientific and Technical Information of China (English)
奎斯特国际有限公司
2004-01-01
@@ A good flavour must taste realistic and natural as well as performing under tough conditions, says Mairi Coia. In conjunction with texture or mouthfeel, flavour is the most important aspect of food. It is the one thing can bring consumers back to a product again and again - or not, as the case may be. In short, taste is the number one attribute in food and that is why the global fiavour business is worth A5 billion every year as manufacturers strive to make food taste better and fresher for longer.
Doped Heisenberg chains: Spin-S generalizations of the supersymmetric t-J model
Energy Technology Data Exchange (ETDEWEB)
Frahm, Holger E-mail: frahm@itp.uni-hannover.de
1999-10-25
A family of exactly solvable models describing a spin S Heisenberg chain doped with mobile spin-(S - ((1)/(2))) carriers is constructed from gl(2|1)-invariant solutions of the Yang-Baxter equation. The models are generalizations of the supersymmetric t-J model which is obtained for S ((1)/(2)). We solve the model by means of the algebraic Bethe Ansatz and present results for the zero temperature and thermodynamic properties. At low temperatures the models show spin charge separation, i.e. contain contributions of a free bosonic theory in the charge sector and an SU(2)-invariant theory describing the magnetic excitations. For small carrier concentration the latter can be decomposed further into an SU(2) level-2S Wess-Zumino-Novikov-Witten model and the minimal unitary model M{sub p} with p 2S + 1.
Flavour Physics and CP Violation
Pich, Antonio
2013-06-27
An introductory overview of the Standard Model description of flavour is presented. The main emphasis is put on present tests of the quark-mixing matrix structure and the phenomenological determination of its parameters. Special attention is given to the experimental evidences of CP violation and their important role in our understanding of flavour dynamics.
Resummation of tan-beta-enhanced supersymmetric loop corrections beyond the decoupling limit
Hofer, Lars; Scherer, Dominik
2009-01-01
We study the Minimal Supersymmetric Standard Model with Minimal Flavour Violation for the case of a large parameter tanbeta and arbitrary values of the supersymmetric mass parameters. We derive several resummation formulae for tanbeta-enhanced loop corrections, which were previously only known in the limit of supersymmetric masses far above the electroweak scale. Studying first the renormalisation-scheme dependence of the resummation formula for the bottom Yukawa coupling, we clarify the use of the sbottom mixing angle in the supersymmetric loop factor Delta_b. As a new feature, we find tan-beta-enhanced loop-induced flavour-changing neutral current (FCNC) couplings of gluinos and neutralinos which in turn give rise to new effects in the renormalisation of the Cabibbo-Kobayashi-Maskawa matrix and in FCNC processes of B mesons. For the chromomagnetic Wilson coefficient C_8, these gluino-squark loops can be of the same size as the known chargino-squark contribution. We discuss the phenomenological consequences ...
Root mean square radii of heavy flavoured mesons in a quantum chromodynamics potential model
Indian Academy of Sciences (India)
D K CHOUDHURY; TAPASHI DAS
2016-10-01
We report the results of root mean square (r.m.s.) radii of heavy flavoured mesons in a QCD model with the potential $V (r) = −(4\\alpha_{s}/3r) + br + c$. As the potential is not analytically solvable, we first obtain the results in the absence of confinement and Coulomb terms respectively. Confinement and Coulomb effects are then introduced successively in the approach using the Dalgarno’s method of perturbation. We explicitly consider the following two quantum mechanical aspects in the analysis: (a) The scale factor $c$ in the potential should not effect the wave function of the system even while applying the perturbation theory. (b) Choice of perturbative piece of the Hamiltonian (confinement or linear) should determine the effective radial separation between the quarks and antiquarks. The results are then compared with the available theoretical values of r.m.s. radii.
Bounds on the Higgs mass in the standard model and the minimal supersymmetric standard model
Quiros, M.
1995-01-01
Depending on the Higgs-boson and top-quark masses, M_H and M_t, the effective potential of the {\\bf Standard Model} can develop a non-standard minimum for values of the field much larger than the weak scale. In those cases the standard minimum becomes metastable and the possibility of decay to the non-standard one arises. Comparison of the decay rate to the non-standard minimum at finite (and zero) temperature with the corresponding expansion rate of the Universe allows to identify the region, in the (M_H, M_t) plane, where the Higgs field is sitting at the standard electroweak minimum. In the {\\bf Minimal Supersymmetric Standard Model}, approximate analytical expressions for the Higgs mass spectrum and couplings are worked out, providing an excellent approximation to the numerical results which include all next-to-leading-log corrections. An appropriate treatment of squark decoupling allows to consider large values of the stop and/or sbottom mixing parameters and thus fix a reliable upper bound on the mass o...
Yeo, Lihe; Thompson, Donald B; Peterson, Devin G
2016-05-15
This study investigated how hydrophobicity, solubility and the concentration of flavour compounds related to inclusion complexation by dispersed native high amylose maize starch (HAMS). The effect of native lipid on flavour retention and the effect of time (one day to one month) on flavour retention and precipitated starch yield was also examined. Flavour-starch complexation was dependent on the flavour compound hydrophobicity, the flavour concentration in a dose-dependent manner and also influenced by time (increased during storage). Flavour composition also influenced starch complexation; no flavour complexes were reported with limonene by itself but were observed when added in binary flavour mixtures with menthone or thymol. Furthermore, no difference in flavour retention was observed for native and lipid-free starch dispersions. In summary, flavour inclusion complexes with HAMS exhibited cooperativity-type binding behaviour; with a critical ligand concentration needed for a stable physical association between flavour compounds and HAMS.
The neutralino sector in the U(1)-extended supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Choi, S.Y. [Chonbuk National Univ., Jeonju (Korea). Dept. of Physics and RIPC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Haber, H.E. [California Univ., Santa Cruz, CA (United States). SCIPP; Kalinowski, J. [Warsaw Univ. (Poland). Inst. of Theoretical Physics; Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[California Univ., Santa Cruz, CA (United States). SCIPP
2006-12-15
Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e{sup +}e{sup -} colliders are also discussed. (orig.)
The Neutralino Sector in the U(1)-Extended Supersymmetric Standard Model
Choi, S Y; Kalinowski, Jan; Zerwas, P M
2006-01-01
Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at $e^+e^...
The neutralino sector in the U(1)-extended supersymmetric Standard Model
Choi, S. Y.; Haber, H. E.; Kalinowski, J.; Zerwas, P. M.
2007-08-01
Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the minimal supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at ee colliders are also discussed.
Deformed Matrix Models, Supersymmetric Lattice Twists and N=1/4 Supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Unsal, Mithat
2008-09-24
A manifestly supersymmetric nonperturbative matrix regularization for a twisted version of N = (8, 8) theory on a curved background (a two-sphere) is constructed. Both continuum and the matrix regularization respect four exact scalar supersymmetries under a twisted version of the supersymmetry algebra. We then discuss a succinct Q = 1 deformed matrix model regularization of N = 4 SYM in d = 4, which is equivalent to a non-commutative A*{sub 4} orbifold lattice formulation. Motivated by recent progress in supersymmetric lattices, we also propose a N = 1/4 supersymmetry preserving deformation of N = 4 SYM theory on R{sup 4}. In this class of N = 1/4 theories, both the regularized and continuum theory respect the same set of (scalar) supersymmetry. By using the equivalence of the deformed matrix models with the lattice formulations, we give a very simple physical argument on why the exact lattice supersymmetry must be a subset of scalar subalgebra. This argument disagrees with the recent claims of the link approach, for which we give a new interpretation.
Extended supersymmetric sigma models in AdS_4 from projective superspace
Butter, Daniel; Lindstrom, Ulf; Tartaglino-Mazzucchelli, Gabriele
2012-01-01
There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS projective-superspace techniques developed in arXiv:0807.3368. The virtue of the approach (i) is that it makes manifest the geometric properties of the N=2 supersymmetric sigma-models in AdS_4. The target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures. The power of the approach (ii) is that it allows us, in principle, to generate hyperkahler metrics as well as to address the problem of deformations of such metrics. Here we show how to relate the formulation (ii) to (i) by integrating out an infinite number of N=1 AdS auxiliary superfields and performing a superfield duality transformation. We al...
Shell-model study on event rates of lightest supersymmetric particles scattering off 83Kr and 125Te
Pirinen, P.; Srivastava, P. C.; Suhonen, J.; Kortelainen, M.
2016-05-01
We investigate the elastic and inelastic scattering of lightest supersymmetric particle (LSP) dark matter off two possible target nuclei, 83Kr and 125Te. For the nuclear-structure calculations, we employ the nuclear shell model using recently generated realistic interactions. We have condensed the nuclear-physics contribution to a set of nuclear-structure factors that are independent of the adopted supersymmetric (SUSY) model. Total event rates are then easily calculated by combining the nuclear-structure factors with SUSY parameters of choice. In particular, 125Te shows promise as a detector material with both the elastic and inelastic channels yielding an appreciable nuclear response.
Supersymmetric models on magnetized orbifolds with flux-induced Fayet-Iliopoulos terms
Abe, Hiroyuki; Sumita, Keigo; Tatsuta, Yoshiyuki
2016-01-01
We study supersymmetric (SUSY) models derived from the ten-dimensional SUSY Yang- Mills theory compactified on magnetized orbifolds, with nonvanishing Fayet-Iliopoulos (FI) terms induced by magnetic fluxes in extra dimensions. Allowing the presence of FI-terms relaxes a constraint on flux configurations in SUSY model building based on magnetized backgrounds. In this case, charged fields develop their vacuum expectation values (VEVs) to cancel the FI-terms in the D-flat directions of fluxed gauge symmetries, which break the gauge symmetries and lead to a SUSY vacuum. Based on this idea, we propose a new class of SUSY magnetized orbifold models with three generations of quarks and leptons. Especially, we construct a model where the right-handed sneutrinos develop their VEVs which restore the supersymmetry but yield lepton number violating terms below the compactification scale, and show their phenomenological consequences.
Supersymmetric models on magnetized orbifolds with flux-induced Fayet-Iliopoulos terms
Abe, Hiroyuki; Kobayashi, Tatsuo; Sumita, Keigo; Tatsuta, Yoshiyuki
2017-01-01
We study supersymmetric (SUSY) models derived from the ten-dimensional SUSY Yang-Mills theory compactified on magnetized orbifolds, with nonvanishing Fayet-Iliopoulos (FI) terms induced by magnetic fluxes in extra dimensions. Allowing the presence of FI-terms relaxes a constraint on flux configurations in SUSY model building based on magnetized backgrounds. In this case, charged fields develop their vacuum expectation values to cancel the FI-terms in the D-flat directions of fluxed gauge symmetries, which break the gauge symmetries and lead to a SUSY vacuum. Based on this idea, we propose a new class of SUSY magnetized orbifold models with three generations of quarks and leptons. Especially, we construct a model where the right-handed sneutrinos develop their vacuum expectation values which restore the supersymmetry but yield lepton number violating terms below the compactification scale, and show their phenomenological consequences.
Yamaguchi, Masahiro
2016-01-01
Discarding the prejudice about fine tuning, we propose a novel and efficient approach to identify relevant regions of fundamental parameter space in supersymmetric models with some amount of fine tuning. The essential idea is the mapping of experimental constraints at a low energy scale, rather than the parameter sets, to those of the fundamental parameter space. Applying this method to the non-universal Higgs masses model, we identify a new interesting superparticle mass pattern where some of the first two generation squarks are light whilst the stops are kept heavy as 6TeV. Furthermore, as another application of this method, we show that the discrepancy of the muon anomalous magnetic dipole moment can be filled by a supersymmetric contribution within the 1 {\\sigma} level of the experimental and theoretical errors, which was overlooked by the previous studies due to the required terrible fine tuning.
Dark radiation and dark matter in supersymmetric axion models with high reheating temperature
Energy Technology Data Exchange (ETDEWEB)
Graf, Peter; Steffen, Frank Daniel, E-mail: graf@mpp.mpg.de, E-mail: steffen@mpp.mpg.de [Max-Planck-Institut für Physik, Föhringer Ring 6, D–80805 Munich (Germany)
2013-12-01
Recent studies of the cosmic microwave background, large scale structure, and big bang nucleosynthesis (BBN) show trends towards extra radiation. Within the framework of supersymmetric hadronic axion models, we explore two high-reheating-temperature scenarios that can explain consistently extra radiation and cold dark matter (CDM), with the latter residing either in gravitinos or in axions. In the gravitino CDM case, axions from decays of thermal saxions provide extra radiation already prior to BBN and decays of axinos with a cosmologically required TeV-scale mass can produce extra entropy. In the axion CDM case, cosmological constraints are respected with light eV-scale axinos and weak-scale gravitinos that decay into axions and axinos. These decays lead to late extra radiation which can coexist with the early contributions from saxion decays. Recent results of the Planck satellite probe extra radiation at late times and thereby both scenarios. Further tests are the searches for axions at ADMX and for supersymmetric particles at the LHC.
Energy Technology Data Exchange (ETDEWEB)
de la Puente, Alejandro [Univ. of Notre Dame, IN (United States)
2012-05-01
In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.
Non-linear supersymmetric {sigma}-models and their gauging in the Atiyah-Ward space-time
Energy Technology Data Exchange (ETDEWEB)
Carvalho, M.; Vilar, L.C.Q.; Helayel-Neto, J.A.
1995-10-01
We present a supersymmetric non-linear {sigma}-model built up in the N 1 superspace of Atiyah-ward space-time. A manifold of the Kaehler type comes out that is restricted by a a particular decomposition of the Kaehler potential. The gauging of the {sigma}-model isometries is also accomplished in superspace. (author). 20 refs.
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2017-02-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)
SuperLFV: An SLHA tool for lepton flavor violating observables in supersymmetric models
Murakami, Brandon
2013-01-01
We introduce SuperLFV, a numerical tool for calculating low-energy LFV observables in the context of the minimal supersymmetric standard model (MSSM). As the Large Hadron Collider and MEG, a dedicated mu -> e gamma experiment, are presently acquiring data, there is need for tools that provide rapid discrimination of models that exhibit lepton flavor violation (LFV). SuperLFV accepts an SLHA-compliant spectrum file that contains the MSSM couplings and masses with complex phases at the supersymmetry breaking scale. In this manner, SuperLFV is compatible with but divorced from existing SLHA spectrum calculators that provides the low energy spectrum. Hence, input spectra are not confined to the LFV sources provided by established SLHA spectrum calculators. Input spectra may be generated by personal code or by hand, allowing for arbitrary models not supported by existing spectrum calculators.
Twining Genera of (0,4) Supersymmetric Sigma Models on K3
Harrison, Sarah; Paquette, Natalie M
2013-01-01
Conformal field theories with (0,4) worldsheet supersymmetry and K3 target can be used to compactify the E8xE8 heterotic string to six dimensions in a supersymmetric manner. The data specifying such a model includes an appropriate configuration of 24 gauge instantons in the E8xE8 gauge group to satisfy the constraints of anomaly cancellation. In this note, we compute twining genera - elliptic genera with appropriate insertions of discrete symmetry generators in the trace - for (0,4) theories with various instanton embeddings. We do this by constructing linear sigma models which flow to the desired conformal field theories, and using the techniques of localization. We present several examples of such twining genera which are consistent with a moonshine relating these (0,4) models to the finite simple sporadic group M24.
Aspects of the electroweak phase transition in the Minimal Supersymmetric Standard Model
Brignole, A; Quirós, Mariano; Zwirner, F
1994-01-01
We study the finite-temperature effective potential of the Minimal Supersymmetric Standard Model in the full (mA, tan(beta)) parameter space. As for the features of the electroweak phase transition, we identify two possible sources of significant differences with respect to the Standard Model: a stop sector with little supersymmetry breaking makes the phase transition more strongly first-order, whereas a light CP-odd neutral boson weakens its first-order nature. After including the leading plasma effects, T=0 radiative corrections due to top and stop loops, and the most important experimental constraints, we find that the danger of washing out any baryon asymmetry created at the electroweak scale is in general no less than in the Standard Model.
Bottom-Tau Unification in Supersymmetric Model with Anomaly-Mediation
Chigusa, So
2016-01-01
We study the Yukawa unification, in particular, the unification of the Yukawa coupling constants of $b$ and $\\tau$, in the framework of supersymmetric (SUSY) model. We concentrate on the model in which the SUSY breaking scalar masses are of the order of the gravitino mass while the gaugino masses originate from the effect of anomaly mediation and hence are one-loop suppressed relative to the gravitino mass. We perform an accurate calculation of the Yukawa coupling constants of $b$ and $\\tau$ at the grand unified theory (GUT) scale, including relevant renormalization group effects and threshold corrections. In particular, we study the renormalization group effects, taking into account the mass splittings among sfermions, gauginos, and the standard model particles. We found that the Yukawa coupling constant of $b$ at the GUT scale is about $70\\ \\%$ of that of $\\tau$ if there is no hierarchy between the sfermion masses and the gravitino mass. Our results suggest sizable threshold corrections to the Yukawa coupli...
A see-saw scenario of an $A_4$ flavour symmetric standard model
Dinh, Dinh Nguyen; Văn, Phi Quang; Vân, Nguyen Thi Hông
2016-01-01
A see-saw scenario for an $A_4$ flavour symmetric standard model is presented. As before, the see-saw mechanism can be realized in several models of different types depending on different ways of neutrino mass generation corresponding to the introduction of new fields with different symmetry structures. In the present paper, a general desription of all these see-saw types is made with a more detailed investigation on type-I models. As within the original see-saw mechanism, the symmetry structure of the standard model fields decides the number and the symmetry structure of the new fields. In a model considered here, the scalar sector consists of three standard-model-Higgs-like iso-doublets ($SU_L(2)$-doublets) forming an $A_4$ triplet. The latter is a superposition of three mass-eigen states, one of which could be identified with the recently discovered Higgs boson. A possible relation to the still-deliberated 750 GeV diphoton resonance at the 13 TeV LHC collisions is also discussed. In the lepton sector, the ...
Extended Minimal Flavour Violating MSSM and Implications for B Physics
Ali, A
2001-01-01
Current world average of the CP asymmetry a(psi K), obtained from the rate differences in the decays B^0 -> (J/psi K_S), (J/psi K_L) and their charge conjugates, is barely compatible with the standard model (SM) predictions resulting from the unitarity of the CKM matrix. Indirect estimate of this CP asymmetry in the so-called minimal flavour violating (MFV) supersymmetric extensions of the standard model, in which the CKM matrix remains the only flavour changing structure, is similar to the one in the SM. If the present experimental trend yielding a(psi K,exp) - a(psi K,SM) d gamma as sensitive probes of the postulated flavour changing structure. This is quantified in terms of the ratio R(rho gamma/K* gamma) = 2 B(B^0 -> rho^0 gamma)/B(B^0 -> K^*0 gamma), the isospin violating ratio Delta=B(B^+ -> rho^+ gamma)/2B(B^0 -> rho^0 gamma) -1, and the CP-asymmetry in the decay rates for B^+ -> rho^+ gamma and its charge conjugate.
Patterns of flavour violation in models with vector-like quarks
Bobeth, Christoph; Buras, Andrzej J.; Celis, Alejandro; Jung, Martin
2017-04-01
We study the patterns of flavour violation in renormalisable extensions of the Standard Model (SM) that contain vector-like quarks (VLQs) in a single complex representation of either the SM gauge group GSM or G SM ' ≡ GSM ⊗ U(1)L μ - L τ . We first decouple VLQs in the M = (1 - 10) TeV range and then at the electroweak scale also Z, Z ' gauge bosons and additional scalars to study the phenomenology. The results depend on the relative size of Z- and Z '-induced flavour-changing neutral currents, as well as the size of |Δ F | = 2 contributions including the effects of renormalisation group Yukawa evolution from M to the electroweak scale that turn out to be very important for models with right-handed currents through the generation of left-right operators. In addition to rare decays like P\\to ℓ \\overline{ℓ},P\\to {P}^'ℓ \\overline{ℓ},P\\to {P}^'ν \\overline{ν} with P = K, B s , B d and |Δ F | = 2 observables we analyze the ratio ɛ ' /ɛ which appears in the SM to be significantly below the data. We study patterns and correlations between these observables which taken together should in the future allow for differentiating between VLQ models. In particular the patterns in models with left-handed and right-handed currents are markedly different from each other. Among the highlights are large Z-mediated new physics effects in Kaon observables in some of the models and significant effects in B s,d -observables. ɛ ' /ɛ can easily be made consistent with the data, implying then uniquely the suppression of {K}_L\\to {π}^0ν \\overline{ν} . Significant enhancements of Br({K}+\\to {π}+ν \\overline{ν}) are still possible. We point out that the combination of NP effects to |Δ F | = 2 and |Δ F | = 1 observables in a given meson system generally allows to determine the masses of VLQs in a given representation independently of the size of VLQ couplings.
Limits on the mass of the lightest Higgs in supersymmetric models
Masip, M; Pomarol, A
1998-01-01
In supersymmetric models extended with a gauge singlet the mass of the lightest Higgs boson has contributions proportional to the adimensional coupling $\\lambda$. In minimal scenarios, the requirement that this coupling remains perturbative up to the unification scale constrains $\\lambda$ to be smaller than $\\approx 0.7$. We study the maximum value of $\\lambda$ consistent with a perturbative unification of the gauge couplings in models containing nonstandard fields at intermediate scales. These fields appear in scenarios with gauge mediation of supersymmetry breaking. We find that the presence of extra fields can raise the maximum value of $\\lambda$ up to a 19%, increasing the limits on the mass of the lightest Higgs from 135 GeV to 155 GeV.
Higaki, Tetsutaro; Takeda, Naoyuki
2016-01-01
We study a flavor texture in a supersymmetric model with vector-like generations by using Froggatt-Nielsen mechanism. We find realistic flavor structures which reproduce the Cabbibo-Kobayashi-Maskawa matrix and fermion masses at low-energy. Furthermore, the fermionic component of the gauge singlet field becomes a candidate of dark matter, whereas the vacuum expectation value of the scalar component gives the vector-like mass. In our model, flavor physics and dark matter are explained with moderate size couplings through renormalization group flows, and the presence of dark matter supports the existence of just three generations in low energy scales. We analyze the parameter region where the current thermal relic abundance of dark matter, the Higgs boson mass and the muon $g-2$ can be explained simultaneously.
Anomaly Mediation and Fixed Point in Partially N = 2 Supersymmetric Standard Models
Yin, Wen
2016-01-01
To explain the tension between the observed Higgs boson mass and the experimental deviations from the Standard Model (SM) prediction in flavor physics, especially the experimental anomaly of the muon anomalous dipole moment (muon $g-2$), we study partially $N=2$ supersymmetric (SUSY) extensions of the SM (partially $N=2$ SSMs). In this kind of model, an $N=2$ SUSY sector is sequestered from the SUSY breaking due to $SO(2)_R$ symmetry at the tree-level. We show that the low energy physics in the $N=2$ sector is controlled by a fixed point and hence approximately UV insensitive. Moreover at this fixed point, the tachyonic slepton problem of anomaly mediation is always solved. In a concrete partially $N=2$ SSM, the muon $g-2$ anomaly is explained within the $1\\sigma$ level error with $mathcal{O}(100)$TEV cosmologically favored gravitino. We also propose some new dark matter candidates as a natural consequence of partially $N=2$ SSMs.
Non-uniform phases in a three-flavour 't Hooft extended Nambu-Jona--Lasinio model
Moreira, J; Broniowski, W; Osipov, A A; Blin, A H
2014-01-01
The possible existence of non-uniform phases in cold dense quark matter in the light quark sector ($u$, $d$ and $s$) is addressed using the Nambu-Jona--Lasinio Model extended to include flavour-mixing 't Hooft determinant. The effect of changes in the coupling strengths of the model is discussed. It is seen that the inclusion of the strange sector catalyses the appearance of these non-uniform phases extending the domain for their appearance.
Higgs boson couplings in multi-doublet models with natural flavour conservation
Directory of Open Access Journals (Sweden)
Kei Yagyu
2016-12-01
Full Text Available We investigate the deviation in the couplings of the standard model (SM like Higgs boson (h with a mass of 125 GeV from the prediction of the SM in multi-doublet models within the framework where flavour changing neutral currents at the tree level are naturally forbidden. After we present the general expressions for the modified gauge and Yukawa couplings for h, we show the correlation between the deviation in the Yukawa coupling for the tau lepton hτ+τ− and that for the bottom quark hbb¯ under the assumption of a non-zero deviation in the hVV (V=W,Z couplings in two Higgs doublet models (2HDMs and three Higgs doublet models (3HDMs as simple examples. We clarify the possible allowed prediction of the deviations in the 3HDMs which cannot be explained in the 2HDMs even taking into account the one-loop electroweak corrections to the Yukawa coupling.
A $Z^\\prime$ Model for $b\\to s \\ell\\bar \\ell$ Flavour Anomalies
Chiang, Cheng-Wei; Valencia, German
2016-01-01
We study the implications of flavour-changing neutral currents (FCNC's) in a model with the $SU(2)_l\\times SU(2)_h\\times U(1)_Y$ electroweak gauge symmetry for several anomalies appearing in $b\\to s \\ell\\bar \\ell$ induced $B$ decays in LHCb data. In this model, $SU(2)_l$ and $SU(2)_h$ govern the left-handed fermions in the first two generations and the third generation, respectively. The physical $Z$ and $Z'$ generate the $b\\to s$ transition at tree level, leading to additional contributions to the $b \\to s$ semileptonic operators ${\\cal O}_{9,10}$. We find that although $B_s$-$\\bar B_s$ mixing constrains the parameters severely, the model can produce values of ${\\cal C}^{\\rm NP}_{9,10}$ in the range determined by Descotes-Genon {\\it et. al.} in Ref.~\\cite{Descotes-Genon:2015uva} for this scenario to improve the global fit of observables in decays induced by the $b\\to s \\mu \\bar \\mu$ transition. The $Z'$ boson in this model also generates tree-level FCNC's for the leptonic interactions that can accommodate th...
Higgs boson couplings in multi-doublet models with natural flavour conservation
Yagyu, Kei
2016-01-01
We investigate the deviation in couplings of the standard model (SM) like Higgs boson ($h$) with the mass of 125 GeV from the prediction of the SM in multi-doublet models within the framework where flavour changing neutral currents at the tree level are naturally forbidden. After we present the general expressions for the modified gauge and Yukawa couplings for $h$, we show the correlation between the deviation in the Yukawa coupling for the tau lepton $h\\tau^+\\tau^-$ and that for the bottom quark $hb\\bar{b}$ under the assumption of a non-zero deviation in the $hVV$ $(V=W,Z)$ couplings in two Higgs doublet models (2HDMs) and three Higgs doublet models (3HDMs) as the simple examples. We clarify the possible allowed prediction of the deviations in the 3HDMs which cannot be explained in the 2HDMs even taking into account the one-loop electroweak corrections to the Yukawa coupling.
Energy Technology Data Exchange (ETDEWEB)
Schulze-Halberg, Axel, E-mail: axgeschu@iun.edu, E-mail: xbataxel@gmail.com [Department of Mathematics and Actuarial Science and Department of Physics, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States); Wang, Jie, E-mail: wangjie@iun.edu [Department of Computer Information Systems, Indiana University Northwest, 3400 Broadway, Gary, Indiana 46408 (United States)
2015-07-15
We obtain series solutions, the discrete spectrum, and supersymmetric partners for a quantum double-oscillator system. Its potential features a superposition of the one-parameter Mathews-Lakshmanan interaction and a one-parameter harmonic or inverse harmonic oscillator contribution. Furthermore, our results are transferred to a generalized Pöschl-Teller model that is isospectral to the double-oscillator system.
Bethe Ansatz for Supersymmetric Model Constructed from Uq[osp(2|2)(2)] R-Matrix
Institute of Scientific and Technical Information of China (English)
YANG Wen-Li; ZHEN Yi
2001-01-01
Using the algebraic Bethe ansatz method, we obtain the eigenvalues of transfer matrix of the supersymmetric model constructed from the R-matrix of the twisted affine superalgebra Uq[osp(2|2)(2)] in periodic boundary condition and twisted boundary condition.``
Energy Technology Data Exchange (ETDEWEB)
Franke, F.
1995-07-01
In this thesis after a presentation of the nonminimal supersymmetric standard model the lower mass limits for neutralinos and Higgs bosons are calculated. Then some typical scenarios for the study of the neutralino production and decay at LEP2 are constructed, for which the cross sections are calculated. (HSI)
The B ‑ L supersymmetric standard model with inverse seesaw at the large hadron collider
Khalil, S.; Moretti, S.
2017-03-01
We review the TeV scale B ‑ L extension of the minimal supersymmetric standard model (BLSSM) where an inverse seesaw mechanism of light neutrino mass generation is naturally implemented and concentrate on its hallmark manifestations at the large hadron collider (LHC).
Institute of Scientific and Technical Information of China (English)
HOU Hong-Sheng; MA Wen-Gan; ZHOU Hong; WAN Lang-Hui; JIANG Yi
2002-01-01
The top-charm associated production with the effects from both B- and L-violating interactions in TeVscale photon-proton collisions is investigated in the framework of Rp minimal supersymmetric standard model. Withinthe bounds on the relevant R-parity violating couplings, the total cross section will reach the order of 10 fb in some partsof the parameter space.
Generalised Geometrical CP Violation in a $T^{\\prime}$ Lepton Flavour Model
Girardi, Ivan; Petcov, S T; Spinrath, Martin
2014-01-01
We analyse the interplay of generalised CP transformations and the non-Abelian discrete group $T^{\\prime}$ and use the semi-direct product $G_f= T^{\\prime}\\rtimes H_{\\text{CP}}$, as family symmetry acting in the lepton sector. The family symmetry is shown to be spontaneously broken in a geometrical manner. In the resulting flavour model, naturally small Majorana neutrino masses for the light active neutrinos are obtained through the type I see-saw mechanism. The known masses of the charged leptons, lepton mixing angles and the two neutrino mass squared differences are reproduced by the model with a good accuracy. The model allows for two neutrino mass spectra with normal ordering (NO) and one with inverted ordering (IO). For each of the three spectra the absolute scale of neutrino masses is predicted with relatively small uncertainty. The value of the Dirac CP violation (CPV) phase $\\delta$ in the lepton mixing matrix is predicted to be $\\delta \\cong \\pi/2~{\\rm or}~ 3\\pi/2$. Thus, the CP violating effects in ...
SU(2) Gauge Theory with Two Fundamental Flavours: a Minimal Template for Model Building
Arthur, Rudy; Hansen, Martin; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2016-01-01
We investigate the continuum spectrum of the SU(2) gauge theory with $N_f=2$ flavours of fermions in the fundamental representation. This model provides a minimal template which is ideal for a wide class of Standard Model extensions featuring novel strong dynamics that range from composite (Goldstone) Higgs theories to several intriguing types of dark matter candidates, such as the SIMPs. We improve our previous lattice analysis [1] by adding more data at light quark masses, at two additional lattice spacings, by determining the lattice cutoff via a Wilson flow measure of the $w_0$ parameter, and by measuring the relevant renormalisation constants non-perturbatively in the RI'-MOM scheme. Our results for the lightest isovector states in the vector and axial channels, in units of the pseudoscalar decay constant, are $m_V/F_{\\rm{PS}}\\sim 13.1(2.2)$ and $m_A/F_{\\rm{PS}}\\sim 14.5(3.6)$ (combining statistical and systematic errors). In the context of the composite (Goldstone) Higgs models, our result for the spin-...
Nilpotent Symmetries of a Specific N = 2 Supersymmetric Quantum Mechanical Model: A Novel Approach
Krishna, S; Malik, R P
2013-01-01
We derive the on-shell nilpotent supersymmetric (SUSY) transformations for the N = 2 SUSY quantum mechanical model of a one (0 + 1)-dimensional free particle by exploiting the SUSY invariant restrictions on the (anti-)chiral supervariables of the SUSY theory that is defined on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables \\theta and \\bar \\theta with \\theta^2 = \\bar \\theta^2 = 0,\\theta \\bar \\theta + \\bar \\theta \\theta = 0). Within the framework of our novel approach, we express the Lagrangian and conserved SUSY charges in terms of the (anti-)chiral supervariables to demonstrate the SUSY invariance of the Lagrangian and nilpotency of the conserved charges in a simple manner. Our approach has the potential to be generalized to the description of other N = 2 SUSY quantum mechanical systems with physically interesting potential functions.
eμ Production in R-Parity Violating Supersymmetric Model at Hadron Colliders
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
We investigate the lepton flavor violating productions (p-)p/pp → eμ + X in the framework of the R-parity violating (RPV) supersymmetric model at the Tevatron and the CERN large hadron collider (LHC). We present the total cross sections including the next-to-leading order (NLO) QCD corrections and the contribution from gluon-gluon fusion subprocess. Our numerical results show that the one-loop QCD corrections significantly increase the tree-level cross sections, and the variation of K factor is in the range between 1.28 (1.32) and 1.79 (1.58) at the Tevatron (LHC).We find that the QCD correction from the one-loop gluon-gluon fusion subprocess is remarkable at the LHC and should be taken into account.
Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation
Pires, C A de S; da Silva, P S Rodrigues
2016-01-01
If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the superfields $\\hat N^C$ and $\\hat S$. We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining $125$GeV without resort to heavy stops.
Realizing the supersymmetric inverse seesaw model in the framework of R-parity violation
de S. Pires, C. A.; Rodrigues, J. G.; Rodrigues da Silva, P. S.
2016-08-01
If, on one hand, the inverse seesaw is the paradigm of TeV scale seesaw mechanism, on the other it is a challenge to find scenarios capable of realizing it. In this work we propose a scenario, based on the framework of R-parity violation, that realizes minimally the supersymmetric inverse seesaw mechanism. In it the energy scale parameters involved in the mechanism are recognized as the vacuum expectation values of the scalars that compose the singlet superfields NˆC and S ˆ . We develop also the scalar sector of the model and show that the Higgs mass receives a new tree-level contribution that, when combined with the standard contribution plus loop correction, is capable of attaining 125 GeV without resort to heavy stops.
Choi, S Y; Jang, J H; Song, H S; Park, Seong Chan
2001-01-01
We study the elastic scattering of the lightest neutralino with a nucleus in the framework of the minimal supersymmetric standard model (MSSM) with explicit flavor preserving CP violation, including the one-loop CP-violating neutral Higgs-boson mixing effects induced dominantly by the CP phases in the top and bottom (s)quark sectors. We construct the most general form of the effective Lagrangian for the neutralino-nucleus scattering in the limit of vanishing momentum transfers and then we perform a comprehensive analysis of the effects of the complex CP phases on the mass spectra of the lightest neutralino, neutral Higgs bosons and top squarks, and on the the spin-dependent and spin-independent neutralino-nucleus scattering cross section for three neucleus targets F, Si and Ge. The CP phases can reduce or enhance the neutralino-nucleus cross sections significantly, depending on the values of the real parameters in the MSSM.
Boundary effects on the supersymmetric sine-Gordon model through light-cone lattice approach
Matsui, Chihiro
2014-01-01
We discussed subspaces of the N=1 supersymmetric sine-Gordon model with Dirichlet boundaries through light-cone lattice regularization. In this paper, we showed, unlike the periodic boundary case, both of Neveu-Schwarz (NS) and Ramond (R) sectors of a superconformal field theory were obtained. Using a method of nonlinear integral equations for auxiliary functions defined by eigenvalues of transfer matrices, we found that an excitation state with an odd number of particles is allowed for a certain value of a boundary parameter even on a system consisting of an even number of sites. In a small-volume limit where conformal invariance shows up in the theory, we derived conformal dimensions of states constructed through the lattice-regularized theory. The result shows existence of the R sector, which cannot be obtained from the periodic system, while a winding number is restricted to an integer or a half-integer depending on boundary parameters.
Neutrino masses and b - $\\tau$ unification in the supersymmetric standard model
Vissani, F
1994-01-01
ABSTRACT: There are several indications that the Majorana masses of the right-handed neutrino components, M_R, are at the intermediate scale: M_R\\sim (10^{10}-10^{12}) GeV or even lighter. The renormalization effects due to large Yukawa couplings of neutrinos from region of momenta M_R \\ltap q \\ltap M_G are studied in the supersymmetric standard model. It is shown that neutrino renormalization effect can increase the m_b/m_\\tau ratio up to (10\\div 15)\\%. This strongly disfavours m_b-m_\\tau unification for low values of \\tan\\beta < 10 especially at large values of \\alpha_s. Lower bounds on M_R and \\tan\\beta from the b-\\tau unification condition were found. The implications of the results to the see-saw mechanism of the neutrino mass generation are discussed.
DEFF Research Database (Denmark)
Sørensen, Louise Marie; Gori, Klaus; Petersen, Mikael Agerlin
2011-01-01
produced sulphides, furanes and short-chain ketones; Saccharomyces cerevisiae D7 primarily produced esters and Debaryomyces hansenii D18335 primarily produced branched-chain aldehydes and alcohols. For several of the detected flavour compounds, an increase in production was observed upon exposure to dairy......A simple cheese model mimicking a cheese surface was developed for the detection of cheese flavour formation of yeasts. A total of 56 flavour compounds were detected by dynamic headspace sampling followed by gas chromatography - mass spectrometry analysis. Yarrowia lipolytica CBS2075 primarily...
Lepton Flavour Violating tau Decays in the Left-Right Symmetric Model
Akeroyd, A G; Okada, Y; Aoki, Mayumi; Okada, Yasuhiro
2006-01-01
The Left-Right symmetric extension of the Standard Model with Higgs isospin triplets can provide neutrino masses via a TeV scale seesaw mechanism. The doubly charged Higgs bosons H^{\\pm\\pm}_L and H^{\\pm\\pm}_R induce lepton flavour violating decays \\tau^\\pm \\to lll at tree-level via a coupling which is related to the Maki-Nakagawa-Sakata matrix (V_{\\rm MNS}). We study the magnitude and correlation of \\tau^\\pm \\to lll and \\mu\\to e\\gamma with specific assumptions for the origin of the large mixing in V_{\\rm MNS} while respecting the stringent bound for \\mu\\to eee. It is also shown that an angular asymmetry for \\tau^\\pm \\to lll is sensitive to the relative strength of the H^{\\pm\\pm}_L and H^{\\pm\\pm}_R mediated contributions and provides a means of distinguishing models with doubly charged Higgs bosons.
Flavour-changing Higgs decays into bottom and strange quarks in supersymmetry
Barenboim, G; Lee, J S; López-Ibáñez, M L; Vives, O
2015-01-01
In this work, we explore the flavour changing decays $H_i \\to b s$ in a general supersymmetric scenario. In these models, the flavour changing decays arise at loop-level but, originating from a dimension-four operator, do not decouple and may provide a first sign of new physics for heavy masses beyond collider reach. In the framework of the minimal supersymmetric extension of the Standard Model (MSSM), we find that the largest branching ratio of the lightest Higgs ($H_1$) is ${\\cal O}(10^{-6})$ after imposing present experimental constraints. While heavy Higgs states may still present branching ratios ${\\cal O}(10^{-3})$. In a more general supersymmetric scenario, where additional Higgs states may modify the Higgs mixings, the branching ratio BR($H_1 \\to b s$) can reach values ${\\cal O}(10^{-4})$ , while heavy Higgses still remain at ${\\cal O}(10^{-3})$. Although these values are clearly out of reach for the LHC, a full study in a linear collider environment could be worth.
Invariant approach to flavour-dependent CP-violating phases in the MSSM
Energy Technology Data Exchange (ETDEWEB)
Botella, Francisco J. [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot (Spain); Nebot, Miguel [Departament de Fisica Teorica and IFIC, Universitat de Valencia-CSIC, E-46100, Burjassot (Spain); Vives, Oscar [Department of Physics, TH Division, CERN, Geneva 23 (Switzerland)
2006-01-15
We use a new weak basis invariant approach to classify all the observable phases in any extension of the Standard Model (SM). We apply this formalism to determine the invariant CP phases in a simplified version of the Minimal Supersymmetric SM with only three non-trivial flavour structures. We propose four experimental measures to fix completely all the observable phases in the model. After these phases have been determined from experiment, we are able to make predictions on any other CP-violating observable in the theory, much in the same way as in the Standard Model all CP-violation observables are proportional to the Jarlskog invariant.
A flavour GUT model with theta_13^PMNS = theta_C / sqrt(2)
Antusch, Stefan; Maurer, Vinzenz; Sluka, Constantin
2013-01-01
We propose a supersymmetric SU(5) GUT model with an A_4 family symmetry - including a full flavon- and messenger sector - which realises the relation theta_13^PMNS \\simeq theta_C / sqrt(2). The neutrino sector features tri-bimaximal mixing, and theta_13^PMNS \\simeq theta_C / sqrt(2) emerges from the charged lepton contribution to the PMNS matrix, which in turn is linked to quark mixing via specific GUT relations. These GUT relations arise after GUT symmetry breaking from a novel combination of group theoretical Clebsch-Gordan factors, which in addition to large theta_13^PMNS lead to promising quark lepton mass ratios for all generations of quarks and leptons and to m_s / m_d = 18.95_(-0.24)^(+0.33), in excellent agreement with experimental results. The model also features spontaneous CP violation, with all quark and lepton CP phases determined from family symmetry breaking. We perform a full Markov Chain Monte Carlo fit to the available quark and lepton data, and discuss how the model can be tested by present...
A flavour GUT model with θ13PMNS≃θC/√{2}
Antusch, Stefan; Gross, Christian; Maurer, Vinzenz; Sluka, Constantin
2013-12-01
We propose a supersymmetric SU(5) GUT model with an A4 family symmetry - including a full flavon and messenger sector - which realises the relation θ13PMNS≃θC/√{2}. The neutrino sector features tri-bimaximal mixing, and θ13PMNS≃θC/√{2} emerges from the charged lepton contribution to the PMNS matrix, which in turn is linked to quark mixing via specific GUT relations. These GUT relations arise after GUT symmetry breaking from a novel combination of group theoretical Clebsch-Gordan factors, which in addition to large θ13PMNS lead to promising quark-lepton mass ratios for all generations of quarks and leptons and to ms/md=18.95-0.24+0.33, in excellent agreement with experimental results. The model also features spontaneous CP violation, with all quark and lepton CP phases determined from family symmetry breaking. We perform a full Markov Chain Monte Carlo fit to the available quark and lepton data, and discuss how the model can be tested by present and future experiments.
Supersymmetric classical cosmology
Escamilla-Rivera, Celia; Urena-Lopez, L Arturo
2010-01-01
In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpartners associated with both the scale factor and the scalar field, and classical equations of motion are obtained from the super-Wheeler-DeWitt equation through the usual WKB method. The resulting supersymmetric Einstein-Klein-Gordon equations contain extra radiation and stiff matter terms, and we study their solutions in flat space for different scalar field potentials. The solutions are compared to the standard case, in particular those corresponding to the exponential potential, and their implications for the dynamics of the early Universe are discussed in turn.
Bueno, Mónica; Campo, M Mar; Cacho, Juan; Ferreira, Vicente; Escudero, Ana
2014-12-01
The objective of the work is to understand the role of the different aroma compounds in the perception of the local "lamb flavour" concept. For this, a set of 70 loins (Longissimus dorsi) from approximately seventy day-old Rasa Aragonesa male lambs were grilled and the aroma-active chemicals released during the grilling process were trapped and analyzed. Carbonyl compounds were derivatizated and determined by GC-NCI-MS, whereas other aromatic compounds were directly analyzed by GC-GC-MS. Odour activity values (OAVs) were calculated using their odour threshold values in air. Lamb flavour could be satisfactory explained by a partial least-squares model (74% explained variance in cross-validation) built by the OAVs of 32 aroma-active chemical compounds. The model demonstrates that the lamb flavour concept is the result of a complex balance. Its intensity critically and positively depends to the levels of volatile fatty acids and several dimethylpyrazines while is negatively influenced by the different alkenals and alkadienals. (E,E)-2,4-decadienal and (E)-2-nonenal showed top OAVs.
Masses and magnetic moments of triple heavy flavour baryons in hypercentral model
Indian Academy of Sciences (India)
Bhavin Patel; Ajay Majethiya; P C Vinodkumar
2009-04-01
Triple heavy flavour baryons are studied using the hypercentral description of the three-body system. The confinement potential is assumed as hypercentral Coulomb plus power potential with power index . The ground state ($J^{P} = \\dfrac{1}{2}^{+}$ and $\\dfrac{3}{2}^{+}$) masses of heavy flavour baryons are computed for different power index, starting from 0.5 to 2.0. The predicted masses are found to attain a saturated value with respect to variation in p beyond the power index > 1.0. Using the spin-flavour structure of the constituting quarks and by defining effective mass of the confined quarks within the baryons, the magnetic moments are computed with no additional free parameters.
Ferrnion Mass Hierarchies in Singlet-Extended Minimal-Supersymmetric-Standard-Model Quivers
Institute of Scientific and Technical Information of China (English)
Salah Eddine Ennadifi; Adil Belhaj; El Hassan Saidi
2011-01-01
In the context of type-ⅡA orientifold compactifications,we discuss the fermion masses in a two-singlet-extended minimal-supersymmetric-standard-model four-stack quiver with U(3) × Sp(1) × U(1) × U(1) gauge symmetry.The corresponding effective superpotential exhibits hierarchical coupling term scales giving a partial solution to the fermion masses problem.Using the known data with upper bound neutrino masses mvτ ＜～ 2 eV,we estimate the relevant scales for the model.It has been shown that important particle physics can be realized in type-Ⅱ superstring models by using the mechanism of intersecting D-branes in orientifold compactifications.[1-6] In such compactifications,the gauge groups arise from stacks of D-branes that fill four-dimensional spacetime and wrap the three-cycles in the internal Calabi-Yau threefold.However,matter fields arise at the intersection of two different D-brane stacks in internal space and their multiplicity is given by the topological intersection numbers of the respective three-cycles.Their interactions are subject to restrictions of additional global U(1)'s exhibited by orientifold compactifications.[7-10] Stringy effects have a crucial role in this regard,as they give corrections to the superpotential by inducing the missing couplings relevant for fermion masses.This method provides an acceptable effective low energy description reproducing the standard model or some extensions.[11,12]%In the context of type-IIA orientifold compactifications, we discuss the fermion masses in a two-singlet-extended minimal-supersymmetric-standard-model four-stack quiver with U(3)×Sp(1)×U(1)×U(1) gauge symmetry. The corresponding effective superpotential exhibits hierarchical coupling term scales giving a partial solution to the fermion masses problem. Using the known data with upper bound neutrino masses mvτ≤2 eV, we estimate the relevant scales for the model.
The Supersymmetric Particle Spectrum
Barger, V; Ohmann, P
1994-01-01
We examine the spectrum of supersymmetric particles predicted by grand unified theoretical (GUT) models where the electroweak symmetry breaking is accomplished radiatively. We evolve the soft supersymmetry breaking parameters according to the renormalization group equations (RGE). The minimization of the Higgs potential is conveniently described by means of tadpole diagrams. We present complete one-loop expressions for these minimization conditions, including contributions from the matter and the gauge sectors. We concentrate on the low $\\tan \\beta$ fixed point region (that provides a natural explanation of a large top quark mass) for which we find solutions to the RGE satisfying both experimental bounds and fine-tuning criteria. We also find that the constraint from the consideration of the lightest supersymmetric particle as the dark matter of the universe is accommodated in much of parameter space where the lightest neutralino is predominantly gaugino. The supersymmetric mass spectrum displays correlations...
Babu, K S
2015-01-01
We present a minimal renormalizable non-supersymmetric SO(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54_H + 126_H + 10_H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 10^{35} yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of \\tau_p \\gtrsim 1.29 \\times 10^{34} yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, M_I \\approx (10...
Planarizable Supersymmetric Quantum Toboggans
Directory of Open Access Journals (Sweden)
Miloslav Znojil
2011-02-01
Full Text Available In supersymmetric quantum mechanics the emergence of a singularity may lead to the breakdown of isospectrality between partner potentials. One of the regularization recipes is based on a topologically nontrivial, multisheeted complex deformations of the line of coordinate x giving the so called quantum toboggan models (QTM. The consistent theoretical background of this recipe is briefly reviewed. Then, certain supersymmetric QTM pairs are shown exceptional and reducible to doublets of non-singular ordinary differential equations a.k.a. Sturm-Schrödinger equations containing a weighted energy E→EW(x and living in single complex plane.
Koehn, Michael
2015-01-01
In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.
Renormalization group running of fermion observables in an extended non-supersymmetric SO(10) model
Meloni, Davide; Ohlsson, Tommy; Riad, Stella
2017-03-01
We investigate the renormalization group evolution of fermion masses, mixings and quartic scalar Higgs self-couplings in an extended non-supersymmetric SO(10) model, where the Higgs sector contains the 10 H, 120 H, and 126 H representations. The group SO(10) is spontaneously broken at the GUT scale to the Pati-Salam group and subsequently to the Standard Model (SM) at an intermediate scale M I. We explicitly take into account the effects of the change of gauge groups in the evolution. In particular, we derive the renormalization group equations for the different Yukawa couplings. We find that the computed physical fermion observables can be successfully matched to the experimental measured values at the electroweak scale. Using the same Yukawa couplings at the GUT scale, the measured values of the fermion observables cannot be reproduced with a SM-like evolution, leading to differences in the numerical values up to around 80%. Furthermore, a similar evolution can be performed for a minimal SO(10) model, where the Higgs sector consists of the 10 H and 126 H representations only, showing an equally good potential to describe the low-energy fermion observables. Finally, for both the extended and the minimal SO(10) models, we present predictions for the three Dirac and Majorana CP-violating phases as well as three effective neutrino mass parameters.
A minimal supersymmetric model of particle physics and the early universe
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, W.; Domcke, V.; Kamada, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Schmitz, K. [Tokyo Univ., Kashiwa (Japan). Kavli IPMU, TODIAS
2013-11-15
We consider a minimal supersymmetric extension of the Standard Model, with right-handed neutrinos and local B-L, the difference between baryon and lepton number, a symmetry which is spontaneously broken at the scale of grand unification. To a large extent, the parameters of the model are determined by gauge and Yukawa couplings of quarks and leptons. We show that this minimal model can successfully account for the earliest phases of the cosmological evolution: Inflation is driven by the energy density of a false vacuum of unbroken B-L symmetry, which ends in tachyonic preheating, i.e. the decay of the false vacuum, followed by a matter dominated phase with heavy B-L Higgs bosons. Nonthermal and thermal processes produce an abundance of heavy neutrinos whose decays generate primordial entropy, baryon asymmetry via leptogenesis and dark matter consisting of gravitinos or nonthermal WIMPs. The model predicts relations between neutrino and superparticle masses and a characteristic spectrum of gravitational waves.
The structure of N=2 supersymmetric nonlinear sigma models in AdS_4
Butter, Daniel
2011-01-01
We present a detailed study of the most general N=2 supersymmetric sigma models in four-dimensional anti-de Sitter space AdS_4 formulated in terms of N=1 chiral superfields. The target space is demonstrated to be a non-compact hyperkahler manifold restricted to possess a special Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures and necessarily leaves one of them invariant. All hyperkahler cones, that is the target spaces of N=2 superconformal sigma models, prove to possess such a vector field that belongs to the Lie algebra of an isometry group SU(2) acting by rotations on the complex structures. A unique property of the N=2 sigma models constructed is that the algebra of OSp(2|4) transformations closes off the mass shell. We uncover the underlying N=2 superfield formulation for the N=2 sigma models constructed and compute the associated N=2 supercurrent. We give a special analysis of the most general systems of self-interacting N=2 tensor multiplets in A...
Supersymmetric model for dark matter and baryogenesis motivated by the recent CDMS result.
Allahverdi, Rouzbeh; Dutta, Bhaskar; Mohapatra, Rabindra N; Sinha, Kuver
2013-08-02
We discuss a supersymmetric model for cogenesis of dark and baryonic matter where the dark matter (DM) has mass in the 8-10 GeV range as indicated by several direct detection searches, including most recently the CDMS experiment with the desired cross section. The DM candidate is a real scalar field. Two key distinguishing features of the model are the following: (i) in contrast with the conventional weakly interacting massive particle dark matter scenarios where thermal freeze-out is responsible for the observed relic density, our model uses nonthermal production of dark matter after reheating of the Universe caused by moduli decay at temperatures below the QCD phase transition, a feature which alleviates the relic overabundance problem caused by small annihilation cross section of light DM particles and (ii) baryogenesis occurs also at similar low temperatures from the decay of TeV scale mediator particles arising from moduli decay. A possible test of this model is the existence of colored particles with TeV masses accessible at the LHC.
Khoury, Justin; Ovrut, Burt A
2011-01-01
Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N=1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.
Mambrini, Y.; Moultaka, G.
2001-01-01
We reconsider the Infrared Quasi Fixed Points which were studied recently in the literature in the context of the Baryon and Lepton number violating Minimal Supersymmetric Standard Model (hep-ph/0011274). The complete analysis requires further care and reveals more structure than what was previously shown. The formalism we develop here is quite general, and can be readily applied to a large class of models.
Heavy flavour results from ATLAS
Directory of Open Access Journals (Sweden)
Bell P. J.
2012-06-01
Full Text Available A selection of heavy-flavour physics results from the ATLAS experiment is presented, based on data collected in proton-proton collisions at the LHC during 2010. Differential cross-sections for the production of heavy flavours, charmonium and bottomonium states and D-mesons are presented and compared to various theoretical models. Results of B-hadron lifetime measurements are also reported.
Supersymmetric Quantum Mechanics and Topology
Directory of Open Access Journals (Sweden)
Muhammad Abdul Wasay
2016-01-01
Full Text Available Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Gravitino and scalar {tau}-lepton decays in supersymmetric models with broken R-parity
Energy Technology Data Exchange (ETDEWEB)
Hajer, Jan
2010-06-15
Mildly broken R-parity is known to provide a solution to the cosmological gravitino problem in supergravity extensions of the Standard Model. In this work we consider new effects occurring in the R-parity breaking Minimal Supersymmetric Standard Model including right-handed neutrino superfields. We calculate the most general vacuum expectation values of neutral scalar fields including left- and right-handed scalar neutrinos. Additionally, we derive the corresponding mass mixing matrices of the scalar sector. We recalculate the neutrino mass generation mechanisms due to right- handed neutrinos as well as by cause of R-parity breaking. Furthermore, we obtain a, so far, unknown formula for the neutrino masses for the case where both mechanisms are effective. We then constrain the couplings to bilinear R-parity violating couplings in order to accommodate R-parity breaking to experimental results. In order to constrain the family structure with a U(1){sub Q} flavor symmetry we furthermore embed the particle content into an SU(5) Grand Unified Theory. In this model we calculate the signal of decaying gravitino dark matter as well as the dominant decay channel of a likely NLSP, the scalar {tau}-lepton. Comparing the gravitino signal with results of the Fermi Large Area Telescope enables us to find a lower bound on the decay length of scalar {tau}-leptons in collider experiments. (orig.)
Higgs mass and right-handed sneutrino WIMP in a supersymmetric 3-3-1 model
Pires, C A de S; Santos, A C O; Siqueira, Clarissa
2016-01-01
This work deals with right handed sneutrino as thermal cold dark matter candidate. This scalar emerges in a supersymmetric version of $SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X$ gauge model where right handed neutrinos are a natural component of leptonic chiral scalar supermultiplets. We first consider the issue of a $125$~GeV Higgs boson mass in this model, showing that constraints on stop mass and trilinear soft coupling are considerably alleviated compared to MSSM. Then we investigate the region of parameter space that is consistent with right handed sneutrino as thermal cold dark matter, under the light of Planck results on the relic abundance and direct detection from LUX experiment. This sneutrino mainly annihilates through an extra neutral gauge boson, $Z^\\prime$, and Higgs exchange, so that the physics of dark matter is somewhat related to the parameters determining Higgs and $Z^\\prime$ masses. We then obtain that right handed sneutrino in this model must be heavier than $400$~GeV to conform with Planck ...
Energy Technology Data Exchange (ETDEWEB)
Krishna, S., E-mail: skrishna.bhu@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); Shukla, A., E-mail: ashukla038@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); Malik, R.P., E-mail: rpmalik1995@gmail.com [Physics Department, Centre of Advanced Studies, Banaras Hindu University (BHU), Varanasi-221 005 (India); DST-CIMS, Faculty of Science, BHU-Varanasi-221 005 (India)
2014-12-15
Using the supersymmetric (SUSY) invariant restrictions on the (anti-)chiral supervariables, we derive the off-shell nilpotent symmetries of the general one (0+1)-dimensional N=2 SUSY quantum mechanical (QM) model which is considered on a (1, 2)-dimensional supermanifold (parametrized by a bosonic variable t and a pair of Grassmannian variables θ and θ-bar with θ{sup 2}=(θ-bar){sup 2}=0,θ(θ-bar)+(θ-bar)θ=0). We provide the geometrical meanings to the two SUSY transformations of our present theory which are valid for any arbitrary type of superpotential. We express the conserved charges and Lagrangian of the theory in terms of the supervariables (that are obtained after the application of SUSY invariant restrictions) and provide the geometrical interpretation for the nilpotency property and SUSY invariance of the Lagrangian for the general N=2 SUSY quantum theory. We also comment on the mathematical interpretation of the above symmetry transformations. - Highlights: • A novel method has been proposed for the derivation of N=2 SUSY transformations. • General N=2 SUSY quantum mechanical (QM) model with a general superpotential, is considered. • The above SUSY QM model is generalized onto a (1, 2)-dimensional supermanifold. • SUSY invariant restrictions are imposed on the (anti-)chiral supervariables. • Geometrical meaning of the nilpotency property is provided.
Quark-flavour violating Higgs decays to charm and bottom pairs in the MSSM
Ginina, E; Bartl, A; Hidaka, K; Majerotto, W
2016-01-01
We calculate the decay width of $h^0 \\to b \\bar{b}$ in the Minimal Supersymmetric Standard Model (MSSM) with quark-flavour violation (QFV) at full one-loop level. The effect of $\\tilde{c}-\\tilde{t}$ mixing and $\\tilde{s}-\\tilde{b}$ mixing is studied taking into account the constraints from the B-meson data. We discuss and compare in detail the decays $h^0 \\to c \\bar{c}$ and $h^0 \\to b \\bar{b}$ within the framework of the perturbative mass insertion technique using the Flavour Expansion Theorem. The deviation of both decay widths from the Standard Model results can be quite large. While in $h^0 \\to c \\bar{c}$ it is almost entirely due to the flavour violating part of the MSSM, in $h^0 \\to b \\bar{b}$ it is mainly due to the flavour conserving part. Nevertheless, $\\Gamma(h^0 \\to b \\bar{b})$ can fluctuate up to $\\sim 7\\%$ due to QFV chargino exchange with large $\\tilde{c}-\\tilde{t}$ mixing. due to QFV chargino exchange with large $\\tilde{c}-\\tilde{t}$ mixing.
Flavour physics and CP violation
Kou, Emi
2014-01-01
In these three lectures, I overview the theoretical framework of the flavour physics and CP violation. The first lecture is the introduction to the flavour physics. Namely, I give theoretical basics of the weak interaction. I follow also some historical aspect, discovery of the CP violation, phenomenological studies of charged and neutral currents and the success of the GIM mechanism. In the second lecture, I describe the flavour physics and CP violating phenomena in the Standard Model (SM). I also give the latest experimental observation of the CP Violation at the B factories and the LHC and discuss its interpretation. In the third lecture, I discuss the on-going search of the signals beyond SM in the flavour physics and also the future prospects.
Precise predictions for Higgs physics in the next-to-minimal supersymmetric standard model (NMSSM)
Energy Technology Data Exchange (ETDEWEB)
Drechsel, Peter
2016-08-15
Within this thesis a precise mass-prediction for the Higgs fields of the Next-to-Minimal Supersymmetric Standard Model (NMSSM) is obtained with Feynman-diagrammatic methods. The results are studied numerically for sample scenarios that are in agreement with current New Physics searches at the LHC. Furthermore a comparison between the obtained results and different calculations is performed as a first step in order to obtain an estimation for the theoretical uncertainties of the Higgs-mass prediction in the NMSSM. The precise mass-prediction includes the full NMSSM one-loop corrections supplemented with the dominant and sub-dominant two-loop corrections within the Minimal Supersymmetric Standard Model (MSSM). These include contributions at the orders O(α{sub t}α{sub s}, α{sub b}α{sub s}, α{sub t}{sup 2}, α{sub t}α{sub b}), as well as a resummation of leading and subleading logarithms from the top/scalar top sector. Higher-order corrections are essential for the NMSSM in order to provide a Higgs particle that is consistent with the available data, including the observed neutral, CP-even Higgs field with a mass of about 125 GeV. We explored the validity of the applied approximation at the two-loop level and found that it is reliable for a wide range of scenarios within the NMSSM. This is especially true for the mass of the observed (MS)SM-like Higgs field. The result of this work will be included in a future extension of the program FeynHiggs. We also compared our results with the program NMSSMCalc that also performs a Feynman-diagrammatic calculation of the Higgs-masses with a slightly different renormalization scheme. The comparison reveals that for the mass of the (MS)SM-like Higgs field the genuine NMSSM-effects induced by the choice of the renormalization scheme are by far minor compared to similar effects observed in the MSSM.
Yukawa Unified Supersymmetric SO(10) Model Cosmology, Rare Decays and Collider Searches
Baer, Howard W; Díaz, M A; Ferrandis, J; Mercadante, P G; Quintana, P; Tata, Xerxes; Baer, Howard; Brhlik, Michal; Diaz, Marco A.; Ferrandis, Javier; Mercadante, Pedro; Quintana, Pam; Tata, Xerxes
2001-01-01
It has recently been pointed out that viable sparticle mass spectra can be generated in Yukawa unified SO(10) supersymmetric grand unified models consistent with radiative breaking of electroweak symmetry. Model solutions are obtained only if $\\tan\\beta \\sim 50$, $\\mu <0$ and positive $D$-term contributions to scalar masses from SO(10) gauge symmetry breaking are used. In this paper, we attempt to systematize the parameter space regions where solutions are obtained. We go on to calculate the relic density of neutralinos as a function of parameter space. No regions of the parameter space explored were actually cosmologically excluded, and very reasonable relic densities were found in much of parameter space. Direct neutralino detection rates could exceed 1 event/kg/day for a $^{73}$Ge detector, for low values of GUT scale gaugino mass $m_{1/2}$. We also calculate the branching fraction for $b\\to s \\gamma$ decays, and find that it is beyond the 95% CL experimental limits in much, but not all, of the paramete...
Natural origin of inflation within a class of supersymmetric preon models
Cveti, Mirjam; Hübsch, Tristan; Pati, Jogesh C.; Stremnitzer, Hanns
1989-08-01
Derivation of a desired potential for implementing the idea of new inflation from an underlying theory of particle physics has so far remained a challenging task in that it requires unusually small quartic coupling (~10-13+/-1) and an even smaller mass term for the relevant field (the inflaton) in units of its true vacuum expectation value. It is shown that a class of viable locally supersymmetric preon models naturally give rise to the desired potential for a composite field ΔR commonly used as a Higgs field to break left-right symmetry and B-L, so that ΔR can serve as the inflaton. We show that both the quartic coupling and the mass of ΔR vanish in the limit of supersymmetry, U(1)X, U(1)V and gauge invariance. Radiative corrections, in the presence of soft supersymmetry-breaking mass terms, which arise dynamically in the model, give rise to a miniscule quartic coupling and a negligible mass for ΔR, just as desired. This turns out to be the case in spite of the fact that ΔR is a gauge nonsinglet.
Explanation of the masses of quarks and leptons in a supersymmetric preon model
Energy Technology Data Exchange (ETDEWEB)
Jongbae Kim [Department of Physics, University of Maryland, College Park, MD 20742 (United States); Research Department, ETRI, Yusong PO Box 106, Taejon 305-600 (Korea, Republic of)
1998-10-01
We have studied whether the radiative effects including gauge and Yukawa interaction corrections can improve the phenomenological consequences on the masses of quarks and leptons in the supersymmetric preon model. Our study shows that pure renormalization effects in the region from the metacolour scale to the electroweak scale produce quark-lepton distinction within a given family. They cannot, however, produce the desired up-down distinction or the expected quark-lepton asymmetry in the effective hierarchy parameter p{sup 2}/4 of the up, down and lepton sectors. It also shows that the pure radiative corrections cannot explain the 'fine structure' effects exhibited by ((m{sub s})/m{sub c})1 GeV > ((m{sub b})/m{sub s})L GeV > ((m{sub r})/m{sub {mu}})1 GeV. These lead us to conclude that the symmetry structure of the preon theory cannot strictly respect left-right, up-down and quark-lepton symmetries near and below the Planck scale. This subsequently implies the SU(3){sup C}xSU(2){sub L}xU(1){sub r} symmetry both as regards unification of couplings near the Planck scale in the model and as regards its possible origin from a superstring theory. (author)
Explanation of the masses of quarks and leptons in a supersymmetric preon model
Kim, Jongbae
1998-10-01
We have studied whether the radiative effects including gauge and Yukawa interaction corrections can improve the phenomenological consequences on the masses of quarks and leptons in the supersymmetric preon model. Our study shows that pure renormalization effects in the region from the metacolour scale to the electroweak scale produce quark-lepton distinction within a given family. They cannot, however, produce the desired up-down distinction or the expected quark-lepton asymmetry in the effective hierarchy parameter 0954-3899/24/10/006/img1 of the up, down and lepton sectors. It also shows that the pure radiative corrections cannot explain the `fine structure' effects exhibited by 0954-3899/24/10/006/img2. These lead us to conclude that the symmetry structure of the preon theory cannot strictly respect left-right, up-down and quark-lepton symmetries near and below the Planck scale. This subsequently implies the 0954-3899/24/10/006/img3 symmetry both as regards unification of couplings near the Planck scale in the model and as regards its possible origin from a superstring theory.
Analysis of the R-symmetric supersymmetric models including quantum corrections
Kotlarski, Wojciech
2016-01-01
We study the Minimal R-symmetric Supersymmetric Standard Model (MRSSM) at the quantum level. The thesis consists of two parts. First one treats about the electroweak sector of the model. Among others, it identifies the parameter region allowed by the electroweak precision observables. Since the MRSSM contains an $SU(2)_L$-triplet with a non-zero vacuum expectation value the emphasis is put on the calculation of the $W$ boson mass. To that end, a full one-loop calculation of $m_W$ augmented with the leading two-loop SM result is presented. The region is then checked against the measurement of the Higgs boson mass. For this, the full one-loop and leading two-loop corrections to the Higgs boson mass in the MRSSM are calculated. Devised benchmark points, consistent with both of these observables, are shown to fulfill also a number of additional experimental constraints like properties of the Higgs boson(s), $b$-physics observables and vacuum stability. Correlating all of these observables allows to put bounds on ...
Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model
Krishna, S.; Shukla, D.; Malik, R. P.
2016-07-01
In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.
Phenomenology of the lightest Higgs boson in the Next-to-Minimal Supersymmetric Standard Model
Jia-Wei, Fan; Yu-Qiao, Shen; Guo-Ming, Chen; He-Sheng, Chen; Gascon-Shotkin, S; Lethuillier, M; Sgandurra, L
2013-01-01
The CMS and ATLAS experiments at the LHC announced an excess with mass at about 125 $GeV/c^{2}$ in the search of Standard Model Higgs with mainly the final decaying state $\\gamma\\gamma$ and $ZZ$ to four leptons. Considering the recent results on the Higgs searching from the LHC, we study the phenomenology of the lightest Higgs boson $h_{1}$ in the Next-to-Minimal Supersymmetric Standard Model by restricting the second lightest Higgs boson $h_{2}$ to be the observed 125 $GeV/c^{2}$ state. We perform a scan over the relevant NMSSM parameter space that is favoured by low fine-tuning considerations. Moreover, we also take into account the experimental constraints from direct searches, $b$-physics, relic density and anomalous magnetic moment of the muon measurements as well as the theoretical considerations in our specific scan. We find that the signal rate in the two photons final state for NMSSM Higgs boson $h_{1}$ with the mass range from about 80 $GeV/c^{2}$ to about 122 $GeV/c^{2}$ can be enhanced by a factor...
Source of Kerr-Newman solution as supersymmetric bag model: 50 years of the problem
Burinskii, A.
The ultra extreme Kerr-Newman (KN) solution(a = J/m >> m) produces the gravitational and EM fields of the electron. It has a naked singular ring - a topological defect which may be regularized by a solitonic source forming the pseudo-vacuum bubble filled by Higgs condensate in a supersymmetric superconducting state. Structure and stability of this source is determined by Bogomolnyi equations as a BPS-saturated soliton. The Principal Null Congruences of the KN solution determine consistent embedding of the Dirac equation, which acquires the mass from the Higgs condensate inside the soliton, indicating that this soliton forms a bag model. Shape of this bag is unambiguously determined by BPS-bound. The bag turns out to be flexible and takes the form of a very thin disk, which is completed by a ring-string along its sharp boundary. The ring-string traveling waves generate extra deformations of the bag creating a circulating singular pole. Bag model of the KN source integrates the dressed and pointlike electron in a bag-string-quark system, which removes the conflict between gravity and the point-like electron of the Dirac theory.
A mini review on CP-violating minimal supersymmetric Standard Model Higgs
Indian Academy of Sciences (India)
AMIT CHAKRABORTY; DILIP KUMAR GHOSH
2016-09-01
We discuss the present status of the Higgs sector of the CP-violating minimal supersymmetric Standard Model (CPVMSSM). In the Standard Model (SM) of particle physics, the only source of CP violation is the complex phase in the Cabibbo–Kobayashi–Maskawa (CKM) matrix. By now we all know that this singlephase is not large enough to explain the observed baryon asymmetry of our Universe. Hence, one require additional sources of CP violation. The MSSM with several complex phases is one such scenario. The tree-level CP invariance of the MSSM Higgs potential is broken at one-loop level in the presence of complex phases in the MSSM Lagrangian. The presence of these additional phases modifies Higgs masses, mixings and couplings significantly. These additional phases have non-trivial impact on several low-energy observables; like the electric dipole moments (EDMs) of atoms and molecules, the CP asymmetry in rare b-decays etc. We first present a brief outline of the CPVMSSM Higgs sector, and then discuss the current limits/bounds obtained from the measurementsof several low-energy observables. We also comment on the current bounds coming from the high-energy collider experiments, specially the Large Electron Positron (LEP) Collider and the ongoing Large Hadron Collider (LHC) at the CERN.
Asymmetric dark matter from spontaneous cogenesis in the supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Kamada, Kohei [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Yamaguchi, Masahide [Tokyo Institute of Technology (Japan). Dept. of Physics
2012-01-15
The observational relation between the density of baryon and dark matter in the Universe, {omega}{sub DM}/{omega}{sub B}{approx_equal}5, is one of the most difficult problems to solve in modern cosmology. We discuss a scenario that explains this relation by combining the asymmetric dark matter scenario and the spontaneous baryogenesis associated with the flat direction in the supersymmetric standard model. A part of baryon asymmetry is transferred to charge asymmetry D that dark matter carries, if a symmetry violating interaction that works at high temperature breaks not only B-L but also D symmetries simultaneously. In this case, the present number density of baryon and dark matter can be same order if the symmetric part of dark matter annihilates sufficiently. Moreover, the baryon number density can be enhanced as compared to that of dark matter if another B-L violating interaction is still in thermal equilibrium after the spontaneous genesis of dark matter, which accommodates a TeV scale asymmetric dark matter model. (orig.)
Search for Mono-Higgs Signals at the LHC in the B-L Supersymmetric Standard Model
Abdallah, W; Khalil, S; Moretti, S
2016-01-01
We study mono-Higgs signatures emerging in the $B-L$ supersymmetric standard model induced by new channels not present in the minimal supersymmetric standard model, i.e., via topologies in which the mediator is either a heavy $Z'$, with mass of ${\\cal O}(2~{\\rm TeV})$, or an intermediate $h'$ (the lightest CP-even Higgs state of $B-L$ origin), with mass of ${\\cal O}(0.2~{\\rm TeV})$. The mono-Higgs probe considered is the SM-like Higgs state recently discovered at the large hadron collider, so as to enforce its mass reconstruction for background reduction purposes. With this in mind, its two cleanest signatures are selected: $\\gamma\\gamma$ and $ZZ^*\\to 4l$ ($l=e,~\\mu$). We show how both of these can be accessed with foreseen energy and luminosity options using a dedicated kinematic analysis performed in presence of partonic, showering, hadronisation and detector effects.
Minimal flavour violation and anomalous top decays
Energy Technology Data Exchange (ETDEWEB)
Faller, Sven; Mannel, Thomas [Theoretische Physik 1, Department Physik, Universitaet Siegen, D-57068 Siegen (Germany); Gadatsch, Stefan [Nikhef, National Institute for Subatomatic Physics, P.O. Box 41882, 1009 Amsterdam (Netherlands)
2013-07-01
Any experimental evidence of anomalous top-quark couplings will open a window to study physics beyond the standard model (SM). However, all current flavour data indicate that nature is close to ''minimal flavour violation'', i.e. the pattern of flavour violation is given by the CKM matrix, including the hierarchy of parameters. In this talk we present results of the conceptual test of minimal flavour violation for the anomalous charged as well as flavour changing top-quark couplings. Our analysis is embedded in two-Higgs doublet model of type II (2HDM-II). Including renormalization effects, we calculate the top decay rates taking into account anomalous couplings constrained by minimal flavour violation.
Institute of Scientific and Technical Information of China (English)
HOUHong－sheng; MAWen－Gan; 等
2002-01-01
The top-charm associated production with the effects from both B-and L-violating interactions in TeV scale photon-proton collisions is investigated in the framework of Rp minimal supersymmetric standard model.Within the bounds on the relevant R-parity violating couplings,the total cross section will reach the order or 10 fb in some parts of the parameter space.
Ma, E
1994-01-01
In the minimal supersymmetric standard model, the Higgs sector has two unknown parameters, usually taken to be $\\tan \\beta \\equiv v_2/v_1$ and $m_A$, the mass of its one physical pseudoscalar particle. By minimizing the minimum of the Higgs potential along a certain direction in parameter space, it is shown that $m_A = M_Z$ + radiative correction, and if one further plausible assumption is made, $\\tan \\beta > \\sqrt 3$.
Choi, S Y; Song, W Y
2000-01-01
We investigate the associated production of neutralinos $e^+e^-\\to\\tilde{\\chi}^0_1\\tilde{\\chi}^0_2$ accompanied by the neutralino leptonic decay $\\tilde{\\chi}^0_2\\to\\tilde{\\chi}^0_1 \\ell^+\\ell^-$, taking into account initial beam polarization and production-decay spin correlations in the minimal supersymmetric standard model with general CP phases but without generational mixing in the slepton sector. The stringent constraints from the electron EDM on the CP phases are also included in the discussion. Initial beam polarizations lead to three CP-even distributions and one CP-odd distribution, which can be studied independently of the details of the neutralino decays. We find that the production cross section and the branching fractions of the leptonic neutralino decays are very sensitive to the CP phases. In addition, the production-decay spin correlations lead to several CP-even observables such as lepton invariant mass distribution, and lepton angular distribution, and one interesting T-odd (CP-odd) triple p...
New constraints on neutralino dark matter in the supersymmetric standard model
Kelley, S; Nanopoulos, Dimitri V; Pois, H; Yuan, K
1993-01-01
We investigate the prospects for neutralino dark matter within the Supersymmetric Standard Model (SSM) including the constraints from universal soft supersymmetry breaking and radiative breaking of the electroweak symmetry. The latter is enforced by using the one-loop Higgs effective potential which automatically gives the one-loop corrected Higgs boson masses. We perform an exhaustive search of the allowed five-dimensional parameter space and find that the neutralino relic abundance $\\Omega_\\chi h^2_0$ depends most strongly on the ratio $\\xi_0\\equiv m_0/m_{1/2}$. For $\\xi_0\\gg1$ the relic abundance is almost always much too large, whereas for $\\xi_0\\ll1$ the opposite occurs. For $\\xi_0\\sim1$ there are wide ranges of the remaining parameters for which $\\Omega_\\chi\\sim1$. We also determine that $m_{\\tilde q}\\gsim250\\GeV$ and $m_{\\tilde l}\\gsim100\\GeV$ are necessary in order to possibly achieve $\\Omega_\\chi\\sim1$. These lower bounds are much weaker than the corresponding ones derived previously when radiative b...
Implications of Yukawa unification for the Higgs sector in supersymmetric grand-unified models
Langacker, P G; Paul Langacker; Nir Polonsky
1994-01-01
The SU(5) unification-scale relation h_b=h_tau between the b and tau Yukawa couplings severely constrains tan beta and m_t (even more so if h_t=h_b= h_tau holds) in supersymmetric models. We examine the implications of these constraints for the Higgs sector assuming universal soft breaking terms, and emphasize that both of these relations impose unique characteristics in terms of symmetries and of the spectrum. We further study the tan beta near 1 scenario, which is suggested by h_b=h_tau, and, in particular, the loop- induced mass of the light Higgs boson. We compare the effective potential and renormalization group methods and stress the two-loop ambiguities in the calculation of the mass. These and a large enhancement to the loop correction due to t-scalar left-right mixing considerably weaken the upper bound. Nevertheless, we find that for this scenario the Higgs boson is probably lighter than 110 GeV, and typically lighter than 100 GeV. Thus, it is in the mass range that may be relevant for LEPII. Our nu...
A supersymmetric standard model from a local E{sub 6} GUT
Energy Technology Data Exchange (ETDEWEB)
Braam, Felix Klaus
2012-02-15
In this thesis we have investigated to what extent the exceptional Lie-group E{sub 6} can serve as unified gauge group. In the presence of the full E{sub 6} matter content, unifcation can be realized by increasing the degree of gauge symmetry above some intermediate scale. We found that a full E{sub 6} gauge invariant theory is disfavoured by phenomenological observations like proton stability and the smallness of flavour changing neutral currents. An appropriate framework to embed E{sub 6} into a model for particle physics are higher dimensional orbifold constructions, where E{sub 6} is the gauge group in the bulk and the intermediate symmetry group is the common subset of E{sub 6} subgroups residing at the fixed-points of the orbifold. In this way the degree of symmetry in four space-time dimensions is reduced, such that the operators leading to the aforementioned dsastrous phenomenological consequences can be forbidden independently. In order to derive the implications of the model for the current experiments at the Large Hadron Collider (LHC), we developed an automated spectrum generator. It uses Monte-Carlo Markov-Chain techniques to cope with the high dimensionality of the space of input parameters and the complex interdependencies in the evolution of the Lagrangian parameters from the orbifold compactification scale to the TeV scale. For the spectra obtained with this program, we performed Monte-Carlo simulations of the production and decay of the Z{sup '} boson stemming from the additional U(1){sup '}, using our own implementation of the model into the event generator WHIZARD.
Neutrino and Changed Lepton Flavour Today
Alonso, R.; Hernandez, D.; Merlo, L.; Rigolin, S.
2013-01-01
Flavour physics is a priceless window on physics beyond the Standard Model. In particular, flavour violation in the lepton sector looks very promising, as high precision measurements are prospected in future experiments investigating on $\\mu\\rightarrow e$ conversion in atomic nuclei: the predictions for this observable are analysed in the context of the type I Seesaw mechanism. Furthermore, new ideas to explain the Flavour Puzzle recently appeared, mainly based on a possible dynamical origin of the Yukawa couplings and on flavour symmetries. The focus of this proceeding will be set on the Minimal Flavour Violation ansatz and on the role of the neutrino Majorana character: when an $O(2)_{N}$ flavour symmetry acts on the right-handed neutrino sector, the minimum of the scalar potential allows for large mixing angles -in contrast to the simplest quark case- and predicts a maximal Majorana phase. This leads to a strong correlation between neutrino mass hierarchy and mixing pattern.
Flavour Covariant Formalism for Resonant Leptogenesis
Dev, P S Bhupal; Pilaftsis, Apostolos; Teresi, Daniele
2014-01-01
We present a fully flavour-covariant formalism for transport phenomena and apply it to study the flavour-dynamics of Resonant Leptogenesis (RL). We show that this formalism provides a complete and unified description of RL, consistently accounting for three distinct physical phenomena: (i) resonant mixing and (ii) coherent oscillations between different heavy-neutrino flavours, as well as (iii) quantum decoherence effects in the charged-lepton sector. We describe the necessary emergence of higher-rank tensors in flavour space, arising from the unitarity cuts of partial self-energies. Finally, we illustrate the importance of this formalism within a minimal Resonant $\\tau$-Genesis model by showing that, with the inclusion of all flavour effects in a consistent way, the final lepton asymmetry can be enhanced by up to an order of magnitude, when compared to previous partially flavour-dependent treatments.
Nearly Supersymmetric Dark Atoms
Energy Technology Data Exchange (ETDEWEB)
Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP
2011-08-12
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.
Phenomenology of an SU(2) × SU(2) × U(1) model with lepton-flavour non-universality
Boucenna, Sofiane M.; Celis, Alejandro; Fuentes-Martín, Javier; Vicente, Avelino; Virto, Javier
2016-12-01
We investigate a gauge extension of the Standard Model in light of the observed hints of lepton universality violation in b → cℓν and b → sℓ + ℓ - decays at BaBar, Belle and LHCb. The model consists of an extended gauge group SU(2)1 × SU(2)2 × U(1) Y which breaks spontaneously around the TeV scale to the electroweak gauge group. Fermion mixing effects with vector-like fermions give rise to potentially large new physics contributions in flavour transitions mediated by W' and Z' bosons. This model can ease tensions in B-physics data while satisfying stringent bounds from flavour physics, and electroweak precision data. Possible ways to test the proposed new physics scenario with upcoming experimental measurements are discussed. Among other predictions, the ratios R M = Γ( B → M μ + μ -) /Γ( B → Me + e -), with M = K * , ϕ, are found to be reduced with respect to the Standard Model expectation R M ≃ 1.
Energy Technology Data Exchange (ETDEWEB)
Grab, Sebastian
2009-08-15
The most widely studied supersymmetric scenario is the minimal supersymmetric standard model (MSSM) with more than a hundred free parameters. However for detailed phenomenological studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated framework for the MSSM, is more convenient. In this model, lepton- and baryon-number violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality, to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number violation. We thus extend mSUGRA models by adding a proton-hexality violating operator at the grand unification scale. This can change the supersymmetric spectrum leading on the one hand to a sneutrino, smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions from neutrino masses, the muon anomalous magnetic moment, b{yields}s{gamma}, and other precision measurements. We furthermore investigate existing restrictions from direct searches at LEP, the Tevatron, and the CERN p anti p collider. It is vital to know the nature of the LSP, since supersymmetric particles normally cascade decay down to the LSP at collider experiments. We present typical LHC signatures for sneutrino LSP scenarios. Promising signatures are high-p{sub T} muons and jets, like-sign muon events and detached vertices from long lived taus. We also classify the stau LSP decays and describe their dependence on the mSUGRA parameters. We then exploit our results for resonant single slepton production at the LHC. We find novel signatures with like-sign muon and three- and four-muon final states. Finally, we perform a detailed analysis for single slepton production in association with a single top quark. We show that the signal can be distinguished from the background
A Fermi surface model for large supersymmetric AdS{sub 5} black holes
Energy Technology Data Exchange (ETDEWEB)
Berkooz, Micha [Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Reichmann, Dori [Department of Particle Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Simon, Joan [David Rittenhouse Laboratories, University of Pennsylvania, Philadelphia, PA 19104 (United States)
2007-01-15
We identify a large family of 1/16 BPS operators in N = 4 SYM that qualitatively reproduce the relations between charge, angular momentum and entropy in regular supersymmetric AdS{sub 5} black holes when the main contribution to their masses is given by their angular momentum.
Supersymmetric $U(1)_{Y^{\\prime}}\\otimes U(1)_{B-L}$ extension of the standard model
Montero, J C; Rodriguez, M C; Sánchez-Vega, B L
2016-01-01
We build a supersymmetric version of the model with $SU(3)_C\\otimes SU(2)_L\\otimes U(1)_{Y^\\prime}\\otimes U(1)_{B-L}$ gauge symmetry, where $Y^\\prime$ is a new charge and $B$ and $L$ are the usual baryonic and leptonic numbers. The model has three right-handed neutrinos with identical $B-L$ charges, and can accommodate all fermion masses at the tree level. In particular, the type-I seesaw mechanism is implemented for the generation of the active neutrino masses. We also obtain the mass spectra of all the scalar sectors and the flat directions allowed by the model.
Are supersymmetric models with minimal particle content under tension for testing at LHC?
Samanta, Abhijit; Mandal, Sujoy Kumar; Manna, Himadri
2016-12-01
In supersymmetric models with minimal particle content and without large left-right squarks mixing, the conventional knowledge is that the Higgs Boson mass around 125 GeV leads to top squark masses O (10) TeV, far beyond the reach of colliders. Here, we pointed out that this conclusion is subject to several theoretical uncertainties. We find that electroweak symmetry breaking and evaluation of Higgs mass at a scale far away from the true electroweak symmetry breaking scale introduce a large uncertainty in Higgs mass calculation. We show that the electroweak symmetry breaking at the scale near the true vacuum expectation value of Higgs field can increase the Higgs Boson mass about 4-5 GeV and can lower the bounds on squarks and slepton masses to 1 TeV. Here we pointed out that the Higgs mass even with inclusion of radiative corrections can vary with electroweak symmetry breaking scale. We calculate it at two loop level and show that it varies substantially. We argue that Higgs mass like other coupling parameters can vary with energy scale and the Higgs potential with all orders loop corrections is scale invariant. This uncertainty to the Higgs mass calculation due to electroweak symmetry breaking around the supersymmetry breaking scale, normally taken as √{mt˜Lmt˜R }, to minimize the 1-loop radiative corrections can be removed if one considers all significant radiative contributions to make Higgs potential renormalization group evolution scale invariant and evaluates electroweak symmetry breaking at the scale near the electroweak symmetry breaking scale. A large parameter space becomes allowed when one considers electroweak symmetry breaking at its true scale not only for producing correct values of the Higgs masses, but also for providing successful breaking of this symmetry in more parameter spaces.
Indian Academy of Sciences (India)
E Coniavitis; A Ferrari
2007-11-01
The minimal supersymmetric extension of the standard model (MSSM) predicts the existence of new charged and neutral Higgs bosons. The pair creation of these new particles at the multi-TeV + − compact linear collider (CLIC), followed by decays into standard model particles, were simulated along with the corresponding background. High-energy beam–beam effects such as ISR, beamstrahlung and hadronic background were included. We have investigated the possibility of using the ratio between the number of events found in various decay channels to determine the MSSM parameter tan and we have derived the corresponding statistical error from the uncertainties on the measured cross-sections and Higgs boson masses.
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.
2017-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Likelihood Analysis of Supersymmetric SU(5) GUTs
Bagnaschi, E.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Cavanaugh, R.; Chobanova, V.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Lucio, M.; Martínez Santos, D.; Olive, K.A.; Richards, A.; de Vries, K.J.; Weiglein, G.
2016-01-01
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...
Gukov, S G
1997-01-01
The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.
Flavour violating gluino three-body decays at LHC
Energy Technology Data Exchange (ETDEWEB)
Bartl, A.; Ginina, E. [Wien Univ. (Austria). Fakultaet fuer Physik; Eberl, H.; Majerotto, W. [Oesterreichische Akademie der Wissenschaften, Vienna (Austria). Inst. fuer Hochenergiephysik; Herrmann, B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hidaka, K [Tokyo Gakugei Univ., Koganei (Japan). Dept. of Physics; Porod, W. [Wuerzburg Univ. (Germany). Inst. fuer Theoretische Physik und Astrophysik
2011-07-15
We study the effect of squark generation mixing on gluino production and decays at LHC in the Minimal Supersymmetric Standard Model (MSSM) for the case that the gluino is lighter than all squarks and dominantly decays into three particles, g {yields} q q {chi}{sup 0}{sub k}, q anti q'{chi}{sup {+-}}{sub l}. We assume mixing between the second and the third squark generations in the up-type and down-type squark sectors. We show that this mixing can lead to very large branching ratios of the quark-flavour violating gluino threebody decays despite the strong constraints on quark-flavour violation (QFV) from the experimental data on B mesons. We also show that the QFV gluino decay branching ratios are very sensitive not only to the generation mixing in the squark sector, but also to the parameters of the neutralino and chargino sectors. We show that the branching ratio of the QFV gluino decay g {yields} c anti t(anti ct) anti {chi}{sup 0}{sub 1} can go up to {approx} 40%. Analogously, that of the QFV decay g {yields} s anti b(anti sb){chi}{sup 0}{sub 1} can reach {approx} 35%. We find that the rates of the resulting QFV signatures, such as pp{yields} tt anti c anti cE{sup mis}{sub T}, can be significant at LHC. This could have an important influence on the gluino searches at LHC. (orig.)
An expert system for automated flavour matching - Prioritizer
DEFF Research Database (Denmark)
Silva, Bárbara Santos; Tøstesen, Marie; Petersen, Mikael Agerlin
2017-01-01
Flavour matching can be viewed as trying to reproduce a specific flavour. This is a time consuming task and may lead to flavour mixtures that are too complex or too expensive to be commercialized. In order to facilitate the matching, we have developed a new mathematical model, called Prioritizer....
Probing Neutrino Oscillations in Supersymmetric Models at the Large Hadron Collider
De Campos, F; Hirsch, M; Magro, M B; Porod, W; Restrepo, D; Valle, J W F
2010-01-01
The lightest supersymmetric particle may decay with branching ratios that correlate with neutrino oscillation parameters. In this case the CERN Large Hadron Collider (LHC) has the potential to probe the atmospheric neutrino mixing angle with sensitivity competitive to its low-energy determination by underground experiments. Under realistic detection assumptions, we identify the necessary conditions for the experiments at CERN's LHC to probe the simplest scenario for neutrino masses induced by minimal supergravity with bilinear R parity violation.
Decoupling of supersymmetric particles
Dobado, A; Peñaranda, S
1999-01-01
The possibility of a heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed in detail. The formal proof of decoupling of supersymmetric particles from low energy physics is stated in terms of the effective action for the particles of the Standard Model that results by integrating out all the sparticles in the limit where their masses are larger than the electroweak scale. The computation of the effective action for the standard electroweak gauge bosons W^{+-}, Z and \\gamma is performed by integrating out all the squarks, sleptons, charginos and neutralinos to one-loop. The Higgs sector is not considered in this paper. The large sparticle masses limit is also analyzed in detail. Explicit analytical formulae for the two-point functions of the electroweak gauge bosons to be valid in that limit are presented. Finally, the decoupling of sparticles in the S, T and U parameters is studied analitically. A discussion...
Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields
Zhang, Xin; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2013-01-01
The exact solution of the one-dimensional super-symmetric t-J model under generic integrable boundary conditions is obtained via the Bethe ansatz methods. With the coordinate Bethe ansatz, the corresponding R-matrix and K-matrices are derived for the second eigenvalue problem associated with spin degrees of freedom. It is found that the second eigenvalue problem can be transformed to that of the transfer matrix of the inhomogeneous XXX spin chain, which allows us to obtain the spectrum of the Hamiltonian and the associated Bethe ansatz equations by the off-diagonal Bethe ansatz method.
A simple model of generating fermion mass hierarchy in N=1 supersymmetric 6D SO(10) GUT
Haba, N; Haba, Naoyuki; Shimizu, Yasuhiro
2003-01-01
We suggest simple models which produce the suitable fermion mass hierarchies and flavor mixing angles based on the 6 dimensional N=1 supersymmetric SO(10) grand unified theory compactified on a $T^2/(Z_2 \\times Z_2')$ orbifold. We introduce 6D and 5D matter fields, which contains the 1st and 2nd generation matter fields as the zero modes, respectively. The 3rd generation matter fields are located on a 4D brane. The Yukawa couplings for bulk fields are suppressed by volume factors from extra dimensions. The suitable fermion mass hierarchies and flavor mixings are generated by the volume suppression factors.
Yamanaka, Nodoka
2012-01-01
We evaluate the Barr-Zee type two-loop level contribution to the fermion electric and chromo-electric dipole moments with sfermion loop in R-parity violating supersymmetric models. It is found that the Barr-Zee type fermion dipole moment with sfermion loop acts destructively to the currently known fermion loop contribution, and that it has small effect when the mass of squarks or charged sleptons in the loop is larger than or comparable to that of the sneutrinos, but cannot be neglected if the sneutrinos are much heavier than loop sfermions.
González-Ruiz, A
1994-01-01
We consider integrable open-boundary conditions for the supersymmetric t-J model commuting with the number operator $n$ and $S^{z}$. We find four families, each one depending on two arbitrary parameters. The associated eigenvalue problem is solved by generalizing the Nested Algebraic Bethe Ansatz of the quantum group invariant case (which is obtained as a special limit). For the quantum group invariant case the Bethe ansatz states are shown to be highest weights of $spl_{q}(2,1)$. We also discuss the relation between Sklyanin's method of constructing open boundary conditions and the one for the quantum group invariant case based on Markov traces.
De Loubens, Clément; Doyennette, Marion; Tréléa, Ioan Cristian; Souchon, Isabelle
2013-01-01
After swallowing a liquid or a semi-liquid food product, a thin film responsible for the dynamic profile of aroma release coats the pharyngeal mucosa. The objective of the present article was to understand and quantify physical mechanisms explaining pharyngeal mucosa coating. An elastohydrodynamic model of swallowing was developed for Newtonian liquids that focused on the most occluded region of the pharyngeal peristaltic wave. The model took lubrication by a saliva film and mucosa deformability into account. Food bolus flow rate and generated load were predicted as functions of three dimensionless variables: the dimensionless saliva flow rate, the viscosity ratio between saliva and the food bolus, and the elasticity number. Considering physiological conditions, the results were applied to predict aroma release kinetics. Two sets of conditions were distinguished. The first one was obtained when the saliva film is thin, in which case food bolus viscosity has a strong impact on mucosa coating and on flavour rel...
Instanton Corrected Non-Supersymmetric Attractors
Dominic, Pramod
2010-01-01
We discuss non-supersymmetric attractors with an instanton correction in Type IIA string theory compactified on a Calabi-Yau three-fold at large volume. For a stable non-supersymmetric black hole, the attractor point must minimize the effective black hole potential. We study the supersymmetric as well as non-supersymmetric attractors for the D0-D4 system with instanton corrections. We show that in simple models, like the STU model, the flat directions of the mass matrix can be lifted by a suitable choice of the instanton parameters.
Duality in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.
Lorentz violation in supersymmetric field theories.
Nibbelink, Stefan Groot; Pospelov, Maxim
2005-03-04
We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies thereby escaping constraints from astrophysical searches for Lorentz violation.
Fast decaying neutrinos and observable flavour violation in a new class of majoron models
Gonzalez-Garcia, M. C.; Valle, J. W. F.
1989-01-01
Neutrinos can have any mass (allowed by laboratory limits) without violating limits from cosmology, astrophysics or laboratory searches for lepton violation phenomena. We present a simple extension of the standard theory where neutrinos decay dominantly into invisible modes involving a majoron associated with the spontaneous violation of B-L symmetry due to physics at or below the electroweak scale. Measurable branchings for lepton-flavour-violating processes such as μ-->e+γ, and for non-standard Z decays e.g. Z-->e+τ, and Z-->μ+τ (plus their conjugates) at LEP are possible without unnatural fine-tuning of the parameters. Lepton-number-violating effects such as neutrinoless ββ decay may also be present at a measurable level.
Fast decaying neutrinos and observable flavour violation in a new class of majoron models
Energy Technology Data Exchange (ETDEWEB)
Gonzalez-Garcia, M.C.; Valle, J.W.F.
1989-01-12
Neutrinos can have any mass (allowed by laboratory limits) without violating limits from cosmology, astrophysics or laboratory searches for lepton violation phenomena. We present a simple extension of the standard theory where neutrinos decay dominantly into invisible modes involving a majoron associated with the spontaneous violation of B-L symmetry due to physics at or below the electroweak scale. Measurable branchings for lepton-flavour-violating processes such as ..mu.. -> e+..gamma.., and for non-standard Z decays e.g. Z -> e+ anti tau and Z -> ..mu..+ anti tau (plus their conjugates) at LEP are possible without unnatural fine-tuning of the parameters. Lepton-number-violating effects such as neutrinoless ..beta beta.. decay may also be present at a measurable level.
Hahn, T; Heinemeyer, S; Hollik, W; Rzehak, H; Weiglein, G
2014-04-11
For the interpretation of the signal discovered in the Higgs searches at the LHC it will be crucial in particular to discriminate between the minimal Higgs sector realized in the standard model (SM) and its most commonly studied extension, the minimal supersymmetric standard model (MSSM). The measured mass value, having already reached the level of a precision observable with an experimental accuracy of about 500 MeV, plays an important role in this context. In the MSSM the mass of the light CP-even Higgs boson, Mh, can directly be predicted from the other parameters of the model. The accuracy of this prediction should at least match the one of the experimental result. The relatively high mass value of about 126 GeV has led to many investigations where the scalar top quarks are in the multi-TeV range. We improve the prediction for Mh in the MSSM by combining the existing fixed-order result, comprising the full one-loop and leading and subleading two-loop corrections, with a resummation of the leading and subleading logarithmic contributions from the scalar top sector to all orders. In this way for the first time a high-precision prediction for the mass of the light CP-even Higgs boson in the MSSM is possible all the way up to the multi-TeV region of the relevant supersymmetric particles. The results are included in the code FEYNHIGGS.
Directory of Open Access Journals (Sweden)
Wolfgang Gregor Hollik
2016-01-01
Full Text Available Testing the stability of the electroweak vacuum in any extension of the Standard Model Higgs sector is of great importance to verify the consistency of the theory. Multi-scalar extensions as the Minimal Supersymmetric Standard Model generically lead to unstable configurations in certain regions of parameter space. An exact minimization of the scalar potential is rather an impossible analytic task. To give handy analytic constraints, a specific direction in field space has to be considered which is a simplification that tends to miss excluded regions, however good to quickly check parameter points. We describe a yet undescribed class of charge and color breaking minima as they appear in the Minimal Supersymmetric Standard Model, exemplarily for the case of non-vanishing bottom squark vacuum expectation values constraining the combination μYb in a non-trivial way. Contrary to famous A-parameter bounds, we relate the bottom Yukawa coupling with the supersymmetry breaking masses. Another bound can be found relating soft breaking masses and μ only. The exclusions follow from the tree-level minimization and can change dramatically using the one-loop potential. Estimates of the lifetime of unstable configurations show that they are either extremely short- or long-lived.
Non-Minimal Higgs Inflation and non-Thermal Leptogenesis in A Supersymmetric Pati-Salam Model
Pallis, C
2011-01-01
We consider a supersymmetric (SUSY) Grand Unified Theory (GUT) based on the gauge group G_PS=SU(4)_C x SU(2)_L x SU(2)_R, which incorporates non-minimal chaotic inflation, driven by a quartic potential associated with the Higgs fields involved in the spontaneous breaking of G_PS. The inflationary model relies on renormalizable superpotetial terms and does not lead to overproduction of magnetic monopoles. It is largely independent of the one-loop radiative corrections and can become consistent with the current observational data on the inflationary observables, with the symmetry breaking scale of G_PS assuming its SUSY value. Within our model, the strong CP and the mu problems of the minimal supersymmetric standard model can be resolved via a Peccei-Quinn symmetry. Moreover baryogenesis occurs via non-thermal leptogenesis realized by the out-of-equilibrium decay of the right-handed neutrinos, which are produced by the inflaton's decay. We consider two versions of such a scenario, assuming that the inflaton dec...
Search for Charged Lepton Flavour Violation at CMS
Mukherjee, Swagata
2017-01-01
Lepton flavour is a conserved quantity in the standard model of particle physics, but it does not follow from an underlying gauge symmetry. After the discovery of neutrino oscillation, it has been established that lepton flavour is not conserved in the neutral sector. Thus the lepton sector is an excellent place to look for New Physics, and in this perspective the Charged Lepton Flavour Violation is interesting. Various extensions of the standard model predict lepton flavour violating decays that can be observed at LHC. This talk presents several searches for lepton flavour violation with data collected by the CMS detector.
Lepton Flavour Violating Decays tau to lll and mu to e gamma in the Higgs Triplet Model
Akeroyd, A G; Sugiyama, Hiroaki
2009-01-01
Singly and doubly charged Higgs bosons in the Higgs Triplet Model mediate the lepton flavour violating (LFV) decays tau to \\bar{l}ll and mu to e gamma. The LFV decay rates are proportional to products of two triplet Yukawa couplings (h_{ij}) which can be expressed in terms of the parameters of the neutrino mass matrix and an unknown triplet vacuum expectation value. We determine the parameter space of the neutrino mass matrix in which a signal for tau to \\bar{l}ll and/or mu to e gamma is possible at ongoing and planned experiments. The conditions for respecting the stringent upper limit for mu to eee are studied in detail, with emphasis given to the possibility of |h_{ee}|\\simeq 0 which can only be realized if Majorana phases are present.
Energy Technology Data Exchange (ETDEWEB)
Carvalho, L. Faria; Toppan, F., E-mail: leofc@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)
2009-07-01
We discuss four off-shell N = 4 D = 1 supersymmetry transformations, their associated one-dimensional -models and their mutual relations. They are given by I - the (4, 4){sub lin} linear 'root' supermultiplet (supersymmetric extension of R{sup 4}), II - the (3, 4, 1){sub lin} linear supermultiplet (supersymmetric extension of R3), III - the (3, 4, 1){sub nl} non-linear supermultiplet living on S{sup 3} and IV - the (2, 4, 2){sub nl} non-linear supermultiplet living on S{sup 2}. The I {yields} II map is the supersymmetric extension of the R4 {yields} R3 bilinear map, while the II {yields} IV map is the supersymmetric extension of the S{sup 3} {yields} S{sup 2} first Hopf fibration. The restrictions on the S{sup 3}, S{sup 2} spheres are expressed in terms of the stereo graphic projections. The non-linear supermultiplets, whose super transformations are local differential polynomials, are not equivalent to the linear supermultiplets with the same field content. The -models are determined in terms of an unconstrained pre potential of the target coordinates. The Uniformization Problem requires solving an inverse problem for the pre potential. The basic features of the supersymmetric extension of the second and third Hopf maps are briefly sketched. Finally, the Schur's lemma (i.e. the real, complex or quaternionic property) is extended to all minimal linear supermultiplets up to N {<=} 8. (author)
Enhancement of proton decay rates in supersymmetric SU(5) grand unified models
Hisano, Junji; Kobayashi, Daiki; Nagata, Natsumi
2012-10-01
In the supersymmetric grand unified theories (SUSY GUTs), gauge bosons associated with the unified gauge group induce proton decay. We investigate the proton decay rate via the gauge bosons in the SUSY GUTs under the two situations; one is with extra vector-like multiplets, and the other is with heavy sfermions. It is found that the proton lifetime is significantly reduced in the former case, while in the latter case it is slightly prolonged. Determination of the particle contents and their mass spectrum below the GUT scale is important to predict the proton lifetime. The proton decay searches have started to access to the 1016GeV scale.
Enhancement of Proton Decay Rates in Supersymmetric SU(5) Grand Unified Models
Hisano, Junji; Nagata, Natsumi
2012-01-01
In the supersymmetric grand unified theories (SUSY GUTs), gauge bosons associated with the unified gauge group induce proton decay. We investigate the proton decay rate via the gauge bosons in the SUSY GUTs under the two situations; one is with extra vector-like multiplets, and the other is with heavy sfermions. It is found that the proton lifetime is significantly reduced in the former case, while in the latter case it is slightly prolonged. Determination of the particle contents and their mass spectrum below the GUT scale is important to predict the proton lifetime. The proton decay searches have started to access to the 10^16 GeV scale.
Kurz, Alexander; Zerf, Nikolai
2012-01-01
We compute the three-loop QCD corrections to the decoupling constant for $\\alpha_s$ which relates the Minimal Supersymmetric Standard Model to Quantum Chromodynamics with five or six active flavours. The new results can be used to study the stability of $\\alpha_s$ evaluated at a high scale from the knowledge of its value at $M_Z$. We furthermore derive a low-energy theorem which allows the calculation of the coefficient function of the effective Higgs boson-gluon operator from the decoupling constant. This constitutes the first independent check of the matching coefficient to three loops.
Top-flavoured dark matter in Dark Minimal Flavour Violation
Blanke, Monika; Kast, Simon
2017-05-01
We study a simplified model of top-flavoured dark matter in the framework of Dark Minimal Flavour Violation. In this setup the coupling of the dark matter flavour triplet to right-handed up-type quarks constitutes the only new source of flavour and CP violation. The parameter space of the model is restricted by LHC searches with missing energy final states, by neutral D meson mixing data, by the observed dark matter relic abundance, and by the absence of signal in direct detection experiments. We consider all of these constraints in turn, studying their implications for the allowed parameter space. Imposing the mass limits and coupling benchmarks from collider searches, we then conduct a combined analysis of all the other constraints, revealing their non-trivial interplay. Especially interesting is the combination of direct detection and relic abundance constraints, having a severe impact on the structure of the dark matter coupling matrix. We point out that future bounds from upcoming direct detection experiments, such as XENON1T, XENONnT, LUX-ZEPLIN, and DARWIN, will exclude a large part of the parameter space and push the DM mass to higher values.
Constraints on the rare tau decays from {mu} {yields} e{gamma} in the supersymmetric see-saw model
Energy Technology Data Exchange (ETDEWEB)
Ibarra, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Simonetto, C. [Technische Univ., Muenchen (Germany). Physik-Department
2008-02-15
It is now a firmly established fact that all family lepton numbers are violated in Nature. In this paper we discuss the implications of this observation for future searches for rare tau decays in the supersymmetric see-saw model. Using the two loop renormalization group evolution of the soft terms and the Yukawa couplings we show that there exists a lower bound on the rate of the rare process {mu}{yields}e{gamma} of the form BR({mu}{yields}e{gamma})>or similar C x BR({tau}{yields}{mu}{gamma})BR({tau}{yields}e{gamma}), where C is a constant that depends on supersymmetric parameters. Our only assumption is the absence of cancellations among the high-energy see-saw parameters. We also discuss the implications of this bound for future searches for rare tau decays. In particular, for large regions of the mSUGRA parameter space, we show that present B-factories could discover either {tau}{yields}{mu}{gamma} or {tau}{yields}e{gamma}, but not both. (orig.)
Harnik, R
2004-01-01
Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV completion allows us to maintain gauge coupling unification.
Jahan, Kishowar; Paterson, Alistair; Spickett, Corinne M
2006-01-01
Consumers expect organic, free-range and corn-fed chicken to be nutritionally wholesome and have premium flavour characters. Interrelationships between flavour, fatty acids and antioxidants of retailed breasts were explored using simple correlations and chemometrics. Saturated fatty acid C16:0, and n-6 polyunsaturated C20:4 and C22:4 contents were correlated with lipid oxidation products (thiobarbituric acid reactive substances) and in partial least-squares regression (PLS1) with 32 high-resonance gas chromatography (flame ionization) flavour components (r2>0.90), and also linked (r2>0.80) to antioxidants (alpha-tocopherol, glutathione and catalase). A further 10 high-resonance gas chromatography nitrogen phosphorus detector flavour components were correlated (r2>0.85) with C18:3(n-3) content. Chicken character was correlated with C18:3(n-3), and C18:3(n-6) inversely with oily, off-flavour and lipid oxidation. Sweet, fruity and oily aromas were linked in PLS1 with 13 specific fatty acids (r2>0.6), and bland taste with total summed (six) fatty acid fractions (r2>0.81). Specific antioxidants were correlated with sweet, fruity and chicken aromas, and alpha-tocopherol inversely with lipid oxidation. PLS2 confirmed relationships between fatty acid composition, antioxidants and the subsets of 32 and 10 flavour components. Clear relationships were thus observed between lipid and antioxidant compositions and flavour in chicken breast meat.
Fong, Chee Sheng
2008-01-01
We study the impact of flavour in ``soft leptogenesis'' (leptogenesis induced by soft supersymmetry breaking terms). We address the question of how flavour effects can affect the region of parameters in which successful soft leptogenesis induced by CP violation in the right-handed sneutrino mixing is possible. We find that for decays which occur in the intermediate to strong washout regimes for all flavours, the produced total $B-L$ asymmetry can be up to a factor ${\\cal O}(30)$ larger than the one predicted with flavour effects being neglected. This enhancement, permits slightly larger values of the required lepton violating soft bilinear term.
Two-photon decay of the Higgs bosons in a supersymmetric model with a C P -violating potential
Oshimo, Noriyuki
2016-05-01
In the supersymmetric standard model which is not minimal, the Higgs potential does not conserve C P symmetry generally. Assuming that there exists an SU(2)-triplet Higgs field, we discuss resultant C P -violating effects on the Higgs bosons. The experimentally observed Higgs boson, which should be C P even in the standard model, could decay into two photons of C P -odd polarization state non-negligibly. For the second lightest Higgs boson, in a sizable region of parameter space, the dominant decay modes are different from those expected by the standard model. The two-photon decay could yield both even and odd C P final states at a ratio of the order of unity.
CP Phases of Neutrino Mixing in a Supersymmetric B-L Gauge Model with T_7 Lepton Flavor Symmetry
Ishimori, Hajime; Ma, Ernest
2012-01-01
In a recently proposed renormalizable model of neutrino mixing using the non-Abelian discrete symmetry T_7 in the context of a supersymmetric extension of the Standard Model with gauged U(1)_{B-L}, a correlation was obtained between \\theta_{13} and \\theta_{23} in the case where all parameters are real. Here we consider all parameters to be complex, thus allowing for one Dirac CP phase \\delta_{CP} and two Majorana CP phases \\alpha_{1,2}. We find a slight modification to this correlation as a function of \\delta_{CP}. For a given set of input values of \\Delta m^2_{21}, \\Delta m^2_{32}, \\theta_{12}, and \\theta_{13}, we obtain \\sin^2 2 \\theta_{23} and m_{ee} (the effective Majorana neutrino mass in neutrinoless double beta decay) as functions of \\tan \\delta_{CP}. We find that the structure of this model always yields small |\\tan \\delta_{CP}|.
Asano, E A; Gomes, M; Petrov, A Yu; Rodrigues, A G; Silva, A J
2004-01-01
We consider the coupling of fermions to the three-dimensional noncommutative $CP^{N-1}$ model. In the case of minimal coupling, although the infrared behavior of the gauge sector is improved, there are dangerous (quadratic) infrared divergences in the corrections to the two point vertex function of the scalar field. However, using superfield techniques we prove that the supersymmetric version of this model with ``antisymmetrized'' coupling of the Lagrange multiplier field is renormalizable up to the first order in $\\frac{1}{N}$. The auxiliary spinor gauge field acquires a nontrivial (nonlocal) dynamics with a generation of Maxwell and Chern-Simons noncommutative terms in the effective action. Up to the 1/N order all divergences are only logarithimic so that the model is free from nonintegrable infrared singularities.
A neutrino mixing model based on an $A_4\\times Z_3\\times Z_4$ flavour symmetry
Ky, Nguyen Anh; Van, Nguyen Thi Hong
2016-01-01
A model of a neutrino mixing with an $A_4\\times Z_3\\times Z_4$ flavour symmetry is suggested. In addition to the standard model fields, the present model contains six new fields which transform under different representations of $A_4\\times Z_3\\times Z_4$. The model is constructed to slightly deviate from a tri-bi-maximal model in agreement with the current experimental data, thus, all analysis can be done in the base of the perturbation method. Within this model, as an application, a relation between the mixing angles ($\\theta_{12}, \\theta_{23}, \\theta_{13}$) and the Dirac CP-violation phase ($\\delta_{CP}$) is established. This relation allows a prediction of $\\delta_{CP}$ and the Jarlskog parameter ($J_{CP}$). The predicted value $\\delta_{CP}$ is in the 1$\\sigma$ region of the global fit for both the normal- and inverse neutrino mass ordering and gives $J_{CP}$ to be within the bound $|J_{CP}|\\leq 0.04$. For an illustration, the model is checked numerically and gives values of the neutrino masses (of the ord...
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Flavour physics and CP violation
Indian Academy of Sciences (India)
Rukmani Mohanta; Anjan Kumar Giri
2010-05-01
It is well known that the study of flavour physics and CP violation is very important to critically test the Standard Model and to look for possible signature of new physics beyond it. The observation of CP violation in kaon system in 1964 has ignited a lot of experimental and theoretical efforts to understand its origin and to look for CP violation effects in other systems besides the neutral kaons. The two -factories BABAR and BELLE, along with other experiments, in the last decade or so made studies in flavour physics and CP violation a very interesting one. In this article we discuss the status and prospectives of the flavour physics associated with the strange, charm and bottom sectors of the Standard Model. The important results in kaon sector will be briefly discussed. Recently, mixing in the charm system has been observed, which was being pursued for quite some time without any success. The smallness of the mixing parameters in the charm system is due to the hierarchical structure of the CKM matrix. Interestingly, so far we have not found CP violation in the charm system but in the future, with more dedicated experiments at charm threshold, the situation could change. Many interesting observations have been made in the case of bottom mesons and some of them show some kind of deviations from that of the Standard Model expectations which are mainly associated with the → flavour changing neutral current transitions. It is long believed that the system could be the harbinger of new physics since it is a system in which both bottom and strange quarks are the constituents. Recently, D0 and CDF announced their result for the mixing which is claimed to be the first possible new physics signature in the flavour sector. We plan to touch upon all important issues pointing out both theoretical and experimental developments and future prospects in this review article.
Supersymmetric R4-actions in ten dimensions
Roo, M. de; Suelmann, H.; Wiedemann, A.
1992-01-01
We construct supersymmetric R+R4-actions in ten dimensions. Two invariants, of which the bosonic parts are known from string amplitude and sigma model calculations, are obtained. One of these invariants can be generalized to an R+F2+F4-invariant for supersymmetric Yang-Mills theory coupled to superg
Higaki, Tetsutaro; Nishida, Michinobu; Takeda, Naoyuki
2017-08-01
We study a supersymmetric model in which the Higgs mass, the muon anomalous magnetic moment, and the dark matter are simultaneously explained with extra vector-like generation multiplets. For the explanations, non-trivial flavor structures and a singlet field are required. In this paper, we study the flavor texture by using the Froggatt-Nielsen mechanism, and then find realistic flavor structures that reproduce the Cabbibo-Kobayashi-Maskawa matrix and fermion masses at low energy. Furthermore, we find that the fermion component of the singlet field becomes a good candidate for dark matter. In our model, flavor physics and dark matter are explained with moderate-size couplings through renormalization group flows, and the presence of dark matter supports the existence of just 3 generations in low-energy scales. We analyze the parameter region where the current thermal relic abundance of dark matter, the Higgs boson mass, and the muon g{-}2 can be explained simultaneously.
Non-standard charged Higgs decay at the LHC in Next-to-Minimal Supersymmetric Standard Model
Energy Technology Data Exchange (ETDEWEB)
Bandyopadhyay, Priyotosh [Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento and INFN-Lecce,Via Arnesano, 73100 Lecce (Italy); Huitu, Katri [Department of Physics, and Helsinki Institute of Physics,P.O.B 64 (Gustaf Hällströmin katu 2), FI-00014 University of Helsinki (Finland); Niyogi, Saurabh [The Institute of Mathematical Sciences,CIT Campus, Chennai (India)
2016-07-04
We consider next-to-minimal supersymmetric standard model (NMSSM) which has a gauge singlet superfield. In the scale invariant superpotential we do not have the mass terms and the whole Lagrangian has an additional Z{sub 3} symmetry. This model can have light scalar and/or pseudoscalar allowed by the recent data from LHC and the old data from LEP. We investigate the situation where a relatively light charged Higgs can decay to such a singlet-like pseudoscalar and a W{sup ±} boson giving rise to a final state containing τ and/or b-jets and lepton(s). Such decays evade the recent bounds on charged Higgs from the LHC, and according to our PYTHIA-FastJet based simulation can be probed with 10 fb{sup −1} at the LHC center of mass energy of 13 and 14 TeV.
Lepton flavour violation at high energies: the LHC and a Linear Collider
Teixeira, A M; Figueiredo, A J R; Romao, J C
2014-01-01
We discuss several manifestations of charged lepton flavour violation at high energies. Focusing on a supersymmetric type I seesaw, considering constrained and semi-constrained supersymmetry breaking scenarios, we analyse different observables, both at the LHC and at a future Linear Collider. We further discuss how the synergy between low- and high-energy observables can shed some light on the underlying mechanism of lepton flavour violation.
Generalized Supersymmetric Perturbation Theory
Institute of Scientific and Technical Information of China (English)
B. G(o)n(ǖ)l
2004-01-01
@@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.
Supersymmetric Electroweak Baryogenesis
Rius, N; Rius, Nuria; Sanz, Veronica
2000-01-01
We calculate the baryon asymmetry generated at the electroweak phase transition in the minimal supersymmetric standard model, using a new method to compute the CP-violating asymmetry in the Higgsino flux reflected into the unbroken phase. The method is based on a Higgs insertion expansion. We find that the CP asymmetry at leading order is proportional to the change in $\\tan next-to-leading order this suppression factor disappears. These results explain previous discrepancies among different calculations, and may enhance the final baryon asymmetry generated during the electroweak phase transition.
Energy Technology Data Exchange (ETDEWEB)
Klimt, S.
1989-12-19
In this thesis the author tried to decribe important low-energy phenomena of the strong interactions by means of the Nambu-Jona-Lasinio model. The effective quark-quark interaction was thereby constructed in accordance with the basing symmetries and conserved currents of the QCD; the model possesses especially chiral SU(3){sub L} x SU(3){sub R} symmetry. In the framework of this approach properties of the quarks and the light mesons were studied. In the calculations for instance the Hartree-Fock approach for the quark propagator was used. Properties of the mesons were determined in the framework of a RPA calculation by solution of the Bethe-Salpeter equation for the quark-antiquark scattering matrix. All questions, which were treated here, concern aspects of the symmetry breaking of the QCD: At the one hand the explicit breaking of the chiral symmetry by finite, if also small quark current masses. Thereby was assumed that these can be described as low perturbation of the chiral limit of massless quarks; furthermore the breaking of the U(1){sub A} symmetry observed in nature. It was tried to regard this anomaly property of the QCD by an additional flavor-mixing and U(1){sub A} breaking determinant interaction. The last and most important point finally is the spontaneous breaking of the chiral symmetry and the generation of quark condensates in the QCD ground state by the interaction dynamics. (orig./HSI).
Cern Academic Training programme 2011 - Flavour Physics and CP Violation
PH Department
2011-01-01
LECTURE SERIES 4, 5, 6 and 7 April 2011 Flavour Physics and CP Violation Dr. Yosef Nir (Weizmann Institute of Science, Rehovot, Israel 11:00-12:00 - 4, 6 and 7 April - Bldg. 222-R-001 - Filtration Plant 5 April - Bldg. 80-1-001 - Globe 1st Floor The B-factories have led to significant progress in our understanding of CP violation and of flavour physics. Yet, two flavour puzzles remain. The standard model flavour puzzle is the question of why there is smallness and hierarchy in the flavour parameters. The new physics flavour puzzle is the question of why TeV-scale new physics was not signalled in flavour changing neutral current processes. The high pT experiments, ATLAS and CMS, are likely to shed light on these puzzles. As concerns CP violation, the LHC will lead to progress on the puzzle of the baryon asymmetry as well.
Flavour Covariant Transport Equations: an Application to Resonant Leptogenesis
Dev, P S Bhupal; Pilaftsis, Apostolos; Teresi, Daniele
2014-01-01
We present a fully flavour-covariant formalism for transport phenomena, by deriving Markovian master equations that describe the time-evolution of particle number densities in a statistical ensemble with arbitrary flavour content. As an application of this general formalism, we study flavour effects in a scenario of resonant leptogenesis (RL) and obtain the flavour-covariant evolution equations for heavy-neutrino and lepton number densities. This provides a complete and unified description of RL, capturing three relevant physical phenomena: (i) the resonant mixing between the heavy-neutrino states, (ii) coherent oscillations between different heavy-neutrino flavours, and (iii) quantum decoherence effects in the charged-lepton sector. To illustrate the importance of this formalism, we numerically solve the flavour-covariant rate equations for a minimal RL model and show that the total lepton asymmetry can be enhanced up to one order of magnitude, as compared to that obtained from flavour-diagonal or partially ...
Supersymmetric vacua in random supergravity
Bachlechner, Thomas C.; Marsh, David; McAllister, Liam; Wrase, Timm
2013-01-01
We determine the spectrum of scalar masses in a supersymmetric vacuum of a general mathcal{N}=1 supergravity theory, with the Kähler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P=exp left( {{{{-2{N^2}{{{left| W right|}}^2}}} left/ {{m_{susy}^2}} right.}} right) , with W denoting the superpotential and m susy the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N ≫ 1. We conclude that for left| W right|gtrsim {{{{m_{susy}}}} left/ {N} right.} , tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.
Lepton Flavour Violating Higgs Decays in the (SUSY) Inverse Seesaw
Arganda, E; Marcano, X; Weiland, C
2016-01-01
The observation of charged lepton flavour violation would be a smoking gun for new physics and could help in pinpointing the mechanism at the origin of neutrino masses and mixing. We present here our recent studies of lepton flavour violating Higgs decays in the inverse seesaw and its supersymmetric embedding, two examples of low-scale seesaw mechanisms. We predict branching ratios as large as $10^{-5}$ for the decays $h\\rightarrow \\tau \\mu$ and $h \\rightarrow \\tau e$ in the inverse seesaw, which can be probed in future colliders. Supersymmetric contributions can enhance the branching ratio of $h\\rightarrow \\tau \\mu$ up to $1\\%$, making it large enough to explain the small excess observed by ATLAS and CMS.
Precision physics with heavy-flavoured hadrons
Koppenburg, Patrick
2015-01-01
The understanding of flavour dynamics is one of the key aims of elementary particle physics. The last 15 years have witnessed the triumph of the Kobayashi-Maskawa mechanism, which describes all flavour changing transitions of quarks in the Standard Model. This important milestone has been reached owing to a series of experiments, in particular to those operating at the so-called $B$ factories, at the Tevatron, and now at the LHC. We briefly review status and perspectives of flavour physics, highlighting the results where the LHC has given the most significant contributions, notably including the recent observation of the $B_s^0\\to\\mu^+\\mu^-$ decay.
Hung, Ling-Yan; Wang, Yixu
2016-01-01
We studied the leading area term of the entanglement entropy of $\\mathcal{N}=1$ supersymmetric $O(N)$ vector model in $2+1$ dimensions close to the line of second order phase transition in the large $N$ limit. We found that the area term is independent of the varying interaction coupling along the critical line, unlike what is expected in a perturbative theory. Along the way, we studied non-commuting limits $n-1\\to 0$ verses UV cutoff $r\\to 0$ when evaluating the gap equation and found a match only when appropriate counter term is introduced and whose coupling is chosen to take its fixed point value. As a bonus, we also studied Fermionic Green's functions in the conical background. We made the observation of a map between the problem and the relativistic hydrogen atom.
Directory of Open Access Journals (Sweden)
Adeva B.
2016-01-01
Full Text Available Some selected results of the LHCb experiment, running at the LHC with ppcollisions at 7 TeV and 8 TeV, are reported here, after operation with a total integratedluminosity of 3.0 fb−1 (Run 1. We focus on the most recent analyses on flavour physics,that include measurements of the CKM invariant phases γ and β, precision determination of the quark coupling strength Vub, observation of the very rare decays B0(s→μ+μ−, search for new physics in the anomalous branching ratio of B→D*τv̄, and precision angular analysis of the rare decays B0→K*0μ+μ− and B0s→ϕμ+μ−. Detailed comparisons are performed in all cases with the predictions of the Standard Model, and a fewinteresting tensions are observed.
Abbiendi, G; Åkesson, P F; Alexander, G; Allison, J; Amaral, P; Anagnostou, G; Anderson, K J; Asai, S; Axen, D A; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuffiani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, Klaus; Dienes, B; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, Franco Luigi; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, Jacob; Gruwé, M; Günther, P O; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, R J; Herten, G; Heuer, R D; Hill, J C; Hoffman, K; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, Dean A; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krieger, P; Von, J H; Krogh, A; Kühl, T; Kupper, M; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Masetti, G; Mashimo, T; Mättig, P; McKenna, J A; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L
2005-01-01
Upper limits on the cross-section of the pair-production process e+e- -> h0A0 assuming 100% decays into hadrons, are derived from a new search for the h0A0 -> hadrons topology, independent of the hadronic flavour of the decay products. Searches for the neutral Higgs bosons h0 and A0, are used to obtain constraints on the Type II Two Higgs Doublet Model (2HDM(11)) with no CP violation in the Higgs sector and no additional non Standard Model particles besides the five Higgs bosons. The analysis combines LEP1 and LEP2 data collected with the OPAL detctor up to the highest available centre-of-mass energies. The searches are sensitive to the h0, A0 -> qq, gg,tau+tau- and h0 -> A0A0 decay modes of the Higgs bosons. The 2HDM(II) parameter space is explored in a detailed scan. Large regions of the 2HDM(II) parameter space are excluded at the 95% CL in the (mh, mA), (mh, tanb) and (mA, tanb) planes, using both direct neutral Higgs boson searches and indirect limits derived from Standard Model high precision measuremen...
Aspects of Leptonic Flavour Mixing
Feruglio, Ferruccio
2016-01-01
Since the discovery of neutrino oscillations many ideas have been put forward to explain the special features of the leptonic mixing and the differences with respect to the quark sector. In this talk I review some of these proposals, emphasizing especially their predictability. In the light of the new data, I first revisit fixed-point relations among mixing angles and phases. Then I briefly comment on radiative neutrino masses. Finally I discuss the role of flavour symmetries. Given the very many existing models I focus on two classes of models. On the one hand I illustrate the ability of models based on a generalization of the anarchy idea in reproducing the main features of both the quark and the lepton spectrum, also in a GUT framework. On the other hand I discuss less ambitious but more predictive models based on discrete flavour symmetries, centered on the properties of the leptonic mixing matrix.
Strong coupling, discrete symmetry and flavour
Abel, Steven
2010-01-01
We show how two principles - strong coupling and discrete symmetry - can work together to generate the flavour structure of the Standard Model. We propose that in the UV the full theory has a discrete flavour symmetry, typically only associated with tribimaximal mixing in the neutrino sector. Hierarchies in the particle masses and mixing matrices then emerge from multiple strongly coupled sectors that break this symmetry. This allows for a realistic flavour structure, even in models built around an underlying grand unified theory. We use two different techniques to understand the strongly coupled physics: confinement in N=1 supersymmetry and the AdS/CFT correspondence. Both approaches yield equivalent results and can be represented in a clear, graphical way where the flavour symmetry is realised geometrically.
Searches for light- and heavy-flavour three-jet resonances in pp collisions at $\\sqrt{s}$ = 8 TeV
Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Da Costa, Eliza Melo; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Benhabib, Lamia; Bluj, Michal; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pieta, Holger; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Kluge, Hannelies; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Olzem, Jan; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Sen, Niladri; Stein, Matthias; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Gebbert, Ulla; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Goebel, Kristin; Höing, Rebekka Sophie; Kaussen, Gordon; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Marchesini, Ivan; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schum, Torben; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Thomsen, Jan; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Komaragiri, Jyothsna Rani; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Ott, Jochen; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Topsis-giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bellato, Marco; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Dosselli, Umberto; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Tae Jeong; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Grigelionis, Ignas; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Almeida, Nuno; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Gavrilenko, Mikhail; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Evstyukhin, Sergey; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Petrushanko, Sergey; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Soares, Mara Senghi; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Giordano, Domenico; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hartl, Christian; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lee, Yen-Jie; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Quertenmont, Loic; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Spiga, Daniele; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Freudenreich, Klaus; Grab, Christoph; Hits, Dmitry; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Moortgat, Filip; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Ronga, Frederic Jean; Rossini, Marco; Sala, Leonardo; Sanchez, Ann - Karin; Starodumov, Andrei; Takahashi, Maiko; Tauscher, Ludwig; Theofilatos, Konstantinos; Treille, Daniel; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Chiochia, Vincenzo; De Cosa, Annapaola; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Metson, Simon; Newbold, Dave M; Nirunpong, Kachanon; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Radburn-Smith, Benjamin Charles; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Chadwick, Matthew; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Traczyk, Piotr; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wilken, Rachel; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Campagnari, Claudio; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Kovalskyi, Dmytro; Krutelyov, Vyacheslav; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Ma, Yousi; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kunori, Shuichi; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Drozdetskiy, Alexey; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Callner, Jeremy; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Strom, Derek; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Kim, Yongsun; Klute, Markus; Lai, Yue Shi; Levin, Andrew; Luckey, Paul David; Ma, Teng; Nahn, Steve; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wolf, Roger; Wyslouch, Bolek; Yang, Mingming; Yilmaz, Yetkin; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Kovitanggoon, Kittikul; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H; Swanson, Joshua
2014-01-01
A search for three-jet hadronic resonance production in pp collisions at a centre-of-mass energy of 8 TeV has been conducted by the CMS Collaboration at the LHC with a data sample corresponding to an integrated luminosity of 19.4 inverse femtobarns. The search method is model independent, and events are selected that have high jet multiplicity and large values of jet transverse momenta. The signal models explored assume R-parity-violating supersymmetric gluino pair production and have final states with either only light-flavour jets or both light- and heavy-flavour jets. No significant deviation is found between the selected events and the expected standard model multijet and t t-bar quark background. For a gluino decaying into light-flavour jets, a lower limit of 650 GeV on the gluino mass is set at a 95% confidence level, and for a gluino decaying into one heavy- and two light-flavour jets, gluino masses between 200 and 835 GeV are, for the first time, likewise excluded.
Neutrino-flavoured sneutrino dark matter
March-Russell, John; McCabe, Christopher; McCullough, Matthew
2010-03-01
A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique ‘smoking gun’ signature — sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of ν μ and ν τ (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of the parameter space through both elastic and inelastic scattering. We show in detail that the observed neutrino masses and mixings can arise as a consequence of supersymmetry breaking effects in the sneutrino DM sector, consistent with all experimental constraints.
Neutrino-Flavoured Sneutrino Dark Matter
March-Russell, John; McCullough, Matthew
2010-01-01
A simple theory of supersymmetric dark matter (DM) naturally linked to neutrino flavour physics is studied. The DM sector comprises a spectrum of mixed lhd-rhd sneutrino states where both the sneutrino flavour structure and mass splittings are determined by the associated neutrino masses and mixings. Prospects for indirect detection from solar capture are good due to a large sneutrino-nucleon cross-section afforded by the inelastic splitting (solar capture limits exclude an explanation of DAMA/LIBRA). We find parameter regions where all heavier states will have decayed, leaving only one flavour mixture of sneutrino as the candidate DM. Such regions have a unique `smoking gun' signature--sneutrino annihilation in the Sun produces a pair of neutrino mass eigenstates free from vacuum oscillations, with the potential for detection at neutrino telescopes through the observation of a hard spectrum of nu_mu and nu_tau (for a normal neutrino hierarchy). Next generation direct detection experiments can explore much of...
Minimal Flavour Violation and Anomalous Top Decays
Faller, Sven; Mannel, Thomas
2013-01-01
Top quark physics at the LHC may open a window to physics beyond the standard model and even lead us to an understanding of the phenomenon "flavour". However, current flavour data is a strong hint that no "new physics" with a generic flavour structure can be expected in the TeV scale. In turn, if there is "new physics" at the TeV scale, it must be "minimally flavour violating". This has become a widely accepted assumption for "new physics" models. In this paper we propose a way to test the concept of minimal flavour violation for the anomalous charged $Wtq$, $q\\in\\{d,s,b\\}$, and flavour-changing $Vtq$, $q\\in\\{u,c\\}$ and $V\\in\\{Z,\\gamma,g\\}$, couplings within an effective field theory framework, i.e. in a model independent way. We perform a spurion analysis of our effective field theory approach and calculate the decay rates for the anomalous top-quark decays in terms of the effective couplings for different helicities by using a two-Higgs doublet model of type II (2HDM-II), under the assumption that the top-q...
Flavour Condensate and the Dark Sector of the Universe
Tarantino, Walter
2012-01-01
This thesis is devoted to the development of a nonperturbative quantum field theoretical approach to flavour physics, with special attention to cosmological applications. Neutrino flavour oscillation is nowadays a fairly well-established experimental fact. However, the formulation of flavour oscillations in a relativistic field theoretical framework presents non-trivial difficulties. A nonperturbative approach for building flavour states has been proposed by Blasone, Vitiello and coworkers. The formalism implies a non-trivial physical vacuum (called "flavour vacuum"), which might act as a source of Dark Energy. Furthermore, such a vacuum has been recognized as the effective vacuum state arising in the low energy limit of a string theoretical model, D-particle Foam Model. In the attempt of probing the observable phenomenology of the D-particle foam model, a simple toy model (two scalars with mixing \\`a la Blasone & Vitiello on a adiabatically expanding background) has been studied, proving that the flavour...
A flavour GUT model with θ{sub 13}{sup PMNS}≃θ{sub C}/√(2)
Energy Technology Data Exchange (ETDEWEB)
Antusch, Stefan, E-mail: stefan.antusch@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, Föhringer Ring 6, D-80805 München (Germany); Gross, Christian, E-mail: christian.gross@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Maurer, Vinzenz, E-mail: vinzenz.maurer@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland); Sluka, Constantin, E-mail: constantin.sluka@unibas.ch [Department of Physics, University of Basel, Klingelbergstr. 82, CH-4056 Basel (Switzerland)
2013-12-21
We propose a supersymmetric SU(5) GUT model with an A{sub 4} family symmetry – including a full flavon and messenger sector – which realises the relation θ{sub 13}{sup PMNS}≃θ{sub C}/√(2). The neutrino sector features tri-bimaximal mixing, and θ{sub 13}{sup PMNS}≃θ{sub C}/√(2) emerges from the charged lepton contribution to the PMNS matrix, which in turn is linked to quark mixing via specific GUT relations. These GUT relations arise after GUT symmetry breaking from a novel combination of group theoretical Clebsch–Gordan factors, which in addition to large θ{sub 13}{sup PMNS} lead to promising quark–lepton mass ratios for all generations of quarks and leptons and to m{sub s}/m{sub d}=18.95{sub −0.24}{sup +0.33}, in excellent agreement with experimental results. The model also features spontaneous CP violation, with all quark and lepton CP phases determined from family symmetry breaking. We perform a full Markov Chain Monte Carlo fit to the available quark and lepton data, and discuss how the model can be tested by present and future experiments.
Consistent supersymmetric decoupling in cosmology
Sousa Sánchez, Kepa
2012-01-01
The present work discusses several problems related to the stability of ground states with broken supersymmetry in supergravity, and to the existence and stability of cosmic strings in various supersymmetric models. In particular we study the necessary conditions to truncate consistently a sector o
Weakly-Interacting Massive Particles in Non-supersymmetric SO(10) Grand Unified Models
Nagata, Natsumi; Zheng, Jiaming
2015-01-01
Non-supersymmetric SO(10) grand unified theories provide a framework in which the stability of dark matter is explained while gauge coupling unification is realized. In this work, we systematically study this possibility by classifying weakly interacting DM candidates in terms of their quantum numbers of $\\text{SU}(2)_L \\otimes \\text{U}(1)_Y$, $B-L$, and $\\text{SU}(2)_R$. We consider both scalar and fermion candidates. We show that the requirement of a sufficiently high unification scale to ensure a proton lifetime compatible with experimental constraints plays a strong role in selecting viable candidates. Among the scalar candidates originating from either a 16 or 144 of SO(10), only SU(2)$_L$ singlets with zero hypercharge or doublets with $Y=1/2$ satisfy all constraints for $\\text{SU}(4)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R$ and $\\text{SU}(3)_C \\otimes \\text{SU}(2)_L \\otimes \\text{SU}(2)_R \\otimes \\text{U}(1)_{B-L}$ intermediate scale gauge groups. Among fermion triplets with zero hypercharge, o...
Bambhaniya, Gulab; Goswami, Srubabati; Mitra, Manimala
2015-01-01
We analyse in detail the scalar triplet contribution to the low-energy lepton flavour violating (LFV) and lepton number violating (LNV) processes within a TeV-scale left-right symmetric framework. We show that in both type-I and type-II seesaw dominance for the light neutrino masses, the triplet of comparable or smaller mass than the largest right-handed neutrino mass scale can give sizeable contribution to the LFV processes, except in the quasi-degenerate limit of light neutrino masses, where a suppression can occur due to cancellations. In particular, a moderate value of the heaviest neutrino to scalar triplet mass ratio $r\\lesssim {\\cal O}(1)$ is still experimentally allowed and can be explored in the future LFV experiments. Similarly, the contribution of a relatively light triplet to the LNV process of neutrinoless double beta decay could be significant, disfavouring a part of the model parameter space otherwise allowed by LFV constraints. Nevertheless, we find regions of parameter space consistent with b...
Grabalosa Gandara, M
2009-01-01
To do precise CP violation measurements, the most possible accurate knowledge of the flavour at production of the reconstructed B meson is required. This poster summarizes the flavour tagging performances for the LHCb experiment. We use same side an opposite side algorithms to establish wheter the meson contained a b or a b\\bar quark. The final decision is obtained through a combination of several methods. The use of control channels, decays to a flavour specific final state, will allow to determine the wrong tag fraction \\omega (the probability of a tag to be wrong), which can be used as input for the determination of CKM unitary triangle angles.
Pillot, Philippe
2008-01-01
Open heavy flavours and heavy quarkonium states are expected to provide essential informa- tion on the properties of the strongly interacting system fo rmed in the early stages of heavy-ion collisions at very high energy density. Such probes are espe cially promising at LHC energies where heavy quarks (both c and b) are copiously produced. The ALICE detector shall measure the production of open heavy flavours and heavy quarkonium st ates in both proton-proton and heavy-ion collisions at the LHC. The expected performances of ALICE for heavy flavour physics is discussed based on the results of simulation studies on a s election of benchmark channels
Supersymmetric Displaced Number States
Directory of Open Access Journals (Sweden)
Fredy R. Zypman
2015-06-01
Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.
Supersymmetric Open Wilson Lines
Baker, Edward B
2011-01-01
In this paper we study Open Wilson Lines (OWL's) in the context of two Supersymmetric Yang Mills theories. First we consider four dimensional N=2 Supersymmetric Yang Mills Theory with hypermultiplets transforming in the fundamental representation of the gauge group, and find supersymmetric OWL's only in the superconformal versions of these theories. We then consider four dimensional N=4 SYM coupled to a three dimensional defect hypermultiplet. Here there is a semi-circular supersymmetric OWL, which is related to the ray by a conformal transformation. We perform a perturbative calculation of the operators in both theories, and discuss using localization to compute them non-perturbatively.
Dark matter within the minimal flavour violation ansatz
Lopez-Honorez, Laura
2013-01-01
Minimal Flavour Violation hypothesis can provide an attractive framework for Dark Matter (DM). We consider scalar DM candidates carrying flavour quantum numbers and whose representation under the flavour group guarantees DM stability. They interact with the Standard Model fields through Higgs portal at renormalisable level and also to quarks through dimension-6 operators. We provide a systematic analysis of the viable parameter space for the DM fields, which are triplet of the flavour group, considering several DM-quark interactions. In this framework, we analyse in which cases the viable parameter space differs from Higgs portal models thanks to the underlying flavour structure. In contrast to minimal Higgs portal scenarios, we find that light DM in the GeV mass range as well as heavier candidates above Higgs resonance could be allowed by colliders, direct and indirect DM detection searches as well as flavour constraints. The large mass regime above the top mass could even be beyond the reach of future exper...
Supersymmetrizing Massive Gravity
Malaeb, Ola
2013-01-01
When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. When the scalar components of the chiral multiplets z^A acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index making the scalar fields z^A vectors and the chiral spinors \\psi^A spin-3/2 Rarita-Schwinger fields. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.
arXiv Flavour Physics and CP Violation
Kamenik, J.F.
2016-01-01
These notes represent a summary of three lectures on flavour and CP violation, given at the CERNs European School of High Energy Physics in 2014. They cover flavour physics within the standard model, phenomenology of CP violation in meson mixing and decays, as well as constraints of flavour observableson physics beyond the standard model. In preparing the lectures (and consequently this summary) I drew heavily from several existing excellent and exhaustive sets of lecture notes and reviews on flavour physics and CP violation [1]. The reader is encouraged to consult those as well as the original literature for a more detailed study.
Leptonic minimal flavour violation in warped extra dimensions
Indian Academy of Sciences (India)
Abhishek M Iyer; Sudhir K Vempati
2012-10-01
Lepton mass hierarchies and lepton flavour violation are revisited in the framework of Randall–Sundrum models. Models with Dirac-type as well as Majorana-type neutrinos are considered. The five-dimensional -parameters are fit to the charged lepton and neutrino masses and mixings using 2 minimization. Leptonic flavour violation is shown to be large in these cases. Schemes of minimal flavour violation are considered for the cases of an effective LLHH operator and Dirac neutrinos and are shown to significantly reduce the limits from lepton flavour violation.
Pahel, D J
2005-01-01
In the standard electroweak model, the sole source of CP violation is a CP violating phase of the CKM quark mixing matrix. The minimal supersymmetric extension of the standard model offers a large number of possible new sources of CP violation; these include both flavor dependent and flavor independent sources. These CP violating effects are studied in gauge boson production and decay processes with intermediate W and Z boson exchange. The prospects of measuring these effects in the International Linear Collider are explored.
Supersymmetric Vacua in Random Supergravity
Bachlechner, Thomas C; McAllister, Liam; Wrase, Timm
2012-01-01
We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the...
Mono-jet, -photon and -Z Signals of a Supersymmetric (B-L) model at the Large Hadron Collider
Abdallah, W; Khalil, S; Moretti, S
2015-01-01
Search for invisible final states produced at the Large Hadron Collider (LHC) by new physics scenarios are normally carried out resorting to a variety of probes emerging from the initial state, in the form of single-jet, -photon and -$Z$ boson signatures. These are particularly effective for models of Supersymmetry (SUSY) in presence of $R$-parity conservation, owing to the presence in their spectra of a stable neutralino as dark matter candidate. We assume here as theoretical framework Supersymmetric ($B-L$) extension of the Standard Model (BLSSM), wherein a mediator for invisible decays can be $Z'$ boson. The peculiarity of the signal is thus that the final state objects carry a very large (transverse) missing energy, since the $Z'$ is naturally massive and constrained by direct searches and electro-weak precision tests to be at least in TeV scale region. Under these circumstances the efficiency in accessing the invisible final state and rejecting the standard model background is very high. This somehow com...
Supersymmetric non conservative systems
Martínez-Pérez, N E
2015-01-01
We give the generalization of a recent variational formulation for nonconservative classical mechanics, for fermionic and sypersymmetric systems. Both cases require slightly modified boundary conditions. The supersymmetric version is given in the superfield formalism. The corresponding Noether theorem is formulated. As expected, like the energy, the supersymmetric charges are not conserved. Examples are discussed.
Tua, Alan
The Standard Model of particle physics, despite being extremely successful, is not the ultimate description of physics. The nature of dark matter is not well described, unification of the forces is not achieved and the theory is plagued by a hierarchy problem. One of the proposed solutions to these issues is supersymmetry. This thesis describes numerous searches for supersymmetry carried out using the ATLAS detector at the Large Hadron Collider. In scenarios where R-parity is conserved, supersymmetric final states contain large amounts of missing transverse energy. Furthermore, should supersymmetry correctly describe Nature, the scalar partners of the third generation quarks might be the lightest scalar quarks. The searches reported here exploit these possibilities and make use of signatures which are rich in missing transverse energy and jets coming from heavy flavour quarks. Searches are carried out for direct pair production of third generation scalar quarks as well as gluino-mediated production of these p...
Kiourkos, S
1999-01-01
One of the potentially accessible decay modes of the Higgs boson in the mass region $100 < m_H < 180$ GeV is the $H^0 \\rightarrow Z^0 \\gamma$ channel. The work presented in this note examines the Standard Model and Minimal Supersymmetric Standard Model predictions for the observability of this channel using particle level simulation as well as the ATLAS fast simulation (ATLFAST). It compares present estimates for the signal observability with previously reported ones in \\cite{unal} specifying the changes arising from the assumed energy of the colliding protons and the improvements in the treatment of theoretical predictions. With the present estimates, the expected significance for the SM Higgs does not exceed, in terms of $\\frac{S}{\\sqrt{B}}$, 1.5 $\\sigma$ (including $Z^0 \\rightarrow e^+ e^-$ and $Z^0 \\rightarrow {\\mu}^+ {\\mu}^-$) for an integrated luminosity of $10^5$ pb$^{-1}$ therefore not favouring this channel for SM Higgs searches. Comparable discovery potential is expected at most for the MSSM $...
Supersymmetric Higgs Bosons and Beyond
Energy Technology Data Exchange (ETDEWEB)
Carena, Marcela; /Fermilab /Chicago U., EFI; Kong, Kyoungchul; /Fermilab /SLAC; Ponton, Eduardo; /Columbia U.; Zurita, Jose; /Fermilab /Buenos Aires U.
2010-08-26
We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.
Khan, Saki
2016-06-01
We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.
Carneiro, D F; Sampaio, M D; Nemes, M C
2003-01-01
We compute the three loop $\\beta$ function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disantangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories.
Evolution of Yukawa couplings and quark flavour mixings in 2UED models
Abdalgabar, Ammar; Deandrea, Aldo; Tarhini, Ahmad
2013-01-01
The evolution equations of the Yukawa couplings and quark mixings are derived for the one-loop renormalization group equations in the two Universal Extra Dimension Models (UED), that is six-dimensional models, compactified in different possible ways to yield standard four space-time dimension. Different possibilities for the matter fields are discussed, such as the case of bulk propagating or localised brane fields. We discuss in both cases the evolution of the Yukawa couplings, the Jarlskog parameter and the CKM matrix elements, and we find that, for both scenarios, as we run up to the unification scale, significant renormalization group corrections are present. We also discuss the results of different observables of the five-dimensional UED model in comparison with these six-dimensional models and the model dependence of the results.
Energy Technology Data Exchange (ETDEWEB)
Kanemura, Shinya; Machida, Naoki [Department of Physics, University of Toyama, 3190 Gofuku, Toyama 930-8555 (Japan); Shindou, Tetsuo [Division of Liberal-Arts, Kogakuin University, 1-24-2 Nishi-Shinjuku, Tokyo 163-8677 (Japan)
2014-11-10
We propose a simple model to explain neutrino mass, dark matter and baryogenesis based on the extended Higgs sector which appears in the low-energy effective theory of a supersymmetric gauge theory with confinement. We here consider the SU(2){sub H} gauge symmetry with three flavours of fundamental representations which are charged under the standard SU(3){sub C}×SU(2){sub L}×U(1){sub Y} symmetry and a new discrete Z{sub 2} symmetry. We also introduce a Z{sub 2}-odd right-handed neutrino superfield in addition to the standard model matter superfields. The low-energy effective theory below the confinement scale contains the Higgs sector with fifteen composite superfields, some of which are Z{sub 2}-odd. When the confinement scale is of the order of ten TeV, electroweak phase transition can be sufficiently of first order, which is required for successful electroweak baryogenesis. The lightest Z{sub 2}-odd particle can be a new candidate for dark matter, in addition to the lightest R-parity odd particle. Neutrino masses and mixings can be explained by the quantum effects of Z{sub 2}-odd fields via the one-loop and three-loop diagrams. We find a benchmark scenario of the model, where all the constraints from the current neutrino, dark matter, lepton flavour violation and LHC data are satisfied. Predictions of the model are shortly discussed.
Implications of Recent Data on Neutrino Mixing and Lepton Flavour Violating Decays for the Zee Model
He, Xiao-Gang
2011-01-01
We study implications of recent data on neutrino mixing from T2K, MINOS, Double Chooz and $\\mu \\to e \\gamma$ from MEG for the Zee model. The simplest version of this model has been shown to be ruled out by experimental data some time ago. The general Zee model is still consistent with recent data. We demonstrate this with a constrained Zee model based on naturalness consideration. In this constrained model, only inverted mass hierarchy for neutrino masses is allowed, and $\\theta_{13}$ must be non-zero in order to have correct ratio for neutrino mass-squared differences and for mixing in solar and atmospherical neutrino oscillations. The best fit value of our model for $\\theta_{13}$ is $8.91\\deg$ from T2K and MINOS data, very close to the central value obtained by Double Chooz experiment. There are solutions with non-zero CP violation with the Jarlskog parameter predicted in the range $\\pm 0.039$, $\\pm 0.044$ and $\\pm 0.048$ respectively for a 1$\\sigma$, 2$\\sigma$ and 3$\\sigma$ ranges of other input parameters...
Bubbles of Nothing and Supersymmetric Compactifications
Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon
2016-01-01
We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such "topologically unobstructed" cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to $M_3 \\times S_1$ presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this dec...
The warped, resolved, deformed conifold gets flavoured
Gaillard, Jerome; Nunez, Carlos; Papadimitriou, Ioannis
2011-01-01
We discuss a simple transformation that allows to generate SU(3) structure solutions of Type IIB supergravity with RR fluxes, starting from non-Kahler solutions of Type I supergravity. The method may be applied also in the presence of supersymmetric source branes. We apply this transformation to a solution describing fivebranes wrapped on the two-sphere of the resolved conifold with additional flavour fivebrane sources. The resulting solution is a generalisation of the resolved deformed conifold solution of Butti et al. by the addition of D5 brane and D3 brane sources. We propose that this solution may be interpreted in terms of a combined effect of Higgsing and cascade of Seiberg dualities in the dual field theory.
On the uniqueness of supersymmetric attractors
Directory of Open Access Journals (Sweden)
Taniya Mandal
2015-10-01
Full Text Available In this paper we discuss the uniqueness of supersymmetric attractors in four-dimensional N=2 supergravity theories coupled to n vector multiplets. We prove that for a given charge configuration the supersymmetry preserving axion free attractors are unique. We generalise the analysis to axionic attractors and state the conditions for uniqueness explicitly. We consider the example of a two-parameter model and find all solutions to the supersymmetric attractor equations and discuss their uniqueness.
Respiratory Health - Exposure Measurements and Modeling in the Fragrance and Flavour Industry.
Directory of Open Access Journals (Sweden)
Eric Angelini
Full Text Available Although the flavor and fragrance industry is about 150 years old, the use of synthetic materials started more than 100 years ago, and the awareness of the respiratory hazard presented by some flavoring substances emerged only recently. In 2001, the US National Institute of Occupational Safety and Health (NIOSH identified for the first time inhalation exposure to flavoring substances in the workplace as a possible occupational hazard. As a consequence, manufacturers must comply with a variety of workplace safety requirements, and management has to ensure the improvement of health and safety of the employees exposed to hazardous volatile organic compounds. In this sensitive context, MANE opened its facilities to an intensive measuring campaign with the objective to better estimate the real level of hazardous respiratory exposure of workers. In this study, exposure to 27 hazardous volatile substances were measured during several types of handling operations (weighing-mixing, packaging, reconditioning-transferring, 430 measurement results were generated, and were exploited to propose an improved model derived from the well-known ECETOC-TRA model. The quantification of volatile substances in the working atmosphere involved three main steps: adsorption of the chemicals on a solid support, thermal desorption, followed by analysis by gas chromatography-mass spectrometry. Our approach was to examine experimental measures done in various manufacturing workplaces and to define correction factors to reflect more accurately working conditions and habits. Four correction factors were adjusted in the ECETOC-TRA to integrate important exposure variation factors: exposure duration, percentage of the substance in the composition, presence of collective protective equipment and wearing of personal protective equipment. Verification of the validity of the model is based on the comparison of the values obtained after adaptation of the ECETOC-TRA model, according to
Respiratory Health – Exposure Measurements and Modeling in the Fragrance and Flavour Industry
Angelini, Eric; Camerini, Gerard; Diop, Malick; Roche, Patrice; Rodi, Thomas; Schippa, Christine; Thomas, Thierry
2016-01-01
Although the flavor and fragrance industry is about 150 years old, the use of synthetic materials started more than 100 years ago, and the awareness of the respiratory hazard presented by some flavoring substances emerged only recently. In 2001, the US National Institute of Occupational Safety and Health (NIOSH) identified for the first time inhalation exposure to flavoring substances in the workplace as a possible occupational hazard. As a consequence, manufacturers must comply with a variety of workplace safety requirements, and management has to ensure the improvement of health and safety of the employees exposed to hazardous volatile organic compounds. In this sensitive context, MANE opened its facilities to an intensive measuring campaign with the objective to better estimate the real level of hazardous respiratory exposure of workers. In this study, exposure to 27 hazardous volatile substances were measured during several types of handling operations (weighing-mixing, packaging, reconditioning-transferring), 430 measurement results were generated, and were exploited to propose an improved model derived from the well-known ECETOC-TRA model. The quantification of volatile substances in the working atmosphere involved three main steps: adsorption of the chemicals on a solid support, thermal desorption, followed by analysis by gas chromatography-mass spectrometry. Our approach was to examine experimental measures done in various manufacturing workplaces and to define correction factors to reflect more accurately working conditions and habits. Four correction factors were adjusted in the ECETOC-TRA to integrate important exposure variation factors: exposure duration, percentage of the substance in the composition, presence of collective protective equipment and wearing of personal protective equipment. Verification of the validity of the model is based on the comparison of the values obtained after adaptation of the ECETOC-TRA model, according to various exposure
Respiratory Health - Exposure Measurements and Modeling in the Fragrance and Flavour Industry.
Angelini, Eric; Camerini, Gerard; Diop, Malick; Roche, Patrice; Rodi, Thomas; Schippa, Christine; Thomas, Thierry
2016-01-01
Although the flavor and fragrance industry is about 150 years old, the use of synthetic materials started more than 100 years ago, and the awareness of the respiratory hazard presented by some flavoring substances emerged only recently. In 2001, the US National Institute of Occupational Safety and Health (NIOSH) identified for the first time inhalation exposure to flavoring substances in the workplace as a possible occupational hazard. As a consequence, manufacturers must comply with a variety of workplace safety requirements, and management has to ensure the improvement of health and safety of the employees exposed to hazardous volatile organic compounds. In this sensitive context, MANE opened its facilities to an intensive measuring campaign with the objective to better estimate the real level of hazardous respiratory exposure of workers. In this study, exposure to 27 hazardous volatile substances were measured during several types of handling operations (weighing-mixing, packaging, reconditioning-transferring), 430 measurement results were generated, and were exploited to propose an improved model derived from the well-known ECETOC-TRA model. The quantification of volatile substances in the working atmosphere involved three main steps: adsorption of the chemicals on a solid support, thermal desorption, followed by analysis by gas chromatography-mass spectrometry. Our approach was to examine experimental measures done in various manufacturing workplaces and to define correction factors to reflect more accurately working conditions and habits. Four correction factors were adjusted in the ECETOC-TRA to integrate important exposure variation factors: exposure duration, percentage of the substance in the composition, presence of collective protective equipment and wearing of personal protective equipment. Verification of the validity of the model is based on the comparison of the values obtained after adaptation of the ECETOC-TRA model, according to various exposure
Thermal evolution of the one-flavour Schwinger model using matrix product states
Energy Technology Data Exchange (ETDEWEB)
Saito, H.; Jansen, K. [DESY Zeuthen (Germany). John von Neumann Institute for Computing; Banuls, M.C.; Cirac, J.I. [Max-Planck Institute of Quantum Optics, Garching (Germany); Cichy, K. [Frankfurt am Main Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics
2015-11-15
The Schwinger model, or 1+1 dimensional QED, offers an interesting object of study, both at zero and non-zero temperature, because of its similarities to QCD. In this proceeding, we present the a full calculation of the temperature dependent chiral condensate of this model in the continuum limit using Matrix Product States (MPS). MPS methods, in general tensor networks, constitute a very promising technique for the non-perturbative study of Hamiltonian quantum systems. In the last few years, they have shown their suitability as ansatzes for ground states and low-lying excitations of lattice gauge theories. We show the feasibility of the approach also for finite temperature, both in the massless and in the massive case.
Thermal evolution of the one-flavour Schwinger model using Matrix Product States
Saito, H; Cichy, K; Cirac, J I; Jansen, K
2015-01-01
The Schwinger model, or 1+1 dimensional QED, offers an interesting object of study, both at zero and non-zero temperature, because of its similarities to QCD. In this proceeding, we present the a full calculation of the temperature dependent chiral condensate of this model in the continuum limit using Matrix Product States (MPS). MPS methods, in general tensor networks, constitute a very promising technique for the non-perturbative study of Hamiltonian quantum systems. In the last few years, they have shown their suitability as ansatzes for ground states and low-lying excita- tions of lattice gauge theories. We show the feasibility of the approach also for finite temperature, both in the massless and in the massive case.
Leading Particle Production in Light Flavour Jets
Abbiendi, G; Åkesson, P F; Alexander, Gideon; Allison, J; Anderson, K J; Arcelli, S; Asai, S; Ashby, S F; Axen, D A; Azuelos, Georges; Bailey, I; Ball, A H; Barberio, E; Barlow, R J; Batley, J Richard; Baumann, S; Behnke, T; Bell, K W; Bella, G; Bellerive, A; Bentvelsen, Stanislaus Cornelius Maria; Bethke, Siegfried; Betts, S; Biebel, O; Biguzzi, A; Bloodworth, Ian J; Bock, P; Böhme, J; Boeriu, O; Bonacorsi, D; Boutemeur, M; Braibant, S; Bright-Thomas, P G; Brigliadori, L; Brown, R M; Burckhart, Helfried J; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Chrisman, D; Ciocca, C; Clarke, P E L; Clay, E; Cohen, I; Conboy, J E; Cooke, O C; Couchman, J; Couyoumtzelis, C; Coxe, R L; Cuffiani, M; Dado, S; Dallavalle, G M; Dallison, S; Davis, R; de Roeck, A; Dervan, P J; Desch, Klaus; Dienes, B; Dixit, M S; Donkers, M; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Estabrooks, P G; Etzion, E; Fabbri, Franco Luigi; Fanfani, A; Fanti, M; Faust, A A; Feld, L; Ferrari, P; Fiedler, F; Fierro, M; Fleck, I; Frey, A; Fürtjes, A; Futyan, D I; Gagnon, P; Gary, J W; Gaycken, G; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Gingrich, D M; Glenzinski, D A; Goldberg, J; Gorn, W; Grandi, C; Graham, K; Gross, E; Grunhaus, Jacob; Gruwé, M; Hajdu, C; Hanson, G G; Hansroul, M; Hapke, M; Harder, K; Harel, A; Hargrove, C K; Harin-Dirac, M; Hauschild, M; Hawkes, C M; Hawkings, R; Hemingway, Richard J; Herten, G; Heuer, R D; Hildreth, M D; Hill, J C; Hobson, P R; Höcker, Andreas; Hoffman, K; Homer, R James; Honma, A K; Horváth, D; Hossain, K R; Howard, R; Hüntemeyer, P; Igo-Kemenes, P; Imrie, D C; Ishii, K; Jacob, F R; Jawahery, A; Jeremie, H; Jimack, Martin Paul; Jones, C R; Jovanovic, P; Junk, T R; Kanaya, N; Kanzaki, J I; Karapetian, G V; Karlen, D A; Kartvelishvili, V G; Kawagoe, K; Kawamoto, T; Kayal, P I; Keeler, Richard K; Kellogg, R G; Kennedy, B W; Kim, D H; Klier, A; Kobayashi, T; Kobel, M; Kokott, T P; Kolrep, M; Komamiya, S; Kowalewski, R V; Kress, T; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Kyberd, P; Lafferty, G D; Landsman, Hagar Yaël; Lanske, D; Lauber, J; Lawson, I; Layter, J G; Lellouch, Daniel; Letts, J; Levinson, L; Liebisch, R; Lillich, J; List, B; Littlewood, C; Lloyd, A W; Lloyd, S L; Loebinger, F K; Long, G D; Losty, Michael J; Lü, J; Ludwig, J; Macchiolo, A; MacPherson, A L; Mader, W F; Mannelli, M; Marcellini, S; Marchant, T E; Martin, A J; Martin, J P; Martínez, G; Mashimo, T; Mättig, P; McDonald, W J; McKenna, J A; McKigney, E A; McMahon, T J; McPherson, R A; Meijers, F; Méndez-Lorenzo, P; Merritt, F S; Mes, H; Meyer, I; Michelini, Aldo; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Montanari, A; Mori, T; Nagai, K; Nakamura, I; Neal, H A; Nisius, R; O'Neale, S W; Oakham, F G; Odorici, F; Ögren, H O; Okpara, A N; Oreglia, M J; Orito, S; Pásztor, G; Pater, J R; Patrick, G N; Patt, J; Pérez-Ochoa, R; Petzold, S; Pfeifenschneider, P; Pilcher, J E; Pinfold, James L; Plane, D E; Poli, B; Polok, J; Przybycien, M B; Quadt, A; Rembser, C; Rick, Hartmut; Robins, S A; Rodning, N L; Roney, J M; Rosati, S; Roscoe, K; Rossi, A M; Rozen, Y; Runge, K; Runólfsson, O; Rust, D R; Sachs, K; Saeki, T; Sahr, O; Sang, W M; Sarkisyan-Grinbaum, E; Sbarra, C; Schaile, A D; Schaile, O; Scharff-Hansen, P; Schieck, J; Schmitt, S; Schöning, A; Schröder, M; Schumacher, M; Schwick, C; Scott, W G; Seuster, R; Shears, T G; Shen, B C; Shepherd-Themistocleous, C H; Sherwood, P; Siroli, G P; Skuja, A; Smith, A M; Snow, G A; Sobie, Randall J; Söldner-Rembold, S; Spagnolo, S; Sproston, M; Stahl, A; Stephens, K; Stoll, K; Strom, D; Ströhmer, R; Surrow, B; Talbot, S D; Taras, P; Tarem, S; Teuscher, R; Thiergen, M; Thomas, J; Thomson, M A; Torrence, E; Towers, S; Trefzger, T M; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Van Kooten, R; Vannerem, P; Verzocchi, M; Voss, H; Wäckerle, F; Waller, D; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wetterling, D; White, J S; Wilson, G W; Wilson, J A; Wyatt, T R; Yamashita, S; Zacek, V; Zer-Zion, D
2000-01-01
The energy distribution and type of the particle with the highest momentum in quark jets are determined for each of the five quark flavours making only minimal model assumptions. The analysis is based on a large statistics sample of hadronic Z0 decays collected with the OPAL detector at the LEP e+e- collider. These results provide a basis for future studies of light flavour production at other centre-of-mass energies. We use our results to study the hadronisation mechanism in light flavour jets and compare the data to the QCD models JETSET and HERWIG. Within the JETSET model we also directly determine the suppression of strange quarks to be gamma_s=0.422+-0.049 (stat.)+-0.059 (syst.) by comparing the production of charged and neutral kaons in strange and non-strange light quark events. Finally we study the features of baryon production.
On the origin of neutrino flavour symmetry
King, Stephen F
2009-01-01
We study classes of models which are based on some discrete family symmetry which is completely broken such that the observed neutrino flavour symmetry emerges indirectly as an accidental symmetry. For such "indirect" models we discuss the D-term flavon vacuum alignments which are required for such an accidental flavour symmetry consistent with tri-bimaximal lepton mixing to emerge. We identify large classes of suitable discrete family symmetries, namely the $\\Delta(3n^2)$ and $\\Delta(6n^2)$ groups, together with other examples such as $Z_7\\rtimes Z_3$. In such indirect models the implementation of the type I see-saw mechanism is straightforward using constrained sequential dominance. However the accidental neutrino flavour symmetry may be easily violated, for example leading to a large reactor angle, while maintaining accurately the tri-bimaximal solar and atmospheric predictions.