Supersymmetric field-theoretic models on a supermanifold
Energy Technology Data Exchange (ETDEWEB)
Franco, D.H.T. [Centro de Estudos de Fisica Teorica, Belo Horizonte, MG (Brazil); Polito, Caio M.M. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Teoria de Campos e Particulas
2003-04-01
We propose an extension of some structural aspects that have successfully been applied in the development of the theory of quantum fields propagating on a general spacetime manifold so as to include superfield models on a super manifold. (author)
Supersymmetric gauge field theories
International Nuclear Information System (INIS)
Slavnov, A.A.
1976-01-01
The paper is dealing with the role of supersymmetric gauge theories in the quantum field theory. Methods of manipulating the theories as well as possibilities of their application in elementary particle physics are presented. In particular, the necessity is explained of a theory in which there is symmetry between Fermi and Bose fields, in other words, of the supersymmetric gauge theory for construction of a scheme for the Higgs particle connecting parameters of scalar mesons with those of the rest fields. The mechanism of supersymmetry breaking is discussed which makes it possible to remain the symmetric procedure of renormalization intact. The above mechanism of spontaneous symmetry breaking is applied to demonstrate possibilities of constructing models of weak and electromagnetic interactions which would be acceptable from the point of view of experiments. It is noted that the supersymmetric gauge theories represent a natural technique for description of vector-like models
Supersymmetric extensions of K field theories
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2012-02-01
We review the recently developed supersymmetric extensions of field theories with non-standard kinetic terms (so-called K field theories) in two an three dimensions. Further, we study the issue of topological defect formation in these supersymmetric theories. Specifically, we find supersymmetric K field theories which support topological kinks in 1+1 dimensions as well as supersymmetric extensions of the baby Skyrme model for arbitrary nonnegative potentials in 2+1 dimensions.
Shadow fields and local supersymmetric gauges
International Nuclear Information System (INIS)
Baulieu, L.; Bossard, G.; Sorella, S.P.
2006-01-01
To control supersymmetry and gauge invariance in super-Yang-Mills theories we introduce new fields, called shadow fields, which enable us to enlarge the conventional Faddeev-Popov framework and write down a set of useful Slavnov-Taylor identities. These identities allow us to address and answer the issue of the supersymmetric Yang-Mills anomalies, and to perform the conventional renormalization programme in a fully regularization-independent way
(Non-)decoupled supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Pietro, Lorenzo Di [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel); Dine, Michael [Santa Cruz Institute for Particle Physics and Department of Physics,Santa Cruz CA 95064 (United States); Komargodski, Zohar [Department of Particle Physics and Astrophysics,Weizmann Institute of Science, Rehovot 76100 (Israel)
2014-04-10
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS{sub 4} Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
(Non-)decoupled supersymmetric field theories
International Nuclear Information System (INIS)
Pietro, Lorenzo Di; Dine, Michael; Komargodski, Zohar
2014-01-01
We study some consequences of coupling supersymmetric theories to (super)gravity. To linear order, the couplings are determined by the energy-momentum supermultiplet. At higher orders, the couplings are determined by contact terms in correlation functions of the energy-momentum supermultiplet. We focus on the couplings of one particular field in the supergravity multiplet, the auxiliary field M. We discuss its linear and quadratic (seagull) couplings in various supersymmetric theories. In analogy to the local renormalization group formalism (http://dx.doi.org/10.1016/0370-2693(89)90729-6; http://dx.doi.org/10.1016/0550-3213(90)90584-Z; http://dx.doi.org/10.1016/0550-3213(91)80030-P), we provide a prescription for how to fix the quadratic couplings. They generally arise at two-loops in perturbation theory. We check our prescription by explicitly computing these couplings in several examples such as mass-deformed N=4 and in the Coulomb phase of some theories. These couplings affect the Lagrangians of rigid supersymmetric theories in curved space. In addition, our analysis leads to a transparent derivation of the phenomenon known as Anomaly Mediation. In contrast to previous approaches, we obtain both the gaugino and scalar masses of Anomaly Mediation by relying just on classical, minimal supergravity and a manifestly local and supersymmetric Wilsonian point of view. Our discussion naturally incorporates the connection between Anomaly Mediation and supersymmetric AdS 4 Lagrangians. This note can be read without prior familiarity with Anomaly Mediated Supersymmetry Breaking (AMSB)
Supersymmetric rings in field theory
International Nuclear Information System (INIS)
Blanco-Pillado, Jose J.; Redi, Michele
2006-01-01
We study the dynamics of BPS string-like objects obtained by lifting monopole and dyon solutions of N = 2 Super-Yang-Mills theory to five dimensions. We present exact traveling wave solutions which preserve half of the supersymmetries. Upon compactification this leads to macroscopic BPS rings in four dimensions in field theory. Due to the fact that the strings effectively move in six dimensions the same procedure can also be used to obtain rings in five dimensions by using the hidden dimension
Lattice formulations of supersymmetric gauge theories with matter fields
International Nuclear Information System (INIS)
Joseph, Anosh
2014-12-01
Certain classes of supersymmetric gauge theories, including the well known N=4 supersymmetric Yang-Mills theory, that takes part in the AdS/CFT correspondence, can be formulated on a Euclidean spacetime lattice using the techniques of exact lattice supersymmetry. Great ideas such as topological field theories, Dirac-Kaehler fermions, geometric discretization all come together to create supersymmetric lattice theories that are gauge-invariant, doubler free, local and exact supersymmetric. We discuss the recent lattice constructions of supersymmetric Yang-Mills theories in two and three dimensions coupled to matter fields in various representations of the color group.
Non-local deformation of a supersymmetric field theory
Energy Technology Data Exchange (ETDEWEB)
Zhao, Qin [National University of Singapore, Department of Physics, Singapore (Singapore); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Lethbridge (Canada); University of British Columbia - Okanagan, Irving K. Barber School of Arts and Sciences, Kelowna, BC (Canada); Shah, Mushtaq B.; Ganai, Prince A. [National Institute of Technology, Department of Physics, Srinagar, Kashmir (India); Bhat, Anha [National Institute of Technology, Department of Metallurgical and Materials Engineering, Srinagar (India); Zaz, Zaid [University of Kashmir, Department of Electronics and Communication Engineering, Srinagar, Kashmir (India); Masood, Syed; Raza, Jamil; Irfan, Raja Muhammad [International Islamic University, Department of Physics, Islamabad (Pakistan)
2017-09-15
In this paper, we will analyze a supersymmetric field theory deformed by generalized uncertainty principle and Lifshitz scaling. It will be observed that this deformed supersymmetric field theory contains non-local fractional derivative terms. In order to construct such a deformed N = 1 supersymmetric theory, a harmonic extension of functions will be used. However, the supersymmetry will only be preserved for a free theory and will be broken by the inclusion of interaction terms. (orig.)
On the stochastic structure of globally supersymmetric field theories
International Nuclear Information System (INIS)
Flume, R.; Lechtenfeld, O.
1983-09-01
We reformulate the bosonic sector of globally supersymmetric field theories through a ''fermionisation'' of bosonic Feynman graphs. The recipe for the fermionisation gives an explicit realisation of the Nicolai map. The graphical rules for supersymmetric Yang-Mills fields in the reformulated version turn out to be simpler than those of ordinary Yang-Mills fields. (orig.)
The Supersymmetric Effective Field Theory of Inflation
Energy Technology Data Exchange (ETDEWEB)
Delacrétaz, Luca V.; Gorbenko, Victor [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Senatore, Leonardo [Stanford Institute for Theoretical Physics, Stanford University,Stanford, CA 94306 (United States); Kavli Institute for Particle Astrophysics and Cosmology, Stanford University and SLAC,Menlo Park, CA 94025 (United States)
2017-03-10
We construct the Supersymmetric Effective Field Theory of Inflation, that is the most general theory of inflationary fluctuations when time-translations and supersymmetry are spontaneously broken. The non-linear realization of these invariances allows us to define a complete SUGRA multiplet containing the graviton, the gravitino, the Goldstone of time translations and the Goldstino, with no auxiliary fields. Going to a unitary gauge where only the graviton and the gravitino are present, we write the most general Lagrangian built out of the fluctuations of these fields, invariant under time-dependent spatial diffeomorphisms, but softly-breaking time diffeomorphisms and gauged SUSY. With a suitable Stückelberg transformation, we introduce the Goldstone boson of time translation and the Goldstino of SUSY. No additional dynamical light field is needed. In the high energy limit, larger than the inflationary Hubble scale for the Goldstino, these fields decouple from the graviton and the gravitino, greatly simplifying the analysis in this regime. We study the phenomenology of this Lagrangian. The Goldstino can have a non-relativistic dispersion relation. Gravitino and Goldstino affect the primordial curvature perturbations at loop level. The UV modes running in the loops generate three-point functions which are degenerate with the ones coming from operators already present in the absence of supersymmetry. Their size is potentially as large as corresponding to f{sub NL}{sup equil.,orthog.}∼1 or, for particular operators, even ≫1. The non-degenerate contribution from modes of order H is estimated to be very small.
Vacuum fluctuations of the supersymmetric field in curved background
International Nuclear Information System (INIS)
Bilić, Neven; Domazet, Silvije; Guberina, Branko
2012-01-01
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Vacuum fluctuations of the supersymmetric field in curved background
Energy Technology Data Exchange (ETDEWEB)
Bilic, Neven, E-mail: bilic@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Domazet, Silvije, E-mail: sdomazet@irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia); Guberina, Branko, E-mail: guberina@thphys.irb.hr [Rudjer Boskovic Institute, POB 180, HR-10002 Zagreb (Croatia)
2012-01-16
We study a supersymmetric model in curved background spacetime. We calculate the effective action and the vacuum expectation value of the energy momentum tensor using a covariant regularization procedure. A soft supersymmetry breaking induces a nonzero contribution to the vacuum energy density and pressure. Assuming the presence of a cosmic fluid in addition to the vacuum fluctuations of the supersymmetric field an effective equation of state is derived in a self-consistent approach at one loop order. The net effect of the vacuum fluctuations of the supersymmetric fields in the leading adiabatic order is a renormalization of the Newton and cosmological constants.
Supersymmetric field theories at finite temperature
International Nuclear Information System (INIS)
Dicus, D.A.; Tata, X.R.
1983-01-01
We show by explicit calculations to second and third order in perturbation theory, that finite temperature effects do not break the supersymmetry Ward-Takahashi identities of the Wess-Zumino model. Moreover, it is argued that this result is true to all orders in perturbation theory, and further, true for a wide class of supersymmetric theories. We point out, however, that these identities can be broken in the course of a phase transition that restores an originally broken internal symmetry
Alternative approaches to maximally supersymmetric field theories
International Nuclear Information System (INIS)
Broedel, Johannes
2010-01-01
The central objective of this work is the exploration and application of alternative possibilities to describe maximally supersymmetric field theories in four dimensions: N=4 super Yang-Mills theory and N=8 supergravity. While twistor string theory has been proven very useful in the context of N=4 SYM, no analogous formulation for N=8 supergravity is available. In addition to the part describing N=4 SYM theory, twistor string theory contains vertex operators corresponding to the states of N=4 conformal supergravity. Those vertex operators have to be altered in order to describe (non-conformal) Einstein supergravity. A modified version of the known open twistor string theory, including a term which breaks the conformal symmetry for the gravitational vertex operators, has been proposed recently. In a first part of the thesis structural aspects and consistency of the modified theory are discussed. Unfortunately, the majority of amplitudes can not be constructed, which can be traced back to the fact that the dimension of the moduli space of algebraic curves in twistor space is reduced in an inconsistent manner. The issue of a possible finiteness of N=8 supergravity is closely related to the question of the existence of valid counterterms in the perturbation expansion of the theory. In particular, the coefficient in front of the so-called R 4 counterterm candidate has been shown to vanish by explicit calculation. This behavior points into the direction of a symmetry not taken into account, for which the hidden on-shell E 7(7) symmetry is the prime candidate. The validity of the so-called double-soft scalar limit relation is a necessary condition for a theory exhibiting E 7(7) symmetry. By calculating the double-soft scalar limit for amplitudes derived from an N=8 supergravity action modified by an additional R 4 counterterm, one can test for possible constraints originating in the E 7(7) symmetry. In a second part of the thesis, the appropriate amplitudes are calculated
Globally and locally supersymmetric effective theories for light fields
Brizi, Leonardo; Scrucca, Claudio A
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebrai...
Globally and locally supersymmetric effective theories for light fields
International Nuclear Information System (INIS)
Brizi, Leonardo; Gomez-Reino, Marta; Scrucca, Claudio A.
2009-01-01
We reconsider the general question of how to characterize most efficiently the low-energy effective theory obtained by integrating out heavy modes in globally and locally supersymmetric theories. We consider theories with chiral and vector multiplets and identify the conditions under which an approximately supersymmetric low-energy effective theory can exist. These conditions translate into the requirements that all the derivatives, fermions and auxiliary fields should be small in units of the heavy mass scale. They apply not only to the matter sector, but also to the gravitational one if present, and imply in that case that the gravitino mass should be small. We then show how to determine the unique exactly supersymmetric theory that approximates this effective theory at the lowest order in the counting of derivatives, fermions and auxiliary fields, by working both at the superfield level and with component fields. As a result we give a simple prescription for integrating out heavy superfields in an algebraic and manifestly supersymmetric way, which turns out to hold in the same form both for globally and locally supersymmetric theories, meaning that the process of integrating out heavy modes commutes with the process of switching on gravity. More precisely, for heavy chiral and vector multiplets one has to impose respectively stationarity of the superpotential and the Kaehler potential.
A Chargeless Complex Vector Matter Field in Supersymmetric Scenario
Directory of Open Access Journals (Sweden)
L. P. Colatto
2015-01-01
Full Text Available We construct and study a formulation of a chargeless complex vector matter field in a supersymmetric framework. To this aim we combine two nochiral scalar superfields in order to take the vector component field to build the chargeless complex vector superpartner where the respective field strength transforms into matter fields by a global U1 gauge symmetry. For the aim of dealing with consistent terms without breaking the global U1 symmetry we imposes a choice to the complex combination revealing a kind of symmetry between the choices and eliminates the extra degrees of freedom which is consistent with the supersymmetry. As the usual case the mass supersymmetric sector contributes as a complement to dynamics of the model. We obtain the equations of motion of the Proca’s type field for the chiral spinor fields and for the scalar field on the mass-shell which show the same mass as expected. This work establishes the first steps to extend the analysis of charged massive vector field in a supersymmetric scenario.
Fluxes, hierarchies, and metastable vacua in supersymmetric field theories
International Nuclear Information System (INIS)
Bruemmer, F.
2008-01-01
This thesis concerns topics both in low-energy effective field theories from type IIB superstring flux compactifications and in four-dimensional, rigidly supersymmetric gauge theories. We introduce flux compactifications with so-called ''warped throat'' regions, which lead to large hierarchies of scales in the effective four-dimensional theory. The correspondence between a particular such throat and a five-dimensional Randall-Sundrum-like model is established. We shown how certain string-theoretic features of the compactification, such as moduli stabilization by fluxes or the presence of an unstabilized Kaehler modulus, are incorporated in the five-dimensional picture. The KKLT construction for metastable de Sitter vacua is reviewed, as well as some possible modifications involving spontaneous F-term supersymmetry breaking. For KKLT-like models with their hidden sector localized inside a throat, the mediation of supersymmetry breaking to the visible sector is investigated. We review the mechanism of mixed modulus-anomaly mediation, and show that there can be additional equally important gravity-mediated contributions. We finally turn to the ISS model of metastable dynamical supersymmetry breaking in four dimensions, and present a renormalizable extension which generates a large hierarchy naturally. We also recapitulate how the ISS model may be obtained from a type IIB superstring model. (orig.)
Fluxes, hierarchies, and metastable vacua in supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F.
2008-02-06
This thesis concerns topics both in low-energy effective field theories from type IIB superstring flux compactifications and in four-dimensional, rigidly supersymmetric gauge theories. We introduce flux compactifications with so-called ''warped throat'' regions, which lead to large hierarchies of scales in the effective four-dimensional theory. The correspondence between a particular such throat and a five-dimensional Randall-Sundrum-like model is established. We shown how certain string-theoretic features of the compactification, such as moduli stabilization by fluxes or the presence of an unstabilized Kaehler modulus, are incorporated in the five-dimensional picture. The KKLT construction for metastable de Sitter vacua is reviewed, as well as some possible modifications involving spontaneous F-term supersymmetry breaking. For KKLT-like models with their hidden sector localized inside a throat, the mediation of supersymmetry breaking to the visible sector is investigated. We review the mechanism of mixed modulus-anomaly mediation, and show that there can be additional equally important gravity-mediated contributions. We finally turn to the ISS model of metastable dynamical supersymmetry breaking in four dimensions, and present a renormalizable extension which generates a large hierarchy naturally. We also recapitulate how the ISS model may be obtained from a type IIB superstring model. (orig.)
On integration over Fermi fields in chiral and supersymmetric theories
International Nuclear Information System (INIS)
Vainshtein, A.I.; Zakharov, V.I.
1982-01-01
Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way [ru
Dilaton and second-rank tensor fields as supersymmetric compensators
International Nuclear Information System (INIS)
Nishino, Hitoshi; Rajpoot, Subhash
2007-01-01
We formulate a supersymmetric theory in which both a dilaton and a second-rank tensor play roles of compensators. The basic off-shell multiplets are a linear multiplet (B μν ,χ,φ) and a vector multiplet (A μ ,λ;C μνρ ), where φ and B μν are, respectively, a dilaton and a second-rank tensor. The third-rank tensor C μνρ in the vector multiplet is ''dual'' to the conventional D field with 0 on-shell or 1 off-shell degree of freedom. The dilaton φ is absorbed into one longitudinal component of A μ , making it massive. Initially, B μν has 1 on-shell or 3 off-shell degrees of freedom, but it is absorbed into the longitudinal components of C μνρ . Eventually, C μνρ with 0 on-shell or 1 off-shell degree of freedom acquires in total 1 on-shell or 4 off-shell degrees of freedom, turning into a propagating massive field. These basic multiplets are also coupled to chiral multiplets and a supersymmetric Dirac-Born-Infeld action. Some of these results are also reformulated in superspace. The proposed mechanism may well provide a solution to the long-standing puzzle of massless dilatons and second-rank tensors in supersymmetric models inspired by string theory
From topological quantum field theories to supersymmetric gauge theories
International Nuclear Information System (INIS)
Bossard, G.
2007-10-01
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the β function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
International Nuclear Information System (INIS)
Stelle, Kellogg S
2007-01-01
With the development of the electronic archives in high-energy physics, there has been increasing questioning of the role of traditional publishing styles, particularly in the production of conference books. One aspect of traditional publishing that still receives wide appreciation, however, is in the production of well-focussed pedagogical material. The present two-volume edition, 'Supersymmetric Mechanics-Vol 1', edited by S Bellucci and 'Supersymmetric Mechanics-Vol 2', edited by S Bellucci, S Ferrara and A Marrani, is a good example of the kind of well-digested presentation that should still find its way into university libraries. This two-volume set presents the material of a set of pedagogical lectures presented at the INFN National Laboratory in Frascati over a two-year period on the subject of supersymmetric mechanics. The articles include the results of discussions with the attending students after the lectures. Overall, this makes for a useful compilation of material on a subject that underlies much of the current effort in supersymmetric approaches to cosmology and the unification programme. The first volume comprises articles on 'A journey through garden algebras' by S Bellucci, S J Gates Jr and E Orazi on linear supermultiplet realizations in supersymmetric mechanics,'Supersymmetric mechanics in superspace' by S Bellucci and S Krivonos, 'Noncommutative mechanics, Landau levels, twistors and Yang-Mills amplitudes' by V P Nair, 'Elements of (super) Hamiltonian formalism' by A Nersessian and 'Matrix mechanics' by C Sochichiu. The second volume consists entirely of a masterful presentation on 'The attractor mechanism and space time singularities' by S Ferrara. This presents a comprehensive and detailed overview of the structure of supersymmetric black hole solutions in supergravity, critical point structure in the scalar field moduli space and the thermodynamic consequences. This second volume alone makes the set a worthwhile addition to the research
A new perturbative approximation applied to supersymmetric quantum field theory
International Nuclear Information System (INIS)
Bender, C.M.; Milton, K.A.; Pinsky, S.S.; Simmons, L.M. Jr.; Los Alamos National Lab.
1988-01-01
We show that a recently proposed graphical perturbative calculational scheme in quantum field theory is consistent with global supersymmetry invariance. We examine a two-dimensional supersymmetric quantum field theory in which we do not known of any other means for doing analytical calculations. We illustrate the power of this new technique by computing the ground-state energy density E to second order in this new perturbation theory. We show that there is a beautiful and delicate cancellation between infinite classes of graphs which leads to the result that E=0. (orig.)
Thermal and superthermal properties of supersymmetric field theories
International Nuclear Information System (INIS)
Fuchs, J.
1984-01-01
We discuss the finite-temperature behaviour of supersymmetric field theories. We show that their 'superthermal' properties which concern the question of susy breaking at finite temperature and their thermal properties must be considered separately. Susy breaking is determined by the so-called superthermal ensemble, whereas thermodynamical properties follow from the conventional thermal ensemble, leading to the usual statistics for the bosonic and fermionic components of a superfield. We show that superspace techniques can be used in a straightforward way only for superthermal Green functions but not for thermal ones. We also discuss the possibility of finite-temperature susy restoration and the implications of Goldstone's theorem at finite temperature. (orig.)
Functional renormalisation group equations for supersymmetric field theories
Energy Technology Data Exchange (ETDEWEB)
Synatschke-Czerwonka, Franziska
2011-01-11
This work is organised as follows: In chapter 2 the basic facts of quantum field theory are collected and the functional renormalisation group equations are derived. Chapter 3 gives a short introduction to the main concepts of supersymmetry that are used in the subsequent chapters. In chapter 4 the functional RG is employed for a study of supersymmetric quantum mechanics, a supersymmetric model which are studied intensively in the literature. A lot of results have previously been obtained with different methods and we compare these to the ones from the FRG. We investigate the N=1 Wess-Zumino model in two dimensions in chapter 5. This model shows spontaneous supersymmetry breaking and an interesting fixed-point structure. Chapter 6 deals with the three dimensional N=1 Wess-Zumino model. Here we discuss the zero temperature case as well as the behaviour at finite temperature. Moreover, this model shows spontaneous supersymmetry breaking, too. In chapter 7 the two-dimensional N=(2,2) Wess-Zumino model is investigated. For the superpotential a non-renormalisation theorem holds and thus guarantees that the model is finite. This allows for a direct comparison with results from lattice simulations. (orig.)
Renormalization of supersymmetric models without using auxiliary fields
International Nuclear Information System (INIS)
Urbanek, P.
1986-01-01
Previously a linear representation of supersymmetry (Ss) was used in investigations of renormalizability. There auxiliary fields have been introduced in order that the Ss-algebra closes 'off-shell'. When the auxiliary fields are eliminated by their equations of motion, the Ss representation becomes nonlinear and Ss closes only 'on-shell'. Following O.Piguet and K.Sibold 1984 Ss is expressed through Ward identities which are formulated as functional variations of the generating functional of the Green functions. These functional operators form a closed algebra, a fact essential for the proof of renormalizability, which is given. It is not necessary to use a specific subtraction scheme in the Green functions. The procedure is applied to the Wess-Zumino model and the supersymmetric extension of the quantum electrodynamics. 15 refs. (qui)
Supersymmetric electroweak baryogenesis, nonequilibrium field theory and quantum Boltzmann equations
Riotto, Antonio
1998-01-01
The closed time-path (CPT) formalism is a powerful Green's function formulation to describe nonequilibrium phenomena in field theory and it leads to a complete nonequilibrium quantum kinetic theory. In this paper we make use of the CPT formalism to write down a set of quantum Boltzmann equations describing the local number density asymmetries of the particles involved in supersymmetric electroweak baryogenesis. These diffusion equations automatically and self-consistently incorporate the CP-violating sources which fuel baryogenesis when transport properties allow the CP-violating charges to diffuse in front of the bubble wall separating the broken from the unbroken phase at the electroweak phase transition. This is a significant improvement with respect to recent approaches where the CP-violating sources are inserted by hand into the diffusion equations. Furthermore, the CP-violating sources and the particle number changing interactions manifest ``memory'' effects which are typical of the quantum transp ort t...
Superfield approach to calculation of effective potential in supersymmetric field theories
International Nuclear Information System (INIS)
Bukhbinder, I.L.; Kuzenko, S.M.; Yarevskaya, Zh.V.
1993-01-01
Superfield method of computing effective potential in supersymmetric field theories is suggested. The one-loop effective potential of the Wess-Zumino model is found. The prescription for obtaining multi-loop corrections is described
Supersymmetric self-dual Yang-Mills fields
International Nuclear Information System (INIS)
Zhao Liu
1994-01-01
A new four dimensional (4d) N = 1 supersymmetric integrable model, i.e. the supersymmetric self-dual Yang-Mills model is constructed. The equations of motion for this model are shown to be equivalent to the zero curvature condition on some superplane in the 4d superspace, the superplane being characterized by a point in the project space CP 3,4 . The linear systems are established according to this geometrical interpretation, and the effective action is also proposed in order to explain the dynamical content of the model
Root Structures of Infinite Gauge Groups and Supersymmetric Field Theories
International Nuclear Information System (INIS)
Catto, Sultan; Gürcan, Yasemin; Khalfan, Amish; Kurt, Levent
2013-01-01
We show the relationship between critical dimensions of supersymmetric fundamental theories and dimensions of certain Jordan algebras. In our approach position vectors in spacetime or in superspace are endowed with algebraic properties that are present only in those critical dimensions. A uniform construction of super Poincaré groups in these dimensions will be shown. Some applications of these algebraic methods to hidden symmetries present in the covariant and interacting string Lagrangians and to superparticle will be discussed. Algebraic methods we develop will be shown to generate the root structure of some infinite groups that play the role of gauge groups in a second quantized theory of strings
The description of N=1, d=4 supergravity using twisted supersymmetric fields
Baulieu, Laurent
2015-01-01
This chapter describes how the method of twisted supersymmetric fields used for describing global supersymmetry, as in the context of topological field theories, can be extended to the description of local supersymmetry. As an example, the method is applied to the case of N = 1 Euclidean supergravity on a 4-manifold with an almost complex structure, with its couplings to scalar and vector multiplets.
Supersymmetric gauged double field theory: systematic derivation by virtue of twist
International Nuclear Information System (INIS)
Cho, Wonyoung; Fernández-Melgarejo, J.J.; Jeon, Imtak; Park, Jeong-Hyuck
2015-01-01
In a completely systematic and geometric way, we derive maximal and half-maximal supersymmetric gauged double field theories in lower than ten dimensions. To this end, we apply a simple twisting ansatz to the D=10 ungauged maximal and half-maximal supersymmetric double field theories constructed previously within the so-called semi-covariant formalism. The twisting ansatz may not satisfy the section condition. Nonetheless, all the features of the semi-covariant formalism, including its complete covariantizability, are still valid after the twist under alternative consistency conditions. The twist allows gaugings as supersymmetry preserving deformations of the D=10 untwisted theories after Scherk-Schwarz-type dimensional reductions. The maximal supersymmetric twist requires an extra condition to ensure both the Ramond-Ramond gauge symmetry and the 32 supersymmetries unbroken.
Theoretical physics. Field theory
International Nuclear Information System (INIS)
Landau, L.; Lifchitz, E.
2004-01-01
This book is the fifth French edition of the famous course written by Landau/Lifchitz and devoted to both the theory of electromagnetic fields and the gravity theory. The talk of the theory of electromagnetic fields is based on special relativity and relates to only the electrodynamics in vacuum and that of pointwise electric charges. On the basis of the fundamental notions of the principle of relativity and of relativistic mechanics, and by using variational principles, the authors develop the fundamental equations of the electromagnetic field, the wave equation and the processes of emission and propagation of light. The theory of gravitational fields, i.e. the general theory of relativity, is exposed in the last five chapters. The fundamentals of the tensor calculus and all that is related to it are progressively introduced just when needed (electromagnetic field tensor, energy-impulse tensor, or curve tensor...). The worldwide reputation of this book is generally allotted to clearness, to the simplicity and the rigorous logic of the demonstrations. (A.C.)
Exact Results in Non-Supersymmetric Large N Orientifold Field Theories
Armoni, Adi; Veneziano, Gabriele
2003-01-01
We consider non-supersymmetric large N orientifold field theories. Specifically, we discuss a gauge theory with a Dirac fermion in the anti-symmetric tensor representation. We argue that, at large N and in a large part of its bosonic sector, this theory is non-perturbatively equivalent to N=1 SYM, so that exact results established in the latter (parent) theory also hold in the daughter orientifold theory. In particular, the non-supersymmetric theory has an exactly calculable bifermion condensate, exactly degenerate parity doublets, and a vanishing cosmological constant (all this to leading order in 1/N).
Extended supersymmetric BMS{sub 3} algebras and their free field realisations
Energy Technology Data Exchange (ETDEWEB)
Banerjee, Nabamita [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India); Jatkar, Dileep P. [Harish-Chandra Research Institute,Chhatnag Road, Jhusi, Allahabad, 211019 (India); Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085 (India); Lodato, Ivano; Mukhi, Sunil; Neogi, Turmoli [Indian Institute of Science Education and Research,Homi Bhabha Road, Pashan, Pune 411 008 (India)
2016-11-09
We study N=(2,4,8) supersymmetric extensions of the three dimensional BMS algebra (BMS{sub 3}) with most generic possible central extensions. We find that N-extended supersymmetric BMS{sub 3} algebras can be derived by a suitable contraction of two copies of the extended superconformal algebras. Extended algebras from all the consistent contractions are obtained by scaling left-moving and right-moving supersymmetry generators symmetrically, while Virasoro and R-symmetry generators are scaled asymmetrically. On the way, we find that the BMS/GCA correspondence does not in general hold for supersymmetric systems. Using the β-γ and the b-c systems, we construct free field realisations of all the extended super-BMS{sub 3} algebras.
Supersymmetrical dual string theories and their field theory limits: A review
International Nuclear Information System (INIS)
Green, M.B.
1985-01-01
This paper outlines the construction and properties of supersymmetric string theories. Such theories, which describe the quantum mechanics of relativistic strings in ten-space time dimensions contain both N=4 Yang-Mills and N=8 supergravity field theories as special limits in which the string tension becomes infinite. Calculations of one-loop S-matrix elements reveal remarkable finiteness properties
New (1+1)-dimension scalar field theories using supersymmetric zeros modes
International Nuclear Information System (INIS)
Lima Rodrigues, R. de
1994-01-01
New non-liner models are constructed for (1+1)-dimension field theories from supersymmetric zero mode associated to the soliton. The kink simplest case is considered which is the double well potential of the λ φ 4 theory. (author). 3 refs
Stochastic quantization of field theories on the lattice and supersymmetrical models
International Nuclear Information System (INIS)
Aldazabal, Gerardo.
1984-01-01
Several aspects of the stochastic quantization method are considered. Specifically, field theories on the lattice and supersymmetrical models are studied. A non-linear sigma model is studied firstly, and it is shown that it is possible to obtain evolution equations written directly for invariant quantities. These ideas are generalized to obtain Langevin equations for the Wilson loops of non-abelian lattice gauge theories U (N) and SU (N). In order to write these equations, some different ways of introducing the constraints which the fields must satisfy are discussed. It is natural to have a strong coupling expansion in these equations. The correspondence with quantum field theory is established, and it is noticed that at all orders in the perturbation theory, Langevin equations reduce to Schwinger-Dyson equations. From another point of view, stochastic quantization is applied to large N matrix models on the lattice. As a result, a simple and systematic way of building reduced models is found. Referring to stochastic quantization in supersymmetric theories, a simple supersymmetric model is studied. It is shown that it is possible to write an evolution equation for the superfield wich leads to quantum field theory results in equilibrium. As the Langevin equation preserves supersymmetry, the property of dimensional reduction known for the quantum model is shown to be valid at all times. (M.E.L.) [es
BRST with background field method of the (4,0) supersymmetric σ-model in two dimensions
International Nuclear Information System (INIS)
Lhallabi, T.
1988-08-01
A manifestly covariant background field formalism for (4,0) supersymmetric non-linear σ-model in two dimensions is presented. The BRST argument is used in order to obtain Faddeev-Popov ghost terms. (author). 13 refs
A Note on the Field-Theoretical Description of Superfluids
Andrianopoli, L; Grassi, P A; Trigiante, M
2014-01-01
Recently, a Lagrangian description of superfluids attracted some interest from the fluid/gravity-correspondence viewpoint. In this respect, the work of Dubovksy et al. has proposed a new field theoretical description of fluids, which has several interesting aspects. On another side, we have provided in arXiv:1304.2206 a supersymmetric extension of the original works. In the analysis of the Lagrangian structures a new invariant appeared which, although related to known invariants, provides, in our opinion, a better parametrisation of the fluid dynamics in order to describe the fluid/superfluid phases.
Supersymmetric Field Theory of Non-Equilibrium Thermodynamic System
Olemskoi, Alexander I.; Brazhnyi, Valerii A.
1998-01-01
On the basis of Langevin equation the optimal SUSY field scheme is formulated to discribe a non-equilibrium thermodynamic system with quenched disorder and non-ergodicity effects. Thermodynamic and isothermal susceptibilities, memory parameter and irreversible response are determined at different temperatures and quenched disorder intensities.
Stochastic description of supersymmetric fields with values in a manifold
International Nuclear Information System (INIS)
Hoba, Z.
1986-01-01
This paper discusses the mathematical problem of the imaginary time quantum mechanics of a particle moving in Euclidean space as considered from the theory of diffusion processes. The diffusion process is defined by a stochastic equation; the equation describes the diffusion process as a time evolution of a Brownian particle in a force field. The paper considers a Brownian particle on a Riemannian manifold
Brane/Flux Annihilation and the String Dual of a Non-Supersymmetric Field Theory
International Nuclear Information System (INIS)
Kachru, Shamit
2002-01-01
We consider the dynamics of p anti-D3 branes inside the Klebanov-Strassler geometry, the deformed conifold with M units of RR 3-form flux around the S 3 . We find that for p << M the system relaxes to a nonsupersymmetric NS 5-brane ''giant graviton'' configuration, which is classically stable, but quantum mechanically can tunnel to a nearby supersymmetric vacuum with M - p D3 branes. This decay mode is exponentially suppressed and proceeds via the nucleation of an NS 5-brane bubble wall. They propose a dual field theory interpretation of the decay as the transition between a nonsupersymmetric baryonic branch and a supersymmetric mesonic branch of the corresponding SU(2M-p) x SU(M-p) low energy gauge theory. The NS 5-brane tunneling process also provides a simple visualization of the geometric transition by which D3-branes can dissolve into 3-form flux
1/N perturbation theory and quantum conservation laws for supersymmetrical chiral field. 2
International Nuclear Information System (INIS)
Aref'eva, I.Ya.; Krivoshchekov, V.K.; Medvedev, P.B.; Gosudarstvennyj Komitet Standartov Soveta Ministrov SSSR, Moscow; Gosudarstvennyj Komitet po Ispol'zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Teoreticheskoj i Ehksperimental'noj Fiziki)
1980-01-01
The renormalizability of the supersymmetric chiral model (supersymmetric nonlinear σ-model) is proved in the framework of the 1/N perturbation theory expansion proposed in the previous paper. The renormalizability proof is essentially based on the quantum supersymmetric chirality condition. The supersymmetric formulation of equations of motion is given. The first non-trivial quantum conservation laws are derived
Particle localization in a double-well potential by pseudo-supersymmetric fields
International Nuclear Information System (INIS)
Bagrov, V. G.; Samsonov, B. F.; Shamshutdinova, V. V.
2011-01-01
We study properties of a particle moving in a double-well potential in the two-level approximation placed in an additional external time-dependent field. Using previously established property (J. Phys. A 41, 244023 (2008)) that any two-level system possesses a pseudo-supersymmetry we introduce the notion of pseudo-supersymmetric field. It is shown that these fields, even if their time dependence is not periodical, may produce the effect of localization of the particle in one of the wells of the double-well potential.
Supersymmetric gauge theories, quantization of Mflat, and conformal field theory
International Nuclear Information System (INIS)
Teschner, J.; Vartanov, G.S.
2013-02-01
We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.
Pure spinors as auxiliary fields in the ten-dimensional supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Nilsson, B.E.W.
1986-01-01
A new way of introducing auxiliary fields into the ten-dimensional supersymmetric Yang-Mills theory is proposed. The auxiliary fields are commuting 'pure spinors' and constitute a non-linear realisation of the Lorentz group. This invalidates previous no-go theorems concerning the possibility of going off-shell in this theory. There seems to be a close relation between pure spinors and the concepts usually used in twistor theory. The non-Abelian theory can be constructed for all groups having pseudo-real representations. (author)
N=2, 4 supersymmetric gauge field theory in two-time physics
International Nuclear Information System (INIS)
Bars, Itzhak; Kuo, Y.-C.
2009-01-01
In the context of two-time physics in 4+2 dimensions we construct the most general N=2, 4 supersymmetric Yang-Mills gauge theories for any gauge group G. This builds on our previous work for N=1 supersymmetry (SUSY). The action, the conserved SUSY currents, and the SU(N) covariant SUSY transformation laws are presented for both N=2 and N=4. When the equations of motion are used the SUSY transformations close to the supergroup SU(2,2|N) with N=1, 2, 4. The SU(2,2)=SO(4,2) subsymmetry is realized linearly on 4+2 dimensional flat spacetime. All fields, including vectors and spinors, are in 4+2 dimensions. The extra gauge symmetries in 2T field theory, together with the kinematic constraints that follow from the action, remove all the ghosts to give a unitary theory. By choosing gauges and solving the kinematic equations, the 2T field theory in 4+2 flat spacetime can be reduced to various shadows in various 3+1 dimensional (generally curved) spacetimes. These shadows are related to each other by dualities. The conformal shadows of our theories in flat 3+1 dimensions coincide with the well known counterpart N=1, 2, 4 supersymmetric massless renormalizable field theories in 3+1 dimensions. It is expected that our more symmetric new structures in 4+2 spacetime may be useful for nonperturbative or exact solutions of these theories.
International Nuclear Information System (INIS)
Catterall, Simon
2013-01-01
Discretization of supersymmetric theories is an old problem in lattice field theory. It has resisted solution until quite recently when new ideas drawn from orbifold constructions and topological field theory have been brought to bear on the question. The result has been the creation of a new class of lattice gauge theory in which the lattice action is invariant under one or more supersymmetries. The resultant theories are local and free of doublers and in the case of Yang-Mills theories also possess exact gauge invariance. In principle they form the basis for a truly non-perturbative definition of the continuum supersymmetric field theory. In this talk these ideas are reviewed with particular emphasis being placed on N = 4 super Yang-Mills theory.
Interacting fields of arbitrary spin and N > 4 supersymmetric self-dual Yang-Mills equations
International Nuclear Information System (INIS)
Devchand, Ch.; Ogievetsky, V.
1996-06-01
We show that the self-dual Yang-Mills equations afford supersymmetrization to systems of equations invariant under global N-extended super-Poincare transformations for arbitrary values of N, without the limitation (N ≤ 4) applicable to standard non-self-dual Yang-Mills theories. These systems of equations provide novel classically consistent interactions for vector supermultiplets containing fields of spin up to N-2/2. The equations of motion of the component fields of spin greater than 1/2 are interacting variants of the first-order Dirac-Fierz equations for zero rest-mass fields of arbitrary spin. The interactions are governed by conserved currents which are constructed by an iterative procedure. In (arbitrarily extended) chiral superspace, the equations of motion for the (arbitrarily large) self-dual supermultiplet are shown to be completely equivalent to the set of algebraic supercurvature defining the self-dual superconnection. (author). 25 refs
Ema, Yohei; Hagihara, Daisuke; Hamaguchi, Koichi; Moroi, Takeo; Nakayama, Kazunori
2018-04-01
Recently, a new minimal extension of the Standard Model has been proposed, where a spontaneously broken, flavor-dependent global U(1) symmetry is introduced. It not only explains the hierarchical flavor structure in the quark and lepton sector, but also solves the strong CP problem by identifying the Nambu-Goldstone boson as the QCD axion, which we call flaxion. In this work, we consider supersymmetric extensions of the flaxion scenario. We study the CP and flavor violations due to supersymmetric particles, the effects of R-parity violations, the cosmological gravitino and axino problems, and the cosmological evolution of the scalar partner of the flaxion, sflaxion. We also propose an attractor-like inflationary model where the flaxion multiplet contains the inflaton field, and show that a consistent cosmological scenario can be obtained, including inflation, leptogenesis, and dark matter.
International Nuclear Information System (INIS)
Srednicki, M.
1981-01-01
I will discuss some work I recently completed with M. Dine and W. Fischler on supersymmetric technicolor. E. Witten and S. Dimopoulos and S. Raby have considered similar ideas. Our central idea is to combine supersymmetry and technicolor to produce a natural theory which is capable of reproducing all the known phenomenology of particle physics, especially the quark-lepton mass spectrum and the absence of flavor changing neutral currents. Supersymmetry allows us to introduce fundamental scalars which are naturally light. Some of these scalars play the role of Higgs fields, and give mass to quarks and leptons via ordinary Yukawa couplings (which are chosen so that we get the correct masses and mixing angles). The supersymmetric partners of all known particles turn out to be too heavy to have been observed in experiments to data; many of them, however, weigh less than 100 GeV
Large scale structure from the Higgs fields of the supersymmetric standard model
International Nuclear Information System (INIS)
Bastero-Gil, M.; Di Clemente, V.; King, S.F.
2003-01-01
We propose an alternative implementation of the curvaton mechanism for generating the curvature perturbations which does not rely on a late decaying scalar decoupled from inflation dynamics. In our mechanism the supersymmetric Higgs scalars are coupled to the inflaton in a hybrid inflation model, and this allows the conversion of the isocurvature perturbations of the Higgs fields to the observed curvature perturbations responsible for large scale structure to take place during reheating. We discuss an explicit model which realizes this mechanism in which the μ term in the Higgs superpotential is generated after inflation by the vacuum expectation value of a singlet field. The main prediction of the model is that the spectral index should deviate significantly from unity, vertical bar n-1 vertical bar ∼0.1. We also expect relic isocurvature perturbations in neutralinos and baryons, but no significant departures from Gaussianity and no observable effects of gravity waves in the CMB spectrum
N=2 supersymmetric dynamics for pedestrians
Tachikawa, Yuji
2015-01-01
Understanding the dynamics of gauge theories is crucial, given the fact that all known interactions are based on the principle of local gauge symmetry. Beyond the perturbative regime, however, this is a notoriously difficult problem. Requiring invariance under supersymmetry turns out to be a suitable tool for analyzing supersymmetric gauge theories over a larger region of the space of parameters. Supersymmetric quantum field theories in four dimensions with extended N=2 supersymmetry are further constrained and have therefore been a fertile field of research in theoretical physics for quite some time. Moreover, there are far-reaching mathematical ramifications that have led to a successful dialogue with differential and algebraic geometry. These lecture notes aim to introduce students of modern theoretical physics to the fascinating developments in the understanding of N=2 supersymmetric gauge theories in a coherent fashion. Starting with a gentle introduction to electric-magnetic duality, the author guides r...
New dualities of supersymmetric gauge theories
2016-01-01
This book reviews a number of spectacular advances that have been made in the study of supersymmetric quantum field theories in the last few years. Highlights include exact calculations of Wilson loop expectation values, and highly nontrivial quantitative checks of the long-standing electric-magnetic duality conjectures. The book starts with an introductory article presenting a survey of recent advances, aimed at a wide audience with a background and interest in theoretical physics. The following articles are written for advanced students and researchers in quantum field theory, string theory and mathematical physics, our goal being to familiarize these readers with the forefront of current research. The topics covered include recent advances in the classification and vacuum structure of large families of N=2 supersymmetric field theories, followed by an extensive discussion of the localisation method, one of the most powerful tools for exact studies of supersymmetric field theories. The quantities that have ...
On SW-minimal models and N=1 supersymmetric quantum Toda-field theories
International Nuclear Information System (INIS)
Mallwitz, S.
1994-04-01
Integrable N=1 supersymmetric Toda-field theories are determined by a contragredient simple Super-Lie-Algebra (SSLS) with purely fermionic lowering and raising operators. For the SSLA's Osp(3/2) and D(2/1;α) we construct explicitly the higher spin conserved currents and obtain free field representations of the super W-algebras SW(3/2,2) and SW(3/2,3/2,2). In constructing the corresponding series of minimal models using covariant vertex operators, we find a necessary restriction on the Cartan matrix of the SSLA, also for the general case. Within this framework, this restriction claims that there be a minimum of one non-vanishing element on the diagonal of the Cartan matrix. This condition is without parallel in bosonic conformal field theory. As a consequence only two series of SSLA's yield minimal models, namely Osp(2n/2n-1) and Osp(2n/2n+1). Subsequently some general aspects of degenerate representations of SW-algebras, notably the fusion rules, are investigated. As an application we discuss minimal models of SW(3/2, 2), which were constructed with independent methods, in this framework. Covariant formulation is used throughout this paper. (orig.)
Localization of supersymmetric field theories on non-compact hyperbolic three-manifolds
Energy Technology Data Exchange (ETDEWEB)
Assel, Benjamin; Martelli, Dario; Murthy, Sameer; Yokoyama, Daisuke [Department of Mathematics, King’s College London,The Strand, London WC2R 2LS (United Kingdom)
2017-03-17
We study supersymmetric gauge theories with an R-symmetry, defined on non-compact, hyperbolic, Riemannian three-manifolds, focusing on the case of a supersymmetry-preserving quotient of Euclidean AdS{sub 3}. We compute the exact partition function in these theories, using the method of localization, thus reducing the problem to the computation of one-loop determinants around a supersymmetric locus. We evaluate the one-loop determinants employing three different techniques: an index theorem, the method of pairing of eigenvalues, and the heat kernel method. Along the way, we discuss aspects of supersymmetry in manifolds with a conformal boundary, including supersymmetric actions and boundary conditions.
High-energy behavior of fermion-meson and meson-meson scattering in a supersymmetric field theory
International Nuclear Information System (INIS)
Opoien, J.W.
1978-01-01
The high-energy behavior of fermion-boson and boson-boson scattering amplitudes of a supersymmetric field theory containing a spin-1/2 fermion field, a scalar field, and a pseudoscalar field is investigated. The results can be easily modified to apply to the Yukawa model and the neutral version of the linear sigma model. The results are also compared to those of fermion-fermion scattering in the same model. In the leading-logarithm approximation, ladders with fermions running along the sides in the t channel and mesons as rungs dominate in each order of two classes of diagrams. The sum of the dominant series give rise to fixed Regge cuts for all amplitudes in each of the three theories. All amplitudes in the supersymmetric theory possess a definite signature factor, while the amplitudes for fermion-fermion and fermion-antifermion scattering in the Y model and the sigma model lack it. The results of the supersymmetric theory are also compared to the results of the spontaneously broken non-Abelian gauge theory
Geometry of supersymmetric gauge theories
International Nuclear Information System (INIS)
Gieres, F.
1988-01-01
This monograph gives a detailed and pedagogical account of the geometry of rigid superspace and supersymmetric Yang-Mills theories. While the core of the text is concerned with the classical theory, the quantization and anomaly problem are briefly discussed following a comprehensive introduction to BRS differential algebras and their field theoretical applications. Among the treated topics are invariant forms and vector fields on superspace, the matrix-representation of the super-Poincare group, invariant connections on reductive homogeneous spaces and the supermetric approach. Various aspects of the subject are discussed for the first time in textbook and are consistently presented in a unified geometric formalism
Energy Technology Data Exchange (ETDEWEB)
Bossard, G
2007-10-15
This thesis contains 2 parts based on scientific contributions that have led to 2 series of publications. The first one concerns the introduction of vector symmetry in cohomological theories, through a generalization of the so-called Baulieu-Singer equation. Together with the topological BRST (Becchi-Rouet-Stora-Tyutin) operator, this symmetry gives an off-shell closed sub-sector of supersymmetry that permits to determine the action uniquely. The second part proposes a methodology for re-normalizing supersymmetric Yang-Mills theory without assuming a regularization scheme which is both supersymmetry and gauge invariance preserving. The renormalization prescription is derived thanks to the definition of 2 consistent Slavnov-Taylor operators for supersymmetry and gauge invariance, whose construction requires the introduction of the so-called shadow fields. We demonstrate the renormalizability of supersymmetric Yang-Mills theories. We give a fully consistent, regularization scheme independent, proof of the vanishing of the {beta} function and of the anomalous dimensions of the one half BPS operators in maximally supersymmetric Yang-Mills theory. After a short introduction, in chapter two, we give a review of the cohomological Yang-Mills theory in eight dimensions. We then study its dimensional reductions in seven and six dimensions. The last chapter gives quite independent results, about a geometrical interpretation of the shadow fields, an unpublished work about topological gravity in four dimensions, an extension of the shadow formalism to superconformal invariance, and finally the solution of the constraints in a twisted superspace. (author)
International Nuclear Information System (INIS)
Chau, L.L.
1983-01-01
Integrable properties, i.e., existence of linear systems, infinite number of conservation laws, Reimann-Hilbert transforms, affine Lie algebra of Kac-Moody, and Bianchi-Baecklund transformation, are discussed for the constraint equations of the supersymmetric Yang-Mills fields. For N greater than or equal to 3 these constraint equations give equations of motion of the fields. These equations of motion reduce to the ordinary Yang-Mills equations as the spinor and scalar fields are eliminated. These understandings provide a possible method to solve the full Yang-Mills equations. Connections with other non-linear systems are also discussed. 53 references
Partial discharge transients: The field theoretical approach
DEFF Research Database (Denmark)
McAllister, Iain Wilson; Crichton, George C
1998-01-01
Up until the mid-1980s the theory of partial discharge transients was essentially static. This situation had arisen because of the fixation with the concept of void capacitance and the use of circuit theory to address what is in essence a field problem. Pedersen rejected this approach and instead...... began to apply field theory to the problem of partial discharge transients. In the present paper, the contributions of Pedersen using the field theoretical approach will be reviewed and discussed....
International Nuclear Information System (INIS)
Awada, M.A.
1990-01-01
We further study the universal equations of the supersymmetric modified KdV (MKdV) hierarchy in its generalized form. We show that these equations describe the dynamical quantum equations of the odd series of N = 1 minimal (p,q) superconformal field theory coupled to N = 1 supergravity in particular those unitary series with p = 2k + 3, and q = 2k = 1. The string susceptibility of these models is γ sstr. (0) = -2/2k + 1. We demonstrate explicitly the cases k = 2; and k = 3. 10 refs
Topics in supersymmetric theories
International Nuclear Information System (INIS)
Nemeschansky, D.D.
1984-01-01
This thesis discusses four different topics in supersymmetric theories. In the first part models in which supersymmetry is broken by the Fayet-Iliopoulos mechanism are considered. The possibility that scalar quark and lepton masses might arise radiatively in such theories is explored. In the second part supersymmetric grand unified models with a sliding singlet are considered. The author reviews the argument that the sliding singlet does not work in models with large supersymmetry breaking. Then he considers the possibility of using a sliding singlet with low energy supersymmetry breaking. The third part of the thesis deals with the entropy problem of supersymmetric theories. Most supersymmetric models possess a decoupled particle with mass of order 100 GeV which is copiously produced in the early universe and whose decay produces huge amounts of entropy. The author shows how this problem can be avoided in theories in which the hidden sector contains several light fields. In the fourth part effective Lagrangians for supersymmetric theories are studied. The anomalous pion interaction for supersymmetric theories is written down. General properties of this term are studied both on compact and non-compact manifolds
A field theoretic model for static friction
Mahyaeh, I.; Rouhani, S.
2013-01-01
We present a field theoretic model for friction, where the friction coefficient between two surfaces may be calculated based on elastic properties of the surfaces. We assume that the geometry of contact surface is not unusual. We verify Amonton's laws to hold that friction force is proportional to the normal load.This model gives the opportunity to calculate the static coefficient of friction for a few cases, and show that it is in agreement with observed values. Furthermore we show that the ...
Supersymmetric reflection matrices
International Nuclear Information System (INIS)
Moriconi, M.; Schoutens, K.
1997-04-01
We briefly review the general structure of integrable particle theories in 1 + 1 dimensions having N = 1 supersymmetry. Examples are specific perturbed superconformal field theories (of Yang-Lee type) and the N = 1 supersymmetric sine-Gordon theory. We comment on the modifications that are required when the N = 1 supersymmetry algebra contains non-trivial topological charges. (author). 8 refs, 2 figs
Planarizable Supersymmetric Quantum Toboggans
Czech Academy of Sciences Publication Activity Database
Znojil, Miloslav
2011-01-01
Roč. 7, - (2011), 018/1-018/23 ISSN 1815-0659. [Workshop on Supersymmetric Quantum Mechanics and Spectral Design. Benasque, 18.07.2010-30.07. 2010] R&D Projects: GA ČR GAP203/11/1433 Institutional research plan: CEZ:AV0Z10480505 Keywords : supersymmetry * Schrodinger equation * complexified coordinates Subject RIV: BE - Theoretical Physics Impact factor: 1.071, year: 2011
Non-perturbative supersymmetry anomaly in supersymmetric QCD
International Nuclear Information System (INIS)
Shamir, Y.
1991-03-01
The zero modes of the Dirac operator in an instanton and other topologically non-trivial backgrounds are unstable in a large class of massless or partially massless supersymmetric gauge theories. We show that under a generic perturbation of the scalar fields all zero modes become resonances, and discuss the ensuing breakdown of conventional perturbation theory. As a result, despite of the presence of massless fermions, the field theoretic tunneling amplitude is not suppressed. In massless supersymmetric QCD with N c ≤ N f the effective potential is found to be negative and monotonically increasing in the weak coupling regime for scalar VEVs which lie on the perturbatively flat directions. Consequently, massless supersymmetric QCD with N c ≤ N f exhibits a non-perturbative supersymmetry anomaly and exists in a strongly interacting phase which closely resembles ordinary QCD. The same conclusions apply if small masses are added to the lagrangian and the massless limit is smooth. (author). 21 refs, 5 figs
International Nuclear Information System (INIS)
Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin
2016-01-01
Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.
International Nuclear Information System (INIS)
Carneiro, David; Sampaio, Marcos; Nemes, Maria Carolina; Scarpelli, Antonio Paulo Baeta
2003-01-01
We compute the three loop β function of the Wess-Zumino model to motivate implicit regularization (IR) as a consistent and practical momentum-space framework to study supersymmetric quantum field theories. In this framework which works essentially in the physical dimension of the theory we show that ultraviolet are clearly disentangled from infrared divergences. We obtain consistent results which motivate the method as a good choice to study supersymmetry anomalies in quantum field theories. (author)
How to quantize supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe for resolving the ordering ambiguities in quantum hamiltonians of supersymmetric theories is suggested. The Weyl ordering procedure applied to classical supercharges expressed as functions on the phase space of a classically supersymmetric system is shown to result in quantum operators which satisfy usual SUSY algebra. The quantum hamiltonian does not always coincide with the Weyl ordered classical hamiltonian function. The difference is due to that the Weyl symbol of the supercharge anticommutator does not coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The procedure is applied to supersymmetric σ-models (both N=2 and N=1 cases are analyzed) and also to the supersymmetric SU(2) Yang-Mills theory. Only quantum mechanical systems following from field theories when fields are assumed to be independent of space coordinates are considered. For gauge theories thesuggested recipe for quantization leads to the same result as the well-known Dirac recipe
International Nuclear Information System (INIS)
Huang Yongchang; Huo Qiuhong
2008-01-01
Using Faddeev-Senjanovic path integral quantization for constrained Hamilton system, we quantize SU(n) N=2 supersymmetric gauge field system with non-Abelian Chern-Simons topological term in 2+1 dimensions. We use consistency of Coulomb gauge condition to naturally deduce a new gauge condition. Furthermore, we obtain the generating functional of Green function in phase space, deduce the angular momentum based on the global canonical Noether theorem at quantum level, obtain the fractional spin of this supersymmetric system, and show that the total angular momentum is the sum of the orbital angular momentum and spin angular momentum of the non-Abelian gauge field. Finally, we obtain the anomalous fractional spin and discover that the fractional spin has the contributions of both the group superscript components and A 0 s (x) charge
Supersymmetric symplectic quantum mechanics
de Menezes, Miralvo B.; Fernandes, M. C. B.; Martins, Maria das Graças R.; Santana, A. E.; Vianna, J. D. M.
2018-02-01
Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space HΓ to construct a unitary representation for the Galilei group. From this unitary representation the Schrödinger equation is rewritten in phase space variables and the Wigner function can be derived without the use of the Liouville-von Neumann equation. In this article we extend the methods of supersymmetric quantum mechanics SUSYQM to SQM. With the purpose of applications in quantum systems, the factorization method of the quantum mechanical formalism is then set within supersymmetric SQM. A hierarchy of simpler hamiltonians is generated leading to new computation tools for solving the eigenvalue problem in SQM. We illustrate the results by computing the states and spectra of the problem of a charged particle in a homogeneous magnetic field as well as the corresponding Wigner function.
The stress energy tensor of a locally supersymmetric quantum field on a curved spacetime
International Nuclear Information System (INIS)
Koehler, M.
1995-04-01
For an analogon of the free Wess-Zumino model on Ricci flat spacetimes, the relation between a conserved 'supercurrent' and the point-separated improved energy momentum tensor is investigated and a similar relation as on Minkowski space is established. The expectation value of the latter in any globally Hadamard product state is found to be a priori finite in the coincidence limit if the theory is massive. On arbitrary globally hyperbolic spacetimes the 'supercurrent' is shown to be a well defined operator valued distribution on the GNS Hilbertspace of any globally Hadamard product state. Viewed as a new field, all n-point distributions exist, giving a new example for a Wightman field on that manifold. Moreover, it is shown that this field satisfies a new wave front set spectrum condition in a nontrivial way. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kneur, J.L
2006-06-15
This document is divided into 2 parts. The first part describes a particular re-summation technique of perturbative series that can give a non-perturbative results in some cases. We detail some applications in field theory and in condensed matter like the calculation of the effective temperature of Bose-Einstein condensates. The second part deals with the minimal supersymmetric standard model. We present an accurate calculation of the mass spectrum of supersymmetric particles, a calculation of the relic density of supersymmetric black matter, and the constraints that we can infer from models.
Duality in supersymmetric Yang-Mills theory
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N{sub f} < N{sub c}, in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N{sub f} large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs.
Duality in supersymmetric Yang-Mills theory
International Nuclear Information System (INIS)
Peskin, M.E.
1997-02-01
These lectures provide an introduction to the behavior of strongly-coupled supersymmetric gauge theories. After a discussion of the effective Lagrangian in nonsupersymmetric and supersymmetric field theories, the author analyzes the qualitative behavior of the simplest illustrative models. These include supersymmetric QCD for N f c , in which the superpotential is generated nonperturbatively, N = 2 SU(2) Yang-Mills theory (the Seiberg-Witten model), in which the nonperturbative behavior of the effect coupling is described geometrically, and supersymmetric QCD for N f large, in which the theory illustrates a non-Abelian generalization of electric-magnetic duality. 75 refs., 12 figs
Supersymmetric gauge theories, quantization of M{sub flat}, and conformal field theory
Energy Technology Data Exchange (ETDEWEB)
Teschner, J.; Vartanov, G.S.
2013-02-15
We propose a derivation of the correspondence between certain gauge theories with N=2 supersymmetry and conformal field theory discovered by Alday, Gaiotto and Tachikawa in the spirit of Seiberg-Witten theory. Based on certain results from the literature we argue that the quantum theory of the moduli spaces of flat SL(2,R)-connections represents a nonperturbative ''skeleton'' of the gauge theory, protected by supersymmetry. It follows that instanton partition functions can be characterized as solutions to a Riemann-Hilbert type problem. In order to solve it, we describe the quantization of the moduli spaces of flat connections explicitly in terms of two natural sets of Darboux coordinates. The kernel describing the relation between the two pictures represents the solution to the Riemann Hilbert problem, and is naturally identified with the Liouville conformal blocks.
Complete integrability of the supersymmetric (cos phi)2 model
International Nuclear Information System (INIS)
Kulish, P.P.; Tsyplyaev, S.A.
1987-01-01
Complete integrability of the supersymmetric two-dimensional sine-Gordon field-theoretical model is proved in the framework of the Hamiltonian interpretation of the inverse problem method. The classical r-matrix of this model is computed and shown to be equivalent to the r-matrix of the Grassmann Thirring model. Creation-annihilation variables are constructed and the elementary excitation spectrum is determined
Field theoretic extensions of TDHF techniques
International Nuclear Information System (INIS)
Campbell, D.K.
1979-01-01
A possible extension of time-dependent Hartree-Fock (TDHF) techniques to relativistic quantum field theories is discussed. A set of extended TDHF equations which incorporates naturally relativistic kinematics and treats the mesons, the effects of which are in ordinary TDHF represented by a nonindependent mean field, as independent dynamical degrees of freedom. In a simple model field theory in one space and one time dimension the extended TDHF equations are solved analytically for certain static field configurations and numerically for the time-dependent scattering configuration. Qualitative features of the scattering solutions as observed in preliminary numerical studies are discussed, and the conclusion is reached by mentioning a number of problems for further research. 22 references
Field theoretical methods in chemical physics
International Nuclear Information System (INIS)
Paul, R.
1982-01-01
Field theory will become an important tool for the chemist, and this book presents a clear and thorough account of the theory itself and its applications for solving a wide variety of chemical problems. The author has brought together the foundations upon which the many and varied applications of field theory have been built, giving more intermediate steps than is usual in the derivations. This makes the book easily accessible to anyone with a background of calculus, statistical thermodynamics and elementary quantum chemistry. (orig./HK)
On the field theoretic description of gravitation
Nieuwenhuizen, T.M.; Kleinert, H.; Jantzen, R.T.; Ruffini, R.
2008-01-01
Maxwell started to describe gravitation as a field in Minkowski space. Such an approach brought Babak and Grishchuk in 1999 the gravitational energy-momentum tensor. Simple manipulations allow the Einstein equations to take the form Aµν = (8πG/c4)Θµν, where A is the acceleration tensor and Θ, the
Analysis of Ward identities in supersymmetric Yang-Mills theory
Ali, Sajid; Bergner, Georg; Gerber, Henning; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp
2018-05-01
In numerical investigations of supersymmetric Yang-Mills theory on a lattice, the supersymmetric Ward identities are valuable for finding the critical value of the hopping parameter and for examining the size of supersymmetry breaking by the lattice discretisation. In this article we present an improved method for the numerical analysis of supersymmetric Ward identities, which takes into account the correlations between the various observables involved. We present the first complete analysis of supersymmetric Ward identities in N=1 supersymmetric Yang-Mills theory with gauge group SU(3). The results indicate that lattice artefacts scale to zero as O(a^2) towards the continuum limit in agreement with theoretical expectations.
Supersymmetric classical mechanics
International Nuclear Information System (INIS)
Biswas, S.N.; Soni, S.K.
1986-01-01
The purpose of the paper is to construct a supersymmetric Lagrangian within the framework of classical mechanics which would be regarded as a candidate for passage to supersymmetric quantum mechanics. 5 refs. (author)
Classical solutions of some field theoretic models
International Nuclear Information System (INIS)
Zakrzewski, W.J.
1982-01-01
In recent years much attention has been paid to simpler fields theories, so chosen that they possess several properties of nonabelian gauge theories. They preserve the conformal invariance of the action and one can define the topological charge for them. They possess nontrivial solutions to the equations of motion. The perturbation theory based on the fluctuations around each solution is characterized by asymptotic freedom. A model called CP sup(n-1) is presented and some models which are its natural generalizations are discussed. (M.F.W.)
Field-theoretical space-uncertainty description
International Nuclear Information System (INIS)
Papp, E.; Micu, C.A.
1980-01-01
An approach has been given to define both the nonzero minimum value of the space-uncertainty evaluation and of the upper rest-mass bound of the involved particles. In this respect there are analysed the space-uncertainties wich emerge both from the regularised quantum field-theory and high-energy behaviour. In such conditions there are involved particles wich are effectively nonpoint ones. It can be then concluded that the dualism broglien between waves and nonpoint particles is actually involved, now in more general terms
On quantization of supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.V.
1985-01-01
A recipe to resolve ordering ambiguities in the quantum hamiltonian of supersymmetric theories is suggested. The Weyl ordering prescription for supercharge operators should be employed to preserve SUSY algebra on the quantum level. The quantum hamiltonian does not generally coincide with the Weyl ordered classical hamiltonian, the difference being due to the fact that the Weyl symbol of anticommutator of supercharges does not generally coincide with the Poisson bracket of their Weyl symbols (i.e. the classical hamiltonian). The suggested procedure is applied in the examples of N=1 and N=2 supersymmetric σ-models analyzed in the constant field limit
Supersymmetric probes on the conifold
International Nuclear Information System (INIS)
Arean, Daniel; Crooks, David E.; Ramallo, Alfonso V.
2004-01-01
We study the supersymmetric embeddings of different D-brane probes in the AdS 5 xT 1,1 geometry. The main tool employed is kappa symmetry and the cases studied include D3-, D5- and D7-branes. We find a family of three-cycles of the T 1,1 space over which a D3-brane can be wrapped supersymmetrically and we determine the field content of the corresponding gauge theory duals. Supersymmetric configurations of D5-branes wrapping a two-cycle and of spacetime filling D7-branes are also found. The configurations in which the entire T 1,1 space is wrapped by a D5-brane (baryon vertex) and a D7-brane are also studied. Some other embeddings which break supersymmetry but are nevertheless stable are also determined. (author)
CERN. Geneva
2011-01-01
In these lectures, I shall describe the theory of supersymmetry accessible to people with a knowledge of basic quantum field theory. The lectures will contain recipes of how to calculate which interactions (and which special relations) are in supersymmetry, without providing detailed proofs of where they come from. We shall also cover: motivation for weak-scale supersymmetry and the minimal supersymmetric standard model.
Supersymmetric family unification
International Nuclear Information System (INIS)
Frampton, P.H.; Kephart, T.W.
1983-01-01
The superheavy symmetry breaking of the gauge group in supersymmetrized unified theories is studied. The requirement that supersymmetry be unbroken strongly constrains the possible gauge group breaking, and we systematize such constraints group theoretically. In model building, one issue is whether to permit an adjoint matter superfield with concomitant color exotic fermions. A second issue is that of naturalness which is complicated by the well-known supersymmetry non-renormalization theorems. Both with and without an adjoint matter superfield, the most promising group appears to be SU(9) where three families can be naturally accommodated, at least for low-energy gauge group SU(3) x SU(2) x U(1). With an extra U(1) factor, as advocated by Fayet, the non-renormalization theorem must be exploited. (orig.)
Twistor-theoretic approach to topological field theories
International Nuclear Information System (INIS)
Ito, Kei.
1991-12-01
The two-dimensional topological field theory which describes a four-dimensional self-dual space-time (gravitational instanton) as a target space, which we constructed before, is shown to be deeply connected with Penrose's 'twistor theory'. The relations are presented in detail. Thus our theory offers a 'twistor theoretic' approach to topological field theories. (author)
Aspects of supersymmetric inflation
International Nuclear Information System (INIS)
Lindblom, P.R.
1987-01-01
A new supersymmetric inflationary model is presented and shown to possess the following features: a successful slow rollover produced by quantum corrections; an acceptable pattern of supersymmetry breaking leading to the correct value of the electroweak scale; and a stable slow rollover transition to a minimum with vanishing cosmological constant. It is demonstrated that there is a class of GUT models which are compatible with an inflationary universe scenario in which: (a) the GUT and inflationary phase transitions are distinct (as in supersymmetric inflation); and (b) an observable number of GUT monopoles are created thermally due to reheating of the GUT sector after inflation. This provides one of the few ways of reconciling an observation of GUT monopoles with inflation. New techniques are developed for constructing inflationary models with multiple inflation fields, such as generalizing the one-dimensional slow rollover constraints and estimating the contribution to δρ/ρ from fluctuations transverse to the path of the slow rollover. A new method for ending the slow rollover portion of the inflationary transition is developed
Production and decay of supersymmetric particles at future colliders
International Nuclear Information System (INIS)
Bartl, A.; Majerotto, W.; Moesslacher, B.
1991-01-01
We describe how supersymmetric particles could be detected at the new colliders HERA, LEP 200, LHC, SSC, and at the possible future linear e + e - collider. We shall present theoretical predictions for production cross sections and decay probabilities, as well as for the important signatures. Our calculations will be based on the Minimal Supersymmetric Standard Model (MSSM) which is the simplest supersymmetric extension of the Standard Model. (authors)
Supersymmetric particles at LEP
International Nuclear Information System (INIS)
Barbiellini, G.; Coignet, G.; Gaillard, M.K.; Bonneaud, G.; Ellis, J.; Matteuzzi, C.; Wiik, H.
1979-10-01
The authors examine whether the supersymmetrization of nature at a mass scale up to 100 GeV can be confirmed or excluded by experiments with LEP. They review the qualitative features of the spectroscopy suggested by supersymmetric theories. Then they discuss possible production rates and means of detection of these particles at LEP. In this framework they make some remarks about other projects for future high energy physics machines which can be used for the study of supersymmetric phenomena. (HSI)
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1993-09-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: The SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. The main technical tool is the supersymmetric generalisation of a map originally due to Radul between the Lie algebra of superdifferential operators and the Lie algebra of vector fields on the space of supersymmetric Lax operators. In the case of the Manin-Radul SKP hierarchy we identify additional symmetries which form an algebra isomorphic to a subalgebra of superdifferential operators; whereas in the case of the Jacobian SKP, the (additional) symmetries are identified with the algebra itself. (orig.)
Two- and three dimensional electrons and photons and their supersymmetric partners
International Nuclear Information System (INIS)
Steringa, J.J.
1989-01-01
This thesis contains a study of supersymmetric gauge theories in two and tree spacetime dimensions. Supersymmetric gauge theories in less than four spacetime dimensions are useful for trying out field theoretical methods which ultimately will be applied to realistic models. In ch. 1 all the aspects of field theory that are necessary for later chapters are treated. In ch. 2 sypersymmetry in two- and three-dimensional space time is treated, and superfields and superspace techniques are introduced. With these a simple Abelian supersymmetric gauge theory in two spacetime dimensions is constructed, the Schwinger model. Ch. 3 deals with general properties and a perturbative analysis of the model. Ch. 4 contains a non-perturbative analysis by means of Dyson-Schwinger equations. A supersummetric extension of theSalam-Delbourgo Gauge Technique is presented and is applied with some seccess to the supersymmetric Schwinger model. In ch. 5 prperties of three-dimensional supersymmetric gauge theories are investigated. (author). 55 refs.; 7 figs.; schemes
Supersymmetric Majoron inflation
Energy Technology Data Exchange (ETDEWEB)
King, Stephen F.; Ludl, Patrick Otto [School of Physics and Astronomy, University of Southampton,Southampton, SO17 1BJ (United Kingdom)
2017-03-31
We propose supersymmetric Majoron inflation in which the Majoron field Φ responsible for generating right-handed neutrino masses may also be suitable for giving low scale “hilltop” inflation, with a discrete lepton number ℤ{sub N} spontaneously broken at the end of inflation, while avoiding the domain wall problem. In the framework of non-minimal supergravity, we show that a successful spectral index can result with small running together with small tensor modes. We show that a range of heaviest right-handed neutrino masses can be generated, m{sub N}∼10{sup 1}−10{sup 16} GeV, consistent with the constraints from reheating and domain walls.
New Supersymmetric String Compactifications
Energy Technology Data Exchange (ETDEWEB)
Kachru, Shamit
2002-11-25
We describe a new class of supersymmetric string compactifications to 4d Minkowski space. These solutions involve type II strings propagating on (orientifolds of) non Calabi-Yau spaces in the presence of background NS and RR fluxes. The simplest examples have descriptions as cosets, generalizing the three-dimensional nilmanifold. They can also be thought of as twisted tori. We derive a formula for the (super)potential governing the light fields, which is generated by the fluxes and certain ''twists'' in the geometry. Detailed consideration of an example also gives strong evidence that in some cases, these exotic geometries are related by smooth transitions to standard Calabi-Yau or G2 compactifications of M-theory.
Supersymmetric D3/D7 for holographic flavors on curved space
International Nuclear Information System (INIS)
Karch, Andreas; Robinson, Brandon; Uhlemann, Christoph F.
2015-01-01
We derive a new class of supersymmetric D3/D7 brane configurations, which allow to holographically describe N=4 SYM coupled to massive N=2 flavor degrees of freedom on spaces of constant curvature. We systematically solve the κ-symmetry condition for D7-brane embeddings into AdS_4-sliced AdS_5×S"5, and find supersymmetric embeddings in a simple closed form. Up to a critical mass, these embeddings come in surprisingly diverse families, and we present a first study of their (holographic) phenomenology. We carry out the holographic renormalization, compute the one-point functions and attempt a field-theoretic interpretation of the different families. To complete the catalog of supersymmetric D3/D7 configurations, we construct analogous embeddings for flavored N=4 SYM on S"4 and dS_4.
Introduction to a field-theoretical treatment of neutrino oscillations
Indian Academy of Sciences (India)
... treatment of neutrino oscillations provides a beautiful and simple picture of ... This fact is best taken into account in the quantum field-theoretical approach where ..... which contain a real antineutrino of mass С , or in other words, in the limit Д.
Field-theoretical investigations in nonlinear realizations of gauge symmetry
International Nuclear Information System (INIS)
Lee, Chenhan.
1989-01-01
A review of both linear realization and non-linear realization of gauge symmetries is given and the connection between the two recipes is carefully examined. The author then constructs both linear and non-linear realizations for of supersymmetric theories. The supermultiplets of the Goldstone modes contain Goldstone bosons, quasi-Goldstone bosons and quasi-Goldstone fermions. He makes an attempt to construct a specific model of a supersymmetric non-linear realization for the Nambu-Goldstone superfields and the quasi-Goldstone fermions are identified with the quarks and leptons. Further, he discusses a mechanism by which the components of the Nambu-Goldstone supermultiplets are given non-zero mass splittings by the coupling to a hidden sector. Next, he turns to anti-symmetric tensor gauge theories, which are shown to be classically equivalent to the non-linear models describing the complete symmetry breakdown. To study the quantum mechanical equivalence of these two models, he carries out the tensor gauge fixing and the quantization procedures for the anti-symmetric tensor theories and establish the global symmetry currents which connect the two models. He then builds the supersymmetric extensions of the anti-symmetric tensor gauge theories in both abelian and non-abelian versions. Such super-tensor gauge theories are shown, by using the superfield equations of motion, to be equivalent to the fully doubled supersymmetric non-linear models of complete symmetry breakdown
Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio
2012-01-01
We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of
Slow dynamics at critical points: the field-theoretical perspective
International Nuclear Information System (INIS)
Gambassi, Andrea
2006-01-01
The dynamics at a critical point provides a simple instance of slow collective evolution, characterised by aging phenomena and by a violation of the fluctuation-dissipation relation even for long times. By virtue of the universality in critical phenomena it is possible to provide quantitative predictions for some aspects of these behaviours by field-theoretical methods. We review some of the theoretical results that have been obtained in recent years for the relevant (universal) quantities, such as the fluctuation-dissipation ratio, associated with the non-equilibrium critical dynamics
Quantum field theoretic properties of nonabelian phase factors
International Nuclear Information System (INIS)
Wieczorek, E.
1984-01-01
The paper is concerned with quantum field theoretical properies of nonabelian phase factors. The phase factors defining parallel transport in fiber bundle space are the necessary tool for the construction of gauge invariant nonlocal operators describing bound states in QCD. General structures of such operators are discussed and renormalization properties as well as relations between meson and baryon operators are obtained from a study of the underlying phase factors
Supersymmetric Higgs bosons and beyond
International Nuclear Information System (INIS)
Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose
2010-01-01
We consider supersymmetric models that include particles beyond the minimal supersymmetric standard model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the standard model and the MSSM.
Spontaneous baryogenesis in supersymmetric models
International Nuclear Information System (INIS)
Abel, S.A.; Cottingham, W.N.; Whittingham, I.B.
1993-01-01
In this paper we extent the results of previous work on spontaneous baryogenesis to general models involving charge-parity (CP) violation in the Higgs sector. We show how to deal with Chern-Simons terms appearing in the effective potential arising from phase changes in the vacuum expectation values of the Higgs fields. In particular, this enables us to apply this mechanism to general supersymmetric models including the minimal supersymmetric standard model, and the extended model with a gauge singlet. A comparison is made between this approach, and that in which one solves the equations of motion for Higgs winding modes. As anticipated in earlier work, the effect of the latter approach is found to be small. (Author)
Supersymmetric quasipotential equations
International Nuclear Information System (INIS)
Zaikov, R.P.
1981-01-01
A supersymmetric extension of the Logunov-Tavkhelidze quasipotential approach is suggested. The supersymmetric Bethe- Salpeter equation is an initial equation. The transition from the four-time to the two-time Green function is made in the super- center-of-mass system. The two-time Green function has no inverse function in the whole spinor space. The resolvent operator if found using the Majorana character of the spinor wave function. The supersymmetric quasipotential equation is written. The consideration is carried out in the framework of the theory of chiral scalar superfields [ru
Supersymmetric and non-supersymmetric models without catastrophic Goldstone bosons
Energy Technology Data Exchange (ETDEWEB)
Braathen, Johannes; Goodsell, Mark D. [LPTHE, UPMC Univ. Paris 6, Sorbonne Universites, Paris (France); LPTHE, CNRS, Paris (France); Staub, Florian [Karlsruhe Institute of Technology, Institute for Theoretical Physics (ITP), Karlsruhe (Germany); Karlsruhe Institute of Technology, Institute for Nuclear Physics (IKP), Eggenstein-Leopoldshafen (Germany)
2017-11-15
The calculation of the Higgs mass in general renormalisable field theories has been plagued by the so-called ''Goldstone Boson Catastrophe'', where light (would-be) Goldstone bosons give infra-red divergent loop integrals. In supersymmetric models, previous approaches included a workaround that ameliorated the problem for most, but not all, parameter space regions; while giving divergent results everywhere for non-supersymmetric models. We present an implementation of a general solution to the problem in the public code SARAH, along with new calculations of some necessary loop integrals and generic expressions. We discuss the validation of our code in the Standard Model, where we find remarkable agreement with the known results. We then show new applications in Split SUSY, the NMSSM, the Two-Higgs-Doublet Model, and the Georgi-Machacek model. In particular, we take some first steps to exploring where the habit of using tree-level mass relations in non-supersymmetric models breaks down, and show that the loop corrections usually become very large well before naive perturbativity bounds are reached. (orig.)
Duality and supersymmetric monopoles
International Nuclear Information System (INIS)
Gauntlett, J.P.
1998-01-01
Exact duality in supersymmetric gauge theories leads to highly non-trivial predictions about the moduli spaces of BPS monopole solutions. These notes attempt to be a pedagogical review of the current status of these investigations. (orig.)
International Nuclear Information System (INIS)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model
Energy Technology Data Exchange (ETDEWEB)
Bagger, J.A.
1984-09-01
We begin to construct the most general supersymmetric Lagrangians in one, two and four dimensions. We find that the matter couplings have a natural interpretation in the language of the nonlinear sigma model.
Renormalization of supersymmetric theories
International Nuclear Information System (INIS)
Pierce, D.M.
1998-06-01
The author reviews the renormalization of the electroweak sector of the standard model. The derivation also applies to the minimal supersymmetric standard model. He discusses regularization, and the relation between the threshold corrections and the renormalization group equations. He considers the corrections to many precision observables, including M W and sin 2 θ eff . He shows that global fits to the data exclude regions of supersymmetric model parameter space and lead to lower bounds on superpartner masses
Aspects of the supersymmetric Goldstone formalism
International Nuclear Information System (INIS)
Lerche, W.
1985-01-01
The present thesis deal with the discussion of general properties of Goldstone excitations in global N=1 supersymmetric theories. The results can become relevant in the framework of theories which interpret quarks and leptons as composite 'quasi-Goldstone fermions'. The thesis is arranged in two main parts: the first is occupied by group-theoretical aspects, i.e. by the spectrum of supersymmetric Goldstone excitations as well as by geometrical considerations which are connected with effective Lagrangian densities. In the second main part dynamic questions like for instance mass generation are treated. For this a suitable formalism is developed. (orig.) [de
Supersymmetric color superconductivity
International Nuclear Information System (INIS)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2004-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential mu, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ f c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f =N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c +1≤ N f c and find that baryon number is broken dynamically for μ > mu c . We also give a qualitative description of the phases in the 'conformal window', 3/2 N c f c , at finite density. (author)
Supersymmetric color superconductivity
International Nuclear Information System (INIS)
Harnik, Roni; Larson, Daniel T.; Murayama, Hitoshi
2003-01-01
Recent interest in novel phases in high density QCD motivates the study of high density supersymmetric QCD (SQCD), where powerful exact results for supersymmetric gauge theories can be brought to bear in the strongly coupled regime. We begin by describing how a chemical potential can be incorporated into a supersymmetric theory as a spurion vector superfield. We then study supersymmetric SU(N c ) gauge theories with N f flavors of quarks in the presence of a baryon chemical potential μ, and describe the global symmetry breaking patterns at low energy. Our analysis requires μ > Λ. We find that for N F c a modified U(1) B symmetry is preserved, analogous to the non-supersymmetric 2SC phase, whereas for N f = N c there is a critical chemical potential above which the U(1) B is broken, as it is in the non-supersymmetric CFL phase. We further analyze the cases with N c + 1 (le) N f c and find that baryon number is broken dynamically for μ > μ c . We also give a qualitative description of the phases in the ''conformal window'', 3/2 N c f c , at finite density
Detailed analysis of the continuum limit of a supersymmetric lattice model in 1D
International Nuclear Information System (INIS)
Huijse, L
2011-01-01
We present a full identification of lattice model properties with their field theoretical counterparts in the continuum limit for a supersymmetric model for itinerant spinless fermions on a one-dimensional chain. The continuum limit of this model is described by an N=(2,2) superconformal field theory (SCFT) with central charge c = 1. We identify states and operators in the lattice model with fields in the SCFT and we relate boundary conditions on the lattice to sectors in the field theory. We use the dictionary we develop in this paper to give a pedagogical explanation of a powerful tool to study supersymmetric models based on spectral flow (Huijse 2008 Phys. Rev. Lett. 101 146406). Finally, we employ the developed machinery to explain numerically observed properties of the particle density on the open chain presented in Beccaria and De Angelis (2005 Phys. Rev. Lett. 94 100401)
Field-theoretic approach to fluctuation effects in neural networks
International Nuclear Information System (INIS)
Buice, Michael A.; Cowan, Jack D.
2007-01-01
A well-defined stochastic theory for neural activity, which permits the calculation of arbitrary statistical moments and equations governing them, is a potentially valuable tool for theoretical neuroscience. We produce such a theory by analyzing the dynamics of neural activity using field theoretic methods for nonequilibrium statistical processes. Assuming that neural network activity is Markovian, we construct the effective spike model, which describes both neural fluctuations and response. This analysis leads to a systematic expansion of corrections to mean field theory, which for the effective spike model is a simple version of the Wilson-Cowan equation. We argue that neural activity governed by this model exhibits a dynamical phase transition which is in the universality class of directed percolation. More general models (which may incorporate refractoriness) can exhibit other universality classes, such as dynamic isotropic percolation. Because of the extremely high connectivity in typical networks, it is expected that higher-order terms in the systematic expansion are small for experimentally accessible measurements, and thus, consistent with measurements in neocortical slice preparations, we expect mean field exponents for the transition. We provide a quantitative criterion for the relative magnitude of each term in the systematic expansion, analogous to the Ginsburg criterion. Experimental identification of dynamic universality classes in vivo is an outstanding and important question for neuroscience
Supersymmetric and supergravity theories
International Nuclear Information System (INIS)
Pernici, M.
1986-01-01
The author addressed problems in Kaluza-Klein supergravity, in supersymmetric theories and in string theories. They constructed the following supergravity theories in higher dimensions: the maximal gauged supergravities in five and seven dimensions, both related to the respective ungauged theory, though the latter cannot be obtained by putting the coupling constant of the gauged version to zero (gauge discontinuity); the ten-dimensional N = 2 non-chiral and the six-dimensional N = 4 supergravities, through trivial dimensional reduction of higher dimensional theories. They studied the Kaluza-Klein compactifications of the seven-dimensional supergravity theories and of the ten-dimensional, N = 2 non-chiral supergravity. They obtained the non-compact gaugings and the critical points of the potential of the maximal gauged supergravity in seven dimensions. They computed the non-abelian chiral anomaly in super Yang-Mills theories, using a variation of the Fujikawa method. The covariant action of the SU(2) spinning string is obtained together with its extension to non-linear sigma models. A covariant action for the free open spinning string field theory is constructed by analyzing the BRST transformations
Introduction to superfluidity field-theoretical approach and applications
Schmitt, Andreas
2015-01-01
Superfluidity – and closely related to it, superconductivity – are very general phenomena that can occur on vastly different energy scales. Their underlying theoretical mechanism of spontaneous symmetry breaking is even more general and applies to a multitude of physical systems. In these lecture notes, a pedagogical introduction to the field-theory approach to superfluidity is presented. The connection to more traditional approaches, often formulated in a different language, is carefully explained in order to provide a consistent picture that is useful for students and researchers in all fields of physics. After introducing the basic concepts, such as the two-fluid model and the Goldstone mode, selected topics of current research are addressed, such as the BCS-BEC crossover and Cooper pairing with mismatched Fermi momenta.
Optimal information transfer in enzymatic networks: A field theoretic formulation
Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.
2017-07-01
Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in
Vector supersymmetric multiplets in two dimensions
International Nuclear Information System (INIS)
Khattab, Mohammad
1990-01-01
Author.The invariance of both, N=1 supersymmetric yang-Mills theory and N-1 supersymmetric off-shell Wess-Zumino model in four dimensions is proved. Dimensional reduction is then applied to obtain super Yang-Mills theory with extended supersymmetry, N=2, in two dimensions. The resulting theory is then truncated to N=1 super Yang-Mills and with further truncation, N=1/2 supersymmetry is shown to be possible. Then, using the duality transformations, we find the off-shell supersymmetry algebra is closed and that the auxiliary fields are replaced by four-rank antisymmetric tensors with Gauge symmetry. Finally, the mechanism of dimensional reduction is then applied to obtain N=2 extended off-shell supersymmetric model with two gauge vector fields
Supersymmetric gyratons in five dimensions
Energy Technology Data Exchange (ETDEWEB)
Caldarelli, Marco M [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy); Klemm, Dietmar [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy); Zorzan, Emanuele [Dipartimento di Fisica dell' Universita di Milano Via Celoria 16, I-20133 Milan (Italy)
2007-03-07
We obtain the gravitational and electromagnetic field of a spinning radiation beam-pulse (a gyraton) in minimal five-dimensional gauged supergravity and show under which conditions the solution preserves part of the supersymmetry. The configurations represent generalizations of Lobatchevski waves on AdS with nonzero angular momentum, and possess a Siklos-Virasoro reparametrization invariance. We compute the holographic stress-energy tensor of the solutions and show that it transforms without anomaly under these reparametrizations. Furthermore, we present supersymmetric gyratons both in gauged and ungauged five-dimensional supergravity coupled to an arbitrary number of vector supermultiplets, which include gyratons on domain walls.
Theoretical femtosecond physics atoms and molecules in strong laser fields
Grossmann, Frank
2018-01-01
This textbook extends from the basics of femtosecond physics all the way to some of the latest developments in the field. In this updated edition, the chapter on laser-driven atoms is augmented by the discussion of two-electron atoms interacting with strong and short laser pulses, as well as by a review of ATI rings and low energy structures in photo-electron spectra. In the chapter on laser-driven molecules a discussion of 2D infrared spectroscopy is incorporated. Theoretical investigations of atoms and molecules interacting with pulsed lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. The presentation starts with a brief introduction to pulsed laser physics. The basis for the non-perturbative treatment of laser-matter interaction in the book is the time-dependent Schrödinger equation. Its analytical as well as numerical solution are laid out in some detail. The light field is treated classically and different possi...
Theoretical and experimental examination of near-field acoustic levitation.
Nomura, Hideyuki; Kamakura, Tomoo; Matsuda, Kazuhisa
2002-04-01
A planar object can be levitated stably close to a piston sound source by making use of acoustic radiation pressure. This phenomenon is called near-field acoustic levitation [Y. Hashimoto et al., J. Acoust. Soc. Am. 100, 2057-2061 (1996)]. In the present article, the levitation distance is predicted theoretically by numerically solving basic equations in a compressible viscous fluid subject to the appropriate initial and boundary conditions. Additionally, experiments are carried out using a 19.5-kHz piston source with a 40-mm aperture and various aluminum disks of different sizes. The measured levitation distance agrees well with the theory, which is different from a conventional theory, and the levitation distance is not inversely proportional to the square root of the surface density of the levitated disk in a strict sense.
Renormalization Group in different fields of theoretical physics
International Nuclear Information System (INIS)
Shirkov, D.V.
1992-02-01
A very simple and general approach to the symmetry that is widely known as a Renormalization Group symmetry is presented. It essentially uses a functional formulation of group transformations that can be considered as a generalization of self-similarity transformations well known in mathematical physics since last century. This generalized Functional Self-Similarity symmetry and corresponding group transformations are discussed first for a number of simple physical problems taken from diverse fields of classical physics as well as for QED. Then we formulate the Renorm-Group Method as a regular procedure that essentially improves the approximate solutions near the singularity. After that we discuss relations between different formulations of Renormalization Group as they appear in various parts of a modern theoretical physics. Finally we present several topics of RGM application in modern QFT. (author)
Some recent developments in the theoretical dynamics of magnetic fields
International Nuclear Information System (INIS)
Low, B.C.
1986-01-01
This article describes recent developments in the theoretical investigation of magnetostatic equilibrium in the presence of gravity, nonequilibrium in hydromagnetics, and classical problems in hydromagnetic stability. The construction of magnetostatic dequilibria has progressed beyond geometrically idealized systems, such as the axisymmetric system, to fully three-dimensional systems capable of modelling realistic solar structures. Nonequilibrium in a magnetic field with an arbitrary interweaving of lines of force due to random footpoint motion is a novel and subtle property with important implications for the solar atmosphere. To the extent quasi-static solar structures are approximated by stable equilibrium, ideal hydromagnetic stability theory provides a first insight into how stability is achieved in the solar environment. A qualitative physical picture based on recent stability analyses is given. The article places emphasis on understanding basic principles and issues rather than detailed results which can be found in the published literature
Instantons in supersymmetric theories
International Nuclear Information System (INIS)
Novikov, V.A.; Shifman, M.A.; Vajnshtejn, A.I.; Zakharov, V.I.
1982-01-01
Instanton effects are considered for a sample of supersymmetric theories: quantum mechanics, gluodynamics. Higgs model. The problem is how to reconcile the apparent lack of the boson-fermion symmetry in the effective instanton induced interaction with supersymmetry of the corresponding lagrangians. It is shown that in case of quantum mechanics and Higgs model there is no conflict between supersymmetry and the instanton calculus since the Ward identities, associated with the supersymmetry transformations, are satisfied. In case of supersymmetric gluodynamics the standard instanton calculus explicity violates the Ward identities. This is due to the lack of symmetry in the standard class of classical solutions used in the instanton calculus
Bubbles of nothing and supersymmetric compactifications
Energy Technology Data Exchange (ETDEWEB)
Blanco-Pillado, Jose J. [IKERBASQUE, Basque Foundation for Science, 48011, Bilbao (Spain); Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Shlaer, Benjamin [Department of Physics, University of Auckland,Private Bag 92019, Auckland (New Zealand); Institute of Cosmology, Department of Physics and Astronomy,Tufts University, Medford, MA 02155 (United States); Sousa, Kepa [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain); Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid,Cantoblanco, 28049 Madrid (Spain); Urrestilla, Jon [Department of Theoretical Physics, University of the Basque Country UPV/EHU,48080 Bilbao (Spain)
2016-10-03
We investigate the non-perturbative stability of supersymmetric compactifications with respect to decay via a bubble of nothing. We show examples where this kind of instability is not prohibited by the spin structure, i.e., periodicity of fermions about the extra dimension. However, such “topologically unobstructed” cases do exhibit an extra-dimensional analog of the well-known Coleman-De Luccia suppression mechanism, which prohibits the decay of supersymmetric vacua. We demonstrate this explicitly in a four dimensional Abelian-Higgs toy model coupled to supergravity. The compactification of this model to M{sub 3}×S{sub 1} presents the possibility of vacua with different windings for the scalar field. Away from the supersymmetric limit, these states decay by the formation of a bubble of nothing, dressed with an Abelian-Higgs vortex. We show how, as one approaches the supersymmetric limit, the circumference of the topologically unobstructed bubble becomes infinite, thereby preventing the realization of this decay. This demonstrates the dynamical origin of the decay suppression, as opposed to the more familiar argument based on the spin structure. We conjecture that this is a generic mechanism that enforces stability of any topologically unobstructed supersymmetric compactification.
Supersymmetric models without R parity
International Nuclear Information System (INIS)
Ross, G.G.; Valle, J.W.F.
1985-01-01
We show that many supersymmetric models may spontaneously break R parity through scalar neutrinos acquiring a vacuum expectation value (vev). These models allow supersymmetric particles to be produced singly and to decay to nonsupersymmetric states. This leads to a new pattern of supersymmetric phenomenology. We discuss the lepton number violation to be expected in this class of models. (orig.)
Theoretical femtosecond physics atoms and molecules in strong laser fields
Grossmann, Frank
2013-01-01
Theoretical investigations of atoms and molecules interacting with pulsed or continuous wave lasers up to atomic field strengths on the order of 10^16 W/cm² are leading to an understanding of many challenging experimental discoveries. This book deals with the basics of femtosecond physics and goes up to the latest applications of new phenomena. The book presents an introduction to laser physics with mode-locking and pulsed laser operation. The solution of the time-dependent Schrödinger equation is discussed both analytically and numerically. The basis for the non-perturbative treatment of laser-matter interaction in the book is the numerical solution of the time-dependent Schrödinger equation. The light field is treated classically, and different possible gauges are discussed. Physical phenonema, ranging from Rabi-oscillations in two-level systems to the ionization of atoms, the generation of high harmonics, the ionization and dissociation of molecules as well as the control of chemical reactions are pre...
Liouville supersymmetrical equation for a quantum case
International Nuclear Information System (INIS)
Leznov, A.N.; Khrushev, V.V.
1982-01-01
The relation between coupling constants of interacting nonlinear scalar and spinor fields was established which leads to finite series of perturbation theory for the dynamical variable esup(-phi). In the classical limit h/2π→0 the system under consideration turns out to be described by supersymmetric Luiville equation
Supersymmetric theories of neutrino dark energy
International Nuclear Information System (INIS)
Fardon, Rob; Nelson, Ann E.; Weiner, Neal
2006-01-01
We present a supersymmetric model of dark energy from Mass Varying Neutrinos which is stable against radiative corrections to masses and couplings, and free of dynamical instabilities. This is the only such model of dark energy involving fields with significant couplings to any standard model particle. We briefly discuss consequences for neutrino oscillations and solar neutrinos
The spinorial method of classifying supersymmetric backgrounds
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2006-01-01
We review how the classification of all supersymmetric backgrounds of IIB supergravity can be reduced to the evaluation of the Killing spinor equations and their integrability conditions, which contain the field equations, on five types of spinors. This is an extension of the work [hep-th/0503046
Supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Crombrugghe, M. de; Rittenberg, V.
1982-12-01
We give a general construction for supersymmetric Hamiltonians in quantum mechanics. We find that N-extended supersymmetry imposes very strong constraints, and for N > 4 the Hamiltonian is integrable. We give a variety of examples, for one-particle and for many-particle systems, in different numbers of dimensions. (orig.)
The Supersymmetric Top-Ten Lists
Haber, Howard E.
1993-01-01
Ten reasons are given why supersymmetry is the leading candidate for physics beyond the Standard Model. Ultimately, the experimental discovery of supersymmetric particles at future colliders will determine whether supersymmetry is relevant for TeV scale physics. The grand hope of supersymmetry enthusiasts is to connect TeV scale supersymmetry with Planck scale physics. The ten most pressing theoretical problems standing in the way of this goal are briefly described.
Supersymmetric sigma models and composite Yang-Mills theory
International Nuclear Information System (INIS)
Lukierski, J.
1980-04-01
We describe two types of supersymmetric sigma models: with field values in supercoset space and with superfields. The notion of Riemannian symmetric pair (H,G/H) is generalized to supergroups. Using the supercoset approach the superconformal-invariant model of composite U(n) Yang-Mills fields in introduced. In the framework of the superfield approach we present with some details two versions of the composite N=1 supersymmetric Yang-Mills theory in four dimensions with U(n) and U(m) x U(n) local invariance. We argue that especially the superfield sigma models can be used for the description of pre-QCD supersymmetric dynamics. (author)
Applications of supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Rietdijk, R.H.
1992-01-01
The central subject of the thesis is the spinning particle model. It is a theory describing in a pseudoclassical way a Dirac particle which moves in an arbitrary d-dimensional space-time.In addition to space-time coordinates, the particle has spin which is described in terms of anti-commuting coordinates. Along the particles world line there is a super-symmetry between the fermionic spin variables and the bosonic position coordinates of the particle. It is straightforward to quantisize this model giving rise to supersymmetric quantum mechanics. The model does indeed describe a particle with spin 1/2, like a quark or an electron. There are two aspects of this model which is studied extensively in this thesis. First, to investigate the symmetries of the spinning particle on an arbitrary Riemannian manifold. Second, attention is drawn to the application of supersymmetric quantum mechanical models (i.e. spinning particle models) defined on an arbitrary Riemannian manifold to the calculation of anomalies in quantum field theories defined on the same manifold. (author). 49 refs.; 7 figs
Quantum noise in the mirror–field system: A field theoretic approach
International Nuclear Information System (INIS)
Hsiang, Jen-Tsung; Wu, Tai-Hung; Lee, Da-Shin; King, Sun-Kun; Wu, Chun-Hsien
2013-01-01
We revisit the quantum noise problem in the mirror–field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror’s displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation–dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: ► The quantum noise problem in the mirror–field system is re-visited by a field-theoretic approach. ► Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. ► The noise correlations can be used to suppress the overall quantum noise on the mirror.
Quantum noise in the mirror-field system: A field theoretic approach
Energy Technology Data Exchange (ETDEWEB)
Hsiang, Jen-Tsung, E-mail: cosmology@gmail.com [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Wu, Tai-Hung [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); Lee, Da-Shin, E-mail: dslee@mail.ndhu.edu.tw [Department of Physics, National Dong-Hwa University, Hua-lien, Taiwan, ROC (China); King, Sun-Kun [Institutes of Astronomy and Astrophysics, Academia Sinica, Taipei, Taiwan, ROC (China); Wu, Chun-Hsien [Department of Physics, Soochow University, Taipei, Taiwan, ROC (China)
2013-02-15
We revisit the quantum noise problem in the mirror-field system by a field-theoretic approach. Here a perfectly reflecting mirror is illuminated by a single-mode coherent state of the massless scalar field. The associated radiation pressure is described by a surface integral of the stress-tensor of the field. The read-out field is measured by a monopole detector, from which the effective distance between the detector and mirror can be obtained. In the slow-motion limit of the mirror, this field-theoretic approach allows to identify various sources of quantum noise that all in all leads to uncertainty of the read-out measurement. In addition to well-known sources from shot noise and radiation pressure fluctuations, a new source of noise is found from field fluctuations modified by the mirror's displacement. Correlation between different sources of noise can be established in the read-out measurement as the consequence of interference between the incident field and the field reflected off the mirror. In the case of negative correlation, we found that the uncertainty can be lowered than the value predicted by the standard quantum limit. Since the particle-number approach is often used in quantum optics, we compared results obtained by both approaches and examine its validity. We also derive a Langevin equation that describes the stochastic dynamics of the mirror. The underlying fluctuation-dissipation relation is briefly mentioned. Finally we discuss the backreaction induced by the radiation pressure. It will alter the mean displacement of the mirror, but we argue this backreaction can be ignored for a slowly moving mirror. - Highlights: Black-Right-Pointing-Pointer The quantum noise problem in the mirror-field system is re-visited by a field-theoretic approach. Black-Right-Pointing-Pointer Other than the shot noise and radiation pressure noise, we show there are new sources of noise and correlation between them. Black-Right-Pointing-Pointer The noise
Nearly Supersymmetric Dark Atoms
Energy Technology Data Exchange (ETDEWEB)
Behbahani, Siavosh R.; Jankowiak, Martin; /SLAC /Stanford U., ITP; Rube, Tomas; /Stanford U., ITP; Wacker, Jay G.; /SLAC /Stanford U., ITP
2011-08-12
Theories of dark matter that support bound states are an intriguing possibility for the identity of the missing mass of the Universe. This article proposes a class of models of supersymmetric composite dark matter where the interactions with the Standard Model communicate supersymmetry breaking to the dark sector. In these models supersymmetry breaking can be treated as a perturbation on the spectrum of bound states. Using a general formalism, the spectrum with leading supersymmetry effects is computed without specifying the details of the binding dynamics. The interactions of the composite states with the Standard Model are computed and several benchmark models are described. General features of non-relativistic supersymmetric bound states are emphasized.
Supersymmetrically transformed periodic potentials
C, David J. Fernandez
2003-01-01
The higher order supersymmetric partners of a stationary periodic potential are studied. The transformation functions associated to the band edges do not change the spectral structure. However, when the transformation is implemented for factorization energies inside of the forbidden bands, the final potential will have again the initial band structure but it can have bound states encrusted into the gaps, giving place to localized periodicity defects.
Determining Student Competency in Field Placements: An Emerging Theoretical Model
Directory of Open Access Journals (Sweden)
Twyla L. Salm
2016-06-01
Full Text Available This paper describes a qualitative case study that explores how twenty-three field advisors, representing three human service professions including education, nursing, and social work, experience the process of assessment with students who are struggling to meet minimum competencies in field placements. Five themes emerged from the analysis of qualitative interviews. The field advisors primary concern was the level of professional competency achieved by practicum students. Related to competency were themes concerned with the field advisor's role in being accountable and protecting the reputation of his/her profession as well as the reputation of the professional program affiliated with the practicum student's professional education. The final theme – teacher-student relationship –emerged from the data, both as a stand-alone and global or umbrella theme. As an umbrella theme, teacher-student relationship permeated each of the other themes as the participants interpreted their experiences of the process of assessment through the mentor relationships. A theoretical model was derived from these findings and the description of the model is presented. Cet article décrit une étude de cas qualitative qui explore comment vingt-trois conseillers de stages, représentant trois professions de services sociaux comprenant l’éducation, les soins infirmiers et le travail social, ont vécu l’expérience du processus d’évaluation avec des étudiants qui ont des difficultés à acquérir les compétences minimales durant les stages. Cinq thèmes ont été identifiés lors de l’analyse des entrevues qualitatives. La préoccupation principale des conseillers de stages était le niveau de compétence professionnelle acquis par les stagiaires. Les thèmes liés à la compétence étaient le rôle des conseillers de stages dans leur responsabilité pour protéger la réputation de leur profession ainsi que la réputation d’un programme professionnel
Dynamics of supersymmetric chameleons
International Nuclear Information System (INIS)
Brax, Philippe; Davis, Anne-Christine; Sakstein, Jeremy
2013-01-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons
Dynamics of supersymmetric chameleons
Energy Technology Data Exchange (ETDEWEB)
Brax, Philippe [Institut de Physique Theorique, CEA, IPhT, CNRS, URA 2306, F-91191Gif/Yvette Cedex (France); Davis, Anne-Christine; Sakstein, Jeremy, E-mail: Philippe.Brax@cea.fr, E-mail: A.C.Davis@damtp.cam.ac.uk, E-mail: J.A.Sakstein@damtp.cam.ac.uk [DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)
2013-10-01
We investigate the cosmological dynamics of a class of supersymmetric chameleon models coupled to cold dark matter fermions. The model includes a cosmological constant in the form of a Fayet-Illiopoulos term, which emerges at late times due to the coupling of the chameleon to two charged scalars. Supergravity corrections ensure that the supersymmetric chameleons are efficiently screened in all astrophysical objects of interest, however this does not preclude the enhancement of gravity on linear cosmological scales. We solve the modified equations for the growth of cold dark matter density perturbations in closed form in the matter era. Using this, we go on to derive the modified linear power spectrum which is characterised by two scales, the horizon size at matter-radiation equality and at the redshift when the chameleon reaches the minimum of its effective potential. We analyse the deviations from the ΛCDM predictions in the linear regime. We find that there is generically a region in the model's parameter space where the model's background cosmology coincides with that of the ΛCDM model. Furthermore, we find that characteristic deviations from ΛCDM are present on the matter power spectrum providing a clear signature of supersymmetric chameleons.
Spin analysis of supersymmetric particles
International Nuclear Information System (INIS)
Choi, S.Y.; Martyn, H.U.
2006-12-01
The spin of supersymmetric particles can be determined at e + e - colliders unambiguously. This is demonstrated for a characteristic set of non-colored supersymmetric particles -- smuons, selectrons, and charginos/neutralinos. The analysis is based on the threshold behavior of the excitation curves for pair production in e + e - collisions, the angular distribution in the production process and decay angular distributions. In the first step we present the observables in the helicity formalism for the supersymmetric particles. Subsequently we confront the results with corresponding analyses of Kaluza-Klein particles in theories of universal extra space dimensions which behave distinctly different from supersymmetric theories. It is shown in the third step that a set of observables can be designed which signal the spin of supersymmetric particles unambiguously without any model assumptions. Finally in the fourth step it is demonstrated that the determination of the spin of supersymmetric particles can be performed experimentally in practice at an e + e - collider. (orig.)
On negative norm states in supersymmetric theories
International Nuclear Information System (INIS)
Ellwanger, U.
1983-01-01
We study the effective kinetic energy of scalar fields for two classes of supersymmetric theories. In theories with very large VEVs of scalar fields, as proposed by Witten, the use of the renormalization group improved effective action prevents the appearance of negative norm states. For simpler theories a general criterium for the absence of negative norm states is given, which is violated in a model with O(N)-symmetry proposed recently. (orig.)
On the supersymmetric BKP hierarchy
International Nuclear Information System (INIS)
Ramos, Eduardo; Stanciu, Sonia
1994-01-01
We prove that the supersymmetric BKP-hierarchy of Yu (SBKP 2 ) is hamiltonian with respect to a nonlinear extension of the N=1 super-Virasoro algebra (W SBKP ) by fields of spin k, where k>[3]/[2] and 2k≡0,3 (mod 4). Moreover, we show how to associate in a similar manner an N=1 W-superalgebra with every integrable hierarchy of the SKdV-type. We also show using dressing transformations how to extend, in a way which is compatible with the hamiltonian structure, the SBKP 2 hierarchy by odd flows, as well as the equivalence of this extended hierarchy to the SBKP-hierarchy of Manin-Radul. ((orig.))
Field-theoretic calculation of kinetic helicity flux
Indian Academy of Sciences (India)
Given all these practical aspects, kinetic helicity is an important quantity to study in fluid turbulence. Turbulence involves millions of interacting modes. It is very difficult to analyze these modes theoretically as well as numerically. In recent times, a new numeri- cal procedure called 'large eddy simulations' (LES) has become ...
Supersymmetric reciprocal transformation and its applications
International Nuclear Information System (INIS)
Liu, Q. P.; Popowicz, Ziemowit; Tian Kai
2010-01-01
The supersymmetric analog of the reciprocal transformation is introduced. This is used to establish a transformation between one of the supersymmetric Harry Dym equations and the supersymmetric modified Korteweg-de Vries equation. The reciprocal transformation, as a Baecklund-type transformation between these two equations, is adopted to construct a recursion operator for the supersymmetric Harry Dym equation. By proper factorization of the recursion operator, a bi-Hamiltonian structure is found for the supersymmetric Harry Dym equation. Furthermore, a supersymmetric Kawamoto equation is proposed and is associated with the supersymmetric Sawada-Kotera equation. The recursion operator and odd bi-Hamiltonian structure of the supersymmetric Kawamoto equation are also constructed.
International Nuclear Information System (INIS)
Cecotti, S.; Fendley, P.; Intriligator, K.; Vafa, C.
1992-01-01
We show that Tr(-1) F F e -βH is an index for N = 2 supersymmetric theories in two dimensions, in the sense that it is independent of almost all deformations of the theory. This index is related to the geometry of the vacua (Berry's curvature) and satisfies an exact differential equation as a function of β. For integrable theories we can also compute the index thermodynamically, using the exact S-matrix. The equivalence of these two results implies a highly non-trivial equivalence of a set of coupled integral equations with these differential equations, among them Painleve III and the affine Toda equations. (orig.)
Supersymmetric inflation: Recent progress
International Nuclear Information System (INIS)
Ovrut, B.A.; Steinhardt, P.J.
1986-01-01
The new inflationary universe scenario is, in principle, a simple and powerful approach to resolving a large number of fundamental cosmological problems. However, in order for the scenario to be considered a complete theory, one critical question remains to be answered: What is the physics responsible for the phase transition that triggers the exponential expansion (inflation) of the universe? One possibility that the authors and several other groups have been pursuing is that the physics responsible for the phase transition involves (local) supersymmetry. The goal of this paper is to review the present status of ''Supersymmetric Inflation'', particularly emphasizing some very exciting results that they recently obtained
Higgs bosons in supersymmetric models. Pt. 1
International Nuclear Information System (INIS)
Gunion, J.F.
1986-01-01
We describe the properties of Higgs bosons in a class of supersymmetric theories. We consider models in which the low-energy sector contains two weak complex doublets and perhaps one complex gauge-singlet Higgs field. Supersymmetry is assumed to be either softly or spontaneously broken, thereby imposing a number of restrictions on the Higgs boson parameters. We elucidate the Higgs boson masses and present Feynman rules for their couplings to the gauge bosons, fermions and scalars of the theory. We also present Feynman rules for vertices which are related by supersymmetry to the above couplings. Exact analytic expressions are given in two useful limits - one corresponding to the absence of the gauge-singlet Higgs field and the other corresponding to the absence of a supersymmetric Higgs mass term. (orig.)
Supersymmetric seesaw inflection
International Nuclear Information System (INIS)
Aulakh, Charanjit S.; Garg, Ila
2013-01-01
We showed that Supersymmetric Unified theories which explain small neutrino masses via renormalizable Type-I-see-saw mechanism can also support slow roll inflection point inflation. In such a scenario inflation occurs along a MSSM D-flat direction associated with gauge invariant combination of Higgs, slepton and right handed sneutrino. The scale of inflation is set by right handed neutrino mass M υc ∼10 6 10 12 GeV and inflation parameters are determined in terms of Dirac and Majorana couplings responsible for neutrino masses. The fine tuning conditions to have effective slow roll inflation are determined in terms of superpotential parameters (Dirac and Majorana couplings). This is in contrast to MSSM or Dirac neutrino inflection scenarios where fine tuning conditions are on soft Susy breaking parameters. In our case M υc ≫ M Susy , so soft Susy breaking parameters have hardly any role to play in fine tuning. The fine tuning conditions are thus radiatively stable due to nonrenormalization theorems. Reheating occurs via instant preheating which dumps all the inflation energy into MSSM degrees of freedom giving a high reheat temperature T rh ≅ M υc 10 6 GeV ∼ 10 1l 10 15 GeV. We also examined how this scenario can be embedded in realistic New Minimal Supersymmetric SO(10) Grand Unified Theory. (author)
On supersymmetric effective theories of axion
Energy Technology Data Exchange (ETDEWEB)
Higaki, Tetsutaro [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Kitano, Ryuichiro [Tohoku Univ., Sendai (Japan). Dept. of Physics
2011-04-15
We study effective theories of an axion in spontaneously broken supersymmetric theories. We consider a system where the axion supermultiplet is directly coupled to a supersymmetry breaking sector whereas the standard model sector is communicated with those sectors through loops of messenger fields. The gaugino masses and the axion-gluon coupling necessary for solving the strong CP problem are both obtained by the same effective interaction. We discuss cosmological constraints on this framework. (orig.)
Hierarchy generation in compactified supersymmetric models
International Nuclear Information System (INIS)
Ross, G.G.
1988-01-01
The problem of generating a large hierarchy in compactified supersymmetric models is re-examined. It is shown how, even for the class of models for which Str M 2 is non-vanishing, a combination of non-perturbative effects and radiative corrections may lead to an exponentially large hierarchy. A corollary is that the couplings of the effective field theory in the visible sector should be small, i.e., perturbation theory should be applicable. (orig.)
Quantum field theoretic behavior of a deterministic cellular automaton
Energy Technology Data Exchange (ETDEWEB)
Hooft, G ' t; Isler, K; Kalitzin, S [Inst. for Theoretical Physics, Utrecht (Netherlands)
1992-11-16
A certain class of cellular automata in 1 space +1 time dimension is shown to be closely related to quantum field theories containing Dirac fermions. In the massless case this relation can be studied analytically, while the introduction of Dirac mass requires numerical simulations. We show that in the last case the cellular automation describes the corresponding field theory only approximately. (orig.).
On the supersymmetric sine-Gordon model
International Nuclear Information System (INIS)
Hruby, J.
1977-01-01
The sine-Gordon model as the theory of a massless scalar field in one space and one time dimension with interaction Lagrangian density proportional to cosβsub(phi) is generalized for a scalar superfield and it is shown that the solution of the supercovariant sine-Gordon equation is the ''supersoliton'', it is the superfield, which has all ordinary fields in two dimensions as a type of the soliton solution. We also obtain the massive Thirring model and the new equations of motion coupling the Fermi field and the Bose field. The notice about supersymmetric ''SLAC-BAG'' model is done
Supersymmetric SO(10) models inspired by deconstruction
International Nuclear Information System (INIS)
Huang Chaoshang; Jiang Jing; Li Tianjun
2004-01-01
We consider 4-dimensional N=1 supersymmetric SO(10) models inspired by deconstruction of 5-dimensional N=1 supersymmetric orbifold SO(10) models and high-dimensional non-supersymmetric SO(10) models with Wilson line gauge symmetry breaking. We discuss the SO(10)xSO(10) models with bi-fundamental link fields where the gauge symmetry can be broken down to the Pati-Salam, SU(5)xU(1), flipped SU(5)xU(1)' or the Standard Model like gauge symmetry. We also propose an SO(10)xSO(6)xSO(4) model with bi-fundamental link fields where the gauge symmetry is broken down to the Pati-Salam gauge symmetry, and an SO(10)xSO(10) model with bi-spinor link fields where the gauge symmetry is broken down to the flipped SU(5)xU(1)' gauge symmetry. In these two models, the Pati-Salam and flipped SU(5)xU(1)' gauge symmetry can be further broken down to the Standard Model gauge symmetry, the doublet-triplet splittings can be obtained by the missing partner mechanism, and the proton decay problem can be solved. We also study the gauge coupling unification. We briefly comment on the interesting variation models with gauge groups SO(10)xSO(6) and SO(10)xflippedSU(5)xU(1)' in which the proton decay problem can be solved
Exactly solvable field-theoretical model with tachyons
International Nuclear Information System (INIS)
Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.
1988-01-01
Explicit soliton solutions describing the inelastic interaction between sub- and superluminal particles are found within the framework of a new integrable model of relativistic classical field theory. The corresponding energies are nonnegative irrespective of the choice of reference frame
Field theoretic approach to structure formation in an anisotropic medium
International Nuclear Information System (INIS)
Joy, Minu; Kuriakose, V.C.
2003-01-01
Considering a real scalar field distribution which is assumed to be locally anisotropic and coupled to a Bianchi type-I background spacetime, the energy density and pressure associated with the anisotropic matter field distribution are evaluated. The vanishing of the expectation values of the nondiagonal components of T μν allows us to treat the scalar field in complete analogy with the distribution of fluid. The primeval density perturbations produced by the vacuum fluctuations of the scalar field are considered and the Jeans criterion for structure formation is obtained. The metric and matter field perturbations are considered and it is found that for the present anisotropic case the perturbations of the pressure in the radial and tangential directions are different. The Jeans instability is discussed and the Jeans wave number for the present case is evaluated. It is found that for the anisotropic case the Jeans length depends on the velocity of the fluctuations in the radial and transverse directions and thus on the direction of propagation of the perturbations
Quantum integrability and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N=4 gauge theories with matter, softly broken by the twisted masses down to N=2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2) XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as T * Gr(N,L) and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. These more general spin chains correspond to quiver gauge theories with twisted masses, with classical gauge groups. We give the gauge-theoretic interpretation of Drinfeld polynomials and Baxter operators. In the classical weak coupling limit our results make contact with Nakajima constructions. Toric compactifications of four dimensional N=2 theories lead to the instanton corrected Bethe equations. (author)
Supersymmetric GUTs and cosmology
International Nuclear Information System (INIS)
Lazarides, G.; Shafi, Q.
1982-06-01
By examining the behaviour of supersymmetric GUTs in the very early universe we find two classes of realistic models. In one of them supersymmetry is broken at or near the superheavy GUT scale. The cosmological implications of such models are expected to be similar to those of nonsupersymmetric GUTs. In the second class of models, the superheavy GUT scale is related to the supersymmetry breaking scale a la Witten. Two types of cosmological scenarios appear possible in this case, either with or without an intermediate (new) inflationary phase. They can be experimentally distinguished, since the former predicts an absence and the latter an observable number density of superheavy monopoles. A mechanism for generating baryon asymmetry in such models is pointed out. Further constraint on model building appears if global R invariance is employed to resolve the strong CP problem. (author)
Deformed supersymmetric mechanics
International Nuclear Information System (INIS)
Ivanov, E.; Sidorov, S.
2013-01-01
Motivated by a recent interest in curved rigid supersymmetries, we construct a new type of N = 4, d = 1 supersymmetric systems by employing superfields defined on the cosets of the supergroup SU(2|1). The relevant worldline supersymmetry is a deformation of the standard N = 4, d = 1 supersymmetry by a mass parameter m. As instructive examples we consider at the classical and quantum levels the models associated with the supermultiplets (1,4,3) and (2,4,2) and find out interesting interrelations with some previous works on nonstandard d = 1 supersymmetry. In particular, the d = 1 systems with 'weak supersymmetry' are naturally reproduced within our SU(2|1) superfield approach as a subclass of the (1,4,3) models. A generalization to the N = 8, d = 1 case implies the supergroup SU(2|2) as a candidate deformed worldline supersymmetry
ELECTRON HOLOGRAPHY OF ELECTROMAGNETIC FIELDS - RECENT THEORETICAL ADVANCES.
Energy Technology Data Exchange (ETDEWEB)
BELEGGIA,M.; POZZI, G.; TONOMURA, A.
2007-01-01
It has been shown in this work that the Fourier space approach can be fruitfully applied to the calculation of the fields and the associated electron optical phase shift of several magnetic and electrostatic structures, like superconducting vortices in conventional and high-T{sub c} superconductors, reverse biased p-n junctions, magnetic domains and nanoparticles. In all these cases, this novel approach has led to unexpected but extremely interesting results, very often expressed in analytical form, which allow the quantitative and reliable interpretation of the experimental data collected by means of electron holography or of more conventional Lorentz microscopy techniques. Moreover, it is worth recalling that whenever long-range electromagnetic fields are involved, a physical model of the object under investigation is necessary in order to take into account correctly the perturbation of the reference wave induced by the tail of the field protruding into the vacuum. For these reasons, we believe that the Fourier space approach for phase computations we have introduced and discussed in this chapter will represent an invaluable tool for the investigation of electromagnetic fields at the meso- and nano-scale.
Low energy dynamics of monopoles in supersymmetric Yang-Mills theories with hypermultiplets
International Nuclear Information System (INIS)
Kim, Chanju
2006-01-01
We derive the low energy dynamics of monopoles and dyons in N = 2 supersymmetric Yang-Mills theories with hypermultiplets in arbitrary representations by utilizing a collective coordinate expansion. We consider the most general case that Higgs fields both in the vector multiplet and in the hypermultiplets have nonzero vacuum expectation values. The resulting theory is a supersymmetric quantum mechanics which has been obtained by a nontrivial dimensional reduction of two-dimensional (4,0) supersymmetric sigma models with potentials
Supersymmetric Quantum Mechanics and Topology
International Nuclear Information System (INIS)
Wasay, Muhammad Abdul
2016-01-01
Supersymmetric quantum mechanical models are computed by the path integral approach. In the β→0 limit, the integrals localize to the zero modes. This allows us to perform the index computations exactly because of supersymmetric localization, and we will show how the geometry of target space enters the physics of sigma models resulting in the relationship between the supersymmetric model and the geometry of the target space in the form of topological invariants. Explicit computation details are given for the Euler characteristics of the target manifold and the index of Dirac operator for the model on a spin manifold.
Properties of supersymmetric particles and processes
International Nuclear Information System (INIS)
Barnett, R.M.
1986-01-01
The motivations for experimental searches for supersymmetric particles are discussed. The role of R-parity in these searches is described. The production and decay characteristics of each class of supersymmetric particles are investigated in the context of both e+e- and hadron machines. There is a detailed presentation of a sample calculation of a supersymmetric process. Emphasis is given to the signatures for detection of supersymmetric particles and processes. The current limits for supersymmetric particles are given. 125 refs., 50 figs
GUTs and supersymmetric GUTs in the very early universe
International Nuclear Information System (INIS)
Ellis, J.
1983-01-01
This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. It starts with a review of the present theoretical and phenomenological status of GUTs and then goes on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. (author)
Theoretical and experimental studies of field-reversed configurations
International Nuclear Information System (INIS)
Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.
1986-01-01
The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (≤8 mWb) and s (≤4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment
Theoretical and experimental studies of field-reversed configurations
Energy Technology Data Exchange (ETDEWEB)
Chrien, R.E.; Hugrass, W.N.; Armstrong, W.T.; Caramana, E.J.; Lewis, H.R.; Linford, R.K.; Ling, K.M.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.
1986-01-01
The FRX-C/T formation region has been enlarged in diameter by 50%, and quasi-steady cusp coils have been installed to compare tearing and non-tearing formation. FRCs with significantly larger poloidal flux (less than or equal to8 mWb) and s (less than or equal to4) have been formed. However, their flux confinement was degraded compared with earlier FRX-C results. The n = 2 rotational instability has been completely suppressed on translated FRCs in FRX-C/T. Nearly equal stabilization thresholds were observed for straight and helical quadrupole fields, in contrast with another experiment.
Collective Motion of Micro-organisms from Field Theoretical Viewpoint
Nojiri, Shin'ichi; Kawamura, Masako; Sugamoto, Akio
1995-01-01
We analyze the collective motion of micro-organisms in the fluid and consider the problem of the red tide. The red tide is produced by the condensation of the micro-organisms, which might be a similar phenomenon to the condensation of the strings. We propose a model of the generation of the red tide. By considering the interaction between the micro- organisms mediated by the velocity fields in the fluid, we derive the Van der Waals type equation of state, where the generation of the red tide ...
Collisional processes in supersymmetric plasma
International Nuclear Information System (INIS)
Czajka, Alina; Mrowczynski, Stanislaw
2011-01-01
Collisional processes in ultrarelativistic N=1 supersymmetric QED plasma are studied and compared to those in an electromagnetic plasma of electrons, positrons and photons. Cross sections of all binary interactions which occur in the supersymmetric plasma at the order of e 4 are computed. Some processes, in particular, the Compton scattering on selectrons, appear to be independent of momentum transfer and thus they are qualitatively different from processes in an electromagnetic plasma. It suggests that the transport properties of the supersymmetric plasma are different than those of its nonsupersymmetric counterpart. Energy loss and momentum broadening of a particle traversing the supersymmetric plasma are discussed in detail and the characteristics are shown to be surprisingly similar to those of QED plasma.
Basic hypergeometry of supersymmetric dualities
Energy Technology Data Exchange (ETDEWEB)
Gahramanov, Ilmar, E-mail: ilmar.gahramanov@aei.mpg.de [Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Am Mühlenberg 1, D14476 Potsdam (Germany); Institut für Physik und IRIS Adlershof, Humboldt-Universität zu Berlin, Zum Grossen Windkanal 6, D12489 Berlin (Germany); Institute of Radiation Problems ANAS, B.Vahabzade 9, AZ1143 Baku (Azerbaijan); Department of Mathematics, Khazar University, Mehseti St. 41, AZ1096, Baku (Azerbaijan); Rosengren, Hjalmar, E-mail: hjalmar@chalmers.se [Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, SE-412 96 Göteborg (Sweden)
2016-12-15
We introduce several new identities combining basic hypergeometric sums and integrals. Such identities appear in the context of superconformal index computations for three-dimensional supersymmetric dual theories. We give both analytic proofs and physical interpretations of the presented identities.
Supersymmetric two-particle equations
International Nuclear Information System (INIS)
Sissakyan, A.N.; Skachkov, N.B.; Shevchenko, O.Yu.
1986-01-01
In the framework of the scalar superfield model, a particular case of which is the well-known Wess-Zumino model, the supersymmetric Schwinger equations are found. On their basis with the use of the second Legendre transformation the two-particle supersymmetric Edwards and Bethe-Salpeter equations are derived. A connection of the kernels and inhomogeneous terms of these equations with generating functional of the second Legendre transformation is found
Supersymmetric models and their phenomenology
International Nuclear Information System (INIS)
Ross, G.G.
1995-01-01
The prospects for unification of the Standard Model are considered and the need for supersymmetry discussed. The prediction of the gauge couplings, the electroweak breaking scale, the fermion masses and the dark matter abundance are all consistent with simple unification if there is a stage of supersymmetric unification below the TeV scale. The prospects for discovery of the new SUSY states is considered, both in the minimal supersymmetric standard model and in non-minimal extensions. (author)
Is there a field-theoretic explanation for precursor biopolymers?
Rosen, Gerald
2002-08-01
A Hu-Barkana-Gruzinov cold dark matter scalar field phi may enter a weak isospin invariant derivative interaction that causes the flow of right-handed electrons to align parallel to (inverted delta phi). Hence, in the outer regions of galaxies where (inverted delta phi) is large, as in galactic halos, the derivative interaction may induce a chirality-imbued quantum chemistry. Such a chirality-imbued chemistry would in turn be conducive to the formation of abundant precursor biopolymers on interstellar dust grains, comets and meteors in galactic halo regions, with subsequent delivery to planets in the inner galactic regions where phi and (inverted delta phi) are concomitantly near zero and left-right symmetric terrestrial quantum chemistry prevails.
Theoretical study of phosphorene tunneling field effect transistors
International Nuclear Information System (INIS)
Chang, Jiwon; Hobbs, Chris
2015-01-01
In this work, device performances of tunneling field effect transistors (TFETs) based on phosphorene are explored via self-consistent atomistic quantum transport simulations. Phosphorene is an ultra-thin two-dimensional (2-D) material with a direct band gap suitable for TFETs applications. Our simulation shows that phosphorene TFETs exhibit subthreshold slope below 60 mV/dec and a wide range of on-current depending on the transport direction due to highly anisotropic band structures of phosphorene. By benchmarking with monolayer MoTe 2 TFETs, we predict that phosphorene TFETs oriented in the small effective mass direction can yield much larger on-current at the same on-current/off-current ratio than monolayer MoTe 2 TFETs. It is also observed that a gate underlap structure is required for scaling down phosphorene TFETs in the small effective mass direction to suppress the source-to-drain direct tunneling leakage current
Theoretical study of phosphorene tunneling field effect transistors
Energy Technology Data Exchange (ETDEWEB)
Chang, Jiwon; Hobbs, Chris [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)
2015-02-23
In this work, device performances of tunneling field effect transistors (TFETs) based on phosphorene are explored via self-consistent atomistic quantum transport simulations. Phosphorene is an ultra-thin two-dimensional (2-D) material with a direct band gap suitable for TFETs applications. Our simulation shows that phosphorene TFETs exhibit subthreshold slope below 60 mV/dec and a wide range of on-current depending on the transport direction due to highly anisotropic band structures of phosphorene. By benchmarking with monolayer MoTe{sub 2} TFETs, we predict that phosphorene TFETs oriented in the small effective mass direction can yield much larger on-current at the same on-current/off-current ratio than monolayer MoTe{sub 2} TFETs. It is also observed that a gate underlap structure is required for scaling down phosphorene TFETs in the small effective mass direction to suppress the source-to-drain direct tunneling leakage current.
Quantum field theory and coalgebraic logic in theoretical computer science.
Basti, Gianfranco; Capolupo, Antonio; Vitiello, Giuseppe
2017-11-01
We suggest that in the framework of the Category Theory it is possible to demonstrate the mathematical and logical dual equivalence between the category of the q-deformed Hopf Coalgebras and the category of the q-deformed Hopf Algebras in quantum field theory (QFT), interpreted as a thermal field theory. Each pair algebra-coalgebra characterizes a QFT system and its mirroring thermal bath, respectively, so to model dissipative quantum systems in far-from-equilibrium conditions, with an evident significance also for biological sciences. Our study is in fact inspired by applications to neuroscience where the brain memory capacity, for instance, has been modeled by using the QFT unitarily inequivalent representations. The q-deformed Hopf Coalgebras and the q-deformed Hopf Algebras constitute two dual categories because characterized by the same functor T, related with the Bogoliubov transform, and by its contravariant application T op , respectively. The q-deformation parameter is related to the Bogoliubov angle, and it is effectively a thermal parameter. Therefore, the different values of q identify univocally, and label the vacua appearing in the foliation process of the quantum vacuum. This means that, in the framework of Universal Coalgebra, as general theory of dynamic and computing systems ("labelled state-transition systems"), the so labelled infinitely many quantum vacua can be interpreted as the Final Coalgebra of an "Infinite State Black-Box Machine". All this opens the way to the possibility of designing a new class of universal quantum computing architectures based on this coalgebraic QFT formulation, as its ability of naturally generating a Fibonacci progression demonstrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Theoretical temperature fields for the Stripa heater project. Vol. 1
International Nuclear Information System (INIS)
Chan, T.; Cook, N.G.W.; Tsang, C.F.
1978-09-01
The report concerns thermal conduction calculations for the three in-situ heater experiments at Stripa which constitute part of the Swedish-American Cooperative Program on Radioactive Waste Storage in Mined Caverns. A semianalytic solution based on the Green's function method has been developed for an array of arbitrary time-dependent finite line heaters in a semi-infinite medium. This method as well as a three dimensional numerical model using IFD (Integrated Finite Difference) technique has been applied to model the field situations at Stripa. Comparison has demonstrated that the finite line source solution for the rock temperature is in excellent agreement with the numerical model solution as well as with a closed form finite cylinder source solution. It was found that maximum temperature rise in the rock within the two year experiment period will be 178 0 C for the 3.6 kW full-scale heater experiment, 345 0 C for the full-scale experiment with a 5 kW central heater and eight 0.72 kW peripheral heaters, and less than 200 0 C for the time-scaled experiment. The ring of eight peripheral heaters in the second full-scale experiment will provide a nominally uniform temperature rise within its perimeter a few weeks after turn-on. The high temperature zone is localized throughout the duration of all three experiments. Nevertheless, the effect of different spacings on the thermal interaction between adjacent radioactive waste canisters will be demonstrated by the time-scaled experiment. Detailed results are presented in the form of tables, temperature profiles and contour plots. Predicted temperatures have been stored in an on-site computer for real-time comparison with field data. 56 figures, 7 tables
Cosmological consequences of supersymmetric flat directions
Riva, Francesco; Sarkar, Subir; Giudice, Gian
In this work we analyze various implications of the presence of large field vacum expectation values (VEVs) along supersymmetric flat direct ions during the early universe. First, we discuss supersymmetric leptogenesis and the grav itino bound. Supersym- metric thermal leptogenesis with a hierarchical right-han ded neutrino mass spectrum normally requires the mass of the lightest right-handed neu trino to be heavier than about 10 9 GeV. This is in conflict with the upper bound on the reheating t empera- ture which is found by imposing that the gravitinos generate d during the reheating stage after inflation do not jeopardize successful nucleosy nthesis. We show that a solution to this tension is actually already incorporated i n the framework, because of the presence of flat directions in the supersymmetric scalar potential. Massive right- handed neutrinos are efficiently produced non-thermally and the observed baryon asymmetry can be explained even for a reheating temperature respecting the grav- itino bound...
Continuous degeneracy of non-supersymmetric vacua
International Nuclear Information System (INIS)
Sun Zheng
2009-01-01
In global supersymmetric Wess-Zumino models with minimal Kaehler potentials, F-type supersymmetry breaking always yields instability or continuous degeneracy of non-supersymmetric vacua. As a generalization of the original O'Raifeartaigh's result, the existence of instability or degeneracy is true to any higher order corrections at tree level for models even with non-renormalizable superpotentials. The degeneracy generically coincides the R-axion direction under some assumptions of R-charge assignment, but generally requires neither R-symmetries nor any assumption of generic superpotentials. The result also confirms the well-known fact that tree level supersymmetry breaking is a very rare occurrence in global supersymmetric theories with minimal Kaehler potentials. The implication for effective field theory method in the landscape is discussed and we point out that choosing models with minimal Kaehler potentials may result in unexpected answers to the vacuum statistics. Supergravity theories or theories with non-minimal Kaehler potentials in general do not suffer from the existence of instability or degeneracy. But very strong gauge dynamics or small compactification dimension reduces the Kaehler potential from non-minimal to minimal, and gravity decoupling limit reduces supergravity to global supersymmetry. Instability or degeneracy may appear in these limits. Away from these limits, a large number of non-SUSY vacua may still be found in an intermediate region.
Predictions for mt and MW in minimal supersymmetric models
International Nuclear Information System (INIS)
Buchmueller, O.; Ellis, J.R.; Flaecher, H.; Isidori, G.
2009-12-01
Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m t , and the W boson mass, m W . We find that the supersymmetric predictions for both m t and m W , obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)
Theoretical investigation of field-line quality in a driven spheromak
International Nuclear Information System (INIS)
Cohen, R.H.; Cohen, B.I.; Berk, H.L.
2003-01-01
Theoretical studies aimed at predicting and diagnosing field-line quality in a spheromak are described. These include nonlinear 3-D MHD simulations, stability studies, analyses of confinement in spheromaks dominated by either open (stochastic) field lines or approximate flux surfaces, and a theory of fast electrons as a probe of field-line length. (author)
Variational field theoretic approach to relativistiv meson-nucleon scattering
International Nuclear Information System (INIS)
Alexandrou, C.; Rosenfelder, R.; Schreiber, A.W.; TRIUMF, Vancouver, BC; Adelaide Univ., SA; Adelaide Univ., SA; Univ. Adelaide
1998-01-01
Non-perturbative polaron variational methods are applied, within the so-called particle or worldline representation of relativistic field theory, to study scattering in the context of the scalar Wick-Cutkosky model. Important features of the variational calculation are that it is a controlled approximation scheme valid for arbitrary coupling strengths, the Green functions have all the cuts and poles expected for the exact result at any order in perturbation theory and that the variational parameters are simultaneously sensitive to the infrared as well as the ultraviolet behaviour of the theory. We generalize the previously used quadratic trial action by allowing more freedom for off-shell propagation without a change in the on-shell variational equations and evaluate the scattering amplitude at first order in the variational scheme. Particular attention is paid to the s-channel scattering near threshold because here non-perturbative effects can be large. We check the unitarity of a our numerical calculation and find it greatly improved compared to perturbation theory and to the zeroth order variational results. (orig.)
Precision LEP data, supersymmetric GUTs and string unification
International Nuclear Information System (INIS)
Ellis, J.; Kelley, S.; Nanopoulos, D.V.; Houston Area Research Center
1990-01-01
The precision of sin 2 θ w MS (m Z ) extracted from LEP data (0.233±0.001) confirms the prediction of minimal supersymmetric GUTs (0.235±0.004) within the errors of about 2%. Moreover, supersymmetric GUTs with three generations and a heavy top quark also predict m b =5.2±0.3 GeV in perfect agreement with potential model estimates (5.0±0.2 GeV). String unification would require that the effective grand unification scale m GUT be no larger than the effective string unification scale m SU , which is indeed consistent with the LEP data, which indicate m GUT ≅ 2x10 16 GeV in a minimal supersymmetric GUT, compared with the theoretical estimate m SU ≅ 10 17 GeV. Specific choices of the string model moduli could enforce m GUT =m SU even in minimal supersymmetric GUTs, whilst non-minimal supersymmetric GUTs can reconcile the successful predictions of sin 2 θ w with m GUT = m SU for generic values of the moduli, but tend to have m b too large. (orig.)
International Nuclear Information System (INIS)
Tian, Kai; Liu, Q.P.
2012-01-01
A new N=1 supersymmetric Harry Dym equation is constructed by applying supersymmetric reciprocal transformation to a trivial supersymmetric Harry Dym equation, and its recursion operator and Lax formulation are also obtained. Within the framework of symmetry approach, a class of 3rd order supersymmetric equations of Harry Dym type are considered. In addition to five known integrable equations, a new supersymmetric equation, admitting 5th order generalized symmetry, is shown to be linearizable through supersymmetric reciprocal transformation. Furthermore, its Lax representation and recursion operator are given so that the integrability of this new equation is confirmed. -- Highlights: ► A new supersymmetric Harry Dym equation is constructed through supersymmetric reciprocal transformations. ► The recursion operator and Lax formulation are established for the new supersymmetric Harry Dym equation. ► A supersymmetric equation of Harry Dym type is shown to be linearized through supersymmetric reciprocal transformation.
New supersymmetrizations of the generalized KDV hierarchies
International Nuclear Information System (INIS)
Figueroa-O'Farrill, J.M.; Stanciu, S.
1993-03-01
Recently we investigated a new supersymmetrization procedure for the KdV hierarchy inspired in some recent work on supersymmetric matrix models. We extend this procedure here for the generalized KdV hierarchies. The resulting supersymmetric hierarchies are generically nonlocal, expect for the case of Boussinesque which we treat in detail. The resulting supersymmetric hierarchy is integrable and bihamiltonian and contains the Boussinesque hierarchy as a subhierarchy. In a particular realization, we extend it by defining supersymmetric odd flows. We end with some comments on a slight modification of this supersymmetrization which yields local equations for any generalized KdV hierarchy. (orig.)
The Theoretical Investigation of the Magnetic Field Effect on a Liquid Sodium Flow
International Nuclear Information System (INIS)
Kim, Hee Reyoung; Kim, Jong Man; Cha, Jae Eun; Choi, Jong Hyun; Nam, Ho Yoon
2005-01-01
The liquid sodium coolant is used for LMR such as KALIMER and magnetic field is generated in the electromagnetic pump or flowmeter. The magnetic field takes an effect on the electrically conducting metal flow by the generation of the electromagnetic pressure drop. Therefore, in the present study, the theoretical calculation is carried out for an effect from the external magnetic field and the magnetic field is firstly measured over the electromagnet system manufactured for the magnetohydrodynamic experiments
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Field-theoretic approach to gravity in the flat space-time
Energy Technology Data Exchange (ETDEWEB)
Cavalleri, G [Centro Informazioni Studi Esperienze, Milan (Italy); Milan Univ. (Italy). Ist. di Fisica); Spinelli, G [Istituto di Matematica del Politecnico di Milano, Milano (Italy)
1980-01-01
In this paper it is discussed how the field-theoretical approach to gravity starting from the flat space-time is wider than the Einstein approach. The flat approach is able to predict the structure of the observable space as a consequence of the behaviour of the particle proper masses. The field equations are formally equal to Einstein's equations without the cosmological term.
Production of supersymmetric pairs at antipp colliders
International Nuclear Information System (INIS)
Peschanski, R.
1985-02-01
Production and decay rates of squarks and gluinos at antipp colliders are shown to depend not only on the mass scale but on the ratio of squark to gluino mass. In the degenerate case which is shown to be natural in a large class of broken Supergravity models with minimal field content the predicted cross-sections are enhanced by a sizeable factor. This gives an improved bound on the squark mass (70 GeV) from the analysis of Cern monojets and indications for the search of squark decay modes of supersymmetric pairs at antipp colliders in the near future
Charles, P H; Cranmer-Sargison, G; Thwaites, D I; Crowe, S B; Kairn, T; Knight, R T; Kenny, J; Langton, C M; Trapp, J V
2014-04-01
This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. According to the practical definition established in this project, field sizes ≤ 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤ 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤ 12 mm. Source occlusion also caused a large change in OPF for field sizes ≤ 8 mm. Based on the results of this study, field sizes ≤ 12 mm were considered to be theoretically very small for 6 MV beams. Extremely
Lozovaya, S. Y.; Lozovoy, N. M.; Okunev, A. N.
2018-03-01
This article is devoted to the theoretical validation of the change in magnetic fields created by the permanent magnet systems of the drum separators. In the article, using the example of a magnetic separator for enrichment of highly magnetic ores, the method of analytical calculation of the magnetic fields of systems of permanent magnets based on the Biot-Savart-Laplace law, the equivalent solenoid method, and the superposition principle of fields is considered.
Supersymmetric flipped SU(5) revitalized
Energy Technology Data Exchange (ETDEWEB)
Antoniadis, I.; Ellis, J.; Hagelin, J.S.; Nanopoulos, D.V.
1987-08-06
We describe a simple N = 1 supersymmetric GUT based on the group SU(5) x U(1) which has the following virtues: the gauge group is broken down to the SU(3)/sub C/ x SU(2)/sub L/ x U(1)/sub y/ of the standard model using just 10, 10 Higgs representations, and the doublet-triplet mass splitting problem is solved naturally by a very simple missing-partner mechanism. The successful supersymmetric GUT prediction for sin/sup 2/theta/sub w/ can be maintained, whilst there are no fermion mass relations. The gauge group and representation structure of the model may be obtainable from the superstring.
Supersymmetric regulators and supercurrent anomalies
International Nuclear Information System (INIS)
Majumdar, P.; Poggio, E.C.; Schnitzer, H.J.
1980-01-01
The supercurrent anomalies of the supercurrent deltasub(μ) of the supersymmetric Yang-Mills theory in Wess-Zumino gauge are computed using the supersymmetric dimensional regulator of Siegel. It is shown that γsub(μ)deltasup(μ) = 0 and deltasub(μ)deltasup(μ) unequal 0 in agreement with an earlier calculation based on the Adler-Rosenberg method. The problem of exhibiting the chiral anomaly and a regulator for local supersymmetry suggests that the interpretation of dimensional reduction in component language is incomplete. (orig.)
Theoretical and experimental studies on electric field and confinement in helical systems
International Nuclear Information System (INIS)
Sanuki, H.; Itoh, K.; Todoroki, J.; Ida, K.; Idei, H.; Iguchi, H.; Yamada, H.
1994-06-01
The present study consists of two parts. The first part is oriented to a theoretical model of selfconsistent analysis to determine simultaneously the electric field and loss cone boundary in heliotron/torsatron configurations under the influence of nonclassical particle losses. The second part is referred to the analysis on NBI heated and ECH plasmas in Compact Helical System (CHS) device. A comparison is made between theoretical results and experimental observations. (author)
Theoretical study of structure of electric field in helical toroidal plasmas
International Nuclear Information System (INIS)
Toda, S.; Itoh, K.
2001-06-01
A set of transport equations is analyzed, including the bifurcation of the electric field. The structure of the electric field is studied by use of the theoretical model for the anomalous transport diffusivities. The steep gradient of the electric field is obtained at the electric domain. The suppression of the anomalous transport diffusivity is studied in the presence of the strong shear of the electric field. The hard transition with the multiple ambipolar solutions is examined in the structure of the radial electric field. The details of the structure of the electric domain interface are investigated. (author)
Hamiltonian reduction and supersymmetric mechanics with Dirac monopole
International Nuclear Information System (INIS)
Bellucci, Stefano; Nersessian, Armen; Yeranyan, Armen
2006-01-01
We apply the technique of Hamiltonian reduction for the construction of three-dimensional N=4 supersymmetric mechanics specified by the presence of a Dirac monopole. For this purpose we take the conventional N=4 supersymmetric mechanics on the four-dimensional conformally-flat spaces and perform its Hamiltonian reduction to three-dimensional system. We formulate the final system in the canonical coordinates, and present, in these terms, the explicit expressions of the Hamiltonian and supercharges. We show that, besides a magnetic monopole field, the resulting system is specified by the presence of a spin-orbit coupling term. A comparision with previous work is also carried out
Thermal leptogenesis in a supersymmetric neutrinophilic Higgs model
International Nuclear Information System (INIS)
Haba, Naoyuki; Seto, Osamu
2011-01-01
We investigate thermal leptogenesis in a supersymmetric neutrinophilic Higgs model by taking phenomenological constraints into account, where, in addition to the minimal supersymmetric standard model, we introduce an extra Higgs field with a tiny vacuum expectation value which generates neutrino masses. Thanks to this tiny vacuum expectation value of the neutrinophilic Higgs, our model allows us to reduce the mass of the lightest right-handed (s)neutrino to be O(10 5 ) GeV, keeping sufficiently large CP asymmetry in its decay. Therefore, the reheating temperature after inflation is not necessarily high; hence this scenario is free from the gravitino problem.
Field theoretical approach to proton-nucleus reactions. I - One step inelastic scattering
International Nuclear Information System (INIS)
Eiras, A.; Kodama, T.; Nemes, M.C.
1988-01-01
In this work we obtain a closed form expression to the double differential cross section for one step proton-nucleus reaction within a field theoretical framework. Energy and momentum conservation as well as nuclear structure effects are consistently taken into account within the field theoretical eikonal approximation. In our formulation the kinematics of such reaction is not dominated by the free nucleon-nucleon cross section but a new factor which we call relativistic differential cross section in a Born Approximation. (author) [pt
Topological charge on the lattice: a field theoretical view of the geometrical approach
International Nuclear Information System (INIS)
Rastelli, L.; Rossi, P.; Vicari, E.
1997-01-01
We construct sequences of ''field theoretical'' lattice topological charge density operators which formally approach geometrical definitions in 2D CP N-1 models and 4D SU(N) Yang-Mills theories. The analysis of these sequences of operators suggests a new way of looking at the geometrical method, showing that geometrical charges can be interpreted as limits of sequences of field theoretical (analytical) operators. In perturbation theory, renormalization effects formally tend to vanish along such sequences. But, since the perturbative expansion is asymptotic, this does not necessarily lead to well-behaved geometrical limits. It indeed leaves open the possibility that non-perturbative renormalizations survive. (orig.)
Analytic stochastic regularization in QCD and its supersymmetric extension
International Nuclear Information System (INIS)
Abdalla, E.; Vianna, R.L.
1987-08-01
We outline some features of stochastic quantization and regularization of fermionic fields with applications to spinor QCD, showing the appearence of a non-gauge invariant counterterm. We also show that non-invariant terms cancel in supersymmetric multiplets. (Author) [pt
Supersymmetric black holes in N = 2 supergravity theory
International Nuclear Information System (INIS)
Aichelburg, P.C.
1982-01-01
We present an exact, asymptotically flat, stationary solution of the field equations of O(2) extended supergravity theory. This solution has a mass, central electric charge as well as a supercharge and constitutes the first exact, supersymmetric generalization of the black hole geometries. The solution generalizes the extreme Reissner-Nordstroem black holes. (Author)
90 - GeV Higgs boson in supersymmetric models
International Nuclear Information System (INIS)
Grzadkowski, B.; Kalinowski, J.; Pokorski, S.
1989-07-01
We discuss supersymmetric models with a hierarchy of vacuum expectation values of Higgs fields. These models predict one of the physical neutral Higgs bosons to have its mass very close to the Z-boson mass. Properties of such a 90-GeV Higgs boson are discussed. (author)
Supersymmetric classical mechanics: free case
Energy Technology Data Exchange (ETDEWEB)
Rodrigues, R. de Lima [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]|[Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza]. E-mail: rafael@cfp.ufpb.br; Almeida, W. Pires de [Paraiba Univ., Cajazeiras, PB (Brazil). Dept. de Ciencias Exatas e da Natureza; Fonseca Neto, I. [Paraiba Univ., Campina Grande, PB (Brazil). Dept. de Fisica
2001-06-01
We present a review work on Supersymmetric Classical Mechanics in the context of a Lagrangian formalism, with N = 1-supersymmetry. We show that the N = 1 supersymmetry does not allow the introduction of a potencial energy term depending on a single commuting supercoordinate, {phi}(t;{theta}). (author)
Supersymmetric interpretations of the neutrino anomalies
Valle, José W F
2002-01-01
Solar and atmospheric neutrino data strongly indicate the need for physics beyond the standard model. The neutrino oscillation interpretation of the atmospheric data is rather unambiguous, with more options still open for the solar data. After a brief summary of the latest global fits of neutrino data, I discuss theoretical neutrino mass models. This is done first from a top-bottom approach inspired by unification ideas involving a see-saw mechanism or high dimension operators. Then I consider bottom-up approaches, with especial emphasis on the idea that the origin of neutrino mass and mixing is intrinsically supersymmetric. Models involve effective bilinear breaking of R-parity. This allows for the possibility of probing the neutrino mixing also in the context of high-energy collider experiments such as the LHC. (41 refs).
A theoretical and experimental analysis of modulated laser fields and power spectra
DEFF Research Database (Denmark)
Olesen, Henning; Jacobsen, G.
1982-01-01
A general theoretical description of modulated laser fields and power spectra for a current modulated single-mode laser is derived, taking into account both the intensity and frequency modulation (IM and FM) of the emitted light. The theory relies on an explicit knowledge of the modulus as well...
International Nuclear Information System (INIS)
Bruce, S.; Diaz-Valdes, J.; Bennun, L.; Minning, P.C.
2008-01-01
We explore the feasibility of performing an experiment to measure the interaction of cold neutrons with a given classical electric field. Bound and scattering states could be detected by means of an approximate Aharonov-Casher configuration. The theoretical background is presented and then some primary elements for building a neutron detector of this nature are proposed
The neutralino sector in the U(1)-extended supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Choi, S.Y. [Chonbuk National Univ., Jeonju (Korea). Dept. of Physics and RIPC]|[Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Haber, H.E. [California Univ., Santa Cruz, CA (United States). SCIPP; Kalinowski, J. [Warsaw Univ. (Poland). Inst. of Theoretical Physics; Zerwas, P.M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[California Univ., Santa Cruz, CA (United States). SCIPP
2006-12-15
Motivated by grand unified theories and string theories we analyze the general structure of the neutralino sector in the USSM, an extension of the Minimal Supersymmetric Standard Model that involves a broken extra U(1) gauge symmetry. This supersymmetric U(1)-extended model includes an Abelian gauge superfield and a Higgs singlet superfield in addition to the standard gauge and Higgs superfields of the MSSM. The interactions between the MSSM fields and the new fields are in general weak and the mixing is small, so that the coupling of the two subsystems can be treated perturbatively. As a result, the mass spectrum and mixing matrix in the neutralino sector can be analyzed analytically and the structure of this 6-state system is under good theoretical control. We describe the decay modes of the new states and the impact of this extension on decays of the original MSSM neutralinos, including radiative transitions in cross-over zones. Production channels in cascade decays at the LHC and pair production at e{sup +}e{sup -} colliders are also discussed. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-06-15
Zero field splitting parameters (ZFSPs) D and E of Cr{sup 3+} ion doped ammonium oxalate monohydrate (AOM) are calculated with formula using the superposition model. The theoretically calculated ZFSPs for Cr{sup 3+} in AOM crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). Theoretical ZFSPs are in good agreement with the experimental ones. The energy band positions of optical absorption spectra of Cr{sup 3+} in AOM crystal calculated with CFA package are in good match with the experimental values.
Supersymmetric null-like holographic cosmologies
International Nuclear Information System (INIS)
Lin Fengli; Wen Wenyu
2006-01-01
We construct a new class of 1/4-BPS time dependent domain-wall solutions with null-like metric and dilaton in type II supergravities, which admit a null-like big bang singularity. Based on the domain-wall/QFT correspondence, these solutions are dual to 1/4-supersymmetric quantum field theories living on a boundary cosmological background with time dependent coupling constant and UV cutoff. In particular we evaluate the holographic c function for the 2-dimensional dual field theory living on the corresponding null-like cosmology. We find that this c function runs in accordance with the c-theorem as the boundary universe evolves, this means that the number of degrees of freedom is divergent at big bang and suggests the possible resolution of big bang singularity
Localized fermions on domain walls and extended supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Oikonomou, V K
2014-01-01
We study fermionic fields localized on topologically unstable domain walls bounded by strings in a grand unified theory theoretical framework. Particularly, we found that the localized fermionic degrees of freedom, which are up and down-quarks as well as charged leptons, are connected to three independent N = 2, d = 1 supersymmetric quantum mechanics algebras. As we demonstrate, these algebras can be combined to form higher order representations of N = 2, d = 1 supersymmetry. Due to the uniform coupling of the domain wall solutions to the down-quarks and leptons, we also show that a higher order N = 2, d = 1 representation of the down-quark–lepton system is invariant under a duality transformation between the couplings. In addition, the two N = 2, d = 1 supersymmetries of the down-quark–lepton system, combine at the coupling unification scale to form an N = 4, d = 1 supersymmetry. Furthermore, we present the various extra geometric and algebraic attributes that the fermionic systems acquire, owing to the underlying N = 2, d = 1 algebras. (paper)
Elementary Theoretical Forms for the Spatial Power Spectrum of Earth's Crustal Magnetic Field
Voorhies, C.
1998-01-01
The magnetic field produced by magnetization in Earth's crust and lithosphere can be distinguished from the field produced by electric currents in Earth's core because the spatial magnetic power spectrum of the crustal field differs from that of the core field. Theoretical forms for the spectrum of the crustal field are derived by treating each magnetic domain in the crust as the point source of a dipole field. The geologic null-hypothesis that such moments are uncorrelated is used to obtain the magnetic spectrum expected from a randomly magnetized, or unstructured, spherical crust of negligible thickness. This simplest spectral form is modified to allow for uniform crustal thickness, ellipsoidality, and the polarization of domains by an periodically reversing, geocentric axial dipole field from Earth's core. Such spectra are intended to describe the background crustal field. Magnetic anomalies due to correlated magnetization within coherent geologic structures may well be superimposed upon this background; yet representing each such anomaly with a single point dipole may lead to similar spectral forms. Results from attempts to fit these forms to observational spectra, determined via spherical harmonic analysis of MAGSAT data, are summarized in terms of amplitude, source depth, and misfit. Each theoretical spectrum reduces to a source factor multiplied by the usual exponential function of spherical harmonic degree n due to geometric attenuation with attitude above the source layer. The source factors always vary with n and are approximately proportional to n(exp 3) for degrees 12 through 120. The theoretical spectra are therefore not directly proportional to an exponential function of spherical harmonic degree n. There is no radius at which these spectra are flat, level, or otherwise independent of n.
Supersymmetric models with light higgsinos
International Nuclear Information System (INIS)
Bruemmer, F.
2012-05-01
In the Minimal Supersymmetric Standard Model, the higgsinos can have masses around the electroweak scale, while the other supersymmetric particles have TeV-scale masses. This happens in models of gauge-mediated SUSY breaking with a high messenger scale, which are motivated from string theory. For particular choices of the messenger eld content, multi-TeV squark and gluino masses naturally lead to a much lower electroweak scale, somewhat similar to focus point supersymmetry. They also induce Higgs masses of 124-126 GeV, while making the discovery of supersymmetry at the LHC unlikely. The light higgsinos will be di cult to see at the LHC but may eventually be discovered at a linear collider.
Anomaly matching conditions and the moduli space of supersymmetric gauge theories
International Nuclear Information System (INIS)
Dotti, G.; Manohar, A.V.
1998-01-01
The structure of the moduli space of N=1 supersymmetric gauge theories is analyzed from an algebraic geometric viewpoint. The connection between the fundamental fields of the ultraviolet theory, and the gauge-invariant composite fields of the infrared theory is explained in detail. The results are then used to prove an anomaly matching theorem. The theorem is used to study anomaly matching for supersymmetric QCD, and can explain all the known anomaly matching results for this case. (orig.)
Fun with supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Freedman, B.; Cooper, F.
1984-04-01
One reason for studying supersymmetric quantum mechanics is that there are a class of superpotentials W(x) which behave at large x as x/sup α/ for which we know from general arguments whether SUSY is broken or unbroken. Thus one can use these superpotentials to test various ideas about how to see if supersymmetry is broken in an arbitrary model. Recently, Witten proposed a topological invariant, the Witten index Δ which counts the number of bosons minus the number of fermions having ground state energy zero. Since if supersymmetry is broken, the ground state energy cannot be zero, one expects if Δ is not zero, SUSY is preserved and the theory is not a good candidate for a realistic model. In this study we evaluate Δ for several examples, and show some unexpected peculiarities of the Witten index for certain choice of superpotentials W(x). We also discuss two other nonperturbative methods of studying supersymmetry breakdown. One involves relating supersymmetric quantum mechanics to a stochastic classical problem and the other involves considering a discrete (but not supersymmetric) version of the theory and studying its behavior as one removes the lattice cuttoff. In this survey we review the Hamiltonian and path integral approaches to supersymmetric quantum mechanics. We then discuss the related path integrals for the Witten Index and for stochastic processes and show how they are indications for supersymmetry breakdown. We then discuss a system where the superpotential W(x) has assymetrical values at +-infinity. We finally discuss nonperturbative strategies for studying supersymmetry breakdown based on introducing a lattice and studying the behavior of the ground state energy as the lattice cutoff is removed. 17 references
Fermion number in supersymmetric models
International Nuclear Information System (INIS)
Mainland, G.B.; Tanaka, K.
1975-01-01
The two known methods for introducing a conserved fermion number into supersymmetric models are discussed. While the introduction of a conserved fermion number often requires that the Lagrangian be massless or that bosons carry fermion number, a model is discussed in which masses can be introduced via spontaneous symmetry breaking and fermion number is conserved at all stages without assigning fermion number to bosons. (U.S.)
Supersymmetric quantum mechanics an introduction
Gangopadhyaya, Asim; Rasinariu, Constantin
2017-01-01
We have written this book in order to provide a single compact source for undergraduate and graduate students, as well as for professional physicists who want to understand the essentials of supersymmetric quantum mechanics. It is an outgrowth of a seminar course taught to physics and mathematics juniors and seniors at Loyola University Chicago, and of our own research over a quarter of a century.
Supersymmetric theories and finiteness
International Nuclear Information System (INIS)
Helayel-Neto, J.A.
1989-01-01
We attempt here to present a short survey of the all-order finite Lagrangian field theories known at present in four-and two-dimensional space-times. The question of the possible relevance of these ultraviolet finite models in the formulation of consistent unified frameworks for the fundamental forces is also addressed to. (author)
Supersymmetric dimensional regularization
International Nuclear Information System (INIS)
Siegel, W.; Townsend, P.K.; van Nieuwenhuizen, P.
1980-01-01
There is a simple modification of dimension regularization which preserves supersymmetry: dimensional reduction to real D < 4, followed by analytic continuation to complex D. In terms of component fields, this means fixing the ranges of all indices on the fields (and therefore the numbers of Fermi and Bose components). For superfields, it means continuing in the dimensionality of x-space while fixing the dimensionality of theta-space. This regularization procedure allows the simple manipulation of spinor derivatives in supergraph calculations. The resulting rules are: (1) First do all algebra exactly as in D = 4; (2) Then do the momentum integrals as in ordinary dimensional regularization. This regularization procedure needs extra rules before one can say that it is consistent. Such extra rules needed for superconformal anomalies are discussed. Problems associated with renormalizability and higher order loops are also discussed
Theoretical and experimental studies of the magnetic fields of Rotamak discharge
International Nuclear Information System (INIS)
Kirolous, H.
1986-12-01
In part I of this thesis, the self-generated bi-directional toroidal magnetic field structure which has been observed to exist in previous rotamak discharges is theoretically investigated. A possible explanation for the existence of this self-generated field, which relies on the presence of screening currents in the plasma, is advanced. Experimental studies of the magnetic field structure of a rotamak plasma configuration generated and sustained in a metal discharge vessel by means of a rotating magnetic field are described in part II. The rotating magnetic field was produced by feeding radio frequency (r.f.) currents, dephased by 90 degrees, through two orthogonal coils which were located inside the metal chamber. High power amplifiers were used to supply the r.f. current pulses. The efficiency of the r.f. power transfer to the plasma was maximized by using impedance matching networks. The effect on the rotating magnetic field of eddy currents induced in the conducting vessel has been theoretically and experimentally investigated. Extensive magnetic field measurements have been undertaken on one particular rotamak discharge. Measurements of the penetration of the rotating magnetic field into the plasma were made at various axial positions. The steady magnetic field structure was measured at a matrix of 2640 points and a two dimensional least square polynomial fitting algorithm was used to smooth the measured data. This fitting procedure enabled reliable plots of the poloidal flux and current density contours to be constructed. An attempt has been made to apply MHD equilibrium theory to the observed plasma/field configuration. 23 refs., 99 figs., ills
Phenomenological study of the minimal R-symmetric supersymmetric standard model
International Nuclear Information System (INIS)
Diessner, Philip
2016-01-01
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
Phenomenological study of the minimal R-symmetric supersymmetric standard model
Energy Technology Data Exchange (ETDEWEB)
Diessner, Philip
2016-10-20
The Standard Model (SM) of particle physics gives a comprehensive description of numerous phenomena concerning the fundamental components of nature. Still, open questions and a clouded understanding of the underlying structure remain. Supersymmetry is a well motivated extension that may account for the observed density of dark matter in the universe and solve the hierarchy problem of the SM. The minimal supersymmetric extension of the SM (MSSM) provides solutions to these challenges. Furthermore, it predicts new particles in reach of current experiments. However, the model has its own theoretical challenges and is under fire from measurements provided by the Large Hadron Collider (LHC). Nevertheless, the concept of supersymmetry has an elegance which not only shines in the MSSM. Hence, it is also of interest to examine non-minimal supersymmetric models. They have benefits similar to the MSSM and may solve its shortcomings. R-symmetry is the only global symmetry allowed that does not commutate with supersymmetry and Lorentz symmetry. Thus, extending a supersymmetric model with R-symmetry is a theoretically well motivated endeavor to achieve the complete symmetry content of a field theory. Such a model provides a natural explanation for non-discovery in the early runs of the LHC and leads to further predictions distinct from those of the MSSM. The work described in this thesis contributes to the effort by studying the minimal R-symmetric supersymmetric extension of the SM (MRSSM). Important aspects of its physics and the dependence of observables on the parameter space of the MRSSM are investigated. The discovery of a scalar particle compatible with the Higgs boson of the SM at the LHC was announced in 2012. It is the first and crucial task of this thesis to understand the underlying mechanisms leading to the correct Higgs boson mass prediction in the MRSSM. Then, the relevant regions of parameter space are investigated and it is shown that they are also in agreement
Yang, Run-Qiu; Niu, Chao; Zhang, Cheng-Yong; Kim, Keun-Young
2018-02-01
We compute the time-dependent complexity of the thermofield double states by four different proposals: two holographic proposals based on the "complexity-action" (CA) conjecture and "complexity-volume" (CV) conjecture, and two quantum field theoretic proposals based on the Fubini-Study metric (FS) and Finsler geometry (FG). We find that four different proposals yield both similarities and differences, which will be useful to deepen our understanding on the complexity and sharpen its definition. In particular, at early time the complexity linearly increase in the CV and FG proposals, linearly decreases in the FS proposal, and does not change in the CA proposal. In the late time limit, the CA, CV and FG proposals all show that the growth rate is 2 E/(πℏ) saturating the Lloyd's bound, while the FS proposal shows the growth rate is zero. It seems that the holographic CV conjecture and the field theoretic FG method are more correlated.
International Nuclear Information System (INIS)
Sharma, Suresh C.; Gupta, Neha
2015-01-01
A theoretical modeling for the catalyst-assisted growth of graphene sheet in the presence of plasma has been investigated. It is observed that the plasma parameters can strongly affect the growth and field emission properties of graphene sheet. The model developed accounts for the charging rate of the graphene sheet; number density of electrons, ions, and neutral atoms; various elementary processes on the surface of the catalyst nanoparticle; surface diffusion and accretion of ions; and formation of carbon-clusters and large graphene islands. In our investigation, it is found that the thickness of the graphene sheet decreases with the plasma parameters, number density of hydrogen ions and RF power, and consequently, the field emission of electrons from the graphene sheet surface increases. The time evolution of the height of graphene sheet with ion density and sticking coefficient of carbon species has also been examined. Some of our theoretical results are in compliance with the experimental observations
Classification of supersymmetric backgrounds of string theory
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds. We then demonstrate its effectiveness by classifying the maximally supersymmetric IIB G-backgrounds and by showing that N=31 IIB solutions do not exist. (Abstract Copyright [2007], Wiley Periodicals, Inc.)
The massless limit of supersymmetric QCD
International Nuclear Information System (INIS)
Davis, A.C.; Dine, M.; Seiberg, N.
1983-01-01
We construct an effective lagrangian for supersymmetric QCD, using a simple set of rules. The model with non-zero quark mass, msub(q), has at least N supersymmetric vacua, where N is the number of colors (in agreement with Witten's index). These vacua move to infinity as msub(q)->0. We study the possibility of supersymmetric breaking at msub(q)=0. (orig.)
Theoretical upper critical field Hc2 for inhomogeneous high temperature superconductors
International Nuclear Information System (INIS)
Caixeiro, E.S.; Gonzalez, J.L.; Mello, E.V.L. de
2004-01-01
We present the theoretical upper critical field H c2 (T) of the high temperature superconductors (HTSC), calculated through a linearized Ginzburg-Landau equation modified to consider the intrinsic inhomogeneity of the HTSC. The unusual behavior of H c2 (T) for these compounds, and other properties like the Meissner and Nernst effects detected at temperatures much higher than the critical temperature T c of the sample, are explained by the approach
A Primer on Theoretically Exploring the Field of Business Model Innovation
Gassmann, Oliver; Frankenberger, Karolin; Sauer, Roman
2017-01-01
Companies like Amazon, Uber, and Skype have become business strategy icons and the way they transformed industries can hardly be explained with classic strategy research. This article explores the topic of Business Model Innovation, which has become the cornerstone for the competitiveness of many successful firms, from a theoretical perspective. It gives an overview and introduction to the book "Exploring the Field of Business Model Innovation".
Quantum Field Theoretic Derivation of the Einstein Weak Equivalence Principle Using Emqg Theory
Ostoma, Tom; Trushyk, Mike
1999-01-01
We provide a quantum field theoretic derivation of Einstein's Weak Equivalence Principle of general relativity using a new quantum gravity theory proposed by the authors called Electro-Magnetic Quantum Gravity or EMQG (ref. 1). EMQG is based on a new theory of inertia (ref. 5) proposed by R. Haisch, A. Rueda, and H. Puthoff (which we modified and called Quantum Inertia). Quantum Inertia states that classical Newtonian Inertia is a property of matter due to the strictly local electrical force ...
Field theoretical approach to proton-nucleus reactions: II-Multiple-step excitation process
International Nuclear Information System (INIS)
Eiras, A.; Kodama, T.; Nemes, M.
1989-01-01
A field theoretical formulation to multiple step excitation process in proton-nucleus collision within the context of a relativistic eikonal approach is presented. A closed form expression for the double differential cross section can be obtained whose structure is very simple and makes the physics transparent. Glauber's formulation of the same process is obtained as a limit of ours and the necessary approximations are studied and discussed. (author) [pt
Theoretical study of hyperfine fields due to S-P and transition impurities in gadolinium matrix
International Nuclear Information System (INIS)
Santos Leal, C.E. dos.
1985-01-01
This work presents a systematic theoretical study for the hyperfine field due to diluted s-p-and transition impurities in metallic gadolinium matrices. The peculiarities de a gadolinium matrix are shown, they are characterized by a semi-completed 4f-shell, which is far from (below) the energetic levels such as the type s-p and d-conduction bands. (author)
Towards a comprehensive theory for He II: II. A temperature-dependent field-theoretic approach
International Nuclear Information System (INIS)
Chela-Flores, J.; Ghassib, H.B.
1982-09-01
New experimental aspects of He II are used as a guide towards a comprehensive theory in which non-zero temperature U(1) and SU(2) gauge fields are incorporated into a gauge hierarchy of effective Lagrangians. We conjecture that an SU(n) gauge-theoretic description of the superfluidity of 4 He may be obtained in the limit n→infinity. We indicate, however, how experiments may be understood in the zeroth, first and second order of the hierarchy. (author)
Matrix models from localization of five-dimensional supersymmetric noncommutative U(1) gauge theory
International Nuclear Information System (INIS)
Lee, Bum-Hoon; Ro, Daeho; Yang, Hyun Seok
2017-01-01
We study localization of five-dimensional supersymmetric U(1) gauge theory on S 3 ×ℝ θ 2 where ℝ θ 2 is a noncommutative (NC) plane. The theory can be isomorphically mapped to three-dimensional supersymmetric U(N→∞) gauge theory on S 3 using the matrix representation on a separable Hilbert space on which NC fields linearly act. Therefore the NC space ℝ θ 2 allows for a flexible path to derive matrix models via localization from a higher-dimensional supersymmetric NC U(1) gauge theory. The result shows a rich duality between NC U(1) gauge theories and large N matrix models in various dimensions.
Margins of freedom: a field-theoretic approach to class-based health dispositions and practices.
Burnett, Patrick John; Veenstra, Gerry
2017-09-01
Pierre Bourdieu's theory of practice situates social practices in the relational interplay between experiential mental phenomena (habitus), resources (capitals) and objective social structures (fields). When applied to class-based practices in particular, the overarching field of power within which social classes are potentially made manifest is the primary field of interest. Applying relational statistical techniques to original survey data from Toronto and Vancouver, Canada, we investigated whether smoking, engaging in physical activity and consuming fruit and vegetables are dispersed in a three-dimensional field of power shaped by economic and cultural capitals and cultural dispositions and practices. We find that aesthetic dispositions and flexibility of developing and established dispositions are associated with positioning in the Canadian field of power and embedded in the logics of the health practices dispersed in the field. From this field-theoretic perspective, behavioural change requires the disruption of existing relations of harmony between the habitus of agents, the fields within which the practices are enacted and the capitals that inform and enforce the mores and regularities of the fields. The three-dimensional model can be explored at: http://relational-health.ca/margins-freedom. © 2017 Foundation for the Sociology of Health & Illness.
Deviations from Newton's law in supersymmetric large extra dimensions
International Nuclear Information System (INIS)
Callin, P.; Burgess, C.P.
2006-01-01
Deviations from Newton's inverse-squared law at the micron length scale are smoking-gun signals for models containing supersymmetric large extra dimensions (SLEDs), which have been proposed as approaches for resolving the cosmological constant problem. Just like their non-supersymmetric counterparts, SLED models predict gravity to deviate from the inverse-square law because of the advent of new dimensions at sub-millimeter scales. However SLED models differ from their non-supersymmetric counterparts in three important ways: (i) the size of the extra dimensions is fixed by the observed value of the dark energy density, making it impossible to shorten the range over which new deviations from Newton's law must be seen; (ii) supersymmetry predicts there to be more fields in the extra dimensions than just gravity, implying different types of couplings to matter and the possibility of repulsive as well as attractive interactions; and (iii) the same mechanism which is purported to keep the cosmological constant naturally small also keeps the extra-dimensional moduli effectively massless, leading to deviations from general relativity in the far infrared of the scalar-tensor form. We here explore the deviations from Newton's law which are predicted over micron distances, and show the ways in which they differ and resemble those in the non-supersymmetric case
On the supersymmetrization of Galileon theories in four dimensions
Elvang, Henriette; Hadjiantonis, Marios; Jones, Callum R. T.; Paranjape, Shruti
2018-06-01
We use on-shell amplitude techniques to study the possible N = 1 supersymmetrizations of Galileon theories in 3 + 1 dimensions, both in the limit of decoupling from DBI and without. Our results are that (1) the quartic Galileon has a supersymmetrization compatible with Galileon shift symmetry (ϕ → ϕ + c +bμxμ) for the scalar sector and a constant shift symmetry (ψ → ψ + ξ) for the fermion sector, and it is unique at least at 6th order in fields, but possibly not beyond; (2) the enhanced "special Galileon" symmetry is incompatible with supersymmetry; (3) there exists a quintic Galileon with a complex scalar preserving Galileon shift symmetry; (4) one cannot supersymmetrize the cubic and quintic Galileon while preserving the Galileon shift symmetry for the complex scalar; and (5) for the quartic and quintic Galileon, we present evidence for a supersymmetrization in which the real Galileon scalar is partnered with an R-axion to form a complex scalar which only has an ordinary shift symmetry.
Chaos and random matrices in supersymmetric SYK
Hunter-Jones, Nicholas; Liu, Junyu
2018-05-01
We use random matrix theory to explore late-time chaos in supersymmetric quantum mechanical systems. Motivated by the recent study of supersymmetric SYK models and their random matrix classification, we consider the Wishart-Laguerre unitary ensemble and compute the spectral form factors and frame potentials to quantify chaos and randomness. Compared to the Gaussian ensembles, we observe the absence of a dip regime in the form factor and a slower approach to Haar-random dynamics. We find agreement between our random matrix analysis and predictions from the supersymmetric SYK model, and discuss the implications for supersymmetric chaotic systems.
International Nuclear Information System (INIS)
Kharita, M. H.; Abo Kasem, I.; Kattab, A.
2008-01-01
This work has special importance as it aims at the investigation of the electromagnetic radiation from the Sabborah radio broadcasting station. The report includes general introduction to the physics of the electromagnetic fields and the biological effects of these fields and consequently its health effects. The bases of the recommended exposure limits according to the International Commission on Non-Ionizing Radiation Protection (ICNIRP) have been discussed in addition to the theoretical and practical investigations. This report summarizes the results of this study and the final recommendations. (author)
Elliott, D. G.
1977-01-01
Measurements of reaction rail currents, reaction rail voltages, and airgap magnetic fields in tests of the Linear Induction Motor Research Vehicle (LIMRV) were compared with theoretical calculations from the mesh/matrix theory. It was found that the rail currents and magnetic fields predicted by the theory are within 20 percent of the measured currents and fields at most motor locations in most of the runs, but differ by as much as a factor of two in some cases. The most consistent difference is a higher experimental than theoretical magnetic field near the entrance of the motor and a lower experimental than theoretical magnetic field near the exit. The observed differences between the theoretical and experimental magnetic fields and currents do not account for the differences of as much as 26 percent between the theoretical and experimental thrusts.
The History of Education in Brazil: The Formation of the Field and Theoretical Influences
Directory of Open Access Journals (Sweden)
Marisa Bittar
2016-01-01
Full Text Available This article is concerned with the History of Education in Brazil in two key areas: the disciplinary field and the research field. As a discipline, the History of Education has formed a part of the school curriculum since the beginning of the 20th century. As a research field, it gained impetus in the 60s with the setting up of post-graduate courses and became one of the most consolidated areas of Brazilian education. In the light of this, there is a discussion about academic organisation and an attempt is being made to show how the field is characterised by theoretical renewal and is facing two key challenges: cultural exchanges involving the use of English and a recognition of the value of the History of Education as a discipline in the light of the fact that less space is being devoted to it in teacher-training curricula. How to reference this article Bittar, M., & Ferreira Jr., A. (2016. The History of Education in Brazil: The Formation of the Field and Theoretical Influences. Espacio, Tiempo y Educación, 3(1, 61-84. doi: http://dx.doi.org/10.14516/ete.2016.003.001.5
Branes and Six Dimensional Supersymmetric Theories
Hanany, Amihay; Hanany, Amihay; Zaffaroni, Alberto
1998-01-01
We consider configurations of sixbranes, fivebranes and eightbranes in various superstring backgrounds. These configurations give rise to $(0,1)$ supersymmetric theories in six dimensions. The condition for RR charge conservation of a brane configuration translates to the condition that the corresponding field theory is anomaly free. Sets of infinitely many models with non trivial RG fixed points at strong coupling are demonstrated. Some of them reproduce and generalise the world-volume theories of SO(32) and $E_8\\times E_8$ small instantons. All the models are shown to be connected by smooth transitions. In particular, the small instanton transition for which a tensor multiplet is traded for 29 hypermultiplets is explicitly demonstrated. The particular limit in which these theories can be considered as six dimensional string theories without gravity are discussed. New fixed points (string theories) associated with $E_n$ global symmetries are discovered by taking the strong string coupling limit.
Directory of Open Access Journals (Sweden)
E. Ireson
2016-01-01
Full Text Available In this work we extend the results of previous derivations of Seiberg-like dualities (level-rank duality between gauged Wess–Zumino–Witten theories. The arguments in use to identify a potential dual for the supersymmetric WZW theory based on the coset U(N+MkU(Nk can be extended to be applied to a wider variety of gauge groups, notably USp(2N+2M2kUSp(2N2k and SO(2N+2M2kSO(2N2k, which will be dealt with briefly. Most interestingly, non-supersymmetric versions of the latter theories can also be shown to have duals in a similar fashion. These results are supported by several pieces of evidence, string phenomenological interpretations of Seiberg duality, even in non-supersymmetric backgrounds, are helpful to justify the formulation, then, from field theory, quantities such as central charges or Witten indices are shown to match exactly. The stability of these non-supersymmetric models is also discussed and shown to be consistent.
Supersymmetric partition functions and the three-dimensional A-twist
Energy Technology Data Exchange (ETDEWEB)
Closset, Cyril [Theory Department, CERN,CH-1211, Geneva 23 (Switzerland); Kim, Heeyeon [Perimeter Institute for Theoretical Physics,31 Caroline Street North, Waterloo, N2L 2Y5, Ontario (Canada); Willett, Brian [Kavli Institute for Theoretical Physics, University of California,Santa Barbara, CA 93106 (United States)
2017-03-14
We study three-dimensional N=2 supersymmetric gauge theories on M{sub g,p}, an oriented circle bundle of degree p over a closed Riemann surface, Σ{sub g}. We compute the M{sub g,p} supersymmetric partition function and correlation functions of supersymmetric loop operators. This uncovers interesting relations between observables on manifolds of different topologies. In particular, the familiar supersymmetric partition function on the round S{sup 3} can be understood as the expectation value of a so-called “fibering operator” on S{sup 2}×S{sup 1} with a topological twist. More generally, we show that the 3d N=2 supersymmetric partition functions (and supersymmetric Wilson loop correlation functions) on M{sub g,p} are fully determined by the two-dimensional A-twisted topological field theory obtained by compactifying the 3d theory on a circle. We give two complementary derivations of the result. We also discuss applications to F-maximization and to three-dimensional supersymmetric dualities.
Cheng, Zhongtao; Liu, Dong; Luo, Jing; Yang, Yongying; Zhou, Yudi; Zhang, Yupeng; Duan, Lulin; Su, Lin; Yang, Liming; Shen, Yibing; Wang, Kaiwei; Bai, Jian
2015-05-04
A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.
Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li
2015-05-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
International Nuclear Information System (INIS)
Li Xin; Zhou Wei-Man; Liu Wei-Hua; Wang Xiao-Li
2015-01-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn–Plummer method. The ZnO NPs reconstruct the ZnO–CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. (paper)
Ultraviolet divergences and supersymmetric theories
International Nuclear Information System (INIS)
Sagnotti, A.
1984-09-01
This article is closely related to the one by Ferrara in these same Proceedings. It deals with what is perhaps the most fascinating property of supersymmetric theories, their improved ultraviolet behavior. My aim here is to present a survey of the state of the art as of August, 1984, and a somewhat more detailed discussion of the breakdown of the superspace power-counting beyond N = 2 superfields. A method is also described for simplifying divergence calculations that uses the locality of subtracted Feynman integrals. 74 references
Supersymmetric Adler functions and holography
Iwanaga, Masaya; Karch, Andreas; Sakai, Tadakatsu
2016-09-01
We perform several tests on a recent proposal by Shifman and Stepanyantz for an exact expression for the current correlation functions in supersymmetric gauge theories. We clarify the meaning of the relation in superconformal theories. In particular we show that it automatically follows from known relations between the current correlation functions and anomalies. It therefore also automatically matches between different dual realizations of the same superconformal theory. We use holographic examples as well as calculations in free theories to show that the proposed relation fails in theories with mass terms.
Electroweak breaking in supersymmetric models
Ibáñez, L E
1992-01-01
We discuss the mechanism for electroweak symmetry breaking in supersymmetric versions of the standard model. After briefly reviewing the possible sources of supersymmetry breaking, we show how the required pattern of symmetry breaking can automatically result from the structure of quantum corrections in the theory. We demonstrate that this radiative breaking mechanism works well for a heavy top quark and can be combined in unified versions of the theory with excellent predictions for the running couplings of the model. (To be published in ``Perspectives in Higgs Physics'', G. Kane editor.)
PREFACE: Progress in supersymmetric quantum mechanics
Aref'eva, I.; Fernández, D. J.; Hussin, V.; Negro, J.; Nieto, L. M.; Samsonov, B. F.
2004-10-01
The theory of integrable systems is grounded in the very beginning of theoretical physics: Kepler's system is an integrable system. This field of dynamical systems, where one looks for exact solutions of the equations of motion, has attracted most of the great figures in mathematical physics: Euler, Lagrange, Jacobi, etc. Liouville was the first to formulate the precise mathematical conditions ensuring solvability `by quadrature' of the dynamical equations, and his theorem still lies at the heart of the recent developments. The modern era started about thirty years ago with the systematic formulation of soliton solutions to nonlinear wave equations. Since then, impressive developments arose both for the classical and the quantum theory. Subtle mathematical techniques were devised for the resolution of these theories, relying on algebra (group theory), analysis and algebraic geometry (Riemann theory of surfaces). We therefore clearly see that the theory of integrable systems lies ab initio at a crossing of physics and mathematics, and that the developments of these last thirty years have strengthened this dual character, which makes it into an archetypal domain of mathematical physics. As regards the classical theory, beyond the direct connections to the various domains of classical soliton physics (hydrodynamics, condensed matter physics, laser optics, particle physics, plasma, biology or information coding), one has witnessed in these recent years more unexpected (and for some of them not yet well understood) connections to a priori farther fields of theoretical physics: string theory (through matrix models), topological field theories (two dimensional Yang--Mills, three dimensional Chern--Simons--Witten), or supersymmetric field theories (for instance the correspondence discovered by Seiberg and Witten between classical integrable models and quantum potentials). Quantum integrable theories provide examples of exactly (non perturbatively) solvable physical models
5D maximally supersymmetric Yang-Mills in 4D superspace. Applications
International Nuclear Information System (INIS)
McGarrie, Moritz
2013-03-01
We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.
5D maximally supersymmetric Yang-Mills in 4D superspace. Applications
Energy Technology Data Exchange (ETDEWEB)
McGarrie, Moritz
2013-03-15
We reformulate 5D maximally supersymmetric Yang-Mills in 4D Superspace, for a manifold with boundaries. We emphasise certain features and conventions necessary to allow for supersymmetric model building applications. Finally we apply the holographic interpretation of a slice of AdS and show how to generate Dirac soft masses between external source fields, as well as kinetic mixing, as a boundary effective action.
Directory of Open Access Journals (Sweden)
Luciana Netto
2018-02-01
Full Text Available Abstract Objective: Theoretical reflection that uses Reflexivity as a theoretical reference and its objective is to approach Donald Schön's reflective thinking, interrelating it with the innovative curriculum. Method: The writings of Schön and other authors who addressed the themes in their works were used. Results: The innovative curriculum as an expression of dissatisfaction with the fragmentation paradigm may favor reflective practice, since it is necessary to mobilize reflexivity for actions and contexts that are unpredictable in the field of health promotion. Conclusions: The innovative curriculum favors and is favored by a reflective practice and the development of competencies for the promotion of health. Implications for practice: The findings apply to the practice of nurses to deal with the conditioning and determinants of the health-disease process.
Higher dimensional supersymmetric quantum mechanics and Dirac ...
Indian Academy of Sciences (India)
We exhibit the supersymmetric quantum mechanical structure of the full 3+1 dimensional Dirac equation considering `mass' as a function of coordinates. Its usefulness in solving potential problems is discussed with speciﬁc examples. We also discuss the `physical' signiﬁcance of the supersymmetric states in this formalism.
On the supersymmetric solitons and monopoles
International Nuclear Information System (INIS)
Hruby, J.
1978-01-01
The basic results in a new trend in supersymmetry and soliton theory are presented. It is shown that the soliton expectation value of the energy operator is mass of the soliton without the quantum corrections. A new supersymmetric monopole model in three dimensions is constructed by generalization of the supersymmetric sine-Gordon model in one space dimension
The supersymmetric Pegg-Barnett oscillator
International Nuclear Information System (INIS)
Shen, Jian Qi
2005-01-01
The su(n) Lie algebraic structure of the Pegg-Barnett oscillator that possesses a finite-dimensional number-state space is demonstrated. The supersymmetric generalization of the Pegg-Barnett oscillator is suggested. it is shown that such a supersymmetric Pegg-Barnett oscillator may have some potential applications, e.g., the mass spectrum of the charged leptons
The gauge technique in supersymmetric QED2
Roo, M. de; Steringa, J.J.
1988-01-01
We construct an extension of the gauge technique to two-dimensional supersymmetric gauge theories. This involves a derivation of the spectral representation of a scalar superpropagator in two dimensions. We apply the method to the massive supersymmetric Schwinger model. In the case that the gauge
Classification of supersymmetric backgrounds of string theory
Gran, Ulf; Gutowski, Jan; Papadopoulos, George; Roest, Diederik
2007-01-01
We review the recent progress made towards the classification of supersymmetric solutions in ten and eleven dimensions with emphasis on those of IIB supergravity. In particular, the spinorial geometry method is outlined and adapted to nearly maximally supersymmetric backgrounds.We then demonstrate
Energy Technology Data Exchange (ETDEWEB)
Liebler, Stefan Rainer
2011-09-15
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the {mu}{nu}SSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and
International Nuclear Information System (INIS)
Liebler, Stefan Rainer
2011-09-01
The standard model of particle physics lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. Using lepton number violating terms in the context of bilinear R-parity violation and the μνSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. This thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in
Supersymmetric gauge theories from string theory
International Nuclear Information System (INIS)
Metzger, St.
2005-12-01
This thesis presents various ways to construct four-dimensional quantum field theories from string theory. In a first part we study the generation of a supersymmetric Yang-Mills theory, coupled to an adjoint chiral superfield, from type IIB string theory on non-compact Calabi-Yau manifolds, with D-branes wrapping certain sub-cycles. Properties of the gauge theory are then mapped to the geometric structure of the Calabi-Yau space. Even if the Calabi-Yau geometry is too complicated to evaluate the geometric integrals explicitly, one can then always use matrix model perturbation theory to calculate the effective superpotential. The second part of this work covers the generation of four-dimensional super-symmetric gauge theories, carrying several important characteristic features of the standard model, from compactifications of eleven-dimensional supergravity on G 2 -manifolds. If the latter contain conical singularities, chiral fermions are present in the four-dimensional gauge theory, which potentially lead to anomalies. We show that, locally at each singularity, these anomalies are cancelled by the non-invariance of the classical action through a mechanism called 'anomaly inflow'. Unfortunately, no explicit metric of a compact G 2 -manifold is known. Here we construct families of metrics on compact weak G 2 -manifolds, which contain two conical singularities. Weak G 2 -manifolds have properties that are similar to the ones of proper G 2 -manifolds, and hence the explicit examples might be useful to better understand the generic situation. Finally, we reconsider the relation between eleven-dimensional supergravity and the E 8 x E 8 -heterotic string. This is done by carefully studying the anomalies that appear if the supergravity theory is formulated on a ten-manifold times the interval. Again we find that the anomalies cancel locally at the boundaries of the interval through anomaly inflow, provided one suitably modifies the classical action. (author)
Liarte, Danilo B.; Posen, Sam; Transtrum, Mark K.; Catelani, Gianluigi; Liepe, Matthias; Sethna, James P.
2017-03-01
Theoretical limits to the performance of superconductors in high magnetic fields parallel to their surfaces are of key relevance to current and future accelerating cavities, especially those made of new higher-T c materials such as Nb3Sn, NbN, and MgB2. Indeed, beyond the so-called superheating field {H}{sh}, flux will spontaneously penetrate even a perfect superconducting surface and ruin the performance. We present intuitive arguments and simple estimates for {H}{sh}, and combine them with our previous rigorous calculations, which we summarize. We briefly discuss experimental measurements of the superheating field, comparing to our estimates. We explore the effects of materials anisotropy and the danger of disorder in nucleating vortex entry. Will we need to control surface orientation in the layered compound MgB2? Can we estimate theoretically whether dirt and defects make these new materials fundamentally more challenging to optimize than niobium? Finally, we discuss and analyze recent proposals to use thin superconducting layers or laminates to enhance the performance of superconducting cavities. Flux entering a laminate can lead to so-called pancake vortices; we consider the physics of the dislocation motion and potential re-annihilation or stabilization of these vortices after their entry.
Null half-supersymmetric solutions in five-dimensional supergravity
International Nuclear Information System (INIS)
Grover, Jai; Gutowski, Jan B.; Sabra, Wafic
2008-01-01
We classify half-supersymmetric solutions of gauged N = 2, D = 5 supergravity coupled to an arbitrary number of abelian vector multiplets for which all of the Killing spinors generate null Killing vectors. We show that there are four classes of solutions, and in each class we find the metric, scalars and gauge field strengths. When the scalar manifold is symmetric, the solutions correspond to a class of local near horizon geometries recently found by Kunduri and Lucietti.
Superlocalization formulas and supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Bruzzo, U.; Fucito, F.
2004-01-01
By using supermanifolds techniques we prove a generalization of the localization formula in equivariant cohomology which is suitable for studying supersymmetric Yang-Mills theories in terms of ADHM data. With these techniques one can compute the reduced partition functions of topological super-Yang-Mills theory with 4, 8 or 16 supercharges. More generally, the superlocalization formula can be applied to any topological field theory in any number of dimensions
The dynamics of the nuclear disassembly in a field-theoretical model at finite entropies
International Nuclear Information System (INIS)
Knoll, J.; Strack, B.
1984-10-01
The expansion phase of a hot nuclear system as created in an energetic heavy-ion collision is calculated and discussed by a selfconsistent field-theoretical model. Dynamical instabilities arising during the expansion from strong fluctuations of the one-body density are included explicitely. First multiplicity distributions and mass spectra resulting from a series of numerical runs in a 2+1 dimensional model world are presented. The dependence of break-up dynamics both on the properties of the binding force and possible correlations in the initially compressed hot state are discussed. (orig.)
International Nuclear Information System (INIS)
Dymski, T.C.
1976-01-01
For high energy scattering of pseudoscalar particles on spin 1 / 2 particles, the transition amplitude (for a given signature) is constructed as an infinite sum over spin of boson exchange graphs of the Feynman type, each of which has impact parameters up to some value R completely removed. This amplitude is advanced as a field theoretic realization of the nondiffractive component of Harari's dual absorption model. Comparing with π/sup +-/p→π/sup +-/p and π - p→π 0 n data shows that the imaginary parts of both helicity amplitudes are excellent, for either signature
International Nuclear Information System (INIS)
Elias, V.; Steele, T.G.
1987-01-01
Several field theoretic aspects of the operator product expansion (OPE) augmentation of QCD have been examined. Gauge independence of quark self-energies at the mass shell corresponding to the mass m (characterizing the OPE expansion parameter m/p) has been verified to all orders of the OPE for dimension 3 and 5 chiral symmetry breaking condensates. Similarly, the necessary transversality of the quark condensate contribution to the gluon self-energy has been verified, provided that propagator masses appearing in the self-energy are equilibrated with the OPE mass parameter m
Towards a comprehensive theory for He II: A temperature-dependent field-theoretic approach
International Nuclear Information System (INIS)
Ghassib, H.B.; Chela-Flores, J.
1983-07-01
New experimental aspects of He II, as well as recent developments in particle physics, are invoked to construct the rudiments of a comprehensive theory in which temperature-dependent U(1) and SU(2) gauge fields are incorporated into a hierarchy of effective Lagrangians. It is conjectured that an SU(n) gauge-theoretic description of superfluidity may be obtained in the limit n→infinity. However, it is outlined how experiments can be understood in the zeroth, first and second order of the hierarchy. (author)
GUTs and supersymmetric GUTs in the very early universe
International Nuclear Information System (INIS)
Ellis, J.
1982-10-01
This talk is intended as background material for many of the other talks treating the possible applications of GUTs to the very early universe. I start with a review of the present theoretical and phenomenological status of GUTs before going on to raise some new issues for their prospective cosmological applications which arise in supersymmetric (susy) GUTs. The first section is an update on conventional GUTs, which is followed by a reminder of some of the motivations for going supersymmetric. There then follows a simple primer on susy and a discussion of the structure and phenomenology of simple sysy GUTs. Finally we come to the cosmological issues, including problems arising from the degeneracy of susy minima, baryosynthesis and supersymmetric inflation, the possibility that gravity is an essential complication in constructing susy GUTs and discussing their cosmology, and the related question of what mass range is allowed for the gravitino. Several parts of this write-up contain new material which has emerged either during the Workshop or subsequently. They are included here for completeness and the convenience of the prospective reader. Wherever possible, these anachronisms will be flagged so as to keep straight the historical record
International Nuclear Information System (INIS)
Sharma, P.; Zhang, X.
2006-01-01
The failure of classical elasticity to address dislocation behavior spatially close to its core and (in Lorentz-type fashion) near the speed of sound is well known. In gauge field theory of defects, the latter are not postulated a priori in an ad hoc fashion rather defects such as dislocations arise naturally as a consequence of broken translational symmetry exhibiting solutions that are physically meaningful (e.g., removal of divergence of stress and the natural emergence of a core making redundant the artificial cut-off radius). In the present work we present the gauge field theoretic solution to the problem of a uniformly moving screw dislocation. Apart from the formal derivations, we show that stress divergence at the core of the dislocation is removed at all time and (consistent with atomistic simulations), supersonic states are found to be admissible
Field theory approaches to new media practices: An introduction and some theoretical considerations
Directory of Open Access Journals (Sweden)
Ida Willig
2015-05-01
Full Text Available In this article introducing the theme of the special issue we argue that studies of new media practices might benefit from especially Pierre Bourdieu’s research on cultural production. We introduce some of the literature, which deals with the use of digital media, and which have taken steps to develop field theory in this context. Secondly, we present the four thematic articles in this issue and the articles outside the theme, which includes two translations of classic texts within communication and media research. This introduction article concludes by encouraging media scholars to embark on more studies within a field theory framework, as the ability of the comprehensive theoretical work and the ideas of a reflexive sociology is able to trigger the good questions, more than it claims to offer a complete and self-sufficient sociology of media and inherent here also new media.
Theoretical estimation and validation of radiation field in alkaline hydrolysis plant
Energy Technology Data Exchange (ETDEWEB)
Singh, Sanjay; Krishnamohanan, T.; Gopalakrishnan, R.K., E-mail: singhs@barc.gov.in [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Mumbai (India); Anand, S. [Health Physics Division, Bhabha Atomic Research Centre, Mumbai (India); Pancholi, K. C. [Waste Management Division, Bhabha Atomic Research Centre, Mumbai (India)
2014-07-01
Spent organic solvent (30% TBP + 70% n-Dodecane) from reprocessing facility is treated at ETP in Alkaline Hydrolysis Plant (AHP) and Organic Waste Incineration (ORWIN) Facility. In AHP-ORWIN, there are three horizontal cylindrical tanks having 2.0 m{sup 3} operating capacity used for waste storage and transfer. The three tanks are, Aqueous Waste Tank (AWT), Waste Receiving Tank (WRT) and Dodecane Waste Tank (DWT). These tanks are en-housed in a shielded room in this facility. Monte Carlo N-Particle (MCNP) radiation transport code was used to estimate ambient radiation field levels when the storage tanks are having hold up volumes of desired specific activity levels. In this paper the theoretically estimated values of radiation field is compared with the actual measured dose.
Van Oyen, Tomas; Blondeaux, Paolo; Van den Eynde, Dries
2013-07-01
A site-by-site comparison between field observations and theoretical predictions of sediment sorting patterns along tidal sand waves is performed for ten locations in the North Sea. At each site, the observed grain size distribution along the bottom topography and the geometry of the bed forms is described in detail and the procedure used to obtain the model parameters is summarized. The model appears to accurately describe the wavelength of the observed sand waves for the majority of the locations; still providing a reliable estimate for the other sites. In addition, it is found that for seven out of the ten locations, the qualitative sorting process provided by the model agrees with the observed grain size distribution. A discussion of the site-by-site comparison is provided which, taking into account uncertainties in the field data, indicates that the model grasps the major part of the key processes controlling the phenomenon.
International Nuclear Information System (INIS)
Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.
1985-01-01
Theoretical studies of FRC stability and transport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in two-dimensional hybrid code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower hybrid drift instability in parameter regimes relevant to experiments show good agreement with a non-local theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a DC solenoid and trapped by magnetic mirrors, has been studied in the FRX-C/T experiment. Efficient transfer of particles, energy and internal magnetic flux are observed with no enhancement of loss processes over in-situ FRC experiments. The axial velocity of the FRC can be estimated reasonably well with a simple model based on conservation of energy. Internal magnetic field probing during translation shows the expected structure of poloidal field and a complex distribution of generally weak toroidal fields. Measurements of radiated power indicate that radiation is a small fraction of the total plasma power loss (typically 8%). Translation has facilitated scaling studies of confinement over a wider range of parameters than were achieved by in-situ FRX-C experiments. For example, the variable xsub(s), the ratio of the separatrix radius to the metal wall radius, has been increased to about 0.7 by allowing the FRC to expand during translation. In all cases, particle confinement times agree within a factor of two with predictions by models that assume a lower hybrid drift resistivity. However, for the conditions studied there are indications that the experimental
Theoretical analysis of radiation field penumbra from a multi leaf collimator
International Nuclear Information System (INIS)
Li Shidong; Boyer, Arthur; Findley, David; Mok, Ed
1996-01-01
Purpose/Objective: Analysis and measurement of the difference between the light field and the radiation field of the multi leaf collimator (MLC) leaves that are constructed with curved ends. Material and Methods: A Varian MLC with curved leaf ends was installed on a Clinac 2300 C/D. The leaves were 6.13 cm deep (dimension in beam direction) and were located 53.9 cm from the x-ray target. The leaf ends had an 8 cm radius of curvature. A relation was derived using three dimensional geometry predicting the location of the light field edge relative to the geometric projection of the tip of the curved leaf end. This is a nonlinear relationship because the shadow of the leaf is generated by different points along the leaf end surface as the leaf moves across the field. The theoretical edge of the radiation fluence for a point source was taken to be located along the projection of a chord whose length was 1 Half-Value Thickness (HVT). The chords having projection points across the light field edge were computed using an analytical solution. The radiation transmission through the leaf end was then estimated. The HVT used for tungsten alloy, the leaf material, was 0.87 cm and 0.94 cm for the 6 MV and 15 MV photon beams, respectively. The location of the projection of the 1 HVT chord at a distance of 100 cm from x-ray target was also a nonlinear function of the projection of the leaf tip. Results: The displacement of the light field edge relative to the projection of the leaf tip varies from 0 mm when the leaf tip projects to the central axis, to approximately 3.2 mm for a 20 cm half-field width. The light field edge was always displaced into the unblocked area. The displacement of the projection of the 1 HVT chord relative to the projection of the leaf tip varies from 0.3 mm on the central axis to 3.0 mm for a 20 cm half-field width. The projection of 1 HVT chord was deviated from the light field edge by only 0.3 mm which would be slightly increased to 0.4 mm on decreasing
Supersymmetric standard model from the heterotic string (II)
International Nuclear Information System (INIS)
Buchmueller, W.; Hamaguchi, K.; Tokyo Univ.; Lebedev, O.; Ratz, M.
2006-06-01
We describe in detail a Z 6 orbifold compactification of the heterotic E 8 x E 8 string which leads to the (supersymmetric) standard model gauge group and matter content. The quarks and leptons appear as three 16-plets of SO(10), two of which are localized at fixed points with local SO(10) symmetry. The model has supersymmetric vacua without exotics at low energies and is consistent with gauge coupling unification. Supersymmetry can be broken via gaugino condensation in the hidden sector. The model has large vacuum degeneracy. Certain vacua with approximate B-L symmetry have attractive phenomenological features. The top quark Yukawa coupling arises from gauge interactions and is of the order of the gauge couplings. The other Yukawa couplings are suppressed by powers of standard model singlet fields, similarly to the Froggatt-Nielsen mechanism. (Orig.)
Supersymmetric solutions of N =(1 ,1 ) general massive supergravity
Deger, N. S.; Nazari, Z.; Sarıoǧlu, Ö.
2018-05-01
We construct supersymmetric solutions of three-dimensional N =(1 ,1 ) general massive supergravity (GMG). Solutions with a null Killing vector are, in general, pp-waves. We identify those that appear at critical points of the model, some of which do not exist in N =(1 ,1 ) new massive supergravity (NMG). In the timelike case, we find that many solutions are common with NMG, but there is a new class that is genuine to GMG, two members of which are stationary Lifshitz and timelike squashed AdS spacetimes. We also show that in addition to the fully supersymmetric AdS vacuum, there is a second AdS background with a nonzero vector field that preserves 1 /4 supersymmetry.
Supersymmetric states in M5/M2 CFTs
International Nuclear Information System (INIS)
Bhattacharyya, Sayantani; Minwalla, Shiraz
2007-01-01
We propose an exact, finite N formula for the partition function over 1/4 th BPS states in the conformal field theory on the world volume of N coincident M5 branes, and 1/8 th BPS states in the theory of N conincident M2 branes. We obtain our partition function by performing the radial quantization of the Coulomb Branches of these theories and rederive the same formula from the quantization of supersymmetric giant and dual giant gravitons in AdS 7 x S 4 and AdS 4 x S 7 . Our partition function is qualitatively similar to the analogous quantity in N = 4 Yang Mills. It reduces to the sum over supersymmetric multi gravitons at low energies, but deviates from this supergravity formula at energies that scale like a positive power of N
Chiral symmetry breaking is permitted in supersymmetric QED
International Nuclear Information System (INIS)
Walker, M.
2000-01-01
Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result
Higgs detectability in the extended supersymmetric standard model
International Nuclear Information System (INIS)
Kamoshita, Jun-ichi
1995-01-01
Higgs detectability at a future linear collider are discussed in the minimal supersymmetric standard model (MSSM) and a supersymmetric standard model with a gauge singlet Higgs field (NMSSM). First, in the MSSM at least one of the neutral scalar Higgs is shown to be detectable irrespective of parameters of the model in a future e + e - linear collider at √s = 300-500 GeV. Next the Higgs sector of the NMSSM is considered, since the lightest Higgs boson can be singlet dominated and therefore decouple from Z 0 boson it is important to consider the production of heavier Higgses. It is shown that also in this case at least one of the neutral scalar Higgs will be detectable in a future linear collider. We extend the analysis and show that the same is true even if three singlets are included. Thus the detectability of these Higgs bosons of these models is guaranteed. (author)
F-theory Yukawa couplings and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Oikonomou, V.K.
2012-01-01
The localized fermions on the intersection curve Σ of D7-branes, are connected to a N=2 supersymmetric quantum mechanics algebra. Due to this algebra the fields obey a global U(1) symmetry. This symmetry restricts the proton decay operators and the neutrino mass terms. Particularly, we find that several proton decay operators are forbidden and the Majorana mass term is the only one allowed in the theory. A special SUSY QM algebra is studied at the end of the paper. In addition we study the impact of a non-trivial holomorphic metric perturbation on the localized solutions along each matter curve. Moreover, we study the connection of the localized solutions to an N=2 supersymmetric quantum mechanics algebra when background fluxes are turned on.
Semiclassical and quantum field theoretic bounds for traversable Lorentzian stringy wormholes
International Nuclear Information System (INIS)
Nandi, Kamal Kanti; Zhang Yuanzhong; Kumar, K.B. Vijaya
2004-01-01
A lower bound on the size of a Lorentzian wormhole can be obtained by semiclassically introducing the Planck cutoff on the magnitude of tidal forces (Horowitz-Ross constraint). Also, an upper bound is provided by the quantum field theoretic constraint in the form of the Ford-Roman Quantum Inequality for massless minimally coupled scalar fields. To date, however, exact static solutions belonging to this scalar field theory have not been worked out to verify these bounds. To fill this gap, we examine the wormhole features of two examples from the Einstein frame description of the vacuum low energy string theory in four dimensions which is the same as the minimally coupled scalar field theory. Analyses in this paper support the conclusion of Ford and Roman that wormholes in this theory can have sizes that are indeed only a few order of magnitudes larger than the Planck scale. It is shown that the two types of bounds are also compatible. In the process, we point out a 'wormhole' analog of naked black holes
The grin of Cheshire cat resurgence from supersymmetric localization
Directory of Open Access Journals (Sweden)
Daniele Dorigoni, Philip Glass
2018-02-01
Full Text Available First we compute the $\\mbox{S}^2$ partition function of the supersymmetric $\\mathbb{CP}^{N-1}$ model via localization and as a check we show that the chiral ring structure can be correctly reproduced. For the $\\mathbb{CP}^1$ case we provide a concrete realisation of this ring in terms of Bessel functions. We consider a weak coupling expansion in each topological sector and write it as a finite number of perturbative corrections plus an infinite series of instanton-anti-instanton contributions. To be able to apply resurgent analysis we then consider a non-supersymmetric deformation of the localized model by introducing a small unbalance between the number of bosons and fermions. The perturbative expansion of the deformed model becomes asymptotic and we analyse it within the framework of resurgence theory. Although the perturbative series truncates when we send the deformation parameter to zero we can still reconstruct non-perturbative physics out of the perturbative data in a nice example of Cheshire cat resurgence in quantum field theory. We also show that the same type of resurgence takes place when we consider an analytic continuation in the number of chiral fields from $N$ to $r\\in\\mathbb{R}$. Although for generic real $r$ supersymmetry is still formally preserved, we find that the perturbative expansion of the supersymmetric partition function becomes asymptotic so that we can use resurgent analysis and only at the end take the limit of integer $r$ to recover the undeformed model.
Czech Academy of Sciences Publication Activity Database
Bagchi, B.; Quesne, C.; Znojil, Miloslav; Banerjee, A.; Geyer, HB; Caliceti, E.; Cannata, F.
2005-01-01
Roč. 20, č. 30 (2005), s. 7107-7128 ISSN 0217-751X R&D Projects: GA AV ČR IAA1048302 Institutional research plan: CEZ:AV0Z10480505 Keywords : PT-symmetric Hamiltonians * CPT-symmetric quantum-mechanics * supersymmetric quantum mechanics Subject RIV: BE - Theoretical Physics Impact factor: 1.472, year: 2005
Geometry of all supersymmetric four-dimensional N = 1 supergravity backgrounds
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.
2008-01-01
We solve the Killing spinor equations of N = 1 supergravity, with four supercharges, coupled to any number of vector and scalar multiplets in all cases. We find that backgrounds with N = 1 supersymmetry admit a null, integrable, Killing vector field. There are two classes of N = 2 backgrounds. The spacetime in the first class admits a parallel null vector field and so it is a pp-wave. The spacetime of the other class admits three Killing vector fields, and a vector field that commutes with the three Killing directions. These backgrounds are of cohomogeneity one with homogenous sections either R 2,1 or AdS 3 and have an interpretation as domain walls. The N = 3 backgrounds are locally maximally supersymmetric. There are N = 3 backgrounds which arise as discrete identifications of maximally supersymmetric ones. The maximally supersymmetric backgrounds are locally isometric to either R 3,1 or AdS 4 .
Energy Technology Data Exchange (ETDEWEB)
Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.; Klingner, P.L.; Linford, R.K.; McKenna, K.F.; Rej, D.J.; Schwarzmeier, J.L.; Sgro, A.; Sherwood, E.G.
1984-08-01
Theoretical studies of FRC stability and tranport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in 2-dimensional hybrid-code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower-hybrid-drift instability in parameter regimes relevant to experiments show good agreement with a nonlocal theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a dc solenoid, and trapped by magnetic mirrors has been studied in the FRX-C/T experiment.
International Nuclear Information System (INIS)
Siemon, R.E.; Armstrong, W.T.; Chrien, R.E.
1984-08-01
Theoretical studies of FRC stability and tranport are summarized. Finite Larmor radius theories are shown to be unreliable for explaining the experimentally observed stability to tilting. Control of the n=2 rotational instability has been demonstrated in 2-dimensional hybrid-code simulations, and the stability appears to be described within MHD if the nearly square equilibria that result from quadrupole fields are taken into account. Simulations of the lower-hybrid-drift instability in parameter regimes relevant to experiments show good agreement with a nonlocal theory of the instability. A 1.5-dimensional transport code shows agreement with the energy confinement time but disagreement with the flux loss time observed in FRX-C. The process of FRC translation in which the plasma is formed, translated into a dc solenoid, and trapped by magnetic mirrors has been studied in the FRX-C/T experiment
Theoretical investigation of performance of armchair graphene nanoribbon field effect transistors
Hur, Ji-Hyun; Kim, Deok-Kee
2018-05-01
In this paper, we theoretically investigate the highest possible expected performance for graphene nanoribbon field effect transistors (GNRFETs) for a wide range of operation voltages and device structure parameters, such as the width of the graphene nanoribbon and gate length. We formulated a self-consistent, non-equilibrium Green’s function method in conjunction with the Poisson equation and modeled the operation of nanometer sized GNRFETs, of which GNR channels have finite bandgaps so that the GNRFET can operate as a switch. We propose a metric for competing with the current silicon CMOS high performance or low power devices and explain that this can vary greatly depending on the GNRFET structure parameters.
Supersymmetric quantum mechanics and new potentials
International Nuclear Information System (INIS)
Drigo Filho, E.
1988-01-01
Using the supersymmetric quantum mechanics the following potential are generalized. The particle in the box, Poeschl-Teller and Rosen-Morse. The new potentials are evaluated and their eigenfunctions and spectra are indicated. (author) [pt
Patterns of flavor signals in supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Goto, T. [KEK National High Energy Physics, Tsukuba (Japan)]|[Kyoto Univ. (Japan). YITP; Okada, Y. [KEK National High Energy Physics, Tsukuba (Japan)]|[Graduate Univ. for Advanced Studies, Tsukuba (Japan). Dept. of Particle and Nucelar Physics; Shindou, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[International School for Advanced Studies, Trieste (Italy); Tanaka, M. [Osaka Univ., Toyonaka (Japan). Dept. of Physics
2007-11-15
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b{yields}s(d) transition observables in B{sub d} and B{sub s} decays, taking the constraint from the B{sub s}- anti B{sub s} mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma} and {tau} {yields} e{gamma} for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Integrability and boundary conditions of supersymmetric systems
International Nuclear Information System (INIS)
Yue Ruihong; Liang Hong
1996-01-01
By studying the solutions of the reflection equations, we find out a series of integrable supersymmetric systems with different boundary conditions. The Hamiltonian contains four free parameters which describe the contribution of the boundary terms
Patterns of flavor signals in supersymmetric models
International Nuclear Information System (INIS)
Goto, T.; Tanaka, M.
2007-11-01
Quark and lepton flavor signals are studied in four supersymmetric models, namely the minimal supergravity model, the minimal supersymmetric standard model with right-handed neutrinos, SU(5) supersymmetric grand unified theory with right-handed neutrinos and the minimal supersymmetric standard model with U(2) flavor symmetry. We calculate b→s(d) transition observables in B d and B s decays, taking the constraint from the B s - anti B s mixing recently observed at Tevatron into account. We also calculate lepton flavor violating processes μ → eγ, τ → μγ and τ → eγ for the models with right-handed neutrinos. We investigate possibilities to distinguish the flavor structure of the supersymmetry breaking sector with use of patterns of various flavor signals which are expected to be measured in experiments such as MEG, LHCb and a future Super B Factory. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Rousochatzakis, Ioannis [Iowa State Univ., Ames, IA (United States)
2005-12-17
The field of molecular magnetism[l-6] has become a subject of intense theoretical and experimental interest and has rapidly evolved during the last years. This inter-disciplinary field concerns magnetic systems at the molecular or "nanoscopic" level, whose realization has become feasible due to recent advances in the field of chemical synthesis. The present theoretical work provides a first step towards exploiting the possibilities that are offered by probing magnetic molecules using external magnetic fields with high sweep rates. These probes, apart for providing information specific to magnetic molecules, offer the possibility of conducting a detailed study of the relaxational behavior of interacting spin systems as a result of their coupling with a "heat bath" and in particular the excitations of the host lattice. Development of a broad theoretical framework for dealing with relaxational phenomena induced by dynamical magnetic fields is indeed a worthy goal.
Kirjandusteoreetilise ühendvälja poole / Unified Theoretical Field Perspectives
Directory of Open Access Journals (Sweden)
Arne Merilai
2013-12-01
view, networks and methodologies. Thus, the in-depth study of literatures, avoiding shallow eclecticism and levelling synthesis, should be implemented within a comprehensive, unified meta-multi-theoretical field that integrates diverse paradigms and polylogical perspectives central to the humanities today. The theorisations may be exclusively collateral, have inclusive intersections or be more generally congenial. The use of one cluster does not exclude the consideration of others, even opposing ones. Although the comparative meta-theory, or general poetics, does not aim to erase inevitable and inspiring incoherencies, a synchronisation of meta-languages can often be achieved at the appropriate levels of description, even between analytical and continental language philosophy evident in pragmapoetics (q.v. Merilai 2003, 2007a, b. While the humanities encourage diversity, no scholar, however astute, is expected to have a full command of all relevant discourses within the whole polysystem; hence the need for shared synergies.
Level comparison theorems and supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Baumgartner, B.; Grosse, H.
1986-01-01
The sign of the Laplacian of the spherical symmetric potential determines the order of energy levels with the same principal Coulomb quantum number. This recently derived theorem has been generalized, extended and applied to various situations in particle, nuclear and atomic physics. Besides a comparison theorem the essential step was the use of supersymmetric quantum mechanics. Recently worked out applications of supersymmetric quantum mechanics to index problems of Dirac operators are mentioned. (Author)
Search for supersymmetric particles with R-parity violation
International Nuclear Information System (INIS)
Jacquet, M.
1995-12-01
Searches for new particles are presented under the assumption that the R-parity, taking the value +1 for all the ordinary particles and -1 for their supersymmetric partners, is not conserved. We suppose that the dominant R-parity violating couplings involve only leptonic fields and that the lifetime of the lightest supersymmetric particle can be neglected. Sleptons, squarks and neutralinos pairs searches have been performed in a data sample collected by the ALEPH detector, at the e + e - collider LEP, from 1989 to 1993. In this statistic, corresponding to almost two million hadronic Ζ decays, no signal was observed. As a result, supersymmetric particle masses and couplings are at least as well constrained as under the usual assumption of R-parity conservation. In a second part, the ALEPH Beam Monitor system (BOMs) is studied. The BOMs, located at 65 m from the ALEPH interaction region, allow the determination of the beam position at the interaction point. The comparison of the 1994 BOM measurements, with the beam position measured by the ALEPH vertex detector, shows sizeable systematic differences. A position monitoring system of the quadrupoles closet to the interaction point has been installed in 1995 and allows the agreement between the BOMs and ALEPH vertex detector data to be improved. Moreover, a new method for the calibration of the electronic ALEPH BOMs system is developed. (author). 54 refs., 75 figs. 15 tabs
Supersymmetric gauge theories with classical groups via M theory fivebrane
International Nuclear Information System (INIS)
Terashima, S.
1998-01-01
We study the moduli space of vacua of four-dimensional N=1 and N=2 supersymmetric gauge theories with the gauge groups Sp(2N c ), SO(2N c ) and SO(2N c +1) using the M theory fivebrane. Higgs branches of the N=2 supersymmetric gauge theories are interpreted in terms of the M theory fivebrane and the type IIA s-rule is realized in it. In particular, we construct the fivebrane configuration which corresponds to a special Higgs branch root. This root is analogous to the baryonic branch root in the SU(N c ) theory which remains as a vacuum after the adjoint mass perturbation to break N=2 to N=1. Furthermore, we obtain the monopole condensations and the meson vacuum expectation values in the confining phase of N=1 supersymmetric gauge theories using the fivebrane technique. These are in complete agreement with the field theory results for the vacua in the phase with a single confined photon. (orig.)
Predictions for m{sub t} and M{sub W} in minimal supersymmetric models
Energy Technology Data Exchange (ETDEWEB)
Buchmueller, O. [Imperial College, London (United Kingdom). High Energy Physics Group; Cavanaugh, R. [Fermi National Accelerator Lab., Batavia, IL (United States); Illinois Univ., Chicago, IL (United States). Dept. of Physics; Roeck, A. de [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Universitaire Instelling Antwerpen, Wilrijk (Belgium); Ellis, J.R. [European Lab. for Particle Physics (CERN), Geneva (Switzerland); Flaecher, H. [Rochester Univ., NY (United States). Dept. of Physics and Astronomy; Heinemeyer, S. [Instituto de Fisica de Cantabria, Santander (Spain); Isidori, G. [INFN, Laboratori Nazionali di Frascati (Italy); Technische Univ. Muenchen (Germany). Inst. for Advanced Study; Olive, K.A. [Minnesota Univ., Minnesota, MN (United States). William I. Fine Theoretical Physics Institute; Ronga, F.J. [ETH Zuerich (Switzerland). Institute for Particle Physics; Weiglein, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2009-12-15
Using a frequentist analysis of experimental constraints within two versions of the minimal supersymmetric extension of the Standard Model, we derive the predictions for the top quark mass, m{sub t}, and the W boson mass, m{sub W}. We find that the supersymmetric predictions for both m{sub t} and m{sub W}, obtained by incorporating all the relevant experimental information and state-of-the-art theoretical predictions, are highly compatible with the experimental values with small remaining uncertainties, yielding an improvement compared to the case of the Standard Model. (orig.)
Neutral Supersymmetric Higgs Boson Searches
Energy Technology Data Exchange (ETDEWEB)
Robinson, Stephen Luke [Imperial College, London (United Kingdom)
2008-07-01
In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL
Koski, Jason P; Riggleman, Robert A
2017-04-28
Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.
A review of the experimental and theoretical status of the reversed-field pinch
International Nuclear Information System (INIS)
Baker, D.A.
1987-01-01
This paper reviews the status of the reversed-field pinch (RFP) approach to the development of a compact nuclear fusion reactor. Two RFP papers in this conference are complementary; the first paper contains the historical origins and basic concepts concerning MHD instabilities, relaxation and RFP confinement properties as well as a discussion of future prospects of the RFP. This paper gives an overview of the status of plasma parameters of the present main RFP experiments and of the status of theory and experiment of the interesting RFP plasma phenomena of relaxation, self reversal and flux generation (these effects are often referred to as the dynamo effect). The low frequency oscillating-field current drive concept which exploits these effects is discussed. Particular emphasis is given to the theoretical results obtained from plasma simulation codes used in these active areas of study. Selected topics of recent research on the Los Alamos ZT-40M experiments are reported. The paper concludes with descriptions of the next generation Los Alamos RFP experiment ZTH, to be located in the new Confinement Physics Research Facility (CPRF) presently under construction, and the characteristics of an RFP compact reactor. 68 refs
Directory of Open Access Journals (Sweden)
Uwe C. Täuber
2014-04-01
Full Text Available The universal critical behavior of the driven-dissipative nonequilibrium Bose-Einstein condensation transition is investigated employing the field-theoretical renormalization group method. Such criticality may be realized in broad ranges of driven open systems on the interface of quantum optics and many-body physics, from exciton-polariton condensates to cold atomic gases. The starting point is a noisy and dissipative Gross-Pitaevski equation corresponding to a complex-valued Landau-Ginzburg functional, which captures the near critical nonequilibrium dynamics, and generalizes model A for classical relaxational dynamics with nonconserved order parameter. We confirm and further develop the physical picture previously established by means of a functional renormalization group study of this system. Complementing this earlier numerical analysis, we analytically compute the static and dynamical critical exponents at the condensation transition to lowest nontrivial order in the dimensional ε expansion about the upper critical dimension d_{c}=4 and establish the emergence of a novel universal scaling exponent associated with the nonequilibrium drive. We also discuss the corresponding situation for a conserved order parameter field, i.e., (subdiffusive model B with complex coefficients.
Relativistic many-body theory a new field-theoretical approach
Lindgren, Ingvar
2016-01-01
This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title. In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...
Experimental and theoretical study of breakdown mechanisms in a gas in an uniform electric field
International Nuclear Information System (INIS)
Bayle, Pierre.
1975-01-01
The theoretical study of breakdown mechanisms in a gas with an applied electric field has been made on the basis of a deterministic model built on continuity equations governing the evolution of electronic and ionic densities. With this purpose, the breakdown formation has been simulated in electronegative gases (air, oxygen) taking into account the space charge effects on initial applied electric field, the electronic emission on the cathode by photonic or ionic impact, the delayed electrons processes (attachment, detachment) and charge exchange processes. Without space charge, the influence of photoionization in the gas on the electronic and ionic population has been pointed out in a discharge in nitrogen. Then the problem of external electrode discharges has been approached for the study of plasma visualization pannel cells, and the fundamental role of the charges deposed on dielectrics has been manifested. In the experimental study, the discharge formation has been analysed in rare gases and nitrogen for high over voltages (more than 100%) and for pressures of about hundred torrs. Using high-speed cinematographic techniques, the discharge propagation has been studied with a one nanosecond time resolution. The ultra-fast propagation zone of anode-directed streamer has been linked with the intervention of distance ionization process. The arrival of the streamers on the anode induces the beginning of an ionization front propagating towards the cathode [fr
Experimental and theoretical study of breakdown mechanisms in a gas in an uniform electric field
Energy Technology Data Exchange (ETDEWEB)
Bayle, P
1975-01-01
The theoretical study of breakdown mechanisms in a gas with an applied electric field has been made on the basis of a deterministic model built on continuity equations governing the evolution of electronic and ionic densities. With this purpose, the breakdown formation has been simulated in electronegative gases (air, oxygen) taking into account the space charge effects on initial applied electric field, the electronic emission on the cathode by photonic or ionic impact, the delayed electrons processes (attachment, detachment) and charge exchange processes. Without space charge, the influence of photoionization in the gas on the electronic and ionic population has been pointed out in a discharge in nitrogen. Then the problem of external electrode discharges has been approached for the study of plasma visualization pannel cells, and the fundamental role of the charges deposed on dielectrics has been manifested. In the experimental study, the discharge formation has been analysed in rare gases and nitrogen for high over voltages (more than 100%) and for pressures of about hundred torrs. Using high-speed cinematographic techniques, the discharge propagation has been studied with a one nanosecond time resolution. The ultra-fast propagation zone of anode-directed streamer has been linked with the intervention of distance ionization process. The arrival of the streamers on the anode induces the beginning of an ionization front propagating towards the cathode.
Supersymmetric deformations of 3D SCFTs from tri-Sasakian truncation
Energy Technology Data Exchange (ETDEWEB)
Karndumri, Parinya [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)
2017-02-15
We holographically study supersymmetric deformations of N = 3 and N = 1 superconformal field theories in three dimensions using four-dimensional N = 4 gauged supergravity coupled to three-vector multiplets with non-semisimple SO(3) x (T{sup 3},T{sup 3}) gauge group. This gauged supergravity can be obtained from a truncation of 11-dimensional supergravity on a tri-Sasakian manifold and admits both N = 1,3 supersymmetric and stable non-supersymmetric AdS{sub 4} critical points. We analyze the BPS equations for SO(3) singlet scalars in detail and study possible supersymmetric solutions. A number of RG flows to non-conformal field theories and half-supersymmetric domain walls are found, and many of them can be given analytically. Apart from these ''flat'' domain walls, we also consider AdS{sub 3}-sliced domain wall solutions describing two-dimensional conformal defects with N = (1,0) supersymmetry within the dual N = 1 field theory while this type of solutions does not exist in the N = 3 case. (orig.)
N=12 supersymmetric four-dimensional nonlinear σ-models from nonanticommutative superspace
International Nuclear Information System (INIS)
Hatanaka, Tomoya; Ketov, Sergei V.; Kobayashi, Yoshishige; Sasaki, Shin
2005-01-01
The component structure of a generic N=1/2 supersymmetric nonlinear sigma-model (NLSM) defined in the four-dimensional (Euclidean) nonanticommutative (NAC) superspace is investigated in detail. The most general NLSM is described in terms of arbitrary Kahler potential, and chiral and antichiral superpotentials. The case of a single chiral superfield gives rise to splitting of the NLSM potentials, whereas the case of several chiral superfields results in smearing (or fuzziness) of the NLSM potentials, while both effects are controlled by the auxiliary fields. We eliminate the auxiliary fields by solving their algebraic equations of motion, and demonstrate that the results are dependent upon whether the auxiliary integrations responsible for the fuzziness are performed before or after elimination of the auxiliary fields. There is no ambiguity in the case of splitting, i.e., for a single chiral superfield. Fully explicit results are derived in the case of the N=1/2 supersymmetric NAC-deformed CP n NLSM in four dimensions. Here we find another surprise that our results differ from the N=1/2 supersymmetric CP n NLSM derived by the quotient construction from the N=1/2 supersymmetric NAC-deformed gauge theory. We conclude that an N=1/2 supersymmetric deformation of a generic NLSM from the NAC superspace is not unique
International Nuclear Information System (INIS)
Consonni, M.
2008-07-01
The LHC (Large Hadron Collider) is expected to deliver the first proton-proton collisions in September 2008 and the ATLAS experiment is designed to explore a large spectrum of phenomena that could arise from these interactions. In the context of supersymmetric extensions of the Standard Model, the lightest Higgs boson can be produced via cascade decays of supersymmetric particles. We investigate the possibility of observing such events with the ATLAS detector at the LHC. First, we focus on the ATLAS capability in measuring the missing energy due to the passage of supersymmetric particles escaping the detection. Then, we show that, for some regions of the Minimal Supergravity parameter space compatible with the last LEP searches, the lightest Higgs boson can be discovered with less than 10 fb -1 , giving results competitive with standard Higgs production channels. We also study the possibility of measuring quantities related to the masses and couplings of the supersymmetric particles involved in the process. Finally, starting from these measurements, we use the SFitter tool to set up a global fit to the parameters of the underlying supersymmetric model, showing the validity of such procedure for constraining the theoretical interpretations of future LHC data. (author)
Bethe Ansatz and supersymmetric vacua
International Nuclear Information System (INIS)
Nekrasov, Nikita; Shatashvili, Samson
2009-01-01
Supersymmetric vacua of two dimensional N = 4 gauge theories with matter, softly broken by the twisted masses down to N = 2, are shown to be in one-to-one correspondence with the eigenstates of integrable spin chain Hamiltonians. Examples include: the Heisenberg SU(2)XXX spin chain which is mapped to the two dimensional U(N) theory with fundamental hypermultiplets, the XXZ spin chain which is mapped to the analogous three dimensional super-Yang-Mills theory compactified on a circle, the XYZ spin chain and eight-vertex model which are related to the four dimensional theory compactified on T 2 . A consequence of our correspondence is the isomorphism of the quantum cohomology ring of various quiver varieties, such as cotangent bundles to (partial) flag varieties and the ring of quantum integrals of motion of various spin chains. The correspondence extends to any spin group, representations, boundary conditions, and inhomogeneity, it includes Sinh-Gordon and non-linear Schroedinger models as well as the dynamical spin chains like Hubbard model. Compactifications of four dimensional N = 2 theories on a two-sphere lead to the instanton-corrected Bethe equations.
Supersymmetric quantum mechanics on n-dimensional manifolds
International Nuclear Information System (INIS)
O'Connor, M.
1990-01-01
In this thesis the author investigates the properties of the supersymmetric path integral on Riemannian manifolds. Chapter 1 is a brief introduction to supersymmetric path integral can be defined as the continuum limit of a discrete supersymmetric path integral. In Chapter 3 he shows that point canonical transformations in the path integral for ordinary quantum mechanics can be performed naively provided one uses the supersymmetric path integral. Chapter 4 generalizes the results of chapter 3 to include the propagation of all the fermion sectors in supersymmetric quantum mechanics. In Chapter 5 he shows how the properties of supersymmetric quantum mechanics can be used to investigate topological quantum mechanics
Supersymmetric Adler-Bardeen anomaly in N=1 super-Yang-Mills theories
International Nuclear Information System (INIS)
Baulieu, Laurent; Martin, Alexis
2008-01-01
We provide a study of the supersymmetric Adler-Bardeen anomaly in the N=1, d=4,6,10 super-Yang-Mills theories. We work in the component formalism that includes shadow fields, for which Slavnov-Taylor identities can be independently set for both gauge invariance and supersymmetry. We find a method with improved descent equations for getting the solutions of the consistency conditions of both Slavnov-Taylor identities and finding the local field polynomials for the standard Adler-Bardeen anomaly and its supersymmetric counterpart. We give the explicit solution for the ten-dimensional case
DEFF Research Database (Denmark)
Damsgaard, Christian Danvad; Hansen, Mikkel Fougt
2008-01-01
We present a systematic theoretical study of the average in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead and a monolayer of magnetic beads magnetized by an in-plane externally applied homogeneous magnetic field. General theoretical expressions...... are derived such that the sensor response and its dependence on the sensor size, spacer layer thickness, bead diameter, and bead susceptibility can easily be evaluated. The average magnetic field from a single bead close to the sensor shows a strong dependence on the position of the bead and a change of sign...... when the bead passes the edge of the sensor in the direction of the applied field. Analytical approximations are derived for the average field from a homogeneous monolayer of beads for beads much smaller than the sensor dimension and for a bead size chosen to minimize the position sensitivity...
Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Ensign, P.W.
1987-01-01
By the Adler-Bardeen theorem, only one-loop Feynman diagrams contribute to the anomalous divergences of quantum axial currents. The anomalous nature of scale transformations is manifested by an anomalous trace of the energy-momentum tensor, T/sup μ//sub μ/. Renormalization group arguments show that the quantum T/sup μ//sub μ/ must be proportional to the β-function. Since the β-function receives contributions at all loop levels, the Adler-Bardeen theorem appears to conflict with supersymmetry. Recently Grisaru, Milewski and Zanon constructed a supersymmetric axial current for pure supersymmetric Yang-Mills theory which satisfies the Adler-Bardeen theorem to two-loops. They used supersymmetric background field theory and regularization by dimensional reduction to maintain manifest supersymmetry and gauge invariance. In this thesis, their construction is extended to supersymmetric Yang-Mills theory coupled to chiral matter fields. The Adler-Bardeen theorem is then proven to all orders in perturbation theory for both the pure and coupled theories. The extension to coupled supersymmetric Yang-Mills supports the general validity of these techniques, and adds considerable insight into the structure of the anomalies. The all orders proof demonstrates that there is no conflict between supersymmetry and the Adler-Bardeen theorem
Guilarte, Juan Mateos; Plyushchay, Mikhail S.
2017-12-01
We investigate a special class of the PT -symmetric quantum models being perfectly invisible zero-gap systems with a unique bound state at the very edge of continuous spectrum of scattering states. The family includes the PT -regularized two particle Calogero systems (conformal quantum mechanics models of de Alfaro-Fubini-Furlan) and their rational extensions whose potentials satisfy equations of the KdV hierarchy and exhibit, particularly, a behaviour typical for extreme waves. We show that the two simplest Hamiltonians from the Calogero subfamily determine the fluctuation spectra around the PT -regularized kinks arising as traveling waves in the field-theoretical Liouville and SU(3) conformal Toda systems. Peculiar properties of the quantum systems are reflected in the associated exotic nonlinear supersymmetry in the unbroken or partially broken phases. The conventional N=2 supersymmetry is extended here to the N=4 nonlinear supersymmetry that involves two bosonic generators composed from Lax-Novikov integrals of the subsystems, one of which is the central charge of the superalgebra. Jordan states are shown to play an essential role in the construction.
Rehman, Naveed ur; Siddiqui, Mubashir Ali
2018-05-01
This work theoretically and experimentally investigated the performance of an arrayed solar flat-plate thermoelectric generator (ASFTEG). An analytical model, based on energy balances, was established for determining load voltage, power output and overall efficiency of ASFTEGs. An array consists of TEG devices (or modules) connected electrically in series and operating in closed-circuit mode with a load. The model takes into account the distinct temperature difference across each module, which is a major feature of this model. Parasitic losses have also been included in the model for realistic results. With the given set of simulation parameters, an ASFTEG consisting of four commercially available Bi2Te3 modules had a predicted load voltage of 200 mV and generated 3546 μW of electric power output. Predictions from the model were in good agreement with field experimental outcomes from a prototype ASFTEG, which was developed for validation purposes. Later, the model was simulated to maximize the performance of the ASFTEG by adjusting the thermal and electrical design of the system. Optimum values of design parameters were evaluated and discussed in detail. Beyond the current limitations associated with improvements in thermoelectric materials, this study will eventually lead to the successful development of portable roof-top renewable TEGs.
Energy Technology Data Exchange (ETDEWEB)
Armas-Pérez, Julio C.; Londono-Hurtado, Alejandro [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Guzmán, Orlando [Departamento de Física, Universidad Autónoma Metropolitana, Iztapalapa, DF 09340, México (Mexico); Hernández-Ortiz, Juan P. [Departamento de Materiales y Minerales, Universidad Nacional de Colombia, Sede Medellín, Medellín (Colombia); Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Pablo, Juan J. de, E-mail: depablo@uchicago.edu [Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637 (United States); Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)
2015-07-28
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.
Energy Technology Data Exchange (ETDEWEB)
Armas-Perez, Julio C.; Londono-Hurtado, Alejandro; Guzman, Orlando; Hernandez-Ortiz, Juan P.; de Pablo, Juan J.
2015-07-27
A theoretically informed coarse-grained Monte Carlo method is proposed for studying liquid crystals. The free energy functional of the system is described in the framework of the Landau-de Gennes formalism. The alignment field and its gradients are approximated by finite differences, and the free energy is minimized through a stochastic sampling technique. The validity of the proposed method is established by comparing the results of the proposed approach to those of traditional free energy minimization techniques. Its usefulness is illustrated in the context of three systems, namely, a nematic liquid crystal confined in a slit channel, a nematic liquid crystal droplet, and a chiral liquid crystal in the bulk. It is found that for systems that exhibit multiple metastable morphologies, the proposed Monte Carlo method is generally able to identify lower free energy states that are often missed by traditional approaches. Importantly, the Monte Carlo method identifies such states from random initial configurations, thereby obviating the need for educated initial guesses that can be difficult to formulate.
Dedes, I.; Dudek, J.
2018-03-01
We examine the effects of the parametric correlations on the predictive capacities of the theoretical modelling keeping in mind the nuclear structure applications. The main purpose of this work is to illustrate the method of establishing the presence and determining the form of parametric correlations within a model as well as an algorithm of elimination by substitution (see text) of parametric correlations. We examine the effects of the elimination of the parametric correlations on the stabilisation of the model predictions further and further away from the fitting zone. It follows that the choice of the physics case and the selection of the associated model are of secondary importance in this case. Under these circumstances we give priority to the relative simplicity of the underlying mathematical algorithm, provided the model is realistic. Following such criteria, we focus specifically on an important but relatively simple case of doubly magic spherical nuclei. To profit from the algorithmic simplicity we chose working with the phenomenological spherically symmetric Woods–Saxon mean-field. We employ two variants of the underlying Hamiltonian, the traditional one involving both the central and the spin orbit potential in the Woods–Saxon form and the more advanced version with the self-consistent density-dependent spin–orbit interaction. We compare the effects of eliminating of various types of correlations and discuss the improvement of the quality of predictions (‘predictive power’) under realistic parameter adjustment conditions.
Relativistic Many-Body Theory A New Field-Theoretical Approach
Lindgren, Ingvar
2011-01-01
Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...
Non-supersymmetric orientifolds of Gepner models
Energy Technology Data Exchange (ETDEWEB)
Gato-Rivera, B. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); Schellekens, A.N. [NIKHEF Theory Group, Kruislaan 409, 1098 SJ Amsterdam (Netherlands); Instituto de Fisica Fundamental, CSIC, Serrano 123, Madrid 28006 (Spain); IMAPP, Radboud Universiteit, Nijmegen (Netherlands)], E-mail: t58@nikhef.nl
2009-01-12
Starting from a previously collected set of tachyon-free closed strings, we search for N=2 minimal model orientifold spectra which contain the standard model and are free of tachyons and tadpoles at lowest order. For each class of tachyon-free closed strings - bulk supersymmetry, automorphism invariants or Klein bottle projection - we do indeed find non-supersymmetric and tachyon free chiral brane configurations that contain the standard model. However, a tadpole-cancelling hidden sector could only be found in the case of bulk supersymmetry. Although about half of the examples we have found make use of branes that break the bulk space-time supersymmetry, the resulting massless open string spectra are nevertheless supersymmetric in all cases. Dropping the requirement that the standard model be contained in the spectrum, we find chiral tachyon and tadpole-free solutions in all three cases, although in the case of bulk supersymmetry all massless spectra are supersymmetric. In the other two cases we find truly non-supersymmetric spectra, but a large fraction of them are nevertheless partly or fully supersymmetric at the massless level.
Energy Technology Data Exchange (ETDEWEB)
Kripal, Ram, E-mail: ram_kripal2001@rediffmail.com; Yadav, Awadhesh Kumar, E-mail: aky.physics@gmail.com
2015-01-01
The zero field splitting parameter D of Cr{sup 3+} doped diammonium hexaaqua magnesium sulfate (DHMS) are calculated with perturbation formula using crystal field (CF) parameters from superposition model. The theoretically calculated ZFS parameters for Cr{sup 3+} in DHMS single crystal are compared with the experimental value obtained by electron paramagnetic resonance (EPR). The theoretical ZFS parameter D is similar to that from experiment. The energy band positions of optical absorption spectra of Cr{sup 3+} doped DHMS single crystal are calculated with CFA package, which are in good match with experimental values.
Lepton electric dipole moments, supersymmetric seesaw, and leptogenesis phase
International Nuclear Information System (INIS)
Dutta, Bhaskar; Mohapatra, R.N.
2003-01-01
We calculate the lepton electric dipole moments in a class of supersymmetric seesaw models and explore the possibility that they may provide a way to probe some of the CP violating phases responsible for the origin of matter via leptogenesis. We show that in models where the right handed neutrino masses M R arise from the breaking of local B-L by a Higgs field with B-L=2, some of the leptogenesis phases can lead to enhancement of the lepton dipole moments compared to the prediction of models where M R is either directly put in by hand or is a consequence of a higher dimensional operator
Supersymmetric D2 anti-D2 Strings
Bak, Dongsu; Ohta, Nobuyoshi
2001-01-01
We consider the flat supersymmetric D2 and anti-D2 system, which follows from ordinary noncommutative D2 anti-D2 branes by turning on an appropriate worldvolume electric field describing dissolved fundamental strings. We study the strings stretched between D2 and anti-D2 branes and show explicitly that the would-be tachyonic states become massless. We compute the string spectrum and clarify the induced noncommutativity on the worldvolume. The results are compared with the matrix theory descri...
N=4 supersymmetric mechanics with nonlinear chiral supermultiplet
International Nuclear Information System (INIS)
Bellucci, S.; Beylin, A.; Krivonos, S.; Nersessian, A.; Orazi, E.
2005-01-01
We construct N=4 supersymmetric mechanics using the N=4 nonlinear chiral supermultiplet. The two bosonic degrees of freedom of this supermultiplet parameterize the sphere S 2 and go into the bosonic components of the standard chiral multiplet when the radius of the sphere goes to infinity. We construct the most general action and demonstrate that the nonlinearity of the supermultiplet results in the deformation of the connection, which couples the fermionic degrees of freedom with the background, and of the bosonic potential. Also a non-zero magnetic field could appear in the system
Charge and color breaking minima in supersymmetric models
International Nuclear Information System (INIS)
Brhlik, Michal
2001-01-01
Supersymmetric extensions of the Standard Model include complicated scalar sectors leading to the possible occurrence of non-standard minima along suitable directions in the field space. These minima usually break charge and/or color and their presence in the theory would require an explanation why the universe has settled in the standard electroweak symmetry breaking minimum. In this talk I illustrate the relevance of the charge and color breaking minima in the framework of the minimal supergravity model and a string motivated Horava-Witten scenario
Supersymmetric leptogenesis with a light hidden sector
International Nuclear Information System (INIS)
De Simone, Andrea
2010-04-01
Supersymmetric scenarios incorporating thermal leptogenesis as the origin of the observed matter-antimatter asymmetry generically predict abundances of the primordial elements which are in conflict with observations. In this paper we pro- pose a simple way to circumvent this tension and accommodate naturally ther- mal leptogenesis and primordial nucleosynthesis. We postulate the existence of a light hidden sector, coupled very weakly to the Minimal Supersymmetric Standard Model, which opens up new decay channels for the next-to-lightest supersymmetric particle, thus diluting its abundance during nucleosynthesis. We present a general model-independent analysis of this mechanism as well as two concrete realizations, and describe the relevant cosmological and astrophysical bounds and implications for this dark matter scenario. Possible experimental signatures at colliders and in cosmic-ray observations are also discussed. (orig.)
Solvable potentials derived from supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Levai, G.
1994-01-01
The introduction of supersymmetric quantum mechanics has generated renewed interest in solvable problems of non-relativistic quantum mechanics. This approach offers an elegant way to describe different, but isospectral potentials by interpreting the degeneracy of their energy levels in terms of supersymmetry. The original ideas of supersymmetric quantum mechanics have been developed further in many respects in the past ten years, and have been applied to a large variety of physical problems. The purpose of this contribution is to give a survey of supersymmetric quantum mechanics and its applications to solvable quantum mechanical potentials. Its relation to other models describing isospectral potentials is also discussed here briefly, as well as some of its practical applications in various branches of physics. (orig.)
Spectral properties in supersymmetric matrix models
International Nuclear Information System (INIS)
Boulton, Lyonell; Garcia del Moral, Maria Pilar; Restuccia, Alvaro
2012-01-01
We formulate a general sufficiency criterion for discreteness of the spectrum of both supersymmmetric and non-supersymmetric theories with a fermionic contribution. This criterion allows an analysis of Hamiltonians in complete form rather than just their semiclassical limits. In such a framework we examine spectral properties of various (1+0) matrix models. We consider the BMN model of M-theory compactified on a maximally supersymmetric pp-wave background, different regularizations of the supermembrane with central charges and a non-supersymmetric model comprising a bound state of N D2 with m D0. While the first two examples have a purely discrete spectrum, the latter has a continuous spectrum with a lower end given in terms of the monopole charge.
Supersymmetric Janus solutions in four dimensions
International Nuclear Information System (INIS)
Bobev, Nikolay; Pilch, Krzysztof; Warner, Nicholas P.
2014-01-01
We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS 4 vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G 2 global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G 2 global symmetry. In eleven dimensions, this G 2 to G 2 solution corresponds to a domain wall across which a magnetic flux reverses orientation
Dark matter asymmetry in supersymmetric Dirac leptogenesis
International Nuclear Information System (INIS)
Choi, Ki-Young; Chun, Eung Jin; Shin, Chang Sub
2013-01-01
We discuss asymmetric or symmetric dark matter candidate in the supersymmetric Dirac leptogenesis scenario. By introducing a singlet superfield coupling to right-handed neutrinos, the overabundance problem of dark matter can be evaded and various possibilities for dark matter candidate arise. If the singlino is the lightest supersymmetric particle (LSP), it becomes naturally asymmetric dark matter. On the other hand, the right-handed sneutrino is a symmetric dark matter candidate whose relic density can be determined by the usual thermal freeze-out process. The conventional neutralino or gravitino LSP can be also a dark matter candidate as its non-thermal production from the right-handed sneutrino can be controlled appropriately. In our scenario, the late-decay of heavy supersymmetric particles mainly produces the right-handed sneutrino and neutrino which is harmless to the standard prediction of the Big-Bang Nucleosynthesis
N=1 supersymmetric extension of the baby Skyrme model
International Nuclear Information System (INIS)
Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.
2011-01-01
We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.
Theoretical analysis of the local field potential in deep brain stimulation applications.
Directory of Open Access Journals (Sweden)
Scott F Lempka
Full Text Available Deep brain stimulation (DBS is a common therapy for treating movement disorders, such as Parkinson's disease (PD, and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics. The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.
Supersymmetric Higgs boson production in Z decays
International Nuclear Information System (INIS)
Gamberini, G.; Giudice, G.F.; Ridolfi, G.
1987-01-01
The problem of distinguishing between the standard model and the supersymmetric Higgs bosons is considered in the context of Z 0 decays. We find that, for some choices of the parameters, the branching ratio for Z 0 → H 0 γ is strongly enhanced by the exchange of supersymmetric fermions as virtual particles. This makes the study of this process at LEP very interesting, since other Z 0 branching modes into Higgs bosons, such as Z 0 → H 0 μ + μ - , are not so clearly modified by supersymmetry. (orig.)
A supersymmetric SYK-like tensor model
Energy Technology Data Exchange (ETDEWEB)
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia [Department of Physics, Brown University,Providence, RI, 02912 (United States)
2017-05-11
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
Indirect detection of heavy supersymmetric dark matter
International Nuclear Information System (INIS)
Kamionkowski, M.
1991-02-01
If neutralinos reside in the galactic halo they will be captured in the Sun and annihilate therein producing high-energy neutrinos. Present limits on the flux of such neutrinos from underground detectors such as IMB and Kamiokande 2 may be used to rule out certain supersymmetric dark-matter candidates, while in many other supersymmetric models the rates are large enough that if neutralinos do reside in the galactic halo, observation of a neutrino signal may be possible in the near future. 10 refs., 2 figs
A supersymmetric SYK-like tensor model
International Nuclear Information System (INIS)
Peng, Cheng; Spradlin, Marcus; Volovich, Anastasia
2017-01-01
We consider a supersymmetric SYK-like model without quenched disorder that is built by coupling two kinds of fermionic N=1 tensor-valued superfields, “quarks” and “mesons”. We prove that the model has a well-defined large-N limit in which the (s)quark 2-point functions are dominated by mesonic “melon” diagrams. We sum these diagrams to obtain the Schwinger-Dyson equations and show that in the IR, the solution agrees with that of the supersymmetric SYK model.
Early universe cosmology. In supersymmetric extensions of the standard model
Energy Technology Data Exchange (ETDEWEB)
Baumann, Jochen Peter
2012-03-19
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss
Early universe cosmology. In supersymmetric extensions of the standard model
International Nuclear Information System (INIS)
Baumann, Jochen Peter
2012-01-01
In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the
Phenomenology of non-minimal supersymmetric models at linear colliders
International Nuclear Information System (INIS)
Porto, Stefano
2015-06-01
The focus of this thesis is on the phenomenology of several non-minimal supersymmetric models in the context of future linear colliders (LCs). Extensions of the minimal supersymmetric Standard Model (MSSM) may accommodate the observed Higgs boson mass at about 125 GeV in a more natural way than the MSSM, with a richer phenomenology. We consider both F-term extensions of the MSSM, as for instance the non-minimal supersymmetric Standard Model (NMSSM), as well as D-terms extensions arising at low energies from gauge extended supersymmetric models. The NMSSM offers a solution to the μ-problem with an additional gauge singlet supermultiplet. The enlarged neutralino sector of the NMSSM can be accurately studied at a LC and used to distinguish the model from the MSSM. We show that exploiting the power of the polarised beams of a LC can be used to reconstruct the neutralino and chargino sector and eventually distinguish the NMSSM even considering challenging scenarios that resemble the MSSM. Non-decoupling D-terms extensions of the MSSM can raise the tree-level Higgs mass with respect to the MSSM. This is done through additional contributions to the Higgs quartic potential, effectively generated by an extended gauge group. We study how this can happen and we show how these additional non-decoupling D-terms affect the SM-like Higgs boson couplings to fermions and gauge bosons. We estimate how the deviations from the SM couplings can be spotted at the Large Hadron Collider (LHC) and at the International Linear Collider (ILC), showing how the ILC would be suitable for the model identication. Since our results prove that a linear collider is a fundamental machine for studying supersymmetry phenomenology at a high level of precision, we argue that also a thorough comprehension of the physics at the interaction point (IP) of a LC is needed. Therefore, we finally consider the possibility of observing intense electromagnetic field effects and nonlinear quantum electrodynamics
Electroweak symmetry breaking in supersymmetric gauge-Higgs unification models
International Nuclear Information System (INIS)
Choi, Kiwoon; Jeong, Kwang-Sik; Okumura, Ken-ichi; Haba, Naoyuki; Shimizu, Yasuhiro; Yamaguchi, Masahiro
2004-01-01
We examine the Higgs mass parameters and electroweak symmetry breaking in supersymmetric orbifold field theories in which the 4-dimensional Higgs fields originate from higher-dimensional gauge supermultiplets. It is noted that such gauge-Higgs unification leads to a specific boundary condition on the Higgs mass parameters at the compactification scale, which is independent of the details of supersymmetry breaking mechanism. With this boundary condition, phenomenologically viable parameter space of the model is severely constrained by the condition of electroweak symmetry breaking for supersymmetry breaking scenarios which can be realized naturally in orbifold field theories. For instance, if it is assumed that the 4-dimensional effective theory is the minimal supersymmetric standard model with supersymmetry breaking parameters induced by the Scherk-Schwarz mechanism, a correct electroweak symmetry breaking can not be achieved for reasonable range of parameters of the model, even when one includes additional contributions to the Higgs mass parameters from the auxiliary component of 4-dimensional conformal compensator. However if there exists a supersymmetry breaking mediated by brane superfields, sizable portion of the parameter space can give a correct electroweak symmetry breaking. (author)
Supersymmetric RG flows and Janus from type II orbifold compactification
Energy Technology Data Exchange (ETDEWEB)
Karndumri, Parinya; Upathambhakul, Khem [Chulalongkorn University, String Theory and Supergravity Group, Department of Physics, Faculty of Science, Bangkok (Thailand)
2017-07-15
We study holographic RG flow solutions within four-dimensional N = 4 gauged supergravity obtained from type IIA and IIB string theories compactified on T{sup 6}/Z{sub 2} x Z{sub 2} orbifold with gauge, geometric and non-geometric fluxes. In type IIB non-geometric compactifications, the resulting gauged supergravity has ISO(3) x ISO(3) gauge group and admits an N = 4 AdS{sub 4} vacuum dual to an N = 4 superconformal field theory (SCFT) in three dimensions. We study various supersymmetric RG flows from this N = 4 SCFT to N = 4 and N = 1 non-conformal field theories in the IR. The flows preserving N = 4 supersymmetry are driven by relevant operators of dimensions Δ = 1, 2 or alternatively by one of these relevant operators, dual to the dilaton, and irrelevant operators of dimensions Δ = 4 while the N = 1 flows in addition involve marginal deformations. Most of the flows can be obtained analytically. We also give examples of supersymmetric Janus solutions preserving N = 4 and N = 1 supersymmetries. These solutions should describe two-dimensional conformal defects within the dual N = 4 SCFT. Geometric compactifications of type IIA theory give rise to N = 4 gauged supergravity with ISO(3) x U(1){sup 6} gauge group. In this case, the resulting gauged supergravity admits an N = 1 AdS{sub 4} vacuum. We also numerically study possible N = 1 RG flows to non-conformal field theories in this case. (orig.)
Calabi-Yau compactifications of non-supersymmetric heterotic string theory
International Nuclear Information System (INIS)
Blaszczyk, Michael; Groot Nibbelink, Stefan
2015-07-01
Phenomenological explorations of heterotic strings have conventionally focused primarily on the E 8 x E 8 theory. We consider smooth compactifications of all three ten-dimensional heterotic theories to exhibit the many similarities between the non-supersymmetric SO(16) x SO(16) theory and the related supersymmetric E 8 x E 8 and SO(32) theories. In particular, we exploit these similarities to determine the bosonic and fermionic spectra of Calabi-Yau compactifications with line bundles of the nonsupersymmetric string. We use elements of four-dimensional supersymmetric effective field theory to characterize the non-supersymmetric action at leading order and determine the Green-Schwarz induced axion-couplings. Using these methods we construct a non-supersymmetric Standard Model(SM)-like theory. In addition, we show that it is possible to obtain SM-like models from the standard embedding using at least an order four Wilson line. Finally, we make a proposal of the states that live on five branes in the SO(16) x SO(16) theory and find under certain assumptions the surprising result that anomaly factorization only admits at most a single brane solution.
N = 1 supersymmetric indices and the four-dimensional A-model
Closset, Cyril; Kim, Heeyeon; Willett, Brian
2017-08-01
We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.
Dang Chien, Nguyen; Shih, Chun-Hsing; Hoa, Phu Chi; Minh, Nguyen Hong; Thi Thanh Hien, Duong; Nhung, Le Hong
2016-06-01
The two-band Kane model has been popularly used to calculate the band-to-band tunneling (BTBT) current in tunnel field-effect transistor (TFET) which is currently considered as a promising candidate for low power applications. This study theoretically clarifies the maximum electric field approximation (MEFA) of direct BTBT Kane model and evaluates its appropriateness for low bandgap semiconductors. By analysing the physical origin of each electric field term in the Kane model, it has been elucidated in the MEFA that the local electric field term must be remained while the nonlocal electric field terms are assigned by the maximum value of electric field at the tunnel junction. Mathematical investigations have showed that the MEFA is more appropriate for low bandgap semiconductors compared to high bandgap materials because of enhanced tunneling probability in low field regions. The appropriateness of the MEFA is very useful for practical uses in quickly estimating the direct BTBT current in low bandgap TFET devices.
The particle interpretation of N = 1 supersymmetric spin foams
Energy Technology Data Exchange (ETDEWEB)
Baccetti, Valentina [Dipartimento di Fisica ' E. Amaldi' , Universita degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Roma (Italy); Livine, Etera R [Laboratoire de Physique, ENS Lyon, CNRS UMR 5672, 46 Allee d' Italie, 69007 Lyon (France); Ryan, James P, E-mail: baccetti@neve.fis.uniroma3.i, E-mail: etera.livine@ens-lyon.f, E-mail: james.ryan@aei.mpg.d [MPI fuer Gravitationsphysik, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Potsdam (Germany)
2010-11-21
We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.
The particle interpretation of N = 1 supersymmetric spin foams
International Nuclear Information System (INIS)
Baccetti, Valentina; Livine, Etera R; Ryan, James P
2010-01-01
We show that N = 1-supersymmetric BF theory in 3D leads to a supersymmetric spin foam amplitude via a lattice discretization. Furthermore, by analysing the supersymmetric quantum amplitudes, we show that they can be re-interpreted as 3D gravity coupled to embedded fermionic Feynman diagrams.
Matsumoto, Mitsuko
2015-01-01
Some argue that the field of study of "education and conflict" has yet to be solidified since its emergence in the 1990s, partly due to the weak theory base. This article reviews the literature on the "contribution" of schooling in contemporary violent conflict, via three strands of theoretical ideas, to demonstrate the…
Kubo, Takayuki
2017-02-01
The theory of the superconductor-insulator-superconductor (SIS) multilayer structure for application in superconducting accelerating cavities is reviewed. The theoretical field limit, optimum layer thicknesses and material combination, and surface resistance are discussed for the SIS structure and are also reviewed for the superconductor-superconductor bilayer structure.
Kubo, Takayuki
2016-01-01
Theory of the superconductor-insulator-superconductor (S-I-S) multilayer structure in superconducting accelerating cavity application is reviewed. The theoretical field limit, optimum layer thicknesses and material combination, and surface resistance are discussed. Those for the S-S bilayer structure are also reviewed.
More on homological supersymmetric quantum mechanics
Behtash, Alireza
2018-03-01
In this work, we first solve complex Morse flow equations for the simplest case of a bosonic harmonic oscillator to discuss localization in the context of Picard-Lefschetz theory. We briefly touch on the exact non-BPS solutions of the bosonized supersymmetric quantum mechanics on algebraic geometric grounds and report that their complex phases can be accessed through the cohomology of WKB 1-form of the underlying singular spectral curve subject to necessary cohomological corrections for nonzero genus. Motivated by Picard-Lefschetz theory, we write down a general formula for the index of N =4 quantum mechanics with background R -symmetry gauge fields. We conjecture that certain symmetries of the refined Witten index and singularities of the moduli space may be used to determine the correct intersection coefficients. A few examples, where this conjecture holds, are shown in both linear and closed quivers with rank-one quiver gauge groups. The R -anomaly removal along the "Morsified" relative homology cycles also called "Lefschetz thimbles" is shown to lead to the appearance of Stokes lines. We show that the Fayet-Iliopoulos parameters appear in the intersection coefficients for the relative homology of the quiver quantum mechanics resulting from dimensional reduction of 2 d N =(2 ,2 ) gauge theory on a circle and explicitly calculate integrals along the Lefschetz thimbles in N =4 C Pk -1 model. The Stokes jumping of coefficients and its relation to wall crossing phenomena is briefly discussed. We also find that the notion of "on-the-wall" index is related to the invariant Lefschetz thimbles under Stokes phenomena. An implication of the Lefschetz thimbles in constructing knots from quiver quantum mechanics is indicated.
A supersymmetric phase transition in Josephson-tunnel-junction arrays
International Nuclear Information System (INIS)
Foda, O.
1988-01-01
The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T I ≤T V , then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T I =T V . Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory. (orig.)
Supersymmetric phase transition in Josephson-tunnel-junction arrays
Energy Technology Data Exchange (ETDEWEB)
Foda, O.
1988-08-31
The fully frustrated XY model in two dimensions exhibits a vortex-unbinding as well as an Ising transition. If the Ising transition overlaps with the critical line that ends on the vortex transition: T/sub I/less than or equal toT/sub V/, then the model is equivalent, at the overlap temperature, to a free massless field theory of 1 boson and 1 Majorana fermion, which is a superconformal field theory, of central charge c=3/2. The model is experimentally realized in terms of an array of Josephson-tunnel junctions in a transverse magnetic field. The experiment reveals a phase transition consistent with T/sub I/=T/sub V/. Thus, at the critical temperature, the array provides a physical realization of a supersymmetric quantum field theory.
Finiteness of Ricci flat supersymmetric non-linear sigma-models
International Nuclear Information System (INIS)
Alvarez-Gaume, L.; Ginsparg, P.
1985-01-01
Combining the constraints of Kaehler differential geometry with the universality of the normal coordinate expansion in the background field method, we study the ultraviolet behavior of 2-dimensional supersymmetric non-linear sigma-models with target space an arbitrary riemannian manifold M. We show that the constraint of N=2 supersymmetry requires that all counterterms to the metric beyond one-loop order are cohomologically trivial. It follows that such supersymmetric non-linear sigma-models defined on locally symmetric spaces are super-renormalizable and that N=4 models are on-shell ultraviolet finite to all orders of perturbation theory. (orig.)
Supersymmetric extension of the nine-dimensional continuation of the Euler density with N=2
International Nuclear Information System (INIS)
Hassaine, Mokhtar; Olea, Rodrigo; Troncoso, Ricardo
2004-01-01
A local supersymmetric extension with N=2 of the dimensional continuation of the Euler-Gauss-Bonnet density from eight to nine dimensions is constructed. The gravitational sector is invariant under local Poincare translations, and the full field content is given by the vielbein, the spin connection, a complex gravitino, and an Abelian one-form. The local symmetry group is shown to be super Poincare with N=2 and a U(1) central extension, and the full supersymmetric Lagrangian can be written as a Chern-Simons form
Supersymmetric extension of the nine-dimensional continuation of the Euler density with N=2
Energy Technology Data Exchange (ETDEWEB)
Hassaine, Mokhtar [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)]. E-mail: hassaine@blackhole.cecs.cl; Olea, Rodrigo [Departamento de Fisica, P. Universidad Catolica de Chile, Casilla 306, Santiago 22 (Chile); Troncoso, Ricardo [Centro de Estudios Cientificos (CECS), Casilla 1469, Valdivia (Chile)
2004-10-07
A local supersymmetric extension with N=2 of the dimensional continuation of the Euler-Gauss-Bonnet density from eight to nine dimensions is constructed. The gravitational sector is invariant under local Poincare translations, and the full field content is given by the vielbein, the spin connection, a complex gravitino, and an Abelian one-form. The local symmetry group is shown to be super Poincare with N=2 and a U(1) central extension, and the full supersymmetric Lagrangian can be written as a Chern-Simons form.
Resummation for supersymmetric particle production at hadron colliders
Energy Technology Data Exchange (ETDEWEB)
Brensing, Silja Christine
2011-05-10
The search for supersymmetry is among the most important tasks at current and future colliders. Especially the production of coloured supersymmetric particles would occur copiously in hadronic collisions. Since these production processes are of high relevance for experimental searches accurate theoretical predictions are needed. Higher-order corrections in quantum chromodynamics (QCD) to these processes are dominated by large logarithmic terms due to the emission of soft gluons from initial-state and final-state particles. A systematic treatment of these logarithms to all orders in perturbation theory is provided by resummation methods. We perform the resummation of soft gluons at next-to-leading-logarithmic (NLL) accuracy for all possible production processes in the framework of the Minimal Supersymmetric Standard Model. In particular we consider pair production processes of mass-degenerate light-flavour squarks and gluinos as well as the pair production of top squarks and non-mass-degenerate bottom squarks. We present analytical results for all considered processes including the soft anomalous dimensions. Moreover numerical predictions for total cross sections and transverse-momentum distributions for both the Large Hadron Collider (LHC) and the Tevatron are presented. We provide an estimate of the theoretical uncertainty due to scale variation and the parton distribution functions. The inclusion of NLL corrections leads to a considerable reduction of the theoretical uncertainty due to scale variation and to an enhancement of the next-to-leading order (NLO) cross section predictions. The size of the soft-gluon corrections and the reduction in the scale uncertainty are most significant for processes involving gluino production. At the LHC, where the sensitivity to squark and gluino masses ranges up to 3 TeV, the corrections due to NLL resummation over and above the NLO predictions can be as high as 35 % in the case of gluino-pair production, whereas at the
Supercurrent and the Adler-Bardeen theorem in coupled supersymmetric Yang-Mills theories
International Nuclear Information System (INIS)
Ensign, P.; Mahanthappa, K.T.
1987-01-01
We construct the supercurrent and a supersymmetric current which satisfies the Adler-Bardeen theorem in supersymmetric Yang-Mills theory coupled to non-self-interacting chiral matter. Using the formulation recently developed by Grisaru, Milewski, and Zanon, supersymmetry and gauge invariance are maintained with supersymmetric background-field theory and regularization by dimensional reduction. We verify the finiteness of the supercurrent to one loop, and the Adler-Bardeen theorem to two loops by explicit calculations in the minimal-subtraction scheme. We then demonstrate the subtraction-scheme independence of the one-loop Adler-Bardeen anomaly and prove the existence of a subtraction scheme in which the Adler-Bardeen theorem is satisfied to all orders in perturbation theory
The supersymmetric Adler-Bardeen theorem and regularization by dimensional reduction
International Nuclear Information System (INIS)
Ensign, P.; Mahanthappa, K.T.
1987-01-01
We examine the subtraction scheme dependence of the anomaly of the supersymmetric, gauge singlet axial current in pure and coupled supersymmetric Yang-Mills theories. Preserving supersymmetry and gauge invariance explicitly by using supersymmetric background field theory and dimensional reduction, we show that only the one-loop value of the axial anomaly is subtraction scheme independent, and that one can always define a subtraction scheme in which the Adler-Bardeen theorem is satisfied to all orders in perturbation theory. In general this subtraction scheme may be non-minimal, but in both the pure and the coupled theories, the Adler-Bardeen theorem is satisfied to two loops in minimal subtraction. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Dhavalikar, Rohan [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); Rinaldi, Carlos, E-mail: carlos.rinaldi@bme.ufl.edu [Department of Chemical Engineering, University of Florida, 1030 Center Drive, Gainesville, FL 32611 (United States); J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, 1275 Center Drive, Gainesville, FL 32611 (United States)
2016-12-01
Magnetic nanoparticles in alternating magnetic fields (AMFs) transfer some of the field's energy to their surroundings in the form of heat, a property that has attracted significant attention for use in cancer treatment through hyperthermia and in developing magnetic drug carriers that can be actuated to release their cargo externally using magnetic fields. To date, most work in this field has focused on the use of AMFs that actuate heat release by nanoparticles over large regions, without the ability to select specific nanoparticle-loaded regions for heating while leaving other nanoparticle-loaded regions unaffected. In parallel, magnetic particle imaging (MPI) has emerged as a promising approach to image the distribution of magnetic nanoparticle tracers in vivo, with sub-millimeter spatial resolution. The underlying principle in MPI is the application of a selection magnetic field gradient, which defines a small region of low bias field, superimposed with an AMF (of lower frequency and amplitude than those normally used to actuate heating by the nanoparticles) to obtain a signal which is proportional to the concentration of particles in the region of low bias field. Here we extend previous models for estimating the energy dissipation rates of magnetic nanoparticles in uniform AMFs to provide theoretical predictions of how the selection magnetic field gradient used in MPI can be used to selectively actuate heating by magnetic nanoparticles in the low bias field region of the selection magnetic field gradient. Theoretical predictions are given for the spatial decay in energy dissipation rate under magnetic field gradients representative of those that can be achieved with current MPI technology. These results underscore the potential of combining MPI and higher amplitude/frequency actuation AMFs to achieve selective magnetic fluid hyperthermia (MFH) guided by MPI. - Highlights: • SAR predictions based on a field-dependent magnetization relaxation model.
Supersymmetric twisting of carbon nanotubes
Czech Academy of Sciences Publication Activity Database
Jakubský, Vít; Plyushchay, M. S.
2012-01-01
Roč. 85, č. 4 (2012), 045035 ISSN 1550-7998 R&D Projects: GA AV ČR GPP203/11/P038 Institutional research plan: CEZ:AV0Z10480505 Keywords : quantum wave-guides * bound-states * condensed-matter Subject RIV: BE - Theoretical Physics Impact factor: 4.691, year: 2012
Triviality bound on lightest Higgs mass in next to minimal supersymmetric model
International Nuclear Information System (INIS)
Choudhury, S.R.; Mamta; Dutta, Sukanta
1998-01-01
We study the implication of triviality on Higgs sector in next to minimal supersymmetric model (NMSSM) using variational field theory. It is shown that the mass of the lightest Higgs boson in NMSSM has an upper bound ∼ 10 M w which is of the same order as that in the standard model. (author)
Instanton effects in three-dimensional supersymmetric gauge theories with matter
Dorey, N.; Tong, D.; Vandoren, S.
1998-01-01
Using standard field theory techniques we compute perturbative and instanton contributions to the Coulomb branch of three-dimensional supersymmetric QCD with N = 2 and N = 4 supersymmetry and gauge group SU(2). For the N = 4 theory with one massless flavor, we confirm the proposal of Seiberg and
A non-supersymmetric deformation of the AdS/CFT correspondence
International Nuclear Information System (INIS)
Babington, James; Crooks, David E.; Evans, Nick
2003-01-01
We deform the AdS/CFT Correspondence by the inclusion of a non-supersymmetric scalar mass operator. We discuss the behaviour of the dual 5 dimensional supergravity field then lift the full solution to 10 dimensions. Brane probing the resulting background reveals a potential consistent with the operator we wished to insert. (author)
Supersymmetric quantum mechanics: another nontrivial quantum superpotential
International Nuclear Information System (INIS)
Cervero, J.M.
1991-01-01
A nontrivial example of a quantum superpotential in the framework of supersymmetric quantum mechanics is constructed using integrable soliton-like functions. The model is shown to be fully solvable and some consequences regarding the physical properties of the model such as transparence and boundary effects are discussed. (orig.)
Supersymmetric asymptotic safety is not guaranteed
DEFF Research Database (Denmark)
Intriligator, Kenneth; Sannino, Francesco
2015-01-01
in supersymmetric theories, and use unitarity bounds, and the a-theorem, to rule it out in broad classes of theories. The arguments apply without assuming perturbation theory. Therefore, the UV completion of a non-asymptotically free susy theory must have additional, non-obvious degrees of freedom, such as those...
Partition functions for supersymmetric black holes
Manschot, J.
2008-01-01
This thesis presents a number of results on partition functions for four-dimensional supersymmetric black holes. These partition functions are important tools to explain the entropy of black holes from a microscopic point of view. Such a microscopic explanation was desired after the association of a
Functional integral in supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Ktitarev, D.V.
1990-01-01
The solution of the square root of the Schroedinger equation for the supersymmetric quantum mechanics is expressed in the form of series. The formula may be considered as a functional integral of the chronological exponent of the super-pseudodifferential operator symbol over the superspace. 10 refs
SEARCHES FOR (NON-SUPERSYMMETRIC) NEW PHYSICS
Brooijmans, G; The ATLAS collaboration
2013-01-01
Recent results from the LHC experiments in searches for non-supersymmetric new physics are presented. The LHC experiments are probing scales of order 700 GeV for vector-like quarks, 1.5-2 TeV for electroweakly produced resonances, and 3-4 TeV for quark excitations, pushing naturalness into a corner.
On the maximal superalgebras of supersymmetric backgrounds
International Nuclear Information System (INIS)
Figueroa-O'Farrill, Jose; Hackett-Jones, Emily; Moutsopoulos, George; Simon, Joan
2009-01-01
In this paper we give a precise definition of the notion of a maximal superalgebra of certain types of supersymmetric supergravity backgrounds, including the Freund-Rubin backgrounds, and propose a geometric construction extending the well-known construction of its Killing superalgebra. We determine the structure of maximal Lie superalgebras and show that there is a finite number of isomorphism classes, all related via contractions from an orthosymplectic Lie superalgebra. We use the structure theory to show that maximally supersymmetric waves do not possess such a maximal superalgebra, but that the maximally supersymmetric Freund-Rubin backgrounds do. We perform the explicit geometric construction of the maximal superalgebra of AdS 4 X S 7 and find that it is isomorphic to osp(1|32). We propose an algebraic construction of the maximal superalgebra of any background asymptotic to AdS 4 X S 7 and we test this proposal by computing the maximal superalgebra of the M2-brane in its two maximally supersymmetric limits, finding agreement.
Massive and massless supersymmetric black holes
Energy Technology Data Exchange (ETDEWEB)
Ortin, T. [European Organization for Nuclear Research, Geneva (Switzerland). TH-Div.
1998-02-01
We give a brief overview of black-hole solutions in supergravity theories and their extremal and supersymmetric limits. We also address problems like cosmic censorship and no-hair theorems in supergravity theories. While supergravity by itself seems not to be enough to enforce cosmic censorhip and absence of primary scalar hair, superstring theory may be. (orig.). 17 refs.
The rho-parameter in supersymmetric models
International Nuclear Information System (INIS)
Lim, C.S.; Inami, T.; Sakai, N.
1983-10-01
The electroweak rho-parameter is examined in a general class of supersymmetric models. Formulae are given for one-loop contributions to Δrho from scalar quarks and leptons, gauge-Higgs fermions and an extra doublet of Higgs scalars. Mass differences between members of isodoublet scalar quarks and leptons are constrained to be less than about 200 GeV. (author)
International Nuclear Information System (INIS)
Hueffel, H.
2004-01-01
The new seminar series 'Vienna central European seminar on particle physics and quantum field theory' has been created 2004 and is intended to provide interactions between leading researchers and junior physicists. This year 'Advances in quantum field theory' has been chosen as subject and is centred on field theoretic aspects of string dualities. The lectures mainly focus on these aspects of string dualities. Further lectures regarding supersymmetric gauge theories, quantum gravity and noncommutative field theory are presented. The vast field of research concerning string dualities justifies special attention to their effects on field theory. (author)
International Nuclear Information System (INIS)
Scheck, Florian
2010-01-01
Stringent presentation of field theory, mediates the connection from the classicalelectrodynamics up to modern gauge theories. The compact presentation is ideal for the bachelor study. New chapter on general relativity theory. Deepens the learned by numerous application from laser physic, metamaterials and different more. Theoretical physics 3. Classical field theory. On electrodynamics, non-Abelian, and gravitation is the third of five volumes on theoretical physics by professor Scheck. The cycle theoretical physics comprehends: Volume 1: Mechanics. From Newtons law to the deterministic chaos. Volume 2: Nonrelativistic quantum theory. From the hydrogen atom to the many-particle systems. Volume 3: Classical field theory. From the electrodynamics to the gauge theories. Volume 5: From the laws of thermodynamics to the quantum statistics. This textbook mediates modern theoretical physics in string presentation illustrated by many examples. It contains numerous problems with solution hints ore exemplary, complete solutions. The third edition was revised in many single topics, especially the chapter on general relativity theory was supplemented by an extensive analysis of the Schwarzschild solution. [de
Covarient quantization of heterotic strings in supersymmetric chiral boson formulation
International Nuclear Information System (INIS)
Yu, F.
1992-01-01
This dissertation presents the covariant supersymmetric chiral boson formulation of the heterotic strings. The main feature of this formulation is the covariant quantization of the so-called leftons and rightons -- the (1,0) supersymmetric generalizations of the world-sheet chiral bosons -- that constitute basic building blocks of general heterotic-type string models. Although the (Neveu-Schwarz-Ramond or Green-Schwarz) heterotic strings provide the most realistic string models, their covariant quantization, with the widely-used Siegel formalism, has never been rigorously carried out. It is clarified in this dissertation that the covariant Siegel formalism is pathological upon quantization. As a test, a general classical covariant (NSR) heterotic string action that has the Siegel symmetry is constructed in arbitrary curved space-time coupled to (1,0) world-sheet super-gravity. In the light-cone gauge quantization, the critical dimensions are derived for such an action with leftons and rightons compactified on group manifolds G L x G R . The covariant quantization of this action does not agree with the physical results in the light-cone gauge quantization. This dissertation establishes a new formalism for the covariant quantization of heterotic strings. The desired consistent covariant path integral quantization of supersymmetric chiral bosons, and thus the general (NSR) heterotic-type strings with leftons and rightons compactified on torus circle-times d L S 1 x circle-times d R S 1 are carried out. An infinite set of auxiliary (1,0) scalar superfields is introduced to convert the second-class chiral constraint into first-class ones. The covariant gauge-fixed action has an extended BRST symmetry described by the graded algebra GL(1/1). A regularization respecting this symmetry is proposed to deal with the contributions of the infinite towers of auxiliary fields and associated ghosts
Quantum cosmology. The supersymmetric perspective. Vol. 1. Fundamentals
International Nuclear Information System (INIS)
Vargas Moniz, Paulo
2010-01-01
The two volumes that comprise Quantum Cosmology tackle the quantum description of the early universe from the perspective of supersymmetric models of elementary particle physics. The first volume is an accessible primer that covers the basics of the field, critically discussing ideas and concepts that comprise our current knowledge of supersymmetry and supergravity. After reviewing the fundamentals, it provides a thorough analysis of a first set of quantum cosmological models. The second volume is dedicated to more advanced topics. In it, the scope for analyzing quantum cosmological models within a supersymmetric framework is broadened. As much as possible, these two volumes treat what we know, what we think we know and what we think we do not know on an equal footing. Complete with problems and solutions for each chapter, the books are ideal for young, inquisitive minds eager to embark on in-depth research in this field. They provide readers with the tools they need to go on their own, pushing them to ask the right questions rather than seek definitive answers. (orig.)
Non-Abelian duality in N = 4 supersymmetric gauge theories
International Nuclear Information System (INIS)
Dorey, Nicholas; Fraser, Christophe; Hollowood, Timithy J.; Kneipp, Marco A.C.
1996-03-01
A semi-classical check of the Goddard-Nuyts-Olive (GNO) generalized duality conjecture for gauge theories with adjoint Higgs fields is performed for the case where the unbroken gauge group is non-Abelian. The monopole solutions of the theory transform under the non-Abelian part of the unbroken global symmetry and the associated component of the moduli space is a Lie group coset space. The well-known problems in introducing collective coordinates for these degrees-of-freedom are solved by considering suitable multi monopole configurations in which the long-range non-Abelian fields cancel. In the context of an N = 4 supersymmetric gauge theory, the multiplicity of BPS saturated states is given by the number of ground-states of a supersymmetric quantum mechanics on the compact internal moduli space. The resulting degeneracy is expressed as the Euler character of the coset space. In all cases the number of states is consistent with the dimensions of the multiplets of the unbroken dual gauge group, and hence the results provide strong support for the GNO conjecture. (author). 39 refs
M-Theory and Maximally Supersymmetric Gauge Theories
Lambert, Neil
2012-01-01
In this informal review for non-specalists we discuss the construction of maximally supersymmetric gauge theories that arise on the worldvolumes branes in String Theory and M-Theory. Particular focus is made on the relatively recent construction of M2-brane worldvolume theories. In a formal sense, the existence of these quantum field theories can be viewed as predictions of M-Theory. Their construction is therefore a reinforcement of the ideas underlying String Theory and M-Theory. We also briefly discuss the six-dimensional conformal field theory that is expected to arise on M5-branes. The construction of this theory is not only an important open problem for M-Theory but also a significant challenge to our current understanding of quantum field theory more generally.
Resonances in A=6 nuclei: use of supersymmetric quantum mechanics
International Nuclear Information System (INIS)
Dutta, S.K.; Das, T.K.; Khan, M.A.; Chakrabarti, B.
2004-01-01
We propose a novel theoretical technique for the calculation of resonances at low excitation energies in weakly bound systems. Starting from an effective potential, supersymmetric quantum mechanics can be successfully used to generate families of isospectral potentials having desirable and adjustable properties. For resonance states, for which there is no bound ground state of the same spin-parity, one can construct an isospectral potential with a bound state in the continuum (BIC). The potential looks quite different but is strictly isospectral with the original one. The quasi-bound state in the original shallow potential will be effectively trapped in the deep well of the isospectral family facilitating an easier and more accurate calculation of the resonance energy. Application to 6 He, 6 Be, and 6 Li systems yields quite accurate results. The beauty of our technique: We get both the bound ground state and the resonances by a single technique and using the same potential. (author)
Supersymmetric versions of the Fokas–Gel’fand formula for immersion
International Nuclear Information System (INIS)
Bertrand, S; Grundland, A M
2016-01-01
In this paper, we construct and investigate two supersymmetric versions of the Fokas–Gel’fand formula for the immersion of 2D surfaces associated with a supersymmetric integrable system. The first version involves an infinitesimal deformation of the zero-curvature condition and the linear spectral problem associated with this system. This deformation leads the surfaces to be represented in terms of a bosonic supermatrix immersed in a Lie superalgebra. The second supersymmetric version is obtained by using a fermionic parameter deformation to construct surfaces expressed in terms of a fermionic supermatrix immersed in a Lie superalgebra. For both extensions, we provide a geometrical characterization of deformed surfaces using the super Killing form as an inner product and a super moving frame formalism. The theoretical results are applied to the supersymmetric sine-Gordon equation in order to construct super soliton surfaces associated with five different symmetries. We find integrated forms of these surfaces which represent constant Gaussian curvature surfaces and nonlinear Weingarten-type surfaces. (paper)
du Preez, Petro; Simmonds, Shan
2014-01-01
Theoretical ambiguities in curriculum studies result in conceptual mayhem. Accordingly, they hinder the development of the complicated conversation on curriculum as a verb. This article aims to contribute to reconceptualizing curriculum studies as a dynamic social practice that aspires to thinking and acting with intelligences and sensitivity so…
Bridges, N. T.; Laity, J. E.
2001-01-01
rocks on Mars should erode at a rate of 7.7 to 210 micrometers/yr. These rates cannot have operated over the entire history of the Pathfinder site or elsewhere on Mars, because craters, knobs, and other obstacles would be quickly worn away. More likely, rock abrasion occurs over short time periods when sand supplies are sufficient and saltation friction speeds are frequently reached. Depletion or exhaustion of sand and a decline in wind fluxes at speeds greater than that of saltation friction will then act to reduce the rate of further abrasion. We are currently engaged in a new set of wind tunnel experiments coupled with theoretical models and field studies that address rock abrasion and ventifact formation on Mars and Earth. These studies have implications for the Noachian, when sand supplies were probably more plentiful and the threshold friction speed was possibly lower because of a more dense atmosphere. Under these conditions, erosion rates from the wind could have been much greater than to day, contributing, along with probable fluvial erosion, to the Noachian landscape that is in limited preservation today.
Supersymmetric dark matter: Indirect detection
International Nuclear Information System (INIS)
Bergstroem, L.
2000-01-01
Dark matter detection experiments are improving to the point where they can detect or restrict the primary particle physics candidates for non baryonic dark matter. The methods for detection are usually categorized as direct, i.e., searching for signals caused by passage of dark matter particles in terrestrial detectors, or indirect. Indirect detection methods include searching for antimatter and gamma rays, in particular gamma ray lines, in cosmic rays and high-energy neutrinos from the centre of the Earth or Sun caused by accretion and annihilation of dark matter particles. A review is given of recent progress in indirect detection, both on the theoretical and experimental side
Small numbers in supersymmetric theories of nature
International Nuclear Information System (INIS)
Graesser, Michael L.
1999-01-01
The Standard Model of particle interactions is a successful theory for describing the interactions of quarks, leptons and gauge bosons at microscopic distance scales. Despite these successes, the theory contains many unsatisfactory features. The origin of particle masses is a central mystery that has eluded experimental elucidation. In the Standard Model the known particles obtain their mass from the condensate of the so-called Higgs particle. Quantum corrections to the Higgs mass require an unnatural fine tuning in the Higgs mass of one part in 10 -32 to obtain the correct mass scale of electroweak physics. In addition, the origin of the vast hierarchy between the mass scales of the electroweak and quantum gravity physics is not explained in the current theory. Supersymmetric extensions to the Standard Model are not plagued by this fine tuning issue and may therefore be relevant in Nature. In the minimal supersymmetric Standard Model there is also a natural explanation for electroweak symmetry breaking. Supersymmetric Grand Unified Theories also correctly predict a parameter of the Standard Model. This provides non-trivial indirect evidence for these theories. The most general supersymmetric extension to the Standard Model however, is excluded by many physical processes, such as rare flavor changing processes, and the non-observation of the instability of the proton. These processes provide important information about the possible structure such a theory. In particular, certain parameters in this theory must be rather small. A physics explanation for why this is the case would be desirable. It is striking that the gauge couplings of the Standard Model unify if there is supersymmetry close to the weak scale. This suggests that at high energies Nature is described by a supersymmetric Grand Unified Theory. But the mass scale of unification must be introduced into the theory since it does not coincide with the probable mass scale of strong quantum gravity. The subject
Linearizable quantum supersymmetric σ models
International Nuclear Information System (INIS)
Haba, Z.
1988-01-01
Euclidean quantization of superfields with values in a Hermitian manifold and defined on a super-Riemann surface is discussed. It is shown that stochastic differential equations relating an interacting σ superfield to the free one become linear if the field takes values in a generalized Poincare upper half-plane. A renormalized perturbative solution is obtained. Fields with values in a Riemann surface are discussed in brief
DEFF Research Database (Denmark)
Hansen, Troels Borum Grave; Damsgaard, Christian Danvad; Dalslet, Bjarke Thomas
2010-01-01
We present a theoretical study of the spatially averaged in-plane magnetic field on square and rectangular magnetic field sensors from a single magnetic bead, a monolayer of magnetic beads, and a half-space filled with magnetic beads being magnetized by the magnetic self-field due to the applied...... bias current through the sensor. The analysis of the single bead response shows that beads always contribute positively to the average magnetic field as opposed to the case for an applied homogeneous magnetic field where the sign of the signal depends on the bead position. General expressions...... and analytical approximations are derived for the sensor response to beads as function of the bead distribution, the bias current, the geometry and size of the sensor, and the bead characteristics. Consequences for the sensor design are exemplified and it is described how the contribution from the self...
Galactic diffusion and the antiproton signal of supersymmetric dark matter
Chardonnet, P; Salati, Pierre; Taillet, R
1996-01-01
The leaky box model is now ruled out by measurements of a cosmic ray gradient throughout the galactic disk. It needs to be replaced by a more refined treatment which takes into account the diffusion of cosmic rays in the magnetic fields of the Galaxy. We have estimated the flux of antiprotons on the Earth in the framework of a two-zone diffusion model. Those species are created by the spallation reactions of high-energy nuclei with the interstellar gas. Another potential source of antiprotons is the annihilation of supersymmetric particles in the dark halo that surrounds our Galaxy. In this letter, we investigate both processes. Special emphasis is given to the antiproton signature of supersymmetric dark matter. The corresponding signal exceeds the conventional spallation flux below 300 MeV, a domain that will be thoroughly explored by the Antimatter Spectrometer experiment. The propagation of the antiprotons produced in the remote regions of the halo back to the Earth plays a crucial role. Depending on the e...
Sfermion mass degeneracy, superconformal dynamics, and supersymmetric grand unified theories
International Nuclear Information System (INIS)
Kobayashi, Tatsuo; Noguchi, Tatsuya; Nakano, Hiroaki; Terao, Haruhiko
2002-01-01
We discuss issues in a scenario where hierarchical Yukawa couplings are generated through the strong dynamics of superconformal field theories (SCFTs). Independently of the mediation mechanism of supersymmetry breaking, the infrared convergence property of SCFTs can provide an interesting solution to the supersymmetric flavor problem; sfermion masses are suppressed around the decoupling scale of SCFTs and eventually become degenerate to some degree, thanks to family-independent radiative corrections governed by the gaugino masses of the minimal supersymmetric standard model (MSSM). We discuss under what conditions the degeneracy of the sfermion mass can be estimated in a simple manner. We also discuss the constraints from lepton flavor violations. We then explicitly study sfermion mass degeneracy within the framework of grand unified theories coupled to SCFTs. It is found that the degeneracy for right-handed sleptons becomes worse in the conventional SU(5) model than in the MSSM. On the other hand, in the flipped SU(5)xU(1) model, each right-handed lepton is still an SU(5) singlet, whereas the B-ino mass M 1 is determined by two independent gaugino masses of SU(5)xU(1). These two properties enable us to have an improved degeneracy for the right-handed sleptons. We also speculate on how further improvement can be obtained in the SCFT approach
Theoretical interpretation of upstreaming electrons and elevated conics on auroral field lines
International Nuclear Information System (INIS)
Ashour-Abdalla, M.; Schriver, D.
1989-01-01
Recent VIKING satellite observations in the auroral zone have shown the association of elevated ion conics (conics with a low energy cutoff above zero) with upward streaming electrons in the presence of low frequency electric field fluctuations. A self-consistent particle simulation was developed which assumed the presence of a steady state electric field on auroral zone field lines capable of accelerating ions up the magnetic field lines. Results from this study show that a low frequency ion-ion two stream instability can be excited. This low frequency instability creates a fluctuating electric field which heats the ions oblique to the magnetic field forming distributions similar to the elevated ion comics. The ion-ion waves also interact resonantly with electrons and accelerates them in the direction of the ion beam
Semileptonic (Λb → Λc eV) decay in a field theoretic quark model
International Nuclear Information System (INIS)
Das, R.K.; Panda, A.R.; Sahoo, R.K.; Swain, M.R.
2002-01-01
The semileptonic decay width of heavy baryons such as (Λ b → Λ c eV) has been estimated in the framework of a nonrelativistic field theoretic quark model where four component quark field operators along with a harmonic oscillator wave function are used to describe translationally invariant hadronic states. The present estimation does not make an explicit use of heavy quark symmetry and has a reasonable agreement with the experimentally measured decay width, polarisation ratio and form factors with the harmonic oscillator radii and quark momentum distribution inside the hadron as free parameters. (author)
Theoretical Framework of Advanced Training in the Field of Conflict Management in Organization
Directory of Open Access Journals (Sweden)
Kilmashkina T.N.
2018-01-01
Full Text Available In this paper, we consider the theoretical framework for creating an advanced training course for professionals working in various organizations whose functional duties include activities aimed at managing conflict situations occurring within the organization. The article also considers such problem concepts as: essence and causes of conflicts, types of conflicts in the organization; organizational, psychological, sociological and cultural ways of managing conflicts in the organization. The proposed theoretical model of advanced professional training is constructed within the framework of the competence approach which, in this case, is based on the notion that a participant in the program should master a certain set of special competencies that include knowledge, skills and abilities necessary for the effective process management of various conflict situations.
4D constructions of supersymmetric extra dimensions and gaugino mediation
International Nuclear Information System (INIS)
Csaki, Csaba; Erlich, Joshua; Grojean, Christophe; Kribs, Graham D.
2002-01-01
We present 4D gauge theories which at low energies coincide with higher dimensional supersymmetric (SUSY) gauge theories on a transverse lattice. We show that in the simplest case of pure 5D SUSY Yang-Mills theory there is an enhancement of SUSY in the continuum limit without fine tuning. This result no longer holds in the presence of matter fields, in which case fine tuning is necessary to ensure higher dimensional Lorentz invariance and supersymmetry. We use this construction to generate 4D models which mimic gaugino mediation of SUSY breaking. The way supersymmetry breaking is mediated in these models to the MSSM is by assuming that the physical gauginos are a mixture of a number of gauge eigenstate gauginos: one of these couples to the SUSY breaking sector, while another couples to the MSSM matter fields. The lattice can be as coarse as just two gauge groups while still obtaining the characteristic gaugino-mediated soft breaking terms
A constrained supersymmetric left-right model
Energy Technology Data Exchange (ETDEWEB)
Hirsch, Martin [AHEP Group, Instituto de Física Corpuscular - C.S.I.C./Universitat de València, Edificio de Institutos de Paterna, Apartado 22085, E-46071 València (Spain); Krauss, Manuel E. [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Opferkuch, Toby [Bethe Center for Theoretical Physics & Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany); Porod, Werner [Institut für Theoretische Physik und Astronomie, Universität Würzburg,Emil-Hilb-Weg 22, 97074 Wuerzburg (Germany); Staub, Florian [Theory Division, CERN,1211 Geneva 23 (Switzerland)
2016-03-02
We present a supersymmetric left-right model which predicts gauge coupling unification close to the string scale and extra vector bosons at the TeV scale. The subtleties in constructing a model which is in agreement with the measured quark masses and mixing for such a low left-right breaking scale are discussed. It is shown that in the constrained version of this model radiative breaking of the gauge symmetries is possible and a SM-like Higgs is obtained. Additional CP-even scalars of a similar mass or even much lighter are possible. The expected mass hierarchies for the supersymmetric states differ clearly from those of the constrained MSSM. In particular, the lightest down-type squark, which is a mixture of the sbottom and extra vector-like states, is always lighter than the stop. We also comment on the model’s capability to explain current anomalies observed at the LHC.
Three-body Supersymmetric Top Decays
Belyaev, A; Lola, S; Belyaev, Alexander; Ellis, John; Lola, Smaragda
2000-01-01
We discuss three-body supersymmetric top decays, in schemes both with andwithout R-parity conservation, assuming that sfermion masses are larger thanm_t. We find that MSSM top decays into chargino/neutralino pairs have a strongkinematic suppression in the region of the supersymmetric parameter spaceconsistent with the LEP limits, with a decay width =< 10^{-5} GeV. MSSM topdecays into neutralino pairs have less kinematical suppression, but require aflavour-changing vertex, and are likely to have a smaller rate. On the otherhand, R-violating decays to single charginos, neutralinos and conventionalfermions can be larger for values of the R-violating couplings still permittedby other upper limits. The cascade decays of the charginos and neutralinos maylead to spectacular signals with explicit lepton-number violation, such aslike-sign lepton events.
Supersymmetric hadronic mechanics and procedures for isosupersymmetrization
International Nuclear Information System (INIS)
Ntibashirakandi, L.; Callebaut, D.K.
1994-01-01
In this paper the authors present the Lie-Santilli lifting of Witten's one-dimensional supersymmetric quantum mechanical model within the context of supersymmetric hadronic mechanics and extended it to three dimensions. They show that the model describes the motion of a spin one-half particle in a central isosuperpotential. Choosing this isosuperpotential within the specific isosupersymmetrization procedure, their theory produces the model of hadronic harmonic oscillator plus isotopic spin-orbit couplings. They finally indicate that their model describes a particle under conventional potentials plus nonlocal-nonhamiltonian corrections expected in deep penetrations of the wavepackets. As such, the model appears to be significant for the recently proposed chemical synthesis of unstable hadrons via lighter hadrons, which is prohibited by quantum mechanics, but permitted by the covering hadronic mechanics. 16 refs
Search for supersymmetric particles at CDF
International Nuclear Information System (INIS)
Wagner, R.G.
1989-01-01
Analyses of events with large unbalanced transverse energy from the 1987 and 1988-89 CDF data runs have set limits on the masses of supersymmetric squarks and gluinos. In a simple model with a stable photino as the lightest supersymmetric particle, the 1987 data with an integrated luminosity of 25.3 nb -1 have excluded at the 90% CL, squarks of mass less than 73 GeV/c 2 and gluinos of mass less than 74 GeV/c 2 . Preliminary results from an analysis of 1 pb -1 of data from the current 1988-89 run imply that the existence of a squark of mass less than 150 GeV/c 2 is unlikely. 4 refs., 2 fig., 1 tab
Defect networks and supersymmetric loop operators
Energy Technology Data Exchange (ETDEWEB)
Bullimore, Mathew [Perimeter Institute for Theoretical Physics, 31 Caroline Street North, Waterloo, ON N2L 2Y5 (Canada)
2015-02-10
We consider topological defect networks with junctions in A{sub N−1} Toda CFT and the connection to supersymmetric loop operators in N=2 theories of class S on a four-sphere. Correlation functions in the presence of topological defect networks are computed by exploiting the monodromy of conformal blocks, generalising the notion of a Verlinde operator. Concentrating on a class of topological defects in A{sub 2} Toda theory, we find that the Verlinde operators generate an algebra whose structure is determined by a set of generalised skein relations that encode the representation theory of a quantum group. In the second half of the paper, we explore the dictionary between topological defect networks and supersymmetric loop operators in the N=2{sup ∗} theory by comparing to exact localisation computations. In this context, the the generalised skein relations are related to the operator product expansion of loop operators.
Topological solitons in the supersymmetric Skyrme model
Energy Technology Data Exchange (ETDEWEB)
Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)
2017-01-04
A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.
Is supersymmetric origin of monojets viable
International Nuclear Information System (INIS)
Nandi, S.
1985-01-01
The laboratory and cosmological bounds on the masses of the scalar leptons and the photino are used to put constraints on the supersymmetric origin of the CERN monojets. The latest MAC data at PEP exclude the scalar quarks, of masses up to 45 GeV, as the origin of these monojets; the cosmological bounds, for a stable photino, exclude the mass range necessary for the gq production interpretation
Additional symmetries of supersymmetric KP hierarchies
International Nuclear Information System (INIS)
Stanciu, S.
1994-01-01
We investigate the additional symmetries of several supersymmetric KP hierarchies: the SKP hierarchy of Manin and Radul, the SKP 2 hierarchy, and the Jacobian SKP hierarchy. In all three cases we find that the algebra of symmetries is isomorphic to the algebra of superdifferential operators, or equivalently SW 1+∞ . These results seem to suggest that despite their realization depending on the dynamics, the additional symmetries are kinematical in nature. (orig.)
Supersymmetric Extension of Technicolor & Fermion Mass Generation
DEFF Research Database (Denmark)
Antola, Matti; Di Chiara, Stefano; Sannino, Francesco
2012-01-01
We provide a complete extension of Minimal Walking Technicolor able to account for the standard model fermion masses. The model is supersymmetric at energies greater or equal to the technicolor compositeness scale. We integrate out, at the supersymmetry breaking scale, the elementary Higgses. We...... tests and experimental bounds on the mass spectrum. We then turn to the composite Higgs phenomenology at the LHC and show that current data are already constraining the parameter space of the model....
Utilitarian supersymmetric gauge model of particle interactions
International Nuclear Information System (INIS)
Ma, Ernest
2010-01-01
A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.
The massless supersymmetric ladder with L rungs
International Nuclear Information System (INIS)
Rossi, G.C.; Stanev, Ya.S.
2009-01-01
We show that in the massless N=1 supersymmetric Wess-Zumino theory it is possible to devise a computational strategy by which the x-space calculation of the ladder 4-point correlators can be carried out without introducing any regularization. As an application we derive a representation valid at all loop orders in terms of conformal invariant integrals. We obtain an explicit expression of the 3-loop ladder diagram for collinear external points
B-L violating supersymmetric couplings
International Nuclear Information System (INIS)
Ramond, P.
1983-01-01
We consider two problems: one is the possible effect of the breaking of Peccei-Quinn symmetry on the inflationary universe scenario; the other is the remark that even the minimal supersymmetric SU 5 theory contains B-L violating couplings which give rise to neutrino masses and family-diagonal proton decay. However the strength of these couplings is limited by the gauge hierarchy
Supersymmetric SU(5) GUT with Stabilized Moduli
Antoniadis, Ignatios; Panda, Binata
2008-01-01
We construct a minimal example of a supersymmetric grand unified model in a toroidal compactification of type I string theory with magnetized D9-branes. All geometric moduli are stabilized in terms of the background internal magnetic fluxes which are of "oblique" type (mutually non-commuting). The gauge symmetry is just SU(5) and the gauge non-singlet chiral spectrum contains only three families of quarks and leptons transforming in the $10+{\\bar 5}$ representations.
Supersymmetric solutions for non-relativistic holography
International Nuclear Information System (INIS)
Donos, Aristomenis; Gauntlett, Jerome P.
2009-01-01
We construct families of supersymmetric solutions of type IIB and D=11 supergravity that are invariant under the non-relativistic conformal algebra for various values of dynamical exponent z≥4 and z≥3, respectively. The solutions are based on five- and seven-dimensional Sasaki-Einstein manifolds and generalise the known solutions with dynamical exponent z=4 for the type IIB case and z=3 for the D=11 case, respectively. (orig.)
Planar Quantum Mechanics: an Intriguing Supersymmetric Example
Veneziano, Gabriele
2006-01-01
After setting up a Hamiltonian formulation of planar (matrix) quantum mechanics, we illustrate its effectiveness in a non-trivial supersymmetric example. The numerical and analytical study of two sectors of the model, as a function of 't Hooft's coupling $\\lambda$, reveals both a phase transition at $\\lambda=1$ (disappearence of the mass gap and discontinuous jump in Witten's index) and a new form of strong-weak duality for $\\lambda \\to 1/\\lambda$.
Decoupling theorem in supersymmetric theories
Energy Technology Data Exchange (ETDEWEB)
Leon, J; Perez-Mercader, J; Sanchez, M F
1988-07-21
We introduce a superfield extension of Weisberger's method for decoupling calculations in multiscale field theories and generalize our previous method which does not require the computation of any Feynman diagram. We illustrate this for the two-scale Wess-Zumino model, showing explicitly how the decoupling takes place.
Supersymmetric unification at the millennium
Indian Academy of Sciences (India)
charisma for the high energy theory community. ... bereft of a chiral partner, and its minimal mass operator – the d = 5 operator above ... Integrating out the heavy neutrino gives the neutrino mass operator .... (b) Stay with the minimal set of fields, but (reasoning that small non- .... My treatment is largely based on the excellent.
Electroweak precision observables in the minimal supersymmetric standard model
International Nuclear Information System (INIS)
Heinemeyer, S.; Hollik, W.; Weiglein, G.
2006-01-01
The current status of electroweak precision observables in the Minimal Supersymmetric Standard Model (MSSM) is reviewed. We focus in particular on the W boson mass, M W , the effective leptonic weak mixing angle, sin 2 θ eff , the anomalous magnetic moment of the muon (g-2) μ , and the lightest CP-even MSSM Higgs boson mass, m h . We summarize the current experimental situation and the status of the theoretical evaluations. An estimate of the current theoretical uncertainties from unknown higher-order corrections and from the experimental errors of the input parameters is given. We discuss future prospects for both the experimental accuracies and the precision of the theoretical predictions. Confronting the precision data with the theory predictions within the unconstrained MSSM and within specific SUSY-breaking scenarios, we analyse how well the data are described by the theory. The mSUGRA scenario with cosmological constraints yields a very good fit to the data, showing a clear preference for a relatively light mass scale of the SUSY particles. The constraints on the parameter space from the precision data are discussed, and it is shown that the prospective accuracy at the next generation of colliders will enhance the sensitivity of the precision tests very significantly
Radiative properties of a plasma moving across a magnetic field. I: Theoretical analysis
International Nuclear Information System (INIS)
Roussel-Dupre, R.; Miller, R.H.
1993-01-01
The early-time evolution of plasmas moving across a background magnetic field is addressed with a two-dimensional model in which a plasma cloud is assumed to have formed instantaneously with a velocity across a uniform background magnetic field and with a Gaussian density profile in the two dimensions perpendicular to the direction of motion. This model treats both the dynamics associated with the formation of a polarization field and the generation and propagation of electromagnetic waves. In general, the results indicate that, to zeroth order, the plasma cloud behaves like a large dipole antenna oriented in the direction of the polarization field which oscillates at frequencies defined by the normal mode of the system. The magnitude of the radiation field and the amount of plasma momentum and energy carried away by and stored instantaneously in the fields are discussed only qualitatively in this paper, quantitative results for specific cloud parameters and scaling laws for the magnitude of the fields and the slowing down of the plasma cloud are presented in a companion manuscript
International Nuclear Information System (INIS)
Joung, Euihun; Mourad, Jihad; Parentani, Renaud
2007-01-01
We use an algebraic approach based on representations of de Sitter group to construct covariant quantum fields in arbitrary dimensions. We study the complementary and the discrete series which correspond to light and massless fields and which lead new feature with respect to the massive principal series we previously studied (hep-th/0606119). When considering the complementary series, we make use of a non-trivial scalar product in order to get local expressions in the position representation. Based on these, we construct a family of covariant canonical fields parametrized by SU(1, 1)/U(1). Each of these correspond to the dS invariant alpha-vacua. The behavior of the modes at asymptotic times brings another difficulty as it is incompatible with the usual definition of the in and out vacua. We propose a generalized notion of these vacua which reduces to the usual conformal vacuum in the conformally massless limit. When considering the massless discrete series we find that no covariant field obeys the canonical commutation relations. To further analyze this singular case, we consider the massless limit of the complementary scalar fields we previously found. We obtain canonical fields with a deformed representation by zero modes. The zero modes have a dS invariant vacuum with singular norm. We propose a regularization by a compactification of the scalar field and a dS invariant definition of the vertex operators. The resulting two-point functions are dS invariant and have a universal logarithmic infrared divergence
SO(10) supersymmetric grand unified theories
Dermisek, Radovan
The origin of the fermion mass hierarchy is one of the most challenging problems in elementary particle physics. In the standard model fermion masses and mixing angles are free parameters. Supersymmetric grand unified theories provide a beautiful framework for physics beyond the standard model. In addition to gauge coupling unification these theories provide relations between quark and lepton masses within families, and with additional family symmetry the hierarchy between families can be generated. We present a predictive SO(10) supersymmetric grand unified model with D 3 x U(1) family symmetry. The hierarchy in fermion masses is generated by the family symmetry breaking D 3 x U(1) → ZN → nothing. This model fits the low energy data in the charged fermion sector quite well. We discuss the prediction of this model for the proton lifetime in light of recent SuperKamiokande results and present a clear picture of the allowed spectra of supersymmetric particles. Finally, the detailed discussion of the Yukawa coupling unification of the third generation particles is provided. We find a narrow region is consistent with t, b, tau Yukawa unification for mu > 0 (suggested by b → sgamma and the anomalous magnetic moment of the muon) with A0 ˜ -1.9m16, m10 ˜ 1.4m16, m16 ≳ 1200 GeV and mu, M1/2 ˜ 100--500 GeV. Demanding Yukawa unification thus makes definite predictions for Higgs and sparticle masses.
Supersymmetric Janus solutions in four dimensions
Energy Technology Data Exchange (ETDEWEB)
Bobev, Nikolay [Perimeter Institute for Theoretical Physics,31 Caroline Street North, ON N2L 2Y5 (Canada); Pilch, Krzysztof [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Warner, Nicholas P. [Department of Physics and Astronomy, University of Southern California,Los Angeles, CA 90089 (United States); Institut de Physique Théorique, CEA Saclay,CNRS-URA 2306, 91191 Gif sur Yvette (France); Institut des Hautes Etudes Scientifiques,Le Bois-Marie, 35 route de Chartres, Bures-sur-Yvette, 91440 (France)
2014-06-10
We use maximal gauged supergravity in four dimensions to construct the gravity dual of a class of supersymmetric conformal interfaces in the theory on the world-volume of multiple M2-branes. We study three classes of examples in which the (1+1)-dimensional defects preserve (4,4), (0,2) or (0,1) supersymmetry. Many of the solutions have the maximally supersymmetric AdS{sub 4} vacuum dual to the N=8 ABJM theory on both sides of the interface. We also find new special classes of solutions including one that interpolates between the maximally supersymmetric vacuum and a conformal fixed point with N=1 supersymmetry and G{sub 2} global symmetry. We find another solution that interpolates between two distinct conformal fixed points with N=1 supersymmetry and G{sub 2} global symmetry. In eleven dimensions, this G{sub 2} to G{sub 2} solution corresponds to a domain wall across which a magnetic flux reverses orientation.
Supersymmetric extensions of Schrodinger-invariance
International Nuclear Information System (INIS)
Henkel, Malte; Unterberger, Jeremie
2006-01-01
The set of dynamic symmetries of the scalar free Schrodinger equation in d space dimensions gives a realization of the Schrodinger algebra that may be extended into a representation of the conformal algebra in d+2 dimensions, which yields the set of dynamic symmetries of the same equation where the mass is not viewed as a constant, but as an additional coordinate. An analogous construction also holds for the spin-12 Levy-Leblond equation. An N=2 supersymmetric extension of these equations leads, respectively, to a 'super-Schrodinger' model and to the (3 vertical bar 2)-supersymmetric model. Their dynamic supersymmetries form the Lie superalgebras osp(2 vertical bar 2)-bar sh(2 vertical bar 2) and osp(2 vertical bar 4), respectively. The Schrodinger algebra and its supersymmetric counterparts are found to be the largest finite-dimensional Lie subalgebras of a family of infinite-dimensional Lie superalgebras that are systematically constructed in a Poisson algebra setting, including the Schrodinger-Neveu-Schwarz algebra sns (N) with N supercharges. Covariant two-point functions of quasiprimary superfields are calculated for several subalgebras of osp(2 vertical bar 4). If one includes both N=2 supercharges and time-inversions, then the sum of the scaling dimensions is restricted to a finite set of possible values
Sum rules for the ed - NN scattering reactions and microscopic potential field-theoretical approach
International Nuclear Information System (INIS)
Machivariani, A.I.
1996-01-01
The connections between the equal-time commutators of nucleon and photon field-operators and relativistic potential approach of ed - NN scattering equations is established. Namely, it is demonstrated that: 1) equal-time commutator between nucleon field operators generated completeness condition for NN interaction functions, 2) the off-mass shell contributions in γd - NN exchange currents or in microscopic NN potential are determined by equal time commutator between nucleon field operator and photon or nucleon source operators, and 3) equal-time commutators between source operators produce sum rules for same vertex functions and effective potentials [ru
Sensitivity Analysis and Simulation of Theoretical Response of Ceramics to Strong Magnetic Fields
2016-09-01
literature, and from product data sheets. Δχ for pure alumina was calculated from the molar susceptibility, Δχm, which was found to be 7.1 × 10-8 emu/mol...m3/mol by multiplying by the conversion factor 4π × 10-6.11 Finally, molar susceptibility, Δχm, was converted to unitless volume susceptibility, Δχ...where FW is formula weight, ρ is the theoretical density of the material, Vm is the molar volume of the material, and Δχg is the mass susceptibility
[Field theoretic investigations on particle physics and cosmology]. Annual technical progress report
International Nuclear Information System (INIS)
Pi, S.Y.
1985-01-01
Topics covered include topics bridging particle physics and cosmology, superconducting universe, inflationary universe, density fluctuations in the new inflationary universe, a realistic inflationary model, and the quantum mechanics of the scalar field in the new inflationary universe
Energy Technology Data Exchange (ETDEWEB)
Woellert, Anton
2016-07-27
Pair production of electron-positron pairs in ultra-intense laser fields is considered in this work. Two regimes are investigated separately. The first regime is the so-called tunnel regime of pair production. The existing tunneling picture which is applicable in this regime will be enhanced by the effects of a magnetic field and an additional, perturbatively treated photon. Both effects are incorporated by the semi-classical approximation. In contrast, no straightforward approach exists so far for the second regime of pair production. Therefore, numerical calculations will be carried out by applying the framework of the in/out-formalism in external fields. These simulations show non-trivial effects that are be expected in this regime. Specifically, the influence of the electromagnetic fields' polarization upon the produced pair spectra is investigated. Furthermore, multi-pair states are studied.
K theoretical approach to the fusion rules of conformal quantum field theories
International Nuclear Information System (INIS)
Recknagel, A.
1993-09-01
Conformally invariant quantum field theories are investigated using concepts of the algebraic approach to quantum field theory as well as techniques from the theory of operator algebras. Arguments from the study of statistical lattice models in one and two dimensions, from recent developments in algebraic quantum field theory, and from other sources suggest that there exists and intimate connection between conformal field theories and a special class of C*-algebras, the so-called AF-algebras. For a series of Virasoro minimal models, this correspondence is made explicit by constructing path representations of the irreducible highest weight modules. We then focus on the K 0 -invariant of these path AF-algebras and show how its functorial properties allow to exploit the abstract theory of superselection sectors in order to derive the fusion rules of the W-algebras hidden in the Virasoro minimal models. (orig.)
Theoretical model of gravitational perturbation of current collector axisymmetric flow field
Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1990-05-01
Some designs of liquid-metal current collectors in homopolar motors and generators are essentially rotating liquid-metal fluids in cylindrical channels with free surfaces and will, at critical rotational speeds, become unstable. An investigation at David Taylor Research Center is being performed to understand the role of gravity in modifying this ejection instability. Some gravitational effects can be theoretically treated by perturbation techniques on the axisymmetric base flow of the liquid metal. This leads to a modification of previously calculated critical-current-collector ejection values neglecting gravity effects. The purpose of this paper is to document the derivation of the mathematical model which determines the perturbation of the liquid-metal base flow due to gravitational effects. Since gravity is a small force compared with the centrifugal effects, the base flow solutions can be expanded in inverse powers of the Froude number and modified liquid-flow profiles can be determined as a function of the azimuthal angle. This model will be used in later work to theoretically study the effects of gravity on the ejection point of the current collector.
Information on the gauge principle from an N=1/2, D=2 supersymmetric model
International Nuclear Information System (INIS)
Dias, S.A.; Doria, R.M.; Valle, J.L.M.
1988-01-01
The gauge principle does not only work to generate interactions. It potentially yields an abundance of gauge-potential fields transforming under the same local symmetry group. In order to show evidences of this property this work gauge-covariantizes an N = 1/2, D = 2 supersymmetric theory. Then, by relaxing the so-called conventional constraint, a second gauge-potential field naturally emerges. (author) [pt
International Nuclear Information System (INIS)
Hill, D.W.; Sharp, J.M. Jr.
1993-01-01
In the Texas Gulf Coastal Plain, there is a history of oil and gas production extending over 2 to 5 decades. Concurrent with this production history, there has been unprecedented population growth accompanied by vastly increased groundwater demands. Land subsidence on both local and regional bases in this geologic province has been measured and predicted in several studies. The vast majority of these studies have addressed the problem from the standpoint of groundwater usage while only a few have considered the effects of oil and gas production. Based upon field-based computational techniques (Helm, 1984), a model has been developed to predict land subsidence caused by oil and gas production. This method is applied to the Big Hill Field in Jefferson County, Texas. Inputs include production data from a series of wells in this field and lithologic data from electric logs of these same wells. Outputs include predicted amounts of subsidence, the time frame of subsidence, and sensitivity analyses of compressibility and hydraulic conductivity estimates. Depending upon estimated compressibility, subsidence, to date, is predicted to be as high as 20 cm. Similarly, depending upon estimated vertical hydraulic conductivity, the time frame may be decades for this subsidence. These same methods can be applied to other oil/gas fields with established production histories as well as new fields when production scenarios are assumed. Where subsidence has been carefully measured above petroleum reservoir, the model may be used inversely to calculate sediment compressibilities
Leem, Dohyun; Kim, Jin-Hwan; Barlat, Frédéric; Song, Jung Han; Lee, Myoung-Gyu
2018-03-01
An inverse approach based on the virtual fields method (VFM) is presented to identify the material hardening parameters under dynamic deformation. This dynamic-VFM (D-VFM) method does not require load information for the parameter identification. Instead, it utilizes acceleration fields in a specimen's gage region. To investigate the feasibility of the proposed inverse approach for dynamic deformation, the virtual experiments using dynamic finite element simulations were conducted. The simulation could provide all the necessary data for the identification such as displacement, strain, and acceleration fields. The accuracy of the identification results was evaluated by changing several parameters such as specimen geometry, velocity, and traction boundary conditions. The analysis clearly shows that the D-VFM which utilizes acceleration fields can be a good alternative to the conventional identification procedure that uses load information. Also, it was found that proper deformation conditions are required for generating sufficient acceleration fields during dynamic deformation to enhance the identification accuracy with the D-VFM.
Theoretical background and the flow fields in downhole liquid-liquid hydrocyclone (LLHC
Directory of Open Access Journals (Sweden)
Osei Harrison
2014-07-01
Full Text Available Hydrocyclone system for downhole oil-water separation provides an effective technique of enhancing the economic viability of higher water-cut wells while at the same time reducing the risk of environmental pollution. This paper describes the hydrodynamics of the liquid-liquid hydrocyclones and the flow fields within it are paramount for achieving successful separation process. Some of the important hydrodynamic flow phenomenon within the liquid-liquid hydrocyclone and how they influence the separation efficiency of water/oil was analyzed through analytical solution. The properties of the liquids were based on Bayan offshore field measured properties. The results indicated that there are two swirling zones separated by stagnant flow field. The inner is the light liquid zone, while the outer is the heavy liquid zone.
Mixed-symmetry fields in de Sitter space: a group theoretical glance
Energy Technology Data Exchange (ETDEWEB)
Basile, Thomas [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium); Bekaert, Xavier [Laboratoire de Mathématiques et Physique Théorique, Unité Mixte de Recherche 7350 du CNRS,Fédération de Recherche 2964 Denis Poisson, Université François Rabelais,Parc de Grandmont, 37200 Tours (France); B.W. Lee Center for Fields, Gravity and Strings, Institute for Basic Science,Daejeon (Korea, Republic of); Boulanger, Nicolas [Groupe de Mécanique et Gravitation, Service de Physique Théorique et Mathématique,Université de Mons - UMONS,20 Place du Parc, 7000 Mons, Belgique (Belgium)
2017-05-15
We derive the characters of all unitary irreducible representations of the (d+1)-dimensional de Sitter spacetime isometry algebra so(1,d+1), and propose a dictionary between those representations and massive or (partially) massless fields on de Sitter spacetime. We propose a way of taking the flat limit of representations in (anti-) de Sitter spaces in terms of these characters, and conjecture the spectrum resulting from taking the flat limit of mixed-symmetry fields in de Sitter spacetime. We identify the equivalent of the scalar singleton for the de Sitter (dS) spacetime.
Directory of Open Access Journals (Sweden)
Francesco Panico
2018-09-01
Full Text Available This article aims to outline an epistemological framework for placing the field of environmental history in the context of the current endeavor of social sciences and humanities. The methodology used is defined here as “metabolic landmarks” because it is inspired by the approach of social metabolism. The results suggest that, in the study of environmental history, the specific historiographical object plays an essential role in defining the epistemic context of that hybrid field of historiography and, more generally, of social and environmental analyses.
International Nuclear Information System (INIS)
Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele
2017-01-01
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show
Varsano, Daniele; Caprasecca, Stefano; Coccia, Emanuele
2017-01-01
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show
Non-renormalization theorems andN=2 supersymmetric backgrounds
International Nuclear Information System (INIS)
Butter, Daniel; Wit, Bernard de; Lodato, Ivano
2014-01-01
The conditions for fully supersymmetric backgrounds of general N = 2 locally supersymmetric theories are derived based on the off-shell superconformal multiplet calculus. This enables the derivation of a non-renormalization theorem for a large class of supersymmetric invariants with higher-derivative couplings. The theorem implies that the invariant and its first order variation must vanish in a fully supersymmetric background. The conjectured relation of one particular higher-derivative invariant with a specific five-dimensional invariant containing the mixed gauge-gravitational Chern-Simons term is confirmed
Energy Technology Data Exchange (ETDEWEB)
Kunz, W; Dodel, G [Stuttgart Univ. (TH) (Germany, F.R.). Inst. fuer Plasmaforschung
1978-12-01
Numerical calculations give an optimum wavelength and show the precision requirements for determining poloidal field profiles in tokamaks on the basis of the Faraday effect. The required precision of the polarimetric measurements can be achieved in the far-infrared as is verified in a model experiment using a ferrite modulated HCN laser beam.
Theoretical Developments in Decision Field Theory: Comment on Tsetsos, Usher, and Chater (2010)
Hotaling, Jared M.; Busemeyer, Jerome R.; Li, Jiyun
2010-01-01
Tsetsos, Usher, and Chater (2010) presented several criticisms of decision field theory (DFT) involving its distance function, instability under externally controlled stopping times, and lack of robustness to various multialternative choice scenarios. Here, we counter those claims with a specification of a distance function based on the…
Higher-order sub-Poissonian-like nonclassical fields: Theoretical and experimental comparison
Czech Academy of Sciences Publication Activity Database
Peřina Jr., J.; Michálek, Václav; Haderka, O.
2017-01-01
Roč. 96, č. 3 (2017), s. 1-7, č. článku 033852. ISSN 2469-9926 Institutional support: RVO:68378271 Keywords : twin beams * photon statistics * sub-Poissonian-like nonclassical fields Subject RIV: BH - Optics, Masers, Lasers OBOR OECD: Optics (including laser optics and quantum optics) Impact factor: 2.925, year: 2016
Theoretical Maxwell's Equations, Gauge Field and Their Universality Based on One Conservation Law
Institute of Scientific and Technical Information of China (English)
Liu Changmao
2005-01-01
The notion of the inner product of vectors is extended to tensors of different orders, which may replace the vector product usually. The essences of the differential and the codifferential forms are pointed out: they represent the tangent surface and the normal surface fluxes of a tensor, respectively. The definitions of the divergence and the curl of a 2D surface flux of a tensor are obtained.Maxwell's equations, namely, the construction law of field, which were usually established based on two conservation laws of electric charge and imaginary magnetic charge, are derived by the author only by using one conservation law ( mass or fluid flux quantity and so on) and the feature of central field ( or its composition). By the feature of central field ( or its composition), the curl of 2D flux is zero. Both universality of gauge field and the difficulty of magnetic monopole theory ( a magnetic monopole has no effect on electric current just like a couple basing no effect on the sum of forces) are presented: magnetic monopole has no the feature of magnet. Finally it is pointed out that the base of relation of mass and energy is already involved in Maxwell's equations.
Theoretical investigation into longitudinal cathodal field steering in spinal cord stimulation
Manola, L.; Holsheimer, J.; Veltink, Petrus H.; Bradley, Kerry; Peterson, David
Objective. In spinal cord stimulation (SCS) for chronic pain management, precise longitudinal positioning of the cathode is crucial to generate an electrical field capable of targeting the neural elements involved in pain relief. Presently used methods have a poor spatial resolution and lack
A new theoretical basis for numerical simulations of nonlinear acoustic fields
Wójcik, Janusz
2000-07-01
Nonlinear acoustic equations can be considerably simplified. The presented model retains the accuracy of a more complex description of nonlinearity and a uniform description of near and far fields (in contrast to the KZK equation). A method has been presented for obtaining solutions of Kuznetsov's equation from the solutions of the model under consideration. Results of numerical calculations, including comparative ones, are presented.
Directory of Open Access Journals (Sweden)
Olga A. Krapivkina
2017-12-01
Full Text Available The paper aims at expanding the theoretical basis of discourse analysis by involving the theory of fields by P. Bourdieu who says that there is a social genesis of perception and thinking patterns and actions (habitus, on the one hand, and social structures and fields, on the other one. The speaking subject is influenced by objective relations of forces typical for a certain field – a social area with specific social relations, means and purposes. All agents of the legal field are able to use polysemy of legal formulas, tend to use the elasticity of the law, existing ambiguity and gaps in their own interests. Using expert knowledge as a manipulative resource, agents of the legal field enforce their own views on lay people. Social differences between agents of the legal field (legal experts and their clients (lay people are due to their struggle for monopoly which means increase in distance between formally specified legal rules and na−ve intuitive concepts of legal phenomena. Individuals who are prone to behavior complying with a certain matrix of social actions are a typical feature of legal discourse practices. When interacting with lay people, experts, whose actions comply with specific institutional status, control their discursive behavior.
The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology
International Nuclear Information System (INIS)
Bruemmer, F.; Fichet, S.; Kraml, S.
2011-09-01
We study supersymmetric models with a GUT-sized extra dimension, where both the Higgs fields and the SUSY breaking hidden sector are localized on a 4D brane. Exponential wave function profiles of the matter fields give rise to hierarchical structures in the Yukawa couplings and soft terms. Such structures can naturally explain hierarchical fermion masses and mixings, while at the same time alleviating the supersymmetric flavour problem. We discuss two sources of supersymmetry breaking, radion mediation and brane fields, and perform a detailed numerical analysis, thoroughly taking into account the proliferation of unknown O(1) coefficients that occurs in this class of models. It turns out that additional assumptions on supersymmetry breaking are necessary to evade the stringent experimental bounds on lepton flavour violation. The favourable regions of parameter space are then examined with regards to their LHC phenomenology. They generically feature heavy gluinos and squarks beyond current bounds. Lepton flavour violation in SUSY cascade decays can give interesting signatures. (orig.)
The supersymmetric flavour problem in 5D GUTs and its consequences for LHC phenomenology
Energy Technology Data Exchange (ETDEWEB)
Bruemmer, F. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Fichet, S.; Kraml, S. [CNRS/IN2P3, Grenoble (France). Lab. de Physique Subatomique et de Cosmologie
2011-09-15
We study supersymmetric models with a GUT-sized extra dimension, where both the Higgs fields and the SUSY breaking hidden sector are localized on a 4D brane. Exponential wave function profiles of the matter fields give rise to hierarchical structures in the Yukawa couplings and soft terms. Such structures can naturally explain hierarchical fermion masses and mixings, while at the same time alleviating the supersymmetric flavour problem. We discuss two sources of supersymmetry breaking, radion mediation and brane fields, and perform a detailed numerical analysis, thoroughly taking into account the proliferation of unknown O(1) coefficients that occurs in this class of models. It turns out that additional assumptions on supersymmetry breaking are necessary to evade the stringent experimental bounds on lepton flavour violation. The favourable regions of parameter space are then examined with regards to their LHC phenomenology. They generically feature heavy gluinos and squarks beyond current bounds. Lepton flavour violation in SUSY cascade decays can give interesting signatures. (orig.)
Supersymmetric AdS6 solutions of type IIB supergravity
International Nuclear Information System (INIS)
Kim, Hyojoong; Kim, Nakwoo; Suh, Minwoo
2015-01-01
We study the general requirement for supersymmetric AdS 6 solutions in type IIB supergravity. We employ the Killing spinor technique and study the differential and algebraic relations among various Killing spinor bilinears to find the canonical form of the solutions. Our result agrees precisely with the work of Apruzzi et al. (JHEP 1411:099, 2014), which used the pure spinor technique. Hoping to identify the geometry of the problem, we also computed four-dimensional theory through the dimensional reduction of type IIB supergravity on AdS 6 . This effective action is essentially a non-linear sigma model with five scalar fields parametrizing SL(3,ℝ)/SO(2,1), modified by a scalar potential and coupled to Einstein gravity in Euclidean signature. We argue that the scalar potential can be explained by a subgroup CSO(1,1,1) ⊂SL(3,ℝ) in a way analogous to gauged supergravity
Goldstone fermions in supersymmetric theories at finite temperature
International Nuclear Information System (INIS)
Aoyama, H.; Boyanovsky, D.
1984-01-01
The behavior of supersymmetric theories at finite temperature is examined. It is shown that supersymmetry is broken for any T> or =0 because of the different statistics obeyed by bosons and fermions. This breaking is always associated with a Goldstone mode(s). This phenomenon is shown to take place even in a free massive theory, where the Goldstone modes are created by composite fermion-boson bilinear operators. In the interacting theory with chiral symmetry, the same bilinear operators create the chiral doublet of Goldstone fermions, which is shown to saturate the Ward-Takahashi identities up to one loop. Because of this spontaneous supersymmetry breaking, the fermions and the bosons acquire different effective masses. In theories without chiral symmetry, at the tree level the fermion-boson bilinear operators create Goldstone modes, but at higher orders these modes become massive and the elementary fermion becomes the Goldstone field because of the mixing with these bilinear operators
The general supersymmetric solution of topologically massive supergravity
International Nuclear Information System (INIS)
Gibbons, G W; Pope, C N; Sezgin, E
2008-01-01
We find the general fully nonlinear solution of topologically massive supergravity admitting a Killing spinor. It is of plane-wave type, with a null Killing vector field. Conversely, we show that all solutions with a null Killing vector are supersymmetric for one or the other choice of sign for the Chern-Simons coupling constant μ. If μ does not take the critical value, μ = ±1, these solutions are asymptotically regular on a Poincare patch, but do not admit a smooth global compactification with boundary S 1 x R. In the critical case, the solutions have a logarithmic singularity on the boundary of the Poincare patch. We derive a Nester-Witten identity, which allows us to identify the associated charges, but we conclude that the presence of the Chern-Simons term prevents us from making a statement about their positivity. The Nester-Witten procedure is applied to the BTZ black hole
Local gauge coupling running in supersymmetric gauge theories on orbifolds
International Nuclear Information System (INIS)
Hillenbach, M.
2007-01-01
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
Structure of UV divergences in maximally supersymmetric gauge theories
Kazakov, D. I.; Borlakov, A. T.; Tolkachev, D. M.; Vlasenko, D. E.
2018-06-01
We consider the UV divergences up to sub-subleading order for the four-point on-shell scattering amplitudes in D =8 supersymmetric Yang-Mills theory in the planar limit. We trace how the leading, subleading, etc divergences appear in all orders of perturbation theory. The structure of these divergences is typical for any local quantum field theory independently on renormalizability. We show how the generalized renormalization group equations allow one to evaluate the leading, subleading, etc. contributions in all orders of perturbation theory starting from one-, two-, etc. loop diagrams respectively. We focus then on subtraction scheme dependence of the results and show that in full analogy with renormalizable theories the scheme dependence can be absorbed into the redefinition of the couplings. The only difference is that the role of the couplings play dimensionless combinations like g2s2 or g2t2, where s and t are the Mandelstam variables.
Local gauge coupling running in supersymmetric gauge theories on orbifolds
Energy Technology Data Exchange (ETDEWEB)
Hillenbach, M.
2007-11-21
By extending Feynman's path integral calculus to fields which respect orbifold boundary conditions we provide a straightforward and convenient framework for loop calculations on orbifolds. We take advantage of this general method to investigate supersymmetric Abelian and non-Abelian gauge theories in five, six and ten dimensions where the extra dimensions are compactified on an orbifold. We consider hyper and gauge multiplets in the bulk and calculate the renormalization of the gauge kinetic term which in particular allows us to determine the gauge coupling running. The renormalization of the higher dimensional theories in orbifold spacetimes exhibits a rich structure with three principal effects: Besides the ordinary renormalization of the bulk gauge kinetic term the loop effects may require the introduction of both localized gauge kinetic terms at the fixed points/planes of the orbifold and higher dimensional operators. (orig.)
International Nuclear Information System (INIS)
Bardet, Rene; Consoli, Terenzio; Geller, Richard
1964-09-01
In the first part of the paper, the theory of the physical mechanism of ion dragging by accelerated electrons due to the superimposition of the gradient of a electromagnetic field and the gradient of a static magnetic field, is described. The resulting trajectory of the electrons is a helicoid and one shows the variations of the diameter and the path of the spirals along the axis as a function of the difference between the gyrofrequency and the applied R.F. frequency. The ion acceleration is due to an electron space charge effect. The grouping of the equations of the electronic and ionic fluid motions leads to the introduction of a tensor mass: along the x and y direction the transverse motion of the fluid is controlled by the relativistic mass of electrons whereas along the z direction the axial motion is determined by the ionic mass. Then we deduce physical consequences of the theoretical study and give three experimental evidences. The second part of the paper is devoted to the experimental device called Pleiade which allowed us to verify some of the theoretical predictions. Pleiade produces a D.C. operating plasma beam in which the electrons exhibit radially oriented energies whereas the ionic energy is mainly axial. The experimental results indicate that the energy of the particles is in the keV range. In the third part we deal with the reflecting properties of the device. We show that the R.F. static magnetic field gradients are not only capable of accelerating a Plasma beam along the axially decreasing magnetic field, but are also capable of stopping and reflecting such a beam when the latter is moving along an axially increasing magnetic field. We describe finally a plasma accumulation experiment in which two symmetric structures form simultaneously an accelerator and a 'dynamic mirror' for the particles. Evidence of accumulation is given. (authors) [fr
International Nuclear Information System (INIS)
Sasaki, Ryu; Yamanaka, Itaru
1987-01-01
The quantum version of an infinite set of polynomial conserved quantities of a class of soliton equations is discussed from the point of view of naive continuum field theory. By using techniques of two dimensional field theories, we show that an infinite set of quantum commuting operators can be constructed explicitly from the knowledge of its classical counterparts. The quantum operators are so constructed as to coincide with the classical ones in the ℎ → 0 limit (ℎ; Planck's constant divided by 2π). It is expected that the explicit forms of these operators would shed some light on the structure of the infinite dimensional Lie algebras which underlie a certain class of quantum integrable systems. (orig.)
International Nuclear Information System (INIS)
Sasaki, Ryu; Yamanaka, Itaru.
1986-08-01
The quantum version of an infinite set of polynomial conserved quantities of a class of soliton equations is discussed from the point of view of naive continuum field theory. By using techniques of two dimensional field theories, we show that an infinite set of quantum commuting operators can be constructed explicitly from the knowledge of its classical counterparts. The quantum operators are so constructed as to coincide with the classical ones in the ℎ → 0 limit (ℎ; Planck's constant divided by 2π). It is expected that the explicit forms of these operators would shed some light on the structure of the infinite dimensional Lie algebras which underlie certain class of quantum integrable systems. (author)
International Nuclear Information System (INIS)
Itoh, Hiroyasu; Tomioka, Satoshi; Enoto, Takeaki
1994-01-01
Wave information about micro-pulses of electron beams is required in order to control an electron beam precisely, and it may be possible to obtain such information by analyzing the spectrum of the electromagnetic field created by a linac electron beam. In order to derive the spectrum, we measured the spatial distribution generated by a standing wave. Furthermore we calculated the transient electromagnetic field excited by a bunched electron beam, using the finite-difference time-domain (FD-TD) method, and compared two spectra in the frequency domain, into which the calculated value in time variation and the measured values in spatial variation are transformed by using the fast Fourier transform (FFT) respectively. (author)
Energy Technology Data Exchange (ETDEWEB)
Mierau, Anna; Weiland, Thomas [Technische Universitaet Darmstadt (DE). Institut fuer Theorie Elektromagnetischer Felder (TEMF); Schnizer, Pierre; Fischer, Egbert [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Akishin, Pavel [JINR, Dubna (Russian Federation)
2010-07-01
The heavy ion synchrotron SIS100, the core component of the Facility of Antiproton and Ion Research will accelerate high current ion beams of up to U{sup 27+}. For operating such a machine the static and transient magnetic field quality must be fully understood. This is also necessary to keep the beam losses well below acceptable limits and to prepare a sound strategy for high resolution magnetic measurements and data analysis. Challenging preconditions to perform such work are to find a proper description for the non. Cartesian symmetry of the magnets, most important for curved dipoles with elliptical apertures. We describe the parameterisation methods using elliptic and toroidal multipoles and summarise comparing the calculated to the measured field quality.
Field theory approaches to new media practices: An introduction and some theoretical considerations
Ida Willig; Karen Waltorp; Jannie Møller Hartley
2015-01-01
In this article introducing the theme of the special issue we argue that studies of new media practices might benefit from especially Pierre Bourdieu’s research on cultural production. We introduce some of the literature, which deals with the use of digital media, and which have taken steps to develop field theory in this context. Secondly, we present the four thematic articles in this issue and the articles outside the theme, which includes two translations of classic texts within communicat...
THEORETICAL COMPUTATION OF A STRESS FIELD IN A CYLINDRICAL GLASS SPECIMEN
Directory of Open Access Journals (Sweden)
NORBERT KREČMER
2011-03-01
Full Text Available This work deals with the computation of the stress field generated in an infinitely high glass cylinder while cooling. The theory of structural relaxation is used in order to compute the heat capacity, the thermal expansion coefficient, and the viscosity. The relaxation of the stress components is solved in the frame of the Maxwell viscoelasticity model. The obtained results were verified by the sensitivity analysis and compared with some experimental data.
Energy Technology Data Exchange (ETDEWEB)
Peru, S. [CEA, DAM, DIF, Arpajon (France); Martini, M. [Ghent University, Department of Physics and Astronomy, Gent (Belgium); CEA, DAM, DIF, Arpajon (France); Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)
2014-05-15
We present a review of several works using the finite-range Gogny interaction in mean field approaches and beyond to explore the most striking nuclear structure features. Shell evolution along the N = 16, 20, 28, 40 isotopic chains is investigated. The static deformation obtained in the mean field description are shown to be often in disagreement with the one experimentally determined. Dynamics is addressed in a GCM-like method, including rotational degrees of freedom, namely the five-dimension collective Hamiltonian (5DCH). This framework allows the description of the low-energy collective excitations. Nevertheless, some data cannot be reproduced with the collective Hamiltonian approach. Thus the QRPA formalism is introduced and used to simultaneously describe high- and low-energy spectroscopy as well as collective and individual excitations. After the description of giant resonances in doubly magic exotic nuclei, the role of the intrinsic deformation in giant resonances is presented. The appearance of low-energy dipole resonances in light nuclei is also discussed. In particular the isoscalar or isovector nature of Pygmy states is debated. Then, the first microscopic fully coherent description of the multipole spectrum of heavy deformed nucleus {sup 238}U is presented. Finally, a comparison of the low-energy spectrum obtained within the two extensions of the static mean field, namely QRPA and 5DCH, is performed for 2{sup +} states in N = 16 isotones, nickel and tin isotopes. For the first time the different static and dynamic factors involved in the generation of the 2{sup +} states in the nickel isotopic chain, from drip line to drip line, can be analysed in only one set of coherent approaches, free of adjustable parameters, using the same two-body interaction D1S and the resulting HFB mean field. (orig.)
Theoretical study of a weakly ionised gas in a uniform constant electric field
International Nuclear Information System (INIS)
Segur, Pierre.
1974-01-01
The collision operators of the Boltzmann equation are expressed in terms of the transition probabilities for a Lorentz gas and inelastic type collisions in the case of conservation and non-conservation of the initial number of particles. These operators are approximately expressed when the mass ratio of the present particles is weak. The expressions obtained are valid for any particle distribution functions. A series expansion in spherical harmonics is effected for these operators. The Boltzmann equation is then solved for the case of a steady homogeneous medium when the electric field effect is lower than that of collisions. A resolving method is then proposed for the case where the electric field and collisions play comparable roles. Analytical expressions are given for the distribution functions in terms of asymptotic solutions valid for any type of cross section. A steady heterogenous medium is then studied by a direct numerical solution of the Boltzmann equation, for high values of the electric field/ pressure ratio. The existence of a single lattice of characteristic directions is established as well as a distribution function representing in phase space a band structure characteristic of the presence of inelastic collisions. The electron motion is simulated using a Monte-Carlo method. The calculations being effected in helium, a bibliography of the cross sections for this gas is given [fr
Cartography, new technologies and geographic education: theoretical approaches to research the field
Seneme do Canto, Tânia
2018-05-01
In order to understand the roles that digital mapping can play in cartographic and geographic education, this paper discusses the theoretical and methodological approach used in a research that is undertaking in the education of geography teachers. To develop the study, we found in the works of Lankshear and Knobel (2013) a notion of new literacies that allows us looking at the practices within digital mapping in a sociocultural perspective. From them, we conclude that in order to understand the changes that digital cartography is able to foment in geography teaching, it is necessary to go beyond the substitution of means in the classroom and being able to explore what makes the new mapping practices different from others already consolidated in geography teaching. Therefore, we comment on some features of new forms of cartographic literacy that are in full development with digital technologies, but which are not determined solely by their use. The ideas of Kitchin and Dodge (2007) and Del Casino Junior and Hanna (2006) are also an important reference for the research. Methodologically, this approach helps us to understand that in the seek to comprehend maps and their meanings, irrespective of the medium used, we are dealing with a process of literacy that is very particular and emergent because it involves not only the characteristics of the map artifact and of the individual that produces or consumes it, but depends mainly on a diversity of interconnections that are being built between them (map and individual) and the world.
N=2 extended supersymmetric GUTs
International Nuclear Information System (INIS)
Fayet, P.
1984-01-01
We construct N = 2 extended SUSY GUTs which provide a general association between massive spin-1 gauge bosons, spin-1/2 inos and spin-0 Higgs bosons. The corresponding gauge hypermultiplets are of four different types, while leptons and quarks are associated with mirror and spin-0 partners. The anticommutators of the two supersymmetry generators provide two spin-0 symmetry generators Zsub(s) and Zsub(p), which do not commute. Their field-independent parts and do commute, however, and appear as central charges in the symmetry algebra of the spontaneously broken gauge theory. These central charges and are linear combinations of global symmetry generators with grand unification generators such as the weak hypercharge (but not the electrical charge). They survive the electroweak symmetry breaking. They do not vanish for massive gauge hypermultiplets of types II and III, which verify M 2 = 2 + 2 > 0 and M 2 > 2 + 2 > 0, respectively. The formula M 2 approx.= 2 + 2 determines the mass spectrum on the grand unification scale, up to electroweak corrections. Finally, we indicate how our mass relations can be interpreted in a 5- or 6-dimensional formalism, the central charges appearing as the extra components of the covariant momentum along the compact fifth or sixth dimensions; and how to evaluate the grand unification mass msub(x) in terms of the lengths of the latter (msub(x)approx.=(h/2π)/Lsub(5(6))c). (orig./HSI)
Carvalho, Brígida Gimenez; Peduzzi, Marina; Mandú, Edir Nei Teixeira; Ayres, José Ricardo de Carvalho Mesquita
2012-01-01
This theoretical reflection intends to show the inter-subjective relationship that takes place in health and nursing practices under the following theoretical perspectives: Institutional Analysis, Psychodynamics of Labor and the Theory of Communicative Action, with an emphasis on the latter. Linking these concepts to the Marxist approach to work in the field of health emerges from recognizing the need for its continuous reconstruction-in this case, with a view to understand the interaction and communication intrinsic to work in action. The theory of Communicative Action seeks to consider these two inextricable dimensions: work as productive action and as interaction. The first corresponds to instrumental action based on technical rules with a production-guided rationale. The second refers to the interaction that takes place as communicative action and seeks understanding among subjects. We assume that adopting this theoretical perspective in the analysis of health and nursing practices opens new possibilities for clarifying its social and historical process and inter-subjective connections.
Teber, S.; Kotikov, A. V.
2018-04-01
The field theoretic renormalization study of reduced quantum electrodynamics (QED) is performed up to two loops. In the condensed matter context, reduced QED constitutes a very natural effective relativistic field theory describing (planar) Dirac liquids, e.g., graphene and graphenelike materials, the surface states of some topological insulators, and possibly half-filled fractional quantum Hall systems. From the field theory point of view, the model involves an effective (reduced) gauge field propagating with a fractional power of the d'Alembertian in marked contrast with usual QEDs. The use of the Bogoliubov-Parasiuk-Hepp-Zimmermann prescription allows for a simple and clear understanding of the structure of the model. In particular, in relation with the ultrarelativistic limit of graphene, we straightforwardly recover the results for both the interaction correction to the optical conductivity C*=(92 -9 π2)/(18 π ) and the anomalous dimension of the fermion field γψ(α ¯ ,ξ )=2 α ¯ (1 -3 ξ )/3 -16 (ζ2NF+4 /27 ) α¯ 2+O (α¯ 3) , where α ¯=e2/(4 π )2 and ξ is the gauge-fixing parameter.
Theoretical reversed field pinch studies: Progress report, August 31, 1987 to June 1988
International Nuclear Information System (INIS)
1988-01-01
This paper describes the progress made in Grant DE-FG02-85ER53212 since the end of the last year, August 31, 1987 to the present (June, 1988). Substantial results have emerged in two areas of high importance to the RFP program - nonlinear evolution with nonideal boundaries and self-consistent equilibrium in the presence of field errors. Both of these topics are critical for a basic understanding of RFP physics, for interpretation of current experiments, and for design of future devices and reactors. 3 refs
Theoretical transport analysis of density limit with radial electric field in helical plasmas
International Nuclear Information System (INIS)
Toda, S.; Itoh, K.
2010-11-01
The confinement property in helical toroidal plasmas is clarified. The analysis is performed by use of the one-dimensional transport equations with the effect of the radiative loss and the radial profile of the electric field. The analytical results in the edge region show the steep gradient in the electron temperature, which indicates the transport barrier formation. Because of the rapid increase of the radiative loss at the low electron temperature, the anomalous heat diffusivity is reduced near the edge. Next, the efficiency of the heating power input in the presence of the radiative loss is studied. The scaling of the critical density in helical devices is also derived. (author)
Restudy of the open-superstring tree amplitudes by looking at their field-theoretical limits
International Nuclear Information System (INIS)
Hsu, R.; Yeung, W.B.; Yu, H.L.
1987-01-01
We carry out complete computations of some open- and closed-superstring tree amplitudes by using the bosonized covariant vertices. Some open-superstring amplitudes so obtained are shown to be different from those obtained in the light-cone gauge approach by some numerical factors. The low-energy limits of our five open-superstring amplitudes are then shown to match the five super Yang-Mills field amplitudes while the five light-cone gauge open-superstring amplitudes fail to do so
On the group theoretical meaning of conformal field theories in the framework of coadjoint orbits
International Nuclear Information System (INIS)
Aratyn, H.; Nissimov, E.; Pacheva, S.
1990-01-01
We present a unifying approach to conformal field theories and other geometric models within the formalism of coadjoint orbits of infinite dimensional Lie groups with central extensions. Starting from the previously obtained general formula for the symplectic action in terms of two fundamental group one-cocycles, we derive the most general form of the Polyakov-Wiegmann composition laws for any geometric model. These composition laws are succinct expressions of all pertinent Noether symmetries. As a basic consequence we obtain Ward identities allowing for the exact quantum solvability of any geometric model. (orig.)
Field theoretic perspectives of the Wigner function formulation of the chiral magnetic effect
Wu, Yan; Hou, De-fu; Ren, Hai-cang
2017-11-01
We assess the applicability of the Wigner function formulation in its present form to the chiral magnetic effect and note some issues regarding the conservation and the consistency of the electric current in the presence of an inhomogeneous and time-dependent axial chemical potential. The problems are rooted in the ultraviolet divergence of the underlying field theory associated with the axial anomaly and can be fixed with the Pauli-Villars regularization of the Wigner function. The chiral magnetic current with a nonconstant axial chemical potential is calculated with the regularized Wigner function and the phenomenological implications are discussed.
DEFF Research Database (Denmark)
Jensen, Christian Flytkjær; Bak, Claus Leth; Gudmundsdottir, Unnur Stella
2014-01-01
In this paper, the electromagnetic pulse propagation velocity on a three-phase cable system, consisting of three single core (SC) cables in flat formation with an earth continuity conductor is under study. The propagation velocity is an important parameter for most travelling wave off- and online...... fault location methods and needs to be exactly known for optimal performance of these algorithm types. Field measurements are carried out on a 6.9 km and a 31.4 km 245 kV crossbonded cable system, and the results are analysed using the modal decomposition theory. Several ways for determining...
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E.; Weiglein, G. [DESY, Hamburg (Germany); Costa, J.C.; Buchmueller, O.; Citron, M.; Richards, A.; De Vries, K.J. [Imperial College, High Energy Physics Group, Blackett Laboratory, London (United Kingdom); Sakurai, K. [University of Durham, Science Laboratories, Department of Physics, Institute for Particle Physics Phenomenology, Durham (United Kingdom); University of Warsaw, Faculty of Physics, Institute of Theoretical Physics, Warsaw (Poland); Borsato, M.; Chobanova, V.; Lucio, M.; Martinez Santos, D. [Universidade de Santiago de Compostela, Santiago de Compostela (Spain); Cavanaugh, R. [Fermi National Accelerator Laboratory, Batavia, IL (United States); University of Illinois at Chicago, Physics Department, Chicago, IL (United States); Roeck, A. de [CERN, Experimental Physics Department, Geneva (Switzerland); Antwerp University, Wilrijk (Belgium); Dolan, M.J. [University of Melbourne, ARC Centre of Excellence for Particle Physics at the Terascale, School of Physics, Parkville (Australia); Ellis, J.R. [King' s College London, Theoretical Particle Physics and Cosmology Group, Department of Physics, London (United Kingdom); Theoretical Physics Department, CERN, Geneva 23 (Switzerland); Flaecher, H. [University of Bristol, H.H. Wills Physics Laboratory, Bristol (United Kingdom); Heinemeyer, S. [Campus of International Excellence UAM+CSIC, Cantoblanco, Madrid (Spain); Instituto de Fisica Teorica UAM-CSIC, Madrid (Spain); Instituto de Fisica de Cantabria (CSIC-UC), Santander (Spain); Isidori, G. [Universitaet Zuerich, Physik-Institut, Zurich (Switzerland); Olive, K.A. [University of Minnesota, William I. Fine Theoretical Physics Institute, School of Physics and Astronomy, Minneapolis, MN (United States)
2017-02-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has seven parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and flavour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets + E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R} - χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub τ} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC. (orig.)
Likelihood analysis of supersymmetric SU(5) GUTs
Energy Technology Data Exchange (ETDEWEB)
Bagnaschi, E. [DESY, Hamburg (Germany); Costa, J.C. [Imperial College, London (United Kingdom). Blackett Lab.; Sakurai, K. [Durham Univ. (United Kingdom). Inst. for Particle Physics Phenomonology; Warsaw Univ. (Poland). Inst. of Theoretical Physics; Collaboration: MasterCode Collaboration; and others
2016-10-15
We perform a likelihood analysis of the constraints from accelerator experiments and astrophysical observations on supersymmetric (SUSY) models with SU(5) boundary conditions on soft SUSY-breaking parameters at the GUT scale. The parameter space of the models studied has 7 parameters: a universal gaugino mass m{sub 1/2}, distinct masses for the scalar partners of matter fermions in five- and ten-dimensional representations of SU(5), m{sub 5} and m{sub 10}, and for the 5 and anti 5 Higgs representations m{sub H{sub u}} and m{sub H{sub d}}, a universal trilinear soft SUSY-breaking parameter A{sub 0}, and the ratio of Higgs vevs tan β. In addition to previous constraints from direct sparticle searches, low-energy and avour observables, we incorporate constraints based on preliminary results from 13 TeV LHC searches for jets+E{sub T} events and long-lived particles, as well as the latest PandaX-II and LUX searches for direct Dark Matter detection. In addition to previously-identified mechanisms for bringing the supersymmetric relic density into the range allowed by cosmology, we identify a novel u{sub R}/c{sub R}-χ{sup 0}{sub 1} coannihilation mechanism that appears in the supersymmetric SU(5) GUT model and discuss the role of ν{sub T} coannihilation. We find complementarity between the prospects for direct Dark Matter detection and SUSY searches at the LHC.
Whiting, Ellis E.
1990-01-01
Future space vehicles returning from distant missions or high earth orbits may enter the upper regions of the atmosphere and use aerodynamic drag to reduce their velocity before they skip out of the atmosphere and enter low earth orbit. The Aeroassist Flight Experiment (AFE) is designed to explore the special problems encountered in such entries. A computer code was developed to calculate the radiative transport along line-or-sight in the general 3-D flow field about an arbitrary entry vehicle, if the temperatures and species concentrations along the line-of-sight are known. The radiative heating calculation at the stagnation point of the AFE vehicle along the entry trajectory was performed, including a detailed line-by-line accounting of the radiative transport in the vacuum ultraviolet (below 200 nm) by the atomic N and O lines. A method was developed for making measurements of the haze particles in the Titan atmosphere above 200 km altitude. Several other tasks of a continuing nature, to improve the technical ability to calculate the nonequilibrium gas dynamic flow field and radiative heating of entry vehicles, were completed or advanced.
Field theoretic approach to dynamical orbital localization in ab initio molecular dynamics
International Nuclear Information System (INIS)
Thomas, Jordan W.; Iftimie, Radu; Tuckerman, Mark E.
2004-01-01
Techniques from gauge-field theory are employed to derive an alternative formulation of the Car-Parrinello ab initio molecular-dynamics method that allows maximally localized Wannier orbitals to be generated dynamically as the calculation proceeds. In particular, the Car-Parrinello Lagrangian is mapped onto an SU(n) non-Abelian gauge-field theory and the fictitious kinetic energy in the Car-Parrinello Lagrangian is modified to yield a fully gauge-invariant form. The Dirac gauge-fixing method is then employed to derive a set of equations of motion that automatically maintain orbital locality by restricting the orbitals to remain in the 'Wannier gauge'. An approximate algorithm for integrating the equations of motion that is stable and maintains orbital locality is then developed based on the exact equations of motion. It is shown in a realistic application (64 water molecules plus one hydrogen-chloride molecule in a periodic box) that orbital locality can be maintained with only a modest increase in CPU time. The ability to keep orbitals localized in an ab initio molecular-dynamics calculation is a crucial ingredient in the development of emerging linear scaling approaches
Supersymmetric quiver gauge theories on the lattice
International Nuclear Information System (INIS)
Joseph, Anosh
2013-12-01
In this paper we detail the lattice constructions of several classes of supersymmetric quiver gauge theories in two and three Euclidean spacetime dimensions possessing exact supersymmetry at finite lattice spacing. Such constructions are obtained through the methods of topological twisting and geometric discretization of Euclidean Yang-Mills theories with eight and sixteen supercharges in two and three dimensions. We detail the lattice constructions of two-dimensional quiver gauge theories possessing four and eight supercharges and three-dimensional quiver gauge theories possessing eight supercharges.
Effective Higgs theories in supersymmetric grand unification
Energy Technology Data Exchange (ETDEWEB)
Zheng, Sibo [Chongqing University, Department of Physics, Chongqing (China)
2017-09-15
The effective Higgs theories at the TeV scale in supersymmetric SU(5) grand unification models are systematically derived. Restricted to extensions on 5{sub H} containing the Higgs sector we show that only two types of real (vector-like) models and one type of chiral model are found to be consistent with perturbative grand unification. While the chiral model has been excluded by the LHC data, the fate of perturbative unification will be uniquely determined by the two classes of vector-like models. (orig.)
Singularity Structure of Maximally Supersymmetric Scattering Amplitudes
DEFF Research Database (Denmark)
Arkani-Hamed, Nima; Bourjaily, Jacob L.; Cachazo, Freddy
2014-01-01
We present evidence that loop amplitudes in maximally supersymmetric (N=4) Yang-Mills theory (SYM) beyond the planar limit share some of the remarkable structures of the planar theory. In particular, we show that through two loops, the four-particle amplitude in full N=4 SYM has only logarithmic ...... singularities and is free of any poles at infinity—properties closely related to uniform transcendentality and the UV finiteness of the theory. We also briefly comment on implications for maximal (N=8) supergravity theory (SUGRA)....
Problems with False Vacua in Supersymmetric Theories
Bajc, Borut; Senjanovic, Goran
2011-01-01
It has been suggested recently that in a consistent theory any Minkowski vacuum must be exactly stable. As a result, a large class of theories that in ordinary treatment would appear sufficiently long-lived, in reality make no sense. In particular, this applies to supersymmetric models in which global supersymmetry is broken in a false vacuum. We show that in any such theory the dynamics of supersymmetry breaking cannot be decoupled from the Planck scale physics. This finding poses an obvious challenge for the idea of low-scale metastable (for example gauge) mediation.
Twist deformations of the supersymmetric quantum mechanics
Energy Technology Data Exchange (ETDEWEB)
Castro, P.G.; Chakraborty, B.; Toppan, F., E-mail: pgcastro@cbpf.b, E-mail: biswajit@bose.res.i, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Kuznetsova, Z., E-mail: zhanna.kuznetsova@ufabc.edu.b [Universidade Federal do ABC (UFABC), Santo Andre, SP (Brazil)
2009-07-01
The N-extended supersymmetric quantum mechanics is deformed via an abelian twist which preserves the super-Hopf algebra structure of its universal enveloping superalgebra. Two constructions are possible. For even N one can identify the 1D N-extended superalgebra with the fermionic Heisenberg algebra. Alternatively, supersymmetry generators can be realized as operators belonging to the Universal Enveloping Superalgebra of one bosonic and several fermionic oscillators. The deformed system is described in terms of twisted operators satisfying twist deformed (anti)commutators. The main differences between an abelian twist defined in terms of fermionic operators and an abelian twist defined in terms of bosonic operators are discussed. (author)
The minimally tuned minimal supersymmetric standard model
International Nuclear Information System (INIS)
Essig, Rouven; Fortin, Jean-Francois
2008-01-01
The regions in the Minimal Supersymmetric Standard Model with the minimal amount of fine-tuning of electroweak symmetry breaking are presented for general messenger scale. No a priori relations among the soft supersymmetry breaking parameters are assumed and fine-tuning is minimized with respect to all the important parameters which affect electroweak symmetry breaking. The superpartner spectra in the minimally tuned region of parameter space are quite distinctive with large stop mixing at the low scale and negative squark soft masses at the high scale. The minimal amount of tuning increases enormously for a Higgs mass beyond roughly 120 GeV
Asymptotically Free Natural Supersymmetric Twin Higgs Model
Badziak, Marcin; Harigaya, Keisuke
2018-05-01
Twin Higgs (TH) models explain the absence of new colored particles responsible for natural electroweak symmetry breaking (EWSB). All known ultraviolet completions of TH models require some nonperturbative dynamics below the Planck scale. We propose a supersymmetric model in which the TH mechanism is introduced by a new asymptotically free gauge interaction. The model features natural EWSB for squarks and gluino heavier than 2 TeV even if supersymmetry breaking is mediated around the Planck scale, and has interesting flavor phenomenology including the top quark decay into the Higgs boson and the up quark which may be discovered at the LHC.
The eikonal phase of supersymmetric Coulomb partners
Lassaut, M; Lombard, R J
1998-01-01
We investigate the eikonal phase and its systematic corrections for the two supersymmetric Coulomb partners V sub 1 and V sub 2 derived by Amado. Apart from a constant shift of -pi for V sub 1 and -2 pi for V sub 2 , the eikonal phase decay to the eikonal phase of the Coulomb potential as 1/kb. For the potential V sub 2 , which is phase equivalent to the Coulomb potential, this result is only valid at b approx =0 and asymptotically; in the intermediate range, it constitutes a lower limit. (author)
Energy Technology Data Exchange (ETDEWEB)
Sudiarta, I. Wayan; Angraini, Lily Maysari, E-mail: lilyangraini@unram.ac.id [Physics Study Program, University of Mataram, Jln. Majapahit 62 Mataram, NTB (Indonesia)
2016-04-19
We have applied the finite difference time domain (FDTD) method with the supersymmetric quantum mechanics (SUSY-QM) procedure to determine excited energies of one dimensional quantum systems. The theoretical basis of FDTD, SUSY-QM, a numerical algorithm and an illustrative example for a particle in a one dimensional square-well potential were given in this paper. It was shown that the numerical results were in excellent agreement with theoretical results. Numerical errors produced by the SUSY-QM procedure was due to errors in estimations of superpotentials and supersymmetric partner potentials.
International Nuclear Information System (INIS)
Khodjaev, L.Sh.
2004-01-01
Full text: We review the conceptual foundation of Yang-Mills gauge field theories. On these gauge theories the Standard Model (SM) are constructed. The fundamental postulates and their immediate consequence of the SM are formulated. The SM is a Yang-Mills type gauge field theory basically dictated by the Generalized Gauge Principle (GGP). According to this principle all fundamental forces of nature such as strong, electroweak, gravitational are mediated by an exchange of the Yang-Mills gauge fields corresponding gauge group. The SM is constructed by extension of the global non-Abelian SU(3)xSU(2)xU(1) symmetry to the local SU(3)xSU(2)xU(1) symmetry under which the Lagrangian of the SM invariant. This full symmetry has to be broken by Higgs mechanism down to the Electroweak gauge symmetry. The concept of fundamental particles does not exist. To Look for not Fundamental Particles but Fundamental symmetries. By searching of more general theory it is natural to search first of all Global symmetries and then to learn consequences connected with the localization of the global symmetries like wise of SM. The SM is renormalizable and therefor potentially consist at all energy scales. The SM in principle can describe the properties of the Universe beginning at 10 -43 sec. after BIG BANG. A SM of the BIG BANG Particle physics provides one of the few windows of the high energy world beyond SM which is consistent with SM and Cosmology. All the fundamental particles of the SM such as quarks, leptons and weak intermediate vector-gauge Bosons except one Higgs boson H 0 have been discovered and there masses and spins have been determined. The SM is stunning. Until now, no cracks have been found. There is no experiment that contradicts the SM. Moreover there is nothing observed beyond the SM. The SM works better and better. We proposed to construct colour singular nuclear forces theory based on Quantum Chromodynamics (QCD). As well Theological aspects of the BIG BANG
Quantum field-theoretical description of neutrino and neutral kaon oscillations
Volobuev, Igor P.
2018-05-01
It is shown that the neutrino and neutral kaon oscillation processes can be consistently described in quantum field theory using only plane waves of the mass eigenstates of neutrinos and neutral kaons. To this end, the standard perturbative S-matrix formalism is modified so that it can be used for calculating the amplitudes of the processes passing at finite distances and finite time intervals. The distance-dependent and time-dependent parts of the amplitudes of the neutrino and neutral kaon oscillation processes are calculated and the results turn out to be in accordance with those of the standard quantum mechanical description of these processes based on the notion of neutrino flavor states and neutral kaon states with definite strangeness. However, the physical picture of the phenomena changes radically: now, there are no oscillations of flavor or definite strangeness states, but, instead of it, there is interference of amplitudes due to different virtual mass eigenstates.
Suess, S. T.; Thomas, B. T.; Nerney, S. F.
1985-01-01
Observations of the azimuthal component of the IMF are evaluated through the use of an MHD model which shows the effect of magnetic flux tubes opening in the outer solar system. It is demonstrated that the inferred meridional transport of magnetic flux is consistent with predictions by the MHD model. The computed azimuthal and radial magnetic flux deficits are almost identical to the observations. It is suggested that the simplest interpretation of the observations is that meridional flows are created by a direct body force on the plasma. This is consistent with the analytic model of Nerney and Suess (1975), in which such flux deficits in the IMF arise naturally from the meridional gradient in the spiralling field.
A theoretical basis of the approach for the magnetic field penetration measurement
International Nuclear Information System (INIS)
Bezotosnyi, P I; Gavrilkin, S Yu; Ivanenko, O M; Mitsen, K V; Tsvetkov, A Yu
2016-01-01
An approach for the assessment of London penetration depth of superconducting films is proposed. This approach is based on the analysis of linear response of the sample to a local low-frequency alternating magnetic field generated by the measuring coil disposed near the film surface. A visual “electrical engineering” model of induced currents distribution in the superconductor taking into account the kinetic inductance was developed for a description of this response. The possibility of determining of the penetration depth from changing the inductance of the system “coil-sample” is shown in the framework of this model. The sensitivity of the proposed method for the films with different thicknesses is considered. (paper)
Field-theoretic methods in strongly-coupled models of general gauge mediation
International Nuclear Information System (INIS)
Fortin, Jean-François; Stergiou, Andreas
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current–current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry breaking arises both from a hidden sector and dynamically. Our results suggest that strongly-coupled models of supersymmetry breaking are naturally split
Field-theoretic Methods in Strongly-Coupled Models of General Gauge Mediation
Fortin, Jean-Francois
2013-01-01
An often-exploited feature of the operator product expansion (OPE) is that it incorporates a splitting of ultraviolet and infrared physics. In this paper we use this feature of the OPE to perform simple, approximate computations of soft masses in gauge-mediated supersymmetry breaking. The approximation amounts to truncating the OPEs for hidden-sector current-current operator products. Our method yields visible-sector superpartner spectra in terms of vacuum expectation values of a few hidden-sector IR elementary fields. We manage to obtain reasonable approximations to soft masses, even when the hidden sector is strongly coupled. We demonstrate our techniques in several examples, including a new framework where supersymmetry-breaking arises both from a hidden sector and dynamically.
Theoretical and experimental study about dose distribution in irregular fields used in radiotherapy
International Nuclear Information System (INIS)
Feld de Lindenboim, D.B.; Lopez de Gomez, C.M.
1979-02-01
Considering the broad use of irregular fields in treatments with teletherapy machines, it is necessary to have simple calculation methods. The purpose of this work is to verify, through measures made with a water phantom, the reliability of a particular calculation method based on measures made in airand the use of the Tables of scatter-air ratio. Based on the values obtained, we may conclude that the method is acceptable for points distant from the lead blocks. Simultaneously, it was proved that secondary radiation in points under lead protections is so important that it becomes of small effectiveness to increase the lead block thickness in order to diminish the total dose in those points. (author) [es
International Nuclear Information System (INIS)
Antoni, Bernard; Nazet, Christian.
1975-07-01
A generator of electrical energy in which magnetic field compression is achieved by a solid explosive is described. The magnetic flux losses have been calculated for generators of various configurations by the skin depth concept. Calculations take the Joule heating of conductors into account. In helical generators the magnetic flux losses are higher than those calculated by considering diffusion only. Additional losses approximately as important as diffusion losses have already been observed elsewhere on similar devices. Detailed calculations of the motion of the explosively driven inner conductor show that losses come from the jumps encountered by sliding contact moving along the helix. The jumps are caused by little geometrical defects and the consequence on losses is strongly dependent on current intensity. The jumps decrease when the pitch of helix increases. The jumps are detrimental to the efficient use of the explosive energy. With helical generators only 5% of the energy is transferred into magnetic energy [fr
A field-theoretic approach to non-equilibrium work identities
International Nuclear Information System (INIS)
Mallick, Kirone; Orland, Henri; Moshe, Moshe
2011-01-01
We study non-equilibrium work relations for a space-dependent field with stochastic dynamics (model A). Jarzynski's equality is obtained through symmetries of the dynamical action in the path-integral representation. We derive a set of exact identities that generalize the fluctuation-dissipation relations to non-stationary and far-from-equilibrium situations. These identities are prone to experimental verification. Furthermore, we show that a well-studied invariance of the Langevin equation under supersymmetry, which is known to be broken when the external potential is time dependent, can be partially restored by adding to the action a term which is precisely Jarzynski's work. The work identities can then be retrieved as consequences of the associated Ward-Takahashi identities.
Supersymmetric axial anomalies and the Wess-Zumino action
International Nuclear Information System (INIS)
Harada, K.; Shizuya, K.
1988-01-01
We derive, by an algebraic method, a manifestly supersymmetric extension of Bardeen's minimal form of axial anomalies, which obeys the Wess-Zumino consistency condition. The left-right symmetric form of the anomalies is also obtained by a reduction procedure. We construct the supersymmetric Wess-Zumino effective action and study its low-energy features. (orig.)
A new gauge for supersymmetric abelian gauge theories
International Nuclear Information System (INIS)
Smith, A.W.; Barcelos Neto, J.
1984-01-01
A new gauge for supersymmetric abelian gauge theories is presented. It is shown that this new gauge allows us to obtain terms which usually come as radiative corrections to the supersymmetric abelian gauge theories when one uses the Wess-Zumino gauge. (Author) [pt
IIB solutions with N>28 Killing spinors are maximally supersymmetric
International Nuclear Information System (INIS)
Gran, U.; Gutowski, J.; Papadopoulos, G.; Roest, D.
2007-01-01
We show that all IIB supergravity backgrounds which admit more than 28 Killing spinors are maximally supersymmetric. In particular, we find that for all N>28 backgrounds the supercovariant curvature vanishes, and that the quotients of maximally supersymmetric backgrounds either preserve all 32 or N<29 supersymmetries
One-instanton calculations in N=2 supersymmetric gauge theories
International Nuclear Information System (INIS)
Ito, Katsushi
1998-01-01
We study the low-energy effective action of N=2 supersymmetric gauge theories in the Coulomb branch. Using microscopic instanton calculus, we compute the one-instanton contribution to the pre potential for N=2 supersymmetric SU(N c ) Yang-Mills theory. We show that the microscopic result agrees with the exact solution. (Author). 23 refs
Dispersive and damping properties of supersymmetric sound. 2
International Nuclear Information System (INIS)
Lebedev, V.V.; Smilga, A.V.
1988-01-01
This paper is the second part of the work devoted to the massless fermionic collective excitation in supersymmetric media at nonzero temperature. The solution to generalized kinetic equations for the Wess-Zumino model at low temperatures is presented and the situation at high temperatures is discussed. Supersymmetric gauge models are also discussed
Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry
Energy Technology Data Exchange (ETDEWEB)
Hikida, Yasuaki [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University,Kyoto 606-8502 (Japan); Wada, Taiki [Department of Physical Sciences, College of Science and Engineering, Ritsumeikan University,Shiga 525-8577 (Japan)
2017-03-08
We examine the marginal deformations of double-trace type in 3d supersymmetric U(N) model with N complex free bosons and fermions. We compute the anomalous dimensions of higher spin currents to the 1/N order but to all orders in the deformation parameters by mainly applying the conformal perturbation theory. The 3d field theory is supposed to be dual to 4d supersymmetric Vasiliev theory, and the marginal deformations are argued to correspond to modifying boundary conditions for bulk scalars and fermions. Thus the modification should break higher spin gauge symmetry and generate the masses of higher spin fields. We provide supports for the dual interpretation by relating bulk computation in terms of Witten diagrams to boundary one in conformal perturbation theory.
Marginal deformations of 3d supersymmetric U(N) model and broken higher spin symmetry
International Nuclear Information System (INIS)
Hikida, Yasuaki; Wada, Taiki
2017-01-01
We examine the marginal deformations of double-trace type in 3d supersymmetric U(N) model with N complex free bosons and fermions. We compute the anomalous dimensions of higher spin currents to the 1/N order but to all orders in the deformation parameters by mainly applying the conformal perturbation theory. The 3d field theory is supposed to be dual to 4d supersymmetric Vasiliev theory, and the marginal deformations are argued to correspond to modifying boundary conditions for bulk scalars and fermions. Thus the modification should break higher spin gauge symmetry and generate the masses of higher spin fields. We provide supports for the dual interpretation by relating bulk computation in terms of Witten diagrams to boundary one in conformal perturbation theory.
Directory of Open Access Journals (Sweden)
Cristina GAVRILUŢĂ
2013-12-01
Full Text Available The existing data at European level situate Romania on the last places regarding the rate of organ donation. This fact is also an indicator of the effect of the health policies in Romania in the field of transplant. The research carried out (the study on the population’s attitudes towards the organ donation, the study on the theme of organ transplantation as presented in the Romanian media, and the study on the opinions of the ER doctors, neurologists and neurosurgeons regarding the organ donation and transplantation show different models of approaching the issue of transplant in the European area. The investigations carried out among doctors identify a series of issues which relate, on the one hand, to the cultural component, and, on the other hand, to the structure and functioning of the Romanian health system. The survey carried out in Iași in 2012 shows favorable attitudes towards organ donations in the conditions of a lack of information and of a less effective policy regarding organ donation.
String-theoretic breakdown of effective field theory near black hole horizons
Dodelson, Matthew; Silverstein, Eva
2017-09-01
We investigate the validity of the equivalence principle near horizons in string theory, analyzing the breakdown of effective field theory caused by longitudinal string spreading effects. An experiment is set up where a detector is thrown into a black hole a long time after an early infalling string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-mean-square longitudinal spreading of the initial string as measured by the late infaller. This results from the large relative boost between the string and detector in the near-horizon region, which develops automatically despite their modest initial energies outside the black hole and the weak curvature in the geometry. We subject this scenario to basic consistency checks, using these to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results consistent with the predicted spreading albeit not in a direct analog of the black hole process. We discuss applications of this effect to the firewall paradox, and estimate the time and distance scales it predicts for new physics near black hole and cosmological horizons.
Theoretical and Applied Research in the Field of Higher Geodesy Conducted in Rzeszow
Directory of Open Access Journals (Sweden)
Kadaj Roman
2016-06-01
Full Text Available Important qualitative changes were taking place in polish geodesy in last few years. It was related to application of new techniques and technologies and to introduction of European reference frames in Poland. New reference stations network ASG-EUPOS, together with Internet services which helps in precise positioning was created. It allows to fast setting up precise hybrid networks. New, accurate satellite networks became the basis of new definitions in the field of reference systems. Simultaneously arise the need of new software, which enables to execute the geodetic works in new technical conditions. Authors had an opportunity to participate in mentioned undertakings, also under the aegis of GUGiK, by creation of methods, algorithms and necessary software tools. In this way the automatic postprocessing module (APPS in POZGEO service, a part of ASG-EUPOS system came into being. It is an entirely polish product which works in Trimble environment. Universal software for transformation between PLETRF89, PL-ETRF2000, PULKOWO’42 reference systems as well as defined coordinate systems was created (TRANSPOL v. 2.06 and published as open product. An essential functional element of the program is the quasi-geoid model PL-geoid-2011, which has been elaborated by adjustment (calibration of the global quasi-geoid model EGM2008 to 570 geodetic points (satellite-leveling points. Those and other studies are briefly described in this paper.
Ultraviolet divergences in non-renormalizable supersymmetric theories
International Nuclear Information System (INIS)
Smilga, A.
2017-01-01
We present a pedagogical review of our current understanding of the ultraviolet structure of N =(1, 1) 6D supersymmetric Yang-Mills theory and of N = 8 4D supergravity. These theories are not renormalizable, they involve power ultraviolet divergences and, in all probability, an infinite set of higher-dimensional counterterms that contribute to on-mass-shell scattering amplitudes. A specific feature of supersymmetric theories (especially of extended supersymmetric theories) is that these counterterms may not be invariant off-shell under the full set of supersymmetry transformations. The lowest-dimensional nontrivial counterterm is supersymmetric on-shell. Still higher counterterms may lose even the on-shell invariance. On the other hand, the full effective Lagrangian, generating the amplitudes and representing an infinite sum of counterterms, still enjoys the complete symmetry of original theory. We also discuss simple supersymmetric quantum-mechanical models that exhibit the same behavior.