WorldWideScience

Sample records for supersymmetric flavor-changing problem

  1. Constraints on Supersymmetric Flavor Changing Parameters Using B->PP Decays

    CERN Document Server

    Ghosh, D K; Hsiao, Y K; Shi, J Q; Ghosh, Dilip Kumar; He, Xiao-Gang; Hsiao, Yu-Kuo; Shi, Jian-Qing

    2002-01-01

    We study contributions of quark-squark-gluino interactions in Minimal Supersymmetric Standard Model (MSSM) to B->PP (PP =Kpi, pipi, KK) decays using QCD improved factorization method for the evaluation of the hadronic matrix elements and taking into account renormalization group running of the Wilson coefficients from SUSY scale (~ m_{\\tilde q}) to the low energy scale (= m_b) applicable to B decays. Using the most recent experimental data we obtain constraints on flavor changing Supersymmetric (SUSY) parameters (\\delta_{ij})_{LL, RR}. For \\Delta S = -1 processes, b-> s gamma is usually considered to give the strongest limits. We, however, find that in some part of the parameter space B-> Kpi processes give stronger bounds. Implications for B^0_s -\\bar B^0_s mixing is discussed. We also study cons traints obtained from \\Delta S = 0 processes B-> pipi, KK, rho gamma and B_d -\\bar B_d mixing. In this case, in a large part of the parameter space B_d - \\bar B_d provides the best bound, but B-> K^- K^0, rho gamma ...

  2. The supersymmetric flavor problem

    CERN Document Server

    Dimopoulos, Savas K; Dimopoulos, Savas; Sutter, Dave

    1995-01-01

    The supersymmetric SU(3)\\times SU(2)\\times U(1) theory with minimal particle content and general soft supersymmetry breaking terms has 110 physical parameters in its flavor sector: 30 masses, 39 real mixing angles and 41 phases. The absence of an experimental indication for the plethora of new parameters places severe constraints on theories posessing Planck or GUT-mass particles and suggests that theories of flavor conflict with naturalness. We illustrate the problem by studying the processes \\mu \\rightarrow e + \\gamma and K^0 - \\bar{K}^0 mixing which are very sensitive probes of Planckian physics: a single Planck mass particle coupled to the electron or the muon with a Yukawa coupling comparable to the gauge coupling typically leads to a rate for \\mu \\rightarrow e + \\gamma exceeding the present experimental limits. A possible solution is that the messengers which transmit supersymmetry breaking to the ordinary particles are much lighter than M_{\\rm Planck}.

  3. The gravitino problem in supersymmetric warm inflation

    CERN Document Server

    Sanchez, Juan C Bueno; Berera, Arjun; Dimopoulos, Konstantinos; Kohri, Kazunori

    2010-01-01

    The warm inflation paradigm considers the continuous production of radiation during inflation due to dissipative effects. In its strong dissipation limit, warm inflation gives way to a radiation dominated Universe. High scale inflation then yields a high reheating temperature, which then poses a severe gravitino overproduction problem for the supersymmetric realisations of warm inflation. In this paper we show that in certain class of supersymmetric models the dissipative dynamics of the inflaton is such that the field can avoid its complete decay after inflation. In some cases, the residual energy density stored in the field oscillations may come to dominate over the radiation bath at a later epoch. If the inflaton field finally decays much later than the onset of the matter dominated phase, the entropy produced in its decay may be sufficient to counteract the excess of gravitinos produced during the last stages of warm inflation.

  4. The N=1 Supersymmetric Landau Problem and its Supersymmetric Landau Level Projections: the N=1 Supersymmetric Moyal-Voros Superplane

    CERN Document Server

    Geloun, Joseph Ben; Scholtz, Frederik G

    2009-01-01

    The N=1 supersymmetric invariant Landau problem is constructed and solved. By considering Landau level projections remaining non trivial under N=1 supersymmetry transformations, the algebraic structures of the N=1 supersymmetric covariant non(anti)commutative superplane analogue of the ordinary N=0 noncommutative Moyal-Voros plane are identified.

  5. Flavor changing nucleon decay

    Science.gov (United States)

    Maekawa, Nobuhiro; Muramatsu, Yu

    2017-04-01

    Recent discovery of neutrino large mixings implies the large mixings in the diagonalizing matrices of 5 bar fields in SU (5) grand unified theory (GUT), while the diagonalizing matrices of 10 fields of SU (5) are expected to have small mixings like Cabibbo-Kobayashi-Maskawa matrix. We calculate the predictions of flavor changing nucleon decays (FCND) in SU (5), SO (10), and E6 GUT models which have the above features for mixings. We found that FCND can be the main decay mode and play an important role to test GUT models.

  6. Supersymmetric gauge theories on the lattice: Pfaffian phases and the Neuberger 0/0 problem

    CERN Document Server

    Mehta, Dhagash; Galvez, Richard; Joseph, Anosh

    2011-01-01

    Recently a class of supersymmetric gauge theories have been successfully implemented on the lattice. However, there has been an ongoing debate on whether lattice versions of some of these theories suffer from a sign problem, with independent simulations for the ${\\cal N} = (2, 2)$ supersymmetric Yang-Mills theories in two dimensions yielding seemingly contradictory results. Here, we address this issue from an interesting theoretical point of view. We conjecture that the sign problem observed in some of the simulations is related to the so called Neuberger 0/0 problem, which arises in ordinary non-supersymmetric lattice gauge theories, and prevents the realization of Becchi-Rouet-Stora-Tyutin symmetry on the lattice. After discussing why we expect a sign problem in certain classes of supersymmetric lattice gauge theories far from the continuum limit, we argue that these problems can be evaded by use of a non-compact parametrization of the gauge link fields.

  7. The N = 1 Supersymmetric Wong Equations and the Non-Abelian Landau Problem

    CERN Document Server

    Fanuel, Michaël; Avossevou, Gabriel Y H; Dossa, Anselme F

    2014-01-01

    A Lagrangian formulation is given extending to N = 1 supersymmetry the motion of a charged point particle with spin in a non-abelian external field. The classical formulation is constructed for any external static non-abelian SU(N) gauge potential. As an illustration, a specific gauge is fixed enabling canonical quantization and the study of the supersymmetric non-abelian Landau problem. The spectrum of the quantum Hamiltonian operator follows in accordance with the supersymmetric structure.

  8. The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology

    Energy Technology Data Exchange (ETDEWEB)

    Bruemmer, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fichet, S.; Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie

    2011-09-15

    We study supersymmetric models with a GUT-sized extra dimension, where both the Higgs fields and the SUSY breaking hidden sector are localized on a 4D brane. Exponential wave function profiles of the matter fields give rise to hierarchical structures in the Yukawa couplings and soft terms. Such structures can naturally explain hierarchical fermion masses and mixings, while at the same time alleviating the supersymmetric flavour problem. We discuss two sources of supersymmetry breaking, radion mediation and brane fields, and perform a detailed numerical analysis, thoroughly taking into account the proliferation of unknown O(1) coefficients that occurs in this class of models. It turns out that additional assumptions on supersymmetry breaking are necessary to evade the stringent experimental bounds on lepton flavour violation. The favourable regions of parameter space are then examined with regards to their LHC phenomenology. They generically feature heavy gluinos and squarks beyond current bounds. Lepton flavour violation in SUSY cascade decays can give interesting signatures. (orig.)

  9. Top quark flavor changing via photon

    CERN Document Server

    Khatibi, Sara

    2015-01-01

    We present constraints on the top quark flavor changing neutral current in the vertices of $tu\\gamma$ and $tc\\gamma$ from the measured diphoton mass spectrum at the LHC. It is shown that the angular distributions of diphoton is highly affected by the anomalous $tu\\gamma$ and $tc\\gamma$ couplings at the LHC and can provide stringent limits on these couplings. We determine the constraints on the anomalous $tu\\gamma$ from the upper bound on the neutron electric dipole moment (EDM). It is found that the current upper limit on the neutron EDM excludes any value of the branching fraction of top quark rare decay to an up-quark plus a photon above $2.04\\times 10^{-6}$.

  10. Reevaluating Bounds on Flavor-Changing Neutral Current Parameters in R-parity Conserving and R-parity Violating Supersymmetry

    CERN Document Server

    Saha, J P; Saha, Jyoti Prasad; Kundu, Anirban

    2004-01-01

    We perform a systematic reevaluation of the constraints on the flavor-changing neutral current (FCNC) parameters in R-parity conserving and R-parity violating supersymmetric models. As a typical process, we study the constraints coming from the measurements on the B0-\\bar{B0} system on the supersymmetric $\\delta^d_{13}$ parameters, as well as on the products of the lambda' type R-parity violating couplings. Present data allows us to put constraints on both the real and the imaginary parts of the relevant parameters.

  11. Effective lagrangian for supersymmetric quantum chromodynamics and the problem of dynamical breaking of supersymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Krivoshchekov, V.L.; Slavnov, A.A.; Chekhov, L.O.

    1988-01-01

    An effective meson action is constructed for supersymmetric quantum chromodynamics (SUSY-QCD) in the framework of the 1/N expansion. It is shown that there is no dynamical spontaneous breaking of the supersymmetry. The explicit expression obtained for the low-energy action with allowance for the anomaly is the supersymmetric generalization of the Weinberg-Wess-Zumino-Witten action.

  12. A Singlet Extension of the Minimal Supersymmetric Standard Model: Towards a More Natural Solution to the Little Hierarchy Problem

    Energy Technology Data Exchange (ETDEWEB)

    de la Puente, Alejandro [Univ. of Notre Dame, IN (United States)

    2012-05-01

    In this work, I present a generalization of the Next-to-Minimal Supersymmetric Standard Model (NMSSM), with an explicit μ-term and a supersymmetric mass for the singlet superfield, as a route to alleviating the little hierarchy problem of the Minimal Supersymmetric Standard Model (MSSM). I analyze two limiting cases of the model, characterized by the size of the supersymmetric mass for the singlet superfield. The small and large limits of this mass parameter are studied, and I find that I can generate masses for the lightest neutral Higgs boson up to 140 GeV with top squarks below the TeV scale, all couplings perturbative up to the gauge unification scale, and with no need to fine tune parameters in the scalar potential. This model, which I call the S-MSSM is also embedded in a gauge-mediated supersymmetry breaking scheme. I find that even with a minimal embedding of the S-MSSM into a gauge mediated scheme, the mass for the lightest Higgs boson can easily be above 114 GeV, while keeping the top squarks below the TeV scale. Furthermore, I also study the forward-backward asymmetry in the t¯t system within the framework of the S-MSSM. For this purpose, non-renormalizable couplings between the first and third generation of quarks to scalars are introduced. The two limiting cases of the S-MSSM, characterized by the size of the supersymmetric mass for the singlet superfield is analyzed, and I find that in the region of small singlet supersymmetric mass a large asymmetry can be obtained while being consistent with constraints arising from flavor physics, quark masses and top quark decays.

  13. Flavor Changing Neutral Currents in a Realistic Composite Technicolor Model

    CERN Document Server

    Carone, C D; Carone, Christopher D.; Hamilton, Rowan T.

    1993-01-01

    We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral $B$, $D$, and $K$ meson systems.

  14. Solving the Hierarchy Problem with a Light Singlet and Supersymmetric Mass Terms

    CERN Document Server

    Delgado, Antonio; de la Puente, Alejandro

    2011-01-01

    A generalization of the Next-to-Minimal Supersymmetric Model (NMSSM) is studied in which an explicit \\mu-term as well as a small supersymmetric mass term for the singlet superfield are incorporated. We study the possibility of raising the Standard Model-like Higgs mass at tree level through its mixing with a light, mostly-singlet, CP-even scalar. We are able to generate Higgs boson masses up to 145 GeV with top squarks below 1.1 TeV and without the need to fine tune parameters in the scalar potential. This model yields light singlet-like scalars and pseudoscalars passing all collider constraints.

  15. Solving the little hierarchy problem with a light singlet and supersymmetric mass terms

    Energy Technology Data Exchange (ETDEWEB)

    Delgado, Antonio, E-mail: antonio.delgado@nd.edu [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Kolda, Christopher [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Puente, Alejandro de la [Department of Physics, University of Notre Dame, Notre Dame, IN 46556 (United States); Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

    2012-04-12

    A generalization of the Next-to-Minimal Supersymmetric Model (NMSSM) is studied in which an explicit {mu}-term as well as a small supersymmetric mass term for the singlet superfield are incorporated. We study the possibility of raising the Standard Model-like Higgs mass at tree level through its mixing with a light, mostly-singlet, CP-even scalar. We are able to generate Higgs boson masses up to 145 GeV with top squarks below 1.1 TeV and without the need to fine tune parameters in the scalar potential. This model yields light singlet-like scalars and pseudoscalars passing all collider constraints.

  16. Flavor changing neutral currents in a realistic composite technicolor model

    Science.gov (United States)

    Carone, Christopher D.; Hamilton, Rowan T.

    1993-03-01

    We consider the phenomenology of a composite technicolor model proposed recently by Georgi. Composite technicolor interactions produce four-quark operators in the low energy theory that contribute to flavor changing neutral current processes. While we expect operators of this type to be induced at the compositeness scale by the flavor-symmetry breaking effects of the preon mass matrices, the Georgi model also includes operators from higher scales that are not GIM-suppressed. Since these operators are potentially large, we study their impact on flavor changing neutral currents and CP violation in the neutral K, B, and D meson systems. Notably, we find that this model gives rise to a typical value for {ɛ‧}/{ɛ} that is much smaller than most standard model estimates.

  17. Flavor Changing Leptonic Decays of Heavy Higgs Bosons

    CERN Document Server

    Sher, Marc

    2016-01-01

    CMS has reported indications (2.4 \\sigma) of the decay of the Higgs boson into \\mu\\tau. The simplest explanation for such a decay would be a general Two Higgs Doublet Model (2HDM). In this case, one would expect the heavy neutral Higgs bosons, H and A, to also decay in a similar manner. We study two specific models. The first is the type III 2HDM, and the second is a 2HDM, originally proposed by Branco et al., in which all flavor-changing neutral processes are given by the weak mixing matrix. In the latter model, since mixing between the second and third generations in the lepton sector is large, flavor-changing interactions are large. In this model it is found that the decays of H and A to \\mu\\tau can be as high as 60 percent. This work has nothing to do with the 750 GeV diphoton resonance.

  18. On Quadratic Divergences in Supergravity, Vacuum Energy and theSupersymmetric Flavor Problem

    Energy Technology Data Exchange (ETDEWEB)

    Gaillard, Mary K.; Nelson, Brent D.

    2005-11-18

    We examine the phenomenological consequences ofquadratically divergent contributions to the scalar potential insupergravity effective Lagrangians. We focus specifically on the effectof these corrections on the vacuum configurationof scalar fields insoftly-broken supersymmetric theory is and the role these correctionsplay in generating non-diagonal soft scalar masses. Both effects can onlybe properly studied when the divergences are regulated in a manifestlysupersymmetric manner -- something which has ths far been neglected inpast treatments. We show how a supersymmetric regularization can impactpast conclusions about both types of phenomena and discuss what types ofhigh-energy theories are likely to be safe from unwanted flavor-changingneutral current interactions in the context of supergravity theoriesderived from heterotic string compactifications.

  19. Top quark mass spectrum from flavor-changing processes

    Energy Technology Data Exchange (ETDEWEB)

    Albright, C.H. (Northern Illinois Univ., Dekalb, IL (USA). Dept. of Physics Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-09-01

    The input from flavor-changing processes is reviewed and results of several analyses are presented on the top quark mass spectrum without recourse to the neutral-current data. A top quark mass in the range 135 {plus minus} 25 GeV is much preferred, but a very massive top quark above 300 GeV can not be ruled out. Comments are made about the future use of the inclusive decay B {yields} {gamma} + X{sub S=1} for constraining the top quark mass. 24 refs., 2 figs.

  20. Flavor Changing Neutral Current searches in the top quark sector

    CERN Document Server

    Bhowmik, Sandeep

    2017-01-01

    Flavor changing neutral current (FCNC) interactions in top quark are highly suppressed in the Standard Model. Therefore, any measurable branching ratio for top FCNC decays is an indication of new physics. In this paper, searches for FCNC interactions in top quark production and decay at the LHC by the ATLAS Collaboration and the CMS collaboration are presented. FCNC searches in t $\\rightarrow$ qH, t $\\rightarrow$ q$\\gamma$ and t $\\rightarrow$ qZ decays, and in top quark production in qg $\\rightarrow$ t or q $\\rightarrow$ tg are summarized. None of the searches yielded positive results and exclusion limits on branching ratios, coupling strengths and cross-sections are obtained.

  1. Computer Simulations for Top Flavor-changing Neutral Higgs Interactions

    Science.gov (United States)

    Sloan, Jackson; Kao, Chung; Jain, Rishabh; McCoy, Brent

    2017-01-01

    Two-Higgs-doublet models (2HDM) are natural extensions to the Standard Model (SM), and a general 2HDM allows tree-level flavor-changing neutral currents (FCNC). We choose this model for our analysis. Since the top quark is heavier than the light Higgs, t -> ch is kinematically possible, and a tch coupling is an accessible example of an FCNC. We look to FCNCs to study physics beyond the Standard Model, and, more specifically, to examine the potential for discovery of a flavor-changing neutral Higgs (FCNH) interaction at the LHC. We examine the discovery potential for the processes pp -> th -> bjjWW -> bjjlνlν + X and pp -> t t -> bjjcWW + X , using MadGraph to generate parton level calculations, Pythia for showering and hadronization, and Delphes for detector simulation. We use ROOT analysis to reconstruct the transverse mass mT (ll ,ET) . We examine these processes and present event rates and significance of the Higgs signal, including SM physics background with realistic acceptance cuts for √{ s} = 13 TeV and √{ s} = 14 TeV. This research was funded in part by NSF award PHY-1359417.

  2. Source of Kerr-Newman solution as supersymmetric bag model: 50 years of the problem

    Science.gov (United States)

    Burinskii, A.

    The ultra extreme Kerr-Newman (KN) solution(a = J/m >> m) produces the gravitational and EM fields of the electron. It has a naked singular ring - a topological defect which may be regularized by a solitonic source forming the pseudo-vacuum bubble filled by Higgs condensate in a supersymmetric superconducting state. Structure and stability of this source is determined by Bogomolnyi equations as a BPS-saturated soliton. The Principal Null Congruences of the KN solution determine consistent embedding of the Dirac equation, which acquires the mass from the Higgs condensate inside the soliton, indicating that this soliton forms a bag model. Shape of this bag is unambiguously determined by BPS-bound. The bag turns out to be flexible and takes the form of a very thin disk, which is completed by a ring-string along its sharp boundary. The ring-string traveling waves generate extra deformations of the bag creating a circulating singular pole. Bag model of the KN source integrates the dressed and pointlike electron in a bag-string-quark system, which removes the conflict between gravity and the point-like electron of the Dirac theory.

  3. Search for flavor-changing-neutral-current D meson decays

    CERN Document Server

    Abazov, V; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Arthaud, M; Askew, A; Åsman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, S; Banerjee, P; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Biscarat, C; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Burdin, S; Burke, S; Burnett, T H; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K M; Chan, K; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Cihangir, S; Claes, D; Clement, B; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, G; De, K; De Jong, S J; de Jong, P; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, J; Guo, F; Gutíerrez, P; Gutíerrez, G; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Hossain, S; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J R; Kalk, J M; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kaushik, V; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Kirsch, M; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kozelov, A V; Krop, D; Kryemadhi, A; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lacroix, F; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lellouch, J; Lévêque, J; Lewis, P; Li, J; Li, Q Z; Li, L; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Y; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lyon, A L; Maciel, A K A; Mackin, D; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, J; Meyer, A; Michaut, M; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Penning, B; Peters, K; Peters, Y; Petroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Polozov, P; Pompo, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S; Qian, J; Quadt, A; Quinn, B; Rakitine, A; Rangel, M S; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rich, P; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Safronov, G; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schliephake, T; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Simák, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Snow, J; Snow, G R; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strauss, E; Ströhmer, R; Strom, D; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Tanasijczuk, A; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Toole, T; Torchiani, I; Trefzger, T; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, S; Uvarov, L; Uzunyan, S; Vachon, B; vanden Berg, P J; van Eijk, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vokac, P; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wagner, R; Wahl, H D; Wang, L; SWang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, M; Weber, G; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, J; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zivkovic, L; Zutshi, V; Zverev, E G

    2007-01-01

    We study the flavor-changing-neutral-current process c to u mu+ mu- using 1.3 fb^-1 of p p bar collisions at sqrt(s) = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We see clear indications of the Ds+ and D+ to phi pi+ to mu+ mu- pi+ final states with significance greater than four standard deviations above background for the D+ state. We search for the continuum decay of D+ to pi+mu+mu- in the dimuon invariant mass spectrum away from the phi resonance. We see no evidence of signal above background and set a limit of B(D+ to pi+mu+mu-) < 3.9 x 10^-6 at the 90% C.L. This limit places the most stringent constraint on new phenomena in the c to u mu+ mu- transition.

  4. Search for flavor-changing-neutral-current D meson decays

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Hefei, CUST /Andes U., Bogota /Charles U.

    2007-08-01

    We study the flavor-changing-neutral-current process c {yields} u{mu}{sup +}{mu}{sup -} using 1.3 fb{sup -1} of p{bar p} collisions at {radical}s = 1.96 TeV recorded by the D0 detector operating at the Fermilab Tevatron Collider. We see clear indications of the D{sup +}{sub s} and D{sup +} {yields} {phi}{pi}{sup +} {yields} {mu}{sup +}{mu}{sup -}{pi}{sup +} final states with significance greater than four standard deviations above background for the D{sup +} state. We search for the continuum decay of D{sup +} {yields} {pi}{sup +}{mu}{sup +}{mu}{sup -} in the dimuon invariant mass spectrum away from the {phi} resonance. We see no evidence of signal above background and set a limit of B(D{sup +} {yields} {pi}{sup +}{mu}{sup +}{mu}{sup -}) < 3.9 x 10{sup -6} at the 90% CL. This limit places the most stringent constraint on new phenomena in the c {yields} u{mu}{sup +}{mu}{sup -} transition.

  5. Flavor changing heavy Higgs interactions at the LHC

    Directory of Open Access Journals (Sweden)

    Baris Altunkaynak

    2015-12-01

    Full Text Available A general two Higgs doublet model (2HDM is adopted to study the signature of flavor changing neutral Higgs (FCNH decay ϕ0→tc¯+t¯c, where ϕ0 could be a CP-even scalar (H0 or a CP-odd pseudoscalar (A0. Measurement of the light 125 GeV neutral Higgs boson (h0 couplings at the Large Hadron Collider (LHC favor the decoupling limit or the alignment limit of a 2HDM, in which gauge boson and diagonal fermion couplings of h0 approach Standard Model values. In such limit, FCNH couplings of h0 are naturally suppressed by a small mixing parameter cos⁡(β−α, while the off-diagonal couplings of heavier neutral scalars ϕ0 are sustained by sin⁡(β−α∼1. We study physics background from dominant processes with realistic acceptance cuts and tagging efficiencies. Promising results are found for the LHC running at 13 or 14 TeV collision energies.

  6. A supersymmetric Skyrme model

    CERN Document Server

    Gudnason, Sven Bjarke; Sasaki, Shin

    2015-01-01

    Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,C)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,C), we find explicitly a nontrivial solution to th...

  7. Supersymmetric Galileons

    CERN Document Server

    Khoury, Justin; Ovrut, Burt A

    2011-01-01

    Galileon theories are of considerable interest since they allow for stable violations of the null energy condition. Since such violations could have occurred during a high-energy regime in the history of our universe, we are motivated to study supersymmetric extensions of these theories. This is carried out in this paper, where we construct generic classes of N=1 supersymmetric Galileon Lagrangians. They are shown to admit non-equivalent stress-energy tensors and, hence, vacua manifesting differing conditions for violating the null energy condition. The temporal and spatial fluctuations of all component fields of the supermultiplet are analyzed and shown to be stable on a large number of such backgrounds. In the process, we uncover a surprising connection between conformal Galileon and ghost condensate theories, allowing for a deeper understanding of both types of theories.

  8. Supersymmetric BCS

    CERN Document Server

    Barranco, Alejandro

    2012-01-01

    We implement relativistic BCS superconductivity in N=1 supersymmetric field theories with a U(1)_R symmetry. The simplest model contains two chiral superfields with a Kahler potential modified by quartic terms. We study the phase diagram of the gap as a function of the temperature and the specific heat. The superconducting phase transition turns out to be first order, due to the scalar contribution to the one-loop potential. By virtue of supersymmetry, the critical curves depend logarithmically with the UV cutoff, rather than quadratically as in standard BCS theory. We comment on the difficulties in having fermion condensates when the chemical potential is instead coupled to a baryonic U(1)_B current. We also discuss supersymmetric models of BCS with canonical Kahler potential constructed by "integrating-in" chiral superfields.

  9. General Features of Supersymmetric Signals at the ILC: Solving the LHC Inverse Problem

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Carola F.; Gainer, James S.; Hewett, JoAnne L.; Lillie, Ben; Rizzo, Thomas G.

    2007-12-19

    We examine whether the {radical}s = 500 GeV International Linear Collider with 80% electron beam polarization can be used to solve the LHC Inverse Problem within the framework of the MSSM. We investigate 242 points in the MSSM parameter space, which we term models, that correspond to the 162 pairs of models found by Arkani-Hamed et al. to give indistinguishable signatures at the LHC. We first determine whether the production of the various SUSY particles is visible above the Standard Model background for each of these parameter space points, and then make a detailed comparison of their various signatures. Assuming an integrated luminosity of 500 fb{sup -1}, we find that only 82 out of 242 models lead to visible signatures of some kind with a significance {ge} 5 and that only 57(63) out of the 162 model pairs are distinguishable at 5(3){sigma}. Our analysis includes PYTHIA and CompHEP SUSY signal generation, full matrix element SM backgrounds for all 2 {yields} 2, 2 {yields} 4, and 2 {yields} 6 processes, ISR and beamstrahlung generated via WHIZARD/GuineaPig, and employs the fast SiD detector simulation org.lcsim.

  10. Flavor-Changing Neutral-Current Decays in Top-Specific Variant Axion Model

    CERN Document Server

    Chiang, Cheng-Wei; Takeuchi, Michihisa; Yanagida, Tsutomu T

    2015-01-01

    The invisible variant axion model is very attractive as it is free from the domain wall problem. This model requires two Higgs doublets at the electroweak scale where one Higgs doublet carries a nonzero Peccei-Quinn (PQ) charge and the other is neutral under the PQ $\\text U(1)$ symmetry. We consider the most interesting and less constrained scenario of the variant axion model, where only the right-handed top quark is charged under the PQ symmetry and couples with the PQ-charged Higgs doublet. As a result, the top quark can decay to the observed standard-model-like Higgs boson $h$ and the charm or up quark, $t\\to h~ c/u$, which is testable soon at the LHC Run-II. Moreover, we propose a method to probe the chiral nature of the Higgs flavor-changing interaction using the angular distribution of $t \\to ch$ decays if a sufficient number of such events are observed. We also show that our model has the capacity to explain the $h\\to\\tau\\mu$ decay reported by the CMS Collaboration, if the right-handed tau lepton also ...

  11. Constraining flavor changing interactions from LHC Run-2 dilepton bounds with vector mediators

    Science.gov (United States)

    Queiroz, Farinaldo S.; Siqueira, Clarissa; Valle, José W. F.

    2016-12-01

    Within the context of vector mediators, is a new signal observed in flavor changing interactions, particularly in the neutral mesons systems K0 -Kbar0, D0 -Dbar0 and B0 -B0 bar , consistent with dilepton resonance searches at the LHC? In the attempt to address this very simple question, we discuss the complementarity between flavor changing neutral current (FCNC) and dilepton resonance searches at the LHC run 2 at 13 TeV with 3.2 fb-1 of integrated luminosity, in the context of vector mediators at tree level. Vector mediators, are often studied in the flavor changing framework, specially in the light of the recent LHCb anomaly observed at the rare B decay. However, the existence of stringent dilepton bound severely constrains flavor changing interactions, due to restrictive limits on the Z‧ mass. We discuss this interplay explicitly in the well motivated framework of a 3-3-1 scheme, where fermions and scalars are arranged in the fundamental representation of the weak SU(3) gauge group. Due to the paucity of relevant parameters, we conclude that dilepton data leave little room for a possible new physics signal stemming from these systems, unless a very peculiar texture parametrization is used in the diagonalization of the CKM matrix. In other words, if a signal is observed in such flavor changing interactions, it unlikely comes from a 3-3-1 model.

  12. Constraining flavor changing interactions from LHC Run-2 dilepton bounds with vector mediators

    Directory of Open Access Journals (Sweden)

    Farinaldo S. Queiroz

    2016-12-01

    Full Text Available Within the context of vector mediators, is a new signal observed in flavor changing interactions, particularly in the neutral mesons systems K0−K¯0, D0−D¯0 and B0−B0¯, consistent with dilepton resonance searches at the LHC? In the attempt to address this very simple question, we discuss the complementarity between flavor changing neutral current (FCNC and dilepton resonance searches at the LHC run 2 at 13 TeV with 3.2 fb−1 of integrated luminosity, in the context of vector mediators at tree level. Vector mediators, are often studied in the flavor changing framework, specially in the light of the recent LHCb anomaly observed at the rare B decay. However, the existence of stringent dilepton bound severely constrains flavor changing interactions, due to restrictive limits on the Z′ mass. We discuss this interplay explicitly in the well motivated framework of a 3-3-1 scheme, where fermions and scalars are arranged in the fundamental representation of the weak SU(3 gauge group. Due to the paucity of relevant parameters, we conclude that dilepton data leave little room for a possible new physics signal stemming from these systems, unless a very peculiar texture parametrization is used in the diagonalization of the CKM matrix. In other words, if a signal is observed in such flavor changing interactions, it unlikely comes from a 3-3-1 model.

  13. Supersymmetric features of Maxwell fisheye lens

    CERN Document Server

    Rosu, H C; Wolf, K B; Obregón, O; Rosu, Haret C; Reyes, M; Wolf, K B; Obregon, O

    1995-01-01

    Following L\\'evai, we apply a Natanzon-type supersymmetric analysis to the Maxwell fisheye wave problem at zero energy. Working in the so-called R_{0}=0 sector, we obtain the corresponding superpartner (fermionic) fisheye scattering potential within the standard one-dimensional (radial) supersymmetric procedure.

  14. Supersymmetric Berry index

    CERN Document Server

    Ilinskii, K N; Melezhik, V S; Ilinski, K N; Kalinin, G V; Melezhik, V V

    1994-01-01

    We revise the sequences of SUSY for a cyclic adiabatic evolution governed by the supersymmetric quantum mechanical Hamiltonian. The condition (supersymmetric adiabatic evolution) under which the supersymmetric reductions of Berry (nondegenerated case) or Wilczek-Zee (degenerated case) phases of superpartners are taking place is pointed out. The analogue of Witten index (supersymmetric Berry index) is determined. As the examples of suggested concept of supersymmetric adiabatic evolution the Holomorphic quantum mechanics on complex plane and Meromorphic quantum mechanics on Riemann surface are considered. The supersymmetric Berry indexes for the models are calculated.

  15. The Supersymmetric Fat Higgs

    CERN Document Server

    Harnik, R

    2004-01-01

    Supersymmetric models have traditionally been assumed to be perturbative up to high scales due to the requirement of calculable unification. In this note I review the recently proposed `Fat Higgs' model which relaxes the requirement of perturbativity. In this framework, an NMSSM-like trilinear coupling becomes strong at some intermediate scale. The NMSSM Higgses are meson composites of an asymptotically-free gauge theory. This allows us to raise the mass of the Higgs, thus alleviating the MSSM of its fine tuning problem. Despite the strong coupling at an intermediate scale, the UV completion allows us to maintain gauge coupling unification.

  16. Electric dipole moment of the neutron from a flavor changing Higgs boson

    CERN Document Server

    Eeg, Jan O

    2016-01-01

    We consider neutron electric dipole moment contributions induced by flavor changing Higgs boson couplings to quarks. Previously one loop diagrams with such couplings were considered in order to constrain quadratric expressions of Higgs flavor changing coupling to quarks. In the present paper the analysis is extended to the two loop level where the large SM Yukawa coupling for Higgs to top, as well as the large SM Higgs coupling to the W-boson, compensates for the loop suppression factor. In the two loop case it is possible to generate diagrams with a flavor changing Higgs coupling to first order {\\it only}. Some contributions contain divergent loops and these divergent contributions do not cancel among themselves. This means that a theory with just the simple term with a flavor changing coupling considered here is not renormalizable. The divergent loops are parametrized in terms of a cut-off $\\Lambda$. The current experimental bound on the neutron electric dipole moment impose constraints on Higgs flavor chan...

  17. Constraining Flavor Changing Interactions from LHC Run-2 Dilepton Bounds with Vector Mediators

    CERN Document Server

    Queiroz, Farinaldo S; Valle, José W F

    2016-01-01

    Within the context of vector mediators, is a new signal observed in flavor changing interactions, particularly in the neutral mesons systems $K^{0}-\\bar{K}^{0}$, $D^{0}-\\bar{D}^{0}$ and $B^0-\\bar{B^0}$, consistent with dilepton resonance searches at the LHC? In the attempt to address this very simple question, we discuss the complementarity between flavor changing neutral current (FCNC) and dilepton resonance searches at the LHC run 2 at $13$TeV with $3.2\\, {\\rm fb^{-1}}$ of integrated luminosity, in the context of vector mediators at tree level. Vector mediators, are often studied in the flavor changing framework, specially in the light of the recent LHCb anomaly observed at the rare B decay. However, the existence of stringent dilepton bound severely constrains flavor changing interactions, due to restrictive limits on the $Z^{\\prime}$ mass. We discuss this interplay explicitly in the well motivated framework of a 3-3-1 scheme, where fermions and scalars are arranged in the fundamental representation of the...

  18. Consistent supersymmetric decoupling in cosmology

    NARCIS (Netherlands)

    Sousa Sánchez, Kepa

    2012-01-01

    The present work discusses several problems related to the stability of ground states with broken supersymmetry in supergravity, and to the existence and stability of cosmic strings in various supersymmetric models. In particular we study the necessary conditions to truncate consistently a sector o

  19. Small numbers in supersymmetric theories of nature

    Energy Technology Data Exchange (ETDEWEB)

    Graesser, Michael Lawrence [Univ. of California, Berkeley, CA (United States)

    1999-05-01

    The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10-32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity

  20. Brief description of the flavor-changing neutral scalar interactions at two-loop level

    CERN Document Server

    Gaitán, R

    2016-01-01

    In this letter we show a general description about flavor-changing neutral currents (FCNC) mediated by scalars. The analysis is extended at two-loop level for the Two-Higgs Doublet Model type-III because others models have strong constraints on its parameters, even at high orders of the perturbation. For this letter we focus on the standard model, calculating the amplitude for the $h \\to \\gamma \\gamma$ process and discussing the results briefly.

  1. Brief description of the flavor-changing neutral scalar interactions at two-loop level

    Science.gov (United States)

    Gaitán, R.; Orduz-Ducuara, J. A.

    2016-10-01

    In this letter we show a general description about flavor-changing neutral currents (FCNC) mediated by scalars. The analysis is extended at two-loop level for the Two-Higgs Doublet Model type-III because others models have strong constraints on its parameters, even at high orders of the perturbation. For this letter we focus on the standard model, calculating the amplitude for the h→γγ process and discussing the results briefly.

  2. A search for flavor-changing non-standard neutrino interactions by MINOS

    CERN Document Server

    Adamson, P; Bishai, M; Blake, A; Bock, G J; Bogert, D; Cao, S V; Cherdack, D; Childress, S; Coelho, J A B; Corwin, L; Cronin-Hennessy, D; de Jong, J K; Devan, A V; Devenish, N E; Diwan, M V; Escobar, C O; Evans, J J; Falk, E; Feldman, G J; Frohne, M V; Gallagher, H R; Gomes, R A; Goodman, M C; Gouffon, P; Graf, N; Gran, R; Grzelak, K; Habig, A; Hartnell, J; Hatcher, R; Himmel, A; Holin, A; Hylen, J; Irwin, G M; Isvan, Z; James, C; Jensen, D; Kafka, T; Kasahara, S M S; Koizumi, G; Kordosky, M; Kreymer, A; Lang, K; Ling, J; Litchfield, P J; Lucas, P; Mann, W A; Marshak, M L; Mathis, M; Mayer, N; Medeiros, M M; Mehdiyev, R; Meier, J R; Messier, M D; Miller, W H; Mishra, S R; Sher, S Moed; Moore, C D; Mualem, L; Mufson, S; Musser, J; Naples, D; Nelson, J K; Newman, H B; Nichol, R J; Nowak, J A; Oliver, W P; Orchanian, M; Pahlka, R B; Paley, J; Patterson, R B; Pawloski, G; Phan-Budd, S; Plunkett, R K; Qiu, X; Radovic, A; Rebel, B; Rosenfeld, C; Rubin, H A; Sanchez, M C; Schneps, J; Schreckenberger, A; Schreiner, P; Sharma, R; Sousa, A; Tagg, N; Talaga, R L; Thomas, J; Thomson, M A; Toner, R; Torretta, D; Tzanakos, G; Urheim, J; Vahle, P; Viren, B; Weber, A; Webb, R C; White, C; Whitehead, L; Wojcicki, S G; Zwaska, R

    2013-01-01

    We report new constraints on flavor-changing non-standard neutrino interactions (NSI) using data from the MINOS experiment. We analyzed a combined set of beam neutrino and antineutrino data, and found no evidence for deviations from standard neutrino mixing. The observed energy spectra constrain the NSI parameter to the range $-0.20 < \\varepsilon_{\\mu\\tau} < 0.07\\;\\text{(90% C.L.)}$

  3. Effect of flavor-changing neutral currents in the leptonic asymmetry in Bd decays

    Science.gov (United States)

    Branco, G. C.; Parada, P. A.; Morozumi, T.; Rebelo, M. N.

    1993-06-01

    We evaluate the charge asymmetry in equal sign dileptons arising from the decay of a Bd0-Bd0 pair, in the presence of Z-mediated flavor-changing neutral currents. We compare our predictions with those of the standard model and the superweak model. Work supported by the Deprtment of Energy, contract DEAC03-76SF00515 and by a fellowship from OTAN (NATO).

  4. Supersymmetric Displaced Number States

    Directory of Open Access Journals (Sweden)

    Fredy R. Zypman

    2015-06-01

    Full Text Available We introduce, generate and study a family of supersymmetric displaced number states (SDNS that can be considered generalized coherent states of the supersymmetric harmonic oscillator. The family is created from the seminal supersymmetric boson-fermion entangling annihilation operator introduced by Aragone and Zypman and later expanded by Kornbluth and Zypman. Using the momentum representation, the states are obtained analytically in compact form as displaced supersymmetric number states. We study their position-momentum uncertainties, and their bunchiness by classifying them according to their Mandel Q-parameter in phase space. We were also able to find closed form analytical representations in the space and number basis.

  5. Supersymmetric Open Wilson Lines

    CERN Document Server

    Baker, Edward B

    2011-01-01

    In this paper we study Open Wilson Lines (OWL's) in the context of two Supersymmetric Yang Mills theories. First we consider four dimensional N=2 Supersymmetric Yang Mills Theory with hypermultiplets transforming in the fundamental representation of the gauge group, and find supersymmetric OWL's only in the superconformal versions of these theories. We then consider four dimensional N=4 SYM coupled to a three dimensional defect hypermultiplet. Here there is a semi-circular supersymmetric OWL, which is related to the ray by a conformal transformation. We perform a perturbative calculation of the operators in both theories, and discuss using localization to compute them non-perturbatively.

  6. An investigation into the lepton flavor changing neutral current at a Z-factory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The potential for detecting the lepton flavor changing neutral current (LFCNC) via the Z → eτ rare decay at a Z-factory is investigated.Practicable event selection strategies are designed to increase signal significance over SM contributions.Assuming no apparent deviation from SM predictions,one can conclude that the most general model-independent LFCNC effective form factors would be constrained at an unprecedent level,and accordingly a 3-order improvement from LEP1 measurements on the upper limit of BR(Z → eτ) could be achieved,as precisely as 10-8 with 100 fb-1 at Z-factory.

  7. Supersymmetric non conservative systems

    CERN Document Server

    Martínez-Pérez, N E

    2015-01-01

    We give the generalization of a recent variational formulation for nonconservative classical mechanics, for fermionic and sypersymmetric systems. Both cases require slightly modified boundary conditions. The supersymmetric version is given in the superfield formalism. The corresponding Noether theorem is formulated. As expected, like the energy, the supersymmetric charges are not conserved. Examples are discussed.

  8. The Minimal Supersymmetric Fat Higgs Model

    CERN Document Server

    Harnik, R; Larson, D T; Murayama, H; Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi

    2003-01-01

    We present a calculable supersymmetric theory of a composite ``fat'' Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.

  9. Bosonization of supersymmetric KdV equation

    Energy Technology Data Exchange (ETDEWEB)

    Gao Xiaonan [Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Lou, S.Y., E-mail: sylou@sjtu.edu.cn [Department of Physics, Shanghai Jiao Tong University, Shanghai, 200240 (China); Faculty of Science, Ningbo University, Ningbo, 315211 (China); School of Mathematics, Fudan University, Shanghai, 200433 (China)

    2012-01-16

    Bosonization approach to the classical supersymmetric systems is presented. By introducing the multi-fermionic parameters in the expansions of the superfields, the N=1 supersymmetric KdV (sKdV) system is transformed to a system of coupled bosonic equations. The method can be applied to any fermionic systems. By solving the coupled bosonic equations, some novel types of exact solutions can be explicitly obtained. Especially, the richness of the localized excitations of the supersymmetric integrable system is discovered. The rich multi-soliton solutions obtained here have not yet been obtained by using other methods. However, the traditional known multi-soliton solutions can also not be obtained by the bosonization approach of this Letter. Some open problems on the bosonization of the supersymmetric integrable models are proposed in the both classical and quantum levels.

  10. Flavor-changing Higgs decays in grand unification with minimal flavor violation

    Science.gov (United States)

    Baek, Seungwon; Tandean, Jusak

    2016-12-01

    We consider the flavor-changing decays of the Higgs boson in a grand unified theory framework which is based on the SU(5) gauge group and implements the principle of minimal flavor violation. This allows us to explore the possibility of connecting the tentative hint of the Higgs decay h→ μ τ recently reported in the CMS experiment to potential new physics in the quark sector. We look at different simple scenarios with minimal flavor violation in this context and how they are subject to various empirical restrictions. In one specific case, the relative strengths of the flavor-changing leptonic Higgs couplings are determined mainly by the known quark mixing parameters and masses, and a branching fraction B(h→ μ τ )˜ 1% is achievable without the couplings being incompatible with the relevant constraints. Upcoming data on the Higgs leptonic decays and searches for the μ → eγ decay with improved precision can offer further tests on this scenario.

  11. Flavor-Changing Higgs Decays in Grand Unification with Minimal Flavor Violation

    CERN Document Server

    Baek, Seungwon

    2016-01-01

    We consider the flavor-changing decays of the Higgs boson in a grand unified theory framework which is based on the SU(5) gauge group and implements the principle of minimal flavor violation. This allows us to explore the possibility of connecting the tentative hint of the Higgs decay $h\\to\\mu\\tau$ recently reported in the CMS experiment to potential new physics in the quark sector. We look at different simple scenarios with minimal flavor violation in this context and how they are subject to various empirical restrictions. In one specific case, the relative strengths of the flavor-changing leptonic Higgs couplings are determined by the known quark mixing parameters and masses alone, and a branching fraction ${\\cal B}(h\\to\\mu\\tau)\\sim1\\%$ is achievable without the couplings being incompatible with the relevant constraints. Upcoming data on the Higgs leptonic decays and searches for the $\\mu\\to e\\gamma$ decay with improved precision can offer further tests on this scenario.

  12. Supersymmetric invariant theories

    CERN Document Server

    Esipova, S R; Radchenko, O V

    2013-01-01

    We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.

  13. Supersymmetric invariant theories

    Science.gov (United States)

    Esipova, S. R.; Lavrov, P. M.; Radchenko, O. V.

    2014-04-01

    We study field models for which a quantum action (i.e. the action appearing in the generating functional of Green functions) is invariant under supersymmetric transformations. We derive the Ward identity which is a direct consequence of this invariance. We consider a change of variables in functional integral connected with supersymmetric transformations when its parameter is replaced by a nilpotent functional of fields. Exact form of the corresponding Jacobian is found. We find restrictions on generators of supersymmetric transformations when a consistent quantum description of given field theories exists.

  14. Supersymmetric Color Superconductivity

    CERN Document Server

    Harnik, R; Murayama, H; Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

    2004-01-01

    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N_c) gauge theories with N_f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires mu mu_c. We also give a qualitative description of the phases in the `conformal window', 3/2 N_c < N_f < 3N_c, at finite density.

  15. Supersymmetric sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Bagger, J.A.

    1984-09-01

    We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.

  16. Fun with supersymmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Freedman, B.; Cooper, F.

    1984-04-01

    One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup ..cap alpha../ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index ..delta.. which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if ..delta.. is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate ..delta.. for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references.

  17. Renormalization of supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, D.M.

    1998-06-01

    The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M{sub W} and sin{sup 2}{theta}{sup eff}. He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses.

  18. Supersymmetric color superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi

    2003-09-18

    Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N{sub c}) gauge theories with N{sub f} flavors of quarks in the presence of a baryon chemical potential {mu}, and describe the global symmetry breaking patterns at low energy. Our analysis requires {mu} < {Lambda} and is thus complementary to the variational approach that has been successful for {mu} >> {Lambda}. We find that for N{sub F} < N{sub c} a modified U(1){sub B} symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N{sub f} = N{sub c} there is a critical chemical potential above which the U(1){sub B} is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N{sub c} + 1 {le} N{sub f} < 3/2 N{sub c} and find that baryon number is broken dynamically for {mu} > {mu}{sub c}. We also give a qualitative description of the phases in the ''conformal window'', 3/2 N{sub c} < N{sub f} < 3N{sub c}, at finite density.

  19. Neutron electric dipole moment in the minimal supersymmetric standard model

    CERN Document Server

    Inui, T; Sakai, N; Sasaki, T; Inui, T; Mumura, Y; Sakai, N; Sasaki, T

    1995-01-01

    Neutron electric dipole moment (EDM) due to single quark EDM and to the transition EDM is calculated in the minimal supersymmetric standard model. Assuming that the Cabibbo-Kobayashi-Maskawa matrix at the grand unification scale is the only source of CP violation, complex phases are induced in parameters of soft supersymmetry breaking at low energies. Chargino one-loop diagram is found to give the dominant contribution of the order of 10^{-27}\\sim 10^{-29}\\:e\\cdotcm for quark EDM, assuming the light chargino mass and the universal scalar mass to be 50 GeV and 100 GeV, respectively. Therefore the neutron EDM in this class of model is difficult to measure experimentally. Gluino one-loop diagram also contributes due to the flavor changing gluino coupling. The transition EDM is found to give dominant contributions for certain parameter regions.

  20. Top Quark Flavor Changing Decay t → cH0 in Little Higgs Model

    Institute of Scientific and Technical Information of China (English)

    Farshid Tabbakh; LIU Jing-Jing; MA Wen-Gan; ZHANG Ren-You; HOU Hong-Sheng

    2005-01-01

    We study theoretically the quantum effects of the littlest Higgs model (LH) mediated by flavor changing one-loop Feynman diagrams on the rare decay process t → cH0. The comparison of the decay width in the LH model with that in the standard model (SM) is made. We find that the decay branch ratio of t → cH0 in the LH model is at most of the order ~ 10-12, which is two order larger than in the SM. The numerical results show that the difference between the branch ratios in the LH model and the SM is generally sensitive to the LH model parameters, such as symmetry breaking scale f, Higgs boson mass mH0, and x = v'4f /v2 in our chosen parameter space, but relatively insensitive to the value choice of the cosine of the mixing angle c and the ratio λ1/λ2.

  1. Updated Search for the Flavor-Changing Neutral-Current Decay $D^0 \\to \\mu^+ \\mu^-$

    CERN Document Server

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J.A.; Apresyan, A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V.E.; Barnett, B.A.; Barria, P.; Bartos, P.; Bauce, M.; Bauer, G.; Bedeschi, F.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Berry, E.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Bland, K.R.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Brigliadori, L.; Brisuda, A.; Bromberg, C.; Brucken, E.; Bucciantonio, M.; Budagov, J.; Budd, H.S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Cabrera, S.; Calancha, C.; Camarda, S.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chen, Y.C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J.P.; Chung, W.H.; Chung, Y.S.; Ciobanu, C.I.; Ciocci, M.A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M.E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C.A.; Cox, D.J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Dagenhart, D.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; De Cecco, S.; De Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Devoto, F.; d'Errico, M.; Di Canto, A.; Di Ruzza, B.; Dittmann, J.R.; D'Onofrio, M.; Donati, S.; Dong, P.; Dorigo, T.; Ebina, Koji; Elagin, A.; Eppig, A.; Erbacher, R.; Errede, D.; Errede, S.; Ershaidat, N.; Eusebi, R.; Fang, H.C.; Farrington, S.; Feindt, M.; Fernandez, J.P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Frank, M.J.; Franklin, M.; Freeman, J.C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garcia, J.E.; Garfinkel, A.F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Ginsburg, C.M.; Giokaris, N.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; Gonzalez, O.; Gorelov, I.; Goshaw, A.T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R.C.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, S.R.; Halkiadakis, E.; Hamaguchi, A.; Han, J.Y.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harr, R.F.; Hatakeyama, K.; Hays, C.; Heck, M.; Heinrich, J.; Herndon, M.; Hewamanage, S.; Hidas, D.; Hocker, A.; Hopkins, W.; Horn, D.; Hou, S.; Hughes, R.E.; Hurwitz, M.; Husemann, U.; Hussain, N.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E.J.; Jha, M.K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K.K.; Jun, S.Y.; Junk, T.R.; Kamon, T.; Karchin, P.E.; Kato, Y.; Ketchum, W.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D.H.; Kim, H.S.; Kim, H.W.; Kim, J.E.; Kim, M.J.; Kim, S.B.; Kim, S.H.; Kim, Y.K.; Kimura, N.; Klimenko, S.; Kondo, K.; Kong, D.J.; Konigsberg, J.; Korytov, A.; Kotwal, A.V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kuhr, T.; Kurata, M.; Kwang, S.; Laasanen, A.T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R.L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; LeCompte, T.; Lee, E.; Lee, H.S.; Lee, J.S.; Lee, S.W.; Leo, S.; Leone, S.; Lewis, J.D.; Lin, C.J.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D.O.; Liu, C.; Liu, Q.; Liu, T.; Lockwitz, S.; Lockyer, N.S.; Loginov, A.; Lucchesi, D.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maksimovic, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Martinez, M.; Martinez-Ballarin, R.; Mastrandrea, P.; Mathis, M.; Mattson, M.E.; Mazzanti, P.; McFarland, K.S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moed, S.; Moggi, N.; Mondragon, M.N.; Moon, C.S.; Moore, R.; Morello, M.J.; Morlock, J.; Movilla Fernandez, P.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Neubauer, M.S.; Nielsen, J.; Nodulman, L.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S.H.; Oh, Y.D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Griso, S.Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Paramonov, A.A.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D.E.; Penzo, A.; Phillips, T.J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Potamianos, K.; Poukhov, O.; Prokoshin, F.; Pronko, A.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Safonov, A.; Sakumoto, W.K.; Santi, L.; Sartori, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, A.; Schmidt, E.E.; Schmidt, M.P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Sfyrla, A.; Shalhout, S.Z.; Shears, T.; Shepard, P.F.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shreyber, I.; Simonenko, A.; Sinervo, P.; Sissakian, A.; Sliwa, K.; Smith, J.R.; Snider, F.D.; Soha, A.; Somalwar, S.; Sorin, V.; Squillacioti, P.; Stanitzki, M.; Denis, R.St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Strycker, G.L.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P.K.; Thom, J.; Thome, J.; Thompson, G.A.; Thomson, E.; Ttito-Guzman, P.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Tu, Y.; Turini, N.; Ukegawa, F.; Uozumi, S.; Varganov, A.; Vataga, E.; Vazquez, F.; Velev, G.; Vellidis, C.; Vidal, M.; Vila, I.; Vilar, R.; Vogel, M.; Volpi, G.; Wagner, P.; Wagner, R.L.; Wakisaka, T.; Wallny, R.; Wang, S.M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W.C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A.B.; Wicklund, E.; Wilbur, S.; Wick, F.; Williams, H.H.; Wilson, J.S.; Wilson, P.; Winer, B.L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamaoka, J.; Yang, U.K.; Yang, Y.C.; Yao, W.M.; Yeh, G.P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G.B.; Yu, I.; Yu, S.S.; Yun, J.C.; Zanetti, A.; Zeng, Y.; Zucchelli, S.

    2010-01-01

    We report on a search for the flavor-changing neutral-current decay D0 \\to {\\mu}+ {\\mu}- in pp collisions at \\surd s = 1.96 TeV using 360 pb-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. A displaced vertex trigger selects long-lived D0 candidates in the {\\mu}+ {\\mu}-, {\\pi}+{\\pi}-, and K-{\\pi}+ decay modes. We use the Cabibbo-favored D0 \\to K-{\\pi}+ channel to optimize the selection criteria in an unbiased manner, and the kinematically similar D0 \\to{\\pi}+ {\\pi}- channel for normalization. We set an upper limit on the branching fraction (D0 --> {\\mu}+ {\\mu}-) < 2.1 E-7 (3.0 E-7) at the 90% (95%) confidence level.

  2. b{yields}s decays in a model with Z-mediated flavor changing neutral current

    Energy Technology Data Exchange (ETDEWEB)

    Alok, Ashutosh Kumar [Indian Institute of Technology Rajasthan, Jodhpur (India); Gangal, Shireen [DESY Hamburg (Germany). Theory Group

    2012-09-15

    In the scenario with Z mediated flavor changing neutral current occurring at the tree level due to the addition of a vector-like isosinglet down-type quark d' to the SM particle spectrum, we perform a {chi}{sup 2} fit using the flavor physics data and obtain the best fit value along with errors of the tree level Zbs coupling, U{sub sb}. The fit indicates that the new physics coupling is constrained to be small: we obtain vertical stroke U{sub sb} vertical stroke {<=}3.40 x 10{sup -4} at 3{sigma}. Still this does allow for the possibility of new physics signals in some of the observables such as semileptonic CP asymmetry in B{sub s} decays.

  3. A class of Z' models with non-universal couplings and protected flavor-changing interactions

    CERN Document Server

    Fuentes-Martin, Javier

    2015-01-01

    Motivated by the $b\\to s\\ell^+\\ell^-$ anomalies recently reported by the LHCb collaboration, I present a class of flavored U(1)' gauge extensions of the Standard Model that naturally accommodates them and possesses a rich phenomenology. This model is characterized by the presence of tree-level flavor-changing interactions in the down-quark sector, protected by off-diagonal quark-mixing matrix elements. Anomaly cancellation fixes the extension of the symmetry to the lepton sector in a very specific way, giving rise to flavor-conserving family-non-universal Z' couplings. The fermion content of this model is the same as in the SM while the scalar sector is extended with an extra Higgs doublet and a scalar singlet. The model will be tested in the next run of LHC and presents specific correlations in certain flavor observables that allow to clearly discriminate among them and from other new physics signals.

  4. Search for Flavor Changing Neutral Current in Top Production and Decays

    CERN Document Server

    Kim, Tae Jeong

    2016-01-01

    Searches for flavor changing neutral currents in top production and decay using data collected by the Compact Muon Solenoid (CMS) experiment at $\\sqrt{s}$ = 7 and 8 TeV are presented, corresponding to an integrated luminosity of around 5 fb$^{-1}$ and 20 fb$^{-1}$. FCNC searches are conducted to probe $tqZ$, $tq\\gamma$, $tqH$, and $tgq$ interactions in various channels. By the time of the 38$^{th}$ ICHEP conference in 2016, the upper limits on $\\mathcal{B}(t \\to u\\gamma)$ $<$ 0.013%, $\\mathcal{B}(t \\to ug)$ $<$ 0.036%, $\\mathcal{B}(t \\to uZ)$ $<$ 0.05% and $\\mathcal{B}(t \\to uH)$ $<$ 0.42% at the 95% confidence level had been obtained by the CMS collaboration.

  5. Flavor-changing decays of the top quark in 5D warped models

    Science.gov (United States)

    Díaz-Furlong, Alfonso; Frank, Mariana; Pourtolami, Nima; Toharia, Manuel; Xoxocotzi, Reyna

    2016-08-01

    We study flavor-changing neutral current decays of the top quark in the context of general warped extra dimensions, where the five-dimensional (5D) metric is slightly modified from 5D anti-de Sitter (AdS5 ). These models address the Planck-electroweak hierarchies of the Standard Model and can obey all the low-energy flavor bounds and electroweak precision tests, while allowing the scale of new physics to be at the TeV level, and thus within the reach of the LHC at Run II. We perform the calculation of these exotic top decay rates for the case of a bulk Higgs, and thus include in particular the effect of the additional Kaluza-Klein (KK) Higgs modes running in the loops, along with the usual KK fermions and KK gluons.

  6. Search for a Fourth Generation Charge -1/3 Quark via Flavor Changing Neutral Current Decay

    Science.gov (United States)

    Abachi, S.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.; Ahn, S.; Aihara, H.; Alves, G. A.; Amidi, E.; Amos, N.; Anderson, E. W.; Astur, R.; Baarmand, M. M.; Baden, A.; Balamurali, V.; Balderston, J.; Baldin, B.; Banerjee, S.; Bantly, J.; Bartlett, J. F.; Bazizi, K.; Belyaev, A.; Beri, S. B.; Bertram, I.; Bezzubov, V. A.; Bhat, P. C.; Bhatnagar, V.; Bhattacharjee, M.; Biswas, N.; Blazey, G.; Blessing, S.; Bloom, P.; Boehnlein, A.; Bojko, N. I.; Borcherding, F.; Borders, J.; Boswell, C.; Brandt, A.; Brock, R.; Bross, A.; Buchholz, D.; Burtovoi, V. S.; Butler, J. M.; Carvalho, W.; Casey, D.; Castilla-Valdez, H.; Chakraborty, D.; Chang, S.-M.; Chekulaev, S. V.; Chen, L.-P.; Chen, W.; Choi, S.; Chopra, S.; Choudhary, B. C.; Christenson, J. H.; Chung, M.; Claes, D.; Clark, A. R.; Cobau, W. G.; Cochran, J.; Cooper, W. E.; Cretsinger, C.; Cullen-Vidal, D.; Cummings, M. A.; Cutts, D.; Dahl, O. I.; de, K.; del Signore, K.; Demarteau, M.; Denisov, D.; Denisov, S. P.; Diehl, H. T.; Diesburg, M.; di Loreto, G.; Draper, P.; Drinkard, J.; Ducros, Y.; Dudko, L. V.; Dugad, S. R.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Engelmann, R.; Eno, S.; Eppley, G.; Ermolov, P.; Eroshin, O. V.; Evdokimov, V. N.; Fahland, T.; Fatyga, M.; Fatyga, M. K.; Featherly, J.; Feher, S.; Fein, D.; Ferbel, T.; Finocchiaro, G.; Fisk, H. E.; Fisyak, Y.; Flattum, E.; Forden, G. E.; Fortner, M.; Frame, K. C.; Fuess, S.; Gallas, E.; Galyaev, A. N.; Gartung, P.; Geld, T. L.; Genik, R. J., II; Genser, K.; Gerber, C. E.; Gibbard, B.; Glenn, S.; Gobbi, B.; Goforth, M.; Goldschmidt, A.; Gómez, B.; Gomez, G.; Goncharov, P. I.; González Solís, J. L.; Gordon, H.; Goss, L. T.; Goussiou, A.; Graf, N.; Grannis, P. D.; Green, D. R.; Green, J.; Greenlee, H.; Grim, G.; Grossman, N.; Grudberg, P.; Grünendahl, S.; Guglielmo, G.; Guida, J. A.; Guida, J. M.; Gupta, A.; Gurzhiev, S. N.; Gutierrez, P.; Gutnikov, Y. E.; Hadley, N. J.; Haggerty, H.; Hagopian, S.; Hagopian, V.; Hahn, K. S.; Hall, R. E.; Hansen, S.; Hauptman, J. M.; Hedin, D.; Heinson, A. P.; Heintz, U.; Hernández-Montoya, R.; Heuring, T.; Hirosky, R.; Hobbs, J. D.; Hoeneisen, B.; Hoftun, J. S.; Hsieh, F.; Hu, Ting; Hu, Tong; Huehn, T.; Ito, A. S.; James, E.; Jaques, J.; Jerger, S. A.; Jesik, R.; Jiang, J. Z.-Y.; Joffe-Minor, T.; Johns, K.; Johnson, M.; Jonckheere, A.; Jones, M.; Jöstlein, H.; Jun, S. Y.; Jung, C. K.; Kahn, S.; Kalbfleisch, G.; Kang, J. S.; Kehoe, R.; Kelly, M. L.; Kim, C. L.; Kim, S. K.; Klatchko, A.; Klima, B.; Klopfenstein, C.; Klyukhin, V. I.; Kochetkov, V. I.; Kohli, J. M.; Koltick, D.; Kostritskiy, A. V.; Kotcher, J.; Kotwal, A. V.; Kourlas, J.; Kozelov, A. V.; Kozlovski, E. A.; Krane, J.; Krishnaswamy, M. R.; Krzywdzinski, S.; Kunori, S.; Lami, S.; Lan, H.; Lander, R.; Landry, F.; Landsberg, G.; Lauer, B.; Leflat, A.; Li, H.; Li, J.; Li-Demarteau, Q. Z.; Lima, J. G.; Lincoln, D.; Linn, S. L.; Linnemann, J.; Lipton, R.; Liu, Q.; Liu, Y. C.; Lobkowicz, F.; Loken, S. C.; Lökös, S.; Lueking, L.; Lyon, A. L.; Maciel, A. K.; Madaras, R. J.; Madden, R.; Magaña-Mendoza, L.; Mani, S.; Mao, H. S.; Markeloff, R.; Markosky, L.; Marshall, T.; Martin, M. I.; May, B.; Mayorov, A. A.; McCarthy, R.; McDonald, J.; McKibben, T.; McKinley, J.; McMahon, T.; Melanson, H. L.; Merkin, M.; Merritt, K. W.; Miettinen, H.; Mincer, A.; de Miranda, J. M.; Mishra, C. S.; Mokhov, N.; Mondal, N. K.; Montgomery, H. E.; Mooney, P.; da Motta, H.; Murphy, C.; Nang, F.; Narain, M.; Narasimham, V. S.; Narayanan, A.; Neal, H. A.; Negret, J. P.; Nemethy, P.; Nes̆iĆ, D.; Nicola, M.; Norman, D.; Oesch, L.; Oguri, V.; Oltman, E.; Oshima, N.; Owen, D.; Padley, P.; Pang, M.; Para, A.; Park, Y. M.; Partridge, R.; Parua, N.; Paterno, M.; Perkins, J.; Peters, M.; Piekarz, H.; Pischalnikov, Y.; Podstavkov, V. M.; Pope, B. G.; Prosper, H. B.; Protopopescu, S.; Pus̆eljić, D.; Qian, J.; Quintas, P. Z.; Raja, R.; Rajagopalan, S.; Ramirez, O.; Rapidis, P. A.; Rasmussen, L.; Reucroft, S.; Rijssenbeek, M.; Rockwell, T.; Roe, N. A.; Rubinov, P.; Ruchti, R.; Rutherfoord, J.; Sánchez-Hernández, A.; Santoro, A.; Sawyer, L.; Schamberger, R. D.; Schellman, H.; Sculli, J.; Shabalina, E.; Shaffer, C.; Shankar, H. C.; Shivpuri, R. K.; Shupe, M.; Singh, H.; Singh, J. B.; Singh, P.; Sirotenko, V.; Smart, W.; Smith, A.; Smith, R. P.; Snihur, R.; Snow, G. R.; Snow, J.; Snyder, S.; Solomon, J.; Sood, P. M.; Sosebee, M.; Sotnikova, N.; Souza, M.; Spadafora, A. L.; Stephens, R. W.; Stevenson, M. L.; Stewart, D.; Stoianova, D. A.; Stoker, D.; Strauss, M.; Streets, K.; Strovink, M.; Sznajder, A.; Tamburello, P.; Tarazi, J.; Tartaglia, M.; Thomas, T. L.; Thompson, J.; Trippe, T. G.; Tuts, P. M.; Varelas, N.; Varnes, E. W.; Vititoe, D.; Volkov, A. A.; Vorobiev, A. P.; Wahl, H. D.; Wang, G.; Warchol, J.; Watts, G.; Wayne, M.; Weerts, H.; White, A.; White, J. T.; Wightman, J. A.; Willis, S.; Wimpenny, S. J.; Wirjawan, J. V.; Womersley, J.; Won, E.; Wood, D. R.; Xu, H.; Yamada, R.; Yamin, P.; Yanagisawa, C.; Yang, J.; Yasuda, T.; Yepes, P.; Yoshikawa, C.; Youssef, S.; Yu, J.; Yu, Y.; Zhu, Q.; Zhu, Z. H.; Zieminska, D.; Zieminski, A.; Zverev, E. G.; Zylberstejn, A.

    1997-05-01

    We report on a search for pair production of a fourth generation charge -1/3 quark ( b') in pp¯ collisions at s = 1.8 TeV by the DØ experiment at the Fermilab Tevatron using an integrated luminosity of 93 pb-1. Both b' quarks are assumed to decay via flavor changing neutral currents (FCNC). The search uses the signatures γ+3 jets +μ-tag and 2γ+2 jets. We see no significant excess of events over the expected background. We place an upper limit on the production cross section times branching fraction that is well below theoretical expectations for a b' decaying exclusively via FCNC for b' masses up to mZ+mb.

  7. Search for production of single top quarks via flavor-changing neutral currents at the Tevatron

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Böhnlein, A; Bühler, M; Büscher, V; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Claes, D; Clement, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M C; Cox, B; Crepe-Renaudin, S; Cutts, D; Da Motta, H; Das, A; Davies, B; Davies, G; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; De, K; Degenhardt, J D; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Déliot, F; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Gómez, B; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A I; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Käfer, D; Kühl, T; Lam, D; Lammers, S; Landsberg, G L; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Lévêque, J; Cwiok, M; Maciel, A K A; Madaras, R J; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Mättig, P; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nomerotski, A; Novaes, S F; Nunnemann, T; Nöding, C; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perfilov, M; Peters, K; Peters, Y; Petroff, P; Petteni, M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompos, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, S D; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F K; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Wang, M H L; Sajot, G; Sanders, M P; Santoro, A F S; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simák, V; Sirotenko, V I; Skubic, P L; Slattery, P F; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Strom, D; Strovink, M; Ströhmer, R; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Sánchez-Hernández, A; Söldner-Rembold, S; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; Van Kooten, R; Van Leeuwen, W M; Van den Berg, P J; Varelas, N; Varnes, E W; Vartapetian, A H; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vlimant, J R; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G; de Jong, P; van Eijk, B; Åsman, B

    2007-01-01

    We search for the production of single top quarks via flavor-changing neutral current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230 pb^{-1} of lepton+jets data from \\ppbar collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on anomalous coupling parameters \\kappa^c_g/\\Lambda and \\kappa^u_g/\\Lambda, where the \\kappa_g define the strength of the tcg and tug couplings, and \\Lambda defines the scale of new physics. The limits at 95% C.L. are: \\kappa^c_g/\\Lambda < 0.15 TeV^{-1} and \\kappa^u_g/\\Lambda < 0.037 TeV^{-1}.

  8. Constraints on top quark flavor changing neutral currents using diphoton events at the LHC

    Directory of Open Access Journals (Sweden)

    Sara Khatibi

    2016-08-01

    Full Text Available In this paper we show that the diphoton mass spectrum in proton–proton collisions at the LHC is sensitive to the top quark flavor changing neutral current in the vertices of tuγ and tcγ. The diphoton mass spectrum measured by the CMS experiment at the LHC at a center-of-mass energy of 8 TeV and an integrated luminosity of 19.5 fb−1 is used as an example to set limits on these FCNC couplings. It is also shown that the angular distribution of the diphotons is sensitive to anomalous tuγ and tcγ couplings and it is a powerful tool to probe any value of the branching fraction of top quark rare decay to an up-type quark plus a photon down to the order of 10−4.

  9. Updated Search for the Flavor-Changing Neutral-Current Decay $D^0 \\to \\mu^+ \\mu^-$

    CERN Document Server

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bauer, G; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Berry, E; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Bland, K R; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Brisuda, A; Bromberg, C; Brucken, E; Bucciantonio, M; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Cabrera, S; Calancha, C; Camarda, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Dagenhart, D; d'Ascenzo, N; Datta, M; de Barbaro, P; De Cecco, S; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Devoto, F; d'Errico, M; Di Canto, A; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Dorigo, T; Ebina, Koji; Elagin, A; Eppig, A; Erbacher, R; Errede, D; Errede, S; Ershaidat, N; Eusebi, R; Fang, H C; Farrington, S; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garcia, J E; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; Gonzalez, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, S R; Halkiadakis, E; Hamaguchi, A; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harr, R F; Hatakeyama, K; Hays, C; Heck, M; Heinrich, J; Herndon, M; Hewamanage, S; Hidas, D; Hocker, A; Hopkins, W; Horn, D; Hou, S; Hughes, R E; Hurwitz, M; Husemann, U; Hussain, N; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Ketchum, W; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Klimenko, S; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kuhr, T; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, H S; Lee, J S; Lee, S W; Leo, S; Leone, S; Lewis, J D; Lin, C J; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, Q; Liu, T; Lockwitz, S; Lockyer, N S; Loginov, A; Lucchesi, D; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maeshima, K; Makhoul, K; Maksimovic, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Martinez, M; Martinez-Ballarin, R; Mastrandrea, P; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Mondragon, M N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Griso, S Pagan; Pagliarone, C; Palencia, E; Papadimitriou, V; Paramonov, A A; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Potamianos, K; Poukhov, O; Prokoshin, F; Pronko, A; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Santi, L; Sartori, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shreyber, I; Simonenko, A; Sinervo, P; Sissakian, A; Sliwa, K; Smith, J R; Snider, F D; Soha, A; Somalwar, S; Sorin, V; Squillacioti, P; Stanitzki, M; Denis, R St; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thome, J; Thompson, G A; Thomson, E; Ttito-Guzman, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Varganov, A; Vataga, E; Vazquez, F; Velev, G; Vellidis, C; Vidal, M; Vila, I; Vilar, R; Vogel, M; Volpi, G; Wagner, P; Wagner, R L; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C., III; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Wick, F; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanetti, A; Zeng, Y; Zucchelli, S

    2010-01-01

    We report on a search for the flavor-changing neutral-current decay D0 \\to {\\mu}+ {\\mu}- in pp collisions at \\surd s = 1.96 TeV using 360 pb-1 of integrated luminosity collected by the CDF II detector at the Fermilab Tevatron collider. A displaced vertex trigger selects long-lived D0 candidates in the {\\mu}+ {\\mu}-, {\\pi}+{\\pi}-, and K-{\\pi}+ decay modes. We use the Cabibbo-favored D0 \\to K-{\\pi}+ channel to optimize the selection criteria in an unbiased manner, and the kinematically similar D0 \\to{\\pi}+ {\\pi}- channel for normalization. We set an upper limit on the branching fraction (D0 --> {\\mu}+ {\\mu}-) < 2.1 E-7 (3.0 E-7) at the 90% (95%) confidence level.

  10. Higher dimensional supersymmetric quantum mechanics and Dirac equation

    Indian Academy of Sciences (India)

    L P Singh; B Ram

    2002-04-01

    We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with specific examples. We also discuss the `physical' significance of the supersymmetric states in this formalism.

  11. Supersymmetric classical cosmology

    CERN Document Server

    Escamilla-Rivera, Celia; Urena-Lopez, L Arturo

    2010-01-01

    In this work a supersymmetric cosmological model is analyzed in which we consider a general superfield action of a homogeneous scalar field supermultiplet interacting with the scale factor in a supersymmetric FRW model. There appear fermionic superpartners associated with both the scale factor and the scalar field, and classical equations of motion are obtained from the super-Wheeler-DeWitt equation through the usual WKB method. The resulting supersymmetric Einstein-Klein-Gordon equations contain extra radiation and stiff matter terms, and we study their solutions in flat space for different scalar field potentials. The solutions are compared to the standard case, in particular those corresponding to the exponential potential, and their implications for the dynamics of the early Universe are discussed in turn.

  12. The Supersymmetric Particle Spectrum

    CERN Document Server

    Barger, V; Ohmann, P

    1994-01-01

    We examine the spectrum of supersymmetric particles predicted by grand unified theoretical (GUT) models where the electroweak symmetry breaking is accomplished radiatively. We evolve the soft supersymmetry breaking parameters according to the renormalization group equations (RGE). The minimization of the Higgs potential is conveniently described by means of tadpole diagrams. We present complete one-loop expressions for these minimization conditions, including contributions from the matter and the gauge sectors. We concentrate on the low $\\tan \\beta$ fixed point region (that provides a natural explanation of a large top quark mass) for which we find solutions to the RGE satisfying both experimental bounds and fine-tuning criteria. We also find that the constraint from the consideration of the lightest supersymmetric particle as the dark matter of the universe is accommodated in much of parameter space where the lightest neutralino is predominantly gaugino. The supersymmetric mass spectrum displays correlations...

  13. Just so oscillations in supersymmetric standard model

    CERN Document Server

    Joshipura, A S; Anjan S Joshipura; Marek Nowakowski

    1995-01-01

    We analyze the spectrum and mixing among neutrinos in the minimal supersymmetric standard model with explicit breaking of R parity. It is shown that ({\\em i}) the mixing among neutrinos is naturally large and ({\\em ii}) the non zero neutrino mass is constrained to be \\leq 10^{-5} eV from arguments based on baryogenesis. Thus vacuum oscillations of neutrinos in this model may offer a solution of the solar neutrino problem. The allowed space of the supersymmetric parameters consistent with this solution is determined.

  14. Planarizable Supersymmetric Quantum Toboggans

    Directory of Open Access Journals (Sweden)

    Miloslav Znojil

    2011-02-01

    Full Text Available In supersymmetric quantum mechanics the emergence of a singularity may lead to the breakdown of isospectrality between partner potentials. One of the regularization recipes is based on a topologically nontrivial, multisheeted complex deformations of the line of coordinate x giving the so called quantum toboggan models (QTM. The consistent theoretical background of this recipe is briefly reviewed. Then, certain supersymmetric QTM pairs are shown exceptional and reducible to doublets of non-singular ordinary differential equations a.k.a. Sturm-Schrödinger equations containing a weighted energy E→EW(x and living in single complex plane.

  15. Supersymmetric Optical Structures

    CERN Document Server

    Miri, Mohammad-Ali; El-Ganainy, Ramy; Christodoulides, Demetrios N

    2013-01-01

    We show that supersymmetry can provide a versatile platform in synthesizing a new class of optical structures with desired properties and functionalities. By exploiting the intimate relationship between superpatners, one can systematically construct index potentials capable of exhibiting the same scattering and guided wave characteristics. In particular, in the Helmholtz regime, we demonstrate that one-dimensional supersymmetric pairs display identical reflectivities and transmittivities for any angle of incidence. Optical SUSY is then extended to two-dimensional systems where a link between specific azimuthal mode subsets is established. Finally we explore supersymmetric photonic lattices where discreteness can be utilized to design lossless integrated mode filtering arrangements.

  16. Supersymmetric k-defects

    CERN Document Server

    Koehn, Michael

    2015-01-01

    In supersymmetric theories, topological defects can have nontrivial behaviors determined purely by whether or not supersymmetry is restored in the defect core. A well-known example of this is that some supersymmetric cosmic strings are automatically superconducting, leading to important cosmological effects and constraints. We investigate the impact of nontrivial kinetic interactions, present in a number of particle physics models of interest in cosmology, on the relationship between supersymmetry and supercurrents on strings. We find that in some cases it is possible for superconductivity to be disrupted by the extra interactions.

  17. N=2 supersymmetric dynamics for pedestrians

    CERN Document Server

    Tachikawa, Yuji

    2015-01-01

    Understanding the dynamics of gauge theories is crucial, given the fact that all known interactions are based on the principle of local gauge symmetry. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dimensions with extended N=2 supersymmetry are further constrained and have therefore been a fertile field of research in theoretical physics for quite some time. Moreover, there are far-reaching mathematical ramifications that have led to a successful dialogue with differential and algebraic geometry. These lecture notes aim to introduce students of modern theoretical physics to the fascinating developments in the understanding of N=2 supersymmetric gauge theories in a coherent fashion. Starting with a gentle introduction to electric-magnetic duality, the author guides r...

  18. Neutrino masses and mixing in supersymmetric theories

    Indian Academy of Sciences (India)

    Sudhir K Vempati

    2000-07-01

    It has been known for sometime that supersymmetric theories with -parity violation provide a natural framework where small neutrino masses can be generated. We discuss neutrino masses and mixing in these theories in the presence of trilinear lepton number violating couplings. It will be shown that simultaneous solutions to solar and atmospheric neutrino problems can be realized in these models.

  19. A Maximally Supersymmetric Kondo Model

    Energy Technology Data Exchange (ETDEWEB)

    Harrison, Sarah; Kachru, Shamit; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2012-02-17

    We study the maximally supersymmetric Kondo model obtained by adding a fermionic impurity to N = 4 supersymmetric Yang-Mills theory. While the original Kondo problem describes a defect interacting with a free Fermi liquid of itinerant electrons, here the ambient theory is an interacting CFT, and this introduces qualitatively new features into the system. The model arises in string theory by considering the intersection of a stack of M D5-branes with a stack of N D3-branes, at a point in the D3 worldvolume. We analyze the theory holographically, and propose a dictionary between the Kondo problem and antisymmetric Wilson loops in N = 4 SYM. We perform an explicit calculation of the D5 fluctuations in the D3 geometry and determine the spectrum of defect operators. This establishes the stability of the Kondo fixed point together with its basic thermodynamic properties. Known supergravity solutions for Wilson loops allow us to go beyond the probe approximation: the D5s disappear and are replaced by three-form flux piercing a new topologically non-trivial S3 in the corrected geometry. This describes the Kondo model in terms of a geometric transition. A dual matrix model reflects the basic properties of the corrected gravity solution in its eigenvalue distribution.

  20. Heavy Flavor Decays Of The Z(0) And A Search For Flavor Changing Neutral Currents

    CERN Document Server

    Walston, S E

    2004-01-01

    Presented here are the results of a direct search for flavor changing neutral currents via the rare process Z0 → bs and a measurement of Rbs=G&parl0;Z0→bs&parr0; G&parl0;Z0→ hadrons&parr0; . Because the decays Z0 → bb¯ and Z0 → cc¯ contribute significant backgrounds to Z 0 → bs, simultaneous measurements of Rb=G&parl0;Z0→b b&parr0;G&parl0;Z0→ hadrons&parr0; and Rc=G&parl0;Z0→c c&parr0;G&parl0;Z0→ hadrons&parr0; were also made. The standard double tag technique was extended and self calibrating tags were used for s, c, and b quarks. These measurements were made possible by the unique capabilities of the SLAC Large Detector (SLD) at the Stanford Linear Accelerator Center (SLAC): The b and c tags relied upon the SLD's VXD3 307 megapixel CCD vertex detector for topological and kinematic reconstruction of the B and D decay vertices; the s tag identif...

  1. Photon initiated single top quark production via flavor-changing neutral currents at the LHC

    CERN Document Server

    Goldouzian, Reza

    2016-01-01

    Single top quark production is a powerful process to search for new physics signs. In this work we propose and investigate a search for top quark flavor changing neutral currents (FCNC) via a photon using direct single top quark production events in proton-proton collisions at the LHC at CERN. We show that the direct single top quark final state can provide constraints on the strengths of tq$\\gamma$ (top-quark-$\\gamma$) and tqg (top-quark-gluon) FCNC couplings simultaneously. Results of a search for direct single top quark production at the LHC at a center-of-mass energy of 8 TeV performed by the ATLAS collaboration are used to set first experimental limits on the anomalous FCNC top decay branching fractions ${\\cal B}$(t$\\rightarrow$ u$\\gamma$) $<$ 0.05% and ${\\cal B}$(t$\\rightarrow$ c$\\gamma$) $<$ 0.14% via direct single top quark production. Finally, the sensitivity of the proposed channel for probing the tq$\\gamma$ couplings at 13 TeV is presented.

  2. Lepton flavor changing Higgs decays in the littlest Higgs model with T-parity

    Science.gov (United States)

    del Aguila, Francisco; Ametller, Lluis; Illana, Jose Ignacio; Santiago, Jose; Talavera, Pere; Vega-Morales, Roberto

    2017-08-01

    We calculate loop induced lepton flavor violating Higgs decays in the Littlest Higgs model with T-parity. We find that a finite amplitude is obtained only when all contributions from the T-odd lepton sector are included. This is in contrast to lepton flavor violating processes mediated by gauge bosons where the partners of the right-handed mirror leptons can be decoupled from the spectrum. These partners are necessary to cancel the divergence in the Higgs mass introduced by the mirror leptons but are otherwise unnecessary and assumed to be decoupled in previous phenomenological studies. Further-more, as we emphasize, including the partner leptons in the spectrum also introduces a new source of lepton flavor violation via their couplings to the physical pseudo-Goldstone electroweak triplet scalar. Although this extra source also affects lepton flavor changing gauge transitions, it decouples from these amplitudes in the limit of heavy mass for the partner leptons. We find that the corresponding Higgs branching ratio into taus and muons can be as large as ˜ 0.2 × 10-6 for T-odd masses of the order a few TeV, a demanding challenge even for the high luminosity LHC.

  3. Heavy Flavor Decays of the Z0 and a Search for Flavor Changing Neutral Currents

    Energy Technology Data Exchange (ETDEWEB)

    Walston, S

    2004-06-22

    Presented here are the results of a direct search for flavor changing neutral currents via the rare process Z{sup 0} {yields} bs and a measurement of R{sub bs} = {Lambda}(Z{sup 0} {yields} bs)/{Lambda}(Z{sup 0} {yields} hadrons). Because the decays Z{sup 0} {yields} b{bar b} and Z{sup 0} {yields} c{bar c} contribute significant backgrounds to Z{sup 0} {yields} bs, simultaneous measurements of R{sub b} = {Lambda}(Z{sup 0} {yields} b{bar b})/{Lambda}(Z{sup 0} {yields} hadrons) and R{sub c} = {Lambda}(Z{sup 0} {yields} c{bar c})/{Lambda}(Z{sup 0} {yields} hadrons) were also made. The standard double tag technique was extended and self calibrating tags were used for s, c, and b quarks. These measurements were made possible by the unique capabilities of the SLAC Large Detector (SLD) at the Stanford Linear Accelerator Center (SLAC): The b and c tags relied upon the SLD's VXD3 307 megapixel CCD vertex detector for topological and kinematic reconstruction of the B and D decay vertices; the s tag identified K{sup {+-}} mesons using the particle identification capabilities of SLD's Cherenkov Ring Imaging Detector (CRID), and K{sub S}{sup 0} mesons and {Lambda} hadrons by kinematic reconstruction of their decay vertices in SLD's 5120 channel central drift chamber (CDC) particle tracking system.

  4. Heavy flavor decays of the Z(0) and a search for flavor changing neutral currents

    Science.gov (United States)

    Walston, Sean Eric

    Presented here are the results of a direct search for flavor changing neutral currents via the rare process Z0 → bs and a measurement of Rbs=G(Z0→bs) G(Z0→ hadrons) . Because the decays Z0 → bb¯ and Z0 → cc¯ contribute significant backgrounds to Z 0 → bs, simultaneous measurements of Rb=G(Z0→b b)G(Z0→ hadrons) and Rc=G(Z0→c c)G(Z0→ hadrons) were also made. The standard double tag technique was extended and self calibrating tags were used for s, c, and b quarks. These measurements were made possible by the unique capabilities of the SLAC Large Detector (SLD) at the Stanford Linear Accelerator Center (SLAC): The b and c tags relied upon the SLD's VXD3 307 megapixel CCD vertex detector for topological and kinematic reconstruction of the B and D decay vertices; the s tag identified K +/- mesons using the particle identification capabilities of SLD's Cherenkov Ring Imaging Detector (CRID), and K0S mesons and Λ hadrons by kinematic reconstruction of their decay vertices in SLD's 5120 channel central drift chamber (CDC) particle tracking system.

  5. Supersymmetric heterotic string backgrounds

    NARCIS (Netherlands)

    Gran, U.; Papadopoulos, G.; Roest, D.; Cvetič, M.

    2007-01-01

    We present the main features of the solution of the gravitino and dilatino Killing spinor equations derived in hep-th/0510176 and hep-th/0703143 which have led to the classification of geometric types of all type I backgrounds. We then apply these results to the supersymmetric backgrounds of the het

  6. E6 inspired supersymmetric models with exact custodial symmetry

    Science.gov (United States)

    Nevzorov, Roman

    2013-01-01

    The breakdown of E6 gauge symmetry at high energies may lead to supersymmetric models based on the standard model gauge group together with extra U(1)ψ and U(1)χ gauge symmetries. To ensure anomaly cancellation the particle content of these E6 inspired models involves extra exotic states that generically give rise to nondiagonal flavor transitions and rapid proton decay. We argue that a single discrete Z˜2H symmetry can be used to forbid tree-level flavor changing transitions, as well as the most dangerous baryon and lepton number violating operators. We present 5D and 6D orbifold grand unified theory constructions that lead to the E6 inspired supersymmetric models of this type. The breakdown of U(1)ψ and U(1)χ gauge symmetries that preserves E6 matter parity assignment guarantees that ordinary quarks and leptons and their superpartners, as well as the exotic states which originate from 27 representations of E6, survive to low energies. These E6 inspired models contain two dark matter candidates and must also include additional TeV scale vectorlike lepton or vectorlike down-type quark states to render the lightest exotic quark unstable. We examine gauge coupling unification in these models and discuss their implications for collider phenomenology and cosmology.

  7. Search for flavor changing neutral currents in top quark decays in pp collisions at 7 TeV

    Science.gov (United States)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá Júnior, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Miné, P.; Mironov, C.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.

    2013-01-01

    The results of a search for flavor changing neutral currents in top quark decays t → Zq in events with a topology compatible with the decay chain ttbar → Wb + Zq → ℓνb + ℓℓq are presented. The search is performed with a data sample corresponding to an integrated luminosity of 5.0fb-1 of proton-proton collisions at a center-of-mass energy of 7 TeV, collected with the CMS detector at the LHC. The observed number of events agrees with the standard model prediction and no evidence for flavor changing neutral currents in top quark decays is found. A t → Zq branching fraction greater than 0.21% is excluded at the 95% confidence level.

  8. Flavor-Changing Bottom-Strange Associated in the Littlest Higgs Model with T-parity at the ILC

    Institute of Scientific and Technical Information of China (English)

    李炳中; 韩金钟; 杨炳方

    2011-01-01

    In the littlest Higgs model with T-parity (LHT) the mirror quarks induce the special flavor structures and some new flavor-changing couplings, which could greatly enhance the production rates of the flavor-changing processes. We in this paper study some bottom and anti-strange production processes in the LHT model at the International Linear Collider (ILC), i.e., e+ e- -, bs and γγ-+ bs. The results show that the production rates of these processes are sizeable for the favorable values of the parameters. Therefore, it is quite possible to test the LHT model or make some constraints on the relevant parameters of the LHT through the detection of these processes at the ILC.

  9. Detailed analysis of flavor-changing decays of top quarks as a probe of new physics at the LHC

    Science.gov (United States)

    Bardhan, Debjyoti; Bhattacharyya, Gautam; Ghosh, Diptimoy; Patra, Monalisa; Raychaudhuri, Sreerup

    2016-07-01

    If the LHC should fail to observe direct signals for new physics, it may become necessary to look for new physics effects in rare events such as flavor-changing decays of the top quark, which, in the standard model, are predicted to be too small to be observed. We set up the theoretical framework in which experimentally accessible results can be expected in models of new physics, and go on to discuss two models of supersymmetry—one with conserved R -parity, and one without R -parity—to illustrate how the flavor-changing signals are predicted in these models. In the latter case, there is a distinct possibility of detecting the rare decay t →c +Z0 at the LHC. We also present a detailed set of very general formulas which can be used to make similar calculations in diverse models of new physics.

  10. Anatomy and phenomenology of flavor and CP violation in supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Altmannshofer, Wolfgang

    2010-07-20

    The main subject of this PhD thesis is a comprehensive and systematic analysis of flavor and CP violating low energy processes in the framework of the MSSM, the minimal supersymmetric extension of the Standard Model. Supersymmetric (SUSY) models are among the best motivated and most thoroughly analyzed New Physics (NP) models. The new degrees of freedom predicted by Supersymmetry are expected to have masses of the order of the TeV scale and the direct search for these particles is one of the major goals at the LHC. A complementary strategy to probe the MSSM is given by the analysis of low energy high-precision observables, that can be modified through virtual effects of the new degrees of freedom. Of particular importance in this respect are so-called Flavor Changing Neutral Current (FCNC) processes that, forbidden in the Standard Model at the tree level, are highly sensitive probes of the flavor structure of NP models. We first analyze model independently low energy processes that show high sensitivity to the new sources of flavor and CP violation contained in the MSSM. Next, we discuss in detail the rich flavor structure of the MSSM and the implied SUSY contributions to FCNC and CP violating observables both in the low and high tan {beta} regime. In fact, well measured low energy observables lead to remarkably strong constraints on the MSSM parameter space, which is often referred to as the SUSY flavor problem. We outline possibilities to control dangerously large SUSY effects in such observables and analyze the implied predictions for those low energy processes that are not measured with high precision, yet. We consider both the Minimal Flavor Violating MSSM and SUSY models based on abelian and non-abelian flavor symmetries that show representative flavor structures in the soft SUSY breaking terms. We identify the distinctive patterns of SUSY effects in the low energy observables, focussing in particular on CP violation in the b {yields} s{gamma} transition, the

  11. Nearly Supersymmetric Dark Atoms

    Energy Technology Data Exchange (ETDEWEB)

    Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP

    2011-08-12

    Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.

  12. Supersymmetric Spin Glass

    CERN Document Server

    Gukov, S G

    1997-01-01

    The evidently supersymmetric four-dimensional Wess-Zumino model with quenched disorder is considered at the one-loop level. The infrared fixed points of a beta-function form the moduli space $M = RP^2$ where two types of phases were found: with and without replica symmetry. While the former phase possesses only a trivial fixed point, this point become unstable in the latter phase which may be interpreted as a spin glass phase.

  13. Decoupling of supersymmetric particles

    CERN Document Server

    Dobado, A; Peñaranda, S

    1999-01-01

    The possibility of a heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed in detail. The formal proof of decoupling of supersymmetric particles from low energy physics is stated in terms of the effective action for the particles of the Standard Model that results by integrating out all the sparticles in the limit where their masses are larger than the electroweak scale. The computation of the effective action for the standard electroweak gauge bosons W^{+-}, Z and \\gamma is performed by integrating out all the squarks, sleptons, charginos and neutralinos to one-loop. The Higgs sector is not considered in this paper. The large sparticle masses limit is also analyzed in detail. Explicit analytical formulae for the two-point functions of the electroweak gauge bosons to be valid in that limit are presented. Finally, the decoupling of sparticles in the S, T and U parameters is studied analitically. A discussion...

  14. Generalized Supersymmetric Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    B. G(o)n(ǖ)l

    2004-01-01

    @@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.

  15. Supersymmetric Electroweak Baryogenesis

    CERN Document Server

    Rius, N; Rius, Nuria; Sanz, Veronica

    2000-01-01

    We calculate the baryon asymmetry generated at the electroweak phase transition in the minimal supersymmetric standard model, using a new method to compute the CP-violating asymmetry in the Higgsino flux reflected into the unbroken phase. The method is based on a Higgs insertion expansion. We find that the CP asymmetry at leading order is proportional to the change in $\\tan next-to-leading order this suppression factor disappears. These results explain previous discrepancies among different calculations, and may enhance the final baryon asymmetry generated during the electroweak phase transition.

  16. Prolongation structures for supersymmetric equations

    NARCIS (Netherlands)

    Roelofs, G.H.M.; Hijligenberg, van den N.W.

    1990-01-01

    The well known prolongation technique of Wahlquist and Estabrook (1975) for nonlinear evolution equations is generalized for supersymmetric equations and applied to the supersymmetric extension of the KdV equation of Manin-Radul. Using the theory of Kac-Moody Lie superalgebras, the explicit form of

  17. Search for top-quark production via flavor-changing neutral currents in W+1 jet events at CDF.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Liss, T M; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlock, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Pagan Griso, S; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Rutherford, B; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-04-17

    We report on a search for the non-standard-model process u(c) + g --> t using pp[over ] collision data collected by the Collider Detector at Fermilab II detector corresponding to 2.2 fb;{-1}. The candidate events are classified as signal-like or backgroundlike by an artificial neural network. The observed discriminant distribution yields no evidence for flavor-changing neutral current top-quark production, resulting in an upper limit on the production cross section sigma(u(c) + g --> t) u + g) c + g) < 5.7 x 10;{-3}.

  18. Testing flavor-changing neutral currents in the rare decays $t \\to cV_{i}V_{j}$

    CERN Document Server

    Díaz-Cruz, J L; Tavares-Velasco, G; Toscano, J J

    1999-01-01

    We discuss the Flavor-Changing Neutral Current (FCNC) decays of the top quark t -> c Vi Vj (Vi=gamma, Z, g) in the framework of the Standard Model (SM) and in a two-higgs doublet model (2HDM) with tree-level FCNC couplings. While in the SM the expected branching ratios are extremelly small, in the 2HDM they may be sizable, of order 10^(-5) - 10^(-5), and thus accesible at the CERN LHC. We conclude with the interesting observation that the FCNC decay modes may not be equally suppressed as their corresponding decays t ->c Vi in this 2HDM.

  19. Supersymmetrizing Massive Gravity

    CERN Document Server

    Malaeb, Ola

    2013-01-01

    When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. When the scalar components of the chiral multiplets z^A acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index making the scalar fields z^A vectors and the chiral spinors \\psi^A spin-3/2 Rarita-Schwinger fields. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.

  20. Supersymmetric mode converters

    Science.gov (United States)

    Heinrich, Matthias; Miri, Mohammad-Ali; Stützer, Simon; Nolte, Stefan; Szameit, Alexander; Christodoulides, Demetrios N.

    2015-08-01

    In recent years, the ever-increasing demand for high-capacity transmission systems has driven remarkable advances in technologies that encode information on an optical signal. Mode-division multiplexing makes use of individual modes supported by an optical waveguide as mutually orthogonal channels. The key requirement in this approach is the capability to selectively populate and extract specific modes. Optical supersymmetry (SUSY) has recently been proposed as a particularly elegant way to resolve this design challenge in a manner that is inherently scalable, and at the same time maintains compatibility with existing multiplexing strategies. Supersymmetric partners of multimode waveguides are characterized by the fact that they share all of their effective indices with the original waveguide. The crucial exception is the fundamental mode, which is absent from the spectrum of the partner waveguide. Here, we demonstrate experimentally how this global phase-matching property can be exploited for efficient mode conversion. Multimode structures and their superpartners are experimentally realized in coupled networks of femtosecond laser-written waveguides, and the corresponding light dynamics are directly observed by means of fluorescence microscopy. We show that SUSY transformations can readily facilitate the removal of the fundamental mode from multimode optical structures. In turn, hierarchical sequences of such SUSY partners naturally implement the conversion between modes of adjacent order. Our experiments illustrate just one of the many possibilities of how SUSY may serve as a building block for integrated mode-division multiplexing arrangements. Supersymmetric notions may enrich and expand integrated photonics by versatile optical components and desirable, yet previously unattainable, functionalities.

  1. Supersymmetric Quantum Mechanics and Topology

    Directory of Open Access Journals (Sweden)

    Muhammad Abdul Wasay

    2016-01-01

    Full Text Available Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.

  2. Quasifixed point scenarios and the Higgs mass in the E6 inspired supersymmetric models

    Science.gov (United States)

    Nevzorov, R.

    2014-03-01

    We analyze the two-loop renormalization group (RG) flow of the gauge and Yukawa couplings within the E6 inspired supersymmetric models with extra U(1)N gauge symmetry under which right-handed neutrinos have zero charge. In these models, single discrete Z stretchy="false">˜2H symmetry forbids the tree-level flavor-changing transitions and the most dangerous baryon and lepton number violating operators. We consider two different scenarios A and B that involve extra matter beyond the minimal supersymmetric Standard Model contained in three and four 5+5¯ representations of SU(5), respectively, plus three SU(5) singlets which carry U(1)N charges. In scenario A, the measured values of the SU(2)W and U(1)Y gauge couplings lie near the fixed points of the RG equations. In scenario B, the contribution of two-loop corrections spoils the unification of gauge couplings, resulting in the appearance of the Landau pole below the grand unification scale MX. The solutions for the Yukawa couplings also approach the quasifixed points with increasing their values at the scale MX. We calculate the two-loop upper bounds on the lightest Higgs boson mass in the vicinity of these quasifixed points and compare the results of our analysis with the corresponding ones in the next-to-minimal supersymmetric Standard Model. In all these cases, the theoretical restrictions on the Standard-Model-like Higgs boson mass are rather close to 125 GeV.

  3. Supersymmetric quantum mechanics and paraquantization

    Energy Technology Data Exchange (ETDEWEB)

    Morchedi, O.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)

    2012-06-27

    The paraquantum Hamiltonian of a free particle is shown to be supersymmetric. Depending on the space-time dimension, the corresponding N=1 and N=2 supercharges are constructed and the related Hamiltonians are derived.

  4. Supersymmetric quantum mechanics with reflections

    Energy Technology Data Exchange (ETDEWEB)

    Post, Sarah; Vinet, Luc [Centre de Recherches Mathematiques, Universite de Montreal, Montreal CP6128 (QC) H3C 3J7 (Canada); Zhedanov, Alexei, E-mail: post@crm.umontreal.ca, E-mail: luc.vinet@umontreal.ca, E-mail: zhedanov@fti.dn.ua [Donetsk Institute for Physics and Technology, Donetsk 83114 (Ukraine)

    2011-10-28

    We consider a realization of supersymmetric quantum mechanics where supercharges are differential-difference operators with reflections. A supersymmetric system with an extended Scarf I potential is presented and analyzed. Its eigenfunctions are given in terms of little -1 Jacobi polynomials which obey an eigenvalue equation of Dunkl type and arise as a q {yields} -1 limit of the little q-Jacobi polynomials. Intertwining operators connecting the wavefunctions of extended Scarf I potentials with different parameters are presented. (paper)

  5. Neutrino-induced Electroweak Symmetry Breaking in Supersymmetric SO(10) Unification

    CERN Document Server

    Inoue, K; Yoshioka, K; Inoue, Kenzo; Kojima, Kentaro; Yoshioka, Koichi

    2006-01-01

    The radiative electroweak symmetry breaking, the unification of third-generation Yukawa couplings, and flavor-changing rare decay are investigated in two types of supersymmetric SO(10) scenarios taking into account of the effects of neutrino physics, i.e. the observed large generation mixing and tiny mass scale. The first scenario is minimal, including right-handed neutrinos at intermediate scale with the unification of third-generation Yukawa couplings. Another is the case that the large mixing of atmospheric neutrinos originates from the charged-lepton sector. Under the SO(10)-motivated boundary conditions for supersymmetry-breaking parameters, typical low-energy particle spectrum is discussed and the parameter space is identified which satisfies the conditions for successful radiative electroweak symmetry breaking and the experimental mass bounds of superparticles. In particular, the predictions of the bottom quark mass and the b \\to s gamma branching ratio are fully analyzed. In both two scenarios, new ty...

  6. Can Supersymmetric Loops Correct the Fermion Mass Relations in SU(5)?

    CERN Document Server

    Díaz-Cruz, J L; Pierce, A T

    2000-01-01

    We investigate three different possibilities for improving the fermion mass relations that arise in grand unified theories (GUTs). Each scenario relies on supersymmetric loop effects alone, without modifying the naive Yukawa unification. First, we consider A-terms that follow the usual proportionality condition. In this case SUSY effects can improve the mass relations, but not completely. Interestingly, imposing Yukawa coupling unification for two families greatly constrains the range of parameters in the MSSM. Secondly, we employ a new ansatz for the tri-linear A-terms that satisfies all experimental and vacuum stability bounds, and can successfully modify the mass relations. Finally, we investigate the use of general (non-proportional) A-terms, with large off-diagonal entries. In this case flavor changing neutral current (FCNC) data present an important constraint. We do not pretend to present a complete, motivated theory of fermion masses. Rather this paper can be viewed as an existence proof, serving to s...

  7. Supersymmetric quantum mechanics on the lattice: I. Loop formulation

    Directory of Open Access Journals (Sweden)

    David Baumgartner

    2015-05-01

    Full Text Available Simulations of supersymmetric field theories on the lattice with (spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N=2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper – the first in a series of three – we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.

  8. Supersymmetric quantum mechanics on the lattice: I. Loop formulation

    CERN Document Server

    Baumgartner, David

    2014-01-01

    Simulations of supersymmetric field theories on the lattice with (spontaneously) broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We propose a novel approach which solves this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. For N = 2 supersymmetric quantum mechanics the loop formulation becomes particularly simple and in this paper - the first in a series of three - we discuss in detail the reformulation of this model in terms of fermionic and bosonic bonds for various lattice discretisations including one which is Q-exact.

  9. The Supersymmetric Standard Model

    Science.gov (United States)

    Fayet, Pierre

    2016-10-01

    The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout-Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W± and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying on R-parity and other discrete symmetries, may determine both the supersymmetrybreaking and grand-unification scales.

  10. The Supersymmetric Standard Model

    CERN Document Server

    Fayet, Pierre

    2016-01-01

    The Standard Model may be included within a supersymmetric theory, postulating new sparticles that differ by half-a-unit of spin from their standard model partners, and by a new quantum number called R-parity. The lightest one, usually a neutralino, is expected to be stable and a possible candidate for dark matter. The electroweak breaking requires two doublets, leading to several charged and neutral Brout- Englert-Higgs bosons. This also leads to gauge/Higgs unification by providing extra spin-0 partners for the spin-1 W$^\\pm$ and Z. It offers the possibility to view, up to a mixing angle, the new 125 GeV boson as the spin-0 partner of the Z under two supersymmetry transformations, i.e. as a Z that would be deprived of its spin. Supersymmetry then relates two existing particles of different spins, in spite of their different gauge symmetry properties, through supersymmetry transformations acting on physical fields in a non-polynomial way. We also discuss how the compactification of extra dimensions, relying ...

  11. Supersymmetric SYK models

    CERN Document Server

    Fu, Wenbo; Maldacena, Juan; Sachdev, Subir

    2016-01-01

    We discuss a supersymmetric generalization of the Sachdev-Ye-Kitaev model. These are quantum mechanical models involving $N$ Majorana fermions. The supercharge is given by a polynomial expression in terms of the Majorana fermions with random coefficients. The Hamiltonian is the square of the supercharge. The ${\\cal N}=1$ model with a single supercharge has unbroken supersymmetry at large $N$, but non-perturbatively spontaneously broken supersymmetry in the exact theory. We analyze the model by looking at the large $N$ equation, and also by performing numerical computations for small values of $N$. We also compute the large $N$ spectrum of "singlet" operators, where we find a structure qualitatively similar to the ordinary SYK model. We also discuss an ${\\cal N}=2$ version. In this case, the model preserves supersymmetry in the exact theory and we can compute a suitably weighted Witten index to count the number of ground states, which agrees with the large $N$ computation of the entropy. In both cases, we disc...

  12. Search for production of single top quarks via tcg and tug flavor-changing-neutral-current couplings.

    Science.gov (United States)

    Abazov, V M; Abbott, B; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguilo, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; Asman, B; Assis Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A-F; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benitez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Boehnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Buehler, M; Buescher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Claes, D; Clément, B; Clément, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, M-C; Cox, B; Crépé-Renaudin, S; Cutts, D; Cwiok, M; da Motta, H; Das, A; Davies, B; Davies, G; De, K; de Jong, P; de Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Déliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; Garcia, C; Garcia-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gelé, D; Gerber, C E; Gershtein, Y; Gillberg, D; Ginther, G; Gollub, N; Gómez, B; Goussiou, A; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, Ph; Grivaz, J-F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutierrez, G; Gutierrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Käfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, J M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Y M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J-P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kuhl, T; Kumar, A; Kunori, S; Kupco, A; Kurca, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, J; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Leveque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajicek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Noeding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Otero Y Garzón, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S-J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, M

    2007-11-01

    We search for the production of single top quarks via flavor-changing-neutral-current couplings of a gluon to the top quark and a charm (c) or up (u) quark. We analyze 230 pb{-1} of lepton+jets data from pp[over] collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on the anomalous coupling parameters kappa{g}{c}/Lambda and kappa{g}{u}/Lambda, where kappa{g} define the strength of tcg and tug couplings, and Lambda defines the scale of new physics. The limits at 95% C.L. are kappa{g}{c}/Lambda<0.15 TeV-1 and kappa{g}{u}/Lambda<0.037 TeV-1.

  13. Search for flavor-changing neutral current and lepton-flavor violating decays of D0->l+l-

    CERN Document Server

    Aubert, B; Boutigny, D; Couderc, F; Gaillard, J M; Hicheur, A; Karyotakis, Yu; Lees, J P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, Michael T; Shelkov, V G; Wenzel, W A; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Fritsch, M; Goetzen, K; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Steinke, M; Boyd, J T; Chevalier, N; Cottingham, W N; Kelly, M P; Latham, T E; Wilson, F F; Çuhadar-Dönszelmann, T; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Thiessen, D; Khan, A; Kyberd, P; Teodorescu, L; Blinov, A E; Blinov, V E; Druzhinin, V P; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Bruinsma, M; Chao, M; Eschrich, I; Kirkby, D; Lankford, A J; Mandelkern, M A; Mommsen, R K; Röthel, W; Stoker, D P; Buchanan, C; Hartfiel, B L; Foulkes, S D; Gary, J W; Shen, B C; Wang, K; Del Re, D; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beck, T W; Eisner, A M; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Abe, T; Blanc, F; Bloom, P; Chen, S; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Smith, J G; Zhang, J; Zhang, L; Chen, A; Harton, J L; Soffer, A; Toki, W H; Wilson, R J; Zeng, Q; Altenburg, D; Brandt, T; Brose, J; Dickopp, M; Feltresi, E; Hauke, A; Lacker, H M; Müller-Pfefferkorn, R; Nogowski, R; Otto, S; Petzold, A; Schubert, J; Schubert, Klaus R; Schwierz, R; Spaan, B; Sundermann, J E; Bernard, D; Bonneaud, G R; Brochard, F; Grenier, P; Schrenk, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Bard, D J; Clark, P J; Lavin, D; Muheim, F; Playfer, S; Xie, Y; Andreotti, M; Azzolini, V; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Bailey, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Won, E; Dubitzky, R S; Langenegger, U; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Gaillard, J R; Morton, G W; Nash, J A; Nikolich, M B; Taylor, G P; Charles, M J; Grenier, G J; Mallik, U; Cochran, J; Crawley, H B; Lamsa, J; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Yi, J; Biasini, M; Covarelli, R; Pioppi, M; Davier, M; Giroux, X; Grosdidier, G; Höcker, A; Laplace, S; Le Diberder, F R; Lepeltier, V; Lutz, A M; Petersen, T C; Plaszczynski, S; Schune, M H; Tantot, L; Wormser, G; Cheng, C H; Lange, D J; Simani, M C; Wright, D M; Bevan, A J; Chavez, C A; Coleman, J P; Forster, I J; Fry, J R; Gabathuler, Erwin; Gamet, R; Hutchcroft, D E; Parry, R J; Payne, D J; Sloane, R J; Touramanis, C; Back, J J; Harrison, P F; Mohanty, G B; Cowan, G; Flack, R L; Flächer, H U; Green, M G; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Winter, M A; Brown, D; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Hart, P A; Hodgkinson, M C; Lafferty, G D; Lyon, A J; Williams, J C; Chen, C; Farbin, A; Hulsbergen, W D; Jawahery, A; Kovalskyi, D; Lae, C K; Lillard, V; Roberts, D A; Blaylock, G; Dallapiccola, C; Flood, K T; Hertzbach, S S; Kofler, R; Koptchev, V B; Moore, T B; Saremi, S; Stängle, H; Willocq, S; Cowan, R; Sciolla, G; Sekula, S J; Taylor, F; Yamamoto, R K; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L M; Eschenburg, V; Godang, R; Kroeger, R; Reidy, J; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Taras, P; Nicholson, H; Cavallo, N; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Bulten, H; Raven, G; Snoek, H L; Wilden, L; Jessop, C P; LoSecco, J M; Allmendinger, T; Gan, K K; Honscheid, K; Hufnagel, D; Kagan, H; Kass, R; Pulliam, T; Rahimi, A M; Ter-Antonian, R; Wong, Q K; Brau, J E; Frey, R; Igonkina, O; Potter, C T; Sinev, N B; Strom, D; Torrence, E; Colecchia, F; Dorigo, A; Galeazzi, F; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Tiozzo, G; Voci, C; Benayoun, M; Briand, H; Chauveau, J; David, P; La Vaissière, C de; Del Buono, L; Hamon, O; John, M J J; Leruste, P; Malcles, J; Ocariz, J; Pivk, M; Roos, L; T'Jampens, S; Therin, G; Manfredi, P F; Re, V; Behera, P K; Gladney, L; Guo, Q H; Panetta, J; Angelini, C; Batignani, G; Bettarini, S; Bondioli, M; Bucci, F; Calderini, G; Carpinelli, M; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Martínez-Vidal, F; Neri, N; Paoloni, E; Rama, M; Rizzo, G; Sandrelli, F; Walsh, J; Haire, M; Judd, D; Paick, K; Wagoner, D E; Danielson, N; Elmer, P; Lau, Y P; Lü, C; Miftakov, V; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Pierini, M; Piredda, G; Safai-Tehrani, F; Voena, C; Christ, S; Wagner, G; Waldi, R; Adye, T; De Groot, N; Franek, B J; Geddes, N I; Gopal, G P; Olaiya, E O; Aleksan, Roy; Emery, S; Gaidot, A; Ganzhur, S F; Giraud, P F; Hamel de Monchenault, G; Kozanecki, Witold; Legendre, M; London, G W; Mayer, B; Schott, G; Vasseur, G; Yéche, C; Zito, M; Purohit, M V; Weidemann, A W; Wilson, J R; Yumiceva, F X; Aston, D; Bartoldus, R; Berger, N; Boyarski, A M; Buchmüller, O L; Claus, R; Convery, M R; Cristinziani, M; De Nardo, Gallieno; Dong, D; Dorfan, J; Dujmic, D; Dunwoodie, W M; Elsen, E E; Fan, S; Field, R C; Glanzman, T; Gowdy, S J; Hadig, T; Halyo, V; Hast, C; Hrynóva, T; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Libby, J; Luitz, S; Lüth, V; Lynch, H L; Marsiske, H; Messner, R; Müller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Petrak, S; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Simi, G; Snyder, A; Soha, A; Stelzer, J; Su, D; Sullivan, M K; Vavra, J; Wagner, S R; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Young, C C; Burchat, Patricia R; Edwards, A J; Meyer, T I; Petersen, B A; Roat, C; Ahmed, S; Alam, M S; Ernst, J A; Saeed, M A; Saleem, M; Wappler, F R; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Kim, H; Ritchie, J L; Satpathy, A; Schwitters, R F; Izen, J M; Kitayama, I; Lou, X C; Ye, S; Bianchi, F; Bóna, M; Gallo, F; Gamba, D; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Grancagnolo, S; Lanceri, L; Poropat, P; Vuagnin, G; Panvini, R S; Banerjee, Sw; Brown, C M; Fortin, D; Jackson, P D; Kowalewski, R V; Roney, J M; Sobie, R J; Band, H R; Cheng, B; Dasu, S; Datta, M; Eichenbaum, A M; Graham, M; Hollar, J J; Johnson, J R; Kutter, P E; Li, H; Liu, R; Mihályi, A; Mohapatra, A K; Pan, Y; Prepost, R; Tan, P; Von Wimmersperg-Töller, J H; Wu, J; Wu, S L; Yu, Z; Greene, M G; Neal, H

    2004-01-01

    We report on a search for the flavor-changing neutral current decays $\\Dz\\to e^+e^-$ and $\\Dz\\to\\mu^+\\mu^-$, and the lepton-flavor violating decay $\\Dz\\to e^\\pm\\mu^\\mp$. The measurement is based on $122 {fb}^{-1}$ of data collected by the \\babar detector at the PEP-II asymmetric $e^+e^-$ collider. No evidence is found for any of the decays. The upper limits on the branching fractions, at the 90 % confidence level, are $1.2\\times 10^{-6}$ for $\\Dz\\to e^+e^-$, $1.3\\times 10^{-6}$ for $\\Dz\\to\\mu^+\\mu^-$, and $8.1\\times 10^{-7}$ for $\\Dz\\to e^\\pm\\mu^\\mp$.

  14. Search for production of single top quarks via $tcg$ and $tug$ flavor-changing neutral current couplings

    CERN Document Server

    Abazov, V M; Abolins, M; Acharya, B S; Adams, M; Adams, T; Aguiló, E; Ahn, S H; Ahsan, M; Alexeev, G D; Alkhazov, G; Alton, A; Alverson, G; Alves, G A; Anastasoaie, M; Ancu, L S; Andeen, T; Anderson, S; Andrieu, B; Anzelc, M S; Arnoud, Y; Arov, M; Askew, A; sman, B; Assis-Jesus, A C S; Atramentov, O; Autermann, C; Avila, C; Ay, C; Badaud, F; Baden, A; Bagby, A L; Baldin, B; Bandurin, D V; Banerjee, P; Banerjee, S; Barberis, E; Barfuss, A F; Bargassa, P; Baringer, P; Barnes, C; Barreto, J; Bartlett, J F; Bassler, U; Bauer, D; Beale, S; Bean, A; Begalli, M; Begel, M; Belanger-Champagne, C; Bellantoni, L; Bellavance, A; Benítez, J A; Beri, S B; Bernardi, G; Bernhard, R; Berntzon, L; Bertram, I; Besançon, M; Beuselinck, R; Bezzubov, V A; Bhat, P C; Bhatnagar, V; Binder, M; Biscarat, C; Blackler, I; Blazey, G; Blekman, F; Blessing, S; Bloch, D; Bloom, K; Böhnlein, A; Boline, D; Bolton, T A; Boos, E E; Borissov, G; Bos, K; Bose, T; Brandt, A; Brock, R; Brooijmans, G; Bross, A; Brown, D; Buchanan, N J; Buchholz, D; Bühler, M; Büscher, V; Bunichev, V; Burdin, S; Burke, S; Burnett, T H; Busato, E; Buszello, C P; Butler, J M; Calfayan, P; Calvet, S; Cammin, J; Caron, S; Carvalho, W; Casey, B C K; Cason, N M; Castilla-Valdez, H; Chakrabarti, S; Chakraborty, D; Chan, K; Chan, K M; Chandra, A; Charles, F; Cheu, E; Chevallier, F; Cho, D K; Choi, S; Choudhary, B; Christofek, L; Christoudias, T; Claes, D; Clment, B; Clment, C; Coadou, Y; Cooke, M; Cooper, W E; Corcoran, M; Couderc, F; Cousinou, ee M C; Cox, B; Crepe-Renaudin, S; Cutts, D; Cwiok, M; Da Motta, H; Das, A; Davies, B; Davies, eeG; De, K; de Jong, P; De Jong, S J; De La Cruz-Burelo, E; De Oliveira Martins, C; Degenhardt, J D; Dliot, F; Demarteau, M; Demina, R; Denisov, D; Denisov, S P; Desai, S; Diehl, e H T; Diesburg, M; Doidge, M; Dominguez, A; Dong, H; Dudko, L V; Duflot, L; Dugad, S R; Duggan, D; Duperrin, A; Dyer, J; Dyshkant, A; Eads, M; Edmunds, D; Ellison, J; Elvira, V D; Enari, Y; Eno, S; Ermolov, P; Evans, H; Evdokimov, A; Evdokimov, V N; Ferapontov, A V; Ferbel, T; Fiedler, F; Filthaut, F; Fisher, W; Fisk, H E; Ford, M; Fortner, M; Fox, H; Fu, S; Fuess, S; Gadfort, T; Galea, C F; Gallas, E; Galyaev, E; García, C; García-Bellido, A; Gavrilov, V; Gay, P; Geist, W; Gel, D; Gerber, C E; Gershtein, Yu; Gillberg, D; Ginther, G; Gollub, N; Gmez, B; Goussiou, eoA; Grannis, P D; Greenlee, H; Greenwood, Z D; Gregores, E M; Grenier, G; Gris, P; Grivaz, J F; Grohsjean, A; Grünendahl, S; Grünewald, M W; Guo, F; Guo, J; Gutíerrez, G; Gutíerrez, P; Haas, A; Hadley, N J; Haefner, P; Hagopian, S; Haley, J; Hall, I; Hall, R E; Han, L; Hanagaki, K; Hansson, P; Harder, K; Harel, A; Harrington, R; Hauptman, J M; Hauser, R; Hays, J; Hebbeker, T; Hedin, D; Hegeman, J G; Heinmiller, J M; Heinson, A P; Heintz, U; Hensel, C; Herner, K; Hesketh, G; Hildreth, M D; Hirosky, R; Hobbs, J D; Hoeneisen, B; Hoeth, H; Hohlfeld, M; Hong, S J; Hooper, R; Houben, P; Hu, Y; Hubacek, Z; Hynek, V; Iashvili, I; Illingworth, R; Ito, A S; Jabeen, S; Jaffré, M; Jain, S; Jakobs, K; Jarvis, C; Jenkins, A; Jesik, R; Johns, K; Johnson, C; Johnson, M; Jonckheere, A; Jonsson, P; Juste, A; Kfer, D; Kahn, S; Kajfasz, E; Kalinin, A M; Kalk, aJ M; Kalk, J R; Kappler, S; Karmanov, D; Kasper, J; Kasper, P; Katsanos, I; Kau, D; Kaur, R; Kehoe, R; Kermiche, S; Khalatyan, N; Khanov, A; Kharchilava, A; Kharzheev, Yu M; Khatidze, D; Kim, H; Kim, T J; Kirby, M H; Klima, B; Kohli, J M; Konrath, J P; Kopal, M; Korablev, V M; Kotcher, J; Kothari, B; Koubarovsky, A; Kozelov, A V; Krop, D; Kryemadhi, A; Kühl, T; Kumar, A; Kunori, S; Kupco, A; Kura, T; Kvita, J; Lam, D; Lammers, S; Landsberg, G; Lazoflores, cJ; Lebrun, P; Lee, W M; Leflat, A; Lehner, F; Lesne, V; Lévêque, J; Lewis, P; Li, J; Li, L; Li, Q Z; Lietti, S M; Lima, J G R; Lincoln, D; Linnemann, J; Lipaev, V V; Lipton, R; Liu, Z; Lobo, L; Lobodenko, A; Lokajícek, M; Lounis, A; Love, P; Lubatti, H J; Lynker, M; Lyon, A L; Maciel, A K A; Madaras, R J; Mättig, P; Magass, C; Magerkurth, A; Makovec, N; Mal, P K; Malbouisson, H B; Malik, S; Malyshev, V L; Mao, H S; Maravin, Y; Martin, B; McCarthy, R; Melnitchouk, A; Mendes, A; Mendoza, L; Mercadante, P G; Merkin, M; Merritt, K W; Meyer, A; Meyer, J; Michaut, M; Miettinen, H; Millet, T; Mitrevski, J; Molina, J; Mommsen, R K; Mondal, N K; Monk, J; Moore, R W; Moulik, T; Muanza, G S; Mulders, M; Mulhearn, M; Mundal, O; Mundim, L; Nagy, E; Naimuddin, M; Narain, M; Naumann, N A; Neal, H A; Negret, J P; Neustroev, P; Nilsen, H; Nöding, C; Nomerotski, A; Novaes, S F; Nunnemann, T; O'Dell, V; O'Neil, D C; Obrant, G; Ochando, C; Oguri, V; Oliveira, N; Onoprienko, D; Oshima, N; Osta, J; Otec, R; Oteroy-Garzon, G J; Owen, M; Padley, P; Pangilinan, M; Parashar, N; Park, S J; Park, S K; Parsons, J; Partridge, R; Parua, N; Patwa, A; Pawloski, G; Perea, P M; Perfilov, M; Peters, K; Peters, Y; Pétroff, P; Petteni, e M; Piegaia, R; Piper, J; Pleier, M A; Podesta-Lerma, P L M; Podstavkov, V M; Pogorelov, Y; Pol, M E; Pompo, A; Pope, B G; Popov, A V; Potter, C; Prado da Silva, W L; Prosper, H B; Protopopescu, sS; Qian, J; Quadt, A; Quinn, B; Rangel, M S; Rani, K J; Ranjan, K; Ratoff, P N; Renkel, P; Reucroft, S; Rijssenbeek, M; Ripp-Baudot, I; Rizatdinova, F; Robinson, S; Rodrigues, R F; Royon, C; Rubinov, P; Ruchti, R; Sajot, G; Sánchez-Hernández, A; Sanders, M P; Santoro, A; Savage, G; Sawyer, L; Scanlon, T; Schaile, A D; Schamberger, R D; Scheglov, Y; Schellman, H; Schieferdecker, P; Schmitt, C; Schwanenberger, C; Schwartzman, A; Schwienhorst, R; Sekaric, J; Sen-Gupta, S; Severini, H; Shabalina, E; Shamim, M; Shary, V; Shchukin, A A; Shivpuri, R K; Shpakov, D; Siccardi, V; Sidwell, R A; Simák, V; Sirotenko, V; Skubic, P; Slattery, P; Smirnov, D; Smith, R P; Snow, G R; Snow, J; Snyder, S; Söldner-Rembold, S; Sonnenschein, L; Sopczak, A; Sosebee, M; Soustruznik, K; Souza, M; Spurlock, B; Stark, J; Steele, J; Stolin, V; Stone, A; Stoyanova, D A; Strandberg, J; Strandberg, S; Strang, M A; Strauss, M; Ströhmer, R; Strom, D; Strovink, M; Stutte, L; Sumowidagdo, S; Svoisky, P; Sznajder, A; Talby, M; Tamburello, P; Taylor, W; Telford, P; Temple, J; Tiller, B; Tissandier, F; Titov, M; Tokmenin, V V; Tomoto, M; Toole, T; Torchiani, I; Trefzger, T; Trincaz-Duvoid, S; Tsybychev, D; Tuchming, B; Tully, C; Tuts, P M; Unalan, R; Uvarov, L; Uvarov, S; Uzunyan, S; Vachon, B; vanden Berg, P J; van Eijk, B; Van Kooten, R; Van Leeuwen, W M; Varelas, N; Varnes, E W; Vartapetian, A; Vasilyev, I A; Vaupel, M; Verdier, P; Vertogradov, L S; Verzocchi, M; Villeneuve-Séguier, F; Vint, P; Vlimant, J R; Von Törne, E; Voutilainen, M; Vreeswijk, M; Wahl, H D; Wang, L; SWang, M H L; Warchol, J; Watts, G; Wayne, M; Weber, G; Weber, M; Weerts, H; Wenger, A; Wermes, N; Wetstein, M; White, A; Wicke, D; Wilson, G W; Wimpenny, S J; Wobisch, M; Wood, D R; Wyatt, T R; Xie, Y; Yacoob, S; Yamada, R; Yan, M; Yasuda, T; Yatsunenko, Y A; Yip, K; Yoo, H D; Youn, S W; Yu, C; Yu, J; Yurkewicz, A; Zatserklyaniy, A; Zeitnitz, C; Zhang, D; Zhao, T; Zhou, B; Zhu, J; Zielinski, M; Zieminska, D; Zieminski, A; Zutshi, V; Zverev, E G

    2007-01-01

    We search for the production of single top quarks via flavor-changing neutral current couplings of a gluon to the top quark and a charm ($c$) or up ($u$) quark. We analyze 230 pb$^{-1}$ of lepton + jets data from $\\ppbar$ collisions at a center of mass energy of 1.96 TeV collected by the D0 detector at the Fermilab Tevatron Collider. We observe no significant deviation from standard model predictions, and hence set upper limits on the anomalous coupling parameters $\\kappacLambda$ and $\\kappauLambda$, where $\\kappag$ define the strength of $tcg$ and $tug$ couplings, and $\\Lambda$ defines the scale of new physics. The limits at 95% C.L. are: $\\kappacLambda < 0.15 \\rm TeV^{-1}$ and $\\kappauLambda < 0.037 \\rm TeV^{-1}$.

  15. Flavor changing top quark decay and bottom-strange production in the littlest Higgs model with T-parity

    CERN Document Server

    Zhou, Ya-Jin; Sun, Hao

    2012-01-01

    Flavor changing effects on the processes \\tch, \\eebs, \\eebsh and \\ppbs in the LHT model are investigated in this paper. We calculate the one-loop level contributions from the T-parity odd mirror quarks and gauge bosons. The results show that the top quark rare decay \\tch in the LHT model can be significantly enhanced relative to that in the SM. The $b\\bar{s}$ production at linear colliders in the LHT model can enhance the SM cross section a lot and reach 0.1 fb in some parameter space allowed in the experiment. But the heavy gauge boson and mirror fermion loops have small contribution to the processes \\ppbs and \\eebsh. So the LHT effect on \\eebs might be detected at future linear colliders, while it's too small to be seen for the \\eebsh and \\ppbs processes at future linear colliders and LHC.

  16. Counting Trees in Supersymmetric Quantum Mechanics

    CERN Document Server

    Cordova, Clay

    2015-01-01

    We study the supersymmetric ground states of the Kronecker model of quiver quantum mechanics. This is the simplest quiver with two gauge groups and bifundamental matter fields, and appears universally in four-dimensional N=2 systems. The ground state degeneracy may be written as a multi-dimensional contour integral, and the enumeration of poles can be simply phrased as counting bipartite trees. We solve this combinatorics problem, thereby obtaining exact formulas for the degeneracies of an infinite class of models. We also develop an algorithm to compute the angular momentum of the ground states, and present explicit expressions for the refined indices of theories where one rank is small.

  17. Supersymmetric black holes in string theory

    Energy Technology Data Exchange (ETDEWEB)

    Mohaupt, T. [Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool, Peach Street, Liverpool L69 7ZL (United Kingdom)

    2007-05-15

    We review recent developments concerning supersymmetric black holes in string theory. After a general introduction to the laws of black hole mechanics and to black hole entropy in string theory, we discuss black hole solutions in N=2 supergravity, special geometry, the black hole attractor equations and the underlying variational principle. Special attention is payed to the crucial role of higher derivative corrections. Finally we discuss black hole partition functions and their relation with the topological string, mainly from the supergravity perspective. We summarize the state of art and discuss various open questions and problems. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  18. Particle astrophysics of nonlinear supersymmetric general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Shima, K.; Tsuda, M. [Laboratory of Physics, Saitama Institute of Technology, Fukaya, Saitama (Japan)

    2009-05-15

    An explanation of relations between the large scale structure of the universe and the tiny scale structure of the particle physics, e.g. the observed mysterious relation between the (dark) energy density and the dark matter of the universe and the neutrino mass and the SUSY breaking mass scale of the particle physics may be given by the nonlinear supersymmetric general relativity (NLSUSY GR). NLSUSY GR shows that considering the physics before/of the big bang (BB) of the universe may be significant and may give new insight to unsolved problems of the low energy particle physics, cosmology and their relations. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Supersymmetric vacua in random supergravity

    Science.gov (United States)

    Bachlechner, Thomas C.; Marsh, David; McAllister, Liam; Wrase, Timm

    2013-01-01

    We determine the spectrum of scalar masses in a supersymmetric vacuum of a general mathcal{N}=1 supergravity theory, with the Kähler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P=exp left( {{{{-2{N^2}{{{left| W right|}}^2}}} left/ {{m_{susy}^2}} right.}} right) , with W denoting the superpotential and m susy the supersymmetric mass scale; for more general distributions of the entries, our result is accurate when N ≫ 1. We conclude that for left| W right|gtrsim {{{{m_{susy}}}} left/ {N} right.} , tachyonic instabilities are ubiquitous in configurations obtained by uplifting supersymmetric vacua.

  20. CP Violation in Supersymmetric U(1)' Models

    CERN Document Server

    Demir, D A

    2004-01-01

    The supersymmetric CP problem is studied within superstring-motivated extensions of the MSSM with an additional U(1)' gauge symmetry broken at the TeV scale. This class of models offers an attractive solution to the mu problem of the MSSM, in which U(1)' gauge invariance forbids the bare mu term, but an effective mu parameter is generated by the vacuum expectation value of a Standard Model singlet S which has superpotential coupling of the form SH_uH_d to the electroweak Higgs doublets. The effective mu parameter is thus dynamically determined as a function of the soft supersymmetry breaking parameters, and can be complex if the soft parameters have nontrivial CP-violating phases. We examine the phenomenological constraints on the reparameterization invariant phase combinations within this framework, and find that the supersymmetric CP problem can be greatly alleviated in models in which the phase of the SU(2) gaugino mass parameter is aligned with the soft trilinear scalar mass parameter associated with the ...

  1. A new supersymmetric classical Boussinesq equation

    Institute of Scientific and Technical Information of China (English)

    Zhang Meng-Xia; Liu Qing-Ping; Wang Juan; Wu Ke

    2008-01-01

    In this paper,we obtain a supersymmetric generalization for the classical Boussinesq equation.We show that the supersymmetric equation system passes the Painlevé test and we also calculate its one- and two-soliton solutions.

  2. Supersymmetric q-deformed quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  3. A review of Higgs mass calculations in supersymmetric models

    DEFF Research Database (Denmark)

    Draper, P.; Rzehak, H.

    2016-01-01

    related to the electroweak hierarchy problem. Perhaps the most extensively studied examples are supersymmetric models, which, while capable of producing a 125 GeV Higgs boson with SM-like properties, do so in non-generic parts of their parameter spaces. We review the computation of the Higgs mass...... in the Minimal Supersymmetric Standard Model, in particular the large radiative corrections required to lift mh to 125 GeV and their calculation via Feynman-diagrammatic and effective field theory techniques. This review is intended as an entry point for readers new to the field, and as a summary of the current...

  4. The holographic supersymmetric Casimir energy

    Science.gov (United States)

    Benetti Genolini, Pietro; Cassani, Davide; Martelli, Dario; Sparks, James

    2017-01-01

    We consider a general class of asymptotically locally AdS5 solutions of minimal gauged supergravity, which are dual to superconformal field theories on curved backgrounds S1×M3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S1×R4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory supersymmetric relation between charges.

  5. n = 4 supersymmetric FRW model

    Energy Technology Data Exchange (ETDEWEB)

    Rosales, J.J.; Pashnev, A. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna, 141980 (Russian Federation); Tkach, V.I. [Instituto de Fisica, Universidad de Guanajuato, 05315-970 Leon, 66318 Guanajuato (Mexico)]. e-mail: juan@ifug3.ugto.mx, pashnev@thsun1.jinr.ru, vladimir@ifug3.ugto.mx

    2003-07-01

    In this work we have constructed the n = 4 extended local conformal time supersymmetry for the Friedmann-Robertson-Walker cosmological models. This is based on the superfield construction of the action, which is invariant under world line local n = 4 supersymmetry with SU(2){sub local} X SU(2){sub global} internal subgroup. It is shown that the supersymmetric action has the form of the localized (or superconformal) version of the action for n = 4 supersymmetric quantum mechanics. This superfield procedure provides a well defined scheme for including super matter. (Author)

  6. Bilinear approach to the supersymmetric Gardner equation

    Science.gov (United States)

    Babalic, C. N.; Carstea, A. S.

    2016-08-01

    We study a supersymmetric version of the Gardner equation (both focusing and defocusing) using the superbilinear formalism. This equation is new and cannot be obtained from the supersymmetric modified Korteweg-de Vries equation with a nonzero boundary condition. We construct supersymmetric solitons and then by passing to the long-wave limit in the focusing case obtain rational nonsingular solutions. We also discuss the supersymmetric version of the defocusing equation and the dynamics of its solutions.

  7. Resurgent Analysis of Localizable Observables in Supersymmetric Gauge Theories

    CERN Document Server

    Aniceto, Inês; Schiappa, Ricardo

    2015-01-01

    Localization methods have recently led to a plethora of new exact results in supersymmetric gauge theories, as certain observables may be computed in terms of matrix integrals. These can then be evaluated by making use of standard large N techniques, or else via perturbative expansions in the gauge coupling. Either approximation often leads to observables given in terms of asymptotic series, which need to be properly defined in order to obtain nonperturbative results. At the same time, resurgent analysis has recently been successfully applied to several problems, e.g., in quantum, field and string theories, precisely to overcome this issue and construct nonperturbative answers out of asymptotic perturbative expansions. The present work uses exact results from supersymmetric localization to address the resurgent structure of the free energy and partition function of Chern-Simons and ABJM gauge theories in three dimensions, and of N=2 supersymmetric Yang-Mills theories in four dimensions. For each case, the com...

  8. The Minimal Supersymmetric Model without a mu term

    CERN Document Server

    Nelson, A E; Sanz, V; Unsal, M; Nelson, Ann E.; Rius, Nuria; Sanz, Veronica; Unsal, Mithat

    2002-01-01

    We propose a supersymmetric extension of the standard model which is a realistic alternative to the MSSM, and which has several advantages. No ``mu'' supersymmetric Higgs/Higgsino mass parameter is needed for sufficiently heavy charginos. An approximate U(1) R symmetry naturally guarantees that tan beta is large, explaining the top/bottom quark mass hierarchy. This symmetry also suppresses supersymmetric contributions to anomalous magnetic moments, b to s gamma, and proton decay, and these processes place no lower bounds on superpartner masses, even at large tan beta. The soft supersymmetry breaking mass parameters can easily be obtained from either gauge or Planck scale mediation, without the usual mu problem. Unlike in the MSSM, there are significant upper bounds on the masses of superpartners, including an upper bound of 114 GeV on the mass of the lightest chargino. However the MSSM bound on the lightest Higgs mass does not apply.

  9. Deviations From Newton's Law in Supersymmetric Large Extra Dimensions

    CERN Document Server

    Callin, P

    2006-01-01

    Deviations from Newton's Inverse-Squared Law at the micron length scale are smoking-gun signals for models containing Supersymmetric Large Extra Dimensions (SLEDs), which have been proposed as approaches for resolving the Cosmological Constant Problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the Dark Energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant natu...

  10. From Scalar Field Theories to Supersymmetric Quantum Mechanics

    CERN Document Server

    Bazeia, D

    2016-01-01

    In this work we report a new result that appears when one investigates the route that starts from a scalar field theory and ends on a supersymmetric quantum mechanics. The subject has been studied before in several distinct ways and here we unveil an interesting novelty, showing that the same scalar field model may describe distinct quantum mechanical problems.

  11. Broken R parity contributions to flavor changing rates and CP asymmetries in fermion pair production at leptonic colliders

    Science.gov (United States)

    Chemtob, M.; Moreau, G.

    1999-06-01

    We examine the effects of the R parity odd renormalizable interactions on flavor changing rates and CP asymmetries in the production of fermion-antifermion pairs at leptonic (electron and muon) colliders. In the reactions l-+l+-->fJ+f¯J' (l=e, μ J≠J') the produced fermions may be leptons, down quarks, or up quarks, and the center of mass energies may range from the Z-boson pole up to 1000 GeV. Off the Z-boson pole, the flavor changing rates are controlled by tree level amplitudes and the CP asymmetries by interference terms between tree and loop level amplitudes. At the Z-boson pole, both observables involve loop amplitudes. The lepton number violating interactions, associated with the coupling constants λijk, λ'ijk, are only taken into account. The consideration of loop amplitudes is restricted to the photon and Z-boson vertex corrections. We briefly review flavor violation physics at colliders. We present numerical results using a single, species and family independent, mass parameter m~ for all the scalar superpartners and considering simple assumptions for the family dependence of the R parity odd coupling constants. Finite nondiagonal rates (CP asymmetries) entail nonvanishing products of two (four) different coupling constants in different family configurations. For lepton pair production, the Z-boson decays branching ratios BJJ'=B(Z-->l-J+l+J') scale in order of magnitude as BJJ'~(λ/0.1)4(100 GeV/m~)2.510-9, with coupling constants λ=λijk or λ'ijk in appropriate family configurations. The corresponding results for d- and u quarks are larger, due to an extra color factor Nc=3. The flavor nondiagonal rates, at energies well above the Z-boson pole, slowly decrease with the center of mass energy and scale with the mass parameter approximately as σJJ'~(λ/0.1)4(100 GeV/m~)2-3(1-10) fbarn. Including the contributions from an sneutrino s-channel exchange could raise the rates for leptons or d quarks by one order of magnitude. The CP-odd asymmetries at

  12. Supersymmetric Vacua in Random Supergravity

    CERN Document Server

    Bachlechner, Thomas C; McAllister, Liam; Wrase, Timm

    2012-01-01

    We determine the spectrum of scalar masses in a supersymmetric vacuum of a general N=1 supergravity theory, with the Kahler potential and superpotential taken to be random functions of N complex scalar fields. We derive a random matrix model for the Hessian matrix and compute the eigenvalue spectrum. Tachyons consistent with the Breitenlohner-Freedman bound are generically present, and although these tachyons cannot destabilize the supersymmetric vacuum, they do influence the likelihood of the existence of an `uplift' to a metastable vacuum with positive cosmological constant. We show that the probability that a supersymmetric AdS vacuum has no tachyons is formally equivalent to the probability of a large fluctuation of the smallest eigenvalue of a certain real Wishart matrix. For normally-distributed matrix entries and any N, this probability is given exactly by P = exp(-2N^2|W|^2/m_{susy}^2), with W denoting the superpotential and m_{susy} the supersymmetric mass scale; for more general distributions of the...

  13. Introduction to Supersymmetric Gauge Theories

    CERN Document Server

    Piguet, O

    1997-01-01

    In these lectures I present a basic introduction to supersymmetry, especially to N=1 supersymmetric gauge theories and their renormalization, in the Wess-Zumino gauge. I also discuss the various ways supersymmetry may be broken in order to account for the lack of exact supersymmetry in the actual world of elementary particles.

  14. Supersymmetric classical mechanics: free case

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica

    2001-06-01

    We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)

  15. Rare top decay t →c γ with flavor changing neutral scalar interactions in two Higgs doublet model

    Science.gov (United States)

    Gaitán, R.; Montes de Oca, J. H.; Garcés, E. A.; Martinez, R.

    2016-11-01

    Models beyond the standard model with extra scalars have been highly motivated by the recent discovery of the Higgs boson. The two Higgs doublet model type III considers the most general case for the scalar potential, allowing mixing between neutral C P -even and C P -odd scalar fields. This work presents the results of the study on the t →c γ decay at one loop level if neutral flavor changing is generated by top-charm-Higgs coupling given by the Yukawa matrix. For instance, a value for the branching ratio Br (t →c γ )˜10-6 for tan β =2.5 and general neutral Higgs mixing parameters, 1.16 ≤α1≤1.5 , -0.48 ≤α2≤-0.1 . The number of events for the t →c γ decay with an integrated luminosity of 300 fb-1 is estimated as 10 ≲NEff≲100 for the parameters of the model constrained by experimental data.

  16. Rare top decay $t\\rightarrow c\\gamma$ with flavor changing neutral scalar interactions in THDM

    CERN Document Server

    Gaitán, Ricardo; de Oca, Jose Halim Montes

    2015-01-01

    Models beyond the Standard Model with extra scalars are highly motivated by the recent discovery of scalar Higgs boson. The Two Higgs Doublet Model Type III considers the most general case for the scalar potential, allowing mixing between neutral CP-even and CP-odd scalar fields. In the present work, we study the decay $t\\rightarrow c\\gamma$ at one loop level where neutral flavor changing is generated by top-charm-Higgs coupling giving by the Yukawa term. We obtain $Br(t\\rightarrow c\\gamma)$ of the order of $10^{-6}$ for $\\tan\\beta=2.5$ and general neutral Higgs mixing parameters $1.16\\leq\\alpha_1\\leq1.5$, $-0.48\\leq\\alpha_2\\leq-0.1$. Finally, 700 events are estimated for the decay $t\\rightarrow c\\gamma$ in $pp$ collisions at LHC by assuming an integrated luminosity of $300\\,\\textrm{fb}^{-1}$.

  17. Single t-Quark Productions via Flavor-Changing Processes in Topcolor-Assisted Technicolor Model at Hadron Colliders

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Qiang; XU Wen-Na; WANG Guang-Rui; WANG Xue-Lei; CHEN Shi-Gang; XIAO Zhen-Jun

    2008-01-01

    In the framework of topcolor-assisted technicolor (TC2) model, there exist tree-level flavor-changing (FC)couplings, which can result in the loop-level FC coupling tcg. Such tcg coupling can contribute significant clues at the forthcoming Large Hadron Collider (LHC) experiments. In this paper, based on the TC2 model, we study some single t-quark production processes involving tc9 coupling at the Tevatron and LHC: pp(pp) → tq (q = u, d, s), tg. We calculate the cross sections of these processes. The results show that the cross sections at the Tevatron are too small to observe the signal, but at the LHC it can reach a few pb. With the high luminosity, the LHC has considerable capability to find the single t-quark signal produced via some FC processes involving coupling tcg. On the other hand, these processes can also provide some valuable information of the coupling tc9 with detailed study of the processes and furthermore provide the reliable evidence to test the TC2 model.

  18. Evidence for the Flavor Changing Neutral Current Decays B to K l+ l- and B to K* l+ l-

    CERN Document Server

    Aubert, Bernard; Gaillard, Jean-Marc; Hicheur, A; Karyotakis, Yu; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu G; Kral, J F; Le Clerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, Michael T; Shelkov, V G; Telnov, A V; Wenzel, W A; Harrison, T J; Hawkes, C M; Knowles, D J; O'Neale, S W; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Peters, K; Schmücker, H; Steinke, M; Barlow, N R; Bhimji, W; Boyd, J T; Chevalier, N; Clark, P J; Cottingham, W N; MacKay, C; Wilson, F F; Abe, K; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Jolly, S; McKemey, A K; Blinov, V E; Bukin, A D; Buzykaev, A R; Golubev, V B; Ivanchenko, V N; Korol, A A; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M A; McMahon, S; Stoker, D P; Buchanan, C; Chun, S; Hadavand, H K; Hill, E J; MacFarlane, D B; Paar, H P; Prell, S; Rahatlou, S; Raven, G; Schwanke, U; Sharma, V; Berryhill, J W; Campagnari, C; Dahmes, B; Hart, P A; Kuznetsova, N P; Levy, S L; Long, O; Lu, A; Mazur, M A; Richman, J D; Verkerke, W; Beringer, J; Eisner, A M; Grothe, M; Heusch, C A; Lockman, W S; Pulliam, T; Schalk, T L; Schmitz, R E; Schumm, B A; Seiden, A; Turri, M; Walkowiak, W; Williams, D C; Wilson, M G; Chen, E; Dubois-Felsmann, G P; Dvoretskii, A; Hitlin, D G; Porter, F C; Ryd, A; Samuel, A; Yang, S; Jayatilleke, S M; Mancinelli, G; Meadows, B T; Sokoloff, M D; Barillari, T; Bloom, P; Ford, W T; Nauenberg, U; Olivas, A; Rankin, P; Roy, J; Smith, J G; Van Hoek, W C; Zhang, L; Harton, J L; Hu, T; Krishnamurthy, M; Soffer, A; Toki, W H; Wilson, R J; Zhang, J; Altenburg, D; Brandt, T; Brose, J; Colberg, T; Dickopp, M; Dubitzky, R S; Hauke, A; Maly, E; Müller-Pfefferkorn, R; Otto, S; Schubert, Klaus R; Schwierz, R; Spaan, B; Wilden, L; Bernard, D; Bonneaud, G R; Brochard, F; Cohen-Tanugi, J; Ferrag, S; T'Jampens, S; Thiebaux, C; Vasileiadis, G; Verderi, M; Anjomshoaa, A; Bernet, R; Khan, A; Lavin, D; Muheim, F; Playfer, S; Swain, J E; Tinslay, J; Falbo, M; Borean, C; Bozzi, C; Piemontese, L; Sarti, A; Treadwell, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; De Sangro, R; Falciai, D; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Zallo, A; Bagnasco, S; Buzzo, A; Contri, R; Crosetti, G; Lo Vetere, M; Macri, M; Monge, M R; Passaggio, S; Pastore, F C; Patrignani, C; Robutti, E; Santroni, A; Tosi, S

    2002-01-01

    We present preliminary results from a search for the rare, flavor-changing neutral current decays B to K l+ l- and B to K* l+ l-, where l+ l- is either an e+ e- or mu+ mu- pair. The data sample comprises (84.4 +- 0.9) X 10e6 upsilon(4S) to B B-bar decays (77.8 /fb) collected with the BaBar detector at the PEP-II B factory. For B to K l+ l-, we observe a signal with estimated significance of 4.4 sigma and obtain B(B to K l+ l-) = (0.78 +0.24 -0.20 +0.11 -0.18) X 10e-6 (averaged over l = e and mu). For B to K* l+ l-, we observe an excess of events over background with estimated significance of 2.8 sigma. We obtain B(B to K* l+ l-) = (1.68 +0.68 -0.58 +-0.28) X 10e-6 and the 90% C.L. upper limit B(B to K* l+ l-) < 3.0 X 10e-6.

  19. Flavor Changing Top Quark Decay and Bottom-Strange Production in the Littlest Higgs Model with T-parity

    Institute of Scientific and Technical Information of China (English)

    HOU Hong-Sheng; SUN Hao; ZHOU Ya-Jin

    2013-01-01

    Flavor changing effects on the processes t → ch,e+e-→ b-s,e+e-→ b-sh and pp → b-s in the LHT model are investigated in this paper.We calculate the one-loop level contributions from the T-parity odd mirror fermions and gauge bosons.The results show that the top quark rare decay t → ch in the LHT model can be significantly enhanced relative to that in the SM.The b-s production at linear colliders in the LHT model can enhance the SM cross section a lot and reach 0.1 Fb in some parameter space allowed in the experiment.But the heavy gauge boson and mirror fermion loops have small contribution to the processes pp → b-s and e+e-→ b-sh.So the LHT effect on e+e-→ b-s might be detected at future linear colliders,while it is too small to be seen for the e+ e-→ b-sh and pp → b-s processes at future linear colliders and LHC.

  20. Supersymmetric Microscopic Theory of the Standard Model

    CERN Document Server

    Ter-Kazarian, G T

    2000-01-01

    We promote the microscopic theory of standard model (MSM, hep-ph/0007077) into supersymmetric framework in order to solve its technical aspects of vacuum zero point energy and hierarchy problems, and attempt, further, to develop its realistic viable minimal SUSY extension. Among other things that - the MSM provides a natural unification of geometry and the field theory, has clarified the physical conditions in which the geometry and particles come into being, in microscopic sense enables an insight to key problems of particle phenomenology and answers to some of its nagging questions - a present approach also leads to quite a new realization of the SUSY yielding a physically realistic particle spectrum. It stems from the special subquark algebra, from which the nilpotent supercharge operators are derived. The resulting theory makes plausible following testable implications for the current experiments at LEP2, at the Tevatron and at LHC drastically different from those of the conventional MSSM models: 1. All t...

  1. Supersymmetric leptogenesis and light hidden sectors

    CERN Document Server

    Weniger, Christoph

    2010-01-01

    Thermal leptogenesis and supergravity are attractive scenarios for physics beyond the standard model. However, it is well known that the super-weak interaction of the gravitino often leads to problems with primordial nucleosynthesis in the standard scenario of matter parity conserving MSSM + three right-handed neutrinos. We will present and compare two related solutions to these problems: 1) The conflict between BBN and leptogenesis can be avoided in presence of a hidden sector with light supersymmetric particles which open new decay channels for the dangerous long-lived particles. 2) If there is a condensate in the hidden sector, such additional decay channels can be alternatively opened by dynamical breaking of matter parity in the hidden sector.

  2. Towards gauge unified, supersymmetric hidden strong dynamics

    CERN Document Server

    Chiang, Cheng-Wei; Ye, Fang

    2016-01-01

    We consider a class of models with extra complex scalars that are charged under both the Standard Model and a hidden strongly coupled $SU(N)_H$ gauge sector, and discuss the scenarios where the new scalars are identified as the messenger fields that mediate the spontaneously broken supersymmetries from the hidden sector to the visible sector. The new scalars are embedded into 5-plets and 10-plets of an $SU(5)_V$ gauge group that potentially unifies the Standard Model gauge groups. They also form a tower of bound states via hidden strong dynamics around the TeV scale. The Higgs bosons remain as elementary particles. Quadratically divergent contributions to the Higgs mass from the Standard Model fermions are canceled by the new scalar contributions to alleviate the fine-tuning problem. We also discuss a supersymmetrized version of this class of models, consisting of the minimal supersymmetric Standard Model plus extra chiral multiplets where the new scalars reside. Due to the hidden strong force, the new low-en...

  3. Quantum supersymmetric Bianchi IX cosmology

    Science.gov (United States)

    Damour, Thibault; Spindel, Philippe

    2014-11-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing (to one timelike dimension) the action of D =4 simple supergravity for a S U (2 ) -homogeneous (Bianchi IX) cosmological model. The quantization of the homogeneous gravitino field leads to a 64-dimensional fermionic Hilbert space. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a 64-component spinor of spin(8,4) depending on the three squashing parameters, which satisfies Dirac-like, and Klein-Gordon-like, wave equations describing the propagation of a "quantum spinning particle" reflecting off spin-dependent potential walls. The algebra of the supersymmetry constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the (infinite-dimensional) maximally compact subalgebra of the rank-3 hyperbolic Kac-Moody algebra A E3 . The (quartic-in-fermions) squared-mass term μ^ 2 entering the Klein-Gordon-like equation has several remarkable properties: (i) it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; (ii) it is a quadratic function of the fermion number NF; and (iii) it is negative in most of the Hilbert space. The latter property leads to a possible quantum avoidance of the singularity ("cosmological bounce"), and suggests imposing the boundary condition that the wave function of the Universe vanish when the volume of space tends to zero (a type of boundary condition which looks like a final-state condition when considering the big crunch inside a black hole). The space of solutions is a mixture of "discrete-spectrum states" (parametrized by a few constant parameters, and known in explicit form) and of continuous-spectrum states (parametrized by arbitrary functions entering some initial-value problem). The predominantly negative values of the squared-mass term lead to a "bottle

  4. Two new supersymmetric equations of Harry Dym type and their supersymmetric reciprocal transformations

    Science.gov (United States)

    Tian, Kai; Liu, Q. P.

    2012-07-01

    A new N=1 supersymmetric Harry Dym equation is constructed by applying supersymmetric reciprocal transformation to a trivial supersymmetric Harry Dym equation, and its recursion operator and Lax formulation are also obtained. Within the framework of symmetry approach, a class of 3rd order supersymmetric equations of Harry Dym type are considered. In addition to five known integrable equations, a new supersymmetric equation, admitting 5th order generalized symmetry, is shown to be linearizable through supersymmetric reciprocal transformation. Furthermore, its Lax representation and recursion operator are given so that the integrability of this new equation is confirmed.

  5. Search for flavor-changing neutral currents in top-quark decays t → Zq in pp collisions at sqrt[s] = 8 TeV.

    Science.gov (United States)

    Chatrchyan, S; Khachatryan, V; Sirunyan, A M; Tumasyan, A; Adam, W; Bergauer, T; Dragicevic, M; Erö, J; Fabjan, C; Friedl, M; Frühwirth, R; Ghete, V M; Hartl, C; Hörmann, N; Hrubec, J; Jeitler, M; Kiesenhofer, W; Knünz, V; Krammer, M; Krätschmer, I; Liko, D; Mikulec, I; Rabady, D; Rahbaran, B; Rohringer, H; Schöfbeck, R; Strauss, J; Taurok, A; Treberer-Treberspurg, W; Waltenberger, W; Wulz, C-E; Mossolov, V; Shumeiko, N; Suarez Gonzalez, J; Alderweireldt, S; Bansal, M; Bansal, S; Cornelis, T; De Wolf, E A; Janssen, X; Knutsson, A; Luyckx, S; Mucibello, L; Ochesanu, S; Roland, B; Rougny, R; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Van Spilbeeck, A; Blekman, F; Blyweert, S; D'Hondt, J; Heracleous, N; Kalogeropoulos, A; Keaveney, J; Kim, T J; Lowette, S; Maes, M; Olbrechts, A; Strom, D; Tavernier, S; Van Doninck, W; Van Mulders, P; Van Onsem, G P; Villella, I; Caillol, C; Clerbaux, B; De Lentdecker, G; Favart, L; Gay, A P R; Hreus, T; Léonard, A; Marage, P E; Mohammadi, A; Perniè, L; Reis, T; Seva, T; Thomas, L; Vander Velde, C; Vanlaer, P; Wang, J; Adler, V; Beernaert, K; Benucci, L; Cimmino, A; Costantini, S; Dildick, S; Garcia, G; Klein, B; Lellouch, J; Mccartin, J; Ocampo Rios, A A; Ryckbosch, D; Sigamani, M; Strobbe, N; Thyssen, F; Tytgat, M; Walsh, S; Yazgan, E; Zaganidis, N; Basegmez, S; Beluffi, C; Bruno, G; Castello, R; Caudron, A; Ceard, L; Da Silveira, G G; Delaere, C; du Pree, T; Favart, D; Forthomme, L; Giammanco, A; Hollar, J; Jez, P; Komm, M; Lemaitre, V; Liao, J; Militaru, O; Nuttens, C; Pagano, D; Pin, A; Piotrzkowski, K; Popov, A; Quertenmont, L; Selvaggi, M; Vidal Marono, M; Vizan Garcia, J M; Beliy, N; Caebergs, T; Daubie, E; Hammad, G H; Alves, G A; Correa Martins Junior, M; Martins, T; Pol, M E; Souza, M H G; Aldá Júnior, W L; Carvalho, W; Chinellato, J; Custódio, A; Da Costa, E M; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Malbouisson, H; Malek, M; Matos Figueiredo, D; Mundim, L; Nogima, H; Prado Da Silva, W L; Santaolalla, J; Santoro, A; Sznajder, A; Tonelli Manganote, E J; Vilela Pereira, A; Bernardes, C A; Dias, F A; Tomei, T R Fernandez Perez; Gregores, E M; Lagana, C; Mercadante, P G; Novaes, S F; Padula, Sandra S; Genchev, V; Iaydjiev, P; Marinov, A; Piperov, S; Rodozov, M; Sultanov, G; Vutova, M; Dimitrov, A; Hadjiiska, R; Litov, L; Pavlov, B; Petkov, P; Bian, J G; Chen, G M; Chen, H S; Chen, M; Du, R; Jiang, C H; Liang, D; Liang, S; Meng, X; Plestina, R; Tao, J; Wang, X; Wang, Z; Asawatangtrakuldee, C; Ban, Y; Guo, Y; Li, Q; Li, W; Liu, S; Mao, Y; Qian, S J; Wang, D; Zhang, L; Zou, W; Avila, C; Carrillo Montoya, C A; Chaparro Sierra, L F; Florez, C; Gomez, J P; Gomez Moreno, B; Sanabria, J C; Godinovic, N; Lelas, D; Polic, D; Puljak, I; Antunovic, Z; Kovac, M; Brigljevic, V; Kadija, K; Luetic, J; Mekterovic, D; Morovic, S; Tikvica, L; Attikis, A; Mavromanolakis, G; Mousa, J; Nicolaou, C; Ptochos, F; Razis, P A; Finger, M; Finger, M; Abdelalim, A A; Assran, Y; Elgammal, S; Ellithi Kamel, A; Mahmoud, M A; Radi, A; Kadastik, M; Müntel, M; Murumaa, M; Raidal, M; Rebane, L; Tiko, A; Eerola, P; Fedi, G; Voutilainen, M; Härkönen, J; Karimäki, V; Kinnunen, R; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Peltola, T; Tuominen, E; Tuominiemi, J; Tuovinen, E; Wendland, L; Tuuva, T; Besancon, M; Couderc, F; Dejardin, M; Denegri, D; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Locci, E; Malcles, J; Nayak, A; Rander, J; Rosowsky, A; Titov, M; Baffioni, S; Beaudette, F; Busson, P; Charlot, C; Daci, N; Dahms, T; Dalchenko, M; Dobrzynski, L; Florent, A; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Mironov, C; Naranjo, I N; Nguyen, M; Ochando, C; Paganini, P; Sabes, D; Salerno, R; Sirois, Y; Veelken, C; Yilmaz, Y; Zabi, A; Agram, J-L; Andrea, J; Bloch, D; Brom, J-M; Chabert, E C; Collard, C; Conte, E; Drouhin, F; Fontaine, J-C; Gelé, D; Goerlach, U; Goetzmann, C; Juillot, P; Le Bihan, A-C; Van Hove, P; Gadrat, S; Beauceron, S; Beaupere, N; Boudoul, G; Brochet, S; Chasserat, J; Chierici, R; Contardo, D; Depasse, P; El Mamouni, H; Fan, J; Fay, J; Gascon, S; Gouzevitch, M; Ille, B; Kurca, T; Lethuillier, M; Mirabito, L; Perries, S; Ruiz Alvarez, J D; Sgandurra, L; Sordini, V; Vander Donckt, M; Verdier, P; Viret, S; Xiao, H; Tsamalaidze, Z; Autermann, C; Beranek, S; Bontenackels, M; Calpas, B; Edelhoff, M; Feld, L; Hindrichs, O; Klein, K; Ostapchuk, A; Perieanu, A; Raupach, F; Sammet, J; Schael, S; Sprenger, D; Weber, H; Wittmer, B; Zhukov, V; Ata, M; Caudron, J; Dietz-Laursonn, E; Duchardt, D; Erdmann, M; Fischer, R; Güth, A; Hebbeker, T; Heidemann, C; Hoepfner, K; Klingebiel, D; Knutzen, S; Kreuzer, P; Merschmeyer, M; Meyer, A; Olschewski, M; Padeken, K; Papacz, P; Reithler, H; Schmitz, S A; Sonnenschein, L; Teyssier, D; Thüer, S; Weber, M; Cherepanov, V; Erdogan, Y; Flügge, G; Geenen, H; Geisler, M; Haj Ahmad, W; Hoehle, F; Kargoll, B; Kress, T; Kuessel, Y; Lingemann, J; Nowack, A; Nugent, I M; Perchalla, L; Pooth, O; Stahl, A; Asin, I; Bartosik, N; Behr, J; Behrenhoff, W; Behrens, U; Bell, A J; Bergholz, M; Bethani, A; Borras, K; Burgmeier, A; Cakir, A; Calligaris, L; Campbell, A; Choudhury, S; Costanza, F; Diez Pardos, C; Dooling, S; Dorland, T; Eckerlin, G; Eckstein, D; Eichhorn, T; Flucke, G; Geiser, A; Grebenyuk, A; Gunnellini, P; Habib, S; Hauk, J; Hellwig, G; Hempel, M; Horton, D; Jung, H; Kasemann, M; Katsas, P; Kleinwort, C; Krämer, M; Krücker, D; Lange, W; Leonard, J; Lipka, K; Lohmann, W; Lutz, B; Mankel, R; Marfin, I; Melzer-Pellmann, I-A; Meyer, A B; Mnich, J; Mussgiller, A; Naumann-Emme, S; Novgorodova, O; Nowak, F; Perrey, H; Petrukhin, A; Pitzl, D; Placakyte, R; Raspereza, A; Ribeiro Cipriano, P M; Riedl, C; Ron, E; Sahin, M Ö; Salfeld-Nebgen, J; Schmidt, R; Schoerner-Sadenius, T; Schröder, M; Stein, M; Vargas Trevino, A D R; Walsh, R; Wissing, C; Aldaya Martin, M; Blobel, V; Enderle, H; Erfle, J; Garutti, E; Görner, M; Gosselink, M; Haller, J; Heine, K; Höing, R S; Kirschenmann, H; Klanner, R; Kogler, R; Lange, J; Marchesini, I; Ott, J; Peiffer, T; Pietsch, N; Rathjens, D; Sander, C; Schettler, H; Schleper, P; Schlieckau, E; Schmidt, A; Seidel, M; Sibille, J; Sola, V; Stadie, H; Steinbrück, G; Troendle, D; Usai, E; Vanelderen, L; Barth, C; Baus, C; Berger, J; Böser, C; Butz, E; Chwalek, T; De Boer, W; Descroix, A; Dierlamm, A; Feindt, M; Guthoff, M; Hartmann, F; Hauth, T; Held, H; Hoffmann, K H; Husemann, U; Katkov, I; Kornmayer, A; Kuznetsova, E; Lobelle Pardo, P; Martschei, D; Mozer, M U; Müller, Th; Niegel, M; Nürnberg, A; Oberst, O; Quast, G; Rabbertz, K; Ratnikov, F; Röcker, S; Schilling, F-P; Schott, G; Simonis, H J; Stober, F M; Ulrich, R; Wagner-Kuhr, J; Wayand, S; Weiler, T; Wolf, R; Zeise, M; Anagnostou, G; Daskalakis, G; Geralis, T; Kesisoglou, S; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Ntomari, E; Topsis-Giotis, I; Gouskos, L; Panagiotou, A; Saoulidou, N; Stiliaris, E; Aslanoglou, X; Evangelou, I; Flouris, G; Foudas, C; Kokkas, P; Manthos, N; Papadopoulos, I; Paradas, E; Bencze, G; Hajdu, C; Hidas, P; Horvath, D; Sikler, F; Veszpremi, V; Vesztergombi, G; Zsigmond, A J; Beni, N; Czellar, S; Molnar, J; Palinkas, J; Szillasi, Z; Karancsi, J; Raics, P; Trocsanyi, Z L; Ujvari, B; Swain, S K; Beri, S B; Bhatnagar, V; Dhingra, N; Gupta, R; Kaur, M; Mehta, M Z; Mittal, M; Nishu, N; Sharma, A; Singh, J B; Kumar, Ashok; Kumar, Arun; Ahuja, S; Bhardwaj, A; Choudhary, B C; Kumar, A; Malhotra, S; Naimuddin, M; Ranjan, K; Saxena, P; Sharma, V; Shivpuri, R K; Banerjee, S; Bhattacharya, S; Chatterjee, K; Dutta, S; Gomber, B; Jain, Sa; Jain, Sh; Khurana, R; Modak, A; Mukherjee, S; Roy, D; Sarkar, S; Sharan, M; Singh, A P; Abdulsalam, A; Dutta, D; Kailas, S; Kumar, V; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Chatterjee, R M; Ganguly, S; Ghosh, S; Guchait, M; Gurtu, A; Kole, G; Kumar, S; Maity, M; Majumder, G; Mazumdar, K; Mohanty, G B; Parida, B; Sudhakar, K; Wickramage, N; Banerjee, S; Dugad, S; Arfaei, H; Bakhshiansohi, H; Behnamian, H; Etesami, S M; Fahim, A; Jafari, A; Khakzad, M; Mohammadi Najafabadi, M; Naseri, M; Paktinat Mehdiabadi, S; Safarzadeh, B; Zeinali, M; Grunewald, M; Abbrescia, M; Barbone, L; Calabria, C; Chhibra, S S; Colaleo, A; Creanza, D; De Filippis, N; De Palma, M; Fiore, L; Iaselli, G; Maggi, G; Maggi, M; Marangelli, B; My, S; Nuzzo, S; Pacifico, N; Pompili, A; Pugliese, G; Radogna, R; Selvaggi, G; Silvestris, L; Singh, G; Venditti, R; Verwilligen, P; Zito, G; Abbiendi, G; Benvenuti, A C; Bonacorsi, D; Braibant-Giacomelli, S; Brigliadori, L; Campanini, R; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Grandi, C; Guiducci, L; Marcellini, S; Masetti, G; Meneghelli, M; Montanari, A; Navarria, F L; Odorici, F; Perrotta, A; Primavera, F; Rossi, A M; Rovelli, T; Siroli, G P; Tosi, N; Travaglini, R; Albergo, S; Cappello, G; Chiorboli, M; Costa, S; Giordano, F; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Gallo, E; Gonzi, S; Gori, V; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bianco, S; Fabbri, F; Piccolo, D; Fabbricatore, P; Ferretti, R; Ferro, F; Lo Vetere, M; Musenich, R; Robutti, E; Tosi, S; Benaglia, A; Dinardo, M E; Fiorendi, S; Gennai, S; Ghezzi, A; Govoni, P; Lucchini, M T; Malvezzi, S; Manzoni, R A; Martelli, A; Menasce, D; Moroni, L; Paganoni, M; Pedrini, D; Ragazzi, S; Redaelli, N; Tabarelli de Fatis, T; Buontempo, S; Cavallo, N; Fabozzi, F; Iorio, A O M; Lista, L; Meola, S; Merola, M; Paolucci, P; Azzi, P; Bacchetta, N; Bisello, D; Branca, A; Carlin, R; Checchia, P; Dorigo, T; Fanzago, F; Galanti, M; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gozzelino, A; Kanishchev, K; Lacaprara, S; Lazzizzera, I; Margoni, M; Meneguzzo, A T; Montecassiano, F; Pazzini, J; Pozzobon, N; Ronchese, P; Simonetto, F; Torassa, E; Tosi, M; Vanini, S; Zotto, P; Zucchetta, A; Zumerle, G; Gabusi, M; Ratti, S P; Riccardi, C; Vitulo, P; Biasini, M; Bilei, G M; Fanò, L; Lariccia, P; Mantovani, G; Menichelli, M; Nappi, A; Romeo, F; Saha, A; Santocchia, A; Spiezia, A; Androsov, K; Azzurri, P; Bagliesi, G; Bernardini, J; Boccali, T; Broccolo, G; Castaldi, R; Ciocci, M A; Dell'Orso, R; Fiori, F; Foà, L; Giassi, A; Grippo, M T; Kraan, A; Ligabue, F; Lomtadze, T; Martini, L; Messineo, A; Moon, C S; Palla, F; Rizzi, A; Savoy-Navarro, A; Serban, A T; Spagnolo, P; Squillacioti, P; Tenchini, R; Tonelli, G; Venturi, A; Verdini, P G; Vernieri, C; Barone, L; Cavallari, F; Del Re, D; Diemoz, M; Grassi, M; Jorda, C; Longo, E; Margaroli, F; Meridiani, P; Micheli, F; Nourbakhsh, S; Organtini, G; Paramatti, R; Rahatlou, S; Rovelli, C; Soffi, L; Traczyk, P; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Bellan, R; Biino, C; Cartiglia, N; Casasso, S; Costa, M; Degano, A; Demaria, N; Mariotti, C; Maselli, S; Migliore, E; Monaco, V; Musich, M; Obertino, M M; Ortona, G; Pacher, L; Pastrone, N; Pelliccioni, M; Potenza, A; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Tamponi, U; Belforte, S; Candelise, V; Casarsa, M; Cossutti, F; Della Ricca, G; Gobbo, B; La Licata, C; Marone, M; Montanino, D; Penzo, A; Schizzi, A; Umer, T; Zanetti, A; Chang, S; Kim, T Y; Nam, S K; Kim, D H; Kim, G N; Kim, J E; Kong, D J; Lee, S; Oh, Y D; Park, H; Son, D C; Kim, J Y; Kim, Zero J; Song, S; Choi, S; Gyun, D; Hong, B; Jo, M; Kim, H; Kim, Y; Lee, K S; Park, S K; Roh, Y; Choi, M; Kim, J H; Park, C; Park, I C; Park, S; Ryu, G; Choi, Y; Choi, Y K; Goh, J; Kim, M S; Kwon, E; Lee, B; Lee, J; Lee, S; Seo, H; Yu, I; Juodagalvis, A; Castilla-Valdez, H; De La Cruz-Burelo, E; Heredia-de La Cruz, I; Lopez-Fernandez, R; Martínez-Ortega, J; Sanchez-Hernandez, A; Villasenor-Cendejas, L M; Carrillo Moreno, S; Vazquez Valencia, F; Salazar Ibarguen, H A; Casimiro Linares, E; Morelos Pineda, A; Krofcheck, D; Butler, P H; Doesburg, R; Reucroft, S; Silverwood, H; Ahmad, M; Asghar, M I; Butt, J; Hoorani, H R; Khalid, S; Khan, W A; Khurshid, T; Qazi, S; Shah, M A; Shoaib, M; Bialkowska, H; Bluj, M; Boimska, B; Frueboes, T; Górski, M; Kazana, M; Nawrocki, K; Romanowska-Rybinska, K; Szleper, M; Wrochna, G; Zalewski, P; Brona, G; Bunkowski, K; Cwiok, M; Dominik, W; Doroba, K; Kalinowski, A; Konecki, M; Krolikowski, J; Misiura, M; Wolszczak, W; Bargassa, P; Beirão Da Cruz E Silva, C; Faccioli, P; Ferreira Parracho, P G; Gallinaro, M; Nguyen, F; Rodrigues Antunes, J; Seixas, J; Varela, J; Vischia, P; Afanasiev, S; Bunin, P; Golutvin, I; Gorbunov, I; Kamenev, A; Karjavin, V; Konoplyanikov, V; Kozlov, G; Lanev, A; Malakhov, A; Matveev, V; Moisenz, P; Palichik, V; Perelygin, V; Shmatov, S; Skatchkov, N; Smirnov, V; Zarubin, A; Golovtsov, V; Ivanov, Y; Kim, V; Levchenko, P; Murzin, V; Oreshkin, V; Smirnov, I; Sulimov, V; Uvarov, L; Vavilov, S; Vorobyev, A; Vorobyev, An; Andreev, Yu; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Pashenkov, A; Tlisov, D; Toropin, A; Epshteyn, V; Gavrilov, V; Lychkovskaya, N; Popov, V; Safronov, G; Semenov, S; Spiridonov, A; Stolin, V; Vlasov, E; Zhokin, A; Andreev, V; Azarkin, M; Dremin, I; Kirakosyan, M; Leonidov, A; Mesyats, G; Rusakov, S V; Vinogradov, A; Belyaev, A; Boos, E; Bunichev, V; Dubinin, M; Dudko, L; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Markina, A; Obraztsov, S; Perfilov, M; Savrin, V; Snigirev, A; Azhgirey, I; Bayshev, I; Bitioukov, S; Kachanov, V; Kalinin, A; Konstantinov, D; Krychkine, V; Petrov, V; Ryutin, R; Sobol, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Ekmedzic, M; Milosevic, J; Aguilar-Benitez, M; Alcaraz Maestre, J; Battilana, C; Calvo, E; Cerrada, M; Chamizo Llatas, M; Colino, N; De La Cruz, B; Delgado Peris, A; Domínguez Vázquez, D; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Merino, G; Navarro De Martino, E; Puerta Pelayo, J; Quintario Olmeda, A; Redondo, I; Romero, L; Soares, M S; Willmott, C; Albajar, C; de Trocóniz, J F; Brun, H; Cuevas, J; Fernandez Menendez, J; Folgueras, S; Gonzalez Caballero, I; Lloret Iglesias, L; Brochero Cifuentes, J A; Cabrillo, I J; Calderon, A; Chuang, S H; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Graziano, A; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Matorras, F; Munoz Sanchez, F J; Piedra Gomez, J; Rodrigo, T; Rodríguez-Marrero, A Y; Ruiz-Jimeno, A; Scodellaro, L; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Auffray, E; Auzinger, G; Bachtis, M; Baillon, P; Ball, A H; Barney, D; Bendavid, J; Benhabib, L; Benitez, J F; Bernet, C; Bianchi, G; Bloch, P; Bocci, A; Bonato, A; Bondu, O; Botta, C; Breuker, H; Camporesi, T; Cerminara, G; Christiansen, T; Coarasa Perez, J A; Colafranceschi, S; D'Alfonso, M; d'Enterria, D; Dabrowski, A; David, A; De Guio, F; De Roeck, A; De Visscher, S; Di Guida, S; Dobson, M; Dupont-Sagorin, N; Elliott-Peisert, A; Eugster, J; Franzoni, G; Funk, W; Giffels, M; Gigi, D; Gill, K; Girone, M; Giunta, M; Glege, F; Gomez-Reino Garrido, R; Gowdy, S; Guida, R; Hammer, J; Hansen, M; Harris, P; Hinzmann, A; Innocente, V; Janot, P; Karavakis, E; Kousouris, K; Krajczar, K; Lecoq, P; Lourenço, C; Magini, N; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Mersi, S; Meschi, E; Moortgat, F; Mulders, M; Musella, P; Orsini, L; Palencia Cortezon, E; Perez, E; Perrozzi, L; Petrilli, A; Petrucciani, G; Pfeiffer, A; Pierini, M; Pimiä, M; Piparo, D; Plagge, M; Racz, A; Reece, W; Rolandi, G; Rovere, M; Sakulin, H; Santanastasio, F; Schäfer, C; Schwick, C; Sekmen, S; Sharma, A; Siegrist, P; Silva, P; Simon, M; Sphicas, P; Steggemann, J; Stieger, B; Stoye, M; Tsirou, A; Veres, G I; Vlimant, J R; Wöhri, H K; Zeuner, W D; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Renker, D; Rohe, T; Bachmair, F; Bäni, L; Bianchini, L; Bortignon, P; Buchmann, M A; Casal, B; Chanon, N; Deisher, A; Dissertori, G; Dittmar, M; Donegà, M; Dünser, M; Eller, P; Grab, C; Hits, D; Lustermann, W; Mangano, B; Marini, A C; Martinez Ruiz Del Arbol, P; Meister, D; Mohr, N; Nägeli, C; Nef, P; Nessi-Tedaldi, F; Pandolfi, F; Pape, L; Pauss, F; Peruzzi, M; Quittnat, M; Ronga, F J; Rossini, M; Starodumov, A; Takahashi, M; Tauscher, L; Theofilatos, K; Treille, D; Wallny, R; Weber, H A; Amsler, C; Chiochia, V; De Cosa, A; Favaro, C; Ivova Rikova, M; Kilminster, B; Millan Mejias, B; Ngadiuba, J; Robmann, P; Snoek, H; Taroni, S; Verzetti, M; Yang, Y; Cardaci, M; Chen, K H; Ferro, C; Kuo, C M; Li, S W; Lin, W; Lu, Y J; Volpe, R; Yu, S S; Bartalini, P; Chang, P; Chang, Y H; Chang, Y W; Chao, Y; Chen, K F; Chen, P H; Dietz, C; Grundler, U; Hou, W-S; Hsiung, Y; Kao, K Y; Lei, Y J; Liu, Y F; Lu, R-S; Majumder, D; Petrakou, E; Shi, X; Shiu, J G; Tzeng, Y M; Wang, M; Wilken, R; Asavapibhop, B; Suwonjandee, N; Adiguzel, A; Bakirci, M N; Cerci, S; Dozen, C; Dumanoglu, I; Eskut, E; Girgis, S; Gokbulut, G; Gurpinar, E; Hos, I; Kangal, E E; Kayis Topaksu, A; Onengut, G; Ozdemir, K; Ozturk, S; Polatoz, A; Sogut, K; Sunar Cerci, D; Tali, B; Topakli, H; Vergili, M; Akin, I V; Aliev, T; Bilin, B; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Karapinar, G; Ocalan, K; Ozpineci, A; Serin, M; Sever, R; Surat, U E; Yalvac, M; Zeyrek, M; Gülmez, E; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Bahtiyar, H; Barlas, E; Cankocak, K; Günaydin, Y O; Vardarlı, F I; Yücel, M; Levchuk, L; Sorokin, P; Brooke, J J; Clement, E; Cussans, D; Flacher, H; Frazier, R; Goldstein, J; Grimes, M; Heath, G P; Heath, H F; Jacob, J; Kreczko, L; Lucas, C; Meng, Z; Newbold, D M; Paramesvaran, S; Poll, A; Senkin, S; Smith, V J; Williams, T; Bell, K W; Belyaev, A; Brew, C; Brown, R M; Cockerill, D J A; Coughlan, J A; Harder, K; Harper, S; Ilic, J; Olaiya, E; Petyt, D; Shepherd-Themistocleous, C H; Thea, A; Tomalin, I R; Womersley, W J; Worm, S D; Baber, M; Bainbridge, R; Buchmuller, O; Burton, D; Colling, D; Cripps, N; Cutajar, M; Dauncey, P; Davies, G; Della Negra, M; Ferguson, W; Fulcher, J; Futyan, D; Gilbert, A; Guneratne Bryer, A; Hall, G; Hatherell, Z; Hays, J; Iles, G; Jarvis, M; Karapostoli, G; Kenzie, M; Lane, R; Lucas, R; Lyons, L; Magnan, A-M; Marrouche, J; Mathias, B; Nandi, R; Nash, J; Nikitenko, A; Pela, J; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rogerson, S; Rose, A; Seez, C; Sharp, P; Sparrow, A; Tapper, A; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardle, N; Cole, J E; Hobson, P R; Khan, A; Kyberd, P; Leggat, D; Leslie, D; Martin, W; Reid, I D; Symonds, P; Teodorescu, L; Turner, M; Dittmann, J; Hatakeyama, K; Kasmi, A; Liu, H; Scarborough, T; Charaf, O; Cooper, S I; Henderson, C; Rumerio, P; Avetisyan, A; Bose, T; Fantasia, C; Heister, A; Lawson, P; Lazic, D; Rohlf, J; Sperka, D; St John, J; Sulak, L; Alimena, J; Bhattacharya, S; Christopher, G; Cutts, D; Demiragli, Z; Ferapontov, A; Garabedian, A; Heintz, U; Jabeen, S; Kukartsev, G; Laird, E; Landsberg, G; Luk, M; Narain, M; Segala, M; Sinthuprasith, T; Speer, T; Swanson, J; Breedon, R; Breto, G; Calderon De La Barca Sanchez, M; Chauhan, S; Chertok, M; Conway, J; Conway, R; Cox, P T; Erbacher, R; Gardner, M; Ko, W; Kopecky, A; Lander, R; Miceli, T; Pellett, D; Pilot, J; Ricci-Tam, F; Rutherford, B; Searle, M; Shalhout, S; Smith, J; Squires, M; Tripathi, M; Wilbur, S; Yohay, R; Andreev, V; Cline, D; Cousins, R; Erhan, S; Everaerts, P; Farrell, C; Felcini, M; Hauser, J; Ignatenko, M; Jarvis, C; Rakness, G; Schlein, P; Takasugi, E; Valuev, V; Weber, M; Babb, J; Clare, R; Ellison, J; Gary, J W; Hanson, G; Heilman, J; Jandir, P; Lacroix, F; Liu, H; Long, O R; Luthra, A; Malberti, M; Nguyen, H; Shrinivas, A; Sturdy, J; Sumowidagdo, S; Wimpenny, S; Andrews, W; Branson, J G; Cerati, G B; Cittolin, S; D'Agnolo, R T; Evans, D; Holzner, A; Kelley, R; Kovalskyi, D; Lebourgeois, M; Letts, J; Macneill, I; Padhi, S; Palmer, C; Pieri, M; Sani, M; Sharma, V; Simon, S; Sudano, E; Tadel, M; Tu, Y; Vartak, A; Wasserbaech, S; Würthwein, F; Yagil, A; Yoo, J; Barge, D; Campagnari, C; Danielson, T; Flowers, K; Geffert, P; George, C; Golf, F; Incandela, J; Justus, C; Magaña Villalba, R; Mccoll, N; Pavlunin, V; Richman, J; Rossin, R; Stuart, D; To, W; West, C; Apresyan, A; Bornheim, A; Bunn, J; Chen, Y; Di Marco, E; Duarte, J; Kcira, D; Mott, A; Newman, H B; Pena, C; Rogan, C; Spiropulu, M; Timciuc, V; Wilkinson, R; Xie, S; Zhu, R Y; Azzolini, V; Calamba, A; Carroll, R; Ferguson, T; Iiyama, Y; Jang, D W; Paulini, M; Russ, J; Vogel, H; Vorobiev, I; Cumalat, J P; Drell, B R; Ford, W T; Gaz, A; Luiggi Lopez, E; Nauenberg, U; Smith, J G; Stenson, K; Ulmer, K A; Wagner, S R; Alexander, J; Chatterjee, A; Eggert, N; Gibbons, L K; Hopkins, W; Khukhunaishvili, A; Kreis, B; Mirman, N; Nicolas Kaufman, G; Patterson, J R; Ryd, A; Salvati, E; Sun, W; Teo, W D; Thom, J; Thompson, J; Tucker, J; Weng, Y; Winstrom, L; Wittich, P; Winn, D; Abdullin, S; Albrow, M; Anderson, J; Apollinari, G; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Cihangir, S; Elvira, V D; Fisk, I; Freeman, J; Gao, Y; Gottschalk, E; Gray, L; Green, D; Gutsche, O; Hare, D; Harris, R M; Hirschauer, J; Hooberman, B; Jindariani, S; Johnson, M; Joshi, U; Kaadze, K; Klima, B; Kwan, S; Linacre, J; Lincoln, D; Lipton, R; Lykken, J; Maeshima, K; Marraffino, J M; Martinez Outschoorn, V I; Maruyama, S; Mason, D; McBride, P; Mishra, K; Mrenna, S; Musienko, Y; Nahn, S; Newman-Holmes, C; O'Dell, V; Prokofyev, O; Ratnikova, N; Sexton-Kennedy, E; Sharma, S; Spalding, W J; Spiegel, L; Taylor, L; Tkaczyk, S; Tran, N V; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wu, W; Yang, F; Yun, J C; Acosta, D; Avery, P; Bourilkov, D; Cheng, T; Das, S; De Gruttola, M; Di Giovanni, G P; Dobur, D; Field, R D; Fisher, M; Fu, Y; Furic, I K; Hugon, J; Kim, B; Konigsberg, J; Korytov, A; Kropivnitskaya, A; Kypreos, T; Low, J F; Matchev, K; Milenovic, P; Mitselmakher, G; Muniz, L; Rinkevicius, A; Shchutska, L; Skhirtladze, N; Snowball, M; Yelton, J; Zakaria, M; Gaultney, V; Hewamanage, S; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Bochenek, J; Chen, J; Diamond, B; Haas, J; Hagopian, S; Hagopian, V; Johnson, K F; Prosper, H; Veeraraghavan, V; Weinberg, M; Baarmand, M M; Dorney, B; Hohlmann, M; Kalakhety, H; Yumiceva, F; Adams, M R; Apanasevich, L; Bazterra, V E; Betts, R R; Bucinskaite, I; Cavanaugh, R; Evdokimov, O; Gauthier, L; Gerber, C E; Hofman, D J; Khalatyan, S; Kurt, P; Moon, D H; O'Brien, C; Silkworth, C; Turner, P; Varelas, N; Akgun, U; Albayrak, E A; Bilki, B; Clarida, W; Dilsiz, K; Duru, F; Merlo, J-P; Mermerkaya, H; Mestvirishvili, A; Moeller, A; Nachtman, J; Ogul, H; Onel, Y; Ozok, F; Sen, S; Tan, P; Tiras, E; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bolognesi, S; Fehling, D; Gritsan, A V; Maksimovic, P; Martin, C; Swartz, M; Whitbeck, A; Baringer, P; Bean, A; Benelli, G; Kenny, R P; Murray, M; Noonan, D; Sanders, S; Sekaric, J; Stringer, R; Wang, Q; Wood, J S; Barfuss, A F; Chakaberia, I; Ivanov, A; Khalil, S; Makouski, M; Maravin, Y; Saini, L K; Shrestha, S; Svintradze, I; Gronberg, J; Lange, D; Rebassoo, F; Wright, D; Baden, A; Calvert, B; Eno, S C; Gomez, J A; Hadley, N J; Kellogg, R G; Kolberg, T; Lu, Y; Marionneau, M; Mignerey, A C; Pedro, K; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Apyan, A; Barbieri, R; Bauer, G; Busza, W; Cali, I A; Chan, M; Di Matteo, L; Dutta, V; Gomez Ceballos, G; Goncharov, M; Gulhan, D; Klute, M; Lai, Y S; Lee, Y-J; Levin, A; Luckey, P D; Ma, T; Paus, C; Ralph, D; Roland, C; Roland, G; Stephans, G S F; Stöckli, F; Sumorok, K; Velicanu, D; Veverka, J; Wyslouch, B; Yang, M; Yoon, A S; Zanetti, M; Zhukova, V; Dahmes, B; De Benedetti, A; Gude, A; Kao, S C; Klapoetke, K; Kubota, Y; Mans, J; Pastika, N; Rusack, R; Singovsky, A; Tambe, N; Turkewitz, J; Acosta, J G; Cremaldi, L M; Kroeger, R; Oliveros, S; Perera, L; Rahmat, R; Sanders, D A; Summers, D; Avdeeva, E; Bloom, K; Bose, S; Claes, D R; Dominguez, A; Gonzalez Suarez, R; Keller, J; Kravchenko, I; Lazo-Flores, J; Malik, S; Meier, F; Snow, G R; Dolen, J; Godshalk, A; Iashvili, I; Jain, S; Kharchilava, A; Kumar, A; Rappoccio, S; Wan, Z; Alverson, G; Barberis, E; Baumgartel, D; Chasco, M; Haley, J; Massironi, A; Nash, D; Orimoto, T; Trocino, D; Wood, D; Zhang, J; Anastassov, A; Hahn, K A; Kubik, A; Lusito, L; Mucia, N; Odell, N; Pollack, B; Pozdnyakov, A; Schmitt, M; Stoynev, S; Sung, K; Velasco, M; Won, S; Berry, D; Brinkerhoff, A; Chan, K M; Drozdetskiy, A; Hildreth, M; Jessop, C; Karmgard, D J; Kolb, J; Lannon, K; Luo, W; Lynch, S; Marinelli, N; Morse, D M; Pearson, T; Planer, M; Ruchti, R; Slaunwhite, J; Valls, N; Wayne, M; Wolf, M; Antonelli, L; Bylsma, B; Durkin, L S; Flowers, S; Hill, C; Hughes, R; Kotov, K; Ling, T Y; Puigh, D; Rodenburg, M; Smith, G; Vuosalo, C; Winer, B L; Wolfe, H; Wulsin, H W; Berry, E; Elmer, P; Halyo, V; Hebda, P; Hegeman, J; Hunt, A; Jindal, P; Koay, S A; Lujan, P; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Quan, X; Raval, A; Saka, H; Stickland, D; Tully, C; Werner, J S; Zenz, S C; Zuranski, A; Brownson, E; Lopez, A; Mendez, H; Ramirez Vargas, J E; Alagoz, E; Benedetti, D; Bolla, G; Bortoletto, D; De Mattia, M; Everett, A; Hu, Z; Jones, M; Jung, K; Kress, M; Leonardo, N; Lopes Pegna, D; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Radburn-Smith, B C; Shipsey, I; Silvers, D; Svyatkovskiy, A; Wang, F; Xie, W; Xu, L; Yoo, H D; Zablocki, J; Zheng, Y; Parashar, N; Adair, A; Akgun, B; Ecklund, K M; Geurts, F J M; Li, W; Michlin, B; Padley, B P; Redjimi, R; Roberts, J; Zabel, J; Betchart, B; Bodek, A; Covarelli, R; de Barbaro, P; Demina, R; Eshaq, Y; Ferbel, T; Garcia-Bellido, A; Goldenzweig, P; Han, J; Harel, A; Miner, D C; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Ciesielski, R; Demortier, L; Goulianos, K; Lungu, G; Malik, S; Mesropian, C; Arora, S; Barker, A; Chou, J P; Contreras-Campana, C; Contreras-Campana, E; Duggan, D; Ferencek, D; Gershtein, Y; Gray, R; Halkiadakis, E; Hidas, D; Lath, A; Panwalkar, S; Park, M; Patel, R; Rekovic, V; Robles, J; Salur, S; Schnetzer, S; Seitz, C; Somalwar, S; Stone, R; Thomas, S; Thomassen, P; Walker, M; Rose, K; Spanier, S; Yang, Z C; York, A; Bouhali, O; Eusebi, R; Flanagan, W; Gilmore, J; Kamon, T; Khotilovich, V; Krutelyov, V; Montalvo, R; Osipenkov, I; Pakhotin, Y; Perloff, A; Roe, J; Safonov, A; Sakuma, T; Suarez, I; Tatarinov, A; Toback, D; Akchurin, N; Cowden, C; Damgov, J; Dragoiu, C; Dudero, P R; Kovitanggoon, K; Kunori, S; Lee, S W; Libeiro, T; Volobouev, I; Appelt, E; Delannoy, A G; Greene, S; Gurrola, A; Johns, W; Maguire, C; Mao, Y; Melo, A; Sharma, M; Sheldon, P; Snook, B; Tuo, S; Velkovska, J; Arenton, M W; Boutle, S; Cox, B; Francis, B; Goodell, J; Hirosky, R; Ledovskoy, A; Lin, C; Neu, C; Wood, J; Gollapinni, S; Harr, R; Karchin, P E; Kottachchi Kankanamge Don, C; Lamichhane, P; Sakharov, A; Belknap, D A; Borrello, L; Carlsmith, D; Cepeda, M; Dasu, S; Duric, S; Friis, E; Grothe, M; Hall-Wilton, R; Herndon, M; Hervé, A; Klabbers, P; Klukas, J; Lanaro, A; Loveless, R; Mohapatra, A; Ojalvo, I; Perry, T; Pierro, G A; Polese, G; Ross, I; Sarangi, T; Savin, A; Smith, W H

    2014-05-02

    A search for flavor-changing neutral currents in top-quark decays t → Zq is performed in events produced from the decay chain tt → Zq+Wb, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A data set collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 19.7 fb(-1) of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus, no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a t → Zq branching fraction greater than 0.05% at the 95% confidence level.

  6. Searching for flavor changing neutral currents in t →H c , H →τ τ decays at the LHC

    Science.gov (United States)

    Chen, Xin; Xia, Li-Gang

    2016-06-01

    The prospects of searching for the flavor changing neutral current effect in the decay of t →H c , H →τ τ are investigated with the simulated p -p collision data for the ATLAS detector at the LHC, where the Higgs mass is assumed to be 125 GeV. A fit based on the constraints from the Higgs mass and the tau decay kinematics is performed for each event, which improves significantly the Higgs and top mass reconstruction and helps the signal-background separation. Boosted decision trees discriminants are developed to achieve an optimal sensitivity of searching for the flavor changing neutral current signal. An expected upper limit of the branching ratio B (t →H c ) at 95% confidence level of 0.25% is obtained with a data set of 100 fb-1 at √{s }=13 TeV during the LHC Run-2 period.

  7. Search for flavor-changing neutral currents in top-quark decays $t \\to Zq$ in pp collisions at $\\sqrt{s}$=8 TeV

    CERN Document Server

    Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Bergauer, Thomas; Dragicevic, Marko; Erö, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knünz, Valentin; Krammer, Manfred; Krätschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Rabady, Dinyar; Rahbaran, Babak; Rohringer, Herbert; Schöfbeck, Robert; Strauss, Josef; Taurok, Anton; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Heracleous, Natalie; Kalogeropoulos, Alexis; Keaveney, James; Kim, Tae Jeong; Lowette, Steven; Maes, Michael; Olbrechts, Annik; Strom, Derek; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Favart, Laurent; Gay, Arnaud; Hreus, Tomas; Léonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Perniè, Luca; Reis, Thomas; Seva, Tomislav; Thomas, Laurent; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Benucci, Leonardo; Cimmino, Anna; Costantini, Silvia; Dildick, Sven; Garcia, Guillaume; Klein, Benjamin; Lellouch, Jérémie; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Sigamani, Michael; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Beluffi, Camille; Bruno, Giacomo; Castello, Roberto; Caudron, Adrien; Ceard, Ludivine; Da Silveira, Gustavo Gil; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Popov, Andrey; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Aldá Júnior, Walter Luiz; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Malbouisson, Helena; Malek, Magdalena; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santaolalla, Javier; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Marinov, Andrey; Piperov, Stefan; Rodozov, Mircho; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Du, Ran; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Plestina, Roko; Tao, Junquan; Wang, Xianyou; Wang, Zheng; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Yifei; Li, Qiang; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Zhang, Linlin; Zou, Wei; Avila, Carlos; Carrillo Montoya, Camilo Andres; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Kadija, Kreso; Luetic, Jelena; Mekterovic, Darko; Morovic, Srecko; Tikvica, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Abdelalim, Ahmed Ali; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Müntel, Mait; Murumaa, Marion; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Mäenpää, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Ferri, Federico; Ganjour, Serguei; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Locci, Elizabeth; Malcles, Julie; Nayak, Aruna; Rander, John; Rosowsky, André; Titov, Maksym; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Charlot, Claude; Daci, Nadir; Dahms, Torsten; Dalchenko, Mykhailo; Dobrzynski, Ludwik; Florent, Alice; Granier de Cassagnac, Raphael; Haguenauer, Maurice; Miné, Philippe; Mironov, Camelia; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Paganini, Pascal; Sabes, David; Salerno, Roberto; Sirois, Yves; Veelken, Christian; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Bloch, Daniel; Brom, Jean-Marie; Chabert, Eric Christian; Collard, Caroline; Conte, Eric; Drouhin, Frédéric; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Goetzmann, Christophe; Juillot, Pierre; Le Bihan, Anne-Catherine; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Beaupere, Nicolas; Boudoul, Gaelle; Brochet, Sébastien; Chasserat, Julien; Chierici, Roberto; Contardo, Didier; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Ille, Bernard; Kurca, Tibor; Lethuillier, Morgan; Mirabito, Laurent; Perries, Stephane; Ruiz Alvarez, José David; Sgandurra, Louis; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Xiao, Hong; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Bontenackels, Michael; Calpas, Betty; Edelhoff, Matthias; Feld, Lutz; Hindrichs, Otto; Klein, Katja; Ostapchuk, Andrey; Perieanu, Adrian; Raupach, Frank; Sammet, Jan; Schael, Stefan; Sprenger, Daniel; Weber, Hendrik; Wittmer, Bruno; Zhukov, Valery; Ata, Metin; Caudron, Julien; Dietz-Laursonn, Erik; Duchardt, Deborah; Erdmann, Martin; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Klingebiel, Dennis; Knutzen, Simon; Kreuzer, Peter; Merschmeyer, Markus; Meyer, Arnd; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Reithler, Hans; Schmitz, Stefan Antonius; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Weber, Martin; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Geenen, Heiko; Geisler, Matthias; Haj Ahmad, Wael; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Kuessel, Yvonne; Lingemann, Joschka; Nowack, Andreas; Nugent, Ian Michael; Perchalla, Lars; Pooth, Oliver; Stahl, Achim; Asin, Ivan; Bartosik, Nazar; Behr, Joerg; Behrenhoff, Wolf; Behrens, Ulf; Bell, Alan James; Bergholz, Matthias; Bethani, Agni; Borras, Kerstin; Burgmeier, Armin; Cakir, Altan; Calligaris, Luigi; Campbell, Alan; Choudhury, Somnath; Costanza, Francesco; Diez Pardos, Carmen; Dooling, Samantha; Dorland, Tyler; Eckerlin, Guenter; Eckstein, Doris; Eichhorn, Thomas; Flucke, Gero; Geiser, Achim; Grebenyuk, Anastasia; Gunnellini, Paolo; Habib, Shiraz; Hauk, Johannes; Hellwig, Gregor; Hempel, Maria; Horton, Dean; Jung, Hannes; Kasemann, Matthias; Katsas, Panagiotis; Kleinwort, Claus; Krämer, Mira; Krücker, Dirk; Lange, Wolfgang; Leonard, Jessica; Lipka, Katerina; Lohmann, Wolfgang; Lutz, Benjamin; Mankel, Rainer; Marfin, Ihar; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mnich, Joachim; Mussgiller, Andreas; Naumann-Emme, Sebastian; Novgorodova, Olga; Nowak, Friederike; Perrey, Hanno; Petrukhin, Alexey; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Ribeiro Cipriano, Pedro M; Riedl, Caroline; Ron, Elias; Sahin, Mehmet Özgür; Salfeld-Nebgen, Jakob; Schmidt, Ringo; Schoerner-Sadenius, Thomas; Schröder, Matthias; Stein, Matthias; Vargas Trevino, Andrea Del Rocio; Walsh, Roberval; Wissing, Christoph; Aldaya Martin, Maria; Blobel, Volker; Enderle, Holger; Erfle, Joachim; Garutti, Erika; Görner, Martin; Gosselink, Martijn; Haller, Johannes; Goebel, Kristin; Höing, Rebekka Sophie; Kirschenmann, Henning; Klanner, Robert; Kogler, Roman; Lange, Jörn; Marchesini, Ivan; Ott, Jochen; Peiffer, Thomas; Pietsch, Niklas; Rathjens, Denis; Sander, Christian; Schettler, Hannes; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Seidel, Markus; Sibille, Jennifer; Sola, Valentina; Stadie, Hartmut; Steinbrück, Georg; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Barth, Christian; Baus, Colin; Berger, Joram; Böser, Christian; Butz, Erik; Chwalek, Thorsten; De Boer, Wim; Descroix, Alexis; Dierlamm, Alexander; Feindt, Michael; Guthoff, Moritz; Hartmann, Frank; Hauth, Thomas; Held, Hauke; Hoffmann, Karl-Heinz; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Kuznetsova, Ekaterina; Lobelle Pardo, Patricia; Martschei, Daniel; Mozer, Matthias Ulrich; Müller, Thomas; Niegel, Martin; Nürnberg, Andreas; Oberst, Oliver; Quast, Gunter; Rabbertz, Klaus; Ratnikov, Fedor; Röcker, Steffen; Schilling, Frank-Peter; Schott, Gregory; Simonis, Hans-Jürgen; Stober, Fred-Markus Helmut; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weiler, Thomas; Wolf, Roger; Zeise, Manuel; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Kesisoglou, Stilianos; Kyriakis, Aristotelis; Loukas, Demetrios; Markou, Athanasios; Markou, Christos; Ntomari, Eleni; Topsis-Giotis, Iasonas; Gouskos, Loukas; Panagiotou, Apostolos; Saoulidou, Niki; Stiliaris, Efstathios; Aslanoglou, Xenofon; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Molnar, Jozsef; Palinkas, Jozsef; Szillasi, Zoltan; Karancsi, János; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Swain, Sanjay Kumar; Beri, Suman Bala; Bhatnagar, Vipin; Dhingra, Nitish; Gupta, Ruchi; Kaur, Manjit; Mehta, Manuk Zubin; Mittal, Monika; Nishu, Nishu; Sharma, Archana; Singh, Jasbir; Kumar, Ashok; Kumar, Arun; Ahuja, Sudha; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Ranjan, Kirti; Saxena, Pooja; Sharma, Varun; Shivpuri, Ram Krishen; Banerjee, Sunanda; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dutta, Suchandra; Gomber, Bhawna; Jain, Sandhya; Jain, Shilpi; Khurana, Raman; Modak, Atanu; Mukherjee, Swagata; Roy, Debarati; Sarkar, Subir; Sharan, Manoj; Singh, Anil; Abdulsalam, Abdulla; Dutta, Dipanwita; Kailas, Swaminathan; Kumar, Vineet; Mohanty, Ajit Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Chatterjee, Rajdeep Mohan; Ganguly, Sanmay; Ghosh, Saranya; Guchait, Monoranjan; Gurtu, Atul; Kole, Gouranga; Kumar, Sanjeev; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mohanty, Gagan Bihari; Parida, Bibhuti; Sudhakar, Katta; Wickramage, Nadeesha; Banerjee, Sudeshna; Dugad, Shashikant; Arfaei, Hessamaddin; Bakhshiansohi, Hamed; Behnamian, Hadi; Etesami, Seyed Mohsen; Fahim, Ali; Jafari, Abideh; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Safarzadeh, Batool; Zeinali, Maryam; Grunewald, Martin; Abbrescia, Marcello; Barbone, Lucia; Calabria, Cesare; Chhibra, Simranjit Singh; Colaleo, Anna; Creanza, Donato; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Marangelli, Bartolomeo; My, Salvatore; Nuzzo, Salvatore; Pacifico, Nicola; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Selvaggi, Giovanna; Silvestris, Lucia; Singh, Gurpreet; Venditti, Rosamaria; Verwilligen, Piet; Zito, Giuseppe; Abbiendi, Giovanni; Benvenuti, Alberto; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Meneghelli, Marco; Montanari, Alessandro; Navarria, Francesco; Odorici, Fabrizio; Perrotta, Andrea; Primavera, Federica; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Travaglini, Riccardo; Albergo, Sebastiano; Cappello, Gigi; Chiorboli, Massimiliano; Costa, Salvatore; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gallo, Elisabetta; Gonzi, Sandro; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Tropiano, Antonio; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Fabbricatore, Pasquale; Ferretti, Roberta; Ferro, Fabrizio; Lo Vetere, Maurizio; Musenich, Riccardo; Robutti, Enrico; Tosi, Silvano; Benaglia, Andrea; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Lucchini, Marco Toliman; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Martelli, Arabella; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Ragazzi, Stefano; Redaelli, Nicola; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Azzi, Patrizia; Bacchetta, Nicola; Bisello, Dario; Branca, Antonio; Carlin, Roberto; Checchia, Paolo; Dorigo, Tommaso; Fanzago, Federica; Galanti, Mario; Gasparini, Fabrizio; Gasparini, Ugo; Giubilato, Piero; Gonella, Franco; Gozzelino, Andrea; Kanishchev, Konstantin; Lacaprara, Stefano; Lazzizzera, Ignazio; Margoni, Martino; Meneguzzo, Anna Teresa; Montecassiano, Fabio; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Tosi, Mia; Vanini, Sara; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Gabusi, Michele; Ratti, Sergio P; Riccardi, Cristina; Vitulo, Paolo; Biasini, Maurizio; Bilei, Gian Mario; Fanò, Livio; Lariccia, Paolo; Mantovani, Giancarlo; Menichelli, Mauro; Nappi, Aniello; Romeo, Francesco; Saha, Anirban; Santocchia, Attilio; Spiezia, Aniello; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Broccolo, Giuseppe; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Fiori, Francesco; Foà, Lorenzo; Giassi, Alessandro; Grippo, Maria Teresa; Kraan, Aafke; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Moon, Chang-Seong; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Serban, Alin Titus; Spagnolo, Paolo; Squillacioti, Paola; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Vernieri, Caterina; Barone, Luciano; Cavallari, Francesca; Del Re, Daniele; Diemoz, Marcella; Grassi, Marco; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Micheli, Francesco; Nourbakhsh, Shervin; Organtini, Giovanni; Paramatti, Riccardo; Rahatlou, Shahram; Rovelli, Chiara; Soffi, Livia; Traczyk, Piotr; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Casasso, Stefano; Costa, Marco; Degano, Alessandro; Demaria, Natale; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Musich, Marco; Obertino, Maria Margherita; Ortona, Giacomo; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Potenza, Alberto; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Solano, Ada; Staiano, Amedeo; Tamponi, Umberto; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; Gobbo, Benigno; La Licata, Chiara; Marone, Matteo; Montanino, Damiana; Penzo, Aldo; Schizzi, Andrea; Umer, Tomo; Zanetti, Anna; Chang, Sunghyun; Kim, Tae Yeon; Nam, Soon-Kwon; Kim, Dong Hee; Kim, Gui Nyun; Kim, Ji Eun; Kong, Dae Jung; Lee, Sangeun; Oh, Young Do; Park, Hyangkyu; Son, Dong-Chul; Kim, Jae Yool; Kim, Zero Jaeho; Song, Sanghyeon; Choi, Suyong; Gyun, Dooyeon; Hong, Byung-Sik; Jo, Mihee; Kim, Hyunchul; Kim, Yongsun; Lee, Kyong Sei; Park, Sung Keun; Roh, Youn; Choi, Minkyoo; Kim, Ji Hyun; Park, Chawon; Park, Inkyu; Park, Sangnam; Ryu, Geonmo; Choi, Young-Il; Choi, Young Kyu; Goh, Junghwan; Kim, Min Suk; Kwon, Eunhyang; Lee, Byounghoon; Lee, Jongseok; Lee, Sungeun; Seo, Hyunkwan; Yu, Intae; Juodagalvis, Andrius; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-de La Cruz, Ivan; Lopez-Fernandez, Ricardo; Martínez-Ortega, Jorge; Sánchez Hernández, Alberto; Villasenor-Cendejas, Luis Manuel; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Salazar Ibarguen, Humberto Antonio; Casimiro Linares, Edgar; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Doesburg, Robert; Reucroft, Steve; Silverwood, Hamish; Ahmad, Muhammad; Asghar, Muhammad Irfan; Butt, Jamila; Hoorani, Hafeez R; Khalid, Shoaib; Khan, Wajid Ali; Khurshid, Taimoor; Qazi, Shamona; Shah, Mehar Ali; Shoaib, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Wrochna, Grzegorz; Zalewski, Piotr; Brona, Grzegorz; Bunkowski, Karol; Cwiok, Mikolaj; Dominik, Wojciech; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Wolszczak, Weronika; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Nguyen, Federico; Rodrigues Antunes, Joao; Seixas, Joao; Varela, Joao; Vischia, Pietro; Afanasiev, Serguei; Bunin, Pavel; Golutvin, Igor; Gorbunov, Ilya; Kamenev, Alexey; Karjavin, Vladimir; Konoplyanikov, Viktor; Kozlov, Guennady; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Skatchkov, Nikolai; Smirnov, Vitaly; Zarubin, Anatoli; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Levchenko, Petr; Murzin, Victor; Oreshkin, Vadim; Smirnov, Igor; Sulimov, Valentin; Uvarov, Lev; Vavilov, Sergey; Vorobyev, Alexey; Vorobyev, Andrey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Safronov, Grigory; Semenov, Sergey; Spiridonov, Alexander; Stolin, Viatcheslav; Vlasov, Evgueni; Zhokin, Alexander; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Mesyats, Gennady; Rusakov, Sergey V; Vinogradov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Gribushin, Andrey; Klyukhin, Vyacheslav; Kodolova, Olga; Lokhtin, Igor; Markina, Anastasia; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Snigirev, Alexander; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Tourtchanovitch, Leonid; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Djordjevic, Milos; Ekmedzic, Marko; Milosevic, Jovan; Aguilar-Benitez, Manuel; Alcaraz Maestre, Juan; Battilana, Carlo; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Domínguez Vázquez, Daniel; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Ferrando, Antonio; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Merino, Gonzalo; Navarro De Martino, Eduardo; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; Willmott, Carlos; Albajar, Carmen; de Trocóniz, Jorge F; Brun, Hugues; Cuevas, Javier; Fernandez Menendez, Javier; Folgueras, Santiago; Gonzalez Caballero, Isidro; Lloret Iglesias, Lara; Brochero Cifuentes, Javier Andres; Cabrillo, Iban Jose; Calderon, Alicia; Chuang, Shan-Huei; Duarte Campderros, Jordi; Fernandez, Marcos; Gomez, Gervasio; Gonzalez Sanchez, Javier; Graziano, Alberto; Lopez Virto, Amparo; Marco, Jesus; Marco, Rafael; Martinez Rivero, Celso; Matorras, Francisco; Munoz Sanchez, Francisca Javiela; Piedra Gomez, Jonatan; Rodrigo, Teresa; Rodríguez-Marrero, Ana Yaiza; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bendavid, Joshua; Benhabib, Lamia; Benitez, Jose F; Bernet, Colin; Bianchi, Giovanni; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Bondu, Olivier; Botta, Cristina; Breuker, Horst; Camporesi, Tiziano; Cerminara, Gianluca; Christiansen, Tim; Coarasa Perez, Jose Antonio; Colafranceschi, Stefano; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; David Tinoco Mendes, Andre; De Guio, Federico; De Roeck, Albert; De Visscher, Simon; Di Guida, Salvatore; Dobson, Marc; Dupont-Sagorin, Niels; Elliott-Peisert, Anna; Eugster, Jürg; Franzoni, Giovanni; Funk, Wolfgang; Giffels, Manuel; Gigi, Dominique; Gill, Karl; Girone, Maria; Giunta, Marina; Glege, Frank; Gomez-Reino Garrido, Robert; Gowdy, Stephen; Guida, Roberto; Hammer, Josef; Hansen, Magnus; Harris, Philip; Hinzmann, Andreas; Innocente, Vincenzo; Janot, Patrick; Karavakis, Edward; Kousouris, Konstantinos; Krajczar, Krisztian; Lecoq, Paul; Lourenco, Carlos; Magini, Nicolo; Malgeri, Luca; Mannelli, Marcello; Masetti, Lorenzo; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Mulders, Martijn; Musella, Pasquale; Orsini, Luciano; Palencia Cortezon, Enrique; Perez, Emmanuelle; Perrozzi, Luca; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Pimiä, Martti; Piparo, Danilo; Plagge, Michael; Racz, Attila; Reece, William; Rolandi, Gigi; Rovere, Marco; Sakulin, Hannes; Santanastasio, Francesco; Schäfer, Christoph; Schwick, Christoph; Sekmen, Sezen; Sharma, Archana; Siegrist, Patrice; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stieger, Benjamin; Stoye, Markus; Tsirou, Andromachi; Veres, Gabor Istvan; Vlimant, Jean-Roch; Wöhri, Hermine Katharina; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Gabathuler, Kurt; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; König, Stefan; Kotlinski, Danek; Langenegger, Urs; Renker, Dieter; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Bortignon, Pierluigi; Buchmann, Marco-Andrea; Casal, Bruno; Chanon, Nicolas; Deisher, Amanda; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Dünser, Marc; Eller, Philipp; Grab, Christoph; Hits, Dmitry; Lustermann, Werner; Mangano, Boris; Marini, Andrea Carlo; Martinez Ruiz del Arbol, Pablo; Meister, Daniel; Mohr, Niklas; Nägeli, Christoph; Nef, Pascal; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pape, Luc; Pauss, Felicitas; Peruzzi, Marco; Quittnat, Milena; Ronga, Frederic Jean; Rossini, Marco; Starodumov, Andrei; Takahashi, Maiko; Tauscher, Ludwig; Theofilatos, Konstantinos; Treille, Daniel; Wallny, Rainer; Weber, Hannsjoerg Artur; Amsler, Claude; Chiochia, Vincenzo; De Cosa, Annapaola; Favaro, Carlotta; Ivova Rikova, Mirena; Kilminster, Benjamin; Millan Mejias, Barbara; Ngadiuba, Jennifer; Robmann, Peter; Snoek, Hella; Taroni, Silvia; Verzetti, Mauro; Yang, Yong; Cardaci, Marco; Chen, Kuan-Hsin; Ferro, Cristina; Kuo, Chia-Ming; Li, Syue-Wei; Lin, Willis; Lu, Yun-Ju; Volpe, Roberta; Yu, Shin-Shan; Bartalini, Paolo; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Grundler, Ulysses; Hou, George Wei-Shu; Hsiung, Yee; Kao, Kai-Yi; Lei, Yeong-Jyi; Liu, Yueh-Feng; Lu, Rong-Shyang; Majumder, Devdatta; Petrakou, Eleni; Shi, Xin; Shiu, Jing-Ge; Tzeng, Yeng-Ming; Wang, Minzu; Wilken, Rachel; Asavapibhop, Burin; Suwonjandee, Narumon; Adiguzel, Aytul; Bakirci, Mustafa Numan; Cerci, Salim; Dozen, Candan; Dumanoglu, Isa; Eskut, Eda; Girgis, Semiray; Gokbulut, Gul; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Kayis Topaksu, Aysel; Onengut, Gulsen; Ozdemir, Kadri; Ozturk, Sertac; Polatoz, Ayse; Sogut, Kenan; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Vergili, Mehmet; Akin, Ilina Vasileva; Aliev, Takhmasib; Bilin, Bugra; Bilmis, Selcuk; Deniz, Muhammed; Gamsizkan, Halil; Guler, Ali Murat; Karapinar, Guler; Ocalan, Kadir; Ozpineci, Altug; Serin, Meltem; Sever, Ramazan; Surat, Ugur Emrah; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Isildak, Bora; Kaya, Mithat; Kaya, Ozlem; Ozkorucuklu, Suat; Sonmez, Nasuf; Bahtiyar, Hüseyin; Barlas, Esra; Cankocak, Kerem; Günaydin, Yusuf Oguzhan; Vardarli, Fuat Ilkehan; Yücel, Mete; Levchuk, Leonid; Sorokin, Pavel; Brooke, James John; Clement, Emyr; Cussans, David; Flacher, Henning; Frazier, Robert; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Meng, Zhaoxia; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Senkin, Sergey; Smith, Vincent J; Williams, Thomas; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Ilic, Jelena; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Womersley, William John; Worm, Steven; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Burton, Darren; Colling, David; Cripps, Nicholas; Cutajar, Michael; Dauncey, Paul; Davies, Gavin; Della Negra, Michel; Ferguson, William; Fulcher, Jonathan; Futyan, David; Gilbert, Andrew; Guneratne Bryer, Arlo; Hall, Geoffrey; Hatherell, Zoe; Hays, Jonathan; Iles, Gregory; Jarvis, Martyn; Karapostoli, Georgia; Kenzie, Matthew; Lane, Rebecca; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Marrouche, Jad; Mathias, Bryn; Nandi, Robin; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Pesaresi, Mark; Petridis, Konstantinos; Pioppi, Michele; Raymond, David Mark; Rogerson, Samuel; Rose, Andrew; Seez, Christopher; Sharp, Peter; Sparrow, Alex; Tapper, Alexander; Vazquez Acosta, Monica; Virdee, Tejinder; Wakefield, Stuart; Wardle, Nicholas; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leggat, Duncan; Leslie, Dawn; Martin, William; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Dittmann, Jay; Hatakeyama, Kenichi; Kasmi, Azeddine; Liu, Hongxuan; Scarborough, Tara; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Avetisyan, Aram; Bose, Tulika; Fantasia, Cory; Heister, Arno; Lawson, Philip; Lazic, Dragoslav; Rohlf, James; Sperka, David; St John, Jason; Sulak, Lawrence; Alimena, Juliette; Bhattacharya, Saptaparna; Christopher, Grant; Cutts, David; Demiragli, Zeynep; Ferapontov, Alexey; Garabedian, Alex; Heintz, Ulrich; Jabeen, Shabnam; Kukartsev, Gennadiy; Laird, Edward; Landsberg, Greg; Luk, Michael; Narain, Meenakshi; Segala, Michael; Sinthuprasith, Tutanon; Speer, Thomas; Swanson, Joshua; Breedon, Richard; Breto, Guillermo; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Gardner, Michael; Ko, Winston; Kopecky, Alexandra; Lander, Richard; Miceli, Tia; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Rutherford, Britney; Searle, Matthew; Shalhout, Shalhout; Smith, John; Squires, Michael; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Andreev, Valeri; Cline, David; Cousins, Robert; Erhan, Samim; Everaerts, Pieter; Farrell, Chris; Felcini, Marta; Hauser, Jay; Ignatenko, Mikhail; Jarvis, Chad; Rakness, Gregory; Schlein, Peter; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Babb, John; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Lacroix, Florent; Liu, Hongliang; Long, Owen Rosser; Luthra, Arun; Malberti, Martina; Nguyen, Harold; Shrinivas, Amithabh; Sturdy, Jared; Sumowidagdo, Suharyo; Wimpenny, Stephen; Andrews, Warren; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; D'Agnolo, Raffaele Tito; Evans, David; Holzner, André; Kelley, Ryan; Kovalskyi, Dmytro; Lebourgeois, Matthew; Letts, James; Macneill, Ian; Padhi, Sanjay; Palmer, Christopher; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Sudano, Elizabeth; Tadel, Matevz; Tu, Yanjun; Vartak, Adish; Wasserbaech, Steven; Würthwein, Frank; Yagil, Avraham; Yoo, Jaehyeok; Barge, Derek; Campagnari, Claudio; Danielson, Thomas; Flowers, Kristen; Geffert, Paul; George, Christopher; Golf, Frank; Incandela, Joe; Justus, Christopher; Magaña Villalba, Ricardo; Mccoll, Nickolas; Pavlunin, Viktor; Richman, Jeffrey; Rossin, Roberto; Stuart, David; To, Wing; West, Christopher; Apresyan, Artur; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Di Marco, Emanuele; Duarte, Javier; Kcira, Dorian; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Rogan, Christopher; Spiropulu, Maria; Timciuc, Vladlen; Wilkinson, Richard; Xie, Si; Zhu, Ren-Yuan; Azzolini, Virginia; Calamba, Aristotle; Carroll, Ryan; Ferguson, Thomas; Iiyama, Yutaro; Jang, Dong Wook; Paulini, Manfred; Russ, James; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Drell, Brian Robert; Ford, William T; Gaz, Alessandro; Luiggi Lopez, Eduardo; Nauenberg, Uriel; Smith, James; Stenson, Kevin; Ulmer, Keith; Wagner, Stephen Robert; Alexander, James; Chatterjee, Avishek; Eggert, Nicholas; Gibbons, Lawrence Kent; Hopkins, Walter; Khukhunaishvili, Aleko; Kreis, Benjamin; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Ryd, Anders; Salvati, Emmanuele; Sun, Werner; Teo, Wee Don; Thom, Julia; Thompson, Joshua; Tucker, Jordan; Weng, Yao; Winstrom, Lucas; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Anderson, Jacob; Apollinari, Giorgio; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Burkett, Kevin; Butler, Joel Nathan; Chetluru, Vasundhara; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gao, Yanyan; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hirschauer, James; Hooberman, Benjamin; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Kaadze, Ketino; Klima, Boaz; Kwan, Simon; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Lykken, Joseph; Maeshima, Kaori; Marraffino, John Michael; Martinez Outschoorn, Verena Ingrid; Maruyama, Sho; Mason, David; McBride, Patricia; Mishra, Kalanand; Mrenna, Stephen; Musienko, Yuri; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Prokofyev, Oleg; Ratnikova, Natalia; Sexton-Kennedy, Elizabeth; Sharma, Seema; Spalding, William J; Spiegel, Leonard; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vidal, Richard; Whitmore, Juliana; Wu, Weimin; Yang, Fan; Yun, Jae Chul; Acosta, Darin; Avery, Paul; Bourilkov, Dimitri; Cheng, Tongguang; Das, Souvik; De Gruttola, Michele; Di Giovanni, Gian Piero; Dobur, Didar; Field, Richard D; Fisher, Matthew; Fu, Yu; Furic, Ivan-Kresimir; Hugon, Justin; Kim, Bockjoo; Konigsberg, Jacobo; Korytov, Andrey; Kropivnitskaya, Anna; Kypreos, Theodore; Low, Jia Fu; Matchev, Konstantin; Milenovic, Predrag; Mitselmakher, Guenakh; Muniz, Lana; Rinkevicius, Aurelijus; Shchutska, Lesya; Skhirtladze, Nikoloz; Snowball, Matthew; Yelton, John; Zakaria, Mohammed; Gaultney, Vanessa; Hewamanage, Samantha; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Adams, Todd; Askew, Andrew; Bochenek, Joseph; Chen, Jie; Diamond, Brendan; Haas, Jeff; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Prosper, Harrison; Veeraraghavan, Venkatesh; Weinberg, Marc; Baarmand, Marc M; Dorney, Brian; Hohlmann, Marcus; Kalakhety, Himali; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Bazterra, Victor Eduardo; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Khalatyan, Samvel; Kurt, Pelin; Moon, Dong Ho; O'Brien, Christine; Silkworth, Christopher; Turner, Paul; Varelas, Nikos; Akgun, Ugur; Albayrak, Elif Asli; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Duru, Firdevs; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Sen, Sercan; Tan, Ping; Tiras, Emrah; Wetzel, James; Yetkin, Taylan; Yi, Kai; Barnett, Bruce Arnold; Blumenfeld, Barry; Bolognesi, Sara; Fehling, David; Gritsan, Andrei; Maksimovic, Petar; Martin, Christopher; Swartz, Morris; Whitbeck, Andrew; Baringer, Philip; Bean, Alice; Benelli, Gabriele; Kenny III, Raymond Patrick; Murray, Michael; Noonan, Daniel; Sanders, Stephen; Sekaric, Jadranka; Stringer, Robert; Wang, Quan; Wood, Jeffrey Scott; Barfuss, Anne-Fleur; Chakaberia, Irakli; Ivanov, Andrew; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Saini, Lovedeep Kaur; Shrestha, Shruti; Svintradze, Irakli; Gronberg, Jeffrey; Lange, David; Rebassoo, Finn; Wright, Douglas; Baden, Drew; Calvert, Brian; Eno, Sarah Catherine; Gomez, Jaime; Hadley, Nicholas John; Kellogg, Richard G; Kolberg, Ted; Lu, Ying; Marionneau, Matthieu; Mignerey, Alice; Pedro, Kevin; Skuja, Andris; Temple, Jeffrey; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Bauer, Gerry; Busza, Wit; Cali, Ivan Amos; Chan, Matthew; Di Matteo, Leonardo; Dutta, Valentina; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Klute, Markus; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Ma, Teng; Paus, Christoph; Ralph, Duncan; Roland, Christof; Roland, Gunther; Stephans, George; Stöckli, Fabian; Sumorok, Konstanty; Velicanu, Dragos; Veverka, Jan; Wyslouch, Bolek; Yang, Mingming; Yoon, Sungho; Zanetti, Marco; Zhukova, Victoria; Dahmes, Bryan; De Benedetti, Abraham; Gude, Alexander; Kao, Shih-Chuan; Klapoetke, Kevin; Kubota, Yuichi; Mans, Jeremy; Pastika, Nathaniel; Rusack, Roger; Singovsky, Alexander; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Cremaldi, Lucien Marcus; Kroeger, Rob; Oliveros, Sandra; Perera, Lalith; Rahmat, Rahmat; Sanders, David A; Summers, Don; Avdeeva, Ekaterina; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Gonzalez Suarez, Rebeca; Keller, Jason; Kravchenko, Ilya; Lazo-Flores, Jose; Malik, Sudhir; Meier, Frank; Snow, Gregory R; Dolen, James; Godshalk, Andrew; Iashvili, Ia; Jain, Supriya; Kharchilava, Avto; Kumar, Ashish; Rappoccio, Salvatore; Wan, Zongru; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Haley, Joseph; Massironi, Andrea; Nash, David; Orimoto, Toyoko; Trocino, Daniele; Wood, Darien; Zhang, Jinzhong; Anastassov, Anton; Hahn, Kristan Allan; Kubik, Andrew; Lusito, Letizia; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Pozdnyakov, Andrey; Schmitt, Michael Henry; Stoynev, Stoyan; Sung, Kevin; Velasco, Mayda; Won, Steven; Berry, Douglas; Brinkerhoff, Andrew; Chan, Kwok Ming; Drozdetskiy, Alexey; Hildreth, Michael; Jessop, Colin; Karmgard, Daniel John; Kolb, Jeff; Lannon, Kevin; Luo, Wuming; Lynch, Sean; Marinelli, Nancy; Morse, David Michael; Pearson, Tessa; Planer, Michael; Ruchti, Randy; Slaunwhite, Jason; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Antonelli, Louis; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Hill, Christopher; Hughes, Richard; Kotov, Khristian; Ling, Ta-Yung; Puigh, Darren; Rodenburg, Marissa; Smith, Geoffrey; Vuosalo, Carl; Winer, Brian L; Wolfe, Homer; Wulsin, Howard Wells; Berry, Edmund; Elmer, Peter; Halyo, Valerie; Hebda, Philip; Hegeman, Jeroen; Hunt, Adam; Jindal, Pratima; Koay, Sue Ann; Lujan, Paul; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Piroué, Pierre; Quan, Xiaohang; Raval, Amita; Saka, Halil; Stickland, David; Tully, Christopher; Werner, Jeremy Scott; Zenz, Seth Conrad; Zuranski, Andrzej; Brownson, Eric; Lopez, Angel; Mendez, Hector; Ramirez Vargas, Juan Eduardo; Alagoz, Enver; Benedetti, Daniele; Bolla, Gino; Bortoletto, Daniela; De Mattia, Marco; Everett, Adam; Hu, Zhen; Jones, Matthew; Jung, Kurt; Kress, Matthew; Leonardo, Nuno; Lopes Pegna, David; Maroussov, Vassili; Merkel, Petra; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shipsey, Ian; Silvers, David; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Yoo, Hwi Dong; Zablocki, Jakub; Zheng, Yu; Parashar, Neeti; Adair, Antony; Akgun, Bora; Ecklund, Karl Matthew; Geurts, Frank JM; Li, Wei; Michlin, Benjamin; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Zabel, James; Betchart, Burton; Bodek, Arie; Covarelli, Roberto; de Barbaro, Pawel; Demina, Regina; Eshaq, Yossof; Ferbel, Thomas; Garcia-Bellido, Aran; Goldenzweig, Pablo; Han, Jiyeon; Harel, Amnon; Miner, Daniel Carl; Petrillo, Gianluca; Vishnevskiy, Dmitry; Zielinski, Marek; Bhatti, Anwar; Ciesielski, Robert; Demortier, Luc; Goulianos, Konstantin; Lungu, Gheorghe; Malik, Sarah; Mesropian, Christina; Arora, Sanjay; Barker, Anthony; Chou, John Paul; Contreras-Campana, Christian; Contreras-Campana, Emmanuel; Duggan, Daniel; Ferencek, Dinko; Gershtein, Yuri; Gray, Richard; Halkiadakis, Eva; Hidas, Dean; Lath, Amitabh; Panwalkar, Shruti; Park, Michael; Patel, Rishi; Rekovic, Vladimir; Robles, Jorge; Salur, Sevil; Schnetzer, Steve; Seitz, Claudia; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Rose, Keith; Spanier, Stefan; Yang, Zong-Chang; York, Andrew; Bouhali, Othmane; Eusebi, Ricardo; Flanagan, Will; Gilmore, Jason; Kamon, Teruki; Khotilovich, Vadim; Krutelyov, Vyacheslav; Montalvo, Roy; Osipenkov, Ilya; Pakhotin, Yuriy; Perloff, Alexx; Roe, Jeffrey; Safonov, Alexei; Sakuma, Tai; Suarez, Indara; Tatarinov, Aysen; Toback, David; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Kovitanggoon, Kittikul; Kunori, Shuichi; Lee, Sung Won; Libeiro, Terence; Volobouev, Igor; Appelt, Eric; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Johns, Willard; Maguire, Charles; Mao, Yaxian; Melo, Andrew; Sharma, Monika; Sheldon, Paul; Snook, Benjamin; Tuo, Shengquan; Velkovska, Julia; Arenton, Michael Wayne; Boutle, Sarah; Cox, Bradley; Francis, Brian; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Lin, Chuanzhe; Neu, Christopher; Wood, John; Gollapinni, Sowjanya; Harr, Robert; Karchin, Paul Edmund; Kottachchi Kankanamge Don, Chamath; Lamichhane, Pramod; Sakharov, Alexandre; Belknap, Donald; Borrello, Laura; Carlsmith, Duncan; Cepeda, Maria; Dasu, Sridhara; Duric, Senka; Friis, Evan; Grothe, Monika; Hall-Wilton, Richard; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Klukas, Jeffrey; Lanaro, Armando; Loveless, Richard; Mohapatra, Ajit; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ross, Ian; Sarangi, Tapas; Savin, Alexander; Smith, Wesley H

    2014-05-02

    A search for flavor-changing neutral currents in top-quark decays $t \\to Zq$ is performed in events produced from the decay chain $t\\bar{t} \\to Zq+Wb$, where both vector bosons decay leptonically, producing a final state with three leptons (electrons or muons). A dataset collected with the CMS detector at the LHC is used, corresponding to an integrated luminosity of 19.7 inverse femtobarns of proton-proton collisions at a center-of-mass energy of 8 TeV. No excess is seen in the observed number of events relative to the standard model prediction; thus no evidence for flavor-changing neutral currents in top-quark decays is found. A combination with a previous search at 7 TeV excludes a $t \\to Zq$ branching fraction greater than 0.05% at the 95% confidence level.

  8. Signals of Supersymmetric Dark Matter

    CERN Document Server

    Abbas, A

    2000-01-01

    The Lightest Supersymmetric Particle predicted in most of the supersymmetric scenarios is an ideal candidate for the dark matter of cosmology. Their detection is of extreme significance today. Recently there have been intriguing signals of a 59 Gev neutralino dark matter at DAMA in Gran Sasso. We look at other possible signatures of dark matter in astrophysical and geological frameworks. The passage of the earth through dense clumps of dark matter would produce large quantities of heat in the interior of this planet through the capture and subsequent annihilation of dark matter particles. This heat would lead to large-scale volcanism which could in turn have caused mass extinctions. The periodicity of such volcanic outbursts agrees with the frequency of palaeontological mass extinctions as well as the observed periodicity in the occurrence of the largest flood basalt provinces on the globe. Binary character of these extinctions is another unique aspect of this signature of dark matter. In addition dark matter...

  9. Exploring the Supersymmetric $\\sigma$ Model

    CERN Document Server

    De Oliveira-Imbiriba, B C

    1999-01-01

    The purpose of this work is to present some basic concepts about the non-linear sigma model in a simple and direct way. We start with showing the bosonic model and the Wess-Zumino-Witten term, making some comments about its topological nature, and its association with the torsion. It is also shown that to cancel the quantum conformal anomaly the model should obey the Einstein equations. We provide a quick introduction about supersymmetry in chapter 2 to help the understanding the supersymmetric extension of the model. In the last chapter we present the supersymmetric model and its equations of motion. Finally we work-out the two-supersymmetry case, introducing the chiral as well as the twisted chiral fields, expliciting the very specific $SU(2)\\otimes U(1)$ case.

  10. Supersymmetric Higgs Bosons and Beyond

    Energy Technology Data Exchange (ETDEWEB)

    Carena, Marcela; /Fermilab /Chicago U., EFI; Kong, Kyoungchul; /Fermilab /SLAC; Ponton, Eduardo; /Columbia U.; Zurita, Jose; /Fermilab /Buenos Aires U.

    2010-08-26

    We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.

  11. Supersymmetric Spacetimes from Curved Superspace

    CERN Document Server

    Kuzenko, Sergei M

    2015-01-01

    We review the superspace technique to determine supersymmetric spacetimes in the framework of off-shell formulations for supergravity in diverse dimensions using the case of 3D N=2 supergravity theories as an illustrative example. This geometric formalism has several advantages over other approaches advocated in the last four years. Firstly, the infinitesimal isometry transformations of a given curved superspace form, by construction, a finite-dimensional Lie superalgebra, with its odd part corresponding to the rigid supersymmetry transformations. Secondly, the generalised Killing spinor equation, which must be obeyed by the supersymmetry parameters, is a consequence of the more fundamental superfield Killing equation. Thirdly, general rigid supersymmetric theories on a curved spacetime are readily constructed in superspace by making use of the known off-shell supergravity-matter couplings and restricting them to the background chosen. It is the superspace techniques which make it possible to generate arbitra...

  12. A Limit on the Branching Ratio of the Flavor-Changing Top Quark Decay T→Zc

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, Alexander Andreevich [Univ. of Chicago, IL (United States)

    2009-06-01

    We have used the Collider Detector at Fermilab (CDF-II) to set upper limits on the branching ratio of the flavor-changing neutral-current (FCNC) top quark decay t → Zc using a technique employing ratios of W and Z production, measured in 1.52 fb-1 of p$\\bar{p}$ data. The analysis uses a comparison of two decay chains, p$\\bar{p}$ → t$\\bar{t}$ → WbWb → ℓvbjjb and p$\\bar{p}$ → t$\\bar{t}$ ZcWb → ℓ+- cjjb, to cancel systematic uncertainties in acceptance, efficiency, and luminosity. We validate the MC modeling of acceptance and efficiency for lepton identification over the multi-year dataset also using a ratio of W and Z production, in this case the observed ratio of inclusive production of W to Z-bosons, a technique that will be essential for precision comparisons with the standard model at the LHC. We introduce several methods of determining backgrounds to the W and Z samples. To improve the discrimination against SM backgrounds to top quark decays, we calculate the top mass for each event with two leptons and four jets assuming it is a t$\\bar{t}$ event with one of the top quarks decaying to Zc. The upper limit on the Br(t → Zc) is estimated from a likelihood constructed with the {ell}+- cjjb top mass distribution and the number of ℓvbjjb events. Limits are set as a function of the helicity of the Z-boson produced in the FCNC decay. For 100%-longitudinally-polarized Z-bosons we find a limit of 8.3% (95% C.L.).

  13. Search for the Flavor-Changing Neutral Current Decay $D^0 \\to \\mu^+\\mu^-$ with the HERA-B Detector

    CERN Document Server

    Abt, I; Albrecht, H; Aleksandrov, A; Amaral, V S; Amorim, A; Aplin, S J; Aushev, V; Bagaturia, Yu S; Balagura, V; Bargiotti, M; Barsukova, O; Bastos, J; Batista, J; Bauer, C; Bauer, T S; Belkov, A A; Bertin, A; Bobchenko, B M; Böcker, M; Bogatyrev, A; Böhm, G; Brauer, M; Bruinsma, M; Bruschi, M; Buchholz, P; Büchler, M C; Buran, T; Carvalho, J; Conde, P; Cruse, C; Dam, M; Danielsen, K M; Danilov, M; De Castro, S; Deppe, H; Dong, X; Dreis, H B; Egorytchev, V; Ehret, K; Eisele, F; Emeliyanov, D; Essenov, S; Fabbri, Franco Luigi; Faccioli, P; Feuerstack-Raible, M; Flammer, J; Fominykh, B A; Funcke, M; Garrido, L; Giacobbe, B; Glass, J; Goloubkov, D; Golubkov, Yu A; Golutvin, A; Golutvin, I A; Gorbounov, I; Gorisek, A; Gouchtchine, O; Goulart, D C; Gradl, S; Gradl, W; Grimaldi, F; Guilitsky, Yu; Hansen, J D; Harr, R; Hernández, J M; Hofmann, W; Hott, T; Hulsbergen, W D; Husemann, U; Igonkina, O; Ispiryan, M; Jagla, T; Jiang, C; Kapitza, H; Karabekyan, S; Karchin, P; Karpenko, N; Keller, S; Kessler, J; Khasanov, F M; Kiryushin, Yu T; Knöpfle, K T; Kolanoski, H; Korpar, S; Krauss, C; Kreuzer, P; Krizan, P; Krücker, D; Kupper, S; Kvaratskheliia, T; Lanyov, A V; Lau, K; Lewendel, B; Lohse, T; Lomonosov, B N; Männer, R; Masciocchi, S; Massa, I; Matchikhilian, I; Medin, G; Medinnis, M; Mevius, M; Michetti, A; Mikhailov, Yu; Mizuk, R; Muresan, R; Nam, S; Zur Nedden, M; Negodaev, M A; Nörenberg, M; Nowak, S; Núñez-Pardo de Vera, M T; Ouchrif, M; Ould-Saada, F; Padilla, C; Peralta, D; Pernack, R; Pestotnik, R; Piccinini, M; Pleier, M A; Poli, M; Popov, V; Pose, A; Pose, D; Prystupa, S; Pugatch, V; Pylypchenko, Y; Pyrlik, J; Reeves, K; Ressing, D; Rick, H; Riu, I; Robmann, P; Rybnikov, V; Sánchez, F; Sbrizzi, A; Schmelling, M; Schmidt, B; Schreiner, A T; Schröder, H; Schwartz, A J; Schwarz, A S; Schwenninger, B; Schwingenheuer, B; Sciacca, F; Semprini-Cesari, N; Shiu, J; Shuvalov, S M; Silva, L; Smirnov, K V; Sozuer, L; Solunin, S A; Somov, A; Somov, S; Spengler, J; Spighi, R; Spiridonov, A A; Stanovnik, A; Staric, M; Stegmann, C; Subramanian, H S; Symalla, M; Tikhomirov, I; Titov, M; Tsakov, I; Uwer, U; Van Eldik, C; Vasilev, Yu; Villa, M; Vitale, A; Vukotic, I; Wahlberg, H; Walenta, Albert H; Walter, M; Wang, J J; Wegener, D; Werthenbach, U; Wolters, H; Wurth, R; Wurz, A; Zaitsev, Yu; Zavertyaev, M V; Zeuner, T; Zhelezov, A; Zheng, Z; Zimmermann, R; Zivko, T; Zoccoli, A

    2004-01-01

    We report on a search for the flavor-changing neutral current decay $D^0 \\to \\mu^+\\mu^-$ using $50 \\times 10^6$ events recorded with a dimuon trigger in interactions of 920 GeV protons with nuclei by the HERA-B experiment. We find no evidence for such decays and set a 90% confidence level upper limit on the branching fraction $Br(D^0 \\to \\mu^+\\mu^-) <2.0 \\times 10^{-6}$.

  14. Fun with supersymmetric quantum mechanics

    Science.gov (United States)

    Freedman, B.; Cooper, F.

    1984-04-01

    The Hamiltonian and path integral approaches to supersymmetric quantum mechanics were reviewed. The related path integrals for the Witten Index and for stochastic processes were discussed and shown to be indications for supersymmetry breakdown. A system where in the superpotential W(x) has assymetrical values at + or - infinity was considered. Nonperturbative strategies for studying supersymmetry breakdown were described. These strategies are based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed.

  15. Quantum integrability and supersymmetric vacua

    OpenAIRE

    Nekrasov, Nikita A.; Shatashvili, Samson L.

    2009-01-01

    This is an announcement of some of the results of a longer paper where the supersymmetric vacua of two dimensional N=2 susy gauge theories with matter are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. The correspondence between the Heisenberg spin chain and the two dimensional U(N) theory with fundamental hypermultiplets is reviewed in detail. We demonstrate the isomorphism of the equivariant quantum cohomology of the cotangent bundle to ...

  16. Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds

    CERN Document Server

    Assel, Benjamin; Murthy, Sameer; Yokoyama, Daisuke

    2016-01-01

    We study supersymmetric gauge theories with an R-symmetry, defined on non-compact, hyperbolic, Riemannian three-manifolds, focusing on the case of a supersymmetry-preserving quotient of Euclidean AdS$_3$. We compute the exact partition function in these theories, using the method of localization, thus reducing the problem to the computation of one-loop determinants around a supersymmetric locus. We evaluate the one-loop determinants employing three different techniques: an index theorem, the method of pairing of eigenvalues, and the heat kernel method. Along the way, we discuss aspects of supersymmetry in manifolds with a conformal boundary, including supersymmetric actions and boundary conditions.

  17. A new perspective on supersymmetric inflation

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Tomohiro, E-mail: matsuda@sit.ac.jp [Laboratory of Physics, Saitama Institute of Technology, Fusaiji, Okabe-machi, Saitama 369-0293 (Japan)

    2009-11-01

    We consider supersymmetric inflation with the hybrid-type potential. In the absence of the symmetry that forbids Hubble-induced mass terms, the inflaton mass will be as large as the Hubble scale during inflation. We consider gravitational decay of the trigger field as the least decay mode and find that the damping caused by the dissipation can dominate the friction of the inflaton when the heavy trigger field is coupled to the inflaton. The dissipative damping provides a solution to the traditional η problem without introducing additional symmetry and interactions. Considering the spatial inhomogeneities of the dissipative coefficient, we find that modulated inflation (modulation of the inflaton velocity) can create significant curvature perturbations.

  18. Supersymmetric One-family Model without Higgsinos

    CERN Document Server

    Mira, J M; Restrepo, D A; Sánchez, L A; Mira, Jesus M.; Ponce, William A.; Restrepo, Diego A.; Sanchez, Luis A.

    2003-01-01

    The Higgs potential and the mass spectrum of the N=1 supersymmetric extension of a recently proposed one-family model based on the local gauge group $SU(3)_c \\otimes SU(3)_L \\otimes U(1)_X$, which is a subgroup of the electroweak-strong unification group $E_6$, is analyzed. In this model the slepton multiplets play the role of the Higgs scalars and no Higgsinos are needed, with the consequence that the sneutrino, the selectron and six other sleptons play the role of the Goldstone bosons. We show how the $\\mu$ problem is successfully addressed in the context of this model which also predicts the existence of a light CP-odd scalar.

  19. Lorentz violation in supersymmetric field theories.

    Science.gov (United States)

    Nibbelink, Stefan Groot; Pospelov, Maxim

    2005-03-04

    We construct supersymmetric Lorentz violating operators for matter and gauge fields. We show that in the supersymmetric standard model the lowest possible dimension for such operators is five, and therefore they are suppressed by at least one power of an ultraviolet energy scale, providing a possible explanation for the smallness of Lorentz violation and its stability against radiative corrections. Supersymmetric Lorentz noninvariant operators do not lead to modifications of dispersion relations at high energies thereby escaping constraints from astrophysical searches for Lorentz violation.

  20. Supersymmetric theories on squashed five-sphere

    CERN Document Server

    Imamura, Yosuke

    2012-01-01

    We construct supersymmetric theories on the SU(3)xU(1) symmetric squashed five-sphere with 2, 4, 6, and 12 supercharges. We first determine the Killing equation by dimensional reduction from 6d, and use Noether procedure to construct actions. The supersymmetric Yang-Mills action is straightforwardly obtained from the supersymmetric Chern-Simons action by using a supersymmetry preserving constant vector multiplet.

  1. Instanton Corrected Non-Supersymmetric Attractors

    CERN Document Server

    Dominic, Pramod

    2010-01-01

    We discuss non-supersymmetric attractors with an instanton correction in Type IIA string theory compactified on a Calabi-Yau three-fold at large volume. For a stable non-supersymmetric black hole, the attractor point must minimize the effective black hole potential. We study the supersymmetric as well as non-supersymmetric attractors for the D0-D4 system with instanton corrections. We show that in simple models, like the STU model, the flat directions of the mass matrix can be lifted by a suitable choice of the instanton parameters.

  2. Duality in supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1997-02-01

    These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.

  3. Supersymmetric Adler Functions and Holography

    CERN Document Server

    Iwanaga, Masaya; Sakai, Tadakatsu

    2016-01-01

    We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.

  4. Adding momentum to supersymmetric geometries

    Energy Technology Data Exchange (ETDEWEB)

    Lunin, Oleg, E-mail: olunin@albany.edu [Department of Physics, University at Albany (SUNY), Albany, NY 12222 (United States); Mathur, Samir D., E-mail: mathur.16@osu.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States); Turton, David, E-mail: turton.7@osu.edu [Department of Physics, Ohio State University, Columbus, OH 43210 (United States)

    2013-03-11

    We consider general supersymmetric solutions to minimal supergravity in six dimensions, trivially lifted to IIB supergravity. To any such solution we add a traveling wave deformation involving the additional directions. The deformed solution is given in terms of a function which is harmonic in the background geometry. We also present a family of explicit examples describing microstates of the D1-D5 system on T{sup 4}. In the case where the background contains a large AdS region, the deformation is identified as corresponding to an action of a U(1) current of the D1-D5 orbifold CFT on a given state.

  5. Adding momentum to supersymmetric geometries

    CERN Document Server

    Lunin, Oleg; Turton, David

    2012-01-01

    We consider general supersymmetric solutions to minimal supergravity in six dimensions, trivially lifted to IIB supergravity. To any such solution we add a travelling-wave deformation involving the additional directions. The deformed solution is given in terms of a function which is harmonic in the background geometry. We also present a family of explicit examples describing microstates of the D1-D5 system on T^4. In the case where the background contains a large AdS region, the deformation is identified as corresponding to an action of a U(1) current of the D1-D5 orbifold CFT on a given state.

  6. Electroweak breaking in supersymmetric models

    CERN Document Server

    Ibáñez, L E

    1992-01-01

    We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)

  7. The holographic supersymmetric Casimir energy

    CERN Document Server

    Genolini, Pietro Benetti; Martelli, Dario; Sparks, James

    2016-01-01

    We consider a general class of asymptotically locally AdS_5 solutions of minimal gauged supergravity, that are dual to superconformal field theories on curved backgrounds S^1 x M_3 preserving two supercharges. We demonstrate that standard holographic renormalization corresponds to a scheme that breaks supersymmetry. We propose new boundary terms that restore supersymmetry, and show that for smooth solutions with topology S^1 x R^4 the improved on-shell action reproduces both the supersymmetric Casimir energy and the field theory BPS relation between charges.

  8. Supersymmetric photonic signals at LEP

    CERN Document Server

    López, J; Zichichi, Antonino

    1996-01-01

    We explore and contrast the single-photon and diphoton signals expected at LEP 2, that arise from neutralino-gravitino (e^+ e^- -> chi + gravitino -> gamma + E_miss) and neutralino-neutralino (e^+ e^- -> chi + chi -> gamma + gamma + E_miss) production in supersymmetric models with a light gravitino. LEP 1 limits imply that one may observe either one, but not both, of these signals at LEP 2, depending on the values of the neutralino and gravitino masses: single-photons for m_chi > Mz and m_gravitino < 3 x 10^-5 eV; diphotons for m_chi < Mz and all allowed values of m_gravitino.

  9. Supersymmetric R4-actions in ten dimensions

    NARCIS (Netherlands)

    Roo, M. de; Suelmann, H.; Wiedemann, A.

    1992-01-01

    We construct supersymmetric R+R4-actions in ten dimensions. Two invariants, of which the bosonic parts are known from string amplitude and sigma model calculations, are obtained. One of these invariants can be generalized to an R+F2+F4-invariant for supersymmetric Yang-Mills theory coupled to superg

  10. N=1 Supersymmetric Boundary Bootstrap

    CERN Document Server

    Toth, G Z

    2004-01-01

    We investigate the boundary bootstrap programme for finding exact reflection matrices of integrable boundary quantum field theories with N=1 boundary supersymmetry. The bulk S-matrix and the reflection matrix are assumed to take the form S=S_1S_0, R=R_1R_0, where S_0 and R_0 are the S-matrix and reflection matrix of some integrable non-supersymmetric boundary theory that is assumed to be known, and S_1 and R_1 describe the mixing of supersymmetric indices. Under the assumption that the bulk particles transform in the kink and boson/fermion representations and the ground state is a singlet we present rules by which the supersymmetry representations and reflection factors for excited boundary bound states can be determined. We apply these rules to the boundary sine-Gordon model, to the boundary a_2^(1) and a_4^(1) affine Toda field theories, to the boundary sinh-Gordon model and to the free particle.

  11. Quantum spectral curve of the N=6 supersymmetric Chern-Simons theory.

    Science.gov (United States)

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-11

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N=6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  12. Low-energy effective action in N = 2 supersymmetric field theories

    CERN Document Server

    Bukhbinder, E I; Bukhbinder, I L; Ivanov, E A; Kuzenko, S M

    2001-01-01

    Review of new approach to finding effective action in N = 2 and N = 4 supersymmetric theory is given. The approach is based on the formulation of these theories in terms of unconstrained superfields in harmonic superspace. Construction of superfield model of N = 2 supersymmetric field theory (hypermultiplet, N = 2 supersymmetric Yang-Mills theory) is discussed. N = 2 background field method is considered. Perturbative holomorphic effective potential in N = 2 models and non-holomorphic effective potential in N = 4 Yang-Mills field theory, defining exact low-energy effective action in this theory, are studied. Possible applications of low-energy effective action in supersymmetric theories and some open problems are discussed. Comparison of given approach with others is performed

  13. Quantum Spectral Curve of the N =6 Supersymmetric Chern-Simons Theory

    Science.gov (United States)

    Cavaglià, Andrea; Fioravanti, Davide; Gromov, Nikolay; Tateo, Roberto

    2014-07-01

    Recently, it was shown that the spectrum of anomalous dimensions and other important observables in planar N=4 supersymmetric Yang-Mills theory are encoded into a simple nonlinear Riemann-Hilbert problem: the Pμ system or quantum spectral curve. In this Letter, we extend this formulation to the N =6 supersymmetric Chern-Simons theory introduced by Aharony, Bergman, Jafferis, and Maldacena. This may be an important step towards the exact determination of the interpolating function h(λ) characterizing the integrability of this model. We also discuss a surprising relation between the quantum spectral curves for the N=4 supersymmetric Yang-Mills theory and the N=6 supersymmetric Chern-Simons theory considered here.

  14. Revisiting the flavor changing neutral current Higgs decays $H\\to q_i q_j$ in the Standard Model

    CERN Document Server

    Benitez-Guzmán, L G; López-Osorio, M A; Martínez-Pascual, E; Toscano, J J

    2015-01-01

    An exact calculation of the Higgs boson decays $H\\to q_i q_j$ mediated by flavor changing neutral currents is presented in the context of the Standard Model. Using up-to-date experimental data, branching ratios of the order of $10^{-7}$, $10^{-8}$, $10^{-8}$, and $10^{-15}$ are found for the $\\bar{b}s+\\bar{s}b$, $\\bar{b}d+\\bar{d}b$, $\\bar{s}d+\\bar{d}s$, and $\\bar{c}u+\\bar{u}c$ decay modes, respectively.

  15. Probing flavor changing neutral currents and CP violation through the decay h-> c-b+ W- in the two Higgs doublet model

    CERN Document Server

    Diaz-Cruz, L; Gaitan-Lozano, R; Y, J H Montes de Oca

    2012-01-01

    We discuss the formulation of the general two-Higgs doublet model type III, which incorporates flavor changing neutral scalar interactions (FCNSI) and CP violation from several sources. CP violation can arise either from Yukawa terms or from the Higgs potential, and it can explicit or spontaneous. We discuss the case that includes CP violation with Yukawa textures to control FCNSI and evaluate the CP asymmetry for the decay h-> c-b+ W-, which may allow to test the patterns of FCNSI and CP violation, that arises in these models.

  16. Search for the Flavor-Changing Neutral Current Decays $B^{+} \\rightarrow \\mu^{+}\\mu^{-} K^{+}$ and $B^{0}\\rightarrow \\mu^{+}\\mu^{-} K^{*0}$

    CERN Document Server

    Affolder, T; Akopian, A; Albrow, M G; Amaral, P; Amendolia, S R; Amidei, D; Antos, J; Apollinari, G; Arisawa, T; Asakawa, T; Ashmanskas, W; Atac, M; Azzi-Bacchetta, P; Bacchetta, N; Bailey, M W; Bailey, S; De Barbaro, P; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barone, M; Bauer, G; Bedeschi, F; Belforte, S; Bellettini, G; Bellinger, J; Benjamin, D; Bensinger, J; Beretvas, A; Bergé, J P; Berryhill, J W; Bertolucci, Sergio; Bevensee, B; Bhatti, A A; Bigongiari, C; Binkley, M; Bisello, D; Blair, R E; Blocker, C; Bloom, K; Blusk, S; Bocci, A; Bodek, A; Bokhari, W; Bölla, G; Bonushkin, Yu; Bortoletto, D; Boudreau, J; Brandl, A; Van den Brink, S; Bromberg, C; Bruner, N; Buckley-Geer, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Byon-Wagner, A; Byrum, K L; Campbell, M; Caner, A; Carithers, W; Carlson, J; Carlsmith, D; Cassada, J; Castro, A; Cauz, D; Cerri, A; Chang, P S; Chang, P T; Chapman, J; Chen, C; Chen, Y C; Cheng, M T; Chertok, M; Chiarelli, G; Chirikov-Zorin, I E; Chlachidze, G; Chlebana, F; Christofek, L; Chu, M L; Cihangir, S; Ciobanu, C I; Clark, A G; Cobal, M; Cocca, E; Connolly, A; Conway, J; Cooper, J; Cordelli, M; Guimarães da Costa, J; Costanzo, D; Cronin-Hennessy, D; Cropp, R; Culbertson, R; Dagenhart, D; De Jongh, F; Dell'Agnello, S; Dell'Orso, Mauro; Demina, R; Demortier, L; Deninno, M; Derwent, P F; Devlin, T; Dittmann, J R; Donati, S; Done, J; Dorigo, T; Eddy, N; Einsweiler, Kevin F; Elias, J E; Engels, E; Erdmann, W; Errede, D; Errede, S; Fan, Q; Feild, R G; Ferretti, C; Fiori, I; Flaugher, B; Foster, G W; Franklin, M; Freeman, J; Friedman, J; Frisch, H; Fukui, Y; Gadomski, S; Galeotti, S; Gallinaro, M; Gao, T; García-Sciveres, M; Garfinkel, A F; Gatti, P; Gay, C; Geer, S; Gerdes, D W; Giannetti, P; Giromini, P; Glagolev, V; Gold, M; Goldstein, J; Gordon, A; Goshaw, A T; Gotra, Yu; Goulianos, K; Grassmann, H; Green, C; Groer, L; Grosso-Pilcher, C; Günther, M; Guillian, G; Guo, R S; Haber, C; Hafen, E S; Hahn, S R; Hall, C; Handa, T; Handler, R; Hao, W; Happacher, F; Hara, K; Hardman, A D; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Heinrich, J; Heiss, A; Hinrichsen, B; Hoffman, K D; Holck, C; Hollebeek, R; Holloway, L; Hughes, R; Huston, J; Huth, J; Ikeda, H; Incagli, M; Incandela, J R; Introzzi, G; Iwai, J; Iwata, Y; James, E; Jensen, H; Jones, M; Joshi, U; Kambara, H; Kamon, T; Kaneko, T; Karr, K; Kasha, H; Kato, Y; Keaffaber, T A; Kelley, K; Kelly, M; Kennedy, R D; Kephart, R; Khazins, D; Kikuchi, T; Kirk, M; Kim, B J; Kim, H S; Kim, S H; Kim, Y K; Kirsch, L; Klimenko, S; Knoblauch, D; Koehn, P; Köngeter, A; Kondo, K; Konigsberg, J; Kordas, K; Korytov, A; Kovács, E; Kroll, J; Kruse, M; Kuhlmann, S E; Kurino, K; Kuwabara, T; Laasanen, A T; Lai, N; Lami, S; Lammel, S; Lamoureux, J I; Lancaster, M; Latino, G; LeCompte, T; Lee, Alfred M; Leone, S; Lewis, J D; Lindgren, M; Liss, T M; Liu, J B; Liu, Y C; Lockyer, N; Loreti, M; Lucchesi, D; Lukens, P; Lusin, S; Lys, J; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Mangano, Michelangelo L; Mariotti, M; Martignon, G; Martin, A; Matthews, J A J; Mazzanti, P; McFarland, K S; McIntyre, P; McKigney, E A; Menguzzato, M; Menzione, A; Meschi, E; Mesropian, C; Miao, C; Miao, T; Miller, R; Miller, J S; Minato, H; Miscetti, S; Mishina, M; Moggi, N; Moore, E; Moore, R; Morita, Y; Mukherjee, A; Müller, T; Munar, A; Murat, P; Murgia, S; Musy, M; Nachtman, J; Nahn, S; Nakada, H; Nakaya, T; Nakano, I; Nelson, C; Neuberger, D; Newman-Holmes, C; Ngan, C Y P; Nicolaidi, P; Niu, H; Nodulman, L; Nomerotski, A; Oh, S H; Ohmoto, T; Ohsugi, T; Oishi, R; Okusawa, T; Olsen, J; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Pappas, S P; Parri, A; Partos, D; Patrick, J; Pauletta, G; Paulini, M; Perazzo, A; Pescara, L; Phillips, T J; Piacentino, G; Pitts, K T; Plunkett, R; Pompos, A; Pondrom, L; Pope, G; Prokoshin, F; Proudfoot, J; Ptohos, F; Punzi, G; Ragan, K; Reher, D; Ribon, A; Rimondi, F; Ristori, L; Robertson, W J; Robinson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Sakumoto, W K; Saltzberg, D; Sansoni, A; Santi, L; Sato, H; Savard, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Scodellaro, L; Scott, A; Scribano, A; Segler, S; Seidel, S; Seiya, Y; Semenov, A; Semeria, F; Shah, T; Shapiro, M D; Shepard, P F; Shibayama, T; Shimojima, M; Shochet, M; Siegrist, J; Sill, A; Sinervo, P; Singh, P; Slaughter, A J; Sliwa, K; Smith, C; Snider, F D; Solodsky, A; Spalding, J; Speer, T; Sphicas, Paris; Spinella, F; Spiropulu, M; Spiegel, L; Stanco, L; Steele, J; Stefanini, A; Strologas, J; Strumia, F; Stuart, D; Sumorok, K; Suzuki, T; Takashima, R; Takikawa, K; Tanaka, M; Takano, T; Tannenbaum, B; Taylor, W; Tecchio, M; Teng, P K; Terashi, K; Tether, S; Theriot, D; Thurman-Keup, R M; Tipton, P; Tkaczyk, S; Tollefson, K; Tollestrup, Alvin V; Toyoda, H; Trischuk, W; De Trocóniz, J F; Truitt, S; Tseng, J; Turini, N; Ukegawa, F; Valls, J; Vejcik, S; Velev, G V; Vidal, R; Vilar, R; Vologouev, I; Vucinic, D; Wagner, R G; Wagner, R L; Wahl, J; Wallace, N B; Walsh, A M; Wang, C; Wang, C H; Wang, M J; Watanabe, T; Watts, T; Webb, R; Wenzel, H; Wester, W C; Wicklund, A B; Wicklund, E; Williams, H H; Wilson, P; Winer, B L; Winn, D; Wolbers, S; Wolinski, D; Wolinski, J; Worm, S; Wu, X; Wyss, J; Yagil, A; Yao, W; Yeh, G P; Yeh, P; Yoh, J; Yosef, C; Yoshida, T; Yu, I; Yu, S; Zanetti, A; Zetti, F; Zucchelli, S

    1999-01-01

    We report on a search for the flavor-changing neutral current decays B^+ -> mu^+ mu^- K^+ and B^0 -> mu^+ mu^- K^{*0} using 88 pb^{-1} of data from p-pbar collisions at \\sqrt{s}=1.8 TeV, collected with the Collider Detector at Fermilab. Finding no evidence for these decays, we set upper limits on the branching fractions B(B^+ -> mu^+ mu^- K^+) mu^+ mu^-K^{*0}) < 4.0x10^{-6} at the 90% confidence level.

  17. The Casimir Energy in Curved Space and its Supersymmetric Counterpart

    CERN Document Server

    Assel, Benjamin; Di Pietro, Lorenzo; Komargodski, Zohar; Lorenzen, Jakob; Martelli, Dario

    2015-01-01

    We study $d$-dimensional Conformal Field Theories (CFTs) on the cylinder, $S^{d-1}\\times \\mathbb{R}$, and its deformations. In $d=2$ the Casimir energy (i.e. the vacuum energy) is universal and is related to the central charge $c$. In $d=4$ the vacuum energy depends on the regularization scheme and has no intrinsic value. We show that this property extends to infinitesimally deformed cylinders and support this conclusion with a holographic check. However, for $\\mathcal{N}=1$ supersymmetric CFTs, a natural analog of the Casimir energy turns out to be scheme independent and thus intrinsic. We give two proofs of this result. We compute the Casimir energy for such theories by reducing to a problem in supersymmetric quantum mechanics. For the round cylinder the vacuum energy is proportional to $a+3c$. We also compute the dependence of the Casimir energy on the squashing parameter of the cylinder. Finally, we revisit the problem of supersymmetric regularization of the path integral on Hopf surfaces.

  18. Supersymmetric quantum mechanics on the lattice: II. Exact results

    Directory of Open Access Journals (Sweden)

    David Baumgartner

    2015-08-01

    Full Text Available Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper – the second in a series of three – we present such an investigation for N=2 supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.

  19. Supersymmetric quantum mechanics on the lattice: II. Exact results

    CERN Document Server

    Baumgartner, David

    2015-01-01

    Simulations of supersymmetric field theories with spontaneously broken supersymmetry require in addition to the ultraviolet regularisation also an infrared one, due to the emergence of the massless Goldstino. The intricate interplay between ultraviolet and infrared effects towards the continuum and infinite volume limit demands careful investigations to avoid potential problems. In this paper -- the second in a series of three -- we present such an investigation for ${\\cal N}=2$ supersymmetric quantum mechanics formulated on the lattice in terms of bosonic and fermionic bonds. In one dimension, the bond formulation allows to solve the system exactly, even at finite lattice spacing, through the construction and analysis of transfer matrices. In the present paper we elaborate on this approach and discuss a range of exact results for observables such as the Witten index, the mass spectra and Ward identities.

  20. Detection of supersymmetric dark matter.

    Science.gov (United States)

    Xinrui, Hou; Li, Xueqian; Xinhe, Meng; Zhijian, Tao

    1997-10-01

    A re-analysis of a heavy charged particle production event observed at the cloudy chamber of the Yunnan Cosmic Ray Station (YCRS) in 1972 indicates that the mysterious heavy particle may be identified as a supersymmetric (SUSY) particle produced by bombarding a neutral SUSY cosmic ray particle on a proton. Based on the assumption, following literature studies that the neutral SUSY particle which constitutes the main fraction of the cold dark matter is a scalar neutrino (sneutrino) or neutralino (photino), the authors evaluate the flux of such SUSY particles which gain sufficient energies via elastic scattering with charged cosmic particles on the way to an Earth detector and the capture rates in both the sneutrino and photino cases respectively. The errors appearing in the study are briefly discussed and this work may provide a basis of designing cosmic ray detectors to search for SUSY particles.

  1. Non-Supersymmetric Stringy Attractors

    CERN Document Server

    Dominic, Pramod

    2011-01-01

    In this paper we examine the stability of non-supersymmetric attractors in type IIA supergravity compactified on a Calabi-Yau manifold, in the presence of sub-leading corrections to the N=$ pre-potential. We study black hole configurations carrying D0-D6 and D0-D4 charges. We consider the O(1) corrections to the pre-potential given by the Euler number of the Calabi-Yau manifold. We argue that such corrections in general can not lift the zero modes for the D0-D6 attractors. However, for the attractors carrying the D0-D4 charges, they affect the zero modes in the vector multiplet sector. We show that, in the presence of such O(1) corrections, the D0-D4 attractors can either be stable or unstable depending on the geometry of the underlying Calabi-Yau manifold, and on the specific values of the charges they carry.

  2. Instability of supersymmetric microstate geometries

    CERN Document Server

    Eperon, Felicity C; Santos, Jorge E

    2016-01-01

    We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an "evanescent ergosurface": a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.

  3. Supersymmetric Sneutrino-Higgs Inflation

    CERN Document Server

    Deen, Rehan; Purves, Austin

    2016-01-01

    It is shown that in the phenomenologically realistic supersymmetric $B-L$ MSSM theory, a linear combination of the neutral, up Higgs field with the third family left-and right-handed sneutrinos can play the role of the cosmological inflaton. Assuming that supersymmetry is softly broken at a mass scale of order $10^{13}~\\mathrm{GeV}$, the potential energy associated with this field allows for 60 e-foldings of inflation with the cosmological parameters being consistent with all Planck2015 data. The theory does not require any non-standard coupling to gravity and the physical fields are all sub-Planckian during the inflationary epoch. It will be shown that there is a "robust" set of initial conditions which, in addition to satisfying the Planck data, simultaneously are consistent with all present LHC phenomenological requirements.

  4. Instability of supersymmetric microstate geometries

    Energy Technology Data Exchange (ETDEWEB)

    Eperon, Felicity C.; Reall, Harvey S.; Santos, Jorge E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2016-10-07

    We investigate the classical stability of supersymmetric, asymptotically flat, microstate geometries with five non-compact dimensions. Such geometries admit an “evanescent ergosurface”: a timelike hypersurface of infinite redshift. On such a surface, there are null geodesics with zero energy relative to infinity. These geodesics are stably trapped in the potential well near the ergosurface. We present a heuristic argument indicating that this feature is likely to lead to a nonlinear instability of these solutions. We argue that the precursor of such an instability can be seen in the behaviour of linear perturbations: nonlinear stability would require that all linear perturbations decay sufficiently rapidly but the stable trapping implies that some linear perturbation decay very slowly. We study this in detail for the most symmetric microstate geometries. By constructing quasinormal modes of these geometries we show that generic linear perturbations decay slower than any inverse power of time.

  5. Currents in supersymmetric field theories

    CERN Document Server

    Derendinger, Jean-Pierre

    2016-01-01

    A general formalism to construct and improve supercurrents and source or anomaly superfields in two-derivative N=1 supersymmetric theories is presented. It includes arbitrary gauge and chiral superfields and a linear superfield coupled to gauge fields. These families of supercurrent structures are characterized by their energy-momentum tensors and R currents and they display a specific relation to the dilatation current of the theory. The linear superfield is introduced in order to describe the gauge coupling as a background (or propagating) field. Supersymmetry does not constrain the dependence on this gauge coupling field of gauge kinetic terms and holomorphicity restrictions are absent. Applying these results to an effective (Wilson) description of super-Yang-Mills theory, matching or cancellation of anomalies leads to an algebraic derivation of the all-order NSVZ beta function.

  6. Supersymmetric unification at the millennium

    Indian Academy of Sciences (India)

    Charanjit S Aulakh

    2000-07-01

    We argue that the discovery of neutrino mass effects at super-Kamiokande implies a clear logical chain leading from the Standard Model, through the MSSM and the recently developed minimal left right supersymmetric models with a renormalizable see-saw mechanism for neutrino mass, to left right symmetric SUSY GUTS: in particular, SO(10) and SU(2)× SU(2) × SU(4). The progress in constructing such GUTS explicitly is reviewed and their testability/falsifiability by lepton flavour violation and proton decay measurements emphasized. SUSY violations of the survival principle and the interplay between third generation Yukawa coupling unification and the structurally stable IR attractive features of the RG flow in SUSY GUTS are also discussed.

  7. Supersymmetric Sneutrino-Higgs inflation

    Science.gov (United States)

    Deen, Rehan; Ovrut, Burt A.; Purves, Austin

    2016-11-01

    It is shown that in the phenomenologically realistic supersymmetric B - L MSSM theory, a linear combination of the neutral, up Higgs field with the third family left- and right-handed sneutrinos can play the role of the cosmological inflaton. Assuming that supersymmetry is softly broken at a mass scale of order 1013 GeV, the potential energy associated with this field allows for 60 e-foldings of inflation with the cosmological parameters being consistent with all Planck2015 data. The theory does not require any non-standard coupling to gravity and the physical fields are all sub-Planckian during the inflationary epoch. It will be shown that there is a "robust" set of initial conditions which, in addition to satisfying the Planck data, simultaneously are consistent with all present LHC phenomenological requirements.

  8. Supersymmetric counterterms from new minimal supergravity

    CERN Document Server

    Assel, Benjamin; Martelli, Dario

    2014-01-01

    We present a systematic classification of counterterms of four-dimensional supersymmetric field theories on curved space, obtained as the rigid limit of new minimal supergravity. These are supergravity invariants constructed using the field theory background fields. We demonstrate that if the background preserves two supercharges of opposite chirality, then all dimensionless counterterms vanish. This implies that a supersymmetric renormalisation scheme is free of ambiguities. When only one Euclidean supercharge is preserved, we describe the ambiguities that appear in supersymmetric observables, in particular in the dependence on marginal couplings.

  9. Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at sqrt(s) = 8 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Khachatryan, Vardan; et al.

    2016-10-16

    A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 inverse-femtobarns at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or up quark and a Higgs boson (H), and the other top quark decaying into a bottom quark and a W boson are selected. The Higgs boson in these events is assumed to subsequently decay into either dibosons or difermions. No significant excess is observed above the expected standard model background, and an upper limit at the 95% confidence level is set on the branching fraction B(t -> Hc) of 0.40% and B(t -> Hu) of 0.55%, where the expected upper limits are 0.43% and 0.40\\%, respectively. These results correspond to upper limits on the square of the flavor-changing Higgs boson Yukawa couplings | lambda[tc]^H |^2 < 6.9E-3 and | lambda[tu]^H |^2 < 9.8E-3.

  10. Springer Search for top quark decays via Higgs-boson-mediated flavor-changing neutral currents in pp collisions at $ \\sqrt{s}=8 $ TeV

    CERN Document Server

    Khachatryan, Vardan; Tumasyan, Armen; Adam, Wolfgang; Aşılar, Ece; Bergauer, Thomas; Brandstetter, Johannes; Brondolin, Erica; Dragicevic, Marko; Erö, Janos; Flechl, Martin; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hartl, Christian; Hörmann, Natascha; Hrubec, Josef; Jeitler, Manfred; König, Axel; Krätschmer, Ilse; Liko, Dietrich; Matsushita, Takashi; Mikulec, Ivan; Rabady, Dinyar; Rad, Navid; Rahbaran, Babak; Rohringer, Herbert; Schieck, Jochen; Strauss, Josef; Treberer-Treberspurg, Wolfgang; Waltenberger, Wolfgang; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Alderweireldt, Sara; De Wolf, Eddi A; Janssen, Xavier; Knutsson, Albert; Lauwers, Jasper; Van De Klundert, Merijn; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Abu Zeid, Shimaa; Blekman, Freya; D'Hondt, Jorgen; Daci, Nadir; De Bruyn, Isabelle; Deroover, Kevin; Heracleous, Natalie; Lowette, Steven; Moortgat, Seth; Moreels, Lieselotte; Olbrechts, Annik; Python, Quentin; Tavernier, Stefaan; Van Doninck, Walter; Van Mulders, Petra; Van Parijs, Isis; Brun, Hugues; Caillol, Cécile; Clerbaux, Barbara; De Lentdecker, Gilles; Delannoy, Hugo; Fasanella, Giuseppe; Favart, Laurent; Goldouzian, Reza; Grebenyuk, Anastasia; Karapostoli, Georgia; Lenzi, Thomas; Léonard, Alexandre; Luetic, Jelena; Maerschalk, Thierry; Marinov, Andrey; Randle-conde, Aidan; Seva, Tomislav; Vander Velde, Catherine; Vanlaer, Pascal; Yonamine, Ryo; Zenoni, Florian; Zhang, Fengwangdong; Cimmino, Anna; Cornelis, Tom; Dobur, Didar; Fagot, Alexis; Garcia, Guillaume; Gul, Muhammad; Mccartin, Joseph; Poyraz, Deniz; Salva Diblen, Sinem; Schöfbeck, Robert; Tytgat, Michael; Van Driessche, Ward; Yazgan, Efe; Zaganidis, Nicolas; Beluffi, Camille; Bondu, Olivier; Brochet, Sébastien; Bruno, Giacomo; Caudron, Adrien; Ceard, Ludivine; De Visscher, Simon; Delaere, Christophe; Delcourt, Martin; Forthomme, Laurent; Francois, Brieuc; Giammanco, Andrea; Jafari, Abideh; Jez, Pavel; Komm, Matthias; Lemaitre, Vincent; Magitteri, Alessio; Mertens, Alexandre; Musich, Marco; Nuttens, Claude; Piotrzkowski, Krzysztof; Quertenmont, Loic; Selvaggi, Michele; Vidal Marono, Miguel; Wertz, Sébastien; Beliy, Nikita; Aldá Júnior, Walter Luiz; Alves, Fábio Lúcio; Alves, Gilvan; Brito, Lucas; Correa Martins Junior, Marcos; Hensel, Carsten; Moraes, Arthur; Pol, Maria Elena; Rebello Teles, Patricia; Belchior Batista Das Chagas, Ewerton; Carvalho, Wagner; Chinellato, Jose; Custódio, Analu; Melo Da Costa, Eliza; Da Silveira, Gustavo Gil; De Jesus Damiao, Dilson; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Huertas Guativa, Lina Milena; Malbouisson, Helena; Matos Figueiredo, Diego; Mora Herrera, Clemencia; Mundim, Luiz; Nogima, Helio; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Sznajder, Andre; Tonelli Manganote, Edmilson José; Vilela Pereira, Antonio; Ahuja, Sudha; Bernardes, Cesar Augusto; Dogra, Sunil; Tomei, Thiago; De Moraes Gregores, Eduardo; Mercadante, Pedro G; Moon, Chang-Seong; Novaes, Sergio F; Padula, Sandra; Romero Abad, David; Ruiz Vargas, José Cupertino; Aleksandrov, Aleksandar; Hadjiiska, Roumyana; Iaydjiev, Plamen; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Vutova, Mariana; Dimitrov, Anton; Glushkov, Ivan; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Fang, Wenxing; Ahmad, Muhammad; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Chen, Mingshui; Chen, Ye; Cheng, Tongguang; Du, Ran; Jiang, Chun-Hua; Leggat, Duncan; Liu, Zhenan; Romeo, Francesco; Shaheen, Sarmad Masood; Spiezia, Aniello; Tao, Junquan; Wang, Chunjie; Wang, Zheng; Zhang, Huaqiao; Zhao, Jingzhou; Asawatangtrakuldee, Chayanit; Ban, Yong; Li, Qiang; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Wang, Dayong; Xu, Zijun; Avila, Carlos; Cabrera, Andrés; Chaparro Sierra, Luisa Fernanda; Florez, Carlos; Gomez, Juan Pablo; González Hernández, Carlos Felipe; Ruiz Alvarez, José David; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Puljak, Ivica; Ribeiro Cipriano, Pedro M; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Ferencek, Dinko; Kadija, Kreso; Micanovic, Sasa; Sudic, Lucija; Attikis, Alexandros; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Rykaczewski, Hans; Finger, Miroslav; Finger Jr, Michael; Carrera Jarrin, Edgar; Abdelalim, Ahmed Ali; El-khateeb, Esraa; Mahmoud, Mohammed; Radi, Amr; Calpas, Betty; Kadastik, Mario; Murumaa, Marion; Perrini, Lucia; Raidal, Martti; Tiko, Andres; Veelken, Christian; Eerola, Paula; Pekkanen, Juska; Voutilainen, Mikko; Härkönen, Jaakko; Karimäki, Veikko; Kinnunen, Ritva; Lampén, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindén, Tomas; Luukka, Panja-Riina; Peltola, Timo; Tuominiemi, Jorma; Tuovinen, Esa; Wendland, Lauri; Talvitie, Joonas; Tuuva, Tuure; Besancon, Marc; Couderc, Fabrice; Dejardin, Marc; Denegri, Daniel; Fabbro, Bernard; Faure, Jean-Louis; Favaro, Carlotta; Ferri, Federico; Ganjour, Serguei; Ghosh, Saranya; Givernaud, Alain; Gras, Philippe; Hamel de Monchenault, Gautier; Jarry, Patrick; Kucher, Inna; Locci, Elizabeth; Machet, Martina; Malcles, Julie; Rander, John; Rosowsky, André; Titov, Maksym; Zghiche, Amina; Abdulsalam, Abdulla; Antropov, Iurii; Baffioni, Stephanie; Beaudette, Florian; Busson, Philippe; Cadamuro, Luca; Chapon, Emilien; Charlot, Claude; Davignon, Olivier; Granier de Cassagnac, Raphael; Jo, Mihee; Lisniak, Stanislav; Miné, Philippe; Naranjo, Ivo Nicolas; Nguyen, Matthew; Ochando, Christophe; Ortona, Giacomo; Paganini, Pascal; Pigard, Philipp; Regnard, Simon; Salerno, Roberto; Sirois, Yves; Strebler, Thomas; Yilmaz, Yetkin; Zabi, Alexandre; Agram, Jean-Laurent; Andrea, Jeremy; Aubin, Alexandre; Bloch, Daniel; Brom, Jean-Marie; Buttignol, Michael; Chabert, Eric Christian; Chanon, Nicolas; Collard, Caroline; Conte, Eric; Coubez, Xavier; Fontaine, Jean-Charles; Gelé, Denis; Goerlach, Ulrich; Le Bihan, Anne-Catherine; Merlin, Jeremie Alexandre; Skovpen, Kirill; Van Hove, Pierre; Gadrat, Sébastien; Beauceron, Stephanie; Bernet, Colin; Boudoul, Gaelle; Bouvier, Elvire; Carrillo Montoya, Camilo Andres; Chierici, Roberto; Contardo, Didier; Courbon, Benoit; Depasse, Pierre; El Mamouni, Houmani; Fan, Jiawei; Fay, Jean; Gascon, Susan; Gouzevitch, Maxime; Grenier, Gérald; Ille, Bernard; Lagarde, Francois; Laktineh, Imad Baptiste; Lethuillier, Morgan; Mirabito, Laurent; Pequegnot, Anne-Laure; Perries, Stephane; Popov, Andrey; Sabes, David; Sordini, Viola; Vander Donckt, Muriel; Verdier, Patrice; Viret, Sébastien; Toriashvili, Tengizi; Tsamalaidze, Zviad; Autermann, Christian; Beranek, Sarah; Feld, Lutz; Heister, Arno; Kiesel, Maximilian Knut; Klein, Katja; Lipinski, Martin; Ostapchuk, Andrey; Preuten, Marius; Raupach, Frank; Schael, Stefan; Schomakers, Christian; Schulte, Jan-Frederik; Schulz, Johannes; Verlage, Tobias; Weber, Hendrik; Zhukov, Valery; Brodski, Michael; Dietz-Laursonn, Erik; Duchardt, Deborah; Endres, Matthias; Erdmann, Martin; Erdweg, Sören; Esch, Thomas; Fischer, Robert; Güth, Andreas; Hebbeker, Thomas; Heidemann, Carsten; Hoepfner, Kerstin; Knutzen, Simon; Merschmeyer, Markus; Meyer, Arnd; Millet, Philipp; Mukherjee, Swagata; Olschewski, Mark; Padeken, Klaas; Papacz, Paul; Pook, Tobias; Radziej, Markus; Reithler, Hans; Rieger, Marcel; Scheuch, Florian; Sonnenschein, Lars; Teyssier, Daniel; Thüer, Sebastian; Cherepanov, Vladimir; Erdogan, Yusuf; Flügge, Günter; Hoehle, Felix; Kargoll, Bastian; Kress, Thomas; Künsken, Andreas; Lingemann, Joschka; Nehrkorn, Alexander; Nowack, Andreas; Nugent, Ian Michael; Pistone, Claudia; Pooth, Oliver; Stahl, Achim; Aldaya Martin, Maria; Asin, Ivan; Beernaert, Kelly; Behnke, Olaf; Behrens, Ulf; Bin Anuar, Afiq Aizuddin; Borras, Kerstin; Campbell, Alan; Connor, Patrick; Contreras-Campana, Christian; Costanza, Francesco; Diez Pardos, Carmen; Dolinska, Ganna; Eckerlin, Guenter; Eckstein, Doris; Gallo, Elisabetta; Garay Garcia, Jasone; Geiser, Achim; Gizhko, Andrii; Grados Luyando, Juan Manuel; Gunnellini, Paolo; Harb, Ali; Hauk, Johannes; Hempel, Maria; Jung, Hannes; Kalogeropoulos, Alexis; Karacheban, Olena; Kasemann, Matthias; Keaveney, James; Kieseler, Jan; Kleinwort, Claus; Korol, Ievgen; Lange, Wolfgang; Lelek, Aleksandra; Leonard, Jessica; Lipka, Katerina; Lobanov, Artur; Lohmann, Wolfgang; Mankel, Rainer; Melzer-Pellmann, Isabell-Alissandra; Meyer, Andreas Bernhard; Mittag, Gregor; Mnich, Joachim; Mussgiller, Andreas; Ntomari, Eleni; Pitzl, Daniel; Placakyte, Ringaile; Raspereza, Alexei; Roland, Benoit; Sahin, Mehmet Özgür; Saxena, Pooja; Schoerner-Sadenius, Thomas; Seitz, Claudia; Spannagel, Simon; Stefaniuk, Nazar; Trippkewitz, Karim Damun; Van Onsem, Gerrit Patrick; Walsh, Roberval; Wissing, Christoph; Blobel, Volker; Centis Vignali, Matteo; Draeger, Arne-Rasmus; Dreyer, Torben; Garutti, Erika; Goebel, Kristin; Gonzalez, Daniel; Haller, Johannes; Hoffmann, Malte; Höing, Rebekka Sophie; Junkes, Alexandra; Klanner, Robert; Kogler, Roman; Kovalchuk, Nataliia; Lapsien, Tobias; Lenz, Teresa; Marchesini, Ivan; Marconi, Daniele; Meyer, Mareike; Niedziela, Marek; Nowatschin, Dominik; Ott, Jochen; Pantaleo, Felice; Peiffer, Thomas; Perieanu, Adrian; Poehlsen, Jennifer; Sander, Christian; Scharf, Christian; Schleper, Peter; Schlieckau, Eike; Schmidt, Alexander; Schumann, Svenja; Schwandt, Joern; Stadie, Hartmut; Steinbrück, Georg; Stober, Fred-Markus Helmut; Stöver, Marc; Tholen, Heiner; Troendle, Daniel; Usai, Emanuele; Vanelderen, Lukas; Vanhoefer, Annika; Vormwald, Benedikt; Barth, Christian; Baus, Colin; Berger, Joram; Butz, Erik; Chwalek, Thorsten; Colombo, Fabio; De Boer, Wim; Dierlamm, Alexander; Fink, Simon; Friese, Raphael; Giffels, Manuel; Gilbert, Andrew; Haitz, Dominik; Hartmann, Frank; Heindl, Stefan Michael; Husemann, Ulrich; Katkov, Igor; Kornmayer, Andreas; Lobelle Pardo, Patricia; Maier, Benedikt; Mildner, Hannes; Mozer, Matthias Ulrich; Müller, Thomas; Müller, Thomas; Plagge, Michael; Quast, Gunter; Rabbertz, Klaus; Röcker, Steffen; Roscher, Frank; Schröder, Matthias; Sieber, Georg; Simonis, Hans-Jürgen; Ulrich, Ralf; Wagner-Kuhr, Jeannine; Wayand, Stefan; Weber, Marc; Weiler, Thomas; Williamson, Shawn; Wöhrmann, Clemens; Wolf, Roger; Anagnostou, Georgios; Daskalakis, Georgios; Geralis, Theodoros; Giakoumopoulou, Viktoria Athina; Kyriakis, Aristotelis; Loukas, Demetrios; Topsis-Giotis, Iasonas; Agapitos, Antonis; Kesisoglou, Stilianos; Panagiotou, Apostolos; Saoulidou, Niki; Tziaferi, Eirini; Evangelou, Ioannis; Flouris, Giannis; Foudas, Costas; Kokkas, Panagiotis; Loukas, Nikitas; Manthos, Nikolaos; Papadopoulos, Ioannis; Paradas, Evangelos; Filipovic, Nicolas; Bencze, Gyorgy; Hajdu, Csaba; Hidas, Pàl; Horvath, Dezso; Sikler, Ferenc; Veszpremi, Viktor; Vesztergombi, Gyorgy; Zsigmond, Anna Julia; Beni, Noemi; Czellar, Sandor; Karancsi, János; Molnar, Jozsef; Szillasi, Zoltan; Bartók, Márton; Makovec, Alajos; Raics, Peter; Trocsanyi, Zoltan Laszlo; Ujvari, Balazs; Bahinipati, Seema; Choudhury, Somnath; Mal, Prolay; Mandal, Koushik; Nayak, Aruna; Sahoo, Deepak Kumar; Sahoo, Niladribihari; Swain, Sanjay Kumar; Bansal, Sunil; Beri, Suman Bala; Bhatnagar, Vipin; Chawla, Ridhi; Gupta, Ruchi; Bhawandeep, Bhawandeep; Kalsi, Amandeep Kaur; Kaur, Anterpreet; Kaur, Manjit; Kumar, Ramandeep; Mehta, Ankita; Mittal, Monika; Singh, Jasbir; Walia, Genius; Kumar, Ashok; Bhardwaj, Ashutosh; Choudhary, Brajesh C; Garg, Rocky Bala; Keshri, Sumit; Kumar, Ajay; Malhotra, Shivali; Naimuddin, Md; Nishu, Nishu; Ranjan, Kirti; Sharma, Ramkrishna; Sharma, Varun; Bhattacharya, Rajarshi; Bhattacharya, Satyaki; Chatterjee, Kalyanmoy; Dey, Sourav; Dutt, Suneel; Dutta, Suchandra; Ghosh, Shamik; Majumdar, Nayana; Modak, Atanu; Mondal, Kuntal; Mukhopadhyay, Supratik; Nandan, Saswati; Purohit, Arnab; Roy, Ashim; Roy, Debarati; Roy Chowdhury, Suvankar; Sarkar, Subir; Sharan, Manoj; Thakur, Shalini; Behera, Prafulla Kumar; Chudasama, Ruchi; Dutta, Dipanwita; Jha, Vishwajeet; Kumar, Vineet; Mohanty, Ajit Kumar; Netrakanti, Pawan Kumar; Pant, Lalit Mohan; Shukla, Prashant; Topkar, Anita; Aziz, Tariq; Dugad, Shashikant; Kole, Gouranga; Mahakud, Bibhuprasad; Mitra, Soureek; Mohanty, Gagan Bihari; Sur, Nairit; Sutar, Bajrang; Banerjee, Sudeshna; Guchait, Monoranjan; Jain, Sandhya; Majumder, Gobinda; Mazumdar, Kajari; Wickramage, Nadeesha; Chauhan, Shubhanshu; Dube, Sourabh; Kapoor, Anshul; Kothekar, Kunal; Rane, Aditee; Sharma, Seema; Bakhshiansohi, Hamed; Behnamian, Hadi; Chenarani, Shirin; Eskandari Tadavani, Esmaeel; Etesami, Seyed Mohsen; Fahim, Ali; Khakzad, Mohsen; Mohammadi Najafabadi, Mojtaba; Naseri, Mohsen; Paktinat Mehdiabadi, Saeid; Rezaei Hosseinabadi, Ferdos; Safarzadeh, Batool; Zeinali, Maryam; Felcini, Marta; Grunewald, Martin; Abbrescia, Marcello; Calabria, Cesare; Caputo, Claudio; Colaleo, Anna; Creanza, Donato; Cristella, Leonardo; De Filippis, Nicola; De Palma, Mauro; Fiore, Luigi; Iaselli, Giuseppe; Maggi, Giorgio; Maggi, Marcello; Miniello, Giorgia; My, Salvatore; Nuzzo, Salvatore; Pompili, Alexis; Pugliese, Gabriella; Radogna, Raffaella; Ranieri, Antonio; Selvaggi, Giovanna; Silvestris, Lucia; Venditti, Rosamaria; Abbiendi, Giovanni; Battilana, Carlo; Bonacorsi, Daniele; Braibant-Giacomelli, Sylvie; Brigliadori, Luca; Campanini, Renato; Capiluppi, Paolo; Castro, Andrea; Cavallo, Francesca Romana; Chhibra, Simranjit Singh; Codispoti, Giuseppe; Cuffiani, Marco; Dallavalle, Gaetano-Marco; Fabbri, Fabrizio; Fanfani, Alessandra; Fasanella, Daniele; Giacomelli, Paolo; Grandi, Claudio; Guiducci, Luigi; Marcellini, Stefano; Masetti, Gianni; Montanari, Alessandro; Navarria, Francesco; Perrotta, Andrea; Rossi, Antonio; Rovelli, Tiziano; Siroli, Gian Piero; Tosi, Nicolò; Albergo, Sebastiano; Chiorboli, Massimiliano; Costa, Salvatore; Di Mattia, Alessandro; Giordano, Ferdinando; Potenza, Renato; Tricomi, Alessia; Tuve, Cristina; Barbagli, Giuseppe; Ciulli, Vitaliano; Civinini, Carlo; D'Alessandro, Raffaello; Focardi, Ettore; Gori, Valentina; Lenzi, Piergiulio; Meschini, Marco; Paoletti, Simone; Sguazzoni, Giacomo; Viliani, Lorenzo; Benussi, Luigi; Bianco, Stefano; Fabbri, Franco; Piccolo, Davide; Primavera, Federica; Calvelli, Valerio; Ferro, Fabrizio; Lo Vetere, Maurizio; Monge, Maria Roberta; Robutti, Enrico; Tosi, Silvano; Brianza, Luca; Dinardo, Mauro Emanuele; Fiorendi, Sara; Gennai, Simone; Ghezzi, Alessio; Govoni, Pietro; Malvezzi, Sandra; Manzoni, Riccardo Andrea; Marzocchi, Badder; Menasce, Dario; Moroni, Luigi; Paganoni, Marco; Pedrini, Daniele; Pigazzini, Simone; Ragazzi, Stefano; Tabarelli de Fatis, Tommaso; Buontempo, Salvatore; Cavallo, Nicola; De Nardo, Guglielmo; Di Guida, Salvatore; Esposito, Marco; Fabozzi, Francesco; Iorio, Alberto Orso Maria; Lanza, Giuseppe; Lista, Luca; Meola, Sabino; Merola, Mario; Paolucci, Pierluigi; Sciacca, Crisostomo; Thyssen, Filip; Azzi, Patrizia; Bacchetta, Nicola; Benato, Lisa; Bisello, Dario; Boletti, Alessio; Carlin, Roberto; Carvalho Antunes De Oliveira, Alexandra; Checchia, Paolo; Dall'Osso, Martino; De Castro Manzano, Pablo; Dorigo, Tommaso; Dosselli, Umberto; Gasparini, Fabrizio; Gasparini, Ugo; Gozzelino, Andrea; Lacaprara, Stefano; Margoni, Martino; Meneguzzo, Anna Teresa; Pazzini, Jacopo; Pozzobon, Nicola; Ronchese, Paolo; Simonetto, Franco; Torassa, Ezio; Zanetti, Marco; Zotto, Pierluigi; Zucchetta, Alberto; Zumerle, Gianni; Braghieri, Alessandro; Magnani, Alice; Montagna, Paolo; Ratti, Sergio P; Re, Valerio; Riccardi, Cristina; Salvini, Paola; Vai, Ilaria; Vitulo, Paolo; Alunni Solestizi, Luisa; Bilei, Gian Mario; Ciangottini, Diego; Fanò, Livio; Lariccia, Paolo; Leonardi, Roberto; Mantovani, Giancarlo; Menichelli, Mauro; Saha, Anirban; Santocchia, Attilio; Androsov, Konstantin; Azzurri, Paolo; Bagliesi, Giuseppe; Bernardini, Jacopo; Boccali, Tommaso; Castaldi, Rino; Ciocci, Maria Agnese; Dell'Orso, Roberto; Donato, Silvio; Fedi, Giacomo; Giassi, Alessandro; Grippo, Maria Teresa; Ligabue, Franco; Lomtadze, Teimuraz; Martini, Luca; Messineo, Alberto; Palla, Fabrizio; Rizzi, Andrea; Savoy-Navarro, Aurore; Spagnolo, Paolo; Tenchini, Roberto; Tonelli, Guido; Venturi, Andrea; Verdini, Piero Giorgio; Barone, Luciano; Cavallari, Francesca; Cipriani, Marco; D'imperio, Giulia; Del Re, Daniele; Diemoz, Marcella; Gelli, Simone; Jorda, Clara; Longo, Egidio; Margaroli, Fabrizio; Meridiani, Paolo; Organtini, Giovanni; Paramatti, Riccardo; Preiato, Federico; Rahatlou, Shahram; Rovelli, Chiara; Santanastasio, Francesco; Amapane, Nicola; Arcidiacono, Roberta; Argiro, Stefano; Arneodo, Michele; Bartosik, Nazar; Bellan, Riccardo; Biino, Cristina; Cartiglia, Nicolo; Costa, Marco; Covarelli, Roberto; Degano, Alessandro; Demaria, Natale; Finco, Linda; Kiani, Bilal; Mariotti, Chiara; Maselli, Silvia; Migliore, Ernesto; Monaco, Vincenzo; Monteil, Ennio; Obertino, Maria Margherita; Pacher, Luca; Pastrone, Nadia; Pelliccioni, Mario; Pinna Angioni, Gian Luca; Ravera, Fabio; Romero, Alessandra; Ruspa, Marta; Sacchi, Roberto; Shchelina, Ksenia; Sola, Valentina; Solano, Ada; Staiano, Amedeo; Traczyk, Piotr; Belforte, Stefano; Candelise, Vieri; Casarsa, Massimo; Cossutti, Fabio; Della Ricca, Giuseppe; La Licata, Chiara; Schizzi, Andrea; Zanetti, Anna; Kim, Dong Hee; Kim, Gui Nyun; Kim, Min Suk; Lee, Sangeun; Lee, Seh Wook; Oh, Young Do; Sekmen, Sezen; Son, Dong-Chul; Yang, Yu Chul; Kim, Hyunsoo; Lee, Ari; Brochero Cifuentes, Javier Andres; Kim, Tae Jeong; Cho, Sungwoong; Choi, Suyong; Go, Yeonju; Gyun, Dooyeon; Ha, Seungkyu; Hong, Byung-Sik; Jo, Youngkwon; Kim, Yongsun; Lee, Byounghoon; Lee, Kisoo; Lee, Kyong Sei; Lee, Songkyo; Lim, Jaehoon; Park, Sung Keun; Roh, Youn; Almond, John; Kim, Junho; Oh, Sung Bin; Seo, Seon-hee; Yang, Unki; Yoo, Hwi Dong; Yu, Geum Bong; Choi, Minkyoo; Kim, Hyunchul; Kim, Hyunyong; Kim, Ji Hyun; Lee, Jason Sang Hun; Park, Inkyu; Ryu, Geonmo; Ryu, Min Sang; Choi, Young-Il; Goh, Junghwan; Kim, Donghyun; Kwon, Eunhyang; Lee, Jongseok; Yu, Intae; Dudenas, Vytautas; Juodagalvis, Andrius; Vaitkus, Juozas; Ahmed, Ijaz; Ibrahim, Zainol Abidin; Komaragiri, Jyothsna Rani; Md Ali, Mohd Adli Bin; Mohamad Idris, Faridah; Wan Abdullah, Wan Ahmad Tajuddin; Yusli, Mohd Nizam; Zolkapli, Zukhaimira; Castilla-Valdez, Heriberto; De La Cruz-Burelo, Eduard; Heredia-De La Cruz, Ivan; Hernandez-Almada, Alberto; Lopez-Fernandez, Ricardo; Mejia Guisao, Jhovanny; Sánchez Hernández, Alberto; Carrillo Moreno, Salvador; Vazquez Valencia, Fabiola; Carpinteyro, Severiano; Pedraza, Isabel; Salazar Ibarguen, Humberto Antonio; Uribe Estrada, Cecilia; Morelos Pineda, Antonio; Krofcheck, David; Butler, Philip H; Ahmad, Ashfaq; Ahmad, Muhammad; Hassan, Qamar; Hoorani, Hafeez R; Khan, Wajid Ali; Shah, Mehar Ali; Shoaib, Muhammad; Waqas, Muhammad; Bialkowska, Helena; Bluj, Michal; Boimska, Bożena; Frueboes, Tomasz; Górski, Maciej; Kazana, Malgorzata; Nawrocki, Krzysztof; Romanowska-Rybinska, Katarzyna; Szleper, Michal; Zalewski, Piotr; Bunkowski, Karol; Byszuk, Adrian; Doroba, Krzysztof; Kalinowski, Artur; Konecki, Marcin; Krolikowski, Jan; Misiura, Maciej; Olszewski, Michal; Walczak, Marek; Bargassa, Pedrame; Beirão Da Cruz E Silva, Cristóvão; Di Francesco, Agostino; Faccioli, Pietro; Ferreira Parracho, Pedro Guilherme; Gallinaro, Michele; Hollar, Jonathan; Leonardo, Nuno; Lloret Iglesias, Lara; Nemallapudi, Mythra Varun; Rodrigues Antunes, Joao; Seixas, Joao; Toldaiev, Oleksii; Vadruccio, Daniele; Varela, Joao; Vischia, Pietro; Bunin, Pavel; Golunov, Alexander; Golutvin, Igor; Gorbounov, Nikolai; Karjavin, Vladimir; Korenkov, Vladimir; Lanev, Alexander; Malakhov, Alexander; Matveev, Viktor; Mitsyn, Valeri Valentinovitch; Moisenz, Petr; Palichik, Vladimir; Perelygin, Victor; Shmatov, Sergey; Shulha, Siarhei; Skatchkov, Nikolai; Smirnov, Vitaly; Tikhonenko, Elena; Zarubin, Anatoli; Chtchipounov, Leonid; Golovtsov, Victor; Ivanov, Yury; Kim, Victor; Kuznetsova, Ekaterina; Murzin, Victor; Oreshkin, Vadim; Sulimov, Valentin; Vorobyev, Alexey; Andreev, Yuri; Dermenev, Alexander; Gninenko, Sergei; Golubev, Nikolai; Karneyeu, Anton; Kirsanov, Mikhail; Krasnikov, Nikolai; Pashenkov, Anatoli; Tlisov, Danila; Toropin, Alexander; Epshteyn, Vladimir; Gavrilov, Vladimir; Lychkovskaya, Natalia; Popov, Vladimir; Pozdnyakov, Ivan; Safronov, Grigory; Spiridonov, Alexander; Toms, Maria; Vlasov, Evgueni; Zhokin, Alexander; Chistov, Ruslan; Rusinov, Vladimir; Tarkovskii, Evgenii; Andreev, Vladimir; Azarkin, Maksim; Dremin, Igor; Kirakosyan, Martin; Leonidov, Andrey; Rusakov, Sergey V; Terkulov, Adel; Baskakov, Alexey; Belyaev, Andrey; Boos, Edouard; Bunichev, Viacheslav; Dubinin, Mikhail; Dudko, Lev; Ershov, Alexander; Klyukhin, Vyacheslav; Kodolova, Olga; Korneeva, Natalia; Lokhtin, Igor; Miagkov, Igor; Obraztsov, Stepan; Perfilov, Maxim; Savrin, Viktor; Azhgirey, Igor; Bayshev, Igor; Bitioukov, Sergei; Elumakhov, Dmitry; Kachanov, Vassili; Kalinin, Alexey; Konstantinov, Dmitri; Krychkine, Victor; Petrov, Vladimir; Ryutin, Roman; Sobol, Andrei; Troshin, Sergey; Tyurin, Nikolay; Uzunian, Andrey; Volkov, Alexey; Adzic, Petar; Cirkovic, Predrag; Devetak, Damir; Milosevic, Jovan; Rekovic, Vladimir; Alcaraz Maestre, Juan; Calvo, Enrique; Cerrada, Marcos; Chamizo Llatas, Maria; Colino, Nicanor; De La Cruz, Begona; Delgado Peris, Antonio; Escalante Del Valle, Alberto; Fernandez Bedoya, Cristina; Fernández Ramos, Juan Pablo; Flix, Jose; Fouz, Maria Cruz; Garcia-Abia, Pablo; Gonzalez Lopez, Oscar; Goy Lopez, Silvia; Hernandez, Jose M; Josa, Maria Isabel; Navarro De Martino, Eduardo; Pérez-Calero Yzquierdo, Antonio María; Puerta Pelayo, Jesus; Quintario Olmeda, Adrián; Redondo, Ignacio; Romero, Luciano; Senghi Soares, Mara; de Trocóniz, Jorge F; Missiroli, Marino; Moran, Dermot; Cuevas, Javier; Fernandez Menendez, Javier; Gonzalez Caballero, Isidro; González Fernández, Juan Rodrigo; Palencia Cortezon, Enrique; Sanchez Cruz, Sergio; Vizan Garcia, Jesus Manuel; Cabrillo, Iban Jose; Calderon, Alicia; Castiñeiras De Saa, Juan Ramon; Curras, Esteban; Fernandez, Marcos; Garcia-Ferrero, Juan; Gomez, Gervasio; Lopez Virto, Amparo; Marco, Jesus; Martinez Rivero, Celso; Matorras, Francisco; Piedra Gomez, Jonatan; Rodrigo, Teresa; Ruiz-Jimeno, Alberto; Scodellaro, Luca; Trevisani, Nicolò; Vila, Ivan; Vilar Cortabitarte, Rocio; Abbaneo, Duccio; Auffray, Etiennette; Auzinger, Georg; Bachtis, Michail; Baillon, Paul; Ball, Austin; Barney, David; Bloch, Philippe; Bocci, Andrea; Bonato, Alessio; Botta, Cristina; Camporesi, Tiziano; Castello, Roberto; Cepeda, Maria; Cerminara, Gianluca; D'Alfonso, Mariarosaria; D'Enterria, David; Dabrowski, Anne; Daponte, Vincenzo; David Tinoco Mendes, Andre; De Gruttola, Michele; De Guio, Federico; De Roeck, Albert; Di Marco, Emanuele; Dobson, Marc; Dordevic, Milos; Dorney, Brian; Du Pree, Tristan; Duggan, Daniel; Dünser, Marc; Dupont, Niels; Elliott-Peisert, Anna; Fartoukh, Stephane; Franzoni, Giovanni; Fulcher, Jonathan; Funk, Wolfgang; Gigi, Dominique; Gill, Karl; Girone, Maria; Glege, Frank; Gundacker, Stefan; Guthoff, Moritz; Hammer, Josef; Harris, Philip; Hegeman, Jeroen; Innocente, Vincenzo; Janot, Patrick; Kirschenmann, Henning; Knünz, Valentin; Kortelainen, Matti J; Kousouris, Konstantinos; Krammer, Manfred; Lecoq, Paul; Lourenco, Carlos; Lucchini, Marco Toliman; Malgeri, Luca; Mannelli, Marcello; Martelli, Arabella; Meijers, Frans; Mersi, Stefano; Meschi, Emilio; Moortgat, Filip; Morovic, Srecko; Mulders, Martijn; Neugebauer, Hannes; Orfanelli, Styliani; Orsini, Luciano; Pape, Luc; Perez, Emmanuelle; Peruzzi, Marco; Petrilli, Achille; Petrucciani, Giovanni; Pfeiffer, Andreas; Pierini, Maurizio; Racz, Attila; Reis, Thomas; Rolandi, Gigi; Rovere, Marco; Ruan, Manqi; Sakulin, Hannes; Sauvan, Jean-Baptiste; Schäfer, Christoph; Schwick, Christoph; Seidel, Markus; Sharma, Archana; Silva, Pedro; Simon, Michal; Sphicas, Paraskevas; Steggemann, Jan; Stoye, Markus; Takahashi, Yuta; Tosi, Mia; Treille, Daniel; Triossi, Andrea; Tsirou, Andromachi; Veckalns, Viesturs; Veres, Gabor Istvan; Wardle, Nicholas; Wöhri, Hermine Katharina; Zagoździńska, Agnieszka; Zeuner, Wolfram Dietrich; Bertl, Willi; Deiters, Konrad; Erdmann, Wolfram; Horisberger, Roland; Ingram, Quentin; Kaestli, Hans-Christian; Kotlinski, Danek; Langenegger, Urs; Rohe, Tilman; Bachmair, Felix; Bäni, Lukas; Bianchini, Lorenzo; Casal, Bruno; Dissertori, Günther; Dittmar, Michael; Donegà, Mauro; Eller, Philipp; Grab, Christoph; Heidegger, Constantin; Hits, Dmitry; Hoss, Jan; Kasieczka, Gregor; Lecomte, Pierre; Lustermann, Werner; Mangano, Boris; Marionneau, Matthieu; Martinez Ruiz del Arbol, Pablo; Masciovecchio, Mario; Meinhard, Maren Tabea; Meister, Daniel; Micheli, Francesco; Musella, Pasquale; Nessi-Tedaldi, Francesca; Pandolfi, Francesco; Pata, Joosep; Pauss, Felicitas; Perrin, Gaël; Perrozzi, Luca; Quittnat, Milena; Rossini, Marco; Schönenberger, Myriam; Starodumov, Andrei; Takahashi, Maiko; Tavolaro, Vittorio Raoul; Theofilatos, Konstantinos; Wallny, Rainer; Aarrestad, Thea Klaeboe; Amsler, Claude; Caminada, Lea; Canelli, Maria Florencia; Chiochia, Vincenzo; De Cosa, Annapaola; Galloni, Camilla; Hinzmann, Andreas; Hreus, Tomas; Kilminster, Benjamin; Lange, Clemens; Ngadiuba, Jennifer; Pinna, Deborah; Rauco, Giorgia; Robmann, Peter; Salerno, Daniel; Yang, Yong; Doan, Thi Hien; Jain, Shilpi; Khurana, Raman; Konyushikhin, Maxim; Kuo, Chia-Ming; Lin, Willis; Lu, Yun-Ju; Pozdnyakov, Andrey; Yu, Shin-Shan; Kumar, Arun; Chang, Paoti; Chang, You-Hao; Chang, Yu-Wei; Chao, Yuan; Chen, Kai-Feng; Chen, Po-Hsun; Dietz, Charles; Fiori, Francesco; Hou, George Wei-Shu; Hsiung, Yee; Liu, Yueh-Feng; Lu, Rong-Shyang; Miñano Moya, Mercedes; Paganis, Efstathios; Psallidas, Andreas; Tsai, Jui-fa; Tzeng, Yeng-Ming; Asavapibhop, Burin; Singh, Gurpreet; Srimanobhas, Norraphat; Suwonjandee, Narumon; Adiguzel, Aytul; Cerci, Salim; Damarseckin, Serdal; Demiroglu, Zuhal Seyma; Dozen, Candan; Dumanoglu, Isa; Girgis, Semiray; Gokbulut, Gul; Guler, Yalcin; Gurpinar, Emine; Hos, Ilknur; Kangal, Evrim Ersin; Onengut, Gulsen; Ozdemir, Kadri; Sunar Cerci, Deniz; Tali, Bayram; Topakli, Huseyin; Turkcapar, Semra; Zorbilmez, Caglar; Bilin, Bugra; Bilmis, Selcuk; Isildak, Bora; Karapinar, Guler; Yalvac, Metin; Zeyrek, Mehmet; Gülmez, Erhan; Kaya, Mithat; Kaya, Ozlem; Yetkin, Elif Asli; Yetkin, Taylan; Cakir, Altan; Cankocak, Kerem; Sen, Sercan; Grynyov, Boris; Levchuk, Leonid; Sorokin, Pavel; Aggleton, Robin; Ball, Fionn; Beck, Lana; Brooke, James John; Burns, Douglas; Clement, Emyr; Cussans, David; Flacher, Henning; Goldstein, Joel; Grimes, Mark; Heath, Greg P; Heath, Helen F; Jacob, Jeson; Kreczko, Lukasz; Lucas, Chris; Newbold, Dave M; Paramesvaran, Sudarshan; Poll, Anthony; Sakuma, Tai; Seif El Nasr-storey, Sarah; Smith, Dominic; Smith, Vincent J; Bell, Ken W; Belyaev, Alexander; Brew, Christopher; Brown, Robert M; Calligaris, Luigi; Cieri, Davide; Cockerill, David JA; Coughlan, John A; Harder, Kristian; Harper, Sam; Olaiya, Emmanuel; Petyt, David; Shepherd-Themistocleous, Claire; Thea, Alessandro; Tomalin, Ian R; Williams, Thomas; Baber, Mark; Bainbridge, Robert; Buchmuller, Oliver; Bundock, Aaron; Burton, Darren; Casasso, Stefano; Citron, Matthew; Colling, David; Corpe, Louie; Dauncey, Paul; Davies, Gavin; De Wit, Adinda; Della Negra, Michel; Dunne, Patrick; Elwood, Adam; Futyan, David; Haddad, Yacine; Hall, Geoffrey; Iles, Gregory; Lane, Rebecca; Laner, Christian; Lucas, Robyn; Lyons, Louis; Magnan, Anne-Marie; Malik, Sarah; Mastrolorenzo, Luca; Nash, Jordan; Nikitenko, Alexander; Pela, Joao; Penning, Bjoern; Pesaresi, Mark; Raymond, David Mark; Richards, Alexander; Rose, Andrew; Seez, Christopher; Tapper, Alexander; Uchida, Kirika; Vazquez Acosta, Monica; Virdee, Tejinder; Zenz, Seth Conrad; Cole, Joanne; Hobson, Peter R; Khan, Akram; Kyberd, Paul; Leslie, Dawn; Reid, Ivan; Symonds, Philip; Teodorescu, Liliana; Turner, Mark; Borzou, Ahmad; Call, Kenneth; Dittmann, Jay; Hatakeyama, Kenichi; Liu, Hongxuan; Pastika, Nathaniel; Charaf, Otman; Cooper, Seth; Henderson, Conor; Rumerio, Paolo; Arcaro, Daniel; Avetisyan, Aram; Bose, Tulika; Gastler, Daniel; Rankin, Dylan; Richardson, Clint; Rohlf, James; Sulak, Lawrence; Zou, David; Benelli, Gabriele; Berry, Edmund; Cutts, David; Ferapontov, Alexey; Garabedian, Alex; Hakala, John; Heintz, Ulrich; Jesus, Orduna; Laird, Edward; Landsberg, Greg; Mao, Zaixing; Narain, Meenakshi; Piperov, Stefan; Sagir, Sinan; Spencer, Eric; Syarif, Rizki; Breedon, Richard; Breto, Guillermo; Burns, Dustin; Calderon De La Barca Sanchez, Manuel; Chauhan, Sushil; Chertok, Maxwell; Conway, John; Conway, Rylan; Cox, Peter Timothy; Erbacher, Robin; Flores, Chad; Funk, Garrett; Gardner, Michael; Ko, Winston; Lander, Richard; Mclean, Christine; Mulhearn, Michael; Pellett, Dave; Pilot, Justin; Ricci-Tam, Francesca; Shalhout, Shalhout; Smith, John; Squires, Michael; Stolp, Dustin; Tripathi, Mani; Wilbur, Scott; Yohay, Rachel; Cousins, Robert; Everaerts, Pieter; Florent, Alice; Hauser, Jay; Ignatenko, Mikhail; Saltzberg, David; Takasugi, Eric; Valuev, Vyacheslav; Weber, Matthias; Burt, Kira; Clare, Robert; Ellison, John Anthony; Gary, J William; Hanson, Gail; Heilman, Jesse; Jandir, Pawandeep; Kennedy, Elizabeth; Lacroix, Florent; Long, Owen Rosser; Malberti, Martina; Olmedo Negrete, Manuel; Paneva, Mirena Ivova; Shrinivas, Amithabh; Wei, Hua; Wimpenny, Stephen; Yates, Brent; Branson, James G; Cerati, Giuseppe Benedetto; Cittolin, Sergio; Derdzinski, Mark; Gerosa, Raffaele; Holzner, André; Klein, Daniel; Letts, James; Macneill, Ian; Olivito, Dominick; Padhi, Sanjay; Pieri, Marco; Sani, Matteo; Sharma, Vivek; Simon, Sean; Tadel, Matevz; Vartak, Adish; Wasserbaech, Steven; Welke, Charles; Wood, John; Würthwein, Frank; Yagil, Avraham; Zevi Della Porta, Giovanni; Bhandari, Rohan; Bradmiller-Feld, John; Campagnari, Claudio; Dishaw, Adam; Dutta, Valentina; Flowers, Kristen; Franco Sevilla, Manuel; Geffert, Paul; George, Christopher; Golf, Frank; Gouskos, Loukas; Gran, Jason; Heller, Ryan; Incandela, Joe; Mccoll, Nickolas; Mullin, Sam Daniel; Ovcharova, Ana; Richman, Jeffrey; Stuart, David; Suarez, Indara; West, Christopher; Yoo, Jaehyeok; Anderson, Dustin; Apresyan, Artur; Bendavid, Joshua; Bornheim, Adolf; Bunn, Julian; Chen, Yi; Duarte, Javier; Mott, Alexander; Newman, Harvey B; Pena, Cristian; Spiropulu, Maria; Vlimant, Jean-Roch; Xie, Si; Zhu, Ren-Yuan; Andrews, Michael Benjamin; Azzolini, Virginia; Calamba, Aristotle; Carlson, Benjamin; Ferguson, Thomas; Paulini, Manfred; Russ, James; Sun, Menglei; Vogel, Helmut; Vorobiev, Igor; Cumalat, John Perry; Ford, William T; Jensen, Frank; Johnson, Andrew; Krohn, Michael; Mulholland, Troy; Stenson, Kevin; Wagner, Stephen Robert; Alexander, James; Chaves, Jorge; Chu, Jennifer; Dittmer, Susan; Mirman, Nathan; Nicolas Kaufman, Gala; Patterson, Juliet Ritchie; Rinkevicius, Aurelijus; Ryd, Anders; Skinnari, Louise; Sun, Werner; Tan, Shao Min; Tao, Zhengcheng; Thom, Julia; Tucker, Jordan; Wittich, Peter; Winn, Dave; Abdullin, Salavat; Albrow, Michael; Apollinari, Giorgio; Banerjee, Sunanda; Bauerdick, Lothar AT; Beretvas, Andrew; Berryhill, Jeffrey; Bhat, Pushpalatha C; Bolla, Gino; Burkett, Kevin; Butler, Joel Nathan; Cheung, Harry; Chlebana, Frank; Cihangir, Selcuk; Cremonesi, Matteo; Elvira, Victor Daniel; Fisk, Ian; Freeman, Jim; Gottschalk, Erik; Gray, Lindsey; Green, Dan; Grünendahl, Stefan; Gutsche, Oliver; Hare, Daryl; Harris, Robert M; Hasegawa, Satoshi; Hirschauer, James; Hu, Zhen; Jayatilaka, Bodhitha; Jindariani, Sergo; Johnson, Marvin; Joshi, Umesh; Klima, Boaz; Kreis, Benjamin; Lammel, Stephan; Linacre, Jacob; Lincoln, Don; Lipton, Ron; Liu, Tiehui; Lopes De Sá, Rafael; Lykken, Joseph; Maeshima, Kaori; Magini, Nicolo; Marraffino, John Michael; Maruyama, Sho; Mason, David; McBride, Patricia; Merkel, Petra; Mrenna, Stephen; Nahn, Steve; Newman-Holmes, Catherine; O'Dell, Vivian; Pedro, Kevin; Prokofyev, Oleg; Rakness, Gregory; Ristori, Luciano; Sexton-Kennedy, Elizabeth; Soha, Aron; Spalding, William J; Spiegel, Leonard; Stoynev, Stoyan; Strobbe, Nadja; Taylor, Lucas; Tkaczyk, Slawek; Tran, Nhan Viet; Uplegger, Lorenzo; Vaandering, Eric Wayne; Vernieri, Caterina; Verzocchi, Marco; Vidal, Richard; Wang, Michael; Weber, Hannsjoerg Artur; Whitbeck, Andrew; Acosta, Darin; Avery, Paul; Bortignon, Pierluigi; Bourilkov, Dimitri; Brinkerhoff, Andrew; Carnes, Andrew; Carver, Matthew; Curry, David; Das, Souvik; Field, Richard D; Furic, Ivan-Kresimir; Konigsberg, Jacobo; Korytov, Andrey; Ma, Peisen; Matchev, Konstantin; Mei, Hualin; Milenovic, Predrag; Mitselmakher, Guenakh; Rank, Douglas; Shchutska, Lesya; Sperka, David; Thomas, Laurent; Wang, Jian; Wang, Sean-Jiun; Yelton, John; Linn, Stephan; Markowitz, Pete; Martinez, German; Rodriguez, Jorge Luis; Ackert, Andrew; Adams, Jordon Rowe; Adams, Todd; Askew, Andrew; Bein, Samuel; Diamond, Brendan; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Khatiwada, Ajeeta; Prosper, Harrison; Santra, Arka; Weinberg, Marc; Baarmand, Marc M; Bhopatkar, Vallary; Colafranceschi, Stefano; Hohlmann, Marcus; Noonan, Daniel; Roy, Titas; Yumiceva, Francisco; Adams, Mark Raymond; Apanasevich, Leonard; Berry, Douglas; Betts, Russell Richard; Bucinskaite, Inga; Cavanaugh, Richard; Evdokimov, Olga; Gauthier, Lucie; Gerber, Cecilia Elena; Hofman, David Jonathan; Kurt, Pelin; O'Brien, Christine; Sandoval Gonzalez, Irving Daniel; Turner, Paul; Varelas, Nikos; Wu, Zhenbin; Zakaria, Mohammed; Zhang, Jingyu; Bilki, Burak; Clarida, Warren; Dilsiz, Kamuran; Durgut, Süleyman; Gandrajula, Reddy Pratap; Haytmyradov, Maksat; Khristenko, Viktor; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mestvirishvili, Alexi; Moeller, Anthony; Nachtman, Jane; Ogul, Hasan; Onel, Yasar; Ozok, Ferhat; Penzo, Aldo; Snyder, Christina; Tiras, Emrah; Wetzel, James; Yi, Kai; Anderson, Ian; Blumenfeld, Barry; Cocoros, Alice; Eminizer, Nicholas; Fehling, David; Feng, Lei; Gritsan, Andrei; Maksimovic, Petar; Osherson, Marc; Roskes, Jeffrey; Sarica, Ulascan; Swartz, Morris; Xiao, Meng; Xin, Yongjie; You, Can; Al-bataineh, Ayman; Baringer, Philip; Bean, Alice; Bowen, James; Bruner, Christopher; Castle, James; Kenny III, Raymond Patrick; Kropivnitskaya, Anna; Majumder, Devdatta; Mcbrayer, William; Murray, Michael; Sanders, Stephen; Stringer, Robert; Tapia Takaki, Daniel; Wang, Quan; Ivanov, Andrew; Kaadze, Ketino; Khalil, Sadia; Makouski, Mikhail; Maravin, Yurii; Mohammadi, Abdollah; Saini, Lovedeep Kaur; Skhirtladze, Nikoloz; Toda, Sachiko; Lange, David; Rebassoo, Finn; Wright, Douglas; Anelli, Christopher; Baden, Drew; Baron, Owen; Belloni, Alberto; Calvert, Brian; Eno, Sarah Catherine; Ferraioli, Charles; Gomez, Jaime; Hadley, Nicholas John; Jabeen, Shabnam; Kellogg, Richard G; Kolberg, Ted; Kunkle, Joshua; Lu, Ying; Mignerey, Alice; Shin, Young Ho; Skuja, Andris; Tonjes, Marguerite; Tonwar, Suresh C; Apyan, Aram; Barbieri, Richard; Baty, Austin; Bi, Ran; Bierwagen, Katharina; Brandt, Stephanie; Busza, Wit; Cali, Ivan Amos; Demiragli, Zeynep; Di Matteo, Leonardo; Gomez Ceballos, Guillelmo; Goncharov, Maxim; Gulhan, Doga; Hsu, Dylan; Iiyama, Yutaro; Innocenti, Gian Michele; Klute, Markus; Kovalskyi, Dmytro; Krajczar, Krisztian; Lai, Yue Shi; Lee, Yen-Jie; Levin, Andrew; Luckey, Paul David; Marini, Andrea Carlo; Mcginn, Christopher; Mironov, Camelia; Narayanan, Siddharth; Niu, Xinmei; Paus, Christoph; Roland, Christof; Roland, Gunther; Salfeld-Nebgen, Jakob; Stephans, George; Sumorok, Konstanty; Tatar, Kaya; Varma, Mukund; Velicanu, Dragos; Veverka, Jan; Wang, Jing; Wang, Ta-Wei; Wyslouch, Bolek; Yang, Mingming; Zhukova, Victoria; Benvenuti, Alberto; Chatterjee, Rajdeep Mohan; Evans, Andrew; Finkel, Alexey; Gude, Alexander; Hansen, Peter; Kalafut, Sean; Kao, Shih-Chuan; Kubota, Yuichi; Lesko, Zachary; Mans, Jeremy; Nourbakhsh, Shervin; Ruckstuhl, Nicole; Rusack, Roger; Tambe, Norbert; Turkewitz, Jared; Acosta, John Gabriel; Oliveros, Sandra; Avdeeva, Ekaterina; Bartek, Rachel; Bloom, Kenneth; Bose, Suvadeep; Claes, Daniel R; Dominguez, Aaron; Fangmeier, Caleb; Gonzalez Suarez, Rebeca; Kamalieddin, Rami; Knowlton, Dan; Kravchenko, Ilya; Meier, Frank; Monroy, Jose; Siado, Joaquin Emilo; Snow, Gregory R; Stieger, Benjamin; Alyari, Maral; Dolen, James; George, Jimin; Godshalk, Andrew; Harrington, Charles; Iashvili, Ia; Kaisen, Josh; Kharchilava, Avto; Kumar, Ashish; Parker, Ashley; Rappoccio, Salvatore; Roozbahani, Bahareh; Alverson, George; Barberis, Emanuela; Baumgartel, Darin; Chasco, Matthew; Hortiangtham, Apichart; Massironi, Andrea; Morse, David Michael; Nash, David; Orimoto, Toyoko; Teixeira De Lima, Rafael; Trocino, Daniele; Wang, Ren-Jie; Wood, Darien; Bhattacharya, Saptaparna; Hahn, Kristan Allan; Kubik, Andrew; Low, Jia Fu; Mucia, Nicholas; Odell, Nathaniel; Pollack, Brian; Schmitt, Michael Henry; Sung, Kevin; Trovato, Marco; Velasco, Mayda; Dev, Nabarun; Hildreth, Michael; Hurtado Anampa, Kenyi; Jessop, Colin; Karmgard, Daniel John; Kellams, Nathan; Lannon, Kevin; Marinelli, Nancy; Meng, Fanbo; Mueller, Charles; Musienko, Yuri; Planer, Michael; Reinsvold, Allison; Ruchti, Randy; Smith, Geoffrey; Taroni, Silvia; Valls, Nil; Wayne, Mitchell; Wolf, Matthias; Woodard, Anna; Alimena, Juliette; Antonelli, Louis; Brinson, Jessica; Bylsma, Ben; Durkin, Lloyd Stanley; Flowers, Sean; Francis, Brian; Hart, Andrew; Hill, Christopher; Hughes, Richard; Ji, Weifeng; Liu, Bingxuan; Luo, Wuming; Puigh, Darren; Winer, Brian L; Wulsin, Howard Wells; Cooperstein, Stephane; Driga, Olga; Elmer, Peter; Hardenbrook, Joshua; Hebda, Philip; Luo, Jingyu; Marlow, Daniel; Medvedeva, Tatiana; Mooney, Michael; Olsen, James; Palmer, Christopher; Piroué, Pierre; Stickland, David; Tully, Christopher; Zuranski, Andrzej; Malik, Sudhir; Barker, Anthony; Barnes, Virgil E; Benedetti, Daniele; Folgueras, Santiago; Gutay, Laszlo; Jha, Manoj; Jones, Matthew; Jung, Andreas Werner; Jung, Kurt; Miller, David Harry; Neumeister, Norbert; Radburn-Smith, Benjamin Charles; Shi, Xin; Sun, Jian; Svyatkovskiy, Alexey; Wang, Fuqiang; Xie, Wei; Xu, Lingshan; Parashar, Neeti; Stupak, John; Adair, Antony; Akgun, Bora; Chen, Zhenyu; Ecklund, Karl Matthew; Geurts, Frank JM; Guilbaud, Maxime; Li, Wei; Michlin, Benjamin; Northup, Michael; Padley, Brian Paul; Redjimi, Radia; Roberts, Jay; Rorie, Jamal; Tu, Zhoudunming; Zabel, James; Betchart, Burton; Bodek, Arie; de Barbaro, Pawel; Demina, Regina; Duh, Yi-ting; Ferbel, Thomas; Galanti, Mario; Garcia-Bellido, Aran; Han, Jiyeon; Hindrichs, Otto; Khukhunaishvili, Aleko; Lo, Kin Ho; Tan, Ping; Verzetti, Mauro; Chou, John Paul; Contreras-Campana, Emmanuel; Gershtein, Yuri; Gómez Espinosa, Tirso Alejandro; Halkiadakis, Eva; Heindl, Maximilian; Hidas, Dean; Hughes, Elliot; Kaplan, Steven; Kunnawalkam Elayavalli, Raghav; Kyriacou, Savvas; Lath, Amitabh; Nash, Kevin; Saka, Halil; Salur, Sevil; Schnetzer, Steve; Sheffield, David; Somalwar, Sunil; Stone, Robert; Thomas, Scott; Thomassen, Peter; Walker, Matthew; Foerster, Mark; Heideman, Joseph; Riley, Grant; Rose, Keith; Spanier, Stefan; Thapa, Krishna; Bouhali, Othmane; Castaneda Hernandez, Alfredo; Celik, Ali; Dalchenko, Mykhailo; De Mattia, Marco; Delgado, Andrea; Dildick, Sven; Eusebi, Ricardo; Gilmore, Jason; Huang, Tao; Juska, Evaldas; Kamon, Teruki; Krutelyov, Vyacheslav; Mueller, Ryan; Pakhotin, Yuriy; Patel, Rishi; Perloff, Alexx; Perniè, Luca; Rathjens, Denis; Rose, Anthony; Safonov, Alexei; Tatarinov, Aysen; Ulmer, Keith; Akchurin, Nural; Cowden, Christopher; Damgov, Jordan; Dragoiu, Cosmin; Dudero, Phillip Russell; Faulkner, James; Kunori, Shuichi; Lamichhane, Kamal; Lee, Sung Won; Libeiro, Terence; Undleeb, Sonaina; Volobouev, Igor; Wang, Zhixing; Delannoy, Andrés G; Greene, Senta; Gurrola, Alfredo; Janjam, Ravi; Johns, Willard; Maguire, Charles; Melo, Andrew; Ni, Hong; Sheldon, Paul; Tuo, Shengquan; Velkovska, Julia; Xu, Qiao; Arenton, Michael Wayne; Barria, Patrizia; Cox, Bradley; Goodell, Joseph; Hirosky, Robert; Ledovskoy, Alexander; Li, Hengne; Neu, Christopher; Sinthuprasith, Tutanon; Sun, Xin; Wang, Yanchu; Wolfe, Evan; Xia, Fan; Clarke, Christopher; Harr, Robert; Karchin, Paul Edmund; Lamichhane, Pramod; Sturdy, Jared; Belknap, Donald; Dasu, Sridhara; Dodd, Laura; Duric, Senka; Gomber, Bhawna; Grothe, Monika; Herndon, Matthew; Hervé, Alain; Klabbers, Pamela; Lanaro, Armando; Levine, Aaron; Long, Kenneth; Loveless, Richard; Ojalvo, Isabel; Perry, Thomas; Pierro, Giuseppe Antonio; Polese, Giovanni; Ruggles, Tyler; Savin, Alexander; Sharma, Archana; Smith, Nicholas; Smith, Wesley H; Taylor, Devin; Verwilligen, Piet; Woods, Nathaniel; Bhowmik, Sandeep; Dewanjee, Ram Krishna; Ganguly, Sanmay; Kumar, Sanjeev; Maity, Manas; Parida, Bibhuti; Sarkar, Tanmay

    2017-02-15

    A search is performed for Higgs-boson-mediated flavor-changing neutral currents in the decays of top quarks. The search is based on proton-proton collision data corresponding to an integrated luminosity of 19.7 fb$^{-1}$ at a center-of-mass energy of 8 TeV collected with the CMS detector at the LHC. Events in which a top quark pair is produced with one top quark decaying into a charm or up quark and a Higgs boson (H), and the other top quark decaying into a bottom quark and a W boson are selected. The Higgs boson in these events is assumed to subsequently decay into either dibosons or difermions. No significant excess is observed above the expected standard model background, and an upper limit at the 95\\% confidence level is set on the branching fraction $\\mathcal{B} ({\\rm t \\to Hc} )$ of 0.40\\% and $\\mathcal{B}({\\rm t \\to Hu})$ of 0.55\\%, where the expected upper limits are 0.43\\% and 0.40\\%, respectively. These results correspond to upper limits on the square of the flavor-changing Higgs boson Yukawa coupli...

  11. Deconstruction and other approaches to supersymmetric lattice field theories

    CERN Document Server

    Giedt, J

    2006-01-01

    This report contains both a review of recent approaches to supersymmetric lattice field theories and some new results on the deconstruction approach. The essential reason for the complex phase problem of the fermion determinant is shown to be derivative interactions that are not present in the continuum. These irrelevant operators violate the self-conjugacy of the fermion action that is present in the continuum. It is explained why this complex phase problem does not disappear in the continuum limit. The fermion determinant suppression of various branches of the classical moduli space is explored, and found to be supportive of previous claims regarding the continuum limit.

  12. Non-decoupling effects in supersymmetric Higgs sectors

    CERN Document Server

    Kanemura, Shinya; Yagyu, Kei

    2010-01-01

    A wide class of Higgs sectors is comprehensively investigated in the decoupling region in supersymmetric standard models. The mass ($m_h$) of the lightest Higgs boson ($h$) as well as the triple Higgs boson coupling (the $hhh$ coupling) are evaluated at the one-loop level in each model. While $m_h$ is at most 120-130 GeV in the minimal supersymmetric standard model (MSSM), that in models with an additional singlet or triplet fields can be much larger. The $hhh$ coupling can also be sensitive to the models: while in the MSSM the deviation from the standard model prediction is not significant, that can be 30-60 \\% in some models such as that with the additional singlet or with extra doublets and charged singlets. These models are motivated by specific physics problems. Therefore, when $h$ is found at the CERN Large Hadron Collider, we may be able to discriminate supersymmetric models by measuring $m_h$ and the $hhh$ coupling accurately at future collider experiments.

  13. Invariant Regularization of Supersymmetric Chiral Gauge Theory

    CERN Document Server

    Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi

    1998-01-01

    We formulate a manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. In our scheme, the effective action in the superfield background-field method above one-loop is always supersymmetric and gauge invariant. The gauge anomaly has the covariant form and can emerge only in one-loop diagrams with all the external lines are the background gauge superfield. We also present several illustrative applications in the one-loop approximation: The self-energy part of the chiral multiplet and the gauge multiplet; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and the anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.

  14. Proton Decay in Minimal Supersymmetric SU(5)

    OpenAIRE

    Bajc, Borut; Perez, Pavel Fileviez; Senjanovic, Goran

    2002-01-01

    We systematically study proton decay in the minimal supersymmetric SU(5) grand unified theory. We find that although the available parameter space of soft masses and mixings is quite constrained, the theory is still in accord with experiment.

  15. Bubbles of Nothing and Supersymmetric Compactifications

    CERN Document Server

    Blanco-Pillado, Jose J; Sousa, Kepa; Urrestilla, Jon

    2016-01-01

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such "topologically unobstructed" cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to $M_3 \\times S_1$ presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this dec...

  16. Patterns of flavor signals in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics

    2007-11-15

    Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)

  17. NEW EXACTLY SOLVABLE SUPERSYMMETRIC PERIODIC POTENTIALS

    Institute of Scientific and Technical Information of China (English)

    LIU KE-JIA; HE LI; ZHOU GUO-LI; WU YU-JIAO

    2001-01-01

    Using the formalism of supersymmetric quantum mechanics, we give an exact solution for a family of onedimensional periodic potentials, which are the supersymmetric partners of the potential proportional to the trigonometric function cos(2x) such that the Schrodinger equation for this potential is named the Mathieu equation mathematically.We show that the new potentials are distinctly different from their original ones. However, both have the same energy band structure. All the potentials obtained in this paper are free of singularities.

  18. On the uniqueness of supersymmetric attractors

    Directory of Open Access Journals (Sweden)

    Taniya Mandal

    2015-10-01

    Full Text Available In this paper we discuss the uniqueness of supersymmetric attractors in four-dimensional N=2 supergravity theories coupled to n vector multiplets. We prove that for a given charge configuration the supersymmetry preserving axion free attractors are unique. We generalise the analysis to axionic attractors and state the conditions for uniqueness explicitly. We consider the example of a two-parameter model and find all solutions to the supersymmetric attractor equations and discuss their uniqueness.

  19. Generalized Kahler Geometry from supersymmetric sigma models

    CERN Document Server

    Bredthauer, A; Persson, J; Zabzine, M; Bredthauer, Andreas; Lindstrom, Ulf; Persson, Jonas; Zabzine, Maxim

    2006-01-01

    We give a physical derivation of generalized Kahler geometry. Starting from a supersymmetric nonlinear sigma model, we rederive and explain the results of Gualtieri regarding the equivalence between generalized Kahler geometry and the bi-hermitean geometry of Gates-Hull-Rocek. When cast in the language of supersymmetric sigma models, this relation maps precisely to that between the Lagrangian and the Hamiltonian formalisms. We also discuss topological twist in this context.

  20. (2+1)-dimensional supersymmetric integrable equations

    Science.gov (United States)

    Yan, Zhao-Wen; Tala; Chen, Fang; Liu, Tao-Ran; Han, Jing-Min

    2017-09-01

    By means of two different approaches, we construct the (2+1)-dimensional supersymmetric integrable equations based on the super Lie algebra osp(3/2). We relax the constraint condition of homogenous space of super Lie algebra osp(3/2) in the first approach. In another one, the technique of extending the dimension of the systems is used. Furthermore for the (2 + 1)-dimensional supersymmetric integrable equations, we also derive their Bäcklund transformations.

  1. A tool box for implementing supersymmetric models

    Science.gov (United States)

    Staub, Florian; Ohl, Thorsten; Porod, Werner; Speckner, Christian

    2012-10-01

    We present a framework for performing a comprehensive analysis of a large class of supersymmetric models, including spectrum calculation, dark matter studies and collider phenomenology. To this end, the respective model is defined in an easy and straightforward way using the Mathematica package SARAH. SARAH then generates model files for CalcHep which can be used with micrOMEGAs as well as model files for WHIZARD and O'Mega. In addition, Fortran source code for SPheno is created which facilitates the determination of the particle spectrum using two-loop renormalization group equations and one-loop corrections to the masses. As an additional feature, the generated SPheno code can write out input files suitable for use with HiggsBounds to apply bounds coming from the Higgs searches to the model. Combining all programs provides a closed chain from model building to phenomenology. Program summary Program title: SUSY Phenomenology toolbox. Catalog identifier: AEMN_v1_0. Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMN_v1_0.html. Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland. Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html. No. of lines in distributed program, including test data, etc.: 140206. No. of bytes in distributed program, including test data, etc.: 1319681. Distribution format: tar.gz. Programming language: Autoconf, Mathematica. Computer: PC running Linux, Mac. Operating system: Linux, Mac OS. Classification: 11.6. Nature of problem: Comprehensive studies of supersymmetric models beyond the MSSM is considerably complicated by the number of different tasks that have to be accomplished, including the calculation of the mass spectrum and the implementation of the model into tools for performing collider studies, calculating the dark matter density and checking the compatibility with existing collider bounds (in particular, from the Higgs searches). Solution method: The

  2. Neutral Supersymmetric Higgs Boson Searches

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, Stephen Luke [Imperial College, London (United Kingdom)

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL

  3. NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model

    Science.gov (United States)

    Das, Debottam; Ellwanger, Ulrich; Teixeira, Ana M.

    2012-03-01

    The code NMSDECAY allows to compute widths and branching ratios of sparticle decays in the Next-to-Minimal Supersymmetric Standard Model. It is based on a generalization of SDECAY, to include the extended Higgs and neutralino sectors of the NMSSM. Slepton 3-body decays, possibly relevant in the case of a singlino-like lightest supersymmetric particle, have been added. NMSDECAY will be part of the NMSSMTools package, which computes Higgs, sparticle masses and Higgs decays in the NMSSM. Program summaryProgram title: NMSDECAY Catalogue identifier: AELC_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELC_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 188 177 No. of bytes in distributed program, including test data, etc.: 1 896 478 Distribution format: tar.gz Programming language: FORTRAN77 Computer: All supporting g77, gfortran, ifort Operating system: All supporting g77, gfortran, ifort Classification: 11.1 External routines: Routines in the NMSSMTools package: At least one of the routines in the directory main (e.g. nmhdecay.f), all routines in the directory sources. (All software is included in the distribution package.) Nature of problem: Calculation of all decay widths and decay branching fractions of all particles in the Next-to-Minimal Supersymmetric Standard Model. Solution method: Suitable generalization of the code SDECAY [1] including the extended Higgs and neutralino sector of the Next-to-Minimal Supersymmetric Standard Model, and slepton 3-body decays. Additional comments: NMSDECAY is interfaced with NMSSMTools, available on the web page http://www.th.u-psud.fr/NMHDECAY/nmssmtools.html. Running time: On an Intel Core i7 with 2.8 GHZ: about 2 seconds per point in parameter space, if all flags flagqcd, flagmulti and flagloop are switched on.

  4. The Supersymmetric origin of matter

    Energy Technology Data Exchange (ETDEWEB)

    Balazs, C.; /Argonne; Carena, M.; /Fermilab; Menon, A.; Morrissey, D.E.; Wagner, C.E.M.; /Argonne /Chicago U., EFI

    2004-12-01

    The Minimal Supersymmetric extension of the Standard Model (MSSM) can provide the correct neutralino relic abundance and baryon number asymmetry of the universe. Both may be efficiently generated in the presence of CP violating phases, light charginos and neutralinos, and a light top squark. Due to the coannihilation of the neutralino with the light stop, we find a large region of parameter space in which the neutralino relic density is consistent with WMAP and SDSS data. We perform a detailed study of the additional constraints induced when CP violating phases, consistent with the ones required for baryogenesis, are included. We explore the possible tests of this scenario from present and future electron Electric Dipole Moment (EDM) measurements, direct neutralino detection experiments, collider searches and the b {yields} s{gamma} decay rate. We find that the EDM constraints are quite severe and that electron EDM experiments, together with stop searches at the Tevatron and Higgs searches at the LHC, will provide a definite test of our scenario of electroweak baryogenesis in the next few years.

  5. Quantum Supersymmetric Bianchi IX Cosmology

    CERN Document Server

    Damour, Thibault

    2014-01-01

    We study the quantum dynamics of a supersymmetric squashed three-sphere by dimensionally reducing to one timelike dimension the action of D=4 simple supergravity for a Bianchi IX cosmological model. After imposition of the diffeomorphism constraints, the wave function of the Universe becomes a spinor of Spin(8,4) depending on the three squashing parameters, which satisfies Dirac, and Klein-Gordon-like, wave equations describing the propagation of a quantum spinning particle reflecting off spin-dependent potential walls. The algebra of the susy constraints and of the Hamiltonian one is found to close. One finds that the quantum Hamiltonian is built from operators that generate a 64-dimensional representation of the maximally compact sub-algebra of the rank-3 hyperbolic Kac-Moody algebra AE3. The (quartic-in-fermions) squared-mass term entering the Klein-Gordon-like equation has several remarkable properties: 1)it commutes with all the other (Kac-Moody-related) building blocks of the Hamiltonian; 2)it is a quad...

  6. On geometric aspects of the supersymmetric Fokas-Gel’fand immersion formula

    Science.gov (United States)

    Bertrand, S.

    2017-09-01

    In this paper, we develop a new geometric characterization for the supersymmetric versions of the Fokas-Gel’fand formula for the immersion of soliton supermanifolds with two bosonic and two fermionic independent variables into Lie superalgebras. In order to do so, from a linear spectral problem of a supersymmetric integrable system using the covariant fermionic derivative, we provide a technique to obtain two additional linear spectral problems for that integrable system, one using the bosonic variable derivatives and the other using the fermionic variable derivatives. This allows us to investigate, through the first and second fundamental forms, the geometry of the (1+1\\vert2 )-supermanifolds immersed in Lie superalgebras. Whenever possible, the mean and Gaussian curvatures of the supermanifolds are calculated. These theoretical considerations are applied to the supersymmetric sine-Gordon equation.

  7. Search for the flavor-changing neutral-current decay t-->Zq in pp collisions at sqrt[s] = 1.96 TeV.

    Science.gov (United States)

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Copic, K; Cordelli, M; Cortiana, G; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'Orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, E; Lee, S W; Leone, S; Lewis, J D; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Osterberg, K; Griso, S Pagan; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Saltó, O; Saltzberg, D; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sutherland, M; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S

    2008-11-07

    We report a search for the flavor-changing neutral-current decay of the top quark t-->Zq (q=u, c) in pp collisions at sqrt[s]=1.96 TeV using a data sample corresponding to an integrated luminosity of 1.9 fb(-1) collected by the CDF II detector. This decay is strongly suppressed in the standard model and an observation of a signal at the Fermilab Tevatron would be an indication of physics beyond the standard model. Using Z+ > or = 4 jet final state candidate events, with and without an identified bottom quark jet, we obtain an upper limit of B(t-->Zq) < 3.7% at 95% C.L.

  8. Search for the Flavor-Changing Neutral-Current Decay t→Zq in p pmacr Collisions at s=1.96TeV

    Science.gov (United States)

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M. G.; Álvarez González, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Apresyan, A.; Arisawa, T.; Artikov, A.; Ashmanskas, W.; Attal, A.; Aurisano, A.; Azfar, F.; Azzurri, P.; Badgett, W.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Bartsch, V.; Bauer, G.; Beauchemin, P.-H.; Bedeschi, F.; Bednar, P.; Beecher, D.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Beringer, J.; Bhatti, A.; Binkley, M.; Bisello, D.; Bizjak, I.; Blair, R. E.; Blocker, C.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Boisvert, V.; Bolla, G.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brau, B.; Bridgeman, A.; Brigliadori, L.; Bromberg, C.; Brubaker, E.; Budagov, J.; Budd, H. S.; Budd, S.; Burkett, K.; Busetto, G.; Bussey, P.; Buzatu, A.; Byrum, K. L.; Cabrera, S.; Calancha, C.; Campanelli, M.; Campbell, M.; Canelli, F.; Canepa, A.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Carron, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cavalli-Sforza, M.; Cerri, A.; Cerrito, L.; Chang, S. H.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Chlebana, F.; Cho, K.; Chokheli, D.; Chou, J. P.; Choudalakis, G.; Chuang, S. H.; Chung, K.; Chung, W. H.; Chung, Y. S.; Ciobanu, C. I.; Ciocci, M. A.; Clark, A.; Clark, D.; Compostella, G.; Convery, M. E.; Conway, J.; Copic, K.; Cordelli, M.; Cortiana, G.; Cox, D. J.; Crescioli, F.; Cuenca Almenar, C.; Cuevas, J.; Culbertson, R.; Cully, J. C.; Dagenhart, D.; Datta, M.; Davies, T.; de Barbaro, P.; de Cecco, S.; Deisher, A.; de Lorenzo, G.; Dell'Orso, M.; Deluca, C.; Demortier, L.; Deng, J.; Deninno, M.; Derwent, P. F.; di Giovanni, G. P.; Dionisi, C.; di Ruzza, B.; Dittmann, J. R.; D'Onofrio, M.; Donati, S.; Dong, P.; Donini, J.; Dorigo, T.; Dube, S.; Efron, J.; Elagin, A.; Erbacher, R.; Errede, D.; Errede, S.; Eusebi, R.; Fang, H. C.; Farrington, S.; Fedorko, W. T.; Feild, R. G.; Feindt, M.; Fernandez, J. P.; Ferrazza, C.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Furic, I.; Gallinaro, M.; Galyardt, J.; Garberson, F.; Garcia, J. E.; Garfinkel, A. F.; Genser, K.; Gerberich, H.; Gerdes, D.; Gessler, A.; Giagu, S.; Giakoumopoulou, V.; Giannetti, P.; Gibson, K.; Gimmell, J. L.; Ginsburg, C. M.; Giokaris, N.; Giordani, M.; Giromini, P.; Giunta, M.; Giurgiu, G.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldschmidt, N.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gresele, A.; Grinstein, S.; Grosso-Pilcher, C.; Group, R. C.; Grundler, U.; Guimaraes da Costa, J.; Gunay-Unalan, Z.; Haber, C.; Hahn, K.; Hahn, S. R.; Halkiadakis, E.; Han, B.-Y.; Han, J. Y.; Handler, R.; Happacher, F.; Hara, K.; Hare, D.; Hare, M.; Harper, S.; Harr, R. F.; Harris, R. M.; Hartz, M.; Hatakeyama, K.; Hauser, J.; Hays, C.; Heck, M.; Heijboer, A.; Heinemann, B.; Heinrich, J.; Henderson, C.; Herndon, M.; Heuser, J.; Hewamanage, S.; Hidas, D.; Hill, C. S.; Hirschbuehl, D.; Hocker, A.; Hou, S.; Houlden, M.; Hsu, S.-C.; Huffman, B. T.; Hughes, R. E.; Husemann, U.; Huston, J.; Incandela, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jayatilaka, B.; Jeon, E. J.; Jha, M. K.; Jindariani, S.; Johnson, W.; Jones, M.; Joo, K. K.; Jun, S. Y.; Jung, J. E.; Junk, T. R.; Kamon, T.; Kar, D.; Karchin, P. E.; Kato, Y.; Kephart, R.; Keung, J.; Khotilovich, V.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. B.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kirsch, L.; Klimenko, S.; Knuteson, B.; Ko, B. R.; Koay, S. A.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Korytov, A.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Krop, D.; Krumnack, N.; Kruse, M.; Krutelyov, V.; Kubo, T.; Kuhr, T.; Kulkarni, N. P.; Kurata, M.; Kusakabe, Y.; Kwang, S.; Laasanen, A. T.; Lami, S.; Lammel, S.; Lancaster, M.; Lander, R. L.; Lannon, K.; Lath, A.; Latino, G.; Lazzizzera, I.; Lecompte, T.; Lee, E.; Lee, S. W.; Leone, S.; Lewis, J. D.; Lin, C. S.; Linacre, J.; Lindgren, M.; Lipeles, E.; Lister, A.; Litvintsev, D. O.; Liu, C.; Liu, T.; Lockyer, N. S.; Loginov, A.; Loreti, M.; Lovas, L.; Lu, R.-S.; Lucchesi, D.; Lueck, J.; Luci, C.; Lujan, P.; Lukens, P.; Lungu, G.; Lyons, L.; Lys, J.; Lysak, R.; Lytken, E.; Mack, P.; MacQueen, D.; Madrak, R.; Maeshima, K.; Makhoul, K.; Maki, T.; Maksimovic, P.; Malde, S.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Margaroli, F.; Marino, C.; Marino, C. P.; Martin, A.; Martin, V.; Martínez, M.; Martínez-Ballarín, R.; Maruyama, T.; Mastrandrea, P.; Masubuchi, T.; Mattson, M. E.; Mazzanti, P.; McFarland, K. S.; McIntyre, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Menzione, A.; Merkel, P.; Mesropian, C.; Miao, T.; Miladinovic, N.; Miller, R.; Mills, C.; Milnik, M.; Mitra, A.; Mitselmakher, G.; Miyake, H.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Morlok, J.; Movilla Fernandez, P.; Mülmenstädt, J.; Mukherjee, A.; Muller, Th.; Mumford, R.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Nagano, A.; Naganoma, J.; Nakamura, K.; Nakano, I.; Napier, A.; Necula, V.; Neu, C.; Neubauer, M. S.; Nielsen, J.; Nodulman, L.; Norman, M.; Norniella, O.; Nurse, E.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Osterberg, K.; Griso, S. Pagan; Pagliarone, C.; Palencia, E.; Papadimitriou, V.; Papaikonomou, A.; Paramonov, A. A.; Parks, B.; Pashapour, S.; Patrick, J.; Pauletta, G.; Paulini, M.; Paus, C.; Pellett, D. E.; Penzo, A.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pinera, L.; Pitts, K.; Plager, C.; Pondrom, L.; Poukhov, O.; Pounder, N.; Prakoshyn, F.; Pronko, A.; Proudfoot, J.; Ptohos, F.; Pueschel, E.; Punzi, G.; Pursley, J.; Rademacker, J.; Rahaman, A.; Ramakrishnan, V.; Ranjan, N.; Redondo, I.; Reisert, B.; Rekovic, V.; Renton, P.; Rescigno, M.; Richter, S.; Rimondi, F.; Ristori, L.; Robson, A.; Rodrigo, T.; Rodriguez, T.; Rogers, E.; Rolli, S.; Roser, R.; Rossi, M.; Rossin, R.; Roy, P.; Ruiz, A.; Russ, J.; Rusu, V.; Saarikko, H.; Safonov, A.; Sakumoto, W. K.; Saltó, O.; Saltzberg, D.; Santi, L.; Sarkar, S.; Sartori, L.; Sato, K.; Savoy-Navarro, A.; Scheidle, T.; Schlabach, P.; Schmidt, A.; Schmidt, E. E.; Schmidt, M. A.; Schmidt, M. P.; Schmitt, M.; Schwarz, T.; Scodellaro, L.; Scott, A. L.; Scribano, A.; Scuri, F.; Sedov, A.; Seidel, S.; Seiya, Y.; Semenov, A.; Sexton-Kennedy, L.; Sfyrla, A.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Sherman, D.; Shimojima, M.; Shiraishi, S.; Shochet, M.; Shon, Y.; Shreyber, I.; Sidoti, A.; Sinervo, P.; Sisakyan, A.; Slaughter, A. J.; Slaunwhite, J.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Snihur, R.; Soha, A.; Somalwar, S.; Sorin, V.; Spalding, J.; Spreitzer, T.; Squillacioti, P.; Stanitzki, M.; Denis, R. St.; Stelzer, B.; Stelzer-Chilton, O.; Stentz, D.; Strologas, J.; Stuart, D.; Suh, J. S.; Sukhanov, A.; Sutherland, M.; Suslov, I.; Suzuki, T.; Taffard, A.; Takashima, R.; Takeuchi, Y.; Tanaka, R.; Tecchio, M.; Teng, P. K.; Terashi, K.; Thom, J.; Thompson, A. S.; Thompson, G. A.; Thomson, E.; Tipton, P.; Tiwari, V.; Tkaczyk, S.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Tourneur, S.; Tu, Y.; Turini, N.; Ukegawa, F.; Vallecorsa, S.; van Remortel, N.; Varganov, A.; Vataga, E.; Vázquez, F.; Velev, G.; Vellidis, C.; Veszpremi, V.; Vidal, M.; Vidal, R.; Vila, I.; Vilar, R.; Vine, T.; Vogel, M.; Volobouev, I.; Volpi, G.; Würthwein, F.; Wagner, P.; Wagner, R. G.; Wagner, R. L.; Wagner-Kuhr, J.; Wagner, W.; Wakisaka, T.; Wallny, R.; Wang, S. M.; Warburton, A.; Waters, D.; Weinberger, M.; Wester, W. C., III; Whitehouse, B.; Whiteson, D.; Wicklund, A. B.; Wicklund, E.; Williams, G.; Williams, H. H.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, C.; Wright, T.; Wu, X.; Wynne, S. M.; Yagil, A.; Yamamoto, K.; Yamaoka, J.; Yang, U. K.; Yang, Y. C.; Yao, W. M.; Yeh, G. P.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Yu, S. S.; Yun, J. C.; Zanello, L.; Zanetti, A.; Zaw, I.; Zhang, X.; Zheng, Y.; Zucchelli, S.

    2008-11-01

    We report a search for the flavor-changing neutral-current decay of the top quark t→Zq (q=u, c) in p pmacr collisions at s=1.96TeV using a data sample corresponding to an integrated luminosity of 1.9fb-1 collected by the CDF II detector. This decay is strongly suppressed in the standard model and an observation of a signal at the Fermilab Tevatron would be an indication of physics beyond the standard model. Using Z+≥4 jet final state candidate events, with and without an identified bottom quark jet, we obtain an upper limit of B(t→Zq)<3.7% at 95% C.L.

  9. Search for Flavor Changing Neutral Current in $t\\to H c, H\\to \\tau\\tau$ Decay at the LHC

    CERN Document Server

    Chen, Xin

    2015-01-01

    The prospects of searching for a Flavor Changing Neutral Current (FCNC) effect in the decay of $t\\to H c, H\\to \\tau\\tau$ with simulated $p-p$ collision data from the ATLAS detector at LHC are investigated, where the neutral Higgs mass assumed to be 125 GeV. To improve the Higgs mass reconstruction, a di-$\\tau$ mass fit with constraints from Higgs mass and tau kinematics is performed per event level, which significantly improves the Higgs and top mass reconstruction, and helps signal-background separation. Boosted Decision Trees (BDT) discriminants are further developed to achieve an optimal sensitivity for the FCNC signal search. An expected 95\\% confidence-level upper limit of 0.32\\% can be set on the branching ratio BR($t\\to H c$) with $100 ~fb^{-1}$ of data collected at $\\sqrt{s}=13$ TeV during LHC Run 2 period.

  10. On Elliptic Algebras and Large-n Supersymmetric Gauge Theories

    CERN Document Server

    Koroteev, Peter

    2016-01-01

    In this note we further develop the duality between supersymmetric gauge theories in various dimensions and elliptic integrable systems such as Ruijsenaars-Schneider model and periodic intermediate long wave hydrodynamics. These models arise in instanton counting problems and are described by certain elliptic algebras. We discuss the correspondence between the two types of models by employing the large-n limit of the dual gauge theory. In particular we provide non-Abelian generalization of our previous result on the intermediate long wave model.

  11. Maximally supersymmetric Yang-Mills on the lattice

    CERN Document Server

    Schaich, David

    2015-01-01

    We summarize recent progress in lattice studies of four-dimensional N=4 supersymmetric Yang--Mills theory and present preliminary results from ongoing investigations. Our work is based on a construction that exactly preserves a single supersymmetry at non-zero lattice spacing, and we review a new procedure to regulate flat directions by modifying the moduli equations in a manner compatible with this supersymmetry. This procedure defines an improved lattice action that we have begun to use in numerical calculations. We discuss some highlights of these investigations, including the static potential and an update on the question of a possible sign problem in the lattice theory.

  12. Loop formulation of supersymmetric Yang-Mills quantum mechanics

    CERN Document Server

    Steinhauer, Kyle

    2014-01-01

    We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.

  13. Bubbles of nothing and supersymmetric compactifications

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)

    2016-10-03

    We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.

  14. Spectral properties in supersymmetric matrix models

    Energy Technology Data Exchange (ETDEWEB)

    Boulton, Lyonell, E-mail: L.Boulton@hw.ac.uk [Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Garcia del Moral, Maria Pilar, E-mail: garciamormaria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain); Restuccia, Alvaro, E-mail: arestu@usb.ve [Departamento de Fisica, Universidad Simon Bolivar, Apartado 89000, Caracas (Venezuela, Bolivarian Republic of); Departamento de Fisica, Universidad de Oviedo, Avda Calvo Sotelo 18, 33007 Oviedo (Spain)

    2012-03-21

    We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.

  15. New dualities of supersymmetric gauge theories

    CERN Document Server

    2016-01-01

    This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...

  16. Superconformal Algebras and Supersymmetric Integrable Flows

    CERN Document Server

    Sachse, Christoph; Devchand, Chandrasekhar

    2009-01-01

    After a comprehensive review of superconformal algebras, super-diffeomorphisms and supervector fields on supercircles S^{1|n} we study various supersymmetric extensions of the KdV and Camassa-Holm equations. We describe their (super) Hamiltonian structures and their connection to bihamiltonian geometry. These are interpreted as geodesic flows on various superconformal groups. We also give an example of superintegrable systems of Ramond type. The one-parameter family of equations shown by Degasperis, Holm and Hone (DHH) to possess multi-peakon solutions is identified as a geodesic flow equation on a one-parameter deformation of the group of diffeomorphisms of the circle, with respect to a right-invariant Sobolev H^1--metric. A supersymmetrisation of the algebra of deformed vector fields on S^1 yields supersymmetric DHH equations (also known as b-field equations), which include the supersymmetric Camassa--Holm equation as a special case.

  17. Supersymmetric defect models and mirror symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hook, Anson; Kachru, Shamit; Torroba, Gonzalo

    2013-11-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d NN = 4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d NN = 2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of NN = 4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  18. Supersymmetric Defect Models and Mirror Symmetry

    CERN Document Server

    Hook, Anson; Torroba, Gonzalo

    2013-01-01

    We study supersymmetric field theories in three space-time dimensions doped by various configurations of electric charges or magnetic fluxes. These are supersymmetric avatars of impurity models. In the presence of additional sources such configurations are shown to preserve half of the supersymmetries. Mirror symmetry relates the two sets of configurations. We discuss the implications for impurity models in 3d N=4 QED with a single charged hypermultiplet (and its mirror, the theory of a free hypermultiplet) as well as 3d N=2 QED with one flavor and its dual, a supersymmetric Wilson-Fisher fixed point. Mirror symmetry allows us to find backreacted solutions for arbitrary arrays of defects in the IR limit of N=4 QED. Our analysis, complemented with appropriate string theory brane constructions, sheds light on various aspects of mirror symmetry, the map between particles and vortices and the emergence of ground state entropy in QED at finite density.

  19. Gauging isometries in N=4 supersymmetric mechanics

    CERN Document Server

    Delduc, F

    2008-01-01

    This talk summarizes the study of superfield gaugings of isometries of extended supersymmetric mechanics in hep-th/0605211, hep-th/0611247 and arXiv:0706.0706. The gauging procedure provides a manifestly supersymmetric realization of d=1 automorphic dualities which interrelate various irreducible off-shell multiplets of d=1 extended supersymmetry featuring the same number of physical fermions but different divisions of bosonic fields into the physical and auxiliary subsets. We concentrate on the most interesting N=4 case and demonstrate that, with a suitable choice of the symmetry to be gauged, all such multiplets of N=4 supersymmetric mechanics and their generic superfield actions can be obtained from the "root" multiplet (4,4,0) and the appropriate gauged subclasses of the generic superfield action of the latter by a simple universal recipe.

  20. Decoupling of Supersymmetric Particles in the MSSM

    CERN Document Server

    Dobado, A; Peñaranda, S

    1998-01-01

    A heavy supersymmetric spectrum at the Minimal Supersymmetric Standard Model is considered and the decoupling from the low energy electroweak scale is analyzed. A formal and partial proof of decoupling of supersymmetric particles in the limit where their masses are larger than the electroweak scale is performed by integrating out all the sparticles to one loop and by evaluating the effective action for the standard electroweak gauge bosons $W^{\\pm}, Z$ and two-point functions of the electroweak gauge bosons and the $S, T$ and $U$ parameters, to be valid in that limit, are also presented. A discussion on how the decoupling takes place in terms of both the physical sparticle masses and the non-physical mass parameters as the $\\mu$-parameter and the soft-breaking parameters is included.

  1. Supersymmetric extension of the Snyder algebra

    Energy Technology Data Exchange (ETDEWEB)

    Gouba, L., E-mail: lgouba@ictp.it [Abdus Salam International Centre for Theoretical Physics (ICTP), Strada Costiera 11, 34014 Trieste (Italy); Stern, A., E-mail: astern@bama.ua.edu [Dept. of Physics and Astronomy, Univ. of Alabama, Tuscaloosa, Al 35487 (United States)

    2012-04-11

    We obtain a minimal supersymmetric extension of the Snyder algebra and study its representations. The construction differs from the general approach given in Hatsuda and Siegel ( (arXiv:hep-th/0311002)) and does not utilize super-de Sitter groups. The spectra of the position operators are discrete, implying a lattice description of space, and the lattice is compatible with supersymmetry transformations. -- Highlights: Black-Right-Pointing-Pointer A new supersymmetric extension of the Snyder algebra is constructed. Black-Right-Pointing-Pointer The extension is minimal and the construction does not involve supersymmetric de Sitter algebras. Black-Right-Pointing-Pointer An involution is defined for the system and discrete representations are constructed. Black-Right-Pointing-Pointer The representations imply a spatial lattice and the lattice spacing is half that of the bosonic case. Black-Right-Pointing-Pointer A differential operator representation is given for fields on super-momentum space.

  2. Search for the Flavor-Changing Neutral Current in Top Pair Events in sqrt(s) = 8 TeV Proton-Proton Collisions at the Large Hadron Collider Using the ATLAS Detector

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00345015

    In this dissertation, a search for the flavor-changing neutral current in top-antitop events is presented. The flavor-changing neutral current is forbidden at tree level in the Standard Model and suppressed at higher order due to the GIM mechanism. In the Standard Model, the top quark is expected to decay to a W boson and a bottom quark nearly 100 percent of the time. While the Standard Model branching fractions for flavor-changing neutral currents in top decays are well beyond current experimental reach, there exist theoretical models which predict large enhancements to those branching fractions. Observation of the flavor-changing neutral current in top decays would be an unambiguous confirmation of new physics. This search was conducted in data from proton-proton collisions at the Large Hadron Collider, running at a center-of-mass energy of $\\sqrt{s}$ = 8 TeV, which were collected with the ATLAS detector in 2012. These data correspond to an integrated luminosity of 20.3 fb$^{-1}$. Candidate events include...

  3. Invariant Regularization of Supersymmetric Chiral Gauge Theory

    CERN Document Server

    Suzuki, H

    1999-01-01

    We present a regularization scheme which respects the supersymmetry and the maximal background gauge covariance in supersymmetric chiral gauge theories. When the anomaly cancellation condition is satisfied, the effective action in the superfield background field method automatically restores the gauge invariance without counterterms. The scheme also provides a background gauge covariant definition of composite operators that is especially useful in analyzing anomalies. We present several applications: The minimal consistent gauge anomaly; the super-chiral anomaly and the superconformal anomaly; as the corresponding anomalous commutators, the Konishi anomaly and an anomalous supersymmetric transformation law of the supercurrent (the ``central extension'' of N=1 supersymmetry algebra) and of the R-current.

  4. Softly Broken Supersymmetric Gauge Theories through Compactifications

    CERN Document Server

    Takenaga, K

    1998-01-01

    Effects of boundary conditions of fields for compactified space directions on the supersymmetric gauge theories are discussed. For general and possible boundary conditions the supersymmetry is explicitly broken to yield universal soft supersymmetry breaking terms, and the gauge symmetry of the theory can also be broken through the dynamics of non-integrable phases, depending on number and the representation under the gauge group of matters. The 4-dimensional supersymmetric QCD is studied as a toy model when one of the space coordinates is compactified on $S^1$.

  5. Renormalizability of Supersymmetric Group Field Cosmology

    CERN Document Server

    Upadhyay, Sudhaker

    2014-01-01

    In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.

  6. Renormalizability of supersymmetric group field cosmology

    Science.gov (United States)

    Upadhyay, Sudhaker

    2014-03-01

    In this paper we consider the gauge invariant third quantized model of supersymmetric group field cosmology. The supersymmetric BRST invariance for such theory in non-linear gauge is also analysed. The path integral formulation to the case of a multiverse made up of homogeneous and isotropic spacetimes filled with a perfect fluid is presented. The renormalizability for the scattering of universes in multiverse are established with suitably constructed master equations for connected diagrams and proper vertices. The Slavnov-Taylor identities for this theory hold to all orders of radiative corrections.

  7. Supersymmetric asymptotic safety is not guaranteed

    DEFF Research Database (Denmark)

    Intriligator, Kenneth; Sannino, Francesco

    2015-01-01

    It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety...... in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...

  8. Supersymmetric radiative corrections at large tan {beta}

    Energy Technology Data Exchange (ETDEWEB)

    Logan, H.E.

    2001-02-20

    In the minimal supersymmetric extension of the Standard Model (MSSM), fermion masses and Yukawa couplings receive radiative corrections at one loop from diagrams involving the supersymmetric particles. The corrections to the relation between down-type fermion masses and Yukawa couplings are enhanced by tan {beta}, which makes them potentially very significant at large tan {beta}. These corrections affect a wide range of processes in the MSSM, including neutral and charged Higgs phenomenology, rare B meson decays, and renormalization of the CKM matrix. We give a pedagogical review of the sources and phenomenological effects of these corrections.

  9. Supersymmetric asymptotic safety is not guaranteed

    CERN Document Server

    Intriligator, Kenneth

    2015-01-01

    It was recently shown that certain perturbatively accessible, non-supersymmetric gauge-Yukawa theories have UV asymptotic safety, without asymptotic freedom: the UV theory is an interacting RG fixed point, and the IR theory is free. We here investigate the possibility of asymptotic safety in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those of an asymptotically free (perhaps magnetic dual) extension.

  10. Deformation and recursion for the $N = 2 \\; \\alpha = 1$ supersymmetric KdV hierarchy

    NARCIS (Netherlands)

    Sorin, A.S.; Kersten, P.H.M.

    2002-01-01

    A detailed description is given for the construction of the deformation of the $N=2$ supersymmetric $\\alpha=1$ KdV-equation, leading to the recursion operator for symmetries and the zero-th Hamiltonian structure; the solution to a longstanding problem.

  11. Deformation and Recursion for the N=2 α=1 Supersymmetric KdV Hierarchy

    NARCIS (Netherlands)

    Sorin, Alexander S.; Kersten, Paul H.M.

    2004-01-01

    A detailed description is given for the construction of the deformation of the N=2 supersymmetric α=1 KdV equation, leading to the recursion operator for symmetries and the zero-order Hamiltonian structure; the solution to a longstanding problem.

  12. Study of R-parity Violating Decays of Supersymmetric Particles with the ATLAS Detector at the LHC

    CERN Document Server

    AUTHOR|(CDS)2101187; Flowerdew, Micheal

    Supersymmetry is a space-time symmetry that postulates the existence of new particles. It assigns to each Standard Model fermion (boson) an associated supersymmetric boson (fermion) partner with the same quantum numbers except for spin. The introduction of these new supersymmetric particles provides a potential solution to the hierarchy problem. Discovery of such particles or alternatively an exclusion of a certain supersymmetic parameter space is one of the main purposes of collider experiments. A special scenario of Supersymmetry that enables the decay of the lightest supersymmetric particle to Standard Model particles is studied using proton-proton collision data collected by the ATLAS experiment at center-of-mass energy of 13 TeV. The searched signal is characterized by a final state of at least four leptons, which leads to extraordinarily low background contributions from Standard Model processes. The work described in this thesis assisted to an exclusion of the considered supersymmetric model for hypoth...

  13. Angular Momentum of Supersymmetric Non-isotropic Traps

    Institute of Scientific and Technical Information of China (English)

    XU Qiang

    2001-01-01

    A simple way to explain quantum behavior of supersymmetric non-isotropic traps is proposed in the framework of sermiunitary formulation of supersymmetric quantum mechanics. Using semiunitary formulation we can simultaneously supersymmetrize the complete set of observables, especially including angular moment.

  14. 5D Maximally Supersymmetric Yang-Mills on the Lattice

    CERN Document Server

    Joseph, Anosh

    2016-01-01

    We provide details of the lattice construction of five-dimensional maximally supersymmetric Yang-Mills theory. The lattice theory is supersymmetric, gauge invariant and free from spectrum doublers. Such a supersymmetric lattice formulation is interesting as it can be used for non-perturbative explorations of the five-dimensional theory, which has a known gravitational dual.

  15. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  16. Computing Maximally Supersymmetric Scattering Amplitudes

    Science.gov (United States)

    Stankowicz, James Michael, Jr.

    This dissertation reviews work in computing N = 4 super-Yang--Mills (sYM) and N = 8 maximally supersymmetric gravity (mSUGRA) scattering amplitudes in D = 4 spacetime dimensions in novel ways. After a brief introduction and overview in Ch. 1, the various techniques used to construct amplitudes in the remainder of the dissertation are discussed in Ch. 2. This includes several new concepts such as d log and pure integrand bases, as well as how to construct the amplitude using exactly one kinematic point where it vanishes. Also included in this chapter is an outline of the Mathematica package on shell diagrams and numerics.m (osdn) that was developed for the computations herein. The rest of the dissertation is devoted to explicit examples. In Ch. 3, the starting point is tree-level sYM amplitudes that have integral representations with residues that obey amplitude relations. These residues are shown to have corresponding residue numerators that allow a double copy prescription that results in mSUGRA residues. In Ch. 4, the two-loop four-point sYM amplitude is constructed in several ways, showcasing many of the techniques of Ch. 2; this includes an example of how to use osdn. The two-loop five-point amplitude is also presented in a pure integrand representation with comments on how it was constructed from one homogeneous cut of the amplitude. On-going work on the two-loop n-point amplitude is presented at the end of Ch. 4. In Ch. 5, the three-loop four-point amplitude is presented in the d log representation and in the pure integrand representation. In Ch. 6, there are several examples of four- through seven-loop planar diagrams that illustrate how considerations of the singularity structure of the amplitude underpin dual-conformal invariance. Taken with the previous examples, this is additional evidence that the structure known to exist in the planar sector extends to the full theory. At the end of this chapter is a proof that all mSUGRA amplitudes have a pole at

  17. Asymptotic iteration approach to supersymmetric bistable potentials

    Institute of Scientific and Technical Information of China (English)

    H. Ciftci; O. ozer; P. Roy

    2012-01-01

    We examine quasi exactly solvable bistable potentials and their supersymmetric partners within the framework of the asymptotic iteration method (AIM).It is shown that the AIM produces excellent approximate spectra and that sometimes it is found to be more useful to use the partner potential for computation. We also discuss the direct application of the AIM to the Fokker-Planck equation.

  18. Photon structure function in supersymmetric QCD revisited

    Energy Technology Data Exchange (ETDEWEB)

    Sahara, Ryo, E-mail: sahara@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Uematsu, Tsuneo, E-mail: uematsu@scphys.kyoto-u.ac.jp [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa, Kyoto 606-8502 (Japan); Kitadono, Yoshio, E-mail: kitadono@phys.sinica.edu.tw [Institute of Physics, Academia Sinica, Taipei, Taiwan (China)

    2012-02-07

    We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.

  19. Photon Structure Function in Supersymmetric QCD Revisited

    CERN Document Server

    Sahara, Ryo; Kitadono, Yoshio

    2011-01-01

    We investigate the virtual photon structure function in the supersymmetric QCD (SQCD), where we have squarks and gluinos in addition to the quarks and gluons. Taking into account the heavy particle mass effects to the leading order in QCD and SQCD we evaluate the photon structure function and numerically study its behavior for the QCD and SQCD cases.

  20. Spectral properties of supersymmetric shape invariant potentials

    Indian Academy of Sciences (India)

    Barnali Chakrabarti

    2008-01-01

    We present the spectral properties of supersymmetric shape invariant potentials (SIPs). Although the folded spectrum is completely random, unfolded spectrum shows that energy levels are highly correlated and absolutely rigid. All the SIPs exhibit harmonic oscillator-type spectral statistics in the unfolded spectrum. We conjecture that this is the reflection of shape invariant symmetry.

  1. Partition functions for supersymmetric black holes

    NARCIS (Netherlands)

    Manschot, J.

    2008-01-01

    This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a

  2. Supersymmetric integrable scattering theories with unstable particles

    CERN Document Server

    Fring, A

    2005-01-01

    We propose scattering matrices for N=1 supersymmetric integrable quantum field theories in 1+1 dimensions which involve unstable particles in their spectra. By means of the thermodynamic Bethe ansatz we analyze the ultraviolet behaviour of some of these theories and identify the effective Virasoro central charge of the underlying conformal field theories.

  3. Geometry of all supersymmetric type I backgrounds

    NARCIS (Netherlands)

    Gran, Ulf; Papadopoulos, George; Sloane, Peter; Roest, Diederik

    2007-01-01

    We find the geometry of all supersymmetric type I backgrounds by solving the gravitino and dilatino Killing spinor equations, using the spinorial geometry technique, in all cases. The solutions of the gravitino Killing spinor equation are characterized by their isotropy group in Spin(9, 1), while th

  4. A renormalizable supersymmetric SO(10) model

    CERN Document Server

    Chen, Ying-Kang

    2015-01-01

    A realistic grand unified model has never been constructed in the literature due to three major difficulties: the seesaw mechanism without spoiling gauge coupling unification, the doublet-triplet splitting and the proton decay suppression. We propose a renormalizable supersymmetric SO(10) model with all these difficulties solved naturally.

  5. The spinorial method of classifying supersymmetric backgrounds

    NARCIS (Netherlands)

    Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.

    2006-01-01

    We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046] t

  6. New supersymmetric localizations from topological gravity

    Science.gov (United States)

    Bae, Jinbeom; Imbimbo, Camillo; Rey, Soo-Jong; Rosa, Dario

    2016-03-01

    Supersymmetric field theories can be studied exactly on off-shell "localizing" supergravity backgrounds. We show that these supergravity configurations can be identified with BRST invariant configurations of background topological gravity coupled to background topological gauge multiplets. We apply this topological point of view to two-dimensional {N}=left(2,2right) supersymmetric matter theories to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. We recover all known localizing backgrounds and (infinitely) many more that have not been explored so far. The newly found localizing backgrounds are characterized by quantized fluxes for both graviphotons of the {N}=left(2,2right) supergravity multiplet. The BRST invariant topological backgrounds are parametrized by both Killing vectors and {{S}}^1 -equivariant cohomology of the two-dimensional spacetime. We completely reconstruct the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are composite, in that they are nonlinear functionals of topological fields. Moreover, we show that the supersymmetric Ω-deformation is nothing but the background value of the ghost-for-ghost of topological gravity, a result which holds for higher dimensions too.

  7. Effective action for supersymmetric chiral anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Krivoshchekov, V.K.; Chekhov, L.O.

    1987-05-01

    It is shown that consistency conditions of the type of the Wess-Zumino conditions are necessary and sufficient conditions for local integrability of the supersymmetric chiral anomaly. It follows from the requirement of global integrability that the coefficient of the anomalous action is discrete. Explicit expressions are obtained for consistent anomalies and the corresponding functionals, which depend on superfields of various types.

  8. Electric dipole moments in supersymmetric theories

    OpenAIRE

    Romanino, Andrea

    1996-01-01

    Intrinsic EDMs in microscopic systems at a level of sensitivity achievable in experiments under way or foreseen are predicted in supersymmetric unified theories. I describe this and other sources of measurable EDMs and I show how these sources can be distinguished through experiments in different systems.

  9. Non-minimal supersymmetric models. LHC phenomenolgy and model discrimination

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Manuel Ernst

    2015-12-18

    It is generally agreed upon the fact that the Standard Model of particle physics can only be viewed as an effective theory that needs to be extended as it leaves some essential questions unanswered. The exact realization of the necessary extension is subject to discussion. Supersymmetry is among the most promising approaches to physics beyond the Standard Model as it can simultaneously solve the hierarchy problem and provide an explanation for the dark matter abundance in the universe. Despite further virtues like gauge coupling unification and radiative electroweak symmetry breaking, minimal supersymmetric models cannot be the ultimate answer to the open questions of the Standard Model as they still do not incorporate neutrino masses and are besides heavily constrained by LHC data. This does, however, not derogate the beauty of the concept of supersymmetry. It is therefore time to explore non-minimal supersymmetric models which are able to close these gaps, review their consistency, test them against experimental data and provide prospects for future experiments. The goal of this thesis is to contribute to this process by exploring an extraordinarily well motivated class of models which bases upon a left-right symmetric gauge group. While relaxing the tension with LHC data, those models automatically include the ingredients for neutrino masses. We start with a left-right supersymmetric model at the TeV scale in which scalar SU(2){sub R} triplets are responsible for the breaking of left-right symmetry as well as for the generation of neutrino masses. Although a tachyonic doubly-charged scalar is present at tree-level in this kind of models, we show by performing the first complete one-loop evaluation that it gains a real mass at the loop level. The constraints on the predicted additional charged gauge bosons are then evaluated using LHC data, and we find that we can explain small excesses in the data of which the current LHC run will reveal if they are actual new

  10. Phenomenology of non-minimal supersymmetric models at linear colliders

    Energy Technology Data Exchange (ETDEWEB)

    Porto, Stefano

    2015-06-15

    The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics

  11. Search for flavor changing neutral currents in single top quark production using 2.3 fb$^-1$ of $p\\bar{p}$ collisions

    Energy Technology Data Exchange (ETDEWEB)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF /Nijmegen U.

    2010-06-01

    We present a search for flavor changing neutral currents via quark-gluon couplings in a sample of single top quark final states corresponding to 2.3 fb{sup -1} of integrated luminosity collected with the D0 detector at the Fermilab Tevatron Collider. We select events containing a single top quark candidates with an additional jet, and obtain separation between signal and background using Bayesian neural networks. We find consistency between background expectation and observed data, and set limits on avor changing neutral current gluon couplings of the top quark to up quarks (tgu) and charm quarks (tgc). The cross section limits at the 95% C.L. are {sigma}{sub tgu} < 0.20 pb and {sigma}{sub tgc} < 0.27 pb. These correspond to limits on the top quark decay branching fractions of B(t {yields} gu) < 2.0 x 10{sup -4} and B(t {yields} gc) < 3.9 x 10{sup -3}.

  12. Search for Flavor Changing Neutral Current Decay Neutral D Meson Going to Positive Muon Muon Produced in 800 Gev/c Proton-Silicon Interactions

    Science.gov (United States)

    Mo, Guanghui

    This thesis presents a search for the flavor changing neutral current (FCNC) decay, D^0 to mu^+mu^-, in 800 GeV/c proton-silicon interactions. FCNC is highly suppressed in the standard model, and D^0 to mu^+mu^- is expected to occur with a branching ratio around 10^ {-16}. However, some models predict a much larger branching ratio of ~10 ^{-9}. Therefore, the decay D^0 to mu^+mu ^- provides an important test of the standard model. A total of 33.5 million dimuon events from the E771 experiment in Fermilab were analyzed. The dimuon invariant mass spectrum between 0.3-8.0 GeV/c^2 was studied in detail. Dimuon resonances of rho^0, omega, phi, J/psi, and psi^' were observed. Their production cross sections, masses, and the full width of rho^0 were measured. No evidence was found for the FCNC decays, D^0 to mu^+mu^- and B ^0 to mu^+mu^-. An upper limit for the D^0 to mu ^+mu^- (or | D^0 to mu^+mu^- ) decay branching ratio was determined to be < 1.1 times 10^ {-5}, which is equally stringent as the published current upper limit of <1.1 times 10^{-5} .

  13. Search for the Flavor Changing Neutral Current Decay t → Z q at √(s) = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Gimmell, Jennifer Lindsay [Univ. of Rochester, NY (United States)

    2009-01-01

    This thesis reports the results of a search for the flavor changing neutral current decay of the top quark, t → Zq, in decays of t$\\bar{t}$ pairs produced in p$\\bar{p}$ collisions at a center-of-mass energy of 1.96 TeV. This search is performed on a data sample recorded by the Collider Detector at Fermilab (CDF), corresponding to an integrated luminosity of 1.9 fb-1. This search follows a previous CDF analysis that resulted in an upper limit for the branching fraction β(t → Zq) of 10.4% at 95% C.L. using a dataset equivalent to 1.1 fb-1 of integrated luminosity. This thesis extends to 1.9 fb-1 of data, and has improved sensitivity to the small signal with the introduction of a template fit technique that includes systematic uncertainties by a linear interpolation between templates. Using a Feldman-Cousins construction, an upper limit at 95% C.L. is set on β(t → Zq) of 3.7%, with the expected upper limit in absence of a signal is 5.0 ± 2.2% for a top mass of 175 GeV/c2.

  14. Supersymmetric quantum mechanics with Levy disorder in one dimension

    CERN Document Server

    Comtet, Alain; Tourigny, Yves

    2011-01-01

    We consider the Schroedinger equation with a supersymmetric random potential, where the superpotential is a Levy noise. We focus on the problem of computing the so-called complex Lyapunov exponent, whose real and imaginary parts are, respectively, the Lyapunov exponent and the integrated density of states of the system. In the case where the Levy process is non-decreasing, we show that the calculation of the complex Lyapunov exponent reduces to a Stieltjes moment problem, we ascertain the low-energy behaviour of the density of states in some generality, and relate it to the distributional properties of the Levy process. We review the known solvable cases, where the complex Lyapunov exponent can be expressed in terms of special functions, and discover a new one.

  15. Dark matter candidates in the constrained exceptional supersymmetric standard model

    Science.gov (United States)

    Athron, P.; Thomas, A. W.; Underwood, S. J.; White, M. J.

    2017-02-01

    The exceptional supersymmetric standard model is a low energy alternative to the minimal supersymmetric standard model (MSSM) with an extra U (1 ) gauge symmetry and three generations of matter filling complete 27-plet representations of E6. This provides both new D and F term contributions that raise the Higgs mass at tree level, and a compelling solution to the μ -problem of the MSSM by forbidding such a term with the extra U (1 ) symmetry. Instead, an effective μ -term is generated from the vacuum expectation value of an SM singlet which breaks the extra U (1 ) symmetry at low energies, giving rise to a massive Z'. We explore the phenomenology of the constrained version of this model in substantially more detail than has been carried out previously, performing a ten dimensional scan that reveals a large volume of viable parameter space. We classify the different mechanisms for generating the measured relic density of dark matter found in the scan, including the identification of a new mechanism involving mixed bino/inert-Higgsino dark matter. We show which mechanisms can evade the latest direct detection limits from the LUX 2016 experiment. Finally we present benchmarks consistent with all the experimental constraints and which could be discovered with the XENON1T experiment.

  16. Measuring And Explaining The Supersymmetric Lagrangian

    CERN Document Server

    Wang, L

    2002-01-01

    The issues of measuring the supersymmetric Lagrangian once data is available, and making the connections between the low energy effective Lagrangian and fundamental theory, are considered. After a brief introduction to the fundamentals of supersymmetry and overview of Minimal Supersymmetric Standard Model (MSSM), case studies in ways of measuring different parameters in the low energy MSSM Lagrangian are presented. They include: measuring CP violation phases and LSP masses in gluino decay; Higgs production and detection; flavor and CP violation in b → sγ processes; signature of cold dark matter in the cosmic rays. Potential ambiguities in the process of recovering the high energy effective Lagrangian from low energy data are discussed. A new basis, which is explicitly independent of unphysical parameters, is proposed to write the renormalization group equations. After a brief survey of some basic issues of string theory phenomenology, a string theory motivated Pati-Salam like model is const...

  17. A constrained supersymmetric left-right model

    CERN Document Server

    Hirsch, Martin; Opferkuch, Toby; Porod, Werner; Staub, Florian

    2016-01-01

    We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model's capability to explain current anomalies observed at the LHC.

  18. A supersymmetric consistent truncation for conifold solutions

    CERN Document Server

    Cassani, Davide

    2010-01-01

    We establish a supersymmetric consistent truncation of type IIB supergravity on the T^{1,1} coset space, based on extending the Papadopoulos-Tseytlin ansatz to the full set of SU(2)xSU(2) invariant Kaluza-Klein modes. The five-dimensional model is a gauged N=4 supergravity with three vector multiplets, which incorporates various conifold solutions and is suitable for the study of their dynamics. By analysing the scalar potential we find a family of new non-supersymmetric AdS_5 extrema interpolating between a solution obtained long ago by Romans and a solution employing an Einstein metric on T^{1,1} different from the standard one. Finally, we discuss some simple consistent subtruncations preserving N=2 supersymmetry. One of them is compatible with the inclusion of smeared D7-branes.

  19. Bound States Of Supersymmetric Black Holes

    CERN Document Server

    Britto-Pacumio, R A

    2002-01-01

    The quantum mechanics of N slowly-moving supersymmetric black holes in five dimensions is considered. A divergent continuum of states describing arbitrarily closely bound black holes with arbitrarily small excitation energies is found. A superconformal structure appears at low energies and can be used to define a topological index counting the weighted number of supersymmetric bound states. It is shown that the index is determined from the dimensions of certain cohomology classes on the symmetric product of N copies of R4. This bound state index is computed exactly for two and three black holes. The required regulator for the infrared continuum of near-coincident black holes is chosen in accord with the enhanced superconformal symmetry.

  20. Phenomenology of the Utilitarian Supersymmetric Standard Model

    CERN Document Server

    Fraser, Sean; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2016-01-01

    We study the 2010 specific version of the 2002 proposed $U(1)_X$ extension of the supersymmetric standard model, which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra $Z_X$ gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.

  1. Phenomenology of the utilitarian supersymmetric standard model

    Science.gov (United States)

    Fraser, Sean; Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2016-08-01

    We study the 2010 specific version of the 2002 proposed U(1)X extension of the supersymmetric standard model, which has no μ term and conserves baryon number and lepton number separately and automatically. We consider in detail the scalar sector as well as the extra ZX gauge boson, and their interactions with the necessary extra color-triplet particles of this model, which behave as leptoquarks. We show how the diphoton excess at 750 GeV, recently observed at the LHC, may be explained within this context. We identify a new fermion dark-matter candidate and discuss its properties. An important byproduct of this study is the discovery of relaxed supersymmetric constraints on the Higgs boson's mass of 125 GeV.

  2. Supersymmetric QCD: Exact Results and Strong Coupling

    CERN Document Server

    Dine, Michael; Pack, Lawrence; Park, Chang-Soon; Ubaldi, Lorenzo; Wu, Weitao

    2011-01-01

    We revisit two longstanding puzzles in supersymmetric gauge theories. The first concerns the question of the holomorphy of the coupling, and related to this the possible definition of an exact (NSVZ) beta function. The second concerns instantons in pure gluodynamics, which appear to give sensible, exact results for certain correlation functions, which nonetheless differ from those obtained using systematic weak coupling expansions. For the first question, we extend an earlier proposal of Arkani-Hamed and Murayama, showing that if their regulated action is written suitably, the holomorphy of the couplings is manifest, and it is easy to determine the renormalization scheme for which the NSVZ formula holds. This scheme, however, is seen to be one of an infinite class of schemes, each leading to an exact beta function; the NSVZ scheme, while simple, is not selected by any compelling physical consideration. For the second question, we explain why the instanton computation in the pure supersymmetric gauge theory is...

  3. Selecting Supersymmetric String Scenarios From Sparticle Spectra

    CERN Document Server

    Allanach, Benjamin C; Quevedo, Fernando

    2002-01-01

    We approach the following question: if supersymmetry is discovered, how can we select among different supersymmetric extensions of the Standard Model? In particular, we perform an analysis of the sparticle spectrum in low-energy string effective theories, asking which observables best distinguish various scenarios. We examine scenarios differing by the fundamental string scale and concentrate on GUT and intermediate scale models. We scan over all parameters (two goldstino angles, tan beta and the gravitino mass) in each scenario, finding ratios of sparticle masses that provide the maximum discrimination between them. The necessary accuracy for discrimination is determined in each case. We find that the required accuracy on various sparticle mass ratios is at the few percent level, a precision that may be achieved in future linear colliders. We place phenomenological constraints on the parameter space and determine the supersymmetric contribution to the muon anomalous magnetic moment.

  4. New Supersymmetric Localizations from Topological Gravity

    CERN Document Server

    Bae, Jinbeom; Rey, Soo-Jong; Rosa, Dario

    2015-01-01

    Supersymmetric field theories can be studied exactly on suitable off-shell supergravity backgrounds. We show that in two dimensions such backgrounds are identifiable with BRST invariant backgrounds of topological gravity coupled to an abelian topological gauge multiplet. This latter background is required for the consistent coupling of the topological `matter' YM theory to topological gravity. We make use of this topological point of view to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. The BRST invariant topological backgrounds are parametrized by both Killing vectors and $S^1$-equivariant cohomology of the 2-dimensional world-sheet. We reconstruct completely the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are "composite", i.e. they are non-linear functionals of them. We recover all the known localizing 2-dimensional backg...

  5. Galoisian Approach to Supersymmetric Quantum Mechanics

    CERN Document Server

    Acosta-Humanez, Primitivo B

    2009-01-01

    This thesis is concerning to the Differential Galois Theory point of view of the Supersymmetric Quantum Mechanics. The main object considered here is the non-relativistic stationary Schr\\"odinger equation, specially the integrable cases in the sense of the Picard-Vessiot theory and the main algorithmic tools used here are the Kovacic algorithm and the \\emph{algebrization method} to obtain linear differential equations with rational coefficients. We analyze the Darboux transformations, Crum iterations and supersymmetric quantum mechanics with their \\emph{algebrized} versions from a Galoisian approach. Applying the algebrization method and the Kovacic's algorithm we obtain the ground state, the set of eigenvalues, eigenfunctions, the differential Galois groups and eigenrings of some Schr\\"odinger equation with potentials such as exactly solvable and shape invariant potentials. Finally, we introduce one methodology to find exactly solvable potentials: to construct other potentials, we apply the algebrization alg...

  6. Supersymmetric composite gauge fields with compensators

    Science.gov (United States)

    Nishino, Hitoshi; Rajpoot, Subhash

    2016-06-01

    We study supersymmetric composite gauge theory, supplemented with compensator mechanism. As our first example, we give the formulation of N = 1 supersymmetric non-Abelian composite gauge theory without the kinetic term of a non-Abelian gauge field. The important ingredient is the Proca-Stueckelberg-type compensator scalar field that makes the gauge-boson field equation non-singular, i.e., the field equation can be solved for the gauge field algebraically as a perturbative expansion. As our second example, we perform the gauging of chiral-symmetry for N = 1 supersymmetry in four dimensions by a composite gauge field. These results provide supporting evidence for the consistency of the mechanism that combines the composite gauge field formulations and compensator formulations, all unified under supersymmetry.

  7. Flavor Mixing Phenomenology in Supersymmetric Models

    CERN Document Server

    Rehman, Muhammad

    2016-01-01

    This dissertation investigates the flavor mixing effects in supersymmetric models on electroweak precision observables, Higgs boson mass predictions, B-physics observables, quark flavor violating Higgs decays, lepton flavor violating charged lepton decays and lepton flavor violating Higgs decays. The flavor mixing effects are studied in model independent way i.e. by putting off-diagonal entries in the sfermion mass matrix by hand as well as in the minimal flavor violating constrained MSSM, where mixing can originate from CKM matrix in the case of squarks and from PMNS matrix in the case of sleptons. We found that flavor mixing can have large impact to some observables, enabling us to put new constraints on parameter space in supersymmetric models.

  8. Topological solitons in the supersymmetric Skyrme model

    CERN Document Server

    Gudnason, Sven Bjarke; Sasaki, Shin

    2016-01-01

    A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

  9. Planar Gravitational Corrections For Supersymmetric Gauge Theories

    CERN Document Server

    Dijkgraaf, R; Ooguri, H; Vafa, C; Zanon, D

    2004-01-01

    In this paper we discuss the contribution of planar diagrams to gravitational F-terms for N=1 supersymmetric gauge theories admitting a large N description. We show how the planar diagrams lead to a universal contribution at the extremum of the glueball superpotential, leaving only the genus one contributions, as was previously conjectured. We also discuss the physical meaning of gravitational F-terms.

  10. Approximate Flavor Symmetry in Supersymmetric Model

    OpenAIRE

    Tao, Zhijian

    1998-01-01

    We investigate the maximal approximate flavor symmetry in the framework of generic minimal supersymmetric standard model. We consider the low energy effective theory of the flavor physics with all the possible operators included. Spontaneous flavor symmetry breaking leads to the approximate flavor symmetry in Yukawa sector and the supersymmetry breaking sector. Fermion mass and mixing hierachies are the results of the hierachy of the flavor symmetry breaking. It is found that in this theory i...

  11. Utilitarian Supersymmetric Gauge Model of Particle Interactions

    CERN Document Server

    Ma, Ernest

    2010-01-01

    A remarkable U(1) gauge extension of the supersymmetric standard model was proposed eight years ago. It is anomaly-free, has no mu term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.

  12. Renormalizable supersymmetric gauge theory in six dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, E.A. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: eivanov@theor.jinr.ru; Smilga, A.V. [SUBATECH, Universite de Nantes, 4 rue Alfred Kastler, BP 20722, Nantes 44307 (France)]. E-mail: smilga@subatech.in2p3.fr; Zupnik, B.M. [Bogoliubov Laboratory of Theoretical Physics, JINR, 141980 Dubna (Russian Federation)]. E-mail: zupnik@theor.jinr.ru

    2005-10-17

    We construct and discuss a 6D supersymmetric gauge theory involving four derivatives in the action. The theory involves a dimensionless coupling constant and is renormalizable. At the tree level, it enjoys N=(1,0) superconformal symmetry, but the latter is broken by quantum anomaly. Our study should be considered as preparatory for seeking an extended version of this theory which would hopefully preserve conformal symmetry at the full quantum level and be ultraviolet-finite.

  13. Supersymmetric solutions for non-relativistic holography

    Energy Technology Data Exchange (ETDEWEB)

    Donos, Aristomenis [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Gauntlett, Jerome P. [Blackett Laboratory, Imperial College, London (United Kingdom)]|[Institute for Mathematical Sciences, Imperial College, London (United Kingdom)

    2009-01-15

    We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z{>=}4 and z{>=}3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)

  14. Simple supersymmetric methods in neutron diffusion

    OpenAIRE

    1996-01-01

    We present the supersymmetric Witten and double Darboux (strictly isospectral) constructions as applied to the diffusion of thermal neutrons from an infinitely long line source. While the Witten construction is just a mathematical scheme, the double Darboux method introduces a one-parameter family of diffusion solutions which are strictly isospectral to the stationary solution. They correspond to a Darboux-transformed diffusion length which is flux dependent

  15. Supersymmetric branes on curved spaces and fluxes

    CERN Document Server

    Triendl, Hagen

    2015-01-01

    We discuss general supersymmetric brane configurations in flux backgrounds of string and M-theory and derive a necessary condition for the worldvolume theory to be supersymmetric on a given curved manifold. This condition resembles very much the conditions found from coupling a supersymmetric field theory to off-shell supergravity but can be derived in any dimension and for up to sixteen supercharges. Apart from the topological twist, all couplings appearing in the supersymmetry condition are linked to fluxes in the bulk. We explicitly derive the condition for D3-, M2- and M5-branes, in which case the results are also useful for constructing holographic duals to the corresponding field theories. In $N=1$ setups we compare the supersymmetry conditions to those that arise by coupling the field theory to off-shell supergravity. We find that the couplings of both old and new minimal supergravity are simultaneously realized, indicating that off-shell supergravity should be coupled via the S-multiplet of 16/16 supe...

  16. Cosmological consequences of supersymmetric flat directions

    CERN Document Server

    Riva, Francesco; Sarkar, Subir; Giudice, Gian

    In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...

  17. Non-supersymmetric Orientifolds of Gepner Models

    CERN Document Server

    Gato-Rivera, B

    2008-01-01

    Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings -- bulk supersymmetry, automorphism invariants or Klein bottle projection -- we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly ...

  18. Likelihood Analysis of Supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E. [DESY; Costa, J. C. [Imperial Coll., London; Sakurai, K. [Warsaw U.; Borsato, M. [Santiago de Compostela U.; Buchmueller, O. [Imperial Coll., London; Cavanaugh, R. [Illinois U., Chicago; Chobanova, V. [Santiago de Compostela U.; Citron, M. [Imperial Coll., London; De Roeck, A. [Antwerp U.; Dolan, M. J. [Melbourne U.; Ellis, J. R. [King' s Coll. London; Flächer, H. [Bristol U.; Heinemeyer, S. [Madrid, IFT; Isidori, G. [Zurich U.; Lucio, M. [Santiago de Compostela U.; Martínez Santos, D. [Santiago de Compostela U.; Olive, K. A. [Minnesota U., Theor. Phys. Inst.; Richards, A. [Imperial Coll., London; de Vries, K. J. [Imperial Coll., London; Weiglein, G. [DESY

    2016-10-31

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel ${\\tilde u_R}/{\\tilde c_R} - \\tilde{\\chi}^0_1$ coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ${\\tilde \

  19. Simplified Smooth Hybrid Inflation in Supersymmetric SU(5)

    CERN Document Server

    Rehman, Mansoor Ur

    2014-01-01

    A scheme of simplified smooth hybrid inflation is realized in the framework of supersymmetric $SU(5)$. The smooth model of hybrid inflation provides a natural solution to the monopole problem that appears in the breaking of $SU(5)$ gauge symmetry. The SUGRA corrections with non-minimal K\\"ahler potential are shown to play important role in realizing inflation with a red-tilted scalar spectral index $n_s <1$, within Planck's latest bounds. As compared to shifted model of hybrid inflation, relatively large values of the tensor to scalar ratio $r \\lesssim 0.01$ are achieved here, with non-minimal couplings $-0.01 \\lesssim \\kappa_S \\lesssim 0.05$ and $-1 \\lesssim \\kappa_{SS} \\lesssim 0.4$ and the gauge symmetry breaking scale $M \\simeq (3.3 - 16.6) \\times 10^{16}$ GeV.

  20. Non-minimal quartic inflation in supersymmetric SO(10)

    Science.gov (United States)

    Leontaris, George K.; Okada, Nobuchika; Shafi, Qaisar

    2017-02-01

    We describe how quartic (λϕ4) inflation with non-minimal coupling to gravity is realized in realistic supersymmetric SO (10) models. In a well-motivated example the 16 - 16 ‾ Higgs multiplets, which break SO (10) to SU (5) and yield masses for the right-handed neutrinos, provide the inflaton field ϕ. Thus, leptogenesis is a natural outcome in this class of SO (10) models. Moreover, the adjoint (45-plet) Higgs also acquires a GUT scale value during inflation so that the monopole problem is evaded. The scalar spectral index ns is in good agreement with the observations and r, the tensor to scalar ratio, is predicted for realistic values of GUT parameters to be of order 10-3-10-2.

  1. Hot-warm unstable supersymmetric dark matter and galaxy formation

    Energy Technology Data Exchange (ETDEWEB)

    Asselin, X.; Girardi, G.; Salati, P.; Blanchard, A.

    1988-12-12

    Recent observational results had lead to a revival of interest in neutrino-dominated universe. However, we recall that current constraints make the neutrino an unlikely candidate for the dark matter. In this paper, we show that a supersymmetric particle with a typical mass of a few tens of eV will be a much better candidate. Such a particle is radiatively unstable, and its lifetime is a few times larger than the age of the universe. This can drastically change the thermal history of the universe. We investigate in detail the heating of the intergalactic medium in the period z=100-z=10. In particular, we find that the universe can be fully reionized for lifetime less than or equal to 10/sup 24/. This, in turn, lowers the level of temperature fluctuations of the background radiation. We conclude that this model avoids the major problems of the neutrino picture.

  2. Geometry and duality in Supersymmetric $\\sigma$-Models

    CERN Document Server

    Curtright, T L; Zachos, C K; Curtright, Thomas; Uematsu, Tsuneo; Zachos, Cosmas

    1996-01-01

    The Supersymmetric Dual Sigma Model (SDSM) is a local field theory introduced to be nonlocally equivalent to the Supersymmetric Chiral nonlinear sigma-Model (SCM), this dual equivalence being proven by explicit canonical transformation in tangent space. This model is here reconstructed in superspace and identified as a chiral-entwined supersymmetrization of the Dual Sigma Model (DSM). This analysis sheds light on the Boson-Fermion Symphysis of the dual transition, and on the new geometry of the DSM.

  3. Bilinear approach to N=2 supersymmetric KdV equations

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The N=2 supersymmetric KdV equations are studied within the framework of Hirota bilinear method. For two such equations, namely N=2, a=4 and N=2, a=1 supersymmetric KdV equations, we obtain the corresponding bilinear formulations. Using them, we construct particular solutions for both cases. In particular, a bilinear Bcklund transformation is given for the N=2, a=1 supersymmetric KdV equation.

  4. Vertex Operators for Irregular Conformal Blocks: Supersymmetric Case

    CERN Document Server

    Polyakov, Dimitri

    2016-01-01

    We construct supersymmetric irregular vertex operators of arbitrary rank, appearing in the colliding limit of primary fields. We find that the structure of the supersymmetric irregular vertices differs significantly from the bosonic case: upon supersymmetrization, the irregular operators are no longer the eigenstates of positive Virasoro and $W_N$ generators but block-diagonalize them. We relate the block-diagonal structure of the irregular vertices to contributions of the Ramond sector to the colliding limit.

  5. On supersymmetric Chern-Simons-type theories in five dimensions

    CERN Document Server

    Kuzenko, Sergei M

    2014-01-01

    We present a closed-form expression for the supersymmetric non-Abelian Chern-Simons action in conventional five-dimensional N=1 superspace. Our construction makes use of the superform formalism to generate supersymmetric invariants. Similar ideas are applied to construct supersymmetric actions for off-shell supermultiplets with an intrinsic central charge. In particular, the large tensor multiplet is described in superspace for the first time.

  6. Non-renormalization theorems andN=2 supersymmetric backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Butter, Daniel [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Wit, Bernard de [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands); Institute for Theoretical Physics, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Lodato, Ivano [Nikhef, Science Park 105, 1098 XG Amsterdam (Netherlands)

    2014-03-28

    The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed.

  7. Non-renormalization theorems and N=2 supersymmetric backgrounds

    CERN Document Server

    Butter, Daniel; Lodato, Ivano

    2014-01-01

    The conditions for fully supersymmetric backgrounds of general N=2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed.

  8. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others

    2016-10-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.

  9. Likelihood analysis of supersymmetric SU(5) GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)

    2017-02-15

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)

  10. BiHermitian supersymmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Zucchini, Roberto [Dipartimento di Fisica, Universita degli Studi di Bologna, V Irnerio 46, I-40126 Bologna (Italy)

    2007-04-21

    BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kaehler manifolds recently developed by Gualtieri. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li.

  11. BiHermitian Supersymmetric Quantum Mechanics

    CERN Document Server

    Zucchini, R

    2006-01-01

    BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2,2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kaehler manifolds recently developed by Gualtieri. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li.

  12. Supersymmetric structure of the induced $W$ gravities

    CERN Document Server

    Ader, J P; Noirot, Y; Ader, Jean-Pierre; Biet, Franck; Noirot, Yves

    1999-01-01

    We derive the supersymmetric structure present in W-gravities which has been already observed in various contexts as Yang-Mills theory, topological field theories, bosonic string and chiral W_{3}-gravity. This derivation which is made in the geometrical framework of Zucchini, necessitates the introduction of an appropriate new basis of variables which replace the canonical fields and their derivatives. This construction is used, in the W_{2}-case, to deduce from the Chern-Simons action the Wess-Zumino-Polyakov action.

  13. BiHermitian supersymmetric quantum mechanics

    Science.gov (United States)

    Zucchini, Roberto

    2007-04-01

    BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2, 2) world sheet supersymmetry. In this paper, we work out supersymmetric quantum mechanics for a biHermitian target space. We display the full supersymmetry of the model and illustrate in detail its quantization procedure. Finally, we show that the quantized model reproduces the Hodge theory for compact twisted generalized Kähler manifolds recently developed by Gualtieri in [33]. This allows us to recover and put in a broader context the results on the biHermitian topological sigma models obtained by Kapustin and Li in [9].

  14. Singularity Structure of Maximally Supersymmetric Scattering Amplitudes

    DEFF Research Database (Denmark)

    Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy

    2014-01-01

    We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....

  15. Leptonic CP violation in supersymmetric standard model

    CERN Document Server

    Joshipura, A S

    1995-01-01

    We point out the possibility of spontaneous and hard CP-violation in the scalar potential of R-parity broken supersymmetric Standard Model. The existence of spontaneous CP-violation depends crucially on the R-parity breaking terms in the superpotential and, in addition, on the choice of the soft supersymmetry breaking terms. Unlike in theories with R-parity conservation, it is natural, in the context of the present model, for the sneutrinos to acquire (complex) vacuum expectation values. In the context of this model we examine here the global implications, like the strength of the CP-violating interactions and the neutrino masses.

  16. Canonical simulations of supersymmetric SU(N) Yang-Mills quantum mechanics

    CERN Document Server

    Bergner, Georg; Wenger, Urs

    2015-01-01

    The fermion loop formulation naturally separates partition functions into their canonical sectors. Here we discuss various strategies to make use of this for supersymmetric SU(N) Yang-Mills quantum mechanics obtained from dimensional reduction in various dimensions and present numerical results for the separate canonical sectors with fixed fermion numbers. We comment on potential problems due to the sign of the contributions from the fermions and due to flat directions.

  17. Impacts of supersymmetric higher derivative terms on inflation models in supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Shuntaro; Yamada, Yusuke [Department of Physics, Waseda University,Tokyo 169-8555 (Japan)

    2015-07-14

    We show the effects of supersymmetric higher derivative terms on inflation models in supergravity. The results show that such terms generically modify the effective kinetic coefficient of the inflaton during inflation if the cut off scale of the higher derivative operators is sufficiently small. In such a case, the η-problem in supergravity does not occur, and we find that the effective potential of the inflaton generically becomes a power type potential with a power smaller than two.

  18. Supersymmetric Chern-Simons terms in ten dimensions

    NARCIS (Netherlands)

    Bergshoeff, E.; Roo, M. de

    1989-01-01

    We construct a supersymmetric extension of the Lorentz and Yang-Mills Chern-Simons terms in ten dimensions. In terms of dimensionful parameters α (Lorentz) and β (Yang-Mills), we obtain the complete O(α) supersymmetrization. Furthermore, we present the leading O(α2) and O(αβ) corrections requi

  19. Supersymmetric compactifications of heterotic strings with fluxes and condensates

    Energy Technology Data Exchange (ETDEWEB)

    Manousselis, Pantelis [Department of Engineering Sciences, University of Patras, GR-26110 Patras (Greece)]. E-mail: pantelis@upatras.gr; Prezas, Nikolaos [Institut de Physique, Universite de Neuchatel, CH-2000 Neuchatel (Switzerland)]. E-mail: nikolaos.prezas@unine.ch; Zoupanos, George [Physics Department, National Technical University of Athens, GR-15780 University Campus, Athens (Greece)]. E-mail: zoupanos@mail.cern.ch

    2006-04-03

    We discuss supersymmetric compactifications of heterotic strings in the presence of H-flux and general condensates using the formalism of G-structures and intrinsic torsion. We revisit the examples based on nearly-Kaehler coset spaces and show that supersymmetric solutions, where the Bianchi identity is satisfied, can be obtained when both gaugino and dilatino condensates are present.

  20. On supermatrix models, Poisson geometry, and noncommutative supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Klimčík, Ctirad [Aix Marseille Université, CNRS, Centrale Marseille I2M, UMR 7373, 13453 Marseille (France)

    2015-12-15

    We construct a new supermatrix model which represents a manifestly supersymmetric noncommutative regularisation of the UOSp(2|1) supersymmetric Schwinger model on the supersphere. Our construction is much simpler than those already existing in the literature and it was found by using Poisson geometry in a substantial way.

  1. Superconformal indices and partition functions for supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, I.B. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Vartanov, G.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-12-15

    Recently there was a substantial progress in understanding of supersymmetric theories (in particular, their BPS spectrum) in space-times of different dimensions due to the exact computation of superconformal indices and partition functions using localization method. Here we discuss a connection of 4d superconformal indices and 3d partition functions using a particular example of supersymmetric theories with matter in antisymmetric representation.

  2. Supersymmetric Wilson Loops and Super Non-Abelian Stokes Theorem

    CERN Document Server

    Karp, R L; Karp, Robert L.; Mansouri, Freydoon

    2000-01-01

    We generalize the standard product integral formalism to incorporateGrassmann valued matrices and show that the resulting supersymmetric productintegrals provide a natural framework for describing supersymmetric Wilsonlines and Wilson loops. We use this formalism to establish the supersymmetricversion of the non-Abelian Stokes Theorem.

  3. Search for supersymmetric Higgs signatures at the LHC

    CERN Document Server

    Rompotis, Nikolaos; The ATLAS collaboration

    2015-01-01

    This talk reviews the searches for supersymmetric Higgs bosons signatures at the LHC after Run-I. Searches for the Higgs bosons of the minimal supersymmetric Standard Model (MSSM) have been spearheaded in ATLAS and CMS by $h/H/A\\to \\tau\\tau$ and $H^{\\pm}\\to \\tau\

  4. Chiral anomalies in N=1 supersymmetric Yang-Mills theories

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, G.; Grimm, R.; Stora, R. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)

    1985-06-20

    We establish a manifestly supersymmetric, compact, formula for the chiral anomalies of supersymmetric gauge theories. This result is obtained by combining superspace geometry with the usual algebra of anomalies. Except for a Wess-Zumino type term, we obtain an expression which is polynomial in the coefficients of the superconnection form.

  5. What if the Higgsino is the lightest supersymmetric particles

    Energy Technology Data Exchange (ETDEWEB)

    Haber, H.E.

    1985-11-01

    A pedagogical introduction to the mixing of neutral gauginos and Higgsinos in supersymmetric models is given. The possibility that the Higgsino (rather than the photino) is the lightest supersymmetric particle is considered and implications for phenomenology are discussed with some emphasis on signatures of supersymmetry in Z decays. Some related aspects of Higgs boson detection in Z decays are mentioned.

  6. All supersymmetric solutions of minimal supergravity in five dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gauntlett, Jerome P; Gutowski, Jan B; Hull, Christopher M; Pakis, Stathis; Reall, Harvey S [Department of Physics, Queen Mary, University of London, Mile End Rd, London E1 4NS (United Kingdom)

    2003-11-07

    All purely bosonic supersymmetric solutions of minimal supergravity in five dimensions are classified. The solutions preserve either one half or all of the supersymmetry. Explicit examples of new solutions are given, including a large family of plane-fronted waves and a maximally supersymmetric analogue of the Goedel universe which lifts to a solution of 11-dimensional supergravity that preserves 20 supersymmetries.

  7. All supersymmetric solutions of minimal supergravity in five dimensions

    CERN Document Server

    Gauntlett, J P; Hull, C M; Pakis, S; Reall, H S; Gauntlett, Jerome P.; Gutowski, Jan B.; Hull, Christopher M.; Pakis, Stathis; Reall, Harvey S.

    2003-01-01

    All purely bosonic supersymmetric solutions of minimal supergravity in five dimensions are classified. The solutions preserve either one half or all of the supersymmetry. Explicit examples of new solutions are given, including a large family of plane-fronted waves and a maximally supersymmetric analogue of the G\\"odel universe which lifts to a solution of eleven dimensional supergravity that preserves 20 supersymmetries.

  8. Supersymmetric quantum mechanics of the flux tube

    CERN Document Server

    Belitsky, A V

    2016-01-01

    The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl(2|1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their facto...

  9. Supersymmetric quantum mechanics of the flux tube

    Science.gov (United States)

    Belitsky, A. V.

    2016-12-01

    The Operator Product Expansion approach to scattering amplitudes in maximally supersymmetric gauge theory operates in terms of pentagon transitions for excitations propagating on a color flux tube. These obey a set of axioms which allow one to determine them to all orders in 't Hooft coupling and confront against explicit calculations. One of the simplifying features of the formalism is the factorizability of multiparticle transitions in terms of single-particle ones. In this paper we extend an earlier consideration of a sector populated by one kind of excitations to the case of a system with fermionic as well as bosonic degrees of freedom to address the origin of the factorization. While the purely bosonic case was analyzed within an integrable noncompact open-spin chain model, the current case is solved in the framework of a supersymmetric sl (2 | 1) magnet. We find the eigenfunctions for the multiparticle system making use of the R-matrix approach. Constructing resulting pentagon transitions, we prove their factorized form. The discussion corresponds to leading order of perturbation theory.

  10. Resummation predictions for supersymmetric electroweak particles

    Energy Technology Data Exchange (ETDEWEB)

    Fuks, Benjamin [Institut Pluridisciplinaire Hubert Curien/Departement Recherches Subatomiques, Universite de Strasbourg (France); Klasen, Michael; Lamprea, David R.; Rothering, Marcel [Institut fuer Theoretische Physik, Westfaelische Wilhelms-Universitaet Muenster (Germany)

    2013-07-01

    Since the discovery of a particle consistent with the properties of the Standard Model Higgs the experimentalists' effort of ATLAS and CMS at the LHC has been shifted towards the production of electroweak supersymmetric particles. In our work we have updated the resummation results for gauginos and sleptons with next-to-leading logarithmic accuracy matched to next-to-leading order computations for a center of mass energy of 8 TeV. We have used benchmark points for minimal supergravity breaking scenarios which are recently adopted by the experimental collaborations and motivated by the magnetic moment of the muon. Tables of total cross sections including scale and parton distribution function uncertainties are presented together with invariant mass and transverse momentum distributions. As expected, the resummation results reduce the scale dependence and ensure the convergence in the small transverse momentum region. The production of the lightest chargino with the next-to-lightest neutralino leads to the largest cross section of O(10 fb) for masses of a few hundred GeV. Due to the considered mixing in the third generation of sleptons the τ{sub 1} τ{sub 1}{sup *} production cross section can also reach the fb-region for the same benchmark point. The gauginos would give rise to the largest cross section and are probably soon accessible at the LHC being the first detected supersymmetric particles.

  11. Toward precision holography with supersymmetric Wilson loops

    Science.gov (United States)

    Faraggi, Alberto; Pando Zayas, Leopoldo A.; Silva, Guillermo A.; Trancanelli, Diego

    2016-04-01

    We consider certain 1/4 BPS Wilson loop operators in SU( N) N=4 supersymmetric Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in AdS 5 × S 5. The string on-shell action reproduces the large N and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by deriving the spectrum of quantum fluctuations around the classical string solution and by computing the corresponding 1-loop effective action. We discuss in detail the supermultiplet structure of the fluctuations. To remove a possible source of ambiguity in the ghost zero mode measure, we compare the 1/4 BPS configuration with the 1/2 BPS one, dual to a circular Wilson loop. We find a discrepancy between the string theory result and the gauge theory prediction, confirming a previous result in the literature. We are able to track the modes from which this discrepancy originates, as well as the modes that by themselves would give the expected result.

  12. Gravitational Quantum Foam and Supersymmetric Gauge Theories

    CERN Document Server

    Maeda, T; Noma, Y; Tamakoshi, T; Maeda, Takashi; Nakatsu, Toshio; Noma, Yui; Tamakoshi, Takeshi

    2005-01-01

    We study K\\"{a}hler gravity on local SU(N) geometry and describe precise correspondence with certain supersymmetric gauge theories and random plane partitions. The local geometry is discretized, via the geometric quantization, to a foam of an infinite number of gravitational quanta. We count these quanta in a relative manner by measuring a deviation of the local geometry from a singular Calabi-Yau threefold, that is a A_{N-1} singularity fibred over \\mathbb{P}^1. With such a regularization prescription, the number of the gravitational quanta becomes finite and turns to be the perturbative prepotential for five-dimensional \\mathcal{N}=1 supersymmetric SU(N) Yang-Mills. These quanta are labelled by lattice points in a certain convex polyhedron on \\mathbb{R}^3. The polyhedron becomes obtainable from a plane partition which is the ground state of a statistical model of random plane partition that describes the exact partition function for the gauge theory. Each gravitational quantum of the local geometry is shown...

  13. Quantum symmetries in supersymmetric Toda theories

    CERN Document Server

    Penati, S; Penati, Silvia; Zanon, Daniela

    1992-01-01

    : We consider two--dimensional supersymmetric Toda theories based on the Lie superalgebras $A(n,n)$, $D(n+1,n)$ and $B(n,n)$ which admit a fermionic set of simple roots and a fermionic untwisted affine extension. In particular, we concentrate on two simple examples, the $B(1,1)$ and $A(1,1)$ theories. Both in the conformal and massive case we address the issue of quantum integrability by constructing the first non trivial conserved currents and proving their conservation to all--loop orders. While the $D(n+1,n)$ and $B(n,n)$ systems are genuine $N=1$ supersymmetric theories, the $A(n,n)$ models possess a global $N=2$ supersymmetry. In the conformal case, we show that the $A(n,n)$ stress--energy tensor, uniquely determined by the holomorphicity condition, has vanishing central charge and it corresponds to the stress--energy tensor of the associated topological theory. (Invited talk at the International Workshop ``String theory, quantum gravity and the unification of the fundamental interactions'', Roma, Septem...

  14. Comments on supersymmetric solutions of minimal gauged supergravity in five dimensions

    CERN Document Server

    Cassani, Davide; Martelli, Dario

    2015-01-01

    We investigate supersymmetric solutions of minimal gauged supergravity in five dimensions, in the timelike class. We propose an ansatz based on a four-dimensional local orthotoric Kaehler metric and reduce the problem to a single sixth-order equation for two functions, each of one variable. We find an analytic, asymptotically locally AdS solution comprising five parameters. For a conformally flat boundary, this reduces to a previously known solution with three parameters, representing the most general solution of this type known in the minimal theory. We discuss the possible relevance of certain topological solitons contained in the latter to account for the supersymmetric Casimir energy of dual superconformal field theories on S^3 x R. Although we obtain a negative response, our analysis clarifies several aspects of these solutions. In particular, we show that there exists a unique regular topological soliton in this family.

  15. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Teschner, J.; Vartanov, G.S.

    2012-02-15

    We revisit the definition of the 6j-symbols from the modular double of U{sub q}(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories. (orig.)

  16. Phenomenological constraints on the Higgs as pseudo-Goldstone boson mechanism in supersymmetric GUT theories

    CERN Document Server

    Csáki, C; Csaki, Csaba; Randall, Lisa

    1995-01-01

    There are few robust solutions to the doublet-triplet splitting problem in supersymmetric GUT theories. One of the more promising solutions is the Higgs as pseudo-Goldstone boson mechanism. In its minimal implementation, such a solution places an additional restriction on the parameter space of the minimal supersymmetric standard model. A testable consequence of this constraint is an equation for \\tan \\beta. We present this restriction and study its solutions in order to constrain the allowed parameter space. Thus the assumptions on the GUT scale Higgs sector should yield testable predictions for weak scale physics. If the SUSY parameters are measured then it should be possible to check the predictions, yielding insight into GUT scale physics.

  17. 6j symbols for the modular double, quantum hyperbolic geometry, and supersymmetric gauge theories

    CERN Document Server

    Teschner, J

    2012-01-01

    We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for this object. This is used to briefly discuss possible applications to quantum hyperbolic geometry, and to the study of certain supersymmetric gauge theories. We show, in particular, that the b-6j symbol has leading semiclassical asymptotics given by the volume of a non-ideal tetrahedron. We furthermore observe a close relation with the problem to quantize natural Darboux coordinates for moduli spaces of flat connections on Riemann surfaces related to the Fenchel-Nielsen coordinates. Our new integral representations finally indicate a possible interpretation of the b-6j symbols as partition functions of three-dimensional N=2 supersymmetric gauge theories.

  18. Perturbative stability along the supersymmetric directions of the landscape

    Energy Technology Data Exchange (ETDEWEB)

    Sousa, Kepa [Department of Theoretical Physics and History of Science, University of the Basque Country UPV/EHU, 48080 Bilbao (Spain); Ortiz, Pablo, E-mail: kepa.sousa@ehu.es, E-mail: ortiz@lorentz.leidenuniv.nl [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands)

    2015-02-01

    We consider the perturbative stability of non-supersymmetric configurations in N=1 supergravity models with a spectator sector not involved in supersymmetry breaking. Motivated by the supergravity description of complex structure moduli in Large Volume Compactifications of type IIB-superstrings, we concentrate on models where the interactions are consistent with the supersymmetric truncation of the spectator fields, and we describe their couplings by a random ensemble of generic supergravity theories. We characterise the mass spectrum of the spectator fields in terms of the statistical parameters of the ensemble and the geometry of the scalar manifold. Our results show that the non-generic couplings between the spectator and the supersymmetry breaking sectors can stabilise all the tachyons which typically appear in the spectator sector before including the supersymmetry breaking effects, and we find large regions of the parameter space where the supersymmetric sector remains stable with probability close to one. We discuss these results about the stability of the supersymmetric sector in two physically relevant situations: non-supersymmetric Minkowski vacua, and slow-roll inflation driven by the supersymmetry breaking sector. For the class of models we consider, we have reproduced the regimes in which the KKLT and Large Volume Scenarios stabilise all supersymmetric moduli. We have also identified a new regime in which the supersymmetric sector is stabilised at a very robust type of dS minimum without invoking a large mass hierarchy.

  19. Higher Derivative Corrections To Extended Supersymmetric Theories

    CERN Document Server

    Braun, G A

    2004-01-01

    We investigate higher-derivative terms in N = 2 supersymmetric effective actions. We systematically construct such terms in harmonic superspace despite the infinite redundancy in their description due to the infinite number of auxiliary fields. We write all 3- and 4-derivative terms on Higgs, Coulomb, and mixed branches, modulo the existence of superspace Chern-Simons-like terms. Among these terms are several with only holomorphic dependence on fields, and at least one satisfies a non-renormalization theorem. We then search for superspace Chern-Simons-like terms, which are those gauge-invariant terms which cannot be written solely in terms of field strength superfields and covariant derivatives, but in which gauge potential superfield appears explicitly. We find a class of four- derivative terms with N = 2 supersymmetry which, though locally on the Coulomb branch can be written solely in terms of field strengths, globally on the Coulomb branch are superspace Chern- Simons-like.

  20. Supersymmetric inversion of effective-range expansions

    CERN Document Server

    Midya, Bikashkali; Abramowicz, Sylvain; Suárez, O L Ramírez; Sparenberg, Jean-Marc

    2015-01-01

    A complete and consistent inversion technique is proposed to derive an accurate interaction potential from an effective-range function for a given partial wave in the neutral case. First, the effective-range function is Taylor or Pad\\'e expanded, which allows high precision fitting of the experimental scattering phase shifts with a minimal number of parameters on a large energy range. Second, the corresponding poles of the scattering matrix are extracted in the complex wave-number plane. Third, the interaction potential is constructed with supersymmetric transformations of the radial Schr\\"odinger equation. As an illustration, the method is applied to the experimental phase shifts of the neutron-proton elastic scattering in the $^1S_0$ and $^1D_2$ channels on the $[0-350]$ MeV laboratory energy interval.

  1. Towards a Non-Supersymmetric String Phenomenology

    CERN Document Server

    Abel, Steven; Mavroudi, Eirini

    2015-01-01

    Over the past three decades, considerable effort has been devoted to studying the rich and diverse phenomenologies of heterotic strings exhibiting spacetime supersymmetry. Unfortunately, during this same period, there has been relatively little work studying the phenomenologies associated with their non-supersymmetric counterparts. The primary reason for this relative lack of attention is the fact that strings without spacetime supersymmetry are generally unstable, exhibiting large one-loop dilaton tadpoles. In this paper, we demonstrate that this hurdle can be overcome in a class of tachyon-free four-dimensional string models realized through coordinate-dependent compactifications. Moreover, as we shall see, it is possible to construct models in this class whose low-lying states resemble the Standard Model (or even potential unified extensions thereof) --- all without any light superpartners, and indeed without supersymmetry at any energy scale. The existence of such models thus opens the door to general stu...

  2. Simple supersymmetric strongly coupled preon model

    Science.gov (United States)

    Fajfer, S.; Tadić, D.

    1988-08-01

    This supersymmetric-SU(5) composite model is a natural generalization of the usual strong-coupling models. Preon superfields are in representations 5* and 10. The product representations 5*×10, 5×10, 5×5, and 5*×5 contain only those strongly hypercolor bound states which are needed in the standard electroweak theory. There are no superfluous quarklike states. The neutrino is massless. Only one strongly hypercolor bound singlet (10×10*) can exist as a free particle. At higher energies one should expect to see a plethora of new particles. Grand unification happens at the scale M~1014 GeV. Cabibbo mixing can be incorporated by using a transposed Kobayashi-Maskawa mixing matrix.

  3. Supersymmetric Scenarios with Dominant Radiative Neutralino Decay

    CERN Document Server

    Ambrosanio, S; Ambrosanio, Sandro; Mele, Barbara

    1997-01-01

    The radiative decay of the next-to-lightest neutralino into a lightest neutralino and a photon is analyzed in the MSSM. We find that significant regions of the supersymmetric parameter space with large radiative BR's (up to about 100%) do exist. The radiative channel turns out to be enhanced when the neutralino tree-level decays are suppressed either `kinematically' or `dynamically'. In general, in the regions allowed by LEP data and not characterized by asymptotic values of the SuSy parameters, the radiative enhancement requires tan beta ~= 1 and/or M_1 ~= M_2, and negative values of relaxing the usual relation M_1=(5/3)*tan^2(th_W)*M_2, i.e. gaugino mass unification at the GUT scale. The influence of varying the stop masses and mixing angle when the radiative decay is enhanced is also considered. Some phenomenological consequences of the above picture are discussed.

  4. Supersymmetric quantum mechanics and Painleve equations

    CERN Document Server

    Bermudez, David

    2013-01-01

    In these lecture notes we shall study first the supersymmetric quantum mechanics (SUSY QM), specially when applied to the harmonic and radial oscillators. In addition, we will define the polynomial Heisenberg algebras (PHA), and we will study the general systems ruled by them: for zero and first order we obtain the harmonic and radial oscillators, respectively; for second and third order PHA the potential is determined by solutions to Painleve IV (PIV) and Painleve V (PV) equations. Taking advantage of this connection, later on we will find solutions to PIV and PV equations expressed in terms of confluent hypergeometric functions. Furthermore, we will classify them into several solution hierarchies, according to the specific special functions they are connected with.

  5. Supersymmetric partition functions on Riemann surfaces

    CERN Document Server

    Benini, Francesco

    2016-01-01

    We present a compact formula for the supersymmetric partition function of 2d N=(2,2), 3d N=2 and 4d N=1 gauge theories on $\\Sigma_g \\times T^n$ with partial topological twist on $\\Sigma_g$, where $\\Sigma_g$ is a Riemann surface of arbitrary genus and $T^n$ is a torus with n=0,1,2, respectively. In 2d we also include certain local operator insertions, and in 3d we include Wilson line operator insertions along $S^1$. For genus g=1, the formula computes the Witten index. We present a few simple Abelian and non-Abelian examples, including new tests of non-perturbative dualities. We also show that the large N partition function of ABJM theory on $\\Sigma_g \\times S^1$ reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS4 whose horizon has $\\Sigma_g$ topology.

  6. Area law violations in a supersymmetric model

    Science.gov (United States)

    Huijse, Liza; Swingle, Brian

    2013-01-01

    We study the structure of entanglement in a supersymmetric lattice model of fermions on certain types of decorated graphs with quenched disorder. In particular, we construct models with controllable ground-state degeneracy protected by supersymmetry and the choice of Hilbert space. We show that in certain special limits, these degenerate ground states are associated with local impurities and that there exists a basis of the ground-state manifold in which every basis element satisfies a boundary law for entanglement entropy. On the other hand, by considering incoherent mixtures or coherent superpositions of these localized ground states, we can find regions that violate the boundary law for entanglement entropy over a wide range of length scales. More generally, we discuss various criteria for constructing violations of the boundary law for entanglement entropy and discuss possible relations of our work to recent holographic studies.

  7. SU(2|2) supersymmetric mechanics

    CERN Document Server

    Ivanov, Evgeny; Sidorov, Stepan

    2016-01-01

    We introduce a new kind of non-relativistic ${\\cal N}{=}\\,8$ supersymmetric mechanics, associated with worldline realizations of the supergroup $SU(2|2)$ treated as a deformation of flat ${\\cal N}{=}\\,8$, $d{=}1$ supersymmetry. Various worldline $SU(2|2)$ superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell $SU(2|2)$ multiplets $({\\bf 3,8,5})$, $({\\bf 4,8,4})$ and $({\\bf 5,8,3})$, we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group $OSp(4^*|4)$ in the conformal cases. For the simplest $({\\bf 5, 8, 3})$ model the quantization is performed.

  8. Supersymmetric Wilson loops at two loops

    CERN Document Server

    Bassetto, Antonio; Pucci, Fabrizio; Seminara, Domenico

    2008-01-01

    We study the quantum properties of certain BPS Wilson loops in ${\\cal N}=4$ supersymmetric Yang-Mills theory. They belong to a general family, introduced recently, in which the addition of particular scalar couplings endows generic loops on $S^3$ with a fraction of supersymmetry. When restricted to $S^2$, their quantum average has been further conjectured to be exactly computed by the matrix model governing the zero-instanton sector of YM$_2$ on the sphere. We perform a complete two-loop analysis on a class of cusped Wilson loops lying on a two-dimensional sphere, finding perfect agreement with the conjecture. The perturbative computation reproduces the matrix-model expectation through a highly non-trivial interplay between ladder diagrams and self-energies/vertex contributions, suggesting the existence of a localization procedure.

  9. Dynamics of Non-supersymmetric Flavours

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab; Kundu, Sandipan

    2013-01-01

    We continue investigating the effect of the back-reaction by non-supersymmetric probes in the Kuperstein-Sonnenschein model. In the limit when the back-reaction is small, we discuss physical properties of the back-reacted geometry. We further introduce additional probe flavours in this back-reacted geometry and study in detail the phase structure of this sector when a constant electromagnetic field or a chemical potential are present. We find that the Landau pole, which serves as the UV cut-off of the background geometry, also serves as an important scale in the corresponding thermodynamics of the additional flavour sector. We note that since this additional probe flavours are indistinguishable from the back-reacting flavours, the results we obtain point to a much richer phase structure of the system.

  10. Supersymmetric backgrounds and generalised special holonomy

    Science.gov (United States)

    Coimbra, André; Strickland-Constable, Charles; Waldram, Daniel

    2016-06-01

    We define intrinsic torsion in generalised geometry and use it to introduce a new notion of generalised special holonomy. We then consider generic warped supersymmetric flux compactifications of M theory and Type II of the form {{{R}}}D-{1,1}× M. Using the language of {E}d(d)× {{{R}}}+ generalised geometry, we show that, for D≥slant 4, preserving minimal supersymmetry is equivalent to the manifold M having generalised special holonomy and list the relevant holonomy groups. We conjecture that this result extends to backgrounds preserving any number of supersymmetries. As a prime example, we consider { N }=1 in D = 4. The corresponding generalised special holonomy group is {SU}(7), giving the natural M theory extension to the notion of a G 2 manifold, and, for Type II backgrounds, reformulating the pure spinor {SU}(3)× {SU}(3) conditions as an integrable structure.

  11. Supersymmetric Backgrounds and Generalised Special Holonomy

    CERN Document Server

    Coimbra, André; Waldram, Daniel

    2014-01-01

    We define intrinsic torsion in generalised geometry and use it to introduce a new notion of generalised special holonomy. We then consider generic warped supersymmetric flux compactifications of M theory and Type II of the form $\\mathbb{R}^{D-1,1}\\times M$. Using the language of $E_{d(d)}\\times\\mathbb{R}^+$ generalised geometry, we show that, for $D\\geq 4$, preserving minimal supersymmetry is equivalent to the manifold $M$ having generalised special holonomy and list the relevant holonomy groups. We conjecture that this result extends to backgrounds preserving any number of supersymmetries. As a prime example, we consider $\\mathcal{N}=1$ in $D=4$. The corresponding generalised special holonomy group is $SU(7)$, giving the natural M theory extension to the notion of a $G_2$ manifold, and, for Type II backgrounds, reformulating the pure spinor $SU(3)\\times SU(3)$ conditions as an integrable structure.

  12. Gauge Unification from Split Supersymmetric String Models

    CERN Document Server

    Kokorelis, Christos

    2016-01-01

    We discuss the unification of gauge coupling constants in non-supersymmetric open string vacua that possess the properties of Split Supersymmetry, namely the Standard Model with Higgsinos at low energies and where the Standard model spectrum is always accompanied by right handed neutrinos. These vacua achieve partial unification of two out of three (namely SU(3)$_c$, SU(2), U(1)) running gauge couplings, possess massive gauginos and light Higgsinos at low energies and also satisfy $sin^2\\theta_w (M_s) = 3/8$. These vacua are based on four dimensional orbifold $Z_3 \\times Z_3$ compactifications of string IIA orientifolds with D6-branes intersecting at angles, where the (four dimensional) chiral fermions of the Standard Model appear as opens strings streching between the intersections of seven dimensional objects the so called D6-branes.

  13. Effective Action of Softly Broken Supersymmetric Theories

    CERN Document Server

    Nibbelink, S G; Nibbelink, Stefan Groot; Nyawelo, Tino S.

    2007-01-01

    We study the renormalization of (softly) broken supersymmetric theories at the one loop level in detail. We perform this analysis in a superspace approach in which the supersymmetry breaking interactions are parameterized using spurion insertions. We comment on the uniqueness of this parameterization. We compute the one loop renormalization of such theories by calculating superspace vacuum graphs with multiple spurion insertions. To preform this computation efficiently we develop algebraic properties of spurion operators, that naturally arise because the spurions are often surrounded by superspace projection operators. Our results are general apart from the restrictions that higher super covariant derivative terms and some finite effects due to non-commutativity of superfield dependent mass matrices are ignored. One of the soft potentials induces renormalization of the Kaehler potential.

  14. Phases of supersymmetric O(N) theories

    CERN Document Server

    Heilmann, Marianne; Synatschke-Czerwonka, Franziska; Wipf, Andreas

    2012-01-01

    We perform a global renormalization group study of O(N) symmetric Wess-Zumino theories and their phases in three euclidean dimensions. At infinite N the theory is solved exactly. The phases and phase transitions are worked out for finite and infinite short-distance cutoffs. A distinctive new feature arises at strong coupling, where the effective superfield potential becomes multi-valued, signalled by divergences in the fermion-boson interaction. Our findings resolve the long-standing puzzle about the occurrence of degenerate O(N) symmetric phases. At finite N, we find a strongly-coupled fixed point in the local potential approximation and explain its impact on the phase transition. We also examine the possibility for a supersymmetric Bardeen-Moshe-Bander phenomenon, and relate our findings with the spontaneous breaking of supersymmetry in other models.

  15. SU(2|2) supersymmetric mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, Evgeny [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation); Lechtenfeld, Olaf [Institut für Theoretische Physik and Riemann Center for Geometry and Physics,Leibniz Universität Hannover,Appelstraße 2, 30167 Hannover (Germany); Sidorov, Stepan [Joint Institute for Nuclear Research,Dubna, Moscow Region, 141980 (Russian Federation)

    2016-11-07

    We introduce a new kind of non-relativistic N= 8 supersymmetric mechanics, associated with worldline realizations of the supergroup SU(2|2) treated as a deformation of flat N= 8, d=1 supersymmetry. Various worldline SU(2|2) superspaces are constructed as coset manifolds of this supergroup, and the corresponding superfield techniques are developed. For the off-shell SU(2|2) multiplets (3,8,5), (4,8,4) and (5,8,3), we construct and analyze the most general superfield and component actions. Common features are mass oscillator-type terms proportional to the deformation parameter and a trigonometric realization of the superconformal group OSp(4{sup ∗}|4) in the conformal cases. For the simplest (5,8,3) model the quantization is performed.

  16. The Supersymmetric Effective Field Theory of Inflation

    CERN Document Server

    Delacretaz, Luca V; Senatore, Leonardo

    2016-01-01

    We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable St\\"uckelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplif...

  17. Supersymmetric dark matter above the W mass

    Science.gov (United States)

    Griest, Kim; Kamionkowski, Marc; Turner, Michael S.

    1989-01-01

    The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.

  18. The transformations between N = 2 supersymmetric Korteweg-de Vries and Harry Dym equations

    Science.gov (United States)

    Tian, Kai; Liu, Q. P.

    2012-05-01

    The N = 2 supercomformal transformations are employed to study supersymmetric integrable systems. It is proved that two known N = 2 supersymmetric Harry Dym equations are transformed into two N = 2 supersymmetric modified Korteweg-de Vries equations, thus are connected with two N = 2 supersymmetric Korteweg-de Vries equations.

  19. Supersymmetric P(X,phi) and the Ghost Condensate

    CERN Document Server

    Khoury, Justin; Ovrut, Burt

    2010-01-01

    We show how to construct supersymmetric actions for higher-derivative scalar field theories of the form P(X,phi), within the context of d=4, N=1 supersymmetry. This construction is of general use, and is applied to write a supersymmetric version of the Dirac-Born-Infeld action. Our principal application of this formalism is to construct the supersymmetric extension of the ghost condensate. This allows us to study the interplay between supersymmetry, time-dependent backgrounds and violations of the null energy condition.

  20. The geometry of supersymmetric coset models and superconformal algebras

    CERN Document Server

    Papadopoulos, G

    1993-01-01

    An on-shell formulation of (p,q), 2\\leq p \\leq 4, 0\\leq q\\leq 4, supersymmetric coset models with target space the group G and gauge group a subgroup H of G is given. It is shown that there is a correspondence between the number of supersymmetries of a coset model and the geometry of the coset space G/H. The algebras of currents of supersymmetric coset models are superconformal algebras. In particular, the algebras of currents of (2,2) and (4,0) supersymmetric coset models are related to the N=2 Kazama-Suzuki and N=4 Van Proeyen superconformal algebras correspondingly.

  1. The supersymmetric parametric oscillators originating from a constant shift of the harmonic oscillator Riccati solution

    CERN Document Server

    Rosu, H C

    2010-01-01

    Previous research made us consider a simple but curious problem related to the kind of oscillators that are produced in the usual supersymmetric scheme when one introduces a constant shift of the Riccati solution R(t)=-omega _0 tan(omega _0t) of the classical harmonic oscillator. The corresponding mathematical scheme is presented in detail showing that at least some of these oscillators could be of physical nature. We give the solutions of the resulting second-order differential equations obtaining the values of the shift parameter providing strictly periodic and antiperiodic solutions. We also notice that this simple problem presents parity-time (PT) symmetry

  2. Supersymmetric Descendants of Self-Adjointly Extended Quantum Mechanical Hamiltonians

    CERN Document Server

    Al-Hashimi, M H; Shalaby, A; Wiese, U -J

    2013-01-01

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant.

  3. Aspects of a supersymmetric Brans-Dicke theory

    Energy Technology Data Exchange (ETDEWEB)

    Catena, R.

    2006-11-15

    We consider a locally supersymmetric theory where the Planck mass is replaced by a dynamical superfield. This model can be thought of as the Minimal Supersymmetric extension of the Brans-Dicke theory (MSBD). The motivation that underlies this analysis is the research of possible connections between Dark Energy models based on Brans-Dicke-like theories and supersymmetric Dark Matter scenarios. We find that the phenomenology associated with the MSBD model is very different compared to the one of the original Brans-Dicke theory: the new scalar and fermionic degrees of freedom do not couple to matter in a universal metric way, i.e. they can not be removed from the matter sector by a Weyl rescaling of the metric. This feature could make the minimal supersymmetric extension of the BD idea phenomenologically inconsistent. (orig.)

  4. LHC phenomenology of supersymmetric models beyond the MSSM

    CERN Document Server

    Porod, Werner

    2010-01-01

    We discuss various phenomenological aspects of supersymmetric models beyond the MSSM. A particular focus is on models which can correctly explain neutrino data and the possiblities of LHC to identify the underlying scenario.

  5. N=2 supersymmetric extension of l-conformal Galilei algebra

    Energy Technology Data Exchange (ETDEWEB)

    Masterov, Ivan [Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation)

    2012-07-15

    N=2 supersymmetric extension of the l-conformal Galilei algebra is constructed. A relation between its representations in flat spacetime and in Newton-Hooke spacetime is discussed. An infinite-dimensional generalization of the superalgebra is given.

  6. A supersymmetric composite model of quarks and leptons

    Science.gov (United States)

    Luty, Markus A.; Mohapatra, Rabindra N.

    1997-02-01

    We present a class of supersymmetric models with complete generations of composite quarks and leptons using recent non-perturbative results for the low energy dynamics of supersymmetric QCD. In these models, the quarks arise as composite ``mesons'' and the leptons emerge as composite ``baryons''. The quark and lepton flavor symmetries are linked at the preon level. Baryon number violation is automatically suppressed by accidental symmetries. We give some speculations on how this model might be made realistic.

  7. Reduction of couplings and finiteness in realistic supersymmetric GUTs

    Energy Technology Data Exchange (ETDEWEB)

    Kubo, J. [Kanazawa Univ. (Japan). Dept. of Physics; Mondragon, M. [Instituto de Fisica, UNAM, Apdo. Postal 20-364, Mexico 01000 D.F. (Mexico); Zoupanos, G. [Physics Dept., Nat. Technical University, 157 80 Zografou, Athens (Greece)

    1997-07-01

    Reduction of couplings in supersymmetric GUTs is achieved by searching for renormalization group invariant (RGI) relations among couplings which hold beyond the unification scale. Finiteness is due to the fact that there exist RGI relations among couplings that guarantee the vanishing of the {beta}-functions of a N = 1 supersymmetric GUT even to all orders in perturbation theory. Of particular interest are the relations among gauge and Yukawa couplings which lead to very interesting predictions of the top quark mass. (orig.).

  8. Neutralino annihilation into massive quarks with supersymmetric QCD corrections

    Science.gov (United States)

    Herrmann, Björn; Klasen, Michael; Kovařík, Karol

    2009-03-01

    We compute the full O(αs) supersymmetric (SUSY)-QCD corrections for neutralino annihilation into massive quarks through gauge or Higgs bosons and squarks in the minimal supersymmetric standard model, including the known resummation of logarithmically enhanced terms. The numerical impact of the corrections on the extraction of SUSY mass parameters from cosmological data is analyzed for gravity-mediated SUSY-breaking scenarios and shown to be sizable, so that these corrections must be included in common analysis tools.

  9. Non-supersymmetric AdS and the Swampland

    CERN Document Server

    Ooguri, Hirosi

    2016-01-01

    We propose to sharpen the weak gravity conjecture by the statement that, except for BPS states in a supersymmetric theory, the gravitational force is strictly weaker than any electric force and provide a number of evidences for this statement. Our conjecture implies that any non-supersymmetric anti-de Sitter vacuum supported by fluxes must be unstable, as is the case for all known attempts at such holographic constructions.

  10. Second Hopf map and supersymmetric mechanics with Yang monopole

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales, M.; Toppan, F. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z. [Universidade Federal do ABC, Santo Andre, SP (Brazil); Nersessian, F. [Artsakh State University, Stepanakert (Armenia); Yeghikyan, V. [Yerevan State University (Armenia)

    2009-07-01

    We propose to use the second Hopf map for the reduction (via SU(2) group action) of the eight-dimensional supersymmetric mechanics to five-dimensional supersymmetric systems specified by the presence of an SU(2) Yang monopole. For our purpose we develop the relevant Lagrangian reduction procedure. The reduced system is characterized by its invariance under the N = 5 or N = 4 supersymmetry generators (with or without an additional conserved BRST charge operator) which commute with the su(2) generators. (author)

  11. Supersymmetric Q-Lumps in the Grassmannian nonlinear sigma models

    CERN Document Server

    Bak, D; Lee, J; Oh, P; Bak, Dongsu; Hahn, Sang-Ok; Lee, Joohan; Oh, Phillial

    2007-01-01

    We construct the N=2 supersymmetric Grassmannian nonlinear sigma model for the massless case and extend it to massive N=2 model by adding an appropriate superpotential. We then study their BPS equations leading to supersymmetric Q-lumps carrying both topological and Noether charges. These solutions are shown to be always time dependent even sometimes involving multiple frequencies. Thus we illustrate explicitly that the time dependence is consistent with remaining supersymmetries of solitons.

  12. Is It Possible To Embed A 4D, N = 4 Supersymmetric Vector Multiplet Within A Completely Off-Shell Adinkra Hologram?

    CERN Document Server

    Calkins, M; Gates,, S J; McPeak, B

    2014-01-01

    We present evidence of the existence of a 1D, N = 16 SUSY hologram that can be used to understand representation theory aspects of a 4D, N = 4 supersymmetrical vector multiplet. In this context, the long-standing off-shell "SUSY problem" for the 4D, N = 4 Maxwell supermultiplet is precisely formulated as a problem in linear algebra.

  13. Is it possible to embed a 4D, N=4 supersymmetric vector multiplet within a completely off-shell adinkra hologram?

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, Mathew; Gates, D.E.A.; Gates, Sylvester James Jr.; McPeak, Brian [Center for String and Particle Theory, Department of Physics, University of Maryland,College Park, MD 20742-4111 (United States)

    2014-05-13

    We present evidence of the existence of a 1D, N = 16 SUSY hologram that can be used to understand representation theory aspects of a 4D, N = 4 supersymmetrical vector multiplet. In this context, the long-standing “off-shell SUSY” problem for the 4D, N = 4 Maxwell supermultiplet is precisely formulated as a problem in linear algebra.

  14. Supersymmetric M5 brane theories on R × CP2

    Science.gov (United States)

    Kim, Hee-Cheol; Lee, Kimyeong

    2013-07-01

    We propose 4 and 12 supersymmetric conformal Yang-Mills-Chern-Simons theories on R × CP2 as multiple representations of the theory on M5 branes. These theories are obtained by twisted Zk modding and dimensional reduction of the 6d (2,0) superconformal field theory on R × S5 and have a discrete coupling constant 1/{g_{{YM}^2}}=k/{4{π^2}} with natural number k. Instantons in these theories are expected to represent the Kaluza-Klein modes. For the k = 1 , 2 cases, we argue that the number of supersymmetries in our theories should be enhanced to 32 and 16, respectively. For the k = 3 case, only the 4 supersymmetric theory gets the supersymmetric enhancement to 8. For the 4 supersymmetric case, the vacuum structure becomes more complicated as there are degenerate supersymmetric vacua characterized by fuzzy spheres. We calculate the perturbative part of the SU( N ) gauge group Euclidean path integral for the index function at the symmetric phase of the 4 supersymmetric case and confirm it with the known half-BPS index. From the similar twisted Z k modding of the AdS7 × S4 geometry, we speculate that the M region is for k ≲ N 1/3 and the type IIA region is N 1/3 ≲ k ≲ N. When nonperturbative corrections are included, our theories are expected to produce the full index of the 6d (2,0) theory.

  15. Dark matter candidates in the constrained Exceptional Supersymmetric Standard Model

    CERN Document Server

    Athron, P; Underwood, S J; White, M J

    2016-01-01

    The Exceptional Supersymmetric Standard Model (E$_6$SSM) is a low energy alternative to the MSSM with an extra $U(1)$ gauge symmetry and three generations of matter filling complete 27-plet representations of $E_6$. This provides both new D and F term contributions that raise the Higgs mass at tree level, and a compelling solution to the $\\mu$-problem of the MSSM by forbidding such a term with the extra $U(1)$ symmetry. Instead, an effective $\\mu$-term is generated from the VEV of an SM singlet which breaks the extra $U(1)$ symmetry at low energies, giving rise to a massive $Z^\\prime$. We explore the phenomenology of the constrained version of this model (cE$_6$SSM) in substantially more detail than has been carried out previously, performing a ten dimensional scan that reveals a large volume of viable parameter space. We classify the different mechanisms for generating the measured relic density of dark matter found in the scan, including the identification of a new mechanism involving mixed bino/inert-Higgs...

  16. Domain Walls in Supersymmetric Yang-Mills Theories

    CERN Document Server

    Kaplunovsky, V S; Yankielowicz, Shimon; Kaplunovsky, Vadim S.; Sonnenschein, Jacob; Yankielowicz, Shimon

    1999-01-01

    We study BPS saturated domain walls in the supersymmetric SU(2) gauge theory. For a theory with a very light adjoint scalar (mass <~ Lambda/400) we use the perturbed N=2 Seiberg-Witten theory to calculate the actual field configuration of the domain wall. The wall has a sandwich-like five-layer structure of three distinct phases -- electric confinement, Coulomb and oblique confinement -- separated by two separate transition regions. For larger scalar masses, the three-phase structure disappears and the Seiberg-Witten theory becomes inadequate because of two major problems: First, the higher-derivative interactions between the light fields become relevant and second, both the magnetic monopole condensate and the dyon condensate show up in the same region of space, a phenomenon indescribable in terms of a local field theory. Nevertheless, we argue that the BPS saturated domain wall continues to exist in this regime and give a qualitative description of the scalar and gaugino condensates. Finally, we discuss ...

  17. Supersymmetric quantum mechanics approach to a nonlinear lattice

    Energy Technology Data Exchange (ETDEWEB)

    Ricotta, Regina Maria [Faculdade de Tecnologia de Sao Paulo (FATEC), SP (Brazil); Drigo Filho, Elso [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), SP (Brazil)

    2011-07-01

    Full text: DNA is one of the most important macromolecules of all biological system. New discoveries about it have open a vast new field of research, the physics of nonlinear DNA. A particular feature that has attracted a lot of attention is the thermal denaturation, i.e., the spontaneous separation of the two strands upon heating. In 1989 a simple lattice model for the denaturation of the DNA was proposed, the Peyrard-Bishop model, PB. The bio molecule is described by two chains of particles coupled by nonlinear springs, simulating the hydrogen bonds that connect the two basis in a pair. The potential for the hydrogen bonds is usually approximated by a Morse potential. The Hamiltonian system generates a partition function which allows the evaluation of the thermodynamical quantities such as mean strength of the basis pairs. As a byproduct the Hamiltonian system was shown to be a NLSE (nonlinear Schroedinger equation) having soliton solutions. On the other hand, a reflectionless potential with one bound state, constructed using supersymmetric quantum mechanics, SQM, can be shown to be identical to a soliton solution of the KdV equation. Thus, motivated by this Hamiltonian problem and inspired by the PB model, we consider the Hamiltonian of a reflectionless potential through SQM, in order to evaluate thermodynamical quantities of a unidimensional lattice with possible biological applications. (author)

  18. Formulation of Free Higher Spin Supersymmetric Theories in Superspace

    CERN Document Server

    Phillips, J

    2005-01-01

    The N = 1 superfield formalism in four-dimensions is well formulated and understood, yet there remain unsolved problems. In this thesis, superfield actions for free massless and massive higher spin superfield theories are formulated in four dimensions. The discussion of massless models is restricted to half integer superhelicity. These models describe multiplets with helicities (s, s-1/2) where s is an integer. The investigation of massive models covers recent work on superspin-3/2 and superspin-1 multiplets. Superspin-3/2 multiplets contain component fields with spins (2, 3/2, 3/2, 1) and superspin-1 multiplets contain component fields with spins (3/2, 1, 1, 1/2). The super projector method is used to distinguish supersymmetric subspaces. Here, this method is used to write general superspace actions. The underlying geometrical structure of superspace actions is elucidated when they are written in terms of super projectors. This thesis also discusses the connection between four-dimensional massive theories an...

  19. Supersymmetric Dark Matter after LHC Run 1

    CERN Document Server

    Bagnaschi, E A; Cavanaugh, R; Citron, M; De Roeck, A; Dolan, M J; Ellis, J R; Flaecher, H; Heinemeyer, S; Isidori, G; Malik, S; Santos, D Martinez; Olive, K A; Sakurai, K; de Vries, K J; Weiglein, G

    2015-01-01

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, neutralino_1, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau (stau_1), stop (stop_1) or chargino (chargino_1), resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the stau_1 coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be exp...

  20. The goldstone and goldstino of supersymmetric inflation

    Energy Technology Data Exchange (ETDEWEB)

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,77 Massachusetts Ave, Cambridge, MA 02139 (United States)

    2015-10-01

    We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X{sub NL} containing the goldstino and satisfying X{sub NL}{sup 2}=0, and a real superfield B{sub NL} containing both the goldstino and the goldstone, satisfying X{sub NL}B{sub NL}=B{sub NL}{sup 3}=0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

  1. The goldstone and goldstino of supersymmetric inflation

    Science.gov (United States)

    Kahn, Yonatan; Roberts, Daniel A.; Thaler, Jesse

    2015-10-01

    We construct the minimal effective field theory (EFT) of supersymmetric inflation, whose field content is a real scalar, the goldstone for time-translation breaking, and a Weyl fermion, the goldstino for supersymmetry (SUSY) breaking. The inflating background can be viewed as a single SUSY-breaking sector, and the degrees of freedom can be efficiently parameterized using constrained superfields. Our EFT is comprised of a chiral superfield X NL containing the goldstino and satisfying X NL 2 = 0, and a real superfield B NL containing both the goldstino and the goldstone, satisfying X NL B NL = B NL 3 = 0. We match results from our EFT formalism to existing results for SUSY broken by a fluid background, showing that the goldstino propagates with subluminal velocities. The same effect can also be derived from the unitary gauge gravitino action after embedding our EFT in supergravity. If the gravitino mass is comparable to the Hubble scale during inflation, we identify a new parameter in the EFT related to a time-dependent phase of the gravitino mass parameter. We briefly comment on the leading contributions of goldstino loops to inflationary observables.

  2. Likelihood Analysis of Supersymmetric SU(5) GUTs

    CERN Document Server

    Bagnaschi, E.

    2017-01-01

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...

  3. Introduction to Supersymmetric Theory of Stochastics

    Directory of Open Access Journals (Sweden)

    Igor V. Ovchinnikov

    2016-03-01

    Full Text Available Many natural and engineered dynamical systems, including all living objects, exhibit signatures of what can be called spontaneous dynamical long-range order (DLRO. This order’s omnipresence has long been recognized by the scientific community, as evidenced by a myriad of related concepts, theoretical and phenomenological frameworks, and experimental phenomena such as turbulence, 1/f noise, dynamical complexity, chaos and the butterfly effect, the Richter scale for earthquakes and the scale-free statistics of other sudden processes, self-organization and pattern formation, self-organized criticality, etc. Although several successful approaches to various realizations of DLRO have been established, the universal theoretical understanding of this phenomenon remained elusive. The possibility of constructing a unified theory of DLRO has emerged recently within the approximation-free supersymmetric theory of stochastics (STS. There, DLRO is the spontaneous breakdown of the topological or de Rahm supersymmetry that all stochastic differential equations (SDEs possess. This theory may be interesting to researchers with very different backgrounds because the ubiquitous DLRO is a truly interdisciplinary entity. The STS is also an interdisciplinary construction. This theory is based on dynamical systems theory, cohomological field theories, the theory of pseudo-Hermitian operators, and the conventional theory of SDEs. Reviewing the literature on all these mathematical disciplines can be time consuming. As such, a concise and self-contained introduction to the STS, the goal of this paper, may be useful.

  4. Supersymmetric Perturbations of the M5 brane

    CERN Document Server

    Niarchos, Vasilis

    2014-01-01

    We study long-wavelength supersymmetric deformations of brane solutions in supergravity using an extension of previous ideas within the general scheme of the blackfold approach. As a concrete example, we consider long-wavelength perturbations of the planar M2-M5 bound state solution in eleven-dimensional supergravity. We propose a specific ansatz for the first order deformation of the supergravity fields and explore how this deformation perturbs the Killing spinor equations. We find that a special part of these equations gives a projection equation on the Killing spinors that has the same structure as the $\\kappa$-symmetry condition of the abelian M5 brane theory. Requiring a match between supergravity and gauge theory implies a specific non-linear gauge-gravity map between the bosonic fields of the abelian M5 brane theory and the gravity-induced fluid-like degrees of freedom of the blackfold equations that control the perturbative gravity solution. This observation sheds new light on the SUGRA/DBI correspond...

  5. Likelihood Analysis of Supersymmetric SU(5) GUTs

    CERN Document Server

    Bagnaschi, E.; Sakurai, K.; Borsato, M.; Buchmueller, O.; Cavanaugh, R.; Chobanova, V.; Citron, M.; De Roeck, A.; Dolan, M.J.; Ellis, J.R.; Flächer, H.; Heinemeyer, S.; Isidori, G.; Lucio, M.; Martínez Santos, D.; Olive, K.A.; Richards, A.; de Vries, K.J.; Weiglein, G.

    2016-01-01

    We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass $m_{1/2}$, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), $m_5$ and $m_{10}$, and for the $\\mathbf{5}$ and $\\mathbf{\\bar 5}$ Higgs representations $m_{H_u}$ and $m_{H_d}$, a universal trilinear soft SUSY-breaking parameter $A_0$, and the ratio of Higgs vevs $\\tan \\beta$. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + MET events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringi...

  6. Particle Physics And Cosmology In Supersymmetric Models

    CERN Document Server

    Morrissey, D E

    2005-01-01

    The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model para...

  7. Precision Holography with Supersymmetric Wilson Loops

    CERN Document Server

    Faraggi, Alberto; Silva, Guillermo A; Trancanelli, Diego

    2016-01-01

    We consider certain 1/4 BPS Wilson loop operators in $SU(N)$ ${\\cal N}=4$ super Yang-Mills theory, whose expectation value can be computed exactly via supersymmetric localization. Holographically, these operators are mapped to fundamental strings in $AdS_5\\times S^5$. The string on-shell action reproduces the large $N$ and large coupling limit of the gauge theory expectation value and, according to the AdS/CFT correspondence, there should also be a precise match between subleading corrections to these limits. We perform a test of such match at next-to-leading order in string theory, by computing the 1-loop determinant of the quantum fluctuations around the classical string configuration. A source of ambiguity, related to ghost zero modes, is removed by comparing our operator with the 1/2 BPS circular Wilson loop. We find perfect agreement between the string theory result and the gauge theory prediction. This successful match, besides being a high precision test of the AdS/CFT correspondence, elucidates some o...

  8. On maximally supersymmetric Yang-Mills theories

    CERN Document Server

    Movshev, M

    2004-01-01

    We consider ten-dimensional supersymmetric Yang-Mills theory (10D SUSY YM theory) and its dimensional reductions, in particular, BFSS and IKKT models. We formulate these theories using algebraic techniques based on application of differential graded Lie algebras and associative algebras as well as of more general objects, L_{\\infty}- and A_{\\infty}- algebras. We show that using pure spinor formulation of 10D SUSY YM theory equations of motion and isotwistor formalism one can interpret these equations as Maurer-Cartan equations for some differential Lie algebra. This statement can be used to write BV action functional of 10D SUSY YM theory in Chern-Simons form. The differential Lie algebra we constructed is closely related to differential associative algebra Omega of (0, k)-forms on some supermanifold; the Lie algebra is tensor product of Omega and matrix algebra . We construct several other algebras that are quasiisomorphic to Omega and, therefore, also can be used to give BV formulation of 10D SUSY YM theory...

  9. New Dualities in Supersymmetric Chiral Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; Hook, Anson; Torroba, Gonzalo; /Stanford U., Phys. Dept. /SLAC

    2011-08-15

    We analyze the phase structure of supersymmetric chiral gauge theories with gauge group SU(N), an antisymmetric, and F {le} N + 3 flavors, in the presence of a cubic superpotential. When F = N + 3 the theory flows to a superconformal fixed point in the infrared, and new dual descriptions of this theory are uncovered. The theory with odd N admits a self-dual magnetic description. For general N, we find an infinite family of magnetic dual descriptions, characterized by arbitrarily large gauge groups and additional classical global symmetries that are truncated by nonperturbative effects. The infrared dynamics of these theories are analyzed using a-maximization, which supports the claim that all these theories flow to the same superconformal fixed point. A very rich phase structure is found when the number of flavors is reduced below N + 3, including a new self-dual point, transitions from conformal to confining, and a nonperturbative instability for F {le} N. We also give examples of chiral theories with antisymmetrics that have nonchiral duals.

  10. Simulations of supersymmetric Yang-Mills theory

    Energy Technology Data Exchange (ETDEWEB)

    Demmouche, K.; Farchioni, F.; Ferling, A.; Muenster, G.; Wuilloud, J. [Muenster Univ. (Germany); Montvay, I. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Scholz, E.E. [Fermi National Accelerator Lab., Batavia, IL (United States)

    2009-11-15

    Results of a numerical simulation concerning the low-lying spectrum of four-dimensional N = 1 SU(2) Supersymmetric Yang-Mills (SYM) theory on the lattice with light dynamical gluinos are reported. We use the tree-level Symanzik improved gauge action and Wilson fermions with stout smearing of the gauge links in the Wilson-Dirac operator. The configurations are produced with the Two-Step Polynomial Hybrid Monte Carlo (TS-PHMC) algorithm. We performed simulations on lattices up to a size of 24{sup 3}.48 at {beta}=1.6. Using QCD units with the Sommer scale being set to r{sub 0}=0.5 fm, the lattice spacing is about a {approx_equal}0.09 fm, and the spatial extent of the lattice corresponds to 2.1 fm to control finite size effects. At the lightest simulated gluino mass our results indicate a mass for the lightest gluino-glue bound state, which is considerably heavier than the values obtained for its possible superpartners. Whether supermultiplets are formed remains to be studied in upcoming simulations. (orig.)

  11. The supersymmetric NUTs and bolts of holography

    Energy Technology Data Exchange (ETDEWEB)

    Martelli, Dario; Passias, Achilleas [Department of Mathematics, King' s College London, The Strand, London WC2R 2LS (United Kingdom); Sparks, James [Mathematical Institute, University of Oxford, 24-29 St Giles' , Oxford OX1 3LB (United Kingdom)

    2013-11-21

    We show that a given conformal boundary can have a rich and intricate space of supersymmetric supergravity solutions filling it, focusing on the case where this conformal boundary is a biaxially squashed Lens space. Generically we find that the biaxially squashed Lens space S{sup 3}/Z{sub p} admits Taub-NUT-AdS fillings, with topology R{sup 4}/Z{sub p}, as well as smooth Taub-Bolt-AdS fillings with non-trivial topology. We show that the Taub-NUT-AdS solutions always lift to solutions of M-theory, and correspondingly that the gravitational free energy then agrees with the large N limit of the dual field theory free energy, obtained from the localized partition function of a class of N=2 Chern–Simons-matter theories. However, the solutions of Taub-Bolt-AdS type only lift to M-theory for appropriate classes of internal manifold, meaning that these solutions exist only for corresponding classes of three-dimensional N=2 field theories.

  12. Supersymmetric plasma systems and their nonsupersymmetric counterparts

    CERN Document Server

    Czajka, Alina

    2016-01-01

    In this thesis a systematic comparison of supersymmetric plasma systems and their nonsupersymmetric counterparts is presented. The work is motivated by the AdS/CFT correspondence and the main aim is to check how much the plasma governed by the N=4 super Yang-Mills theory resembles the quark-gluon plasma studied experimentally in relativistic heavy-ion collisions. The analysis is done in a weak coupling regime where perturbative methods are applicable. Since the Keldysh-Schwinger approach is used, not only equilibrium but also nonequilibrium plasmas, which are assumed to be ultrarelativistic, are under consideration. First, using the functional techniques we introduce Faddeev-Popov ghosts into the Keldysh-Schwinger formalism of nonAbelian gauge theories. Next the collective excitations of the N=1 SUSY QED plasma are considered and compared to those of the usual QED system. The analysis is repeated to confront with each other the plasmas governed by the N=4 super Yang-Mills and QCD theories. Finally, transport ...

  13. Supersymmetric extension of Hopf maps: N = 4 {sigma}-models and the S{sup 3} {yields} S{sup 2} fibration

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, L. Faria; Toppan, F., E-mail: leofc@cbpf.b, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)

    2009-07-01

    We discuss four off-shell N = 4 D = 1 supersymmetry transformations, their associated one-dimensional -models and their mutual relations. They are given by I - the (4, 4){sub lin} linear 'root' supermultiplet (supersymmetric extension of R{sup 4}), II - the (3, 4, 1){sub lin} linear supermultiplet (supersymmetric extension of R3), III - the (3, 4, 1){sub nl} non-linear supermultiplet living on S{sup 3} and IV - the (2, 4, 2){sub nl} non-linear supermultiplet living on S{sup 2}. The I {yields} II map is the supersymmetric extension of the R4 {yields} R3 bilinear map, while the II {yields} IV map is the supersymmetric extension of the S{sup 3} {yields} S{sup 2} first Hopf fibration. The restrictions on the S{sup 3}, S{sup 2} spheres are expressed in terms of the stereo graphic projections. The non-linear supermultiplets, whose super transformations are local differential polynomials, are not equivalent to the linear supermultiplets with the same field content. The -models are determined in terms of an unconstrained pre potential of the target coordinates. The Uniformization Problem requires solving an inverse problem for the pre potential. The basic features of the supersymmetric extension of the second and third Hopf maps are briefly sketched. Finally, the Schur's lemma (i.e. the real, complex or quaternionic property) is extended to all minimal linear supermultiplets up to N {<=} 8. (author)

  14. A renormalization in group study of supersymmetric field theories

    Energy Technology Data Exchange (ETDEWEB)

    Heilmann, Marianne

    2015-05-13

    This thesis analyses scalar supersymmetric field theories within the framework of the functional renormalization group (FRG). Classical physics on microscopic scales is connected to the effective model on macroscopic scales via the scale-dependent effective average action by a reformulation of the path integral. Three supersymmetric theories are explored in detail: supersymmetric quantum mechanics, the three-dimensional Wess-Zumino model and supersymmetric spherical theories in three dimensions. The corresponding renormalization group flow is formulated in a manifestly supersymmetric way. By utilizing an expansion of the effective average action in derivative operators, an adequate and intrinsically non-perturbative truncation scheme is selected. In quantum mechanics, the supersymmetric derivative expansion is shown to converge by increasing the order of truncation. Besides, high-accuracy results for the ground and first excited state energies for quantum systems with conserved as well as spontaneously broken supersymmetry are achieved. Furthermore, the critical behaviour of the three-dimensional Wess-Zumino is investigated. Via spectral methods, a global Wilson-Fisher scaling solution and its corresponding universal exponents are determined. Besides, a superscaling relation of the leading exponents is verified for arbitrary dimensions greater than or equal to two. Lastly, three-dimensional spherical, supersymmetric theories are analysed. Their phase structure is determined in detail for infinite as well as finitely many superfields. The exact one-parameter scaling solution for infinitely many fields is shown to collapse to a single non-trivial Wilson-Fisher fixed-point for finitely many superfields. It is pointed out that the strongly-coupled domains of these theories are plagued by Landau poles and non-analyticities, indicating spontaneous supersymmetry breaking.

  15. Search for the Flavor Changing Neutral Current Decay $t\\rightarrow qZ$ in $p\\overline{p}$ Collisions at $\\sqrt{s}$ = 1.96 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Zaw, Ingyin [Harvard U.

    2007-01-01

    This dissertation presents a blind search for the flavor changing neutral current decay of the top quark t → qZ in pp collisions at [special characters omitted] = 1.96TeV using a data sample corresponding to an integrated luminosity of 1.12 fb-1 collected by the Collider Detector at Fermilab (CDF), This decay is extremely rare in the standard model, and a signal at the Tevatron would be an indication of new physics. Dividing candidate events with a Z boson and four or more jets into a sample of those which have a heavy flavor jet identified by a secondary vertex algorithm and those which do not, we observe data yields consistent with background expectations. We set a 95% C.L. upper limit on the branching fraction B (t → qZ) of 11.3%, consistent with an expected upper limit of 7.8% ± 3.3%.

  16. Search for the Flavor-Changing Neutral Current Decay D^0\\to\\mu^+\\mu^- in p\\bar{p} Collisions at \\sqrt{s}=1.96 TeV

    CERN Document Server

    Acosta, D; Ahn, M H; Akimoto, T; Albrow, M G; Ambrose, D; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arguin, J F; Arisawa, T; Artikov, A; Asakawa, T; Ashmanskas, W; Attal, A; Azfar, F; Azzi-Bacchetta, P; Bacchetta, N; Bachacou, H; Badgett, W F; Bailey, S; Barbaro-Galtieri, A; Barker, G; Barnes, V E; Barnett, B A; Baroiant, S; Barone, M; Bauer, G; Bedeschi, F; Behari, S; Belforte, S; Bell, W H; Bellettini, Giorgio; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A A; Binkley, M; Bisello, D; Bishai, M; Blair, R E; Blocker, C; Bloom, K; Blumenfeld, B; Bocci, A; Bodek, A; Bölla, G; Bolshov, A; Booth, P S L; Bortoletto, Daniela; Boudreau, J; Bourov, S; Bromberg, C; Brozovic, M; Brubaker, E; Budagov, Yu A; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Byrum, K L; Cabrera, S; Calafiura, P; Campanelli, M; Campbell, M; Canepa, A; Carlsmith, D; Carron, S; Carosi, R; Casarsa, M; Caskey, W; Castro, A; Catastini, P; Cauz, D; Cerri, A; Cerri, C; Cerrito, L; Chapman, J; Chen, C; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chu, M L; Chung, J Y; Chung, H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A G; Coca, M N; Connolly, A; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cranshaw, J; Culbertson, R; Currat, C; Cyr, D; Dagenhart, D; Da Ronco, S; D'Auria, S; De Cecco, S; Dell'Agnello, S; Dell'Orso, Mauro; Demers, S; Demortier, L; Deninno, M; De Pedis, D; Derwent, P F; Dionisi, C; Dittmann, J R; Doksus, P; Dominguez, A; Donati, S; D'Onofrio, M; Dorigo, T; Drollinger, V; Ebina, K; Eddy, N; Ely, R; Erbacher, R D; Erdmann, M; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Feild, R G; Feindt, M; Fernández, J P; Ferretti, C; Field, R D; Fiori, I; Flanagan, G; Flaugher, B; Flores, L R; Castillo; Foland, A D; Forrester, S; Foster, G W; Franklin, M; Frisch, H; Fujii, Y; Furic, I; Gallas, A; Gallinaro, M; Galyardt, J; García-Sciveres, M; Garfinkel, A F; Gay, C; Gerberich, H; Gerchtein, E; Gerdes, D W; Giagu, S; Giannetti, P; Gibson, A; Gibson, K; Ginsburg, C; Giolo, K; Giordani, M; Giurgiu, G; Glenzinski, D A; Gold, M; Goldschmidt, N; Goldstein, D B; Goldstein, J; Gómez, G; Gómez-Ceballos, G; Goncharov, M; Gorelov, I; Goshaw, A T; Gotra, Yu; Goulianos, K; Gresele, A; Grim, G; Grosso-Pilcher, C; Günther, M; Guimarães da Costa, J; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hall, C; Handler, R; Happacher, F; Hara, K; Hare, M; Harr, R F; Harris, R M; Hartmann, F; Hatakeyama, K; Hauser, J; Hays, C; Heider, E; Heinemann, B; Heinrich, J; Hennecke, M; Herndon, M; Hill, C; Hirschbuehl, D; Höcker, A; Hoffman, K D; Holloway, A; Hou, S; Houlden, M A; Huffman, B T; Hughes, R E; Huston, J; Ikado, K; Incandela, J R; Introzzi, G; Iori, M; Ishizawa, Y; Issever, C; Ivanov, A; Iwata, Y; Iyutin, B; James, E; Jang, D; Jarrell, J; Jeans, D; Jensen, H; Jones, M; Jun, S Y; Junk, T R; Kamon, T; Kang, J; Karagoz-Unel, M; Karchin, P E; Kartal, S; Kato, Y; Kemp, Y; Kephart, R D; Kerzel, U; Khazins, D; Khotilovich, V; Kilminster, B; Kim, B J; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, M S; Kim, S B; Kim, S H; Kim, T H; Kim, Y K; King, B T; Kirby, M; Kirk, M; Kirsch, L; Klimenko, S; Knuteson, B; Kobayashi, H; Koehn, P; Kondo, K; Konigsberg, J; Kordas, K; Korn, A J; Korytov, A; Kotelnikov, K A; Kotwal, A V; Kovalev, A; Kraus, J; Kravchenko, I V; Kreymer, A; Kroll, J; Kruse, M; Krutelyov, V; Kuhlmann, S E; Kuznetsova, N; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, J; Lancaster, M; Lander, R; Lannon, K; Lath, A; Latino, G; Lauhakangas, R; Lazzizzera, I; Le, Y; Lecci, C; LeCompte, T J; Lee, J; Lee, S W; Leonardo, N; Leone, S; Lewis, J D; Li, K; Lin, C S; Lindgren, M; Liss, T M; Litvintsev, D O; Liu, T; Liu, Y; Lockyer, N S; Loginov, A; Loken, J; Loreti, M; Loverre, P F; Lucchesi, D; Lukens, P; Lyons, L; Lys, J; MacQueen, D; Madrak, R; Maeshima, K; Maksimovic, P; Malferrari, L; Manca, G; Marginean, R; Martin, A; Martin, M; Martin, V; Martínez, M; Maruyama, T; Matsunaga, H; Mattson, M E; Mazzanti, P; McFarland, K S; McGivern, D; McIntyre, P M; McNamara, P; McNulty, R; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Meyer, A; Miao, T; Miller, L; Miller, R; Miller, J S; Miquel, R; Miscetti, S; Mishina, M; Mitselmakher, G; Miyamoto, A; Miyazaki, Y; Moggi, N; Moore, R; Morello, M; Moulik, T; Mukherjee, A; Mulhearn, M; Müller, T; Mumford, R; Munar, A; Murat, P; Murgia, S; Nachtman, J; Nahn, S; Nakamura, I; Nakano, I; Napier, A; Necula, V; Niell, F; Nielsen, J; Nelson, C; Nelson, T; Neu, C; Neubauer, M S; Newman-Holmes, C; Nicollerat, A S; Nigmanov, T; Niu, H; Nodulman, L; Österberg, K; Ogawa, T; Oh, S; Oh, Y D; Ohsugi, T; Oishi, R; Okusawa, T; Oldeman, R G C; Orava, Risto; Orejudos, W; Pagliarone, C; Palmonari, F; Paoletti, R; Papadimitriou, V; Partos, D; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Pauly, T; Paus, C; Pellett, D; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pitts, K T; Pompos, A; Pondrom, L; Pope, G; Poukhov, O; Prakoshyn, F; Pratt, T; Pronko, A G; Proudfoot, J; Ptohos, F; Punzi, G; Rademacker, J; Rakitine, A; Rappoccio, S; Ratnikov, F; Ray, H; Reichold, A; Rekovic, V; Renton, P B; Rescigno, M; Rimondi, F; Rinnert, K; Ristori, L; Riveline, M; Robertson, W J; Robson, A; Rodrigo, T; Rolli, S; Rosenson, L; Roser, R; Rossin, R; Rott, C; Russ, J; Ruiz, A; Ryan, D; Saarikko, H; Safonov, A; Saint-Denis, R; Sakumoto, W K; Saltzberg, D; Sánchez, C; Sansoni, A; Santi, L; Sarkar, S; Sato, K; Savard, P; Savoy-Navarro, A; Schemitz, P; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schofield, G L; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semeria, F; Sexton-Kennedy, L; Sfiligoi, I; Shapiro, M D; Shears, T G; Shepard, P F; Shimojima, M; Shochet, M J; Shon, Y; Sidoti, A; Siket, M; Sill, A; Sinervo, P; Sissakian, A N; Skiba, A; Slaughter, A J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Somalwar, S V; Spalding, J; Spezziga, M; Spiegel, L; Spinella, F; Spiropulu, M; Stadie, H; Stelzer, B; Stelzer-Chilton, O; Strologas, J; Stuart, D; Sukhanov, A; Sumorok, K; Sun, H; Suzuki, T; Taffard, A C; Takach, S F; Takano, H; Takashima, R; Takeuchi, Y; Takikawa, K; Tamburello, P; Tanaka, M; Tanaka, R; Tannenbaum, B; Tanimoto, N; Tapprogge, Stefan; Tecchio, M; Teng, P K; Terashi, K; Tesarek, R J; Tether, S; Thom, J; Thompson, A S; Thomson, E; Thurman-Keup, R M; Tipton, P; Tiwari, V K; Tkaczyk, S M; Toback, D; Tollefson, K; Tonelli, D; Tonnesmann, M; Torre, S; Torretta, D; Trischuk, W; Tseng, J; Tsuchiya, R; Tsuno, S; Tsybychev, D; Turini, N; Turner, M; Ukegawa, F; Unverhau, T; Uozumi, S; Usynin, D; Vacavant, L; Vaiciulis, T; Varganov, A V; Vataga, E; Vejcik, S; Velev, G V; Veramendi, G; Vickey, T; Vidal, R; Vila, I; Vilar, R; Volobuev, I P; Von der Mey, M; Wagner, R G; Wagner, R L; Wagner, W; Wallace, N; Walter, T; Wan, Z; Wang, M J; Wang, S M; Ward, B; Waschke, S; Waters, D; Watts, T; Weber, M; Whitehouse, B; Wicklund, A B; Wicklund, E; Wilkes, T; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolter, M; Worcester, M; Worm, S; Wright, T; Wu, X; Würthwein, F; Wyatt, A; Yagil, A; Yamashita, T; Yamamoto, K; Yang, U K; Yao, W; Yeh, G P; Yi, K; Yoh, J K; Yoon, P; Yorita, K; Yoshida, T; Yu, I; Yu, S; Yu, Z; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zetti, F; Zhou, J; Zsenei, A; Zucchelli, S

    2003-01-01

    We report on a search for the flavor-changing neutral current decay D^0\\to\\mu^+\\mu^- in p\\bar{p} collisions at \\sqrt{s}=1.96 TeV using 65\\ipb of data collected by the CDF II experiment at the Fermilab Tevatron Collider. A displaced-track trigger selects long-lived D^0 candidates in the D^0\\to\\mu^+\\mu^- search channel, the kinematically similar D^0\\to\\pi^+\\pi^- channel used for normalization, the Cabbibo-favored D^0\\to K^+\\pi^- channel used to optimize the selection criteria in an unbiased manner, and their charge conjugates. Finding no signal events in the D^0\\to\\mu^+\\mu^- search window, we set an upper limit on the branching fraction {\\cal B}(D^0\\to\\mu^+\\mu^-)\\leq 2.5E-6 (3.3E-6) at the 90% (95%) confidence level.

  17. Supersymmetric dark matter after LHC run 1

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.A.; Weiglein, G. [DESY, Hamburg (Germany); Buchmueller, O.; Citron, M.; Malik, S.; De Vries, K.J. [High Energy Physics Group, Blackett Laboratory, Imperial College, London (United Kingdom); Cavanaugh, R. [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); De Roeck, A. [CERN, Physics Department, Geneva 23 (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [Theory Group, SLAC National Accelerator Laboratory, Menlo Park, CA (United States); University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [CERN, Physics Department, Geneva 23 (Switzerland); King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States); Sakurai, K. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom)

    2015-10-15

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ{sub 1}{sup 0}, assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau τ{sub 1}, stop t{sub 1} or chargino χ{sub 1}{sup ±}, resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ{sub 1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for E{sub T} events and longlived charged particles, whereas their H/A funnel, focus-point and χ{sub 1}{sup ±} coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is χ{sub 1}{sup ±} coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches. (orig.)

  18. Supersymmetric dark matter after LHC run 1

    Energy Technology Data Exchange (ETDEWEB)

    Bagnaschi, E.A. [DESY Hamburg (Germany); Buchmueller, O. [Imperial College, London (United Kingdom). Blackett Laboratory; Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); Illinois Univ., Chicago, IL (United States). Physics Dept.; and others

    2015-08-15

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, χ{sup 0}{sub 1}, assumed here to be the LSP and thus the Dark Matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly-degenerate next-to-lightest supersymmetric particle (NLSP) such as the lighter stau τ{sub 1}, stop t{sub 1} or chargino χ{sup ±}{sub 1}, resonant annihilation via direct-channel heavy Higgs bosons H/A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2 and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the τ{sub 1} coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for missing E{sub T} events and long-lived charged particles, whereas their H/A funnel, focus-point and χ{sup ±}{sub 1} coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is χ{sup ±}{sub 1} coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  19. Particle physics and cosmology in supersymmetric models

    Science.gov (United States)

    Morrissey, David Edgar

    The Standard Model (SM) of particle physics provides an excellent description of the elementary particle interactions observed in particle collider experiments, but the model does less well when it is applied to cosmology. Recent measurements of the Universe over very large distances indicate the existence of non-luminous dark matter and an excess of baryons over anti-baryons. The SM is unable to account for either of these results, implying that an extension of the SM description is needed. One such extension is supersymmetry. Within the minimal supersymmetric version of the SM, the MSSM, the lightest superpartner particle can make up the dark matter, and the baryon asymmetry can be generated by the mechanism of electroweak baryogenesis (EWBG). In this work, we examine these issues together in order to find out whether the MSSM can account for both of them simultaneously. We find that the MSSM can explain both the baryon asymmetry and the dark matter, but only over a very constrained region of the model parameter space. The strongest constraints on this scenario come from the lower bound on the Higgs boson mass, and the upper bound on the electric dipole moment of the electron. Moreover, upcoming experiments will probe the remaining allowed parameter space in the near future. Some of these constraints may be relaxed by going beyond the MSSM. With this in mind, we also investigate the nMSSM, a minimal singlet extension of the MSSM. We find that this model can also explain both the dark matter and the baryon asymmetry.

  20. Supersymmetric dark matter after LHC run 1.

    Science.gov (United States)

    Bagnaschi, E A; Buchmueller, O; Cavanaugh, R; Citron, M; De Roeck, A; Dolan, M J; Ellis, J R; Flächer, H; Heinemeyer, S; Isidori, G; Malik, S; Martínez Santos, D; Olive, K A; Sakurai, K; de Vries, K J; Weiglein, G

    Different mechanisms operate in various regions of the MSSM parameter space to bring the relic density of the lightest neutralino, [Formula: see text], assumed here to be the lightest SUSY particle (LSP) and thus the dark matter (DM) particle, into the range allowed by astrophysics and cosmology. These mechanisms include coannihilation with some nearly degenerate next-to-lightest supersymmetric particle such as the lighter stau [Formula: see text], stop [Formula: see text] or chargino [Formula: see text], resonant annihilation via direct-channel heavy Higgs bosons H / A, the light Higgs boson h or the Z boson, and enhanced annihilation via a larger Higgsino component of the LSP in the focus-point region. These mechanisms typically select lower-dimensional subspaces in MSSM scenarios such as the CMSSM, NUHM1, NUHM2, and pMSSM10. We analyze how future LHC and direct DM searches can complement each other in the exploration of the different DM mechanisms within these scenarios. We find that the [Formula: see text] coannihilation regions of the CMSSM, NUHM1, NUHM2 can largely be explored at the LHC via searches for [Formula: see text] events and long-lived charged particles, whereas their H / A funnel, focus-point and [Formula: see text] coannihilation regions can largely be explored by the LZ and Darwin DM direct detection experiments. We find that the dominant DM mechanism in our pMSSM10 analysis is [Formula: see text] coannihilation: parts of its parameter space can be explored by the LHC, and a larger portion by future direct DM searches.

  1. Comments on twisted indices in 3d supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Closset, Cyril [Simons Center for Geometry and PhysicsState University of New York, Stony Brook, NY 11794 (United States); Kim, Heeyeon [Perimeter Institute for Theoretical Physics31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada)

    2016-08-09

    We study three-dimensional N=2 supersymmetric gauge theories on Σ{sub g}×S{sup 1} with a topological twist along Σ{sub g}, a genus-g Riemann surface. The twisted supersymmetric index at genus g and the correlation functions of half-BPS loop operators on S{sup 1} can be computed exactly by supersymmetric localization. For g=1, this gives a simple UV computation of the 3d Witten index. Twisted indices provide us with a clean derivation of the quantum algebra of supersymmetric Wilson loops, for any Yang-Mills-Chern-Simons-matter theory, in terms of the associated Bethe equations for the theory on ℝ{sup 2}×S{sup 1}. This also provides a powerful and simple tool to study 3d N=2 Seiberg dualities. Finally, we study A- and B-twisted indices for N=4 supersymmetric gauge theories, which turns out to be very useful for quantitative studies of three-dimensional mirror symmetry. We also briefly comment on a relation between the S{sup 2}×S{sup 1} twisted indices and the Hilbert series of N=4 moduli spaces.

  2. Radiative Symmetry Breaking in the Supersymmetric Minimal B-L Extended Standard Model

    CERN Document Server

    Burell, Zachary

    2016-01-01

    The Standard Model (SM) of particle physics is a precise model of electroweak interactions, however there is growing tension between the SM and observations (neutrino oscillations, dark matter, dark energy, baryogenesis, among others). There is no reason to expect the validity of the ad hoc SM to remain intact at energy scales above a few TeV, thus a more fundamental theory will almost certainly be required. Motivated by these considerations, we investigate a Supersymmetric version of a natural extension of the SM, the $U(1)_{B-L}$ model, that is obtained by gauging the accidental B-L symmetry that exists in the ordinary SM. The Supersymmetric $U(1)_{B-L}$ extended SM can resolve the neutrino mass problem, the dark matter problem, the hierarchy problem, and provides a mechanism for establishing the observed baryon asymmetry of the Universe. When we include quantum corrections to the Higgs potential of the model, we find that Radiative $B-L$ symmetry breaking occurs through the interplay between large Majorana...

  3. Supersymmetric Contributions to the Decay of an Extra Z Boson

    CERN Document Server

    Gherghetta, Tony; Kane, G L; Gherghetta, Tony; Kaeding, Thomas A.; Kane, Gordon L.

    1998-01-01

    We analyse in detail the supersymmetric contributions to the decay of an extra Z boson in effective rank 5 models, including the important effect of D-terms on sfermion masses. The inclusion of supersymmetric decay channels will reduce the Z' branching ratio to standard model particles resulting in lower Z' mass limits than those often quoted. In particular, the supersymmetric parameter space motivated by the recent Fermilab $ee\\gamma\\gamma$ event and other suggestive evidence results in a branching fraction B(Z' -> e^+ e^-)\\simeq 2-4%. The expected cross sections and branching ratios could give a few events in the present data and we speculate on the connection to the three e^+e^- events observed at Fermilab with large dielectron invariant mass.

  4. Extended Supersymmetric BMS$_3$ algebras and Their Free Field Realisations

    CERN Document Server

    Banerjee, Nabamita; Lodato, Ivano; Mukhi, Sunil; Neogi, Turmoli

    2016-01-01

    We study $N=(2,4,8)$ supersymmetric extensions of the three dimensional BMS algebra (BMS$_3$) with most generic possible central extensions. We find that $N$-extended supersymmetric BMS$_3$ algebras can be derived by a suitable contraction of two copies of the extended superconformal algebras. Extended algebras from all the consistent contractions are obtained by scaling left-moving and right-moving supersymmetry generators symmetrically, while Virasoro and R-symmetry generators are scaled asymmetrically. On the way, we find that the BMS/GCA correspondence does not in general hold for supersymmetric systems. Using the $\\beta$-$\\gamma$ and the ${\\mathfrak b}$-${\\mathfrak c}$ systems, we construct free field realisations of all the extended super-BMS$_3$ algebras.

  5. Non-supersymmetric Asymmetric Orbifolds with Vanishing Cosmological Constant

    CERN Document Server

    Satoh, Yuji; Wada, Taiki

    2015-01-01

    We study type II string vacua defined by torus compactifications accompanied by T-duality twists. We realize the string vacua, specifically, by means of the asymmetric orbifolding associated to the chiral reflections combined with a shift, which are interpreted as describing the compactification on `T-folds'. We discuss possible consistent actions of the chiral reflection on the Ramond-sector of the world-sheet fermions, and explicitly construct non-supersymmetric as well as supersymmetric vacua. Above all, we demonstrate a simple realization of non-supersymmetric vacua with vanishing cosmological constant at one loop. Our orbifold group is generated only by a single element, which results in simpler models than those with such property known previously.

  6. Non-supersymmetric asymmetric orbifolds with vanishing cosmological constant

    Science.gov (United States)

    Satoh, Yuji; Sugawara, Yuji; Wada, Taiki

    2016-02-01

    We study type II string vacua defined by torus compactifications accompanied by T-duality twists. We realize the string vacua, specifically, by means of the asymmetric orbifolding associated to the chiral reflections combined with a shift, which are interpreted as describing the compactification on `T-folds'. We discuss possible consistent actions of the chiral reflection on the Ramond-sector of the world-sheet fermions, and explicitly construct non-supersymmetric as well as supersymmetric vacua. Above all, we demonstrate a simple realization of non-supersymmetric vacua with vanishing cosmological constant at one loop. Our orbifold group is generated only by a single element, which results in simpler models than those with such property known previously.

  7. Rigid Supersymmetric Backgrounds of 3-dimensional Newton-Cartan Supergravity

    CERN Document Server

    Knodel, Gino; Liu, James T

    2015-01-01

    Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the $c \\rightarrow \\infty$ limit of three dimensional $\\mathcal{N}=2$ supergravity in arXiv:1505.02095. In the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there are $\\frac{1}{2}$-BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of $\\mathcal{N}=2$ supergravity are connected to the solutions found here in the $c \\rightarrow \\infty$ limit.

  8. Supersymmetric Lepton Flavour Violation in Low-Scale Seesaw Models

    CERN Document Server

    Ilakovac, Amon

    2009-01-01

    We study a new supersymmetric mechanism for lepton flavour violation in \\mu and \\tau decays and \\mu -> e conversion in nuclei, within a minimal extension of the MSSM with low-mass heavy singlet neutrinos and sneutrinos. We find that the decays \\mu -> e\\gamma$, \\tau -> e\\gamma and \\tau -> \\mu\\gamma are forbidden in the supersymmetric limit of the theory, whereas other processes, such as \\mu -> eee, \\mu -> e conversion, \\tau -> eee and \\tau -> e\\mu\\mu, are allowed and can be dramatically enhanced several orders of magnitude above the observable level by potentially large neutrino Yukawa coupling effects. The profound implications of supersymmetric lepton flavour violation for present and future experiments are discussed.

  9. D-brane Solitons in Supersymmetric Sigma-Models

    CERN Document Server

    Gauntlett, J P; Tong, D; Townsend, P K; Gauntlett, Jerome P.; Portugues, Rubén; Tong, David; Townsend, Paul K.

    2001-01-01

    Massive D=4 N=2 supersymmetric sigma models typically admit domain wall (Q-kink) solutions and string (Q-lump) solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric `kink-lump' solution in which a string ends on a wall, and show that it has an effective realization as a BIon of the D=4 super DBI-action. It is also shown to have a time-dependent Q-kink-lump generalization which reduces to the Q-lump in a limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric sigma-model solitons are shown to be realized in M-theory as calibrated, or `Q-calibrated', M5-branes in an M-monopole background.

  10. Geometry of non-supersymmetric three-charge bound states

    Energy Technology Data Exchange (ETDEWEB)

    Gimon, Eric; Gimon, Eric G.; Levi, Thomas S.; Ross, Simon F.

    2007-05-14

    We study the smooth non-supersymmetric three-charge microstatesof Jejjala, Madden, Ross and Titchener using Kaluza-Klein reductions of the solutions to five and four dimensions. Our aim is to improve our understanding of the relation between these non-supersymmetric solutions and the well-studied supersymmetric cases. We find some surprising qualitative differences. In the five-dimensional description, the solution has orbifold fixed points which break supersymmetry locally, so the geometries cannot be thought of as made up of separate half-BPS centers. In the four-dimensional description, the two singularities in the geometry are connected by a conical singularity, which makes it impossible to treat them independently and assign unambiguous brane charges to these centers.

  11. Relation Between the Pole Mass and MS Mass of Top Quark in Supersymmetric QCD

    Institute of Scientific and Technical Information of China (English)

    CHEN Shao-Long; FENG Tai-Fu; LI Xue-Qian

    2001-01-01

    We discuss the relation between the pole mass and MS mass of top quark in the framework of the supersymmetric QCD. We find that the supersymmetric contributions are comparable to those of the standard model.

  12. Relation Between the Pole Mass and MS Mass of Top Quark in Supersymmetric QCD

    Institute of Scientific and Technical Information of China (English)

    CHENShao-Long; FENGTai-Fu; 等

    2001-01-01

    We discuss the relation between the pole mass and MS mass of top quark in the framework of the supersymmetric QCD.We find that the supersymmetric contributions are comparable to those of the standard model.

  13. Problems

    Directory of Open Access Journals (Sweden)

    Yekini Shehu

    2010-01-01

    real Banach space which is also uniformly smooth using the properties of generalized f-projection operator. Using this result, we discuss strong convergence theorem concerning general H-monotone mappings and system of generalized mixed equilibrium problems in Banach spaces. Our results extend many known recent results in the literature.

  14. Mixed axion/neutralino cold dark matter in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Howard; Lessa, Andre; Rajagopalan, Shibi; Sreethawong, Warintorn, E-mail: baer@nhn.ou.edu, E-mail: lessa@nhn.ou.edu, E-mail: shibi@nhn.ou.edu, E-mail: wstan@nhn.ou.edu [Dept. of Physics and Astronomy, University of Oklahoma, Norman, OK 73019 (United States)

    2011-06-01

    We consider supersymmetric (SUSY) models wherein the strong CP problem is solved by the Peccei-Quinn (PQ) mechanism with a concommitant axion/axino supermultiplet. We examine R-parity conserving models where the neutralino is the lightest SUSY particle, so that a mixture of neutralinos and axions serve as cold dark matter (a Z-tilde {sub 1} CDM). The mixed a Z-tilde {sub 1} CDM scenario can match the measured dark matter abundance for SUSY models which typically give too low a value of the usual thermal neutralino abundance, such as models with wino-like or higgsino-like dark matter. The usual thermal neutralino abundance can be greatly enhanced by the decay of thermally-produced axinos (ã) to neutralinos, followed by neutralino re-annihilation at temperatures much lower than freeze-out. In this case, the relic density is usually neutralino dominated, and goes as ∼ (f{sub a}/N)/m{sub ã}{sup 3/2}. If axino decay occurs before neutralino freeze-out, then instead the neutralino abundance can be augmented by relic axions to match the measured abundance. Entropy production from late-time axino decays can diminish the axion abundance, but ultimately not the neutralino abundance. In a Z-tilde {sub 1} CDM models, it may be possible to detect both a WIMP and an axion as dark matter relics. We also discuss possible modifications of our results due to production and decay of saxions. In the appendices, we present expressions for the Hubble expansion rate and the axion and neutralino relic densities in radiation, matter and decaying-particle dominated universes.

  15. Phase diagrams of exceptional and supersymmetric lattice gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Wellegehausen, Bjoern-Hendrik

    2012-07-10

    In this work different strongly-coupled gauge theories with and without fundamental matter have been studied on the lattice with an emphasis on the confinement problem and the QCD phase diagram at nonvanishing net baryon density as well as on possible supersymmetric extensions of the standard model of particle physics. In gauge theories with a non-trivial centre symmetry, as for instance SU(3)-Yang-Mills theory, confinement is intimately related to the centre of the gauge group, and the Polyakov loop serves as an order parameter for confinement. In QCD, this centre symmetry is explicitly broken by quarks in the fundamental representation of the gauge group. But still quarks and gluons are confined in mesons, baryons and glueballs at low temperatures and small densities, suggesting that centre symmetry is not responsible for the phenomenon of confinement. Therefore it is interesting to study pure gauge theories without centre symmetry. In this work this has been done by replacing the gauge group SU(3) of the strong interaction with the exceptional Lie group G{sub 2}, that has a trivial centre. To investigate G{sub 2} gauge theory on the lattice, a new and highly efficient update algorithm has been developed, based on a local HMC algorithm. Employing this algorithm, the proposed and already investigated first order phase transition from a confined to a deconfined phase has been confirmed, showing that indeed a first order phase transition without symmetry breaking or an order parameter is possible. In this context, also the deconfinement phase transition of the exceptional Lie groups F4 and E6 in three spacetime dimensions has been studied. It has been shown that both theories also possess a first order phase transition.

  16. Invariant Regularization of Supersymmetric Chiral Gauge Theory, 2

    CERN Document Server

    Hayashi, T; Okuyama, K; Suzuki, H; Hayashi, Takuya; Ohshima, Yoshihisa; Okuyama, Kiyoshi; Suzuki, Hiroshi

    1998-01-01

    By supplementing additional analyses postponed in the previous paper, we complete our construction of manifestly supersymmetric gauge-covariant regularization of supersymmetric chiral gauge theories. We present: An evaluation of the covariant gauge anomaly; the proof of integrability of the covariant gauge current in anomaly-free cases; a calculation of one-loop superconformal anomaly in the gauge supermultiplet sector. On the last point, we find that the ghost-anti-ghost supermultiplet and the Nakanishi-Lautrup supermultiplet give rise to BRST exact contributions which, due to the Slavnov-Taylor identities in our regularization scheme, can safely be neglected.

  17. Supersymmetric quantum mechanics for two-dimensional disk

    Indian Academy of Sciences (India)

    Akira Suzuki; Ranabir Dutt; Rajat K Bahaduri

    2005-07-01

    The infinite square well potential in one dimension has a smooth supersymmetric partner potential which is shape invariant. In this paper, we study the generalization of this to two dimensions by constructing the supersymmetric partner of the disk billiard. We find that the property of shape invariance is lost in this case. Nevertheless, the WKB results are significantly improved when SWKB calculations are performed with the square of the superpotential. We also study the effect of inserting a singular flux line through the center of the disk.

  18. Dark matter and dark forces from a supersymmetric hidden sector

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, S.; Goodsell, M.D.; Ringwald, A.

    2011-09-15

    We show that supersymmetric ''Dark Force'' models with gravity mediation are viable. To this end, we analyse a simple supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross-sections to current experiments. (orig.)

  19. Metastable Vacua in Deformed N=2 Supersymmetric Models

    CERN Document Server

    Halyo, Edi

    2009-01-01

    We show that supersymmetric Abelian models that are obtained from deformations of those with ${\\cal N}=2$ supersymmetry also contain metastable vacua for a wide range of parameters. The deformations we consider are combinations of masses for charged and singlet fields, a singlet F--term and an anomalous D--term. We find that, in all cases, the nonsupersymmetric vacua are parametrically far from the supersymmetric ones and therefore metastable. Using retrofitting, we show that these metastable vacua may lead to semi--realistic phenomenology.

  20. Supersymmetric Casimir Energy and $SL(3,\\mathbb{Z})$ Transformations

    CERN Document Server

    Brünner, Frederic; Spiridonov, Vyacheslav P

    2016-01-01

    We provide a recipe to extract the supersymmetric Casimir energy of theories defined on primary Hopf surfaces directly from the superconformal index. It involves an $SL(3,\\mathbb{Z})$ transformation acting on the complex structure moduli of the background geometry. In particular, the known relation between Casimir energy, index and partition function emerges naturally from this framework, allowing rewriting of the latter as a modified elliptic hypergeometric integral. We show this explicitly for $\\mathcal{N}=1$ SQCD and $\\mathcal{N}=4$ supersymmetric Yang-Mills theory for all classical gauge groups, and conjecture that it holds more generally.

  1. Consistent gravitino couplings in non-supersymmetric strings

    CERN Document Server

    Dudas, E A

    2001-01-01

    The massless spectrum of the ten dimensional USp(32) type I string has an N=1 supergravity multiplet coupled to non-supersymmetric matter. This raises the question of the consistency of the gravitino interactions. We resolve this apparent puzzle by arguing for the existence of a local supersymmetry which is non-linearly realised in the open sector. We determine the leading order low energy effective Lagrangian. Similar results are expected to apply to lower dimensional type I models where supergravity is coupled to non-supersymmetric branes.

  2. Global Properties of Supersymmetric Theories and the Lens Space

    CERN Document Server

    Razamat, Shlomo S

    2013-01-01

    We compute the supersymmetric partition function on L(r,1)xS^1, the lens space index, for 4d gauge theories related by supersymmetric dualities and involving non simply-connected groups. This computation is sensitive to the global properties of the underlying gauge group and to discrete theta angle parameters and thus distinguishes versions of dualities differing by such. We explicitly discuss N=1 so(N_c) Seiberg dualities and N=4 su(N_c) S-dualities.

  3. Search for Direct Pair Production of Supersymmetric Top and Supersymmetric Bottom Quarks in p-pbar Collisions at $\\sqrt{s}$=1.96 TeV

    CERN Document Server

    Aaltonen, T; Adelman, J; Affolder, T; Akimoto, T; Albrow, M G; Amerio, S; Amidei, D; Anastassov, A; Anikeev, K; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P H; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bölla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, Yu; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carillo, S; Carlsmith, D; Carosi, R; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, I; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Cilijak, M; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Coca, M; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Cuenca-Almenar, C; Cuevas-Maestro, J; Culbertson, R; Cully, J C; Da Ronco, S; Datta, M; D'Auria, S; Davies, T; Dagenhart, D; De Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, Mauro; Delli Paoli, F; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Dorr, C; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, I; Fedorko, W T; Feild, R G; Feindt, M; Fernández, J P; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; García, J E; Garberson, F; Garfinkel, A F; Gay, C; Gerberich, H; Gerdes, D; Giagu, S; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Goldstein, J; Golossanov, A; Gómez, G; Gómez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Group, R C; Grundler, U; Guimarães da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hidas, D; Hill, C S; Hirschbuehl, D; Höcker, A; Holloway, A; Hou, S; Houlden, M; Hsu, S C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jang, D; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Karchin, P E; Kato, Y; Kemp, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraan, A C; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lu, R S; Lucchesi, D; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Mäki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marginean, R; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martinez-Ballarin, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Matsunaga, H; Mattson, M E; Mazini, R; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtälä, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyamoto, A; Moed, S; Moggi, N; Mohr, B; Moon, C S; Moore, R; Morello, M; Movilla-Fernández, P A; Mülmenstädt, J; Mukherjee, A; Müller, T; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Österberg, K; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, Aldo L; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P B; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Salto, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savard, P; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyrla, A; Shalhout, S Z; Shapiro, M D; Shears, T G; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakian, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Söderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; Staveris-Polykalas, A; Saint-Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tsuno, S; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; Van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veramendi, G; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Vollrath, I; Volobuev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner, J; Wagner, W; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zhou, J; Zucchelli, S

    2007-01-01

    We search for direct pair production of supersymmetric top quarks and supersymmetric bottom quarks in proton-antiproton collisions at $\\sqrt{s}$ = 1.96 TeV, using 295 pb^-1 of data recorded by the Collider Detector at Fermilab (CDF II) experiment. The supersymmetric top (supersymmetric bottom) quarks are selected by reconstructing their decay into a charm (bottom) quark and a neutralino, which is assumed to be the lightest supersymmetric particle. The signature of such processes is two energetic heavy-flavor jets and missing transverse energy. The number of events that pass our selection for each search process is consistent with the standard model expectation. By comparing our results to the theoretical production cross sections of the supersymmetric top and supersymmetric bottom quarks in the minimal supersymmetric standard model, we exclude, at a 95% confidence level in the frame of that model, a supersymmetric top quark mass up to 132 GeV/c^2 for a neutralino mass of 48 GeV/c^2, and a supersymmetric botto...

  4. Trigonometric potentials arising from the spheroidal equation: Supersymmetric partners and integral formulas

    Science.gov (United States)

    Schulze-Halberg, Axel

    2016-06-01

    We construct supersymmetric partners of a quantum system featuring a class of trigonometric potentials that emerge from the spheroidal equation. Examples of both standard and confluent supersymmetric transformations are presented. Furthermore, we use integral formulas arising from the confluent supersymmetric formalism to derive new representations for single and multiple integrals of spheroidal functions.

  5. Stable Non-Supersymmetric Throats in String Theory

    Energy Technology Data Exchange (ETDEWEB)

    Kachru, Shamit; Simic, Dusan; /Stanford U., ITP /SLAC /Santa Barbara, KITP; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC

    2011-06-28

    We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.

  6. Searches for supersymmetric particles produced in Z -boson decay

    Energy Technology Data Exchange (ETDEWEB)

    Barklow, T.; Abrams, G.S.; Adolphsen, C.E.; Averill, D.; Ballam, J.; Barish, B.C.; Barnett, B.A.; Bartelt, J.; Bethke, S.; Blockus, D.; Bonvicini, G.; Boyarski, A.; Brabson, B.; Breakstone, A.; Bulos, F.; Burchat, P.R.; Burke, D.L.; Cence, R.J.; Chapman, J.; Chmeissani, M.; Cords, D.; Coupal, D.P.; Dauncey, P.; DeStaebler, H.C.; Dorfan, D.E.; Dorfan, J.M.; Drewer, D.C.; Elia, R.; Feldman, G.J.; Fernandes, D.; Field, R.C.; Ford, W.T.; Fordham, C.; Frey, R.; Fujino, D.; Gan, K.K.; Gatto, C.; Gero, E.; Gidal, G.; Glanzman, T.; Goldhaber, G.; Gomez Cadenas, J.J.; Gratta, G.; Grindhammer, G.; Grosse-Wiesmann, P.; Hanson, G.; Harr, R.; Harral, B.; Harris, F.A.; Hawkes, C.M.; Hayes, K.; Hearty, C.; Heusch, C.A.; Hildreth, M.D.; Himel, T.; Hinshaw, D.A.; Hong, S.J.; Hutchinson, D.; Hylen, J.; Innes, W.R.; Jacobsen, R.G.; Jaros, J.A.; Jung, C.K.; Kadyk, J.A.; Kent, J.; King, M.; Koetke, D.S.; Komamiya, S.; Koska, W.; Kowalski, L.A.; Kozanecki, W.; Kral, J.F.; Kuhlen, M.; Labarga, L.; Lankford,

    1990-06-18

    We have searched for supersymmetric particles in 528 {ital Z} decays with the Mark II detector at the SLAC Linear Collider. We place 95%-confidence-level lower mass limits on degenerate squarks, nondegenerate up-type squarks, nondegenerate down-type squarks, charginos, pair-produced unstable neutralinos, and neutralinos from associated production.

  7. Diphoton Revelation of the Utilitarian Supersymmetric Standard Model

    CERN Document Server

    Ma, Ernest

    2016-01-01

    In 2002, I proposed a unique $U(1)$ extension of the supersymmetric standard model which has no $\\mu$ term and conserves baryon number and lepton number separately and automatically. This model, ${without~any~change}$, has all the necessary and sufficient ingredients to explain the possible 750 GeV diphoton excess, observed recently by the ATLAS Collaboration at the Large Hadron Collider (LHC).

  8. Relativistic Pseudospin Symmetry as a Supersymmetric Pattern in Nuclei

    CERN Document Server

    Leviatan, A

    2004-01-01

    Shell-model states involving several pseudospin doublets and ``intruder'' levels in nuclei, are combined into larger multiplets. The corresponding single-particle spectrum exhibits a supersymmetric pattern whose origin can be traced to the relativistic pseudospin symmetry of a nuclear mean-field Dirac Hamiltonian with scalar and vector potentials.

  9. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  10. Prospects for detecting supersymmetric dark matter in the Galactic halo

    NARCIS (Netherlands)

    Springel, V.; White, S. D. M.; Frenk, C. S.; Navarro, J. F.; Jenkins, A.; Vogelsberger, M.; Wang, J.; Ludlow, A.; Helmi, A.

    2008-01-01

    Dark matter is the dominant form of matter in the Universe, but its nature is unknown. It is plausibly an elementary particle, perhaps the lightest supersymmetric partner of known particle species(1). In this case, annihilation of dark matter in the halo of the Milky Way should produce gamma-rays at

  11. On timelike supersymmetric solutions of gauged minimal 5-dimensional supergravity

    CERN Document Server

    Chimento, Samuele

    2016-01-01

    We analyze the timelike supersymmetric solutions of minimal gauged 5-dimensional supergravity for the case in which the K\\"ahler base manifold admits a holomorphic isometry and depends on two real functions satisfying a simple second-order differential equation. Using this general form of the base space, the equations satisfied by the building blocks of the solutions become of, at most, fourth degree and can be solved by simple polynomic ansatzs. In this way we construct two 3-parameter families of solutions that contain almost all the timelike supersymmetric solutions of this theory with one angular momentum known so far and a few more: the (singular) supersymmetric Reissner-Nordstr\\"om-AdS solutions, the three exact supersymmetric solutions describing the three near-horizon geometries found by Gutowski and Reall, three 1-parameter asymptotically-AdS$_{5}$ black-hole solutions with those three near-horizon geometries (Gutowski and Reall's black hole being one of them), three generalizations of the G\\"odel un...

  12. On the supersymmetric non-abelian Born-Infeld action

    NARCIS (Netherlands)

    Bergshoeff, E.A.; Roo, M. de; Sevrin, A.

    2001-01-01

    We review an iterative construction of the supersymmetric non-abelian Born-Infeld action. We obtain the action through second order in the field strength. Kappa-invariance fixes the ordenings which turn out to deviate from the symmetrized trace proposal.

  13. On the supersymmetric non-abelian Born-Infeld action

    OpenAIRE

    Bergshoeff, E. A.; de Roo, M.; Sevrin, A.

    2000-01-01

    We review an iterative construction of the supersymmetric non-abelian Born-Infeld action. We obtain the action through second order in the fieldstrength. Kappa-invariance fixes the ordenings which turn out to deviate from the symmetrized trace proposal.

  14. Supersymmetric descendants of self-adjointly extended quantum mechanical Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hashimi, M.H., E-mail: hashimi@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Salman, M., E-mail: msalman@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Shalaby, A., E-mail: amshalab@qu.edu.qa [Department of Mathematics, Statistics, and Physics, Qatar University, Al Tarfa, Doha 2713 (Qatar); Physics Department, Faculty of Science, Mansoura University (Egypt); Wiese, U.-J., E-mail: wiese@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, Bern University, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Center for Theoretical Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA (United States)

    2013-10-15

    We consider the descendants of self-adjointly extended Hamiltonians in supersymmetric quantum mechanics on a half-line, on an interval, and on a punctured line or interval. While there is a 4-parameter family of self-adjointly extended Hamiltonians on a punctured line, only a 3-parameter sub-family has supersymmetric descendants that are themselves self-adjoint. We also address the self-adjointness of an operator related to the supercharge, and point out that only a sub-class of its most general self-adjoint extensions is physical. Besides a general characterization of self-adjoint extensions and their supersymmetric descendants, we explicitly consider concrete examples, including a particle in a box with general boundary conditions, with and without an additional point interaction. We also discuss bulk-boundary resonances and their manifestation in the supersymmetric descendant. -- Highlights: •Self-adjoint extension theory and contact interactions. •Application of self-adjoint extensions to supersymmetry. •Contact interactions in finite volume with Robin boundary condition.

  15. Neutrino masses within the minimal supersymmetric Standard Model

    CERN Document Server

    Cvetic, M; Cvetic, Mirjam; Langacker, Paul

    1992-01-01

    We investigate the possibility of accommodating neutrino masses compatible with the MSW study of the Solar neutrino deficit within the minimal supersymmetric Standard Model. The ``gravity-induced'' seesaw mechanism based on an interplay of nonrenormalizable and renormalizable terms in the superpotential allows neutrino masses $m_\

  16. Supersymmetric Langevin equation to explore free-energy landscapes.

    Science.gov (United States)

    Mossa, Alessandro; Clementi, Cecilia

    2007-04-01

    The recently discovered supersymmetric generalizations of the Langevin dynamics and Kramers equation can be utilized for the exploration of free-energy landscapes of systems whose large time-scale separation hampers the usefulness of standard molecular dynamics techniques. The first realistic application is here presented. The system chosen is a minimalist model for a short alanine peptide exhibiting a helix-coil transition.

  17. Coherent States for Supersymmetric Partners of the Infinite Well

    Science.gov (United States)

    Hussin, V.; Morales-Salgado, V. S.

    2017-05-01

    We define linear and quadratic coherent states for the supersymmetric partners of the quantum infinite well through formal series expansions of the energy eigenfunctions of the systems and we study the appropriateness of this definitions as coherent states by means of their properties. In particular, we examine the localization in position and time evolution, minimum uncertainty relations and the behavior of the Wigner function.

  18. Large BR(h -> tau mu) in Supersymmetric Models

    CERN Document Server

    Hammad, Ahmed; Un, Cem Salih

    2016-01-01

    We analyze the Lepton Flavor Violating (LFV) Higgs decay h -> tau mu in three supersymmetric models: Minimal Supersymmetric Standard Model (MSSM), Supersymmetric Seesaw Model (SSM), and Supersymmetric B-L model with Inverse Seesaw (BLSSM-IS). We show that in generic MSSM, with non-universal slepton masses and/or trilinear couplings, it is not possible to enhance BR(h -> tau mu) without violating the experimental bound on the BR(tau -> mu gamma). In SSM, where flavor mixing is radiatively generated, the LFV process mu -> e gamma strictly constrains the parameter space and the maximum value of BR(h -> tau mu) is of order 10^-10, which is extremely smaller than the recent results reported by the CMS and ATLAS experiments. In BLSSM-IS, with universal soft SUSY breaking terms at the grand unified scale, we emphasize that the measured values of BR(h -> tau mu) can be accommodated in a wide region of parameter space without violating LFV constraints. Thus, confirming the LFV Higgs decay results will be a clear signa...

  19. Comments on the spontaneous symmetry breaking in supersymmetric theories

    Energy Technology Data Exchange (ETDEWEB)

    Girardi, G.; Sorba, P.; Stora, R. (Grenoble-1 Univ., 74 - Annecy (France). Lab. de Physique des Particules)

    1984-08-30

    The role of the complex extension of the symmetry group in supersymmetric theories is revisited. We prove, in particular, that if symmetry breaking occurs at an extremum of the superpotential, then supersymmetry will be preserved if and only if the complex stabilizer of the vacuum is the complexified of its maximal compact part.

  20. Search for dark photons from supersymmetric hidden valleys

    NARCIS (Netherlands)

    Abazov, V.M.; et al., [Unknown; Ancu, L.S.; de Jong, S.J.; Filthaut, F.; Galea, C.F.; Hegeman, J.G.; Houben, P.; Meijer, M.M.; Svoisky, P.; van den Berg, P.J.; van Leeuwen, W.M.

    2009-01-01

    We search for a new light gauge boson, a dark photon, with the D0 experiment. In the model we consider, supersymmetric partners are pair produced and cascade to the lightest neutralinos that can decay into the hidden sector state plus either a photon or a dark photon. The dark photon decays through

  1. Two-loop beta functions for supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Jack, I. (Imperial Coll. of Science and Technology, London (UK). Blackett Lab.)

    1984-11-15

    The two-loop ..beta.. functions in the dimensional regularisation framework for a general gauge theory coupled to scalar and spinor fields are presented and by means of a finite transformation of the couplings are converted into a form which vanishes for special cases corresponding to supersymmetric gauge theories.

  2. The $N=2$ supersymmetric unconstrained matrix GNLS hierarchies

    NARCIS (Netherlands)

    Sorin, A.S.; Kersten, P.H.M.

    2002-01-01

    The generalization of the $N=2$ supersymmetric chiral matrix $(k|n,m)$--GNLS hierarchy to the case when matrix entries are bosonic and fermionic unconstrained $N=2$ superfields is proposed. This is done by exhibiting the corresponding matrix Lax--pair representation in terms of $N=2$ unconstrained s

  3. Recursive representation of Wronskians in confluent supersymmetric quantum mechanics

    Science.gov (United States)

    Contreras-Astorga, Alonso; Schulze-Halberg, Axel

    2017-03-01

    A recursive form of arbitrary-order Wronskian associated with transformation functions in the confluent algorithm of supersymmetric quantum mechanics (SUSY) is constructed. With this recursive form regularity conditions for the generated potentials can be analyzed. Moreover, as byproducts we obtain new representations of solutions to Schrödinger equations that underwent a confluent SUSY-transformation.

  4. Continuous media interpretation of supersymmetric Wess-Zumino type models

    Energy Technology Data Exchange (ETDEWEB)

    Letelier, P.S. [Universidade Estadual de Campinas (Brazil). Departamento de Matematica Aplicada; Zanchin, V.T. [Departamento de Fisica-CCNE, Universidade Federal de Santa Maria, 97119, Santa Maria, R.S. (Brazil)

    1995-02-20

    Supersymmetric Wess-Zumino type models are considered as classical material media that can be interpreted as fluids of ordered strings with heat flow along the strings, or a mixture of fluids of ordered strings with either a cloud of particles or a flux of directed radiation. ((orig.))

  5. Non-supersymmetric microstates of the MSW system

    NARCIS (Netherlands)

    Banerjee, Souvik; Chowdhury, Borun D.; Vercnocke, Bert; Virmani, Amitabh

    2014-01-01

    We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845)and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using

  6. Phenomenological study of the minimal R-symmetric supersymmetric standard model

    Energy Technology Data Exchange (ETDEWEB)

    Diessner, Philip

    2016-10-20

    The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement

  7. Supersymmetric and non-supersymmetric Seiberg-like dualities for gauged Wess–Zumino–Witten theories, realised on branes

    Directory of Open Access Journals (Sweden)

    E. Ireson

    2016-01-01

    Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.

  8. Neutrino fluxes from constrained minimal supersymmetric standard model lightest supersymmetric particle annihilations in the Sun

    CERN Document Server

    Ellis, John; Savage, Christopher; Spanos, Vassilis C

    2010-01-01

    We evaluate the neutrino fluxes to be expected from neutralino LSP annihilations inside the Sun, within the minimal supersymmetric extension of the Standard Model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the GUT scale (the CMSSM). We find that there are large regions of typical CMSSM $(m_{1/2}, m_0)$ planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM $(m_{1/2}, m_0)$ planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large $m_{1/2}$ along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct ...

  9. Searches for Supersymmetric Particles with the ATLAS Detector Using Boosted Decay Tree Topologies

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00399438; De, Kaushik; Hadavand, Haleh; Musielak, Zdzislaw; White, Andrew

    The existence of a scalar Higgs particle poses a challenge to the Standard Model through an unnatural hierarchy problem with quadratic divergence. A supersymmetric framework, proposing heavy partners to every Standard Model particle, can solve this problem by introducing new loop diagrams that involve a new fermion-boson symmetry. The LHC has the potential to probe the energy scale necessary for creation of these particles and the ATLAS experiment is poised for discovery. The detected particles are studied by reconstructing the detected events in boosted frames that approximate each decay frame of the interaction with pairs of heavy, invisible particles. This Razor method was used in the analysis of data from 2011 and 2012 and then generalized to the Recursive Jigsaw method in 2015.

  10. Search for a Supersymmetric Partner to the Top Quark using a Multivariate Analysis Technique.

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00337045

    Supersymmetry (SUSY) is an extension to the Standard Model (SM) which introduces supersymmetric partners of the known fermions and bosons. Top squark (stop) searches are a natural extension of inclusive SUSY searches at the Large Hadron Collider (LHC). If SUSY solves the naturalness problem, the stop should be light enough to cancel the top loop contribution to the Higgs mass parameter. The 3rd generation squarks may be the first SUSY particles to be discovered at the LHC. The stop can decay into a variety of final states, depending, amongst other factors, on the hierarchy of the mass eigenstates formed from the linear superposition of the SUSY partners of the Higgs boson and electroweak gauge bosons. In this study the relevant mass eigenstates are the lightest chargino ($\\chi_{1}^{\\pm}$) and the neutralino ($\\chi_{1}^{0}$). A search is presented for a heavy SUSY top partner decaying to a lepton, neutrino and the lightest supersymmetric particle ($\\chi_{1}^{0}$), via a b-quark and a chargino ($\\chi_{1}^{\\p...

  11. Extended supersymmetric sigma models in AdS_4 from projective superspace

    CERN Document Server

    Butter, Daniel; Lindstrom, Ulf; Tartaglino-Mazzucchelli, Gabriele

    2012-01-01

    There exist two superspace approaches to describe N=2 supersymmetric nonlinear sigma models in four-dimensional anti-de Sitter (AdS_4) space: (i) in terms of N=1 AdS chiral superfields, as developed in arXiv:1105.3111 and arXiv:1108.5290; and (ii) in terms of N=2 polar supermultiplets using the AdS projective-superspace techniques developed in arXiv:0807.3368. The virtue of the approach (i) is that it makes manifest the geometric properties of the N=2 supersymmetric sigma-models in AdS_4. The target space must be a non-compact hyperkahler manifold endowed with a Killing vector field which generates an SO(2) group of rotations on the two-sphere of complex structures. The power of the approach (ii) is that it allows us, in principle, to generate hyperkahler metrics as well as to address the problem of deformations of such metrics. Here we show how to relate the formulation (ii) to (i) by integrating out an infinite number of N=1 AdS auxiliary superfields and performing a superfield duality transformation. We al...

  12. Search for the flavor-changing interactions of the top quark with the Higgs boson in $H \\to b\\bar{b}$ channel at $\\sqrt{s}=13~\\mathrm{TeV}$

    CERN Document Server

    CMS Collaboration

    2017-01-01

    A search for flavor-changing neutral currents (FCNC) in associated production of a top quark with a Higgs boson is presented. Two channels are considered: top quark pair production, with FCNC decay of the top quark or antiquark, and single top production ($pp \\to tH$). This is the first analysis to probe top-Higgs FCNC couplings in the single top production mode. A final state with one isolated lepton and at least three reconstructed jets, among which at least two are identified as b quark jets, is studied. The data sample corresponds to an integrated luminosity of $35.9~\\mathrm{fb}^{-1}$ recorded by the CMS experiment at the LHC in proton-proton collisions at $\\sqrt{s}=13~\\mathrm{TeV}$ in 2016. No significant deviation is observed from predicted background. Observed (expected) upper limits at $95\\%$ confidence level are set on the branching ratios of top quark decays, $B(t \\rightarrow u H) < 0.47\\%~(0.34\\%)$ and $B(t \\rightarrow c H) < 0.47\\%~(0.44\\%)$, assuming a single non-vanishing FCNC coupling.

  13. Search For Neutral D Mesons Going To Muon-antimuon Flavor Changing Neutral Current Decay With The Hera-b Detector In 920 Gev/c Proton-nucleus Collisions

    CERN Document Server

    Shiu, J

    2003-01-01

    This analysis is to measure the branching ratio for the D0 → μ +μ− flavor-changing- neutral-current decay. Though this decay is allowed in high order diagrams in the Standard Model, the branching ratio is highly suppressed by both the GIM mechanism and helicity. The predicted branching ratio, within the context of the Standard Model, is of order 10−13 including the contribution from long distance interactions. However, in some extensions of the Standard Model, the branching ratio is predicted between order 10−6 and 10−11 which is well above the predicted Standard Model contributions. This makes this decay particularly interesting in testing these new models. The HERA-B experiment observes the collision of a 920 GeV/c proton beam with fixed targets ( s = 41.6 GeV). During the year 2000 run we collected 3800 J/Ψ → μ +μ− from 610k dimuon trigger events. With this data, I have determined an upper limit BR(D0...

  14. Exact solution of the one-dimensional super-symmetric t-J model with unparallel boundary fields

    CERN Document Server

    Zhang, Xin; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng

    2013-01-01

    The exact solution of the one-dimensional super-symmetric t-J model under generic integrable boundary conditions is obtained via the Bethe ansatz methods. With the coordinate Bethe ansatz, the corresponding R-matrix and K-matrices are derived for the second eigenvalue problem associated with spin degrees of freedom. It is found that the second eigenvalue problem can be transformed to that of the transfer matrix of the inhomogeneous XXX spin chain, which allows us to obtain the spectrum of the Hamiltonian and the associated Bethe ansatz equations by the off-diagonal Bethe ansatz method.

  15. Search for supersymmetric particles in final states with jets and missing transverse momentum with the ATLAS detector

    CERN Document Server

    Rammensee, Michael

    The Standard Model of particle physics (SM) is very successful in describing elementary particles and their interactions. The recent discovery of a new boson at the LHC continues this successful story as it is compatible with the last undiscovered particle in the SM, the Higgs boson. However, the SM has limitations such as the hierarchy problem or the missing dark matter candidate. One of the extensions to the SM includes a new space-time symmetry, called Supersymmetry (SUSY), resulting in a symmetry between fermions and bosons. In most phenomenological SUSY models the production of supersymmetric particles at the LHC is dominated by squark-squark, squark-anti-squark, squark-gluino and gluino-gluino pair production. Squarks are the super-partners to quarks and gluinos the super-partners to the gluons. These particles decay subsequently into the lightest supersymmetric particle which does not interact with detector material. Thus the striking signature for such a pair production of supersymmetric particles in ...

  16. Quantum Cosmology - The Supersymmetric Perspective - Vol. 2

    Science.gov (United States)

    Moniz, Paulo Vargas

    What is this book about? What is quantum cosmology with supersymmetry? How is supersymmetry implemented? Is it through the use of (recent developments in) a superstring theory? Why should the very early universe be explored in that manner? Are there enticing and interesting research problems left to solve? How relevant would it be to address and solve them?

  17. Approximations for strongly-coupled supersymmetric quantum mechanics

    CERN Document Server

    Kabat, D; Kabat, Daniel; Lifschytz, Gilad

    2000-01-01

    We advocate a set of approximations for studying the finite temperature behavior of strongly-coupled theories in 0+1 dimensions. The approximation consists of expanding about a Gaussian action, with the width of the Gaussian determined by a set of gap equations. The approximation can be applied to supersymmetric systems, provided that the gap equations are formulated in superspace. It can be applied to large-N theories, by keeping just the planar contribution to the gap equations. We analyze several models of scalar supersymmetric quantum mechanics, and show that the Gaussian approximation correctly distinguishes between a moduli space, mass gap, and supersymmetry breaking at strong coupling. Then we apply the approximation to a bosonic large-N gauge theory, and argue that a Gross-Witten transition separates the weak-coupling and strong-coupling regimes. A similar transition should occur in a generic large-N gauge theory, in particular in 0-brane quantum mechanics.

  18. Quasicomplex N=2, d=1 Supersymmetric Sigma Models

    Directory of Open Access Journals (Sweden)

    Evgeny A. Ivanov

    2013-11-01

    Full Text Available We derive and discuss a new type of N=2 supersymmetric quantum mechanical sigma models which appear when the superfield action of the (1,2,1 multiplets is modified by adding an imaginary antisymmetric tensor to the target space metric, thus completing the latter to a non-symmetric Hermitian metric. These models are not equivalent to the standard de Rham sigma models, but are related to them through a certain special similarity transformation of the supercharges. On the other hand, they can be obtained by a Hamiltonian reduction from the complex supersymmetric N=2 sigma models built on the multiplets (2,2,0 and describing the Dolbeault complex on the manifolds with proper isometries. We study in detail the extremal two-dimensional case, when the target space metric is defined solely by the antisymmetric tensor, and show that the corresponding quantum systems reveal a hidden N=4 supersymmetry.

  19. Supersymmetric Composite Models on Intersecting D-branes

    CERN Document Server

    Kitazawa, N

    2004-01-01

    We construct supersymmetric composite models of quarks and leptons from type IIA T^6/(Z_2 x Z_2) orientifolds with intersecting D6-branes. In case of T^6 = T^2 x T^2 x T^2 with no tilted T^2, a composite model of the supersymmetric SU(5) grand unified theory with three generations is constructed. In case of that one T^2 is tilted, a composite model with SU(3)_c x SU(2)_L x U(1)_Y gauge symmetry with three generations is constructed. These models are not realistic, but contain fewer additional exotic particles and U(1) gauge symmetries due to the introduction of the compositeness of quarks and leptons. The mu-term of Higgs fields can be naturally generated through the exponentially suppressed Yukawa interaction among "preons".

  20. GravitinoPack and decays of supersymmetric metastable particles

    CERN Document Server

    Eberl, Helmut

    2015-01-01

    We present the package GravitinoPack that calculates the two- and three-body decays of unstable supersymmetric particles involving the gravitino in the final or initial state. In a previous paper, we already showed results for the gravitino decays into two and three particles. In this paper, we incorporate the processes where an unstable neutralino, stau or stop decays into a gravitino and Standard Model particles. This is the case in gravitino dark matter supersymmetric models, where the gravitino is the lightest SUSY particle. We give instructions for the installation and the use of the package. In the numerical analysis, we discuss various MSSM scenarios. We show that the calculation of all the decay channels and the three-body decay branching ratios is essential for the accurate application of cosmological bounds on these models.

  1. Supersymmetric Theory of Stochastic ABC Model: A Numerical Study

    CERN Document Server

    Ovchinnikov, Igor V; Ensslin, Torsten A; Wang, Kang L

    2016-01-01

    In this paper, we investigate numerically the stochastic ABC model, a toy model in the theory of astrophysical kinematic dynamos, within the recently proposed supersymmetric theory of stochastics (STS). STS characterises stochastic differential equations (SDEs) by the spectrum of the stochastic evolution operator (SEO) on elements of the exterior algebra or differentials forms over the system's phase space, X. STS can thereby classify SDEs as chaotic or non-chaotic by identifying the phenomenon of stochastic chaos with the spontaneously broken topological supersymmetry that all SDEs possess. We demonstrate the following three properties of the SEO, deduced previously analytically and from physical arguments: the SEO spectra for zeroth and top degree forms never break topological supersymmetry, all SDEs possesses pseudo-time-reversal symmetry, and each de Rahm cohomology class provides one supersymmetric eigenstate. Our results also suggests that the SEO spectra for forms of complementary degrees, i.e., k and ...

  2. Higher-Rank Supersymmetric Models and Topological Field Theory

    CERN Document Server

    Kawai, T; Yang, S K; Kawai, Toshiya; Uchino, Taku; Yang, Sung-Kil

    1993-01-01

    In the first part of this paper we investigate the operator aspect of higher-rank supersymmetric model which is introduced as a Lie theoretic extension of the $N=2$ minimal model with the simplest case $su(2)$ corresponding to the $N=2$ minimal model. In particular we identify the analogs of chirality conditions and chiral ring. In the second part we construct a class of topological conformal field theories starting with this higher-rank supersymmetric model. We show the BRST-exactness of the twisted stress-energy tensor, find out physical observables and discuss how to make their correlation functions. It is emphasized that in the case of $su(2)$ the topological field theory constructed in this paper is distinct from the one obtained by twisting the $N=2$ minimal model through the usual procedure.

  3. Supersymmetric Grand Unification with Light Color-Triplet

    CERN Document Server

    Berezhiani, Lasha

    2011-01-01

    We construct a natural model of the supersymmetric SU(6) unification, in which the symmetry breaking, down to the standard model gauge group, results in the number of pseudo-Nambu-Goldstone superfields with interesting properties. Namely, besides the Higgs doublet-antidoublet pair which is responsible for the electroweak phase transition, the Nambu-Goldstone sector consists of multiplets in the anti- and fundamental representations of SU(5). While being strictly massless in the supersymmetric limit, they acquire the weak scale masses as a result of its breaking. The color-triplet components of this light sector could, in principle, mediate an unacceptably fast proton decay; however, because of the natural $\\text{TeV}/M_{\\text{GUT}}$ suppression of the Yukawa couplings to the light quarks and leptons, their existence is compatible with the experimental bound on proton lifetime. This suppression is made further interesting, since it results in the lifetime, of the lightest of the above-mentioned colored particl...

  4. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  5. Perturbation Theory in Supersymmetric QED: Infrared Divergences and Gauge Invariance

    CERN Document Server

    Dine, Michael; Haber, Howard E; Haskins, Laurel Stephenson

    2016-01-01

    We study some aspects of perturbation theory in $N=1$ supersymmetric abelian gauge theories with massive charged matter. In general gauges, infrared (IR) divergences and nonlocal behavior arise in 1PI diagrams, associated with a $1/k^4$ term in the propagator for the vector superfield. We examine this structure in supersymmetric QED. The IR divergences are gauge-dependent and must cancel in physical quantities like the electron pole mass. We demonstrate that cancellation takes place in a nontrivial way, amounting to a reorganization of the perturbative series from powers of $e^2$ to powers of $e$. We also show how these complications are avoided in cases where a Wilsonian effective action can be defined.

  6. The Glueball Spectrum In Conventional And Supersymmetric Quantum Chromodynamics

    CERN Document Server

    Gabadadze, Gregory T

    1998-01-01

    In the Dissertation we study some nonperturbative aspects of conventional Quantum Chromodynamics and its minimal supersymmetric counterpart, supersymmetric gluodynamics. After the introduction, the discussion of the spectrum of lightest glueballs in Quantum Chromodynamics is given. It is shown that the pseudoscalar glueball mass in Quantum Chromodynamics is less than the mass obtained in quenched lattice calculations. The glueball mass and nonperturbative glueball matrix elements are calculated. The production rate for the pseudoscalar glueball in radiative decays is predicted. Then, we study the nonperturbative features of the Lagrangian of Quantum Chromodynamics which might be responsible for formation of the pseudoscalar glueball state. The issue of the screening of the topological charge is analyzed. A possible non-perturbative mechanism of formation of the pseudoscalar glueball state is proposed. The masses of lowest pseudoscalar glueballs are predicted within the framework of this approach. The second h...

  7. Supersymmetric Extension of the Standard Model with Naturally Stable Proton

    CERN Document Server

    Aoki, M; Aoki, Mayumi; Oshimo, Noriyuki

    2000-01-01

    A new supersymmetric standard model based on N=1 supergravity is constructed, aiming at natural explanation for the proton stability without invoking an ad hoc discrete symmetry through R parity. The proton is protected from decay by an extra U(1) gauge symmetry. Particle contents are necessarily increased to be free from anomalies, making it possible to incorporate the superfields for right-handed neutrinos and an SU(2)-singlet Higgs boson. The vacuum expectation value of this Higgs boson, which induces spontaneous breakdown of the U(1) symmetry, yields large Majorana masses for the right-handed neutrinos, leading to small masses for the ordinary neutrinos. The linear coupling of SU(2)-doublet Higgs superfields, which is indispensable to the superpotential of the minimal supersymmetric standard model, is replaced by a trilinear coupling of the Higgs superfields, so that there is no mass parameter in the superpotential. The energy dependencies of the model parameters are studied, showing that gauge symmetry b...

  8. Supersymmetric quantum spin chains and classical integrable systems

    Science.gov (United States)

    Tsuboi, Zengo; Zabrodin, Anton; Zotov, Andrei

    2015-05-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y( gl( N| M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  9. Supersymmetric quantum spin chains and classical integrable systems

    CERN Document Server

    Tsuboi, Zengo; Zotov, Andrei

    2014-01-01

    For integrable inhomogeneous supersymmetric spin chains (generalized graded magnets) constructed employing Y(gl(N|M))-invariant R-matrices in finite-dimensional representations we introduce the master T-operator which is a sort of generating function for the family of commuting quantum transfer matrices. Any eigenvalue of the master T-operator is the tau-function of the classical mKP hierarchy. It is a polynomial in the spectral parameter which is identified with the 0-th time of the hierarchy. This implies a remarkable relation between the quantum supersymmetric spin chains and classical many-body integrable systems of particles of the Ruijsenaars-Schneider type. As an outcome, we obtain a system of algebraic equations for the spectrum of the spin chain Hamiltonians.

  10. Cluster-like coordinates in supersymmetric quantum field theory.

    Science.gov (United States)

    Neitzke, Andrew

    2014-07-08

    Recently it has become apparent that N = 2 supersymmetric quantum field theory has something to do with cluster algebras. I review one aspect of the connection: supersymmetric quantum field theories have associated hyperkähler moduli spaces, and these moduli spaces carry a structure that looks like an extension of the notion of cluster variety. In particular, one encounters the usual variables and mutations of the cluster story, along with more exotic extra variables and generalized mutations. I focus on a class of examples where the underlying cluster varieties are moduli spaces of flat connections on surfaces, as considered by Fock and Goncharov [Fock V, Goncharov A (2006) Publ Math Inst Hautes Études Sci 103:1-211]. The work reviewed here is largely joint with Davide Gaiotto and Greg Moore.

  11. Higgs diphoton rate enhancement from supersymmetric physics beyond the MSSM

    CERN Document Server

    Berg, Marcus; Ghilencea, D.M.; Petersson, Christoffer

    2013-01-01

    We show that supersymmetric "new physics" beyond the MSSM can naturally accommodate a Higgs mass near 126 GeV and enhance the signal rate in the Higgs to diphoton channel, while the signal rates in all the other Higgs decay channels coincide with Standard Model expectations, except possibly the Higgs to Z-photon channel. The "new physics" that corrects the relevant Higgs couplings can be captured by two supersymmetric effective operators. We provide a simple example of an underlying model in which these operators are simultaneously generated. The scale of "new physics" that generates these operators can be around 5 TeV or larger, and outside the reach of the LHC.

  12. Supersymmetric Gödel Universes in string theory

    DEFF Research Database (Denmark)

    Harmark, Troels; Takayanagi, Tadashi

    2003-01-01

    Supersymmetric backgrounds in string and M-theory of the Gödel Universe type are studied. We find several new Gödel Universes that preserve up to 20 supersymmetries. In particular, we obtain an interesting Gödel Universe in M-theory with 18 supersymmetries which does not seem to be dual to a pp......-wave. We show that not only T-duality but also the type-IIA/M-theory S-duality can give supersymmetric Gödel Universes from pp-waves. We find solutions that can interpolate between Gödel Universes and pp-waves. We also compute the string spectrum on two type IIA Gödel Universes. Furthermore, we obtain...

  13. Deformed supersymmetric gauge theories from the fluxtrap background

    CERN Document Server

    Orlando, Domenico

    2013-01-01

    The fluxtrap background of string theory provides a transparent and algorithmic way of constructing supersymmetric gauge theories with both mass and Omega-type deformations in various dimensions. In this article, we review a number of deformed supersymmetric gauge theories in two and four dimensions which can be obtained via the fluxtrap background from string or M-theory. Such theories, the most well-known being Omega-deformed super Yang-Mills theory in four dimensions, have met with a lot of interest in the recent literature. The string theory treatment offers many new avenues of analysis and applications, such as for example the study of the gravity duals for deformed N=4 gauge theories.

  14. Antideuterons as a Signature of Supersymmetric Dark Matter

    CERN Document Server

    Donato, F; Salati, Pierre

    2000-01-01

    Once the energy spectrum of the secondary component is well understood, measurements of the antiproton cosmic-ray flux at the Earth will be a powerful way to indirectly probe for the existence of supersymmetric relics in the galactic halo. Unfortunately, it is still spoilt by considerable theoretical uncertainties. As shown in this work, searches for low-energy antideuterons appear in the mean time as a plausible alternative, worth being explored. Above a few GeV/n, a dozen spallation antideuterons should be collected by the future AMS experiment on board ISSA. For energies less than about 3 GeV/n, the antideuteron spallation component becomes negligible and may be supplanted by a potential supersymmetric signal. If a few low-energy antideuterons are discovered, this should be seriously taken as a clue for the existence of massive neutralinos in the Milky Way.

  15. Consistent Perturbative Fixed Point Calculations in QCD and Supersymmetric QCD

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.

    2016-01-01

    We suggest how to consistently calculate the anomalous dimension $\\gamma_*$ of the $\\bar{\\psi}\\psi$ operator in finite order perturbation theory at an infrared fixed point for asymptotically free theories. If the $n+1$ loop beta function and $n$ loop anomalous dimension are known then $\\gamma......_*$ can be calculated exactly and fully scheme independently through $O(\\Delta_f^n )$ where $\\Delta_f = \\bar{N_f} - N_f$ and $N_f$ is the number of flavors and $\\bar{N}_f$ is the number of flavors above which asymptotic freedom is lost. For a supersymmetric theory the calculation preserves supersymmetry...... order by order in $\\Delta_f$. We then compute $\\gamma_*$ through $O(\\Delta_f^2)$ for supersymmetric QCD in the $\\overline{\\text{DR}}$ scheme and find that it matches the exact known result. We find that $\\gamma_*$ is astonishingly well described in perturbation theory already at the few loops level...

  16. Supersymmetric standard model from the heterotic string (II)

    Energy Technology Data Exchange (ETDEWEB)

    Buchmueller, W. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamaguchi, K. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Tokyo Univ. (Japan). Dept. of Physics; Lebedev, O.; Ratz, M. [Bonn Univ. (Germany). Physikalisches Inst.

    2006-06-15

    We describe in detail a Z{sub 6} orbifold compactification of the heterotic E{sub 8} x E{sub 8} string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)

  17. Higher-order predictions for supersymmetric particle decays

    Energy Technology Data Exchange (ETDEWEB)

    Landwehr, Ananda Demian Patrick

    2012-06-12

    We analyze particle decays including radiative corrections at the next-to-leading order (NLO) within the Minimal Supersymmetric Standard Model (MSSM). If the MSSM is realized at the TeV scale, squark and gluino production and decays yield relevant rates at the LHC. Hence, in the first part of this thesis, we compute decay widths including QCD and electroweak NLO corrections to squark and gluino decays. Furthermore, the Higgs sector of the MSSM is enhanced compared to the one of the Standard Model. Thus, the additional Higgs bosons decay also into supersymmetric particles. These decays and the according NLO corrections are analyzed in the second part of this thesis. The calculations are performed within a common renormalization framework and numerically evaluated in specific benchmark scenarios.

  18. Neutralino Relic Density in a Supersymmetric U(1)' Model

    CERN Document Server

    Barger, V; Langacker, P; Lee, H S; Barger, Vernon; Kao, Chung; Langacker, Paul; Lee, Hye-Sung

    2004-01-01

    We study properties of the lightest neutralino (\\chi) and calculate its cosmological relic density in a supersymmetric U(1)' model with a secluded U(1)' breaking sector (the S-model). The lightest neutralino mass is smaller than in the minimal supersymmetric standard model; for instance, m_\\chi < 100 GeV in the limit that the U(1)' gaugino mass is large compared to the electroweak scale. We find that the Z-\\chi-\\chi coupling can be enhanced due to the singlino components in the extended neutralino sector. Neutralino annihilation through the Z-resonance then reproduces the measured cold dark matter density over broad regions of the model parameter space.

  19. Non-supersymmetric microstates of the MSW system

    Science.gov (United States)

    Banerjee, Souvik; Chowdhury, Borun D.; Vercnocke, Bert; Virmani, Amitabh

    2014-05-01

    We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845) and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using SO(4, 4) dualities applied to an appropriate seed solution. The SO(4, 4) approach offers certain technical advantages. Our microstate solutions are smooth in five dimensions, as opposed to all previously known non-supersymmetric microstates with AdS3 cores, which are smooth only in six dimensions. The decoupled geometries for our microstates are related to global AdS3 × S2 by spectral flows.

  20. Non-supersymmetric microstates of the MSW system

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, Souvik [Centre for Theoretical Physics, University of Groningen,Nijenborgh 4, Groningen (Netherlands); Chowdhury, Borun D. [Department of Physics, Arizona State University,Tempe, Arizona 85287 (United States); Vercnocke, Bert [Institute of Physics, University of Amsterdam,Science Park, Postbus 94485, 1090 GL Amsterdam (Netherlands); Virmani, Amitabh [Institute of Physics,Sachivalaya Marg, Bhubaneswar, Odisha, 751005 (India)

    2014-05-05

    We present an analysis parallel to that of Giusto, Ross, and Saxena (arXiv:0708.3845) and construct a discrete family of non-supersymmetric microstate geometries of the Maldacena-Strominger-Witten system. The supergravity configuration in which we look for the smooth microstates is constructed using SO(4,4) dualities applied to an appropriate seed solution. The SO(4,4) approach offers certain technical advantages. Our microstate solutions are smooth in five dimensions, as opposed to all previously known non-supersymmetric microstates with AdS{sub 3} cores, which are smooth only in six dimensions. The decoupled geometries for our microstates are related to global AdS{sub 3}×S{sup 2} by spectral flows.

  1. Flavor violation in supersymmetric theories with gauged flavor symmetries

    OpenAIRE

    Kobayashi, Tatsuo; Nakano, Hiroaki; Terao, Haruhiko; Yoshioka, Koichi

    2002-01-01

    In this paper we study flavor violation in supersymmetric models with gauged flavor symmetries. There are several sources of flavor violation in these theories. The dominant flavor violation is the tree-level $D$-term contribution to scalar masses generated by flavor symmetry breaking. We present a new approach for suppressing this phenomenologically dangerous effects by separating the flavor-breaking sector from supersymmetry-breaking one. The separation can be achieved in geometrical setups...

  2. BPS Boojums in N=2 supersymmetric gauge theories II

    OpenAIRE

    Arai, Masato; Blaschke, Filip; Eto, Minoru(Department of Physics, Yamagata University, Yamagata, 990-8560, Japan)

    2016-01-01

    We continue our study of 1/4 Bogomol'nyi-Prasad-Sommerfield (BPS) composite solitons of vortex strings, domain walls and boojums in N=2 supersymmetric Abelian gauge theories in four dimensions. In this work, we numerically confirm that a boojum appearing at an end point of a string on a thick domain wall behaves as a magnetic monopole with a fractional charge in three dimensions. We introduce a "magnetic" scalar potential whose gradient gives magnetic fields. Height of the magnetic potential ...

  3. Supersymmetric black holes with lens-space topology.

    Science.gov (United States)

    Kunduri, Hari K; Lucietti, James

    2014-11-21

    We present a new supersymmetric, asymptotically flat, black hole solution to five-dimensional supergravity. It is regular on and outside an event horizon of lens-space topology L(2,1). It is the first example of an asymptotically flat black hole with lens-space topology. The solution is characterized by a charge, two angular momenta, and a magnetic flux through a noncontractible disk region ending on the horizon, with one constraint relating these.

  4. Radiative fermion mass matrix generation in supersymmetric models

    Energy Technology Data Exchange (ETDEWEB)

    Papantonopoulos, E.; Zoupanos, G.

    1984-01-01

    Supersymmetric SU(2)sub(L)xU(1) horizontal models are studied. The non-renormalisation theorems of sypersymmetry are used to make the mass generation and flavour mixing natural. For three families, the fermion mass matrix generation mechanism is studied as a radiative effect due to horizontal interactions, using various representations of the gauge horizontal groups SU(2)sub(H) and SU(3)sub(H). An attractive possibility leading to a realistic mass matrix is found.

  5. Regge trajectories in {N} = 2 supersymmetric Yang-Mills theory

    Science.gov (United States)

    Córdova, Clay

    2016-09-01

    We demonstrate that {N} = 2 supersymmetric non-Abelian gauge theories have towers of BPS particles obeying a Regge relation, J ˜ m 2, between their angular momenta, J, and their masses, m. For SU( N) Yang-Mills theories, we estimate the slope of these Regge trajectories using a non-relativistic quiver quantum mechanics model. Along the way, we also prove various structure theorems for the quiver moduli spaces that appear in the calculation.

  6. The supersymmetric Higgs boson with flavoured A-terms

    Directory of Open Access Journals (Sweden)

    Andrea Brignole

    2015-09-01

    Full Text Available We consider a supersymmetric scenario with large flavour violating A-terms in the stop/scharm sector and study their impact on the Higgs mass, the electroweak ρ parameter and the effective Higgs couplings to gluons, photons and charm quarks. For each observable we present explicit analytical expressions which exhibit the relevant parametric dependences, both in the general case and in specific limits. We find significant effects and comment on phenomenological implications for the LHC and future colliders.

  7. Review of localization for 5d supersymmetric gauge theories

    CERN Document Server

    Qiu, Jian

    2016-01-01

    We give a pedagogical review of the localization of supersymmetric gauge theory on 5d toric Sasaki-Einstein manifolds. We construct the cohomological complex resulting from supersymmetry and consider its natural toric deformations with all equivariant parameters turned on. We also give detailed discussion on how the Sasaki-Einstein geometry permeates every aspect of the calculation, from Killing spinor, vanishing theorems to the index theorems.

  8. Supersymmetric R\\'enyi Entropy in Two Dimensions

    CERN Document Server

    Mori, Hironori

    2015-01-01

    We compute the exact partition function on the branched two-sphere by the localization technique. It is found that it does not depend on a branching parameter q, which means that supersymmetric R\\'enyi entropy defined by utilizing it is equivalent to the usual entanglement entropy. We also provide the interpretation of the conical singularities on the branched sphere as defects sit on the poles of the nonsingular two-sphere.

  9. CP Violation in Production and Decay of Supersymmetric Particles

    OpenAIRE

    2005-01-01

    In this thesis we analyze CP violating effects of MSSM phases in production and two-body decays of neutralinos, charginos and sfermions. For different supersymmetric processes we define and calculate CP-odd asymmetries, which base on triple products. We present numerical results for electron-positron collisions at a future linear collider with a center of mass energy of 500-800 GeV, high luminosity and longitudinally polarized beams.

  10. CP violation in production and decay of supersymmetric particles

    Energy Technology Data Exchange (ETDEWEB)

    Kittel, O.

    2004-07-01

    In this thesis we analyze CP violating effects of MSSM phases in production and two-body decays of neutralinos, charginos and sfermions. For different supersymmetric processes we define and calculate CP-odd asymmetries, which base on triple products. We present numerical results for electron-positron collisions at a future linear collider with a center of mass energy of 500-800 GeV, high luminosity and longitudinally polarized beams. (Orig.)

  11. N=2 supersymmetric sigma-models in AdS

    CERN Document Server

    Butter, Daniel

    2011-01-01

    We construct the most general N=2 supersymmetric nonlinear sigma-model in four-dimensional anti-de Sitter (AdS) space in terms of N=1 chiral superfields. The target space is shown to be a non-compact hyperkahler manifold restricted to possess a special Killing vector field. A remarkable property of the sigma-model constructed is that the algebra of OSp(2|4) transformations is closed off the mass shell.

  12. Supersymmetric Yang-Mills quantum mechanics in various dimensions

    CERN Document Server

    Wosiek, J

    2004-01-01

    Recent analytical and numerical solutions of the above systems are reviewed. Discussed results include: a) exact construction of the supersymmetric vacua in two space-time dimensions, and b) precise numerical calculations of the coexisting continuous and discrete spectra in the four-dimensional system, together with the identification of dynamical supermultiplets and SUSY vacua. New construction of the gluinoless SO(9) singlet state, which is vastly different from the empty state, in the ten-dimensional model is also briefly summarized.

  13. An introduction to supersymmetric field theories in curved space

    CERN Document Server

    Dumitrescu, Thomas T

    2016-01-01

    In this review, we give a pedagogical introduction to a systematic framework for constructing and analyzing supersymmetric field theories on curved spacetime manifolds. The framework is based on the use of off-shell supergravity background fields. We present the general principles, which broadly apply to theories with different amounts of supersymmetry in diverse dimensions, as well as specific applications to N=1 theories in four dimensions and their three-dimensional cousins with N=2 supersymmetry.

  14. Electric Dipole Moments of Neutron and Electron in Supersymmetric Model

    OpenAIRE

    Aoki, Mayumi; Kadoyoshi, Tomoko; Sugamoto, Akio; Oshimo, Noriyuki

    1997-01-01

    The electric dipole moments (EDMs) of the neutron and the electron are reviewed within the framework of the supersymmetric standard model (SSM) based on grand unified theories coupled to N=1 supergravity. Taking into account one-loop and two-loop contributions to the EDMs, we explore SSM parameter space consistent with experiments and discuss predicted values for the EDMs. Implications of baryon asymmetry of our universe for the EDMs are also discussed.

  15. Minimum Supersymmetric Standard Model on the Noncommutative Geometry

    CERN Document Server

    Ishihara, Satoshi; Matsukawa, Atsuko; Sato, Hikaru; Shimojo, Masafumi

    2013-01-01

    We have obtained the supersymmetric extension of spectral triple which specify a noncommutative geometry(NCG). We assume that the functional space H constitutes of wave functions of matter fields and their superpartners included in the minimum supersymmetric standard model(MSSM). We introduce the internal fluctuations to the Dirac operator on the manifold as well as on the finite space by elements of the algebra A in the triple. So, we obtain not only the vector supermultiplets which meditate SU(3)xSU(2)xU(1)_Y gauge degrees of freedom but also Higgs supermultiplets which appear in MSSM on the same standpoint. Accoding to the supersymmetric version of the spectral action principle, we calculate the square of the fluctuated total Dirac operator and verify that the Seeley-DeWitt coeffients give the correct action of MSSM. We also verify that the relation between coupling constants of $SU(3)$,$SU(2)$ and $U(1)_Y$ is same as that of SU(5) unification theory.

  16. Four dimensional supersymmetric theories in presence of a boundary

    Directory of Open Access Journals (Sweden)

    Mir Faizal

    2015-09-01

    Full Text Available In this paper, we study N=1 supersymmetric theories in four dimensions in presence of a boundary. We demonstrate that it is possible to preserve half the supersymmetry of the original theory by suitably modifying it in presence of a boundary. This is done by adding new boundary terms to the original action, such that the supersymmetric variation of the new terms exactly cancels the boundary terms generated by the supersymmetric transformation of the original bulk action. We also analyze the boundary projections of such supercharges used in such a theory. We study super-Yang–Mills theories in presence of a boundary using these results. Finally, we study the Born–Infeld action in presence of a boundary. We analyze the boundary effects for the Born–Infeld action coupled to a background dilaton and an axion field. We also analyze the boundary effects for a non-abelian Born–Infeld action. We explicitly construct the actions for these systems in presence of a boundary. This action preserves half of the original supersymmetry.

  17. A Chargeless Complex Vector Matter Field in Supersymmetric Scenario

    Directory of Open Access Journals (Sweden)

    L. P. Colatto

    2015-01-01

    Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.

  18. Updated solution to the solar neutrino problem based on non-standard neutrino interactions

    CERN Document Server

    Guzzo, M M; Nunokawa, H

    2001-01-01

    We present an updated version of the solution to the solar neutrino problem based on non-standard flavor changing neutrino interactions (FCNI) and non-universal flavor diagonal neutrino interactions (FDNI). We find a good fit not only to the total rates measured by all solar neutrino experiments but also to the day-night and seasonal variations of the event rate, as well as the recoil electron energy spectrum measured by the SuperKamiokande collaboration.

  19. Dyonic non-Abelian vortex strings in supersymmetric and non-supersymmetric theories: tensions and higher derivative corrections

    CERN Document Server

    Eto, Minoru

    2014-01-01

    Dyonic non-Abelian local/semi-global vortex strings are studied in detail in supersymmetric/non-supersymmetric Yang-Mills-Higgs theories. While the BPS tension formula is known to be the same as that for the BPS dyonic instanton, we find that the non-BPS tension formula is approximated very well by the well-known tension formula of the BPS dyon. We show that this mysterious tension formula for the dyonic non-BPS vortex stings can be understood from the perspective of a low energy effective field theory. Furthermore, we propose an efficient method to obtain an effective theory of a single vortex string, which includes not only lower derivative terms but also all order derivative corrections by making use of the tension formula. We also find a novel dyonic vortex string whose internal orientation vectors rotate in time and spiral along the string axis.

  20. Higgs as a probe of supersymmetric grand unification with the Hosotani mechanism

    CERN Document Server

    Yamashita, T

    2015-01-01

    The supersymmetric grand unified theory where the $SU(5)$ gauge symmetry is broken by the Hosotani mechanism provides a natural solution to the so-called doublet-triplet splitting problem. At the same time, this model derives a general and distinctive prediction that is testable at TeV scale collider experiments. To be more concrete, adjoint chiral supermultiplets with masses around TeV scale appear. Since these additional fields originate from a higher-dimensional gauge supermultiplet, our model is highly predictive. We study especially the Higgs sector and show that our model is discriminative from the others by precision measurements of the couplings and masses. Namely, we may get a hint of the breaking mechanism of the grand unification at future collider experiments.

  1. Supersymmetric AdS{sub 6} solutions of type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyojoong, E-mail: h.kim@khu.ac.kr; Kim, Nakwoo, E-mail: nkim@khu.ac.kr [Department of Physics and Research Institute of Basic Science, Kyung Hee University, 130-701, Seoul (Korea, Republic of); Suh, Minwoo, E-mail: minsuh@usc.edu [Department of Physics, Sogang University, 121-742, Seoul (Korea, Republic of)

    2015-10-11

    We study the general requirement for supersymmetric AdS{sub 6} solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS{sub 6}. This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,ℝ)/SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) ⊂SL(3,ℝ) in a way analogous to gauged supergravity.

  2. Supersymmetric AdS{sub 6} solutions of type IIB supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyojoong; Kim, Nakwoo [Kyung Hee University, Department of Physics and Research Institute of Basic Science, Seoul (Korea, Republic of); Suh, Minwoo [Sogang University, Department of Physics, Seoul (Korea, Republic of)

    2015-10-15

    We study the general requirement for supersymmetric AdS{sub 6} solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS{sub 6}. This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,R)/ SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) is contained in SL(3,R) in a way analogous to gauged supergravity. (orig.)

  3. Anomaly Mediation and Fixed Point in Partially N = 2 Supersymmetric Standard Models

    CERN Document Server

    Yin, Wen

    2016-01-01

    To explain the tension between the observed Higgs boson mass and the experimental deviations from the Standard Model (SM) prediction in flavor physics, especially the experimental anomaly of the muon anomalous dipole moment (muon $g-2$), we study partially $N=2$ supersymmetric (SUSY) extensions of the SM (partially $N=2$ SSMs). In this kind of model, an $N=2$ SUSY sector is sequestered from the SUSY breaking due to $SO(2)_R$ symmetry at the tree-level. We show that the low energy physics in the $N=2$ sector is controlled by a fixed point and hence approximately UV insensitive. Moreover at this fixed point, the tachyonic slepton problem of anomaly mediation is always solved. In a concrete partially $N=2$ SSM, the muon $g-2$ anomaly is explained within the $1\\sigma$ level error with $mathcal{O}(100)$TEV cosmologically favored gravitino. We also propose some new dark matter candidates as a natural consequence of partially $N=2$ SSMs.

  4. Loop formulation of the supersymmetric nonlinear O(N) sigma model

    CERN Document Server

    Steinhauer, Kyle

    2013-01-01

    We derive the fermion loop formulation for the supersymmetric nonlinear O$(N)$ sigma model by performing a hopping expansion using Wilson fermions. In this formulation the fermionic contribution to the partition function becomes a sum over all possible closed non-oriented fermion loop configurations. The interaction between the bosonic and fermionic degrees of freedom is encoded in the constraints arising from the supersymmetry and induces flavour changing fermion loops. For $N \\ge 3$ this leads to fermion loops which are no longer self-avoiding and hence to a potential sign problem. Since we use Wilson fermions the bare mass needs to be tuned to the chiral point. For $N=2$ we determine the critical point and present boson and fermion masses in the critical regime.

  5. New ATLAS results in inclusive searches for supersymmetric squarks and gluinos

    National Research Council Canada - National Science Library

    Miriam Lorenz, Jeanette

    2014-01-01

    .... These proceedings summarise recent results from the ATLAS experiment at the LHC on inclusive searches for supersymmetric squarks and gluinos in events containing jets, missing transverse momentum...

  6. Localization of gauge theory on a four-sphere and supersymmetric Wilson loops

    CERN Document Server

    Pestun, Vasily

    2007-01-01

    We prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N=4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N=2 and the N=2* supersymmetric Yang-Mills theory on a four-sphere. A four-dimensional N=2 superconformal gauge theory is treated similarly.

  7. Update of the search for supersymmetric particles in scenarios with Gravitino LSP and Sleptons NLSP

    CERN Document Server

    Abreu, P.; Adye, T.; Adzic, P.; Albrecht, Z.; Alderweireld, T.; Alekseev, G.D.; Alemany, R.; Allmendinger, T.; Allport, P.P.; Almehed, S.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Anassontzis, E.G.; Andersson, P.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.D.; Arnoud, Y.; Asman, B.; Augustin, J.E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barao, F.; Barbiellini, G.; Barbier, R.; Bardin, Dmitri Yu.; Barker, G.J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.H.; Begalli, M.; Behrmann, A.; Belokopytov, Yu.; Belous, K.; Benekos, N.C.; Benvenuti, A.C.; Berat, C.; Berggren, M.; Berntzon, L.; Bertrand, D.; Besancon, M.; Besson, N.; Bilenky, Mikhail S.; Bloch, D.; Blom, H.M.; Bol, L.; Bonesini, M.; Boonekamp, M.; Booth, P.S.L.; Borisov, G.; Bosio, C.; Botner, O.; Boudinov, E.; Bouquet, B.; Bowcock, T.J.V.; Boyko, I.; Bozovic, I.; Bozzo, M.; Bracko, M.; Branchini, P.; Brenner, R.A.; Bruckman, P.; Brunet, J.M.; Bugge, L.; Buschmann, P.; Caccia, M.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Carroll, L.; Caso, C.; Castillo Gimenez, M.V.; Cattai, A.; Cavallo, F.R.; Chapkin, M.; Charpentier, P.; Checchia, P.; Chelkov, G.A.; Chierici, R.; Chliapnikov, P.; Chochula, P.; Chorowicz, V.; Chudoba, J.; Cieslik, K.; Collins, P.; Contri, R.; Cortina, E.; Cosme, G.; Cossutti, F.; Costa, M.; Crawley, H.B.; Crennell, D.; Croix, J.; Cuevas Maestro, J.; Czellar, S.; D'Hondt, J.; Dalmau, J.; Davenport, M.; Da Silva, W.; Della Ricca, G.; Delpierre, P.; Demaria, N.; De Angelis, A.; De Boer, W.; De Clercq, C.; De Lotto, B.; De Min, A.; De Paula, L.; Dijkstra, H.; Di Ciaccio, L.; Doroba, K.; Dracos, M.; Drees, J.; Dris, M.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Engel, J.P.; Espirito Santo, M.C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferrer-Ribas, E.; Ferro, F.; Firestone, A.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fontanelli, F.; Franek, B.; Frodesen, A.G.; Fruhwirth, R.; Fulda-Quenzer, F.; Fuster, J.; Galloni, A.; Gamba, D.; Gamblin, S.; Gandelman, M.; Garcia, C.; Gaspar, C.; Gaspar, M.; Gasparini, U.; Gavillet, P.; Gazis, Evangelos; Gele, D.; Geralis, T.; Ghodbane, N.; Gil Botella, Ines; Glege, F.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Gonzalez Caballero, I.; Gopal, G.; Gorn, L.; Gouz, Yu.; Gracco, V.; Grahl, J.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hahn, F.; Hahn, S.; Haider, S.; Hallgren, A.; Hamacher, K.; Hansen, J.; Harris, F.J.; Haug, S.; Hauler, F.; Hedberg, V.; Heising, S.; Hernandez, J.J.; Herquet, P.; Herr, H.; Hertz, O.; Higon, E.; Holmgren, S.O.; Holt, P.J.; Hoorelbeke, S.; Houlden, M.; Hrubec, J.; Hughes, G.J.; Hultqvist, K.; Jackson, John Neil; Jacobsson, R.; Jalocha, P.; Jarlskog, C.; Jarlskog, G.; Jarry, P.; Jean-Marie, B.; Jeans, D.; Johansson, Erik Karl; Jonsson, P.; Joram, C.; Juillot, P.; Jungermann, L.; Kapusta, Frederic; Karafasoulis, K.; Katsanevas, S.; Katsoufis, E.C.; Keranen, R.; Kernel, G.; Kersevan, B.P.; Khokhlov, Yu.A.; Khomenko, B.A.; Khovanski, N.N.; Kiiskinen, A.; King, B.; Kinvig, A.; Kjaer, N.J.; Klapp, O.; Kluit, P.; Kokkinias, P.; Kostioukhine, V.; Kourkoumelis, C.; Kouznetsov, O.; Krammer, M.; Kriznic, E.; Krumstein, Z.; Kubinec, P.; Kucharczyk, M.; Kurowska, J.; Lamsa, J.W.; Laugier, J.P.; Leder, G.; Ledroit, Fabienne; Leinonen, L.; Leisos, A.; Leitner, R.; Lenzen, G.; Lepeltier, V.; Lesiak, T.; Lethuillier, M.; Libby, J.; Liebig, W.; Liko, D.; Lipniacka, A.; Lippi, I.; Loken, J.G.; Lopes, J.H.; Lopez, J.M.; Lopez-Fernandez, R.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Mahon, J.R.; Maio, A.; Malek, A.; Maltezos, S.; Malychev, V.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Marti i Garcia, S.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Matthiae, G.; Mazzucato, F.; Mazzucato, M.; McCubbin, M.; McKay, R.; McNulty, R.; McPherson, G.; Merle, E.; Meroni, C.; Meyer, W.T.; Migliore, E.; Mirabito, L.; Mitaroff, W.A.; Mjoernmark, U.; Moa, T.; Moch, M.; Monig, Klaus; Monge, M.R.; Montenegro, J.; Moraes, D.; Morettini, P.; Morton, G.; Muller, U.; Muenich, K.; Mulders, M.; Mundim, L.M.; Murray, W.J.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.L.; Nawrocki, K.; Negri, P.; Nemecek, S.; Neufeld, N.; Nicolaidou, R.; Niezurawski, P.; Nikolenko, M.; Nomokonov, V.; Nygren, A.; Obraztsov, V.; Olshevski, A.G.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Pain, R.; Paiva, R.; Palacios, J.; Palka, H.; Papadopoulou, T.D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Pernicka, M.; Perrotta, A.; Petridou, C.; Petrolini, A.; Phillips, H.T.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M.E.; Polok, G.; Poropat, P.; Pozdniakov, V.; Privitera, P.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Ragazzi, S.; Rahmani, H.; Read, Alexander L.; Rebecchi, P.; Redaelli, Nicola Giuseppe; Regler, M.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.B.; Resvanis, L.K.; Richard, F.; Ridky, J.; Rinaudo, G.; Ripp-Baudot, Isabelle; Romero, A.; Ronchese, P.; Rosenberg, E.I.; Rosinsky, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ruiz, A.; Saarikko, H.; Sacquin, Y.; Sadovsky, A.; Sajot, G.; Salmi, L.; Salt, J.; Sampsonidis, D.; Sannino, M.; Savoy-Navarro, A.; Schwanda, C.; Schwemling, P.; Schwering, B.; Schwickerath, U.; Scuri, Fabrizio; Seager, P.; Sedykh, Y.; Segar, A.M.; Sekulin, R.; Sette, G.; Shellard, R.C.; Siebel, M.; Simard, L.; Simonetto, F.; Sisakian, A.N.; Smadja, G.; Smirnov, N.; Smirnova, O.; Smith, G.R.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Spiriti, E.; Squarcia, S.; Stanescu, C.; Stanitzki, M.; Stevenson, K.; Stocchi, A.; Strauss, J.; Strub, R.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Tabarelli, T.; Taffard, A.; Chikilev, O.; Tegenfeldt, F.; Terranova, F.; Timmermans, Jan; Tinti, N.; Tkatchev, L.G.; Tobin, M.; Todorova, S.; Tome, B.; Tonazzo, A.; Tortora, L.; Tortosa, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.L.; Tyapkin, I.A.; Tyapkin, P.; Tzamarias, S.; Ullaland, O.; Uvarov, V.; Valenti, G.; Vallazza, E.; Vander Velde, C.; Van Dam, Piet; Van den Boeck, W.; Van Eldik, J.; Van Lysebetten, A.; van Remortel, N.; Van Vulpen, I.; Vegni, G.; Ventura, L.; Venus, W.; Verbeure, F.; Verdier, P.; Verlato, M.; Vertogradov, L.S.; Verzi, V.; Vilanova, D.; Vitale, L.; Vlasov, E.; Vodopianov, A.S.; Voulgaris, G.; Vrba, V.; Wahlen, H.; Washbrook, A.J.; Weiser, C.; Wicke, D.; Wickens, J.H.; Wilkinson, G.R.; Winter, M.; Witek, M.; Wolf, G.; Yi, J.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zevgolatakos, E.; Zimine, N.I.; Zintchenko, A.; Zoller, P.; Zumerle, G.; Zupan, M.

    2001-01-01

    An update of the search for sleptons, neutralinos and charginos in the context of scenarios where the lightest supersymmetric particle is the gravitino and the next-to-lightest supersymmetric particle is a slepton, is presented, together with the update of the search for heavy stable charged particles in light gravitino scenarios and Minimal Supersymmetric Standard Models. Data collected in 1999 with the DELPHI detector at centre-of-mass energies around 192, 196, 200 and 202 GeV were analysed. No evidence for the production of these supersymmetric particles was found. Hence, new mass limits were derived at 95% confidence level.

  8. A non-standard Lax formulation of the Harry Dym hierarchy and its supersymmetric extension

    Science.gov (United States)

    Tian, Kai; Popowicz, Ziemowit; Liu, Q. P.

    2012-03-01

    For the Harry Dym hierarchy, a non-standard Lax formulation is deduced from that of the Korteweg-de Vries (KdV) equation through a reciprocal transformation. By supersymmetrizing this Lax operator, a new N = 2 supersymmetric extension of the Harry Dym hierarchy is constructed, and is further shown to be linked to one of the N = 2 supersymmetric KdV equations through the superconformal transformation. The bosonic limit of this new N = 2 supersymmetric Harry Dym equation is related to a coupled system of KdV-MKdV equations.

  9. Integrable open-boundary conditions for the supersymmetric t-J model the quantum group invariant case

    CERN Document Server

    González-Ruiz, A

    1994-01-01

    We consider integrable open-boundary conditions for the supersymmetric t-J model commuting with the number operator $n$ and $S^{z}$. We find four families, each one depending on two arbitrary parameters. The associated eigenvalue problem is solved by generalizing the Nested Algebraic Bethe Ansatz of the quantum group invariant case (which is obtained as a special limit). For the quantum group invariant case the Bethe ansatz states are shown to be highest weights of $spl_{q}(2,1)$. We also discuss the relation between Sklyanin's method of constructing open boundary conditions and the one for the quantum group invariant case based on Markov traces.

  10. Matrix models, topological strings, and supersymmetric gauge theories

    Science.gov (United States)

    Dijkgraaf, Robbert; Vafa, Cumrun

    2002-11-01

    We show that B-model topological strings on local Calabi-Yau threefolds are large- N duals of matrix models, which in the planar limit naturally give rise to special geometry. These matrix models directly compute F-terms in an associated N=1 supersymmetric gauge theory, obtained by deforming N=2 theories by a superpotential term that can be directly identified with the potential of the matrix model. Moreover by tuning some of the parameters of the geometry in a double scaling limit we recover ( p, q) conformal minimal models coupled to 2d gravity, thereby relating non-critical string theories to type II superstrings on Calabi-Yau backgrounds.

  11. Penrose limit of a non-supersymmetric RG fixed point

    Energy Technology Data Exchange (ETDEWEB)

    Casero, Roberto E-mail: roberto.casero@mib.infn.it

    2003-01-20

    We extend the BMN duality between IIB superstring theory on a pp-wave background and a sector of N=4 super Yang-Mills theory to the non-supersymmetric and unstable background built by Romans as a compactification on a U(1) bundle over CP{sup 2} with 3-form and 5-form field strength fluxes. We obtain a stable theory with the fewest number of supercharges (e.g., 16) allowed by this kind of solutions and make conjectures on the dual gauge theory.

  12. Baryon Asymmetry, Neutrino Mixing and Supersymmetric SO(10) Unification

    CERN Document Server

    Plümacher, Michael

    1998-01-01

    The baryon asymmetry of the universe can be explained by the out-of-equilibrium decays of heavy right-handed neutrinos. We analyse this mechanism in the framework of a supersymmetric extension of the Standard Model and show that lepton number violating scatterings are indispensable for baryogenesis, even though they may wash-out a generated asymmetry. By assuming a similar pattern of mixings and masses for neutrinos and up-type quarks, as suggested by SO(10) unification, we can generate the observed baryon asymmetry without any fine tuning, if (B-L) is broken at the unification scale preferred by the MSW solution to the solar neutrino deficit.

  13. Flipped version of the supersymmetric strongly coupled preon model

    Science.gov (United States)

    Fajfer, S.; Mileković, M.; Tadić, D.

    1989-12-01

    In the supersymmetric SU(5) [SUSY SU(5)] composite model (which was described in an earlier paper) the fermion mass terms can be easily constructed. The SUSY SU(5)⊗U(1), i.e., flipped, composite model possesses a completely analogous composite-particle spectrum. However, in that model one cannot construct a renormalizable superpotential which would generate fermion mass terms. This contrasts with the standard noncomposite grand unified theories (GUT's) in which both the Georgi-Glashow electrical charge embedding and its flipped counterpart lead to the renormalizable theories.

  14. New Mechanism of Flavor Symmetry Breaking from Supersymmetric Strong Dynamics

    CERN Document Server

    Carone, C D; Moroi, T; Carone, Christopher D.; Hall, Lawrence J.; Moroi, Takeo

    1997-01-01

    We present a class of supersymmetric models in which flavor symmetries are broken dynamically, by a set of composite flavon fields. The strong dynamics that is responsible for confinement in the flavor sector also drives flavor symmetry breaking vacuum expectation values, as a consequence of a quantum-deformed moduli space. Yukawa couplings result as a power series in the ratio of the confinement to Planck scale, and the fermion mass hierarchy depends on the differing number of preons in different flavor symmetry-breaking operators. We present viable non-Abelian and Abelian flavor models that incorporate this mechanism.

  15. Schwinger's oscillator method, supersymmetric quantum mechanics and massless particles

    Directory of Open Access Journals (Sweden)

    Mejía F. M.

    2002-01-01

    Full Text Available We consider Schwinger's method of angular momentum addition using the SU(2 algebra with both a fermionic and a bosonic oscillator. We show that the total spin states obtained are: one boson singlet state and an arbitrary number of spin-1/2 states, the later ones are energy degenerate. It means that we have in this case supersymmetric quantum mechanics and also the addition of angular momentum for massless particles. We review too the cases of two bosonic and two fermionic oscillators.

  16. Supersymmetric extension of the minimal dark matter model

    Institute of Scientific and Technical Information of China (English)

    CHANG Xue; LIU Chun; MA Feng-Cai; YANG Shuo

    2012-01-01

    The minimal dark matter model is given a supersymmetric extension.A super SU(2)L quintuplet is introduced with its fermionic neutral component still being the dark matter,and the dark matter mass is about 19.7 TeV.Mass splitting among the quintplet due to supersymmetry particles is found to be negligibly small compared to the electroweak corrections.Other properties of this supersymmetry model are studied,it has the solutions to the PAMELA and Fermi-LAT anomaly,and the predictions in higher energies need further experimental data to verify them.

  17. Recent developments in the N-extended supersymmetric quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica]. E-mail: toppan@cbpf.br

    2007-07-01

    In this paper we review some recent developments in the understanding of the supersymmetric quantum mechanics for large-N values of the extended supersymmetries. A list of the topics here covered includes the new available classification of the finite linear irreducible representations, the construction of manifestly off-shell invariant actions without introducing a superfield formalism, the notion of the 'fusion algebra' of the irreducible representations, the connection (for N = 8) with the octonionic structure constants, etc. The results presented are based on the work of the author and his collaborators. (author)

  18. N= 4 Supersymmetric Quantum Mechanical Model: Novel Symmetries

    CERN Document Server

    Krishna, S

    2016-01-01

    We discuss a set of novel discrete symmetry transformations of the N = 4 supersymmetric quantum mechanical model of a charged particle moving on a sphere in the background of Dirac magnetic monopole. The usual five continuous symmetries (and their conserved Noether charges) and two discrete symmetries together provide the physical realizations of the de Rham cohomological operators of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N = 4 SUSY transformations and provided the geometrical interpretation in the language of translational generators along the Grassmannian directions onto (1, 4)-dimensional supermanifold.

  19. Supersymmetric Contributions to CP Asymmetry in τ-DECAYS

    Science.gov (United States)

    Delepine, D.; Faisel, G.; Khalil, S.; Shalaby, M.

    We review the CP violation in the semileptonic |ΔS| = 1 τ-decays in supersymmetric extensions of the standard model (SM). We show that Within SUSY models with conserved R parity, the CP asymmetry of τ → kπν is below the current experimental limits, although it is enhanced by several order of magnitude than the SM results. We also study the impact of the lepton violation terms in SUSY models with R parity violation. We show that the CP asymmetry of τ-decay is enhanced significantly and the current experimental limits obtained by CLEO collaborations can be easily accommodated.

  20. Required experimental accuracy to select between supersymmetrical models

    Indian Academy of Sciences (India)

    David Grellscheid

    2004-03-01

    We will present a method to decide a priori whether various supersymmetrical scenarios can be distinguished based on sparticle mass data alone. For each model, a scan over all free SUSY breaking parameters reveals the extent of that model's physically allowed region of sparticle-mass-space. Based on the geometrical configuration of these regions in mass-space, it is possible to obtain an estimate of the required accuracy of future sparticle mass measurements to distinguish between the models. We will illustrate this algorithm with an example. Ths talk is based on work done in collaboration with B C Allanach (LAPTH, Annecy) and F Quevedo (DAMTP, Cambridge).