WorldWideScience

Sample records for superstructure strain measurement

  1. Spin-Orbital Superstructure in Strained Ferrimagnetic Perovskite Cobalt Oxide

    Science.gov (United States)

    Fujioka, J.; Yamasaki, Y.; Nakao, H.; Kumai, R.; Murakami, Y.; Nakamura, M.; Kawasaki, M.; Tokura, Y.

    2013-07-01

    We have investigated the Co-3d spin-orbital state in a thin film of perovskite LaCoO3 to clarify the origin of strain induced spontaneous magnetization (TC=94K) by means of x-ray diffraction, optical spectroscopy, and magnetization measurements. A lattice distortion with the propagation vector (1/4 -​​1/4 1/4) and an anomalous activation of optical phonons coupled to Co-3d orbital are observed below 126 K. Combined with the azimuthal angle analysis of superlattice reflection, we propose that the ordering of Co-3d orbital promoted by an epitaxial strain produces a unique ferrimagnetic structure.

  2. Parameters of passive fit using a new technique to mill implant-supported superstructures: an in vitro study of a novel three-dimensional force measurement-misfit method.

    Science.gov (United States)

    Tahmaseb, Ali; van de Weijden, J J; Mercelis, Peter; De Clerck, Renaat; Wismeijer, Daniel

    2010-01-01

    The objectives of this study are to describe, in vitro, a novel technique to measure the misfit of digitally designed and manufactured implant-supported frameworks according to a new concept based on computer-guided surgery in combination with previously placed mini-implants. Also, the digitally created framework and an impression-based milled structure were compared using strain gauge measurements. Acrylic resin and plaster models were prepared to represent the edentulous mandible. After insertion of three mini-implants in the acrylic resin model, a cone-beam computed tomographic scan was performed. The data were imported to planning software, where six implants were virtually inserted. A drill guide and titanium framework were designed and milled using a fully digital computer-aided design/computer-assisted machining protocol. Six implants were inserted using the drill guide attached to the mini-implants. After an impression was made of the acrylic resin model with six implants, the second model (plaster model) was prepared. A second milled titanium structure was fabricated following optical scanning of the acrylic resin model. Strain gauge measurements were done on both structures attached to both models. To validate the results, a high-accuracy industrial optical scanning system was used to capture all connection geometry and the measurements were compared. The accuracy of the digital superstructures was 19, 22, and 10 Microm with standard deviations (SD) of 19.2 (17.9), 21.5 (28.3), and 10.3 (10.1) Microm for the x-, y-, and z-axes, respectively. For the impression-based superstructure the measured misfit was 11, 20, and 17 Microm, with SD 11.8 (10.5), 19.7 (11.7), and 16.7 (8.2) Microm for the x-, y-, and z-axes, respectively. The misfit of the digitally designed and produced superstructure on the digitally planned and inserted implants was clinically insignificant.

  3. Strain measurement based battery testing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  4. Electrical conduction through surface superstructures measured by microscopic four-point probes

    DEFF Research Database (Denmark)

    Hasegawa, S.; Shiraki, I.; Tanabe, F.

    2003-01-01

    For in-situ measurements of the local electrical conductivity of well-defined crystal surfaces in ultra-high vacuum, we have developed two kinds of microscopic four-point probe methods. One involves a "four-tip STM prober," in which four independently driven tips of a scanning tunneling microscope...

  5. Superstructures: First Cold Test and Future Applications

    Energy Technology Data Exchange (ETDEWEB)

    J. Sekutowicz; C Albrecht; V Ayvazyan; R Bandelmann; T Buttner; P Castro; S Choroba; J Eschke; B Faatz; A Gossel; K Honkavaara; B Horst; J Iverson; K Jensch; H Kaiser; R Kammering; G Kreps; D Kostin; J Lorkiewicz; R Lange; A Matheisen; W -D Moller; H -B Peters; D Proch; K Rehlich; H Schlarb; S Schrieber; D Reschke; S Simrock; W Singer; X Singer; K Twarowski; T Weichert; M Wojtkiewicz; G Wendt; K Zapfe; M Liepe; M Huening; M Ferrario; E Plawski; C Pagani; P Kneisel; G Wu; N Baboi; C Thomas; H Chen; W Huang; C Tang; S Zheng

    2003-09-01

    Superstructures, chains of superconducting multi-cell cavities (subunits) connected by e/2 long tube(s) have been proposed as an alternative layout for the TESLA main accelerator [1]. After three years of preparation, two superstructures, each made of two weakly coupled superconducting 7-cell subunits driven by a single Fundamental Power Coupler (FPC), have been installed in the Tesla Test Facility linac for beam tests. Energy stability, HOM damping, frequency and field adjustment methods were tested. The measured results confirmeSuperstructures, chains of superconducting multi-cell cavities (subunits) connected by e/2 long tube(s) have been proposed as an alternative layout for the TESLA main accelerator [1]. After three years of preparation, two superstructures, each made of two weakly coupled superconducting 7-cell subunits driven by a single Fundamental Power Coupler (FPC), have been installed in the Tesla Test Facility linac for beam tests. Energy stability, HOM damping, frequency and field adjustment methods were tested. The measured results confirmed expectation on the superstructure performance and proved that an alternative layout for the 800 GeV upgrade of the TESLA collider is feasible. We report on the test and give here an overview of its results. The tests confirmed very good damping of HOMs in superstructures and thus has opened a possible new application of this concept to high current energy recovery machines. We have built two 1.5 GHz copper models of two superstructures: 2x5-cells and 2x2-cells to prove further improvement of HOM damping. This contribution presents also measured results on these models. d expectations on the superstructure performance and proved that an alternative layout for the 800 GeV upgrade of the TESLA collider is feasible. We report on the test and give here an overview of its results.

  6. Características ultra-estruturais do nó sinoatrial de rato Wistar Superstructural features of the wistar strain male rats' sinoatrial node (SAN

    Directory of Open Access Journals (Sweden)

    Carlos Alberto Mandarim de Lacerda

    2002-04-01

    Full Text Available As características ultra-estruturais do nó sinoatrial (NSA de 5 ratos machos da variedade Wistar, com 3 meses de idade, foram estudadas por meio de microscopia eletrônica de transmissão (MET. Fragmento pequeno, contendo a região do NSA e área adjacente do átrio direito do coração, foi retirado e fixado em glutaraldeído 2,5% e processado de acordo com técnica convencional para MET. A morfologia do nó sinoatrial de ratos é semelhante a de outros mamíferos. O NSA é uma estrutura anatômica independente do miocárdio atrial, constituído por células típicas (miócitos nodais, células de transição e, principalmente, células nodais imersos em matriz extracelular, na qual predominam fibras colágenas, fibroblastos e nervosThe superstructural features of five Wistar strain male rats' sinoatrial node (SAN at 3-mo-old were studied through transmission electron microscopy (TEM. Small fragments with the regions containing the SAN were cut off, fixed in glutaraldehyde 2.5% and processed according to the conventional technique for TEM. The morphology of the sinoatrial node of the rats is similar as found in other mammals. The SAN is an independent anatomic structure of the atrial myocardial, constituted of typical cells (nodal myocytes, transition cells and nodal cells principally immersed in the extra cellular matrix where collagen fibers, fibroblasts and nerve predominate

  7. High temperature strain measurement with a resistance strain gage

    Science.gov (United States)

    Lei, Jih-Fen; Fichtel, ED; Mcdaniel, Amos

    1993-01-01

    A PdCr based electrical resistance strain gage was demonstrated in the laboratory to be a viable sensor candidate for static strain measurement at high temperatures. However, difficulties were encountered while transferring the sensor to field applications. This paper is therefore prepared for recognition and resolution of the problems likely to be encountered with PdCr strain gages in field applications. Errors caused by the measurement system, installation technique and lead wire attachment are discussed. The limitations and some considerations related to the temperature compensation technique used for this gage are also addressed.

  8. Extreme Temperature Strain Measurement System

    Science.gov (United States)

    1990-08-01

    Road, Lantham, New York 12110, Phone (518) 785-2323, noncontacting, " Fotonic " fiber bundle sensor * Dual Core Fiber Optic Strain Gage with Laser input...Lantham, New York 12110, Phone (518) 456-4131, Reflective Light, Fiber bundles, " Fotonic Sensors", to 600°F "• Moire’ Technique, optical interference

  9. Sensor for Measuring Strain in Textile

    Directory of Open Access Journals (Sweden)

    Gerhard Tröster

    2008-06-01

    Full Text Available In this paper a stain sensor to measure large strain (80% in textiles is presented. It consists of a mixture of 50wt-% thermoplastic elastomer (TPE and 50wt-% carbon black particles and is fiber-shaped with a diameter of 0.315mm. The attachment of the sensor to the textile is realized using a silicone film. This sensor configuration was characterized using a strain tester and measuring the resistance (extension-retraction cycles: It showed a linear resistance response to strain, a small hysteresis, no ageing effects and a small dependance on the strain velocity. The total mean error caused by all these effects was +/-5.5% in strain. Washing several times in a conventional washing machine did not influence the sensor properties. The paper finishes by showing an example application where 21 strain sensors were integrated into a catsuit. With this garment, 27 upper body postures could be recognized with an accuracy of 97%.

  10. Measurement of Sorption-Induced Strain

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson; Richard L. Christiansen

    2005-05-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A. and high-volatile bituminous coal from east-central Utah, U.S.A. using an apparatus developed jointly at the Idaho National Laboratory (Idaho Falls, Idaho, U.S.A.) and Colorado School of Mines (Golden, Colorado, U.S.A.). The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain instead of the more common usage of strain gauges, which require larger samples and longer equilibration times. With this apparatus, we showed that the swelling and shrinkage processes were reversible and that accurate strain data could be obtained in a shortened amount of time. A suite of strain curves was generated for these coals using gases that included carbon dioxide, nitrogen, methane, helium, and various mixtures of these gases. A Langmuir-type equation was applied to satisfactorily model the strain data obtained for pure gases. The sorption-induced strain measured in the subbituminous coal was larger than the high-volatile bituminous coal for all gases tested over the range of pressures used in the experimentation, with the CO2-induced strain for the subbituminous coal over twice as great at the bituminous coal.

  11. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  12. Atmospheric corrosion sensor based on strain measurement

    Science.gov (United States)

    Kasai, Naoya; Hiroki, Masatoshi; Yamada, Toshirou; Kihira, Hiroshi; Matsuoka, Kazumi; Kuriyama, Yukihisa; Okazaki, Shinji

    2017-01-01

    In this paper, an in situ atmospheric corrosion sensor based on strain measurement is discussed. The theoretical background for measuring the reduction in thickness of low carbon steel is also presented. Based on the theoretical considerations, a test piece and apparatus for an atmospheric corrosion sensor were designed. Furthermore, in a dry–wet cyclic accelerated exposure experiment, the measured strain indicated thinning of the test piece, although the corrosion product generated on the surface of the test piece affected the results. The atmospheric corrosion sensor would be effective for evaluating atmospheric corrosion of many types of infrastructure.

  13. Topological Insulators from Electronic Superstructures

    Science.gov (United States)

    Sugita, Yusuke; Motome, Yukitoshi

    2016-07-01

    The possibility of realizing topological insulators by the spontaneous formation of electronic superstructures is theoretically investigated in a minimal two-orbital model including both the spin-orbit coupling and electron correlations on a triangular lattice. Using the mean-field approximation, we show that the model exhibits several different types of charge-ordered insulators, where the charge disproportionation forms a honeycomb or kagome superstructure. We find that the charge-ordered insulators in the presence of strong spin-orbit coupling can be topological insulators showing quantized spin Hall conductivity. Their band gap is dependent on electron correlations as well as the spin-orbit coupling, and even vanishes while showing the massless Dirac dispersion at the transition to a trivial charge-ordered insulator. Our results suggest a new route to realize and control topological states of quantum matter by the interplay between the spin-orbit coupling and electron correlations.

  14. Voids and superstructures: correlations and induced large-scale velocity flows

    Science.gov (United States)

    Lares, Marcelo; Luparello, Heliana E.; Maldonado, Victoria; Ruiz, Andrés N.; Paz, Dante J.; Ceccarelli, Laura; Garcia Lambas, Diego

    2017-09-01

    The expanding complex pattern of filaments, walls and voids build the evolving cosmic web with material flowing from underdense on to high density regions. Here, we explore the dynamical behaviour of voids and galaxies in void shells relative to neighbouring overdense superstructures, using the Millenium simulation and the main galaxy catalogue in Sloan Digital Sky Survey data. We define a correlation measure to estimate the tendency of voids to be located at a given distance from a superstructure. We find voids-in-clouds (S-types) preferentially located closer to superstructures than voids-in-voids (R-types) although we obtain that voids within ∼40 h-1 Mpc of superstructures are infalling in a similar fashion independently of void type. Galaxies residing in void shells show infall towards the closest superstructure, along with the void global motion, with a differential velocity component depending on their relative position in the shell with respect to the direction to the superstructure. This effect is produced by void expansion and therefore is stronger for R-types. We also find that galaxies in void shells facing the superstructure flow towards the overdensities faster than galaxies elsewhere at the same relative distance to the superstructure. The results obtained for the simulation are also reproduced for the Sky Survey Data Release data with a linearized velocity field implementation.

  15. Implementing Composite Superstructures in Large Passenger Ships

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Berggreen, Christian; Jensen, Jørgen Juncher;

    2015-01-01

    This study focuses on the structural response of the part of the superstructure of a RoPax ferry that has been redesigned using composite materials. The composite superstructure is presented and subsequently compared to the existing steel design considering different loading conditions by the use...... of FE modelling.Results indicate that it is not the structural response of the superstructure that inhibits the implementation of composites in the superstructures of large passenger ships but the complicated design procedure and the acceptance of such solutions by the regulatory bodies....

  16. The impact of superstructures in the Cosmic Microwave Background

    Science.gov (United States)

    Ilić, Stéphane; Langer, Mathieu; Douspis, Marian

    2016-10-01

    In 2008, Granett et al. claimed a direct detection of the integrated Sachs-Wolfe (iSW) effect, through the stacking of CMB patches at the positions of identified superstructures. Additionally, the high amplitude of their measured signal was reported to be at odds with predictions from the standard model of cosmology. However, a closer inspection of these results prompts multiple questions, more specifically about the amplitude and significance of the expected signal. We propose here an original theoretical prediction of the iSW effect produced by such superstructures. We use simulations based on GR and the LTB metric to reproduce cosmic structures and predict their exact theoretical iSW effect on the CMB. The amplitudes predicted with this method are consistent with the signal measured when properly accounting the contribution of the non-negligible (and fortuitous) primordial CMB fluctuations to the total signal. It also highlights the tricky nature of stacking measurements and their interpretation.

  17. Demonstration test of burner liner strain measurements using resistance strain gages

    Science.gov (United States)

    Grant, H. P.; Anderson, W. L.

    1984-01-01

    A demonstration test of burner liner strain measurements using resistance strain gages as well as a feasibility test of an optical speckle technique for strain measurement are presented. The strain gage results are reported. Ten Kanthal A-1 wire strain gages were used for low cycle fatigue strain measurements to 950 K and .002 apparent strain on a JT12D burner can in a high pressure (10 atmospheres) burner test. The procedure for use of the strain gages involved extensive precalibration and postcalibration to correct for cooling rate dependence, drift, and temperature effects. Results were repeatable within + or - .0002 to .0006 strain, with best results during fast decels from 950 K. The results agreed with analytical prediction based on an axisymmetric burner model, and results indicated a non-uniform circumferential distribution of axial strain, suggesting temperature streaking.

  18. Joint Simultaneous Reconstruction of Regularized Building Superstructures from Low-Density LIDAR Data Using Icp

    Science.gov (United States)

    Wichmann, Andreas; Kada, Martin

    2016-06-01

    There are many applications for 3D city models, e.g., in visualizations, analysis, and simulations; each one requiring a certain level of detail to be effective. The overall trend goes towards including various kinds of anthropogenic and natural objects therein with ever increasing geometric and semantic details. A few years back, the featured 3D building models had only coarse roof geometry. But nowadays, they are expected to include detailed roof superstructures like dormers and chimneys. Several methods have been proposed for the automatic reconstruction of 3D building models from airborne based point clouds. However, they are usually unable to reliably recognize and reconstruct small roof superstructures as these objects are often represented by only few point measurements, especially in low-density point clouds. In this paper, we propose a recognition and reconstruction approach that overcomes this problem by identifying and simultaneously reconstructing regularized superstructures of similar shape. For this purpose, candidate areas for superstructures are detected by taking into account virtual sub-surface points that are assumed to lie on the main roof faces below the measured points. The areas with similar superstructures are detected, extracted, grouped together, and registered to one another with the Iterative Closest Point (ICP) algorithm. As an outcome, the joint point density of each detected group is increased, which helps to recognize the shape of the superstructure more reliably and in more detail. Finally, all instances of each group of superstructures are modeled at once and transformed back to their original position. Because superstructures are reconstructed in groups, symmetries, alignments, and regularities can be enforced in a straight-forward way. The validity of the approach is presented on a number of example buildings from the Vaihingen test data set.

  19. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  20. Global longitudinal strain: a useful everyday measurement?

    Directory of Open Access Journals (Sweden)

    A King

    2016-10-01

    Full Text Available Herceptin (Trastuzumab is a widely used and effective drug for the treatment of Her2+ breast cancer but its cardiotoxic side effects require regular monitoring by echocardiography. A 10% reduction in left ventricular ejection fraction can lead to suspension of treatment and therefore has significant implications for patient prognosis in terms of cardiac and cancer outcomes. Assessment of LV function by conventional 2D biplane method of discs (2DEF has limitations in accuracy and reproducibility. Global longitudinal strain (GLS is becoming more widely available and user friendly. It has been shown to demonstrate myocardial damage earlier in treatment than 2DEF, allowing the option of pharmacological intervention at a pre-clinical stage and preventing the interruption of Herceptin. This study compares the reproducibility of GLS with that of 2DEF in a routine clinical environment. Fifty echocardiograms performed on female patients undergoing Herceptin treatment were used to measure both 2DEF and GLS within the recommended standard appointment time of 40 min. The data were re-measured (blind by the same operator a minimum of 14 days later to determine intra-operator variation. These data were also measured by a second operator (blind, to assess inter-operator variation. Analysis by direct comparison, intra-class correlation (ICC, coefficient of variation (CV and Bland–Altman plots demonstrated that GLS is a more reproducible measurement than 2DEF. This is important to prevent clinical decisions being erroneously based on variation in operator measurement. The investigation also shows that with advances in machine software this is a practical addition to routine assessment rather than merely a research tool.

  1. Measuring autogenous strain of concrete with corrugated moulds

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2008-01-01

    A reliable technique to quantify autogenous strain is a prerequisite to numerical modeling in stress calculations for high performance concrete. The introducing of a special kind of corrugated tube mould helps to transforming volume strain measurement into liner strain measurement in horizontal...... direction for fluid concrete, which not only realizes the continuous monitoring of the autogenous shrinkage since casting, but also effectively eliminates the disturbance resulting from gravity, temperature variation and mould restraint on measuring results. Based on this measuring technique, this paper...

  2. Simultaneous measurement of temperature and strain using four connecting wires

    Science.gov (United States)

    Parker, Allen R., Jr.

    1993-01-01

    This paper describes a new signal-conditioning technique for measuring strain and temperature which uses fewer connecting wires than conventional techniques. Simultaneous measurement of temperature and strain has been achieved by using thermocouple wire to connect strain gages to signal conditioning. This signal conditioning uses a new method for demultiplexing sampled analog signals and the Anderson current loop circuit. Theory is presented along with data to confirm that strain gage resistance change is sensed without appreciable error because of thermoelectric effects. Furthermore, temperature is sensed without appreciable error because of voltage drops caused by strain gage excitation current flowing through the gage resistance.

  3. Strain Measurement Technology for Corrosion Fatigue Specimen

    Institute of Scientific and Technical Information of China (English)

    ZHONG; Wei-hua; NING; Guang-sheng; ZHANG; Chang-yi; TONG; Zhen-feng; YANG; Wen

    2015-01-01

    Main pipeline is the key component of nuclear power plants(NPPs).Under the first loop water and low-cyclic load condition,the main pipeline may be induced to corrosion fatigue failure.Thus,it’s necessary to test and get the corrosion fatigue property of main pipeline material.During the corrosion fatigue test,the strain

  4. Measuring physical strain during ambulation with accelerometry

    NARCIS (Netherlands)

    Bussmann, J B; Hartgerink, I; van der Woude, L H; Stam, H J

    2000-01-01

    PURPOSE: To study the feasibility of ambulatory accelerometry in the evaluation of physical strain in walking at different speeds and different levels of economy. METHODS: Twelve able-bodied subjects performed a walking test on a treadmill with increasing walking speed. After a 6-wk period, these me

  5. Strain rate measurement by Electronic Speckle Pattern Interferometry: A new look at the strain localization onset

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)]. E-mail: bruno.guelorget@utt.fr; Francois, Manuel [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Vial-Edwards, Cristian [Departemento de Ingenieria Mecanica y Metalurgica, Pontificia Universidad Catolica de Chile, Vicuna Mackenna 4860, 6904411 Santiago (Chile); Montay, Guillaume [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Daniel, Laurent [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France); Lu, Jian [Universite de Technologie de Troyes (UTT), Laboratoire des Systemes Mecaniques et d' ingenierie Simultanee (LASMIS, CNRS FRE 2719), 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2006-01-15

    In-plane Electronic Speckle Pattern Interferometry has been successfully used during tensile testing of semi-hard copper sheets in order to measure the strain rate. On one hand, heterogeneity in strain rate field has been found before the maximum of the tensile force ({epsilon} {sup t} {approx_equal} 19.4 and 25.4%, respectively). Thus, a localization phenomenon occurs before the classic Considere's criterion (dF = 0) for the diffuse neck initiation. On the other hand, strain rate measurement before fracture shows the moment where one of the two slip band systems becomes predominant, then strain concentrates in a small area, the shear band. Uncertainty evaluation has been carried out, which shows a very good accuracy of the total strain and the strain rate measurements.

  6. Imprint of DES superstructures on the cosmic microwave background

    Science.gov (United States)

    Kovács, A.; Sánchez, C.; García-Bellido, J.; Nadathur, S.; Crittenden, R.; Gruen, D.; Huterer, D.; Bacon, D.; Clampitt, J.; DeRose, J.; Dodelson, S.; Gaztañaga, E.; Jain, B.; Kirk, D.; Lahav, O.; Miquel, R.; Naidoo, K.; Peacock, J. A.; Soergel, B.; Whiteway, L.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D'Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Sobreira, F.; Suchyta, E.; Swanson, M.; Tarle, G.; Thomas, D.; Walker, A. R.; DES Collaboration

    2017-03-01

    Small temperature anisotropies in the cosmic microwave background (CMB) can be sourced by density perturbations via the late-time integrated Sachs-Wolfe (ISW) effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey (DES) in a different footprint, and using a different superstructure finding strategy. We identified 52 large voids and 102 superclusters at redshifts 0.2 < z < 0.65. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with ΔTf ≈ -5.0 ± 3.7 μK and a hot imprint of superclusters ΔTf ≈ 5.1 ± 3.2 μK; this is ∼1.2σ higher than the expected |ΔTf| ≈ 0.6 μK imprint of such superstructures in Λ cold dark matter (ΛCDM). If we instead use an a posteriori selected filter size (R/Rv = 0.6), we can find a temperature decrement as large as ΔTf ≈ -9.8 ± 4.7 μK for voids, which is ∼2σ above ΛCDM expectations and is comparable to previous measurements made using Sloan Digital Sky Survey superstructure data.

  7. Imprint of DES superstructures on the cosmic microwave background

    Energy Technology Data Exchange (ETDEWEB)

    Kovács, A.; Sánchez, C.; García-Bellido, J.; Nadathur, S.; Crittenden, R.; Gruen, D.; Huterer, D.; Bacon, D.; Clampitt, J.; DeRose, J.; Dodelson, S.; Gaztañaga, E.; Jain, B.; Kirk, D.; Lahav, O.; Miquel, R.; Naidoo, K.; Peacock, J. A.; Soergel, B.; Whiteway, L.; Abdalla, F. B.; Allam, S.; Annis, J.; Benoit-Lévy, A.; Bertin, E.; Brooks, D.; Buckley-Geer, E.; Rosell, A. Carnero; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D' Andrea, C. B.; da Costa, L. N.; DePoy, D. L.; Desai, S.; Eifler, T. F.; Finley, D. A.; Flaugher, B.; Fosalba, P.; Frieman, J.; Giannantonio, T.; Goldstein, D. A.; Gruendl, R. A.; Gutierrez, G.; James, D. J.; Kuehn, K.; Kuropatkin, N.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Nord, B.; Ogando, R.; Plazas, A. A.; Romer, A. K.; Sanchez, E.; Scarpine, V.; Sevilla-Noarbe, I.; Sobreira, F.; Suchyta, E.; Swanson, M.; Tarle, G.; Thomas, D.; Walker, A. R.

    2016-11-17

    Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$ and a hot imprint of superclusters $\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$ ; this is $\\sim1.2\\sigma$ higher than the expected $|\\Delta T_{f}| \\approx 0.6~\\mu K$ imprint of such super-structures in $\\Lambda$CDM. If we instead use an a posteriori selected filter size ($R/R_{v}=0.6$), we can find a temperature decrement as large as $\\Delta T_{f} \\approx -9.8\\pm4.7~\\mu K$ for voids, which is $\\sim2\\sigma$ above $\\Lambda$CDM expectations and is comparable to previous measurements made using SDSS super-structure data.

  8. Tetrahedral Units: For Dodecahedral Super-Structures

    CERN Document Server

    Ortiz, Y; Liebman, J F

    2016-01-01

    Different novel organic-chemical possibilities for tetrahedral building units are considered, with attention to their utility in constructing different super-structures. As a representative construction we consider the use of sets of 20 such identical tetrahedral units to form a super-dodecahedron.

  9. Strain Measurement on the Toroidal Field (TF) Coil Cases

    Institute of Scientific and Technical Information of China (English)

    Chen Zhuomin; Long Feng; Wu Hao

    2005-01-01

    The stress-strain state of the structure is a matter of interest to designer. The strain measurement of superconducting magnets at cryogenic temperature is a specific technique. Based on strain measurement of TF coil case for EAST, this paper presents a measuring technique at cryogenic temperature and on intense magnetic field. The compensation methods for both temperature and magnetic field effects of the gauges, together with the measured results are involved, and the discussions of the measured results are given in the paper.

  10. Crystallographic superstructure in R2PdSi3 compounds (R=heavy rare earth)

    Science.gov (United States)

    Tang, Fei; Frontzek, Matthias; Dshemuchadse, Julia; Leisegang, Tilmann; Zschornak, Matthias; Mietrach, Robert; Hoffmann, Jens-Uwe; Löser, Wolfgang; Gemming, Sibylle; Meyer, Dirk C.; Loewenhaupt, Michael

    2011-09-01

    The R2PdSi3 intermetallic compounds have been reported to crystallize in a hexagonal AlB2-derived structure, with the rare earth atoms on the Al sites and Pd and Si atoms randomly distributed on the B sites. However, the intricate magnetic properties observed in the series of compounds have always suggested complications to the assumed structure. To clarify the situation, x-ray and neutron diffraction measurements were performed on the heavy rare earth compounds with R=Gd, Tb, Dy, Ho, Er, Tm, which revealed the existence of a crystallographic superstructure. The superstructure features a doubled unit cell in the hexagonal basal plane and an octuplication along the perpendicular c direction with respect to the primitive cell. No structural transition was observed between 300 and 1.5 K. Extended x-ray absorption fine structure (EXAFS) analysis as well as density functional theory (DFT) calculations were utilized to investigate the local environments of the respective atoms. In this paper the various experimental results will be presented and it will be shown that the superstructure is mainly due to the Pd-Si order on the B sites. A structure model will be proposed to fully describe the superstructure of Pd-Si order in R2PdSi3. The connection between the crystallographic superstructure and the magnetic properties will be discussed in the framework of the presented model.

  11. Strain gauge measurement uncertainties on hydraulic turbine runner blade

    Science.gov (United States)

    Arpin-Pont, J.; Gagnon, M.; Tahan, S. A.; Coutu, A.; Thibault, D.

    2012-11-01

    Strains experimentally measured with strain gauges can differ from those evaluated using the Finite Element (FE) method. This difference is due mainly to the assumptions and uncertainties inherent to each method. To circumvent this difficulty, we developed a numerical method based on Monte Carlo simulations to evaluate measurement uncertainties produced by the behaviour of a unidirectional welded gauge, its position uncertainty and its integration effect. This numerical method uses the displacement fields of the studied part evaluated by an FE analysis. The paper presents a study case using in situ data measured on a hydraulic turbine runner. The FE analysis of the turbine runner blade was computed, and our numerical method used to evaluate uncertainties on strains measured at five locations with welded strain gauges. Then, measured strains and their uncertainty ranges are compared to the estimated strains. The uncertainty ranges obtained extended from 74 μepsilon to 165 μepsilon. Furthermore, the biases observed between the median of the uncertainty ranges and the FE strains varied from -36 to 36 μepsilon. Note that strain gauge measurement uncertainties depend mainly on displacement fields and gauge geometry.

  12. Apt strain measurement technique for impulsive loading applications

    Science.gov (United States)

    Ranjan Nanda, Soumya; Kulkarni, Vinayak; Sahoo, Niranjan

    2017-03-01

    The necessity of precise measurement of strain time history for impulsive loading applications has been addressed in the present investigation. Finite element modeling is initially carried out for a hemispherical test model and stress bar assembly to arrive at an appropriate location for strain measurement. In dynamic calibration experiments, strain measurements are performed using two wire and three wire quarter bride arrangements along with half bridge circuit. Usefulness of these arrangements has been verified by analyzing strain signals in time and frequency domains. Comparison of recovered force time histories proved that the half bridge circuit is the most suitable for such applications. Actual shock tube testing of the instrumented hemispherical test model confirmed the applicability of half bridge circuit for short duration strain measurements.

  13. A method of measuring dynamic strain under electromagnetic forming conditions.

    Science.gov (United States)

    Chen, Jinling; Xi, Xuekui; Wang, Sijun; Lu, Jun; Guo, Chenglong; Wang, Wenquan; Liu, Enke; Wang, Wenhong; Liu, Lin; Wu, Guangheng

    2016-04-01

    Dynamic strain measurement is rather important for the characterization of mechanical behaviors in electromagnetic forming process, but it has been hindered by high strain rate and serious electromagnetic interference for years. In this work, a simple and effective strain measuring technique for physical and mechanical behavior studies in the electromagnetic forming process has been developed. High resolution (∼5 ppm) of strain curves of a budging aluminum tube in pulsed electromagnetic field has been successfully measured using this technique. The measured strain rate is about 10(5) s(-1), which depends on the discharging conditions, nearly one order of magnitude of higher than that under conventional split Hopkins pressure bar loading conditions (∼10(4) s(-1)). It has been found that the dynamic fracture toughness of an aluminum alloy is significantly enhanced during the electromagnetic forming, which explains why the formability is much larger under electromagnetic forging conditions in comparison with conventional forging processes.

  14. Heterogeneity of inelastic strain during creep of Carrara marble: Microscale strain measurement technique

    Science.gov (United States)

    Quintanilla-Terminel, Alejandra; Evans, Brian

    2016-08-01

    We combined the split cylinder technique with microfabrication technology to observe strain heterogeneities that were produced during high-pressure transient creep of Carrara marble. Samples were patterned with a custom-designed grid of markers spaced 10 µm apart and containing an embedded coordinate system. The microscale strain measurement (MSSM) technique described here allowed us to analyze the local strain distribution with unprecedented detail over large regions. The description of the strain field is a function of the area over which strain is being computed. The scale at which the strain field can be considered homogeneous can provide insight into the deformation processes taking place. At 400-500°C, when twinning production is prolific, we observe highly strained bands that span several grains. One possible cause for the multigrain bands is the need to relieve strain incompatibilities that result when twins impinge on neighboring grains. At 600-700°C, the strain fields are still quite heterogeneous, and local strain varies substantially within grains and near grain boundaries, but the multigrain slip bands are not present. Deformation is concentrated in much smaller areas within grains and along some grain boundaries. The disappearance of the multigrain slip bands occurs when the deformation conditions allow additional slip systems to be activated. At 600°C, when the total strain is varied from 0.11 to 0.36, the spatial scale of the heterogeneity does not vary, but there are increases in the standard deviation of the distribution of local strains normalized by the total strain; thus, we conclude that the microstructure does not achieve a steady state in this strain interval.

  15. Large Number, Dark Matter, Dark Energy, and Superstructures in the Universe

    Institute of Scientific and Technical Information of China (English)

    HUANG Wu-Liang; HUANG Xiao-Dong

    2009-01-01

    Since there may exist dark matter particles v and 5 with mass ~ 10-1 eV in the universe, the superstructures with a scale of 1019 solar masses (large number A ~ 1019) appeared during the era near and before the hydrogen recombination. Since there are superstructures in the universe, there may be no necessity for the existence of dark energy. For checking the superstructure in the universe by CMB anisotropy, we need to measure CMB angular power spectrum -especially around ten degrees across the sky - in more details. While neutrino v is related to electroweak unification, the fourth stable elementary particle δ may be related to strong-gravity unification, which suggests p + p →, n + δ and that some new baryons appeared in the TeV region.

  16. Pb/Cu (100) surface superstructures: Monte Carlo and molecular dynamics simulations

    Science.gov (United States)

    Tan, S.; Ghazali, A.; L´vy, J. C. S.

    1997-12-01

    Monte Carlo simulations with simple pair potentials of the Lennard-Jones type enable us to show the stability of the three experimentally known superstructures of Pb/Cu (100) at different lead submonolayer coverages: c(4 × 4)atθ = 3/8,c(2 × 2)atθ = 0.5 and c(5√2 × √2)R45° at θ = 0.6. In addition, numerous details of these superstructures, including interatomic distances, surface alloying, corrugation and weak modulation are obtained numerically in quantitative and qualitative accord with the experimentally observed and measured data. By molecular dynamics the melting of these structures is studied from the temperature dependence of the Pb-atom average energy and diffusion coefficient, with evidence for a first-order transition for every superstructure. The dispersion of surface phonons is also derived.

  17. Fibre-Optic Strain Measurement For Structural Integrity Monitoring

    NARCIS (Netherlands)

    Bruinsma, A.J.A.; Zuylen, P. van; Lamberts, C.W.; Krijger, A.J.T. de

    1984-01-01

    A method is demonstrated for monitoring the structural integrity of large structures, using an optical fibre. The strain distribution along the structure is monitored by measuring the attentuation of light along the length of the fibre.

  18. Superstructure of stapes. An analysis by HRCT

    Energy Technology Data Exchange (ETDEWEB)

    Horiuchi, Yasuharu; Hunai, Hiroaki; Ichimura; Keiiti; Iinuma, Toshitaka; Oyama, Kazuyuki

    1989-03-01

    High-resolution Computed Tomography (HRCT) of the temporal bone has now become a routine test for the diagnosis of various temporal bone lesions. Correct assessment of such minute structures as ossicles, especially stapes, is important in the pre-operative HRCT evaluation. On the other hand, analysis for the reliability of HRCT findings has not been done, including the superstructure of the stapes. A retrospectively study was done in order to assess the availability of HRCT findings in axial overlapping scans in 226 ears, with respect to the superstructures of stapes. The study was concerned with the analysis of HRCTs of 148 normal ears, 71 ears of chronic otitis media and 7 ears of ossicular abnormalities. HRCT findings were compared to those of surgeries in pathological cases. The present study revealed that the superstructures of stapes are noted in 70% when the stapes is surrounded by air. The major limitations in the proper analysis of stapes by HRCT are partial volume averaging and effects of soft tissue silhouetting, this is especially so when the stapes is surrounded by soft tissue density.

  19. Dental implant superstructures by superplastic forming

    Energy Technology Data Exchange (ETDEWEB)

    Curtis, R.V.; Garriga-Majo, D.; Soo, S.; Pagliaria, D. [Kings Coll., London (United Kingdom). Dept. of Dental Biomaterials Science; Juszczyk, A.S.; Walter, J.D. [Kings Coll., London (United Kingdom). Dept. of Prosthetic Dentistry

    2001-07-01

    A novel application of superplastic forming is described for the production of fixed-bridge dental implant superstructures. Finite element analysis (FEA) has shown that Ti-6Al-4V sheet would be a suitable candidate material for the design of a fixed-bridge dental implant superstructure. Traditionally superstructures are cast in gold alloy onto pre-machined gold alloy cylinders but castings are often quite bulky and 25% of castings do not fit accurately (1) which means that sectioning and soldering is required to obtain a fit that is clinically acceptable and will not prejudice the integrity of the commercially pure cp-titanium implants osseointegrated with the bone. Superplastic forming is shown to be a forming technique that would allow the production of strong, light-weight components of thin section with low residual stress that could be suitable for such applications. Considerable cost savings over traditional dental techniques can be achieved using a low-cost ceramic die material. The properties of these die materials are optimised so that suitable components can be produced. Satisfactory hot strength is demonstrated and thermal properties are matched to those of the titanium alloy for accurate fit of the prosthesis. (orig.)

  20. Modular assembly of superstructures from polyphenol-functionalized building blocks

    Science.gov (United States)

    Guo, Junling; Tardy, Blaise L.; Christofferson, Andrew J.; Dai, Yunlu; Richardson, Joseph J.; Zhu, Wei; Hu, Ming; Ju, Yi; Cui, Jiwei; Dagastine, Raymond R.; Yarovsky, Irene; Caruso, Frank

    2016-12-01

    The organized assembly of particles into superstructures is typically governed by specific molecular interactions or external directing factors associated with the particle building blocks, both of which are particle-dependent. These superstructures are of interest to a variety of fields because of their distinct mechanical, electronic, magnetic and optical properties. Here, we establish a facile route to a diverse range of superstructures based on the polyphenol surface-functionalization of micro- and nanoparticles, nanowires, nanosheets, nanocubes and even cells. This strategy can be used to access a large number of modularly assembled superstructures, including core-satellite, hollow and hierarchically organized supraparticles. Colloidal-probe atomic force microscopy and molecular dynamics simulations provide detailed insights into the role of surface functionalization and how this facilitates superstructure construction. Our work provides a platform for the rapid generation of superstructured assemblies across a wide range of length scales, from nanometres to centimetres.

  1. Measurement of Strains in MWT Modules During Manufacture

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, I.J.; Loiseaux, N.L.P. [ECN Solar Energy, Petten (Netherlands)

    2012-07-01

    In this paper a method of measuring the residual strains in a foil-based MWT (metal wrap-through) module is introduced. These strains are a result of differences in thermal expansion coefficients between the different components in the module. The method involves the design and manufacture of a test module allowing the different components to be visualised and the development of a camera system and software for strain measurement and analysis. Strains were measured in the glass, cells and back-sheet foil for a module laminated at 150C and subsequently cooled to room temperature. The results show that strain is dominated by the glass sheet and that strain is uniform in the glass and cells, but complex in the foil. Strain in the foil and cell is relatively small. Parallel to this, a study was made of the relationship between the position of a conductive adhesive contact in the module and its shape. Analysis of the shape showed that a contact with concave sides was the most stable, whereas contacts with a convex shape result in a weaker interface with the cell and foil. Combining the two techniques allows analysis of the module design, in particular of the interconnections. The results can be used to adjust, for example, the foil specification and the conductive adhesive print size. This will result in an improved module reliability and lifetime.

  2. POF strain sensor using phase measurement techniques

    Science.gov (United States)

    Poisel, H.

    2008-03-01

    Polymer optical fiber (POF) elongation sensors have been proposed e.g. by Doering as a low-cost alternative to FBG (single mode Fiber Bragg Gratings) sensors targeting the lower sensitivity range. A recently recovered detection system known from laser distance meters turned out to be very sensitive while staying simple and thus offering low cost potential. The approach is based on measuring the phase shift of a (e.g. sinusoidally) modulated light signal guided in a POF under different tensions resulting in different transit times and thus different phase shifts.

  3. High temperature static strain measurement with an electrical resistance strain gage

    Science.gov (United States)

    Lei, Jih-Fen

    1992-01-01

    An electrical resistance strain gage that can supply accurate static strain measurement for NASP application is being developed both in thin film and fine wire forms. This gage is designed to compensate for temperature effects on substrate materials with a wide range of thermal expansion coefficients. Some experimental results of the wire gage tested on one of the NASP structure materials, i.e., titanium matrix composites, are presented.

  4. Evolution of Dislocation Subsystem Components During Plastic Deformation Depending on Parameters of Strengthening Phase with L12 Superstructure

    Science.gov (United States)

    Daneyko, O. I.; Kovalevskaya, T. A.; Kulaeva, N. A.; Kolupaeva, S. N.; Shalygina, T. A.

    2017-09-01

    The paper presents results of mathematical modelling of plastic deformation in dispersion-hardened materials with FCC crystal system and L12 superstructure particles. Research results show that the size and the distance between particles of the strengthening phase affect the strain hardening and the evolution of the dislocation subsystem of the FCC alloy hardened with coherent L12 superstructure particles. It is found that increased size of ordered particles or decreased distance between them enhances the abnormal growth in the flow stress and the density of the dislocation subsystem components. Investigations show that prismatic dislocation loops predominate in the dislocation subsystem of materials having a nano-dispersion strengthening phase.

  5. Visual Measurement of Suture Strain for Robotic Surgery

    Directory of Open Access Journals (Sweden)

    John Martell

    2011-01-01

    Full Text Available Minimally invasive surgical procedures offer advantages of smaller incisions, decreased hospital length of stay, and rapid postoperative recovery to the patient. Surgical robots improve access and visualization intraoperatively and have expanded the indications for minimally invasive procedures. A limitation of the DaVinci surgical robot is a lack of sensory feedback to the operative surgeon. Experienced robotic surgeons use visual interpretation of tissue and suture deformation as a surrogate for tactile feedback. A difficulty encountered during robotic surgery is maintaining adequate suture tension while tying knots or following a running anastomotic suture. Displaying suture strain in real time has potential to decrease the learning curve and improve the performance and safety of robotic surgical procedures. Conventional strain measurement methods involve installation of complex sensors on the robotic instruments. This paper presents a noninvasive video processing-based method to determine strain in surgical sutures. The method accurately calculates strain in suture by processing video from the existing surgical camera, making implementation uncomplicated. The video analysis method was developed and validated using video of suture strain standards on a servohydraulic testing system. The video-based suture strain algorithm is shown capable of measuring suture strains of 0.2% with subpixel resolution and proven reliability under various conditions.

  6. Capacitive Extensometer Particularly Suited for Measuring in Vivo Bone Strain

    Science.gov (United States)

    Perusek, Gail P. (Inventor)

    2000-01-01

    The present invention provides for in vivo measurements of the principal strain magnitudes and directions, and maximum shear strain that occurs in a material, such as human bone, when it is loaded (or subjected to a load). In one embodiment the invention includes a capacitive delta extensometer arranged with six sensors in a three piece configuration, with each sensor of each pair spaced apart from each other by 120 degrees.

  7. Engineering related neutron diffraction measurements probing strains, texture and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Bjorn [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Balogh, Levente [Los Alamos National Laboratory; Vogel, Sven C [Los Alamos National Laboratory

    2010-01-01

    Neutron diffraction has been used for engineering applications for nearly three decades. The basis of the technique is powder diffraction following Bragg's Law. From the measured diffraction patterns information about internal, or residual, strain can be deduced from the peak positions, texture information can be extracted from the peak intensities, and finally the peak widths can provide information about the microstructure, e.g. dislocation densities and grain sizes. The strains are measured directly from changes in lattice parameters, however, in many cases it is non-trivial to determine macroscopic values of stress or strain from the measured data. The effects of intergranular strains must be considered, and combining the neutron diffraction measurements with polycrystal deformation modeling has proven invaluable in determining the overall stress and strain values of interest in designing and dimensioning engineering components. Furthelmore, the combined use of measurements and modeling has provided a tool for elucidating basic material properties, such as critical resolved shear stresses for the active deformation modes and their evolution as a function of applied deformation.

  8. The route to protein aggregate superstructures

    DEFF Research Database (Denmark)

    Vetri, Valeria; Foderà, Vito

    2015-01-01

    Depending on external conditions, native proteins may change their structure and undergo different association routes leading to a large scale polymorphism of the aggregates. This feature has been widely observed but is not fully understood yet. This review focuses on morphologies, physico......-chemical properties and mechanisms of formation of amyloid structures and protein superstructures. In particular, the main focus will be on protein particulates and amyloid-like spherulites, briefly summarizing possible experimental methods of analysis. Moreover, we will highlight the role of protein conformational...

  9. Interferometric strain measurements with a fiber-optic probe

    Science.gov (United States)

    Burnham-Fay, E. D.; Jacobs-Perkins, D. W.; Ellis, J. D.

    2015-09-01

    Experience at the Laboratory for Laser Energetics has shown that broadband base vibrations make it difficult to position cryogenic inertial confinement fusion targets. These effects must be mitigated for National Ignition Facility-scale targets; to this end an active vibration stabilization system is proposed. A single-mode optical fiber strain probe and a novel fiber contained heterodyne interferometer have been developed as a position feedback sensor for the vibration control system. A resolution limit of 54.5 nƐ; is measured with the optical strain gauge, limited by the lock-in amplifier. Experimental measurements of the sensor that show good agreement with reference resistive strain gauge measurements are presented.

  10. Evaluation of Strain Measurement Devices for Inflatable Structures

    Science.gov (United States)

    Litteken, Doug

    2017-01-01

    Inflatable structures provide a significant volume savings for future NASA deep space missions. The complexity of these structures, however, provides difficulty for engineers in designing, analyzing, and testing. Common strain measurement systems for metallic parts cannot be used directly on fabrics. New technologies must be developed and tested to accurately measure the strain of inflatable structures. This paper documents the testing of six candidate strain measurement devices for use on fabrics. The resistance devices tested showed significant hysteresis during creep and cyclic testing. The capacitive device, however, showed excellent results and little-to-no hysteresis. Because of this issue, only two out of the six proposed devices will continue in development. The resulting data and lessons learned from this effort provides direction for continued work to produce a structural health monitoring system for inflatable habitats.

  11. Ground strain measuring system using optical fiber sensors

    Science.gov (United States)

    Sato, Tadanobu; Honda, Riki; Shibata, Shunjiro; Takegawa, Naoki

    2001-08-01

    This paper presents a device to measure the dynamic horizontal shear strain of the ground during earthquake. The proposed device consists of a bronze plate with fiber Bragg grating sensors attached on it. The device is vertically installed in the ground, and horizontal shear strain of the ground is measured as deflection angle of the plate. Employment of optical fiber sensors makes the proposed device simple in mechanism and highly durable, which makes it easy to install our device in the ground. We conducted shaking table tests using ground model to verify applicability of the proposed device.

  12. Hydrothermal synthesis and photoluminescent properties of stacked indium sulfide superstructures.

    Science.gov (United States)

    Xing, Yan; Zhang, Hongjie; Song, Shuyan; Feng, Jing; Lei, Yongqian; Zhao, Lijun; Li, Meiye

    2008-03-28

    Unusual hierarchical stacked superstructures of cubic beta-In2S3 were fabricated via a facile hydrothermal process in the presence of a surfactant cetyltrimethylammonium bromide CTAB; the 3D superstructures were developed by helical propagation of surface steps from microflakes of 10-20 nm thickness.

  13. Direct measurement of intrinsic critical strain and internal strain in barrier films

    NARCIS (Netherlands)

    Vellinga, W. P.; De Hosson, J. Th M.; Bouten, P. C. P.

    2011-01-01

    Resistance measurements during uniaxial tensile deformation of very thin (10 nm) conducting oxide films deposited on 150 nm SiN films on polyethylene naphthalate are discussed. It is first shown that certain characteristics of resistance versus strain curves are representative for the fracture behav

  14. The measurement of the modal strain fields using digital shearography

    Science.gov (United States)

    Lopes, H.; Ribeiro, J. E.; Vaz, M.; Gomes, J. M.

    2010-06-01

    This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  15. The measurement of the modal strain fields using digital shearography

    Directory of Open Access Journals (Sweden)

    Gomes J.M.

    2010-06-01

    Full Text Available This work presents a Michelson shearography interferometer configuration associated with stroboscopic double illumination technique for the measurement of modal rotation fields and their strain fields on a clamped circular aluminium plate. The speckle pattern is frozen by the synchronization between the LASER illumination and the modal vibration of the object. The quantitative evaluation is performed for each digital shearogram using a time modulation technique. The setup of double illumination LASER with out-of-plane opposite sensitivity allows the two phase maps measurement of the modal spatial gradient. The modal rotation and strain fields are extracted by the combination of this two digital phase maps. Image processing techniques are applied on the phase maps to obtain full-field measurements using a dedicated post-processing algorithm. Finally, is presented a comparison between the experimental measurement and the numerical solution.

  16. Distributed fibre optic strain measurements on a driven pile

    Science.gov (United States)

    Woschitz, Helmut; Monsberger, Christoph; Hayden, Martin

    2016-05-01

    In civil engineering pile systems are used in unstable areas as a foundation of buildings or other structures. Among other parameters, the load capacity of the piles depends on their length. A better understanding of the mechanism of load-transfer to the soil would allow selective optimisation of the system. Thereby, the strain variations along the loaded pile are of major interest. In this paper, we report about a field trial using an optical backscatter reflectometer for distributed fibre-optic strain measurements along a driven pile. The most significant results gathered in a field trial with artificial pile loadings are presented. Calibration results show the performance of the fibre-optic system with variations in the strain-optic coefficient.

  17. An ionic liquid based strain sensor for large displacement measurement.

    Science.gov (United States)

    Keulemans, Grim; Ceyssens, Frederik; Puers, Robert

    2017-03-01

    A robust and low cost ionic liquid based strain sensor is fabricated for high strain measurements in biomedical applications (up to 40 % and higher). A tubular 5 mm long silicone microchannel with an inner diameter of 310 µm and an outer diameter of 650 µm is filled with an ionic liquid. Three ionic liquids have been investigated: 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, ethylammonium nitrate and cholinium ethanoate. When the channel is axially stretched, geometrical deformations change the electrical impedance of the liquid channel. The sensors display a linear response and low hysteresis with an average gauge factors of 1.99 for strains up to 40 %. Additionally, to fix the sensor by surgical stitching to soft biological tissue, a sensor with tube clamps consisting of photopatternable SU-8 epoxy-based resin is proposed.

  18. Measurement of strain and strain rate in embryonic chick heart using spectral domain optical coherence tomography

    Science.gov (United States)

    Dou, Shidan; Suo, Yanyan; Liang, Chengbo; Wang, Yi; Zhao, Yuqian; Liu, Jian; Xu, Tao; Wang, Ruikang; Ma, Zhenhe

    2016-03-01

    It is important to measure embryonic heart myocardial wall strain and strain rate for understanding the mechanisms of embryonic heart development. Optical coherence tomography (OCT) can provide depth resolved images with high spatial and temporal resolution, which makes it have the potential to reveal the complex myocardial activity in the early stage embryonic heart. We develop a novel method to measure strain in embryonic chick heart based on spectral domain OCT images and subsequent image processing. We perform 4D(x,y,z,t) scanning on the outflow tract (OFT) of chick embryonic hearts in HH18 stage (~3 days of incubation). Only one image sequence acquired at the special position is selected based on the Doppler blood flow information where the probe beam penetrates through the OFT perpendicularly. For each image of the selected sequence, the cross-section of the myocardial wall can be approximated as an annulus. The OFT is segmented with a semi-automatic boundary detection algorithm, thus the area and mean circumference of the annular myocardial wall can be achieved. The myocardial wall thickness was calculated using the area divided by the mean circumference, and then the strain was obtained. The results demonstrate that OCT can be a useful tool to describe the biomechanical characteristics of the embryonic heart.

  19. Strain telemetry for load identification and center of gravity measurement

    Science.gov (United States)

    Ruddock, David Christopher

    The location of the center of gravity is critical to the ability of an aircraft to sustain flight. When an aircraft is loaded improperly, its center of gravity can shift creating instability during takeoff, flight and landings. If the aircraft is properly instrumented, the effects of the loading process can be monitored to insure that the center of gravity location remains within an acceptable region of the aircraft. In aircraft applications, any additional weight or maintenance time can represent an unacceptable increase in operational costs. For purposes of limiting the weight impact of the load identification systems, several steps were taken in this study. Strain gages were used due to their small size and weight; a telemetry system was employed to eliminate the need for wires; and various techniques were implemented to eliminate the need for batteries in the telemetry system. With the batteries removed, the routine maintenance on the system is all but eliminated. Three telemetry systems were developed for potential use in telemetry for strain measurements. The first system used a voltage controlled oscillator (VCO) with a conventional Wheatstone bridge circuit and was only functional with the use of a battery. The second system used a resistor-capacitor circuit to produce strain measurement. This was powered through inductive coupling. The third system was a commercial telemetry system used in conjunction with solar cells. The identification of load through the use of strain gages was demonstrated through the use of a custom-made test fixture. Strain gages were installed on three supports which acted as the landing gear of the aircraft. A finite element model of the test rig was created to collaborate with the experimental data, as well as to aid in the determination of potential algorithms for the measurement of the load location. The results showed that telemetry systems can be an effective means for measuring strain and that strain measurement can be

  20. Interpretation of Strain Measurements on Nuclear Pressure Vessels

    DEFF Research Database (Denmark)

    Andersen, Svend Ib Smidt; Engbæk, Preben

    1980-01-01

    Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts. The resu......Selected results from strain measurements on four nuclear pressure vessels are presented and discussed. The measurements were made in several different regions of the vessels: transition zones in vessel heads, flanges and bottom parts, nozzles, internal vessel structure and flange bolts....... The results presented are based on data obtained by approximately 700 strain-gauges, and a comprehensive knowledge of the quality obtained by such measurements is established. It is shown that a thorough control procedure before and after the test as well as a detailed knowledge of the behaviour of the signal...... with a negligible zeroshift. However, deviations from linear behaviour are observed in several cases. This nonlinearity can be explained by friction (flange connections) or by gaps (concentrical nozzles) in certain regions, whereas local plastic deformations during the first pressure loadings of the vessel seem...

  1. Non covalent assembly of coordination superstructures

    CERN Document Server

    Khlobystov, A N

    2002-01-01

    The main topic of this work is the design of discrete and polymeric multi-component coordination structures using non-covalent interactions between organic and inorganic molecular components. All of the structures described herein are based on transition metal cations and N-donor heterocyclic bis-exodentate ligands with different geometries and various spacer functionalities. The predominant method used for the structural characterisation of the complexes was single crystal X-ray crystallography. X-ray powder diffraction, IR and NMR spectroscopies and TEM and AFM imaging were used to characterise the bulk products from the reactions. Chapter 1 is a comparative review of non-covalent interactions relevant to coordination superstructures and covers the latest developments in the area of crystal engineering and supramolecular chemistry. The nature, geometry and relative energy of the non-covalent interactions are considered in detail in order to reveal their influence on the structure and properties of complexes...

  2. Enhanced thermophysical properties via PAO superstructure

    Science.gov (United States)

    Pournorouz, Zahra; Mostafavi, Amirhossein; Pinto, Aditya; Bokka, Apparao; Jeon, Junha; Shin, Donghyun

    2017-01-01

    For the last few years, molten salt nanomaterials have attracted many scientists for their enhanced specific heat by doping a minute concentration of nanoparticles (up to 1% by weight). Likewise, enhancing the specific heat of liquid media is important in many aspects of engineering such as engine oil, coolant, and lubricant. However, such enhancement in specific heat was only observed for molten salts, yet other engineering fluids such as water, ethylene glycol, and oil have shown a decrease of specific heat with doped nanoparticles. Recent studies have shown that the observed specific heat enhancement resulted from unique nanostructures that were formed by molten salt molecules when interacting with nanoparticles. Thus, such enhancement in specific heat is only possible for molten salts because other fluids may not naturally form such nanostructures. In this study, we hypothesized such nanostructures can be mimicked through in situ formation of fabricated nano-additives, which are putative nanoparticles coated with useful organic materials (e.g., polar-group-ended organic molecules) leading to superstructures, and thus can be directly used for other engineering fluids. We first applied this approach to polyalphaolefin (PAO). A differential scanning calorimeter (DSC), a rheometer, and a customized setup were employed to characterize the heat capacity, viscosity, and thermal conductivity of PAO and PAO with fabricated nano-additives. Results showed 44.5% enhanced heat capacity and 19.8 and 22.98% enhancement for thermal conductivity and viscosity, respectively, by an addition of only 2% of fabricated nanostructures in comparison with pure PAO. Moreover, a partial melting of the polar-group-ended organic molecules was observed in the first thermal cycle and the peak disappeared in the following cycles. This indicates that the in situ formation of fabricated nano-additives spontaneously occurs in the thermal cycle to form nanostructures. Figure of merit analyses have

  3. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2006-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  4. Measuring techniques for autogenous strain of cement paste

    DEFF Research Database (Denmark)

    Lura, Pietro; Jensen, Ole Mejlhede

    2007-01-01

    Volumetric measurement of autogenous strain is frequently performed by placing the fresh cement paste in a rubber membrane submerged in water. The volume change of the cement paste is measured by the amount of water displaced by the submerged sample. Volumetric and linear measurements of autogenous...... of the volumetric method. Water absorption is driven by a lowering of the water activity in the cement paste due to dissolved salts in the pore fluid and to self-desiccation. From the moment of casting, significant water uptake was registered in all experiments. This water uptake influenced the volumetric...... on the same cement pastes....

  5. ELABORATION OF THE SUPERSTRUCTURE OF THE BULGARIAN HOTEL INDUSTRY

    Directory of Open Access Journals (Sweden)

    Tanya Dabeva

    2010-12-01

    Full Text Available The purpose of the paper is to suggest some terms of reference for the elaboration of the superstructure of the Bulgarian hotel industry. The suggestions are based on the analysis of the superstructure at present. Its capacity, main types of accommodation establishments and their distribution by categories and territory are examined. An analysis is made of some resulting indices such as overnight stays and average stay. The main positive, respectively negative features of the superstructure have been analyzed. Concrete terms of reference have been given in order to overcome the problems specified.

  6. Strain Measurements of Chondrules and Refraction Inclusion in Allende

    Science.gov (United States)

    Tait, Alastair W.; Fisher, Kent R.; Simon, Justin I.

    2013-01-01

    This study uses traditional strain measurement techniques, combined with X-ray computerized tomography (CT), to evaluate petrographic evidence in the Allende CV3 chondrite for preferred orientation and to measure strain in three dimensions. The existence of petrofabrics and lineations was first observed in carbonaceous meteorites in the 1960's. Yet, fifty years later only a few studies have reported that meteorites record such features. Impacts are often cited as the mechanism for this feature, although plastic deformation from overburden and nebular imbrication have also been proposed. Previous work conducted on the Leoville CV3 and the Parnallee LL3 chondrites, exhibited a minimum uniaxial shortening of 33% and 21%, respectively. Petrofabrics in Allende CV3 have been looked at before; previous workers using Electron Back Scatter Diffraction (EBSD) found a major-axis alignment of olivine inside dark inclusions and an "augen"-like preferred orientation of olivine grains around more competent chondrules

  7. Direct strain and slope measurement using 2D DSPSI Title

    CERN Document Server

    Dandach, Wajdi; Picart, Pascal; 10.4028/www.scientific.net/AMR.324.384

    2011-01-01

    Large variety of optical full-field measurement techniques are being developed and applied to solve mechanical problems. Since each technique possess its own merits, it is important to know the capabilities and limitations of such techniques. Among these optical full-field methods, interferometry techniques take an important place. They are based on illumination with coherent light (laser). In shearing interferometry the difference of the out of-plane displacement in two neighboring object points is directly measured. Since object displacement does not result in interferometry fringes, the method is suited for localization of strain concentrations and is indeed used in industry for this purpose. Used quantitatively DSPSI possesses the advantage over conventional out-of-plane displacement-sensitive interferometry that only a single difference of the unwrapped phase map is required to obtain flexural strains, thereby relieving problems with noise and reduction in the field of view. The first publication on (DSP...

  8. A dual measurement method of strain and temperature

    Institute of Scientific and Technical Information of China (English)

    JIANG Hai-li; SUN Wei-min; ZHANG Cong; LIU Zhi-hai; JIANG Fu-qiang; ZHANG Yang

    2007-01-01

    With the rapid development of China's foreign trade, the coastal and inland waterway transport has been increased rapidly. The potential market for marine engines is more and more obvious.The measurement of the engine temperature and strain becomes very important. The fluorescence fiber sensors are broadly used to measure temperature, concentration, and pH value, etc. The fluorescence sensing systems are based on different principles, namely fluorescence intensity, fluorescence intensity ratio, and fluorescence lifetime. The fluorescence lifetime is an effective parameter for sensing purpose,because it is independent of the intensity of the pumping source and does not need expensive narrow-band filters. An experiment system has been established, in which some samples were produced to measure the fluorescence lifetime and temperature characteristics and the relationship of the strain and temperature versus the fluorescence lifetime was achieved at the same time. The experiment result was fitted and analyzed. The test results show that the fluorescence lifetime decreases with the increasing of temperature. The change of fluorescence lifetime with the strain is inconspicuous comparing to that with the temperature.

  9. Intelligent tires for improved tire safety using wireless strain measurement

    Science.gov (United States)

    Matsuzaki, Ryosuke; Todoroki, Akira

    2008-03-01

    From a traffic safety point-of-view, there is an urgent need for intelligent tires as a warning system for road conditions, for optimized braking control on poor road surfaces and as a tire fault detection system. Intelligent tires, equipped with sensors for monitoring applied strain, are effective in improving reliability and control systems such as anti-lock braking systems (ABSs). In previous studies, we developed a direct tire deformation or strain measurement system with sufficiently low stiffness and high elongation for practical use, and a wireless communication system between tires and vehicle that operates without a battery. The present study investigates the application of strain data for an optimized braking control and road condition warning system. The relationships between strain sensor outputs and tire mechanical parameters, including braking torque, effective radius and contact patch length, are calculated using finite element analysis. Finally, we suggested the possibility of optimized braking control and road condition warning systems. Optimized braking control can be achieved by keeping the slip ratio constant. The road condition warning would be actuated if the recorded friction coefficient at a certain slip ratio is lower than a 'safe' reference value.

  10. A Generic Methodology for Superstructure Optimization of Different Processing Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei

    2016-01-01

    In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architectur...

  11. A Generic Methodology for Superstructure Optimization of Different Processing Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei;

    2016-01-01

    In this paper, we propose a generic computer-aided methodology for synthesis of different processing networks using superstructure optimization. The methodology can handle different network optimization problems of various application fields. It integrates databases with a common data architecture...

  12. Integral ceramic superstructure evaluation using time domain optical coherence tomography

    Science.gov (United States)

    Sinescu, Cosmin; Bradu, Adrian; Topala, Florin I.; Negrutiu, Meda Lavinia; Duma, Virgil-Florin; Podoleanu, Adrian G.

    2014-02-01

    Optical Coherence Tomography (OCT) is a non-invasive low coherence interferometry technique that includes several technologies (and the corresponding devices and components), such as illumination and detection, interferometry, scanning, adaptive optics, microscopy and endoscopy. From its large area of applications, we consider in this paper a critical aspect in dentistry - to be investigated with a Time Domain (TD) OCT system. The clinical situation of an edentulous mandible is considered; it can be solved by inserting 2 to 6 implants. On these implants a mesostructure will be manufactured and on it a superstructure is needed. This superstructure can be integral ceramic; in this case materials defects could be trapped inside the ceramic layers and those defects could lead to fractures of the entire superstructure. In this paper we demonstrate that a TD-OCT imaging system has the potential to properly evaluate the presence of the defects inside the ceramic layers and those defects can be fixed before inserting the prosthesis inside the oral cavity. Three integral ceramic superstructures were developed by using a CAD/CAM technology. After the milling, the ceramic layers were applied on the core. All the three samples were evaluated by a TD-OCT system working at 1300 nm. For two of the superstructures evaluated, no defects were found in the most stressed areas. The third superstructure presented four ceramic defects in the mentioned areas. Because of those defects the superstructure may fracture. The integral ceramic prosthesis was send back to the dental laboratory to fix the problems related to the material defects found. Thus, TD-OCT proved to be a valuable method for diagnosing the ceramic defects inside the integral ceramic superstructures in order to prevent fractures at this level.

  13. Experimental strain measurements on large diameter mitered pipe joints

    Energy Technology Data Exchange (ETDEWEB)

    Feier, Ioan I.; Leis, Brian N.; Zhu, Xian-Kui [Battelle Memorial Institute, Columbus, OH (United States); Stonesifer, Randall B. [Computational Mechanics Inc., Julian, PA (United States); Stavrakas, John S. [National Grid, Waltham, MA (United States); Eletto, Daniel D. [National Grid, Hicksville, NY (United States)

    2010-07-01

    Nowadays, small directional changes in a piping system are achieved by using cold field bent sections however, in the past, miter joints were used and so some pipelines still have such joints. The aim of this study was to determine the stress amplification due to miters in gas transmission pipelines. Experiments were carried out on X42 pipeline steel miter joints, 3 were taken from the Clove Lakes segment of the National grid system and 3 were manufactured for the test, all miter angles were between 0 and 8 degrees of total pipeline direction change; strain gauges were used to measure hoop and axial strains. Results showed that the stress increase due to miter joints increases linearly with the miter angle; in addition it was found that miters on the studied pipeline did not compromise its integrity. This study provided a good understanding of miter induced stress but results are limited to pipe with r/t values of 30.

  14. High-temperature strain measurement techniques: Current developments and challenges

    Science.gov (United States)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  15. Soft tissue strain measurement using an optical method

    Science.gov (United States)

    Toh, Siew Lok; Tay, Cho Jui; Goh, Cho Hong James

    2008-11-01

    Digital image correlation (DIC) is a non-contact optical technique that allows the full-field estimation of strains on a surface under an applied deformation. In this project, the application of an optimized DIC technique is applied, which can achieve efficiency and accuracy in the measurement of two-dimensional deformation fields in soft tissue. This technique relies on matching the random patterns recorded in images to directly obtain surface displacements and to get displacement gradients from which the strain field can be determined. Digital image correlation is a well developed technique that has numerous and varied engineering applications, including the application in soft and hard tissue biomechanics. Chicken drumstick ligaments were harvested and used during the experiments. The surface of the ligament was speckled with black paint to allow for correlation to be done. Results show that the stress-strain curve exhibits a bi-linear behavior i.e. a "toe region" and a "linear elastic region". The Young's modulus obtained for the toe region is about 92 MPa and the modulus for the linear elastic region is about 230 MPa. The results are within the values for mammalian anterior cruciate ligaments of 150-300 MPa.

  16. Superstructures in Rayleigh-Benard convection

    Science.gov (United States)

    Stevens, Richard; Verzicco, Roberto; Lohse, Detlef

    2016-11-01

    We study the heat transfer and the flow structures in Rayleigh-Bénard convection as function of the Rayleigh number Ra and the aspect ratio. We consider three-dimensional direct numerical simulations (DNS) in a laterally periodic geometry with aspect ratios up to Γ =Lx /Lz =Ly /Lz = 64 at Ra =108 , where Lx and Ly indicate the horizontal domain sizes and Lz the height. We find that the heat transport convergences relatively quickly with increasing aspect ratio. In contrast, we find that the large scale flow structures change significantly with increasing aspect ratio due to the formation of superstructures. For example, at Ra =108 we find the formation of basically only one large scale circulation roll in boxes with an aspect ratio up to 8. For larger boxes we find the formation of multiple of these extremely large convection rolls. We illustrate this by movies of horizontal cross-section of the bulk and the boundary layer and analyze them by using spectra in the boundary layer and the bulk. In addition, we study the effect of the large scale flow structures on the mean and higher order temperature and velocity statistics in the boundary layer and the bulk by comparing the simulation results obtained in different aspect ratio boxes. Foundation for fundamental Research on Matter (FOM), Netherlands Center for Multiscale Catalytic Energy Conversion (MCEC), SURFsara, Gauss Large Scale project.

  17. Universal digital strain gauge measurement system of aeroelastic deformation development

    Directory of Open Access Journals (Sweden)

    Pavlov Anton

    2016-01-01

    Full Text Available This article presents description of the universal digital strain gauge system developed to measure the static and dynamic aeroelastic deformations of elasticity-scale models during the tests in aerodynamic tube and during in-flight tests of an experimental air vehicles. The main requirements for such devices are small size and possibility of operation in a wide temperature range. The article considers the dependence of zero offset from temperature. Functional diagram block and logic diagram of the build system are shown.

  18. The line shape of the Ortho-II superstructure reflection in YBa2Cu3O6.5

    DEFF Research Database (Denmark)

    Schleger, P.; Hadfield, R.; Casalta, H.;

    1994-01-01

    Neutron and synchrotron x-ray measurements of the Ortho-II superstructure reflections on a high quality single crystal of YBa2Cu3O6.5 revealed that the intrinsic line shape is a Lorentzian to the power 5/2. It is argued that such a line shape implies late-stage domain coarsening of a quenched...

  19. Rolling Mill Work Roll Stress Analysis and Strain Measurement

    Energy Technology Data Exchange (ETDEWEB)

    R. K. Jones

    1999-03-01

    This study of a rolling mill work roll failure consisted of (a) a review of related published materials, (b) measuring strain on the spindles with strain gages, (c) performing finite element analyses (FEA) modeling of the work roll thrust groove section (using the measured spindle loading), (d) fabricating and testing an physical model of the work roll, using the good end of a broken work roll, (e) recording motor voltage and current, and (f) processing, analyzing, and comparing the results. A methodical approach was taken to determine the causes of the failures. The actual loading to which the work rolls were subjected was determined, then these loads were used in a FEA of the thrust groove sections of three work roll designs: failed, current, and proposed. To verify the FEA results, a physical model was fabricated, built, and subjected to instrumented tests. The study offered the following recommendations: remove the undercut groove in the thrust groove section on future procurements; investigate possible methods of removing the transverse keyway; forego the larger drive train upgrades proposed by the mill manufacturer; continue frequent thrust groove inspections; require chemical and mechanical property certifications on all future procurements; and immediately scrap any work rolls that exhibit surface cracking.

  20. Optical sensor for measuring humidity, strain and temperature

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to an optical sensor (100) adapted to measure at least three physical parameters, said optical sensor comprising a polymer-based optical waveguide structure comprising a first Bragg grating structure (101) being adapted to provide information about a first, a second...... and a third physical parameter, a second Bragg grating structure (102) being adapted to provide information about the second and the third physical parameter only, and a third Bragg grating structure (103) being adapted to provide information about the third physical parameter only. The invention further...... relates to a method for measuring the first, the second and the third physical parameter. Preferably, the first, the second and the third physical parameter, are humidity, strain and temperature, respectively....

  1. Development and Measurement of Strain Free RF Photoinjector Vacuum Windows

    CERN Document Server

    Biedron, Sandra G

    2004-01-01

    RF photoinjectors produce the highest brightness electron bunches only under nearly ideal illumination by a drive laser. The vacuum window used to introduce the laser beam is an essential element that may potentially degrade any distribution, making it difficult or impossible to know the actual uniformity achieved at the cathode. Because of the necessity to obtain ultrahigh vacuum near the photoinjector, some restrictions are imposed on the fabrication technology available to manufacture distortion-free windows. At the UV wavelengths commonly used for photoinjectors, it is challenging to measure and eliminate degradation caused by vacuum windows. Here, we discuss the initial laser-based measurements of a strain-free, coated, UHV window manufactured by Insulator Seal in collaboration with members of Brookhaven and Argonne National Laboratories.

  2. Utilizing Photogrammetry and Strain Gage Measurement to Characterize Pressurization of an Inflatable Module

    Science.gov (United States)

    Valle, Gerard D.; Selig, Molly; Litteken, Doug; Oliveras, Ovidio

    2012-01-01

    This paper documents the integration of a large hatch penetration into an inflatable module. This paper also documents the comparison of analytical load predictions with measured results utilizing strain measurement. Strain was measured by utilizing photogrammetric measurement and through measurement obtained from strain gages mounted to selected clevises that interface with the structural webbings. Bench testing showed good correlation between strain measurement obtained from an extensometer and photogrammetric measurement especially after the fabric has transitioned through the low load/high strain region of the curve. Test results for the full-scale torus showed mixed results in the lower load and thus lower strain regions. Overall strain, and thus load, measured by strain gages and photogrammetry tracked fairly well with analytical predictions. Methods and areas of improvements are discussed.

  3. Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays

    Science.gov (United States)

    2015-07-01

    UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using Fibre Bragg Grating Sensing Arrays Claire...arrays to the surface of a composite hydrofoil and reports on an experiment to measure surface strains from the hydrofoil under static and fatigue...July 2015 APPROVED FOR PUBLIC RELEASE UNCLASSIFIED UNCLASSIFIED Measurement of Surface Strains from a Composite Hydrofoil using

  4. Soil Stress-Strain Behavior: Measurement, Modeling and Analysis

    CERN Document Server

    Ling, Hoe I; Leshchinsky, Dov; Koseki, Junichi; A Collection of Papers of the Geotechnical Symposium in Rome

    2007-01-01

    This book is an outgrowth of the proceedings for the Geotechnical Symposium in Roma, which was held on March 16 and 17, 2006 in Rome, Italy. The Symposium was organized to celebrate the 60th birthday of Prof. Tatsuoka as well as honoring his research achievement. The publications are focused on the recent developments in the stress-strain behavior of geomaterials, with an emphasis on laboratory measurements, soil constitutive modeling and behavior of soil structures (such as reinforced soils, piles and slopes). The latest advancement in the field, such as the rate effect and dynamic behavior of both clay and sand, behavior of modified soils and soil mixtures, and soil liquefaction are addressed. A special keynote paper by Prof. Tatsuoka is included with three other keynote papers (presented by Prof. Lo Presti, Prof. Di Benedetto, and Prof. Shibuya).

  5. Modifications of the superstructure for the staple implant.

    Science.gov (United States)

    Guerra, L R; Larsen, H D; Finger, I M; Jaen, F

    1984-12-01

    Two techniques have been described to expedite fabrication and reduce the cost of prostheses made for staple implants. The techniques permit placement of a simulated transosseous pin within the master cast. At the time of denture placement in technique No. 1, the coping-bar attachment assembly is cemented (Fig. 12). In technique No. 2 the superstructure is placed over the transosteal pins and secured between the locknuts to maintain the base of the lower locknut 1.5 mm from the crest of the alveolar ridge (Fig. 13). Technique No. 2 permits removal of the superstructure as desired. Patients should be instructed in proper oral hygiene and denture care.

  6. High frequency strain measurements with fiber Bragg grating sensors

    Science.gov (United States)

    Koch, J.; Angelmahr, M.; Schade, W.

    2015-05-01

    In recent years fiber Bragg grating sensors gained interest in structural health monitoring and concepts for smart structures. They are small, lightweight, and immune to electromagnetic interference. Using multiplexing techniques, several sensors can be addressed by a single fiber. Therefore, well-established structures and materials in industrial applications can be easily equipped with fiber optical sensors with marginal influence on their mechanical properties. In return, critical components can be monitored in real-time, leading to reduced maintenance intervals and a great reduction of costs. Beside of generally condition monitoring, the localization of failures in a structure is a desired feature of the condition monitoring system. Detecting the acoustic emission of a sudden event, its place of origin can be determined by analyzing the delay time of distributed sensor signals. To achieve high localization accuracies for the detection of cracks, breaks, and impacts high sampling rates combined with the simultaneous interrogation of several fiber Bragg grating sensors are required. In this article a fiber Bragg grating interrogator for high frequency measurements up to the megahertz range is presented. The interrogator is based on a passive wavelength to intensity conversion applying arrayed waveguide gratings. Light power fluctuations are suppressed by a differential data evaluation, leading to a reduced signal-to-noise ratio and a low strain detection limit. The measurement system is used to detect, inter alia, wire breaks in steel wire ropes for dockside cranes.

  7. A fibre optic sensor for ambiguity measurement of apparent strain produced by electrical strain gauge-transient-heating-effect

    Energy Technology Data Exchange (ETDEWEB)

    El-Wakad, Mohamed-Tarek; Elsarnagawy, Tarek [King Saud Univ., Riyadh (Saudi Arabia)

    2010-07-01

    Strain gauges are useful sensors in many engineering and medical applications. When using one gauge for the measurement in quarter-bridge configurations, the electrical current flowing delivers power to the electrical strain gauge which causes a temperature rise (transient heat effect or THE), with a strain signal appearing as drift of the zero baseline. Fibre optic sensors on the other side are used to measure temperature as well as strain or force. The aim of this study is to evaluate the rise in temperature produced by the electrical strain gauge and to determine the equivalent apparent strain accordingly as a step towards using the reading to correct for the error due to the THE. The results of this study show that the optical fibre sensor is more sensitive compared to the semiconductor sensor used as a reference temperature sensor. The results also show the feasibility of determining the equivalent apparent strain values through reverse calculation of number of fringes resulting from the fibre optic sensor due to the temperature change. This was as an initial step to implement those values in the measuring electronic circuitry in order to eliminate the drift in the zero baselines. (orig.)

  8. Strain measurement in concrete using embedded carbon roving-based sensors

    Energy Technology Data Exchange (ETDEWEB)

    Quadflieg, Till; Gries, Thomas [RWTH Aachen Univ. (Germany). Inst. fuer Textiltechnik (ITA); Stolyarov, Oleg [St. Petersburg Polytechnic Univ. (Russian Federation)

    2016-11-01

    This paper presents the results of the application of carbon rovings as strain sensors for measuring the strain in concrete. In this work, three types of electrically conductive carbon roving with different characteristics were used. The possibility of using carbon rovings as a strain sensor is demonstrated via measurements in tensile and four point bending tests. The experimental setups and methods for measuring the electrical resistance of carbon roving in the roving and concrete are described. The results of the characterization of the electrical behavior as a function of strain of carbon rovings and concrete are presented and discussed. The obtained results indicate that the strain range of carbon rovings optimally corresponds to the strain range of concrete. This characteristic behavior makes the carbon rovings well suited for the use as strain sensors. A good correlation has been found between the electrical resistance-strain curve of the carbon roving and the measurements in the concrete.

  9. Reliable strain measurement in transistor arrays by robust scanning transmission electron microscopy

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2013-09-01

    Full Text Available Accurate measurement of the strain field in the channels of transistor arrays is critical for strain engineering in modern electronic devices. We applied atomic-resolution high-angle annular dark-field scanning transmission electron microscopy to quantitative measurement of the strain field in transistor arrays. The quantitative strain profile over 20 transistors was obtained with high reliability and a precision of 0.1%. The strain field was found to form homogeneously in the channels of the transistor arrays. Furthermore, strain relaxation due to the thin foil effect was quantitatively investigated for thicknesses of 35 to 275 nm.

  10. Atrial strain rate is a sensitive measure of alterations in atrial phasic function in healthy ageing.

    Science.gov (United States)

    Boyd, Anita C; Richards, David A B; Marwick, Thomas; Thomas, Liza

    2011-09-01

    Strain and strain rate measure local deformation of the myocardium and have been used to evaluate phasic atrial function in various disease states. The aim of this study was to define normal values for tissue Doppler-derived atrial strain measurements and examine age-related changes by decade in healthy individuals. Transthoracic echocardiograms were performed on 188 healthy subjects. Tissue Doppler-derived strain and strain rate were measured from the apical four and two-chamber views of the left atrium, and global values were calculated as the mean of all segments. Measurements included peak systolic strain, systolic strain rate, early and late diastolic strain rate. Phasic left atrial volumes and fractions were calculated. Mitral inflow and tissue Doppler imaging were employed to estimate left ventricular diastolic function. A significant reduction in global systolic strain was observed from decade 6. Alterations in atrial strain rate were apparent from decade 5; systolic strain rate and early diastolic strain rate decreased, while late diastolic strain rate increased significantly. Changes in phasic atrial volume and function occurred in conjunction with age-related changes in left ventricular diastolic function. Importantly, age-related changes in global atrial systolic strain rate and early diastolic strain rate occurred a decade before corresponding changes in atrial phasic volume parameters. Atrial strain and strain rate can be used to quantify atrial phasic function and appear to be altered before traditional parameters with ageing. Strain analysis may therefore be more sensitive in detecting subclinical atrial dysfunction with alterations in strain rate parameters observed before traditional parameters.

  11. Assessment of strain measurement techniques to characterise mechanical properties of structural steel

    Directory of Open Access Journals (Sweden)

    H.B. Motra

    2014-12-01

    Full Text Available Strain measurement is important in mechanical testing. A wide variety of techniques exists for measuring strain in the tensile test; namely the strain gauge, extensometer, stress and strain determined by machine crosshead motion, Geometric Moire technique, optical strain measurement techniques and others. Each technique has its own advantages and disadvantages. The purpose of this study is to quantitatively compare the strain measurement techniques. To carry out the tensile test experiments for S 235, sixty samples were cut from the web of the I-profile in longitudinal and transverse directions in four different dimensions. The geometry of samples are analysed by 3D scanner and vernier caliper. In addition, the strain values were determined by using strain gauge, extensometer and machine crosshead motion. Three techniques of strain measurement are compared in quantitative manner based on the calculation of mechanical properties (modulus of elasticity, yield strength, tensile strength, percentage elongation at maximum force of structural steel. A statistical information was used for evaluating the results. It is seen that the extensometer and strain gauge provided reliable data, however the extensometer offers several advantages over the strain gauge and crosshead motion for testing structural steel in tension. Furthermore, estimation of measurement uncertainty is presented for the basic material parameters extracted through strain measurement.

  12. From Measurements Errors to a New Strain Gauge Design

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Zike, Sanita; Salviato, Marco;

    2015-01-01

    such as clip-on extensometers. In the present work, this has been quantified through a numerical study for three different strain gauges. In addition, a significant effect of a thin polymer coating or biaxial layer in the erroneous using strain gauges has been observed. An erroneous which can be significantly...

  13. Superstructure-based optimization of biorefinery networks: Production of biodiesel

    DEFF Research Database (Denmark)

    2015-01-01

    through a practical case study for the production biodiesel from a variety of feedstock. The different biorefinery processing alternatives are represented in a superstructure and the associated data is collected and stored in a database. Once a specific biorefinery synthesis problem is formulated...

  14. Seafloor geodesy: Measuring surface deformation and strain-build up

    Science.gov (United States)

    Kopp, Heidrun; Lange, Dietrich; Hannemann, Katrin; Petersen, Florian

    2017-04-01

    Seafloor deformation is intrinsically related to tectonic processes, which potentially may evolve into geohazards, including earthquakes and tsunamis. The nascent scientific field of seafloor geodesy provides a way to monitor crustal deformation at high resolution comparable to the satellite-based GPS technique upon which terrestrial geodesy is largely based. The measurements extract information on stress and elastic strain stored in the oceanic crust. Horizontal seafloor displacement can be obtained by acoustic/GPS combination to provide absolute positioning or by long-term acoustic telemetry between different beacons fixed on the seafloor. The GeoSEA (Geodetic Earthquake Observatory on the SEAfloor) array uses acoustic telemetry for relative positioning at mm-scale resolution. The transponders within an array intercommunicate via acoustic signals for a period of up to 3.5 years. The seafloor acoustic transponders are mounted on 4 m high tripod steel frames to ensure clear line-of-sight between the stations. The transponders also include high-precision pressure sensors to monitor vertical movements and dual-axis inclinometers in order to measure their level as well as any tilt of the seafloor. Sound velocity sensor measurements are used to correct for water sound speed variations. A further component of the network is GeoSURF, a self-steering autonomous surface vehicle (Wave Glider), which monitors system health and is able to upload the seafloor data to the sea surface and to transfer it via satellite. The GeoSEA array is capable of both continuously monitoring horizontal and vertical ground displacement rates along submarine fault zones and characterizing their behavior (locked or aseismically creeping). Seafloor transponders are currently installed along the Siliviri segment of the North Anatolian Fault offshore Istanbul for measurements of strain build-up along the fault. The first 18 month of baseline ranging were analyzed by a joint-least square inversion

  15. Measuring the elastic strain of individual grains in polycrystalline materials

    DEFF Research Database (Denmark)

    on some of the important aspects you have to take into account in order to determine the strain tensors of the individual grains to the desired accuracy of 10-4. The first thing is how to handle the peak overlaps that will inevitably occur, especially for textured and/or deformed materials. Secondly...... within FitAllB. In addition to the centre-of-mass grain positions, orientations and strain tensors, FitAllB also calculates the relative volumes of the grains based on the peak intensities, so using a tessellation routine a crude 3D map of the elastic strain in the polycrystal can be obtained....

  16. Templated and template-free fabrication strategies for zero-dimensional hollow MOF superstructures.

    Science.gov (United States)

    Kim, Hyehyun; Lah, Myoung Soo

    2017-03-23

    Various fabrication strategies for hollow metal-organic framework (MOF) superstructures are reviewed and classified using various types of external templates and their properties. Hollow MOF superstructures have also been prepared without external templates, wherein unstable intermediates obtained during reactions convert to the final hollow MOF superstructures. Many hollow MOF superstructures have been fabricated using hard templates. After the core-shell core@MOF structure was prepared using a hard template, the core was selectively etched to generate a hollow MOF superstructure. Another approach for generating hollow superstructures is to use a solid reactant as a sacrificial template; this method requires no additional etching process. Soft templates such as discontinuous liquid/emulsion droplets and gas bubbles in a continuous soft phase have also been employed to prepare hollow MOF superstructures.

  17. Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2005-10-01

    Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

  18. A detection of the integrated Sachs-Wolfe imprint of cosmic superstructures using a matched-filter approach

    CERN Document Server

    Nadathur, Seshadri

    2016-01-01

    We present a new method for detection of the integrated Sachs-Wolfe (ISW) imprints of cosmic superstructures on the cosmic microwave background, based on a matched filtering approach. The expected signal-to-noise ratio for this method is comparable to that obtained from the full cross-correlation, and unlike other stacked filtering techniques it is not subject to an a posteriori bias. We apply this method to Planck CMB data using voids and superclusters identified in the CMASS galaxy data from the Sloan Digital Sky Survey Data Release 12, and measure the ISW amplitude to be $A_\\mathrm{ISW}=1.64\\pm0.53$ relative to the $\\Lambda$CDM expectation, corresponding to a $3.1\\sigma$ detection. In contrast to some previous measurements of the ISW effect of superstructures, our result is in agreement with the $\\Lambda$CDM model.

  19. A Detection of the Integrated Sachs–Wolfe Imprint of Cosmic Superstructures Using a Matched-filter Approach

    Science.gov (United States)

    Nadathur, Seshadri; Crittenden, Robert

    2016-10-01

    We present a new method for detection of the integrated Sachs–Wolfe (ISW) imprints of cosmic superstructures on the cosmic microwave background (CMB), based on a matched-filtering approach. The expected signal-to-noise ratio for this method is comparable to that obtained from the full cross-correlation, and unlike other stacked filtering techniques it is not subject to an a posteriori bias. We apply this method to Planck CMB data using voids and superclusters identified in the CMASS galaxy data from the Sloan Digital Sky Survey Data Release 12, and measure the ISW amplitude to be {A}{ISW}=1.64+/- 0.53 relative to the ΛCDM expectation, corresponding to a 3.1σ detection. In contrast to some previous measurements of the ISW effect of superstructures, our result is in agreement with the ΛCDM model.

  20. Comparative Analysis of Measured and Predicted Shrinkage Strain in Concrete

    Directory of Open Access Journals (Sweden)

    Kossakowski P. G.

    2014-06-01

    Full Text Available The article discusses the issues related to concrete shrinkage. The basic information on the phenomenon is presented as well as the factors that determine the contraction are pointed out and the stages of the process are described. The guidance for estimating the shrinkage strain is given according to Eurocode standard PN-EN 1992-1-1:2008. The results of studies of the samples shrinkage strain of concrete C25/30 are presented with a comparative analysis of the results estimated by the guidelines of the standard according to PN-EN 1992-1- 1:2008

  1. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...

  2. Internal tibial torsion correction study. [measurements of strain for corrective rotation of stressed tibia

    Science.gov (United States)

    Cantu, J. M.; Madigan, C. M.

    1974-01-01

    A quantitative study of internal torsion in the entire tibial bone was performed by using strain gauges to measure the amount of deformation occuring at different locations. Comparison of strain measurements with physical dimensions of the bone produced the modulus of rigidity and its behavior under increased torque. Computerized analysis of the stress distribution shows that more strain occurs near the torqued ends of the bones where also most of the twisting and fracturing takes place.

  3. A Generic Methodology for Superstructure Optimization of Different Processing Networks

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Zhang, Lei

    , biorefineries, and carbon dioxide utilization are considered.In the synthesis stage, the processing alternatives are represented in a superstructure and the associated data is collected and stored in a database. Once a specific process synthesis problem is formulated, the existing superstructure is retrieved...... of processing networks. This is illustrated through case studies from two applications: the synthesis of biorefinery networks and the synthesis of sustainable carbon dioxide utilization processes.......A large focus is placed on sustainability and sustainable practices as a result of the arising environmental issues. As an element of this, sustainable process synthesis and design becomes important. A generic, systematic methodology is proposed for solving the problem of optimal design...

  4. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    Science.gov (United States)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  5. Surface strains induced by measured loads on teeth in vivo: a methodological study.

    Science.gov (United States)

    Nohl, F S; Setchell, D J

    2000-03-01

    Visual feedback enabled three subjects to apply predetermined near-axial loads to the incisal edge of an intact maxillary central incisor. In two subjects, principal strains and orientations developed on the labial surface of the intact incisor were resolved from strains recorded with a multiple element strain gauge. Load application was accurate and precise enough to allow resolution of strains induced by target loads of 10 to 50 N. Axially orientated compressive labial surface strains were induced by measured loads. The method could be used to validate bench-top stress analyses and investigate the effects of restoration on the structural integrity of teeth.

  6. Fiber Bragg gratings strain measuring system and a sensor calibration setup based on mechanical nanomotion transducer

    Science.gov (United States)

    Lazarev, Vladimir A.; Leonov, Stanislav O.; Tarabrin, Mikhail K.; Karasik, Valerii E.

    2017-06-01

    Fiber Bragg grating (FBG) strain sensors are powerful tools for structural health monitoring applications. However, FBG sensor fabrication and packaging processes can lead to a non-linear behavior, that affects the accuracy of the strain measurements. Here we present a novel nondestructive calibration technique for FBG strain sensors that use a mechanical nanomotion transducer. A customized calibration setup was designed based on dovetail-type slideways that were mechanized using a stepping motor. The performance of the FBG strain sensor was investigated through analysis of experimental data, and the calibration curves for the FBG strain sensor are presented.

  7. The Effect of Superstructures Connected to Implants with Different Surface Properties on the Surrounding Bone

    Directory of Open Access Journals (Sweden)

    Katsunori Koretake

    2015-07-01

    Full Text Available The objective of this study was to investigate how the connection of superstructures to implants with different surface properties affects the surrounding bone. The right and left mandibular premolars and molars of 5 dogs were extracted. After 12 weeks, a machined implant was placed mesially and an anodized implant was placed distally on one side of the edentulous jaw, with the positions reversed on the opposite side. Twelve weeks after implantation, splinted superstructures were set to the implants. At 24 weeks after implantation, the implant stability quotient (ISQ was measured, radiographs were obtained. Removal torque values were measured and histologic observation was performed. The ISQ values at 24 weeks after implantation were not significantly different between the groups. The removal torque values were significantly different between the distal anodized and distal machined implants (p < 0.05. From 12 to 24 weeks, marginal bone losses were not significantly different between the groups. Fluorescent observation of tissue samples revealed bone-remodeling activity around all of the implants. The results of this study suggest that when implants with different surface properties are connected, machined implants at the most distal sites might be a potential risk factor for implant-bone binding.

  8. Superstructure Strategy: Do Indonesian EFL Learners Use It?

    Directory of Open Access Journals (Sweden)

    Evy C Ridwan

    1997-01-01

    Full Text Available Abstract: This paper reports on a study conducted among Indonesian undergraduate students majoring in English as a Foreign Language (EFL. One strategy that learners generally use to understand the main ideas of an expository text is the superstructure strategy (i.e., utilizing the text structure to understand the main ideas. While research in English as First Language reading has demonstrated the benefit of using this strategy, little do we know whether Indonesian EFL learners use this strategy in reading and whether this strategy is beneficial to them or not. Two versions of an expository text were developed: One version had an explicit text structure, with the inclusion of discourse markers, to elicit learners to use the superstructure strategy; the other was without discourse markers. It was hypothesized that learners who read the version with an explicit text structure would utilize the superstructure strategy thereby comprehending main ideas better than those who read the other version. Additionally, to confirm the hypothesis learners were also asked to answer a questionnaire developed from O'Malley and Chamot (1993 followed by an interview to find out if EFL learners used other strategies to comprehend main ideas.

  9. SELF-ORGANIZATION OF LEAD SULFIDE QUANTUM DOTS INTO SUPERSTRUCTURES

    Directory of Open Access Journals (Sweden)

    Elena V. Ushakova

    2014-11-01

    Full Text Available The method of X-ray structural analysis (X-ray scattering at small angles is used to show that the structures obtained by self-organization on a substrate of lead sulfide (PbS quantum dots are ordered arrays. Self-organization of quantum dots occurs at slow evaporation of solvent from a cuvette. The cuvette is a thin layer of mica with teflon ring on it. The positions of peaks in SAXS pattern are used to calculate crystal lattice of obtained ordered structures. Such structures have a primitive orthorhombic crystal lattice. Calculated lattice parameters are: a = 21,1 (nm; b = 36,2 (nm; c = 62,5 (nm. Dimensions of structures are tens of micrometers. The spectral properties of PbS QDs superstructures and kinetic parameters of their luminescence are investigated. Absorption band of superstructures is broadened as compared to the absorption band of the quantum dots in solution; the luminescence band is slightly shifted to the red region of the spectrum, while its bandwidth is not changed much. Luminescence lifetime of obtained structures has been significantly decreased in comparison with the isolated quantum dots in solution, but remained the same for the lead sulfide quantum dots close-packed ensembles. Such superstructures can be used to produce solar cells with improved characteristics.

  10. Strain measurements in ferromagnetic martensitic Heuslers and magnetization easy axis

    Energy Technology Data Exchange (ETDEWEB)

    Aksoy, Seda; Acet, Mehmet; Wassermann, Eberhard F. [Experimentalphysik, Universitaet Duisburg-Essen, Duisburg (Germany)

    2008-07-01

    The temperature-dependence of strain under constant magnetic-fields is studied in Ni-Mn-X (X:Ga,In,Sn,Sb) and Ni-Mn-In-X (X:Ga,Sn,Sb) polycrystalline ferromagnetic Heusler alloys which undergo a martensitic transformation close to room-temperature. The applied magnetic-field influences the nucleation of martensite so that decreasing the temperature under a magnetic field leads to large length changes between the austenite and martensite states. The length-change within the martensitic state varies with the magnitude of the cooling-field. This is related to the variant-orientation during martensite nucleation. These strain-data provide information on the easy axis of magnetization.

  11. Multi-fiber strains measured by micro-Raman spectroscopy: Principles and experiments

    Science.gov (United States)

    Lei, Zhenkun; Wang, Yunfeng; Qin, Fuyong; Qiu, Wei; Bai, Ruixiang; Chen, Xiaogang

    2016-02-01

    Based on widely used axial strain measurement method of Kevlar single fiber, an original theoretical model and measurement principle of application of micro-Raman spectroscopy to multi-fiber strains in a fiber bundle were established. The relationship between the nominal Raman shift of fiber bundle and the multi-fiber strains was deduced. The proposed principle for multi-fiber strains measurement is consistent with two special cases: single fiber deformation and multi-fiber deformation under equal strain. It is found experimentally that the distribution of Raman scattering intensity of a Kevlar 49 fiber as a function of distance between a fiber and the laser spot center follows a Gaussian function. Combining the Raman-shift/strain relationship of the Kevlar 49 single fiber and the uniaxial tension measured by micro-Raman spectroscopy, the Raman shift as a function of strain was obtained. Then the Raman peak at 1610 cm-1 for the Kevlar 49 fiber was fitted to a Lorentzian function and the FWHM showed a quadratic increase with the fiber strain. Finally, a dual-fiber tensile experiment was performed to verify the adequacy of the Raman technique for the measurement of multi-fiber strains.

  12. Measurement of fracture properties of concrete at high strain rates

    Science.gov (United States)

    Rey-De-Pedraza, V.; Cendón, D. A.; Sánchez-Gálvez, V.; Gálvez, F.

    2017-01-01

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented. This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  13. Measurement of fracture properties of concrete at high strain rates.

    Science.gov (United States)

    Rey-De-Pedraza, V; Cendón, D A; Sánchez-Gálvez, V; Gálvez, F

    2017-01-28

    An analysis of the spalling technique of concrete bars using the modified Hopkinson bar was carried out. A new experimental configuration is proposed adding some variations to previous works. An increased length for concrete specimens was chosen and finite-element analysis was used for designing a conic projectile to obtain a suitable triangular impulse wave. The aim of this initial work is to establish an experimental framework which allows a simple and direct analysis of concrete subjected to high strain rates. The efforts and configuration of these primary tests, as well as the selected geometry and dimensions for the different elements, have been focused to achieve a simple way of identifying the fracture position and so the tensile strength of tested specimens. This dynamic tensile strength can be easily compared with previous values published in literature giving an idea of the accuracy of the method and technique proposed and the possibility to extend it in a near future to obtain other mechanical properties such as the fracture energy. The tests were instrumented with strain gauges, accelerometers and high-speed camera in order to validate the results by different ways. Results of the dynamic tensile strength of the tested concrete are presented.This article is part of the themed issue 'Experimental testing and modelling of brittle materials at high strain rates'.

  14. Measurement of stress-strain behaviour of human hair fibres using optical techniques.

    Science.gov (United States)

    Lee, J; Kwon, H J

    2013-06-01

    Many studies have presented stress-strain relationship of human hair, but most of them have been based on an engineering stress-strain curve, which is not a true representation of stress-strain behaviour. In this study, a more accurate 'true' stress-strain curve of human hair was determined by applying optical techniques to the images of the hair deformed under tension. This was achieved by applying digital image cross-correlation (DIC) to 10× magnified images of hair fibres taken under increasing tension to estimate the strain increments. True strain was calculated by summation of the strain increments according to the theoretical definition of 'true' strain. The variation in diameter with the increase in longitudinal elongation was also measured from the 40× magnified images to estimate the Poisson's ratio and true stress. By combining the true strain and the true stress, a true stress-strain curve could be determined, which demonstrated much higher stress values than the conventional engineering stress-strain curve at the same degree of deformation. Four regions were identified in the true stress-strain relationship and empirical constitutive equations were proposed for each region. Theoretical analysis on the necking condition using the constitutive equations provided the insight into the failure mechanism of human hair. This analysis indicated that local thinning caused by necking does not occur in the hair fibres, but, rather, relatively uniform deformation takes place until final failure (fracture) eventually occurs.

  15. An octahedral shear strain-based measure of SNR for 3D MR elastography

    Energy Technology Data Exchange (ETDEWEB)

    McGarry, M D J; Perrinez, P R; Pattison, A J; Weaver, J B; Paulsen, K D [Thayer School of Engineering, Dartmouth College, Hanover, NH 03755 (United States); Van Houten, E E W, E-mail: matthew.d.mcgarry@dartmouth.edu [Department of Mechanical Engineering, University of Canterbury, Christchurch (New Zealand)

    2011-07-07

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, {gamma}, is directly related to the shear modulus, {mu}, through the definition of shear stress, {tau} = {mu}{gamma}. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. (note)

  16. An Octahedral Shear Strain Based measure of SNR for 3D MR Elastography

    Science.gov (United States)

    McGarry, MDJ; Van Houten, EEW; Perriñez, PR; Pattison, AJ; Weaver, JB; Paulsen, KD

    2011-01-01

    A signal to noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for MR elastography, where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects. PMID:21654044

  17. An octahedral shear strain-based measure of SNR for 3D MR elastography.

    Science.gov (United States)

    McGarry, M D J; Van Houten, E E W; Perriñez, P R; Pattison, A J; Weaver, J B; Paulsen, K D

    2011-07-07

    A signal-to-noise ratio (SNR) measure based on the octahedral shear strain (the maximum shear strain in any plane for a 3D state of strain) is presented for magnetic resonance elastography (MRE), where motion-based SNR measures are commonly used. The shear strain, γ, is directly related to the shear modulus, μ, through the definition of shear stress, τ = μγ. Therefore, noise in the strain is the important factor in determining the quality of motion data, rather than the noise in the motion. Motion and strain SNR measures were found to be correlated for MRE of gelatin phantoms and the human breast. Analysis of the stiffness distributions of phantoms reconstructed from the measured motion data revealed a threshold for both strain and motion SNR where MRE stiffness estimates match independent mechanical testing. MRE of the feline brain showed significantly less correlation between the two SNR measures. The strain SNR measure had a threshold above which the reconstructed stiffness values were consistent between cases, whereas the motion SNR measure did not provide a useful threshold, primarily due to rigid body motion effects.

  18. Simultaneous measurement of dynamic strain and temperature distribution using high birefringence PANDA fiber Bragg grating

    Science.gov (United States)

    Zhu, Mengshi; Murayama, Hideaki

    2017-04-01

    New approach in simultaneous measurement of dynamic strain and temperature has been done by using a high birefringence PANDA fiber Bragg grating sensor. By this technique, we have succeeded in discriminating dynamic strain and temperature distribution at the sampling rate of 800 Hz and the spatial resolution of 1 mm. The dynamic distribution of strain and temperature were measured with the deviation of 5mm spatially. In addition, we have designed an experimental setup by which we can apply quantitative dynamic strain and temperature distribution to the fiber under testing without bounding it to a specimen.

  19. Fabrication of luminescent Eu{sub 2}O{sub 3} superstructures.

    Energy Technology Data Exchange (ETDEWEB)

    Pol, V. G.; Calderon-Moreno, J. M.; Chemical Sciences and Engineering Division; Inst. of Physical Chemistry

    2010-01-01

    This Letter demonstrates a solvent-free efficient synthesis process to prepare self-assembled two-dimensional Eu{sub 2}O{sub 3} luminescent nanoplates to yield a superstructure. In the first step, Eu{sub 2}O{sub 3}CO{sub 3} superstructures are fabricated by the thermolysis [700C] of a single precursor, europium acetate, in a closed reactor under autogenic pressure. The as-prepared Eu{sub 2}O{sub 3}CO{sub 3} superstructures are further heated in air to 750C to facilitate the fabrication of Eu{sub 2}O{sub 3} superstructures. A systematic morphological, structural, and compositional characterization of Eu{sub 2}O{sub 3} superstructures is carried out. The photoluminescent properties and mechanism for the strong red emission of the photoexcited Eu{sub 2}O{sub 3} superstructures is proposed.

  20. Impact of lens distortions on strain measurements obtained with 2D digital image correlation

    Science.gov (United States)

    Lava, P.; Van Paepegem, W.; Coppieters, S.; De Baere, I.; Wang, Y.; Debruyne, D.

    2013-05-01

    The determination of strain fields based on displacements obtained via digital image correlation (DIC) at the micro-strain level (≤1000 μm/m) is still a cumbersome task. In particular when high-strain gradients are involved, e.g. in composite materials with multidirectional fibre reinforcement, uncertainties in the experimental setup and errors in the derivation of the displacement fields can substantially hamper the strain identification process. In this contribution, the aim is to investigate the impact of lens distortions on strain measurements. To this purpose, we first perform pure rigid body motion experiments, revealing the importance of precise correction of lens distortions. Next, a uni-axial tensile test on a textile composite with spatially varying high strain gradients is performed, resulting in very accurately determined strains along the fibers of the material.

  1. Application of fiber optic distributed sensor for strain measurement in civil engineering

    Science.gov (United States)

    Kurashima, Toshio; Usu, Tomonori; Tanaka, Kuniaki; Nobiki, Atsushi; Sato, Masashi; Nakai, Kenji

    1997-11-01

    We report on civil engineering applications of a fiber optic distributed strain sensor. It consists of a sensing fiber and a high performance optical time domain reflectometer (OTDR), for measuring both strain and optical loss distribution along optical fibers by accessing only one end of the fiber. The OTDR can measure distributed strain with an accuracy of better than +/- 60 X 10-6 and a high spatial resolution of up to 1 m over a 10 km long fiber. In model experiments using the OTDR, we measured the strain changes in fibers attached to the surface of a concrete test beam. The performance of the fiber strain sensor was tested by measuring the strain distribution in optical fibers and comparing the results with resistance strain gage measurements for several loads. We found that the two sets of results were similar, and in addition, we demonstrated experimentally that the sensor was able to measure an induced strain change of less than 100 by 10-6, which is nearly the elastic limit of the concrete material. These results show the potential of the OTDR to extend the application of monitoring systems to such areas as large building diagnostics for civil engineering.

  2. Long-term measurement of bone strain in vivo: the rat tibia

    Science.gov (United States)

    Rabkin, B. A.; Szivek, J. A.; Schonfeld, J. E.; Halloran, B. P.

    2001-01-01

    Despite the importance of strain in regulating bone metabolism, knowledge of strains induced in bone in vivo during normal activities is limited to short-term studies. Biodegeneration of the bond between gauge and bone is the principle cause of this limitation. To overcome the problem of bond degeneration, a unique calcium phosphate ceramic (CPC) coating has been developed that permits long-term attachment of microminiature strain gauges to bone. Using this technique, we report the first long-term measurements of bone strain in the rat tibia. Gauges, mounted on the tibia, achieved peak or near peak bonding at 7 weeks. Measurements were made between 7-10 weeks. Using ambulation on a treadmill, the pattern and magnitude of strain measured in the tibia remained relatively constant between 7-10 weeks post implantation. That strain levels were similar at 7 and 10 weeks suggests that gauge bonding is stable. These data demonstrate that CPC-coated strain gauges can be used to accurately measure bone strain for extended periods, and provide an in vivo assessment of tibial strain levels during normal ambulation in the rat. Copyright 2001 John Wiley & Sons, Inc.

  3. Performance Analysis of Temperature and Strain Simultaneous Measurement System Based on Heterodyne Detection of Brillouin Scattering

    Institute of Scientific and Technical Information of China (English)

    Ji-Sheng Zhang; Yong-Qian Li; Shuo Zhang; Li-Juan Zhao

    2008-01-01

    Microwave heterodyne detection can be used to measure the temperature and strain distribution along a fiber with high accuracy in a Brillouin optical time domain reflectometry (BOTDR) system. This method involves simultaneous measurement of Brillouin scattering and Rayleigh scattering in fiber, and scanning of Briliouin spectrum to obtain the desired information. This paper presents a simultaneous measurement system of temperature and strain based on microwave detection and analyzed the system performances such as measurement accuracy, dynamic range, and spatial resolution theoretically. The analysis shows that the system can achieve a temperature resolution of 1℃ and a strain resolution of 100 με.

  4. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    Directory of Open Access Journals (Sweden)

    Gawedzki Waclaw

    2015-10-01

    Full Text Available Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  5. Analysis of connection element classes and locations and of some structural requirements for the mounting of different superstructure types on transport vehicles

    Directory of Open Access Journals (Sweden)

    Zoran Đ. Majkić

    2011-04-01

    types of coupling used for particular truck superstructures. Types of truck superstructure A truck superstructure is generally a torsionally stiffer structure of the vehicle chassis and by its mounting on the vehicle main frame the torsion stiffness of the whole vehicle increases. In order to retain the vehicle torsional elasticity because of its positive reaction to strain, it is necessary to apply a particular type of coupling for a particular type of truck superstructure. Regarding the torsional stiffness, truck superstructures can be divided into three groups: 1. Torsionally elastic 2. Torsionally semielastic 3. Torsionally rigid Connection of the chassis and the truck superstructure In order to retain the vehicle torsional elasticity because of its positive reaction to strain, it is necessary to apply a particular type of coupling for a particular type of truck superstructure: Panel connection Panel connection allows longitudinal motion and prevents lateral or vertical motion of the chassis runner in relation to the main vehicle frame. Stirrup (U bolt connection Stirrup connections enable longitudinal motion of the chassis runner in relation to the main frame but they cannot accept lateral forces, so additional leading plates are mounted for that purpose. Simplex elastic connection Simplex elastic connections enable vertical motions of the automotive frames due to the effect of longitudinal torsion moments as well as longitudinal motion of the chassis runner due to the effect of longitudinal forces and frame flexion moments. Two - way elastic connection This kind of connections is used to connect the truck tank with the vehicle automotive frame. The connection supports lateral and longitudinal forces and enables vertical motion of the automotive frame in relation to the truck tank, during the torsion and lifting of the vehicle. Stiff connection (connection plates, sheets This type of connections enables rigid connection of the automotive frame and the chassis

  6. Strain rate sensitivity index's theoretical formulae expressed by experimental parameters and its measurement

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A group of formulae for measuring strain rate sensitivity index is established under the conditions of constant strain rate, constant velocity and constant load. And measuring methods are given corresponding to each kind of experimental curves. Furthermore the experimental results are measured and compared on Zn-wt5%Al alloy at room temperature (18 ℃), which shows that this kind of alloy is structural sensitive even at room temperature.

  7. Measuring and modelling straining of Escherichia coli in saturated porous media.

    Science.gov (United States)

    Foppen, Jan Willem; van Herwerden, Manon; Schijven, Jack

    2007-08-15

    Though coliform bacteria are used worldwide to indicate fecal pollution of groundwater, the parameters determining the transport of Escherichia coli in aquifers are relatively unknown. We evaluated the occurrence of both straining and attachment of E. coli ATCC25922 in columns of ultra-pure, angular, saturated quartz sand. The column experiments were conducted over a wide range of porous medium sizes, column heights, input concentrations, and pore water flow velocities. Straining and attachment were examined by modelling the breakthrough curves (with HYDRUS 1D). In addition, model output was compared with measured strained and attached bacteria via column extrusion experiments (in which sand was extruded from the column and placed in excess water) and flow reversal experiments (in which the pore water flow direction was reversed, thereby dislodging strained bacteria). Our model consisted of an attachment rate coefficient and a straining rate coefficient; both of these decreased with transport distance. The straining rate coefficient also decreased in a Langmuirian way, in response to the filling of available pore space, which in turn depended on influent bacteria concentration, quartz grain diameter, and transport distance. The maximum strained fraction was 25-30% of total bacteria mass applied to the column; the maximum attached fraction was 30-35%. The fit between modelled and measured (strained and attached) bacteria masses was acceptable, as was the sensitivity of the model output to fitted parameter values. Our results lead to a new description for the time-dependent mass balance of strained bacteria, which entails using three fitting parameters. The results also imply that column experiments in combination with retention profiles (or various column lengths) are not enough to explain the retention processes in a column. Column extrusion and flow reversal experiments provide vital additional information on the occurrence and magnitude of straining. Our

  8. Strain Measurement for Hollow Projectiles During Its Penetration of Concrete Targets

    Institute of Scientific and Technical Information of China (English)

    王琳; 王富耻; 王鲁; 李树奎

    2004-01-01

    Gives a new technique to measure the dynic deformation behavior and strain development of a hollow steel projectile during its penetration of concrete targets. Direct strain measurement was performed by applying strain gages attached to the inner walls of the hollow projectile, linked with on-board testing and storage recorder. This on-board test-record system is easy to operate, cost-effective and can provide reasonable, accurate and detailed information. Obverse ballistic experiments were carried out on ogival-nose hollow projectiles normally impacting concrete targets at velocities from 150 m/s to 300 m/s. The deformation process of projectiles was measured, recorded and played back. Profiles of voltage-time relationship were successively obtained and transfered to strain-time relationship with the aid of calibration tables. It was found that projectiles go through a series of compression and tension deformations intermittently. Relationships between strain development and projectile deformation process were discussed.

  9. NANOMETER SUPERSTRUCTURE IN LIQUID ALKALI THALLIUM ALLOYS

    NARCIS (Netherlands)

    XU, R; VERKERK, P; HOWELLS, WS; DEWIJS, GA; VANDERHORST, F; VANDERLUGT, W

    1993-01-01

    Structure factors obtained from neutron diffraction measurements on liquid K-Tl and Cs-Tl alloys exhibit large prepeaks at approximately 0.77 angstrom-1 and 0.70 angstrom-1, respectively. It is concluded that the liquid contains large units of thallium atoms, possibly bearing some resemblance to tho

  10. From measurements errors to a new strain gauge design for composite materials

    DEFF Research Database (Denmark)

    Mikkelsen, Lars Pilgaard; Salviato, Marco; Gili, Jacopo

    2015-01-01

    Significant over-prediction of the material stiffness in the order of 1-10% for polymer based composites has been experimentally observed and numerical determined when using strain gauges for strain measurements instead of non-contact methods such as digital image correlation or less stiff methods...

  11. Method for independent strain and temperature measurement in polymeric tensile test specimen using embedded FBG sensors

    DEFF Research Database (Denmark)

    Pereira, Gilmar Ferreira; McGugan, Malcolm; Mikkelsen, Lars Pilgaard

    2016-01-01

    A novel method to obtain independent strain and temperature measurements using embedded Fibre Bragg Grating (FBG) in polymeric tensile test specimens is presented in this paper. The FBG strain and temperature cross-sensitivity was decoupled using two single mode FBG sensors, which were embedded...... in the specimen material with a certain angle between them. It is demonstrated that, during temperature variation, both FBG sensors show the same signal response. However, for any applied load the signal response is different, which is caused by the different levels of strain acting in each sensor. Equations...... calibration procedure (temperature and strain) was performed to this material-sensor pair, where a calibration error

  12. Direct sample positioning and alignment methodology for strain measurement by diffraction

    Science.gov (United States)

    Ratel, N.; Hughes, D. J.; King, A.; Malard, B.; Chen, Z.; Busby, P.; Webster, P. J.

    2005-05-01

    An ISO (International Organization for Standardization) TTA (Technology Trends Assessment) was published in 2001 for the determination of residual stress using neutron diffraction which identifies sample alignment and positioning as a key source of strain measurement error. Although the measurement uncertainty by neutron and synchrotron x-ray diffraction for an individual measurement of lattice strain is typically of the order of 10-100×10-6, specimens commonly exhibit strain gradients of 1000×10-6mm-1 or more, making sample location a potentially considerable source of error. An integrated approach to sample alignment and positioning is described which incorporates standard base-plates and sample holders, instrument alignment procedures, accurate digitization using a coordinate measuring machine and automatic generation of instrument control scripts. The methodology that has been developed is illustrated by the measurement of the transverse residual strain field in a welded steel T-joint using neutrons.

  13. Direct strain and slope measurement using 3D DSPSI

    CERN Document Server

    Molimard, Jérôme; Picart, Pascal

    2013-01-01

    This communication presents a new implementation of DSPSI. Its main features are 1. an advanced model taking into account the beam divergence, 2. the coupling with a surface shape measurement in order to generalize DSPSI to nonplanar surfaces 3. the use of small shear distance made possible using a precise measurement procedure. A first application on a modified Iosipescu shear test is presented and compared to classical DIC measurements.

  14. Measurement of muscle architecture concurrently with muscle hardness using ultrasound strain elastography.

    Science.gov (United States)

    Chino, Kentaro; Akagi, Ryota; Dohi, Michiko; Takahashi, Hideyuki

    2014-09-01

    The B-mode ultrasound image that can measure muscle architecture is displayed side by side with the ultrasound strain elastogram that can assess muscle hardness. Consequently, muscle architecture can be measured concurrently with muscle hardness using ultrasound strain elastography. To demonstrate the measurement of muscle architecture concurrently with muscle hardness using ultrasound strain elastography. Concurrent measurements of muscle architectural parameters (muscle thickness, pennation angle, and fascicle length) and muscle hardness of the medial gastrocnemius were performed with ultrasound strain elastography. Separate measurements of the muscle architectural parameters were also performed for use as reference values for the concurrent measurements. Both types of measurements were performed twice at 20° dorsiflexion, neutral position, and 30° plantar flexion. Coefficients of variance of the muscle architectural parameters obtained from the concurrent measurements (≤7.6%) were significantly higher than those obtained from the separate measurements (≤2.4%) (all P muscle architectural parameters between the concurrent and separate measurements (all P > 0.05). The use of ultrasound strain elastography for the concurrent measurement of muscle architecture and muscle hardness is feasible. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  15. Garden-like perovskite superstructures with enhanced photocatalytic activity.

    Science.gov (United States)

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-04-07

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr(2+), garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.

  16. Ultrasonic Derivative Measurements of Bone Strain During Exercise Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Luna Innovations, Inc., in collaboration with the SUNY Stony Brook, proposes to extend ultrasonic pulsed phase locked loop (PPLL) derivative measurements to the...

  17. Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging

    National Research Council Canada - National Science Library

    Amundsen, Brage H; Helle-Valle, Thomas; Edvardsen, Thor; Torp, Hans; Crosby, Jonas; Lyseggen, Erik; Støylen, Asbjørn; Ihlen, Halfdan; Lima, João A C; Smiseth, Otto A; Slørdahl, Stig A

    2006-01-01

    The aim of this study was to validate speckle tracking echocardiography (STE) as a method for angle-independent measurement of regional myocardial strain, using sonomicrometry and magnetic resonance imaging (MRI...

  18. Field methods to measure surface displacement and strain with the Video Image Correlation method

    Science.gov (United States)

    Maddux, Gary A.; Horton, Charles M.; Mcneill, Stephen R.; Lansing, Matthew D.

    1994-01-01

    The objective of this project was to develop methods and application procedures to measure displacement and strain fields during the structural testing of aerospace components using paint speckle in conjunction with the Video Image Correlation (VIC) system.

  19. Strain Measurement Using Phase-shifting Digital Holography with Two Cameras

    Directory of Open Access Journals (Sweden)

    Morimoto Y.

    2010-06-01

    Full Text Available Phase-shifting digital holography is a convenient method to measure displacement and strain distributions. Development of compact and conventional strain distribution measurement equipment for practical use is required for inspection of health monitoring and life lengthening of infrastructures such as steel bridges. In this paper, we propose an off-axis reconstruction method for displacement and strain distribution measurement with a phase-shifting digital holography. In the case of off-axis optical setup, the pitch of the fringe appearing on the image sensor becomes smaller than a pixel size. However, the phase-shifting digital hologram can be obtained even if the off-axis setup and effective results can be obtained using a Windowed-PSDHI. The principle and the experimental result of strain distribution measurement was performed with this method using two cameras.

  20. Determination of Modulus of Elasticity and Shear Modulus by the Measurement of Relative Strains

    Science.gov (United States)

    Labašová, Eva

    2016-12-01

    This contribution is focused on determining the material properties (Young modulus and shear modulus) of the testing samples. The theoretical basis for determining material properties are the knowledge of linear elasticity and strength. The starting points are dependencies among the modulus of elasticity, shear modulus, normal stress and relative strain. The relative strains of the testing samples were obtained by measuring predefined load conditions using a strain-gauge bridge and the universal measurement system Quantum X MX 840. The integration of these tasks into the teaching process enhances practical and intellectual skills of students at secondary level technical universities.

  1. MEASUREMENTS OF HIGH STRAIN RATE PROPERTIES OF MATERIALS USING AN EXPLODING WIRE TECHNIQUE

    OpenAIRE

    Parry, D; Stewardson, H.; Ahmad, S.

    1988-01-01

    An exploding wire method is used to produce high-pressure blast-wave loading of thick polymer cylinders. The measured outer-surface hoop-strain profiles, at strain rates of about 103 s-1, agree best with prediction for values of Young's modulus which are much higher than those measured under quasistatic conditions (strain rates of about 10-3 s-1). Low density polyethylene shows a six-fold increase in modulus, high density polyethylene more than 100%, nylon 66 about 75%, and nylatron a 25% inc...

  2. A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis

    DEFF Research Database (Denmark)

    Skafte, Anders; Aenlle, Manuel L.; Brincker, Rune

    2016-01-01

    measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed....... The method is validated with experimental tests on a scaled model of a two-span bridge installed with strain gauges. Random load was applied to simulate a civil structure under operating condition, and strain mode shapes were identified using operational modal analysis....

  3. Tensile strain measurements of ceramic fibers using scanning laser acoustic microscopy

    Science.gov (United States)

    Kent, Renee M.; Vary, Alex

    1992-01-01

    A noncontacting technique using scanning laser acoustic microscopy for making in situ tensile strain measurements of small diameter fibers was implemented for the tensile strain analysis of individual Nicalon SiC fibers (nominal diameter 15 microns). Stress vs strain curves for the fibers were plotted from the experimental data. The mean elastic modulus of the fibers was determined to be 185.3 GPa. Similar measurements were made for Carborundum SiC fibers (nominal diameter 28 microns) and Saphikon sapphire fibers (nominal diameter 140 microns).

  4. Simultaneous Static Strain, Temperature and Vibration Measurement Using an Integrated FBG/EFPI Sensor

    Institute of Scientific and Technical Information of China (English)

    曾祥楷; 饶云江

    2001-01-01

    A novel technique for simultaneous measurement of static strain, temperature and vibration in health monitoring of structures is demonstrated using an integrated in-fibre Bragg grating (FBG)/extrinsic Fabry-Pérot interferometer (EFPI) sensor. The EFPI sensor provides static strain and vibration information simultaneously by using the channel-spectrum method and the low-coherence interferometric technique, respectively. The FBG sensor is used for temperature measurement. The experimental results show that a static-strain accuracy of l20με, a temperature accuracy of +l℃ and a vibration resolution of 1 nm have been achieved with a good repeatability.

  5. Alcohol Dehydrogenase of Bacillus strain for Measuring Alcohol Electrochemically

    Science.gov (United States)

    Iswantini, D.; Nurhidayat, N.; Ferit, H.

    2017-03-01

    Alcohol dehydrogenase (ADH) was applied to produce alcohol biosensor. The enzyme was collected from cultured Bacillus sp. in solid media. From 6 tested isolates, bacteria from fermented rice grain (TST.A) showed the highest oxidation current which was further applied as the bioreceptor. Various ethanol concentrations was measured based on the increase of maximum oxidation current value. However, a reduction value was happened when the ethanol concentration was higher than 5%. Comparing the result of spectrophotometry measurement, R2 value obtained from the biosensor measurement method was higher. The new proposed method resulted a wider detection range, from 0.1-5% of ethanol concentration. The result showed that biosensor method has big potency to be used as alcohol detector in foods or bevearages.

  6. Measurement Uncertainty Analysis of the Strain Gauge Based Stabilographic Platform

    Directory of Open Access Journals (Sweden)

    Walendziuk Wojciech

    2014-08-01

    Full Text Available The present article describes constructing a stabilographic platform which records a standing patient’s deflection from their point of balance. The constructed device is composed of a toughen glass slab propped with 4 force sensors. Power transducers are connected to the measurement system based on a 24-bit ADC transducer which acquires slight body movements of a patient. The data is then transferred to the computer in real time and data analysis is conducted. The article explains the principle of operation as well as the algorithm of measurement uncertainty for the COP (Centre of Pressure surface (x, y.

  7. Magnetic-Field-Assisted Assembly of Anisotropic Superstructures by Iron Oxide Nanoparticles and Their Enhanced Magnetism.

    Science.gov (United States)

    Jiang, Chengpeng; Leung, Chi Wah; Pong, Philip W T

    2016-12-01

    Magnetic nanoparticle superstructures with controlled magnetic alignment and desired structural anisotropy hold promise for applications in data storage and energy storage. Assembly of monodisperse magnetic nanoparticles under a magnetic field could lead to highly ordered superstructures, providing distinctive magnetic properties. In this work, a low-cost fabrication technique was demonstrated to assemble sub-20-nm iron oxide nanoparticles into crystalline superstructures under an in-plane magnetic field. The gradient of the applied magnetic field contributes to the anisotropic formation of micron-sized superstructures. The magnitude of the applied magnetic field promotes the alignment of magnetic moments of the nanoparticles. The strong dipole-dipole interactions between the neighboring nanoparticles lead to a close-packed pattern as an energetically favorable configuration. Rod-shaped and spindle-shaped superstructures with uniform size and controlled spacing were obtained using spherical and polyhedral nanoparticles, respectively. The arrangement and alignment of the superstructures can be tuned by changing the experimental conditions. The two types of superstructures both show enhancement of coercivity and saturation magnetization along the applied field direction, which is presumably associated with the magnetic anisotropy and magnetic dipole interactions of the constituent nanoparticles and the increased shape anisotropy of the superstructures. Our results show that the magnetic-field-assisted assembly technique could be used for fabricating nanomaterial-based structures with controlled geometric dimensions and enhanced magnetic properties for magnetic and energy storage applications.

  8. 40 CFR 745.228 - Accreditation of training programs: public and commercial buildings, bridges and superstructures...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Accreditation of training programs: public and commercial buildings, bridges and superstructures. 745.228 Section 745.228 Protection of... of training programs: public and commercial buildings, bridges and superstructures....

  9. Magnetic field directed assembly of superstructures of ferrite-ferroelectric core-shell nanoparticles and studies on magneto-electric interactions

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, G., E-mail: srinivas@oakland.edu; Sreenivasulu, G.; Benoit, Crystal [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Petrov, V. M. [Physics Department, Oakland University, Rochester, Michigan 48309 (United States); Institute of Electronic and Information Systems, Novgorod State University, Veliky Novgorod 173003 (Russian Federation); Chavez, F. [Chemistry Department, Oakland University, Rochester, Michigan 48309 (United States)

    2015-05-07

    Composites of ferromagnetic and ferroelectric are of interest for studies on mechanical strain mediated magneto-electric (ME) interactions and for useful technologies. Here, we report on magnetic-field-assisted-assembly of barium titanate (BTO)-nickel ferrite (NFO) core-shell particles into linear chains and 2D/3D arrays and measurements of ME effects in such assemblies. First, we synthesized the core-shell nano-particles with 50–600 nm BTO and 10–200 nm NFO by chemical self-assembly by coating the ferroic particles with complementary coupling groups and allowing them to self-assemble in the presence of a catalyst via the “click” reaction. The core-shell structure was confirmed with electron microscopy and scanning probe microscopy. We obtained superstructure of the core-shell particles by subjecting them to a magnetic field gradient that exerts an attractive force on the particles and align them toward the regions of high field strengths. At low particle concentration, linear chains were formed and they evolved into 2D and 3D arrays at high particle concentrations. Magnetoelectric characterization on unassembled films and assembled arrays has been performed through measurements of low-frequency ME voltage coefficient (MEVC) by subjecting the sample to a bias magnetic field and an ac magnetic field. The MEVC is higher for field-assembled samples than for unassembled films and is found to be sensitive to field orientation with a higher MEVC for magnetic fields parallel to the array direction than for magnetic fields perpendicular to the array. A maximum MEVC of 20 mV/cm Oe, one of the highest reported for any bulk nanocomposite, is measured across the array thickness. A model is provided for ME coupling in the superstructures of BTO-NFO particulate composites. First, we estimated the MEVC for a free-standing BTO-NFO core-shell particle and then extended the model to include an array of linear chains of the particles. The theoretical estimates are in

  10. Effect of Experience and Training on the Concordance and Precision of Strain Measurements.

    Science.gov (United States)

    Negishi, Tomoko; Negishi, Kazuaki; Thavendiranathan, Paaladinesh; Cho, Goo-Yeong; Popescu, Bogdan A; Vinereanu, Dragos; Kurosawa, Koji; Penicka, Martin; Marwick, Thomas H

    2017-05-01

    This study sought to show the degree to which experience and training affect the precision and validity of global longitudinal strain (GLS) measurement and to evaluate the variability of strain measurement after feedback. The application of GLS for the detection of subclinical dysfunction has been recommended in an expert consensus document and is being used with increasing frequency. The role of experience in the precision and validity of GLS measurement is unknown, as is the efficacy of training. Fifty-eight readers, divided into 4 groups on the basis of their experience with GLS, calculated GLS from speckle strain analysis of 9 cases with various degrees of image quality. Intraclass correlation coefficients (ICCs), mean difference, SD, and coefficient of variation (CV) were compared against the measurements of a reference group that had experience with >1,000 cases of strain measurement. Individualized feedback was distributed, and repeat measurements were performed by 40 readers. Comparisons with the baseline variation provided information about whether feedback was effective. The ICC for GLS was significantly greater than that for ejection fraction regardless of image quality. Experience with strain measurement affected the concordance in strain values among the readers; the group with the highest level of experience showed significantly better ICC than those with no experience, although the ICC of the inexperienced readers was still very good (0.996 vs. 0.975; p = 0.0002). As experience increased, the mean difference, SD, and CV became significantly smaller. The CV of segmental strain analysis showed significant improvement after training, regardless of experience. The favorable interobserver agreement of GLS makes it more attractive than ejection fraction for follow-up of left ventricular function by multiple observers. Although experience is important, the precision of GLS was high for all groups. Training appears to be of most value for the assessment of

  11. Micro/Nano-scale Strain Distribution Measurement from Sampling Moiré Fringes.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi

    2017-05-23

    This work describes the measurement procedure and principles of a sampling moiré technique for full-field micro/nano-scale deformation measurements. The developed technique can be performed in two ways: using the reconstructed multiplication moiré method or the spatial phase-shifting sampling moiré method. When the specimen grid pitch is around 2 pixels, 2-pixel sampling moiré fringes are generated to reconstruct a multiplication moiré pattern for a deformation measurement. Both the displacement and strain sensitivities are twice as high as in the traditional scanning moiré method in the same wide field of view. When the specimen grid pitch is around or greater than 3 pixels, multi-pixel sampling moiré fringes are generated, and a spatial phase-shifting technique is combined for a full-field deformation measurement. The strain measurement accuracy is significantly improved, and automatic batch measurement is easily achievable. Both methods can measure the two-dimensional (2D) strain distributions from a single-shot grid image without rotating the specimen or scanning lines, as in traditional moiré techniques. As examples, the 2D displacement and strain distributions, including the shear strains of two carbon fiber-reinforced plastic specimens, were measured in three-point bending tests. The proposed technique is expected to play an important role in the non-destructive quantitative evaluations of mechanical properties, crack occurrences, and residual stresses of a variety of materials.

  12. Measurement of in-plane strain with dual beam spatial phase-shift digital shearography

    Science.gov (United States)

    Xie, Xin; Chen, Xu; Li, Junrui; Wang, Yonghong; Yang, Lianxiang

    2015-11-01

    Full-field in-plane strain measurement under dynamic loading by digital shearography remains a big challenge in practice. A phase measurement for in-plane strain information within one time frame has to be achieved to solve this problem. This paper presents a dual beam spatial phase-shift digital shearography system with the capacity to measure phase distribution corresponding to in-plane strain information within a single time frame. Two laser beams with different wavelengths are symmetrically arranged to illuminate the object under test, and two cameras with corresponding filters, which enable simultaneous recording of two shearograms, are utilized for data acquisition. The phase information from the recorded shearograms, which corresponds to the in-plane strain, is evaluated by the spatial phase-shift method. The spatial phase-shift shearography system realizes a measurement of the in-plane strain through the introduction of the spatial phase-shift technique, using one frame after the loading and one frame before loading. This paper presents the theory of the spatial phase-shift digital shearography for in-plane strain measurement and its derivation, experimental results, and the technique’s potential.

  13. Dynamic strain measurement of hydraulic system pipeline using fibre Bragg grating sensors

    Directory of Open Access Journals (Sweden)

    Qiang Wang

    2016-04-01

    Full Text Available Fatigue failure is a serious problem in hydraulic piping systems installed in the machinery and equipment working in harsh operational conditions. To alleviate this problem, health monitoring of pipes can be conducted by measuring and analysing vibration-induced strain. Fibre Bragg grating is considered as a promising sensing approach for dynamic load monitoring. In this article, dynamic strain measurements based on fibre Bragg grating sensors for small-bore metal pipes have been investigated. The quasi-distributed strain sensing of fibre Bragg grating sensors is introduced. Two comparison experiments were carried out under vibration and impact loads among the methods of electrical strain gauge, piezoelectric accelerometer and fibre Bragg grating sensor. Experimental results indicate that fibre Bragg grating sensor possesses an outstanding ability to resist electromagnetic interference compared with strain gauge. The natural frequency measurement results, captured by fibre Bragg grating sensor, agree well with the modal analysis results obtained from finite element analysis. In addition, the attached fibre Bragg grating sensor brings a smaller impact on the dynamic characteristics of the measured pipe than the accelerometer due to its small size and lightweight. Fibre Bragg grating sensors have great potential for the quasi-distributed measurement of dynamic strain for the dynamic characteristic research and health monitoring of hydraulic system pipeline.

  14. Cation ordering and superstructures in natural layered double hydroxides.

    Science.gov (United States)

    Krivovichev, Sergey V; Yakovenchuk, Victor N; Zolotarev, Andrey A; Ivanyuk, Gregory N; Pakhomovsky, Yakov A

    2010-01-01

    Layered double hydroxides (LDHs) constitute an important group of materials with many applications ranging from catalysis and absorption to carriers for drug delivery, DNA intercalation and carbon dioxide sequestration. The structures of LDHs are based upon double brucite-like hydroxide layers [M(2+)(n)M(3+)(m)(OH)(2(m+n)](m+), where M(2+) = Mg(2+), Fe(2+), Mn(2+), Zn(2+), etc.; M(3+) = Al(3+), Fe(3+), Cr(3+), Mn(3+), etc. Structural features of LDHs such as cation ordering, charge distribution and polytypism have an immediate influence upon their properties. However, all the structural studies on synthetic LDHs deal with powder samples that prevent elucidation of such fine details of structure architecture as formation of superstructures due to cation ordering. In contrast to synthetic materials, natural LDHs are known to form single crystals accessible to single-crystal X-ray diffraction analysis, which provides a unique possibility to investigate 3D cation ordering in LDHs that results in formation of complex superstructures, where 2D cation order is combined with a specific order of layer stacking (polytypism). Therefore LDH minerals provide an indispensable source of structural information for modeling of structures and processes happening in LDHs at the molecular and nanoscale levels.

  15. Collapse Mechanism Analysis in the Design of Superstructure Vehicle

    Science.gov (United States)

    Mohd Nor, M. K.

    2016-11-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for “single deck class II and III vehicles” required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  16. Nonlinear analysis of collapse mechanism in superstructure vehicle

    Science.gov (United States)

    Nor, M. K. Mohd; Ho, C. S.; Ma'at, N.

    2017-04-01

    The EU directive 2001/85/EC is an official European text which describes the specifications for "single deck class II and III vehicles" required to be approved by the regulation UN/ECE no.66 (R66). To prevent the catastrophic consequences by occupant during an accident, the Malaysian government has reinforced the same regulation upon superstructure construction. This paper discusses collapse mechanism analysis of a superstructure vehicle using a Crash D nonlinear analysis computer program based on this regulation. The analysis starts by hand calculation to define the required energy absorption by the chosen structure. Simple calculations were then performed to define the weakest collapse mechanism after undesirable collapse modes are eliminated. There are few factors highlighted in this work to pass the regulation. Using the selected cross section, Crash D simulation showed a good result. Generally, the deformation is linearly correlates to the energy absorption for the structure with low stiffness. Failure of critical members such as vertical lower side wall must be avoided to sustain safety of the passenger compartment and prevent from severe and fatal injuries to the trapped occupant.

  17. Whole-field thickness strain measurement using multiple camera digital image correlation system

    Science.gov (United States)

    Li, Junrui; Xie, Xin; Yang, Guobiao; Zhang, Boyang; Siebert, Thorsten; Yang, Lianxiang.

    2017-03-01

    Three Dimensional digital image correlation(3D-DIC) has been widely used by industry, especially for strain measurement. The traditional 3D-DIC system can accurately obtain the whole-field 3D deformation. However, the conventional 3D-DIC system can only acquire the displacement field on a single surface, thus lacking information in the depth direction. Therefore, the strain in the thickness direction cannot be measured. In recent years, multiple camera DIC (multi-camera DIC) systems have become a new research topic, which provides much more measurement possibility compared to the conventional 3D-DIC system. In this paper, a multi-camera DIC system used to measure the whole-field thickness strain is introduced in detail. Four cameras are used in the system. two of them are placed at the front side of the object, and the other two cameras are placed at the back side. Each pair of cameras constitutes a sub stereo-vision system and measures the whole-field 3D deformation on one side of the object. A special calibration plate is used to calibrate the system, and the information from these two subsystems is linked by the calibration result. Whole-field thickness strain can be measured using the information obtained from both sides of the object. Additionally, the major and minor strain on the object surface are obtained simultaneously, and a whole-field quasi 3D strain history is acquired. The theory derivation for the system, experimental process, and application of determining the thinning strain limit based on the obtained whole-field thickness strain history are introduced in detail.

  18. Strain and High Temperature Superconductivity: Unexpected Results from Direct Electronic Structure Measurements in Thin Films

    Science.gov (United States)

    Abrecht, M.; Ariosa, D.; Cloetta, D.; Mitrovic, S.; Onellion, M.; Xi, X.; Margaritondo, G.; Pavuna, D.

    2003-07-01

    Angle-resolved photoemission spectroscopy reveals very surprising strain-induced effects on the electronic band dispersion of epitaxial La2-xSrxCuO4-δ thin films. In strained films we measure a band that crosses the Fermi level (EF) well before the Brillouin zone boundary. This is in contrast to the flat band reported in unstrained single crystals and in our unstrained films, as well as in contrast to the band flattening predicted by band structure calculations for in-plane compressive strain. In spite of the density of states reduction near EF, the critical temperature increases in strained films with respect to unstrained samples. These results require a radical departure from commonly accepted notions about strain effects on high temperature superconductors, with possible general repercussions on superconductivity theory.

  19. Synchrotron measurements of local microstructure and residual strains in ductile cast iron

    Science.gov (United States)

    Zhang, Y. B.; Andriollo, T.; Fæster, S.; Liu, W.; Sturlason, A.; Barabash, R.

    2017-07-01

    The local microstructure and distribution of thermally induced residual strains in ferrite matrix grains around an individual spherical graphite nodule in ductile cast iron (DCI) were measured using a synchrotron X-ray micro-diffraction technique. It is found that the matrix grains are deformed, containing dislocations and dislocation boundaries. Each of the residual strain components in the matrix grains exhibits a complex pattern along the circumferential direction of the nodule. Along the radial direction of the nodule, strain gradients from the interface to the grain interior are seen for some strain components, but only in some matrix grains. The observed residual strain patterns have been analysed by finite element modelling, and a comparison between the simulation and experiments is given. The present study of local residual stress by both experimental characterization and simulation provide much needed information for understanding the mechanical properties of DCI, and represent an important contribution for the microstructural design of new DCI materials.

  20. Extended and quasi-continuous tuning of quantum cascade lasers using superstructure gratings and integrated heaters

    Energy Technology Data Exchange (ETDEWEB)

    Bidaux, Yves, E-mail: yves.bidaux@alpeslasers.ch [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland); Bismuto, Alfredo, E-mail: alfredo.bismuto@alpeslasers.ch; Tardy, Camille; Terazzi, Romain; Gresch, Tobias; Blaser, Stéphane; Muller, Antoine [Alpes Lasers SA, 1-3 Passsage Max Meuron, CH-2001 Neuchâtel (Switzerland); Faist, Jerome [Institute for Quantum Electronics, ETH-Zurich, CH-8093 Zurich (Switzerland)

    2015-11-30

    In this work, we demonstrate broad electrical tuning of quantum cascade lasers at 9.25 μm, 8.5 μm, and 4.4 μm in continuous wave operation using Vernier-effect distributed Bragg reflectors based on superstructure gratings. Integrated micro-heaters allow to switch from one Vernier channel to the other, while predictable and mode-hop free tuning can be obtained in each channel modulating the laser current with a side mode suppression ratio as high as 30 dB. The resulting device behaves effectively as a switchable multicolour tunable source. Tuning up to 6.5% of the central wavelength is observed. To prove the importance of the developed devices for high resolution molecular spectroscopy, a N{sub 2}O absorption spectrum has been measured.

  1. Measuring genome conservation across taxa: divided strains and united kingdoms.

    Science.gov (United States)

    Kunin, Victor; Ahren, Dag; Goldovsky, Leon; Janssen, Paul; Ouzounis, Christos A

    2005-01-01

    Species evolutionary relationships have traditionally been defined by sequence similarities of phylogenetic marker molecules, recently followed by whole-genome phylogenies based on gene order, average ortholog similarity or gene content. Here, we introduce genome conservation--a novel metric of evolutionary distances between species that simultaneously takes into account, both gene content and sequence similarity at the whole-genome level. Genome conservation represents a robust distance measure, as demonstrated by accurate phylogenetic reconstructions. The genome conservation matrix for all presently sequenced organisms exhibits a remarkable ability to define evolutionary relationships across all taxonomic ranges. An assessment of taxonomic ranks with genome conservation shows that certain ranks are inadequately described and raises the possibility for a more precise and quantitative taxonomy in the future. All phylogenetic reconstructions are available at the genome phylogeny server: .

  2. Localized strain measurements of the intervertebral disc annulus during biaxial tensile testing.

    Science.gov (United States)

    Karakolis, Thomas; Callaghan, Jack P

    2015-01-01

    Both inter-lamellar and intra-lamellar failures of the annulus have been described as potential modes of disc herniation. Attempts to characterize initial lamellar failure of the annulus have involved tensile testing of small tissue samples. The purpose of this study was to evaluate a method of measuring local surface strains through image analysis of a tensile test conducted on an isolated sample of annular tissue in order to enhance future studies of intervertebral disc failure. An annulus tissue sample was biaxial strained to 10%. High-resolution images captured the tissue surface throughout testing. Three test conditions were evaluated: submerged, non-submerged and marker. Surface strains were calculated for the two non-marker conditions based on motion of virtual tracking points. Tracking algorithm parameters (grid resolution and template size) were varied to determine the effect on estimated strains. Accuracy of point tracking was assessed through a comparison of the non-marker conditions to a condition involving markers placed on tissue surface. Grid resolution had a larger effect on local strain than template size. Average local strain error ranged from 3% to 9.25% and 0.1% to 2.0%, for the non-submerged and submerged conditions, respectively. Local strain estimation has a relatively high potential for error. Submerging the tissue provided superior strain estimates.

  3. Construction and control technology of the main bridge superstructure of Sutong Bridge

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong; Luo Chenbin; Zhang Yongtao; You Xinpeng

    2009-01-01

    The Sutong Yangtze River Bridge (short as Sutong Bridge) is now the largest span cable-stayed bridge in the world. The construction of the superstructure of the middle bridge covered several stages including erection of the big block girders for the side span, assistant span and tower area, erection of standard girders and closure of the middle span. The big block girders were hoisted by a floating crane, and the standard girders were hoisted by a double crane system on the deck. The pushing assistant method was adopted for the middle span closure construction. Furthermore, key technologies and innovative methods used in the processes of girder erection and cable assemblage in all stages were expatiated systematically. An all-stage self- adaptive geometry control method was used in the construction process. By accurately controlling the unstressed dimensions and shape of all structural components in each step, and realization that the control system and the controlled system adapt to each other, the goal was to make control of the final line shape and inner force of the bridge structure achievable. Two solutions, including GPS based and total station based dynamic geometry monitoring systems, were used to resolve the measure problem under the wide-range of wind-induced vibrations in the long cantilever state. Finally, research on the wind-induced vibration of the superstructure during the construction period was executed. Buffeting response analysis to the longest single and double cantilever states were carried out. The analysis and evaluation of wind resistance safety of the main girders under the longest single cantilever state was made, and corresponding wind resistance measures were suggested. The as-built geometric error and cable force error were controlled in a required design range, and this whole technological achievement can be a benchmark for construction of other large span cable-stayed bridges in the future.

  4. Pipeline Bending Strain Measurement and Compensation Technology Based on Wavelet Neural Network

    Directory of Open Access Journals (Sweden)

    Rui Li

    2016-01-01

    Full Text Available The bending strain of long distance oil and gas pipelines may lead to instability of the pipeline and failure of materials, which seriously deteriorates the transportation security of oil and gas. To locate the position of the bending strain for maintenance, an Inertial Measurement Unit (IMU is usually adopted in a Pipeline Inspection Gauge (PIG. The attitude data of the IMU is usually acquired to calculate the bending strain in the pipe. However, because of the vibrations in the pipeline and other system noises, the resulting bending strain calculations may be incorrect. To improve the measurement precision, a method, based on wavelet neural network, was proposed. To test the proposed method experimentally, a PIG with the proposed method is used to detect a straight pipeline. It can be obtained that the proposed method has a better repeatability and convergence than the original method. Furthermore, the new method is more accurate than the original method and the accuracy of bending strain is raised by about 23% compared to original method. This paper provides a novel method for precisely inspecting bending strain of long distance oil and gas pipelines and lays a foundation for improving the precision of inspection of bending strain of long distance oil and gas pipelines.

  5. Two-dimensional fibre grating packaging design for simultaneous strain and temperature measurement

    Science.gov (United States)

    Mokhtar, M. R.; Sun, T.; Grattan, K. T. V.

    2010-09-01

    This paper demonstrates a novel two-dimensional sensor packaging design to facilitate the use of fibre grating-based sensors for simultaneous strain and temperature measurement. The width and height of a sensor package were optimized to induce dissimilar responses from two co-located fibre gratings within the sensor head. Through an appropriate calibration of both the strain and temperature coefficients of the individual fibre gratings used, both strain and temperature can be accurately determined and their individual components separated by measuring the shift in their respective Bragg wavelengths. This approach can not only ensure the robustness of the sensor head, but also offer the necessary level of control over the differences between the coefficients, which allows for maximizing the accuracy of the strain and temperature values determined from the sensor itself.

  6. A fiber optic buckle transducer for measurement of in vitro tendon strain

    Science.gov (United States)

    Roriz, Paulo; Ramos, António; Marques, Manuel B.; Simões, José A.; Frazão, Orlando

    2015-09-01

    The purpose of the present study is to present a prototype of a fiber optic based buckle transducer suitable for measuring strain caused by stretching of a tendon. The device has an E-shape and its central arm is instrumented with a fiber Bragg grating (FBG) sensor. The tendon adjusts to the E-form in a fashion that when it is stretched the central arm bends causing a shift of the Bragg's wavelength (λB) that is proportional to the amount of strain. This prototype is presented as an alternative to conventional strain gauge (SG) buckle transducers.

  7. Error analysis of cine phase contrast MRI velocity measurements used for strain calculation.

    Science.gov (United States)

    Jensen, Elisabeth R; Morrow, Duane A; Felmlee, Joel P; Odegard, Gregory M; Kaufman, Kenton R

    2015-01-02

    Cine Phase Contrast (CPC) MRI offers unique insight into localized skeletal muscle behavior by providing the ability to quantify muscle strain distribution during cyclic motion. Muscle strain is obtained by temporally integrating and spatially differentiating CPC-encoded velocity. The aim of this study was to quantify CPC measurement accuracy and precision and to describe error propagation into displacement and strain. Using an MRI-compatible jig to move a B-gel phantom within a 1.5 T MRI bore, CPC-encoded velocities were collected. The three orthogonal encoding gradients (through plane, frequency, and phase) were evaluated independently in post-processing. Two systematic error types were corrected: eddy current-induced bias and calibration-type error. Measurement accuracy and precision were quantified before and after removal of systematic error. Through plane- and frequency-encoded data accuracy were within 0.4 mm/s after removal of systematic error - a 70% improvement over the raw data. Corrected phase-encoded data accuracy was within 1.3 mm/s. Measured random error was between 1 to 1.4 mm/s, which followed the theoretical prediction. Propagation of random measurement error into displacement and strain was found to depend on the number of tracked time segments, time segment duration, mesh size, and dimensional order. To verify this, theoretical predictions were compared to experimentally calculated displacement and strain error. For the parameters tested, experimental and theoretical results aligned well. Random strain error approximately halved with a two-fold mesh size increase, as predicted. Displacement and strain accuracy were within 2.6 mm and 3.3%, respectively. These results can be used to predict the accuracy and precision of displacement and strain in user-specific applications.

  8. Neutron-diffraction measurement of the evolution of strain for non-uniform plastic deformation

    CERN Document Server

    Rogge, R B; Boyce, D

    2002-01-01

    Neutrons are particularly adept for the validation of modeling predictions of stress and strain. In recent years, there has been a significant effort to model the evolution of both the macroscopic stresses and the intergranular stress during plastic deformation. These have had broad implications with regard to understanding the evolution of residual stress and to diffraction-based measurements of strain. Generally the modeling and associated measurements have been performed for simple uniaxial tension, leaving questions with regard to plastic deformation under multi-axial stress and non-uniform stress. Extensive measurements of the strain profile across a plastic hinge for each of a series of loading and unloading cycles to progressively higher degrees of plastic deformation are presented. These measurements are used to assess multiple-length-scale finite-element modeling (FEM) of the plastic hinge, in which the elements will range in size from single crystallites (as used in successful simulations of uniaxia...

  9. Spectral-domain measurement of the strain sensitivity of phase modal birefringence of polarization-maintaining optical fibers

    Science.gov (United States)

    Kaczmarek, Cezary

    2016-09-01

    The paper presents a new and simple method of measuring the strain sensitivity of phase modal birefringence (dΔn/dε) of polarization maintaining fibers (PMFs). The method is based on measuring the spectral strain sensitivity of a strain sensor in the configuration of a Sagnac interferometer with a PMF. The measured spectral strain sensitivity of the sensor is used to determine the strain sensitivity of phase modal birefringence and the polarimetric strain sensitivity of the PMF. In addition, a new procedure for determining the sign of the strain sensitivity of phase and group modal birefringence of a PMF. Using this method, measurements of the strain sensitivity of modal birefringence of PMFs were performed: a PM-PCF and a Bow-Tie fiber, in the wavelength range 1460-1600 nm. A comparison of the results of these measurements with results obtained using other methods for the same types of fibers is presented.

  10. Amendment on the strain measurement of thin-walled human skull shell as intracranial pressure changes

    Institute of Scientific and Technical Information of China (English)

    Xianfang Yue; Li Wang; Feng Zhou

    2008-01-01

    The human skuU,composed of tabula externa,tabula interna,and a porous diploe sandwiched in between,is deformed with changing intracranial pressure (ICP).Because the human skull's thickness is only 6 mm,it is simplified as a thin-walled shell. The objective of this article is to analyze the strain of the thin-walled shell by the stress-strain calculation of a human skull with changing ICP.Under the same loading conditions,using finite element analysis (FEA),the strains of the human skull were calculated and the results were compared with the measurements of the simulative experiment in vitro.It is demonstrated that the strain of the thin-walled shell is totally measured by pasting the one-way strain foils on the exterior surface of the shell with suitable amendment for data.The amendment scope of the measured strain values of the thin-walled shell is from 13.04% to 22.22%.

  11. Strain field measurements around notches using SIFT features and meshless methods.

    Science.gov (United States)

    Gonzáles, Giancarlo; Meggiolaro, Marco

    2015-05-10

    This work proposes a hybrid experimental-numerical technique with the aim to improve strain measurements at stress concentration regions. The novel technique is performed employing the computer vision scale invariant feature transform (SIFT) algorithm and meshless methods, here termed SIFT-meshless. The SIFT is applied to perform feature points matching in two images of the specimen surface at different stages of mechanical deformation. The output data are provided as a set of displacement measurements by tracking matched feature points. This information is then used to model displacement and strain field on the surface by means of a meshless formulation based on the moving least squares approximation. By applying the proposed SIFT-meshless method, the strain distribution around a semicircular notch in a plate under bending load was investigated. The experimental results were compared with those obtained by a digital image correlation technique based on a subset approach and to simulations from finite element analysis software. The experimental results demonstrated that the present method is capable of performing reliable strain measurements at distances close to the notch where the peak strain value is expected, even in the presence of high strain gradients.

  12. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbulent...

  13. Measurements of Creep Internal Stress Based on Constant Strain Rate and Its Application to Engineering

    Institute of Scientific and Technical Information of China (English)

    TAO Wen-liang; WEI Tao

    2006-01-01

    This research is carried out on the basis of Constant Strain Rate(CSR) to measure creep internal stress. Measurements of creep internal stress are conducted on the material test machine by using the CSR method. A mathematical model of creep internal stress is also proposed and its application is presented in this paper.

  14. The measurement of digital systolic blood pressure by strain gauge technique

    DEFF Research Database (Denmark)

    Nielsen, P E; Bell, G; Lassen, N A

    1972-01-01

    The systolic blood pressure on the finger, toe, and ankle has been measured by a strain gauge technique in 10 normal subjects aged 17-31 years and 14 normal subjects aged 43-57 years. The standard deviation in repeated measurements lies between 2 and 6 mm Hg. The finger pressure in the younger...

  15. Fibre optic Bragg grating sensors: an alternative method to strain gauges for measuring deformation in bone.

    Science.gov (United States)

    Fresvig, T; Ludvigsen, P; Steen, H; Reikerås, O

    2008-01-01

    Strain gauges are currently the default method for measuring deformation in bone. Strain gauges are not well suited for in vivo measurements because of their size and because they are difficult to use in bone. They are also unsuitable for repeated measurements over time since they cannot be left in the patient. The optical Bragg grating fibres behave like selective filters of light. As a result the structure will transmit most wavelengths of light, but will reflect certain specific wavelengths. If the Bragg grating is strained along the fibre axis, the wavelength will shift, and this change represents a measure of strain. The optical fibres are very thin, no thicker than a standard surgical suture and are easy to adhere to bone by use of the FDA approved polymethyl-methacrylate (PMMA) as bonding adhesive. Since they are made of biocompatible silica porous bioglass ceramics, it should also be possible to leave the fibres in the patient between and after measurements. We have shown that fibre optic Bragg grating sensors can be used as a measurement tool for bone strain by performing measurements both on an acryl tube and on an extracted sample of human femur diaphysis. On either of them we used four fibre optic sensors and four strain gauges, interspersed at every 45 degrees around the circumference. The standard deviation of the measurements on the acrylic tube for each of the sensors, both optical fibres and strain gauges, varied from 1.0 to 5.2%. Every sensor, both optical fibre and strain gauge, correlated significantly with all of the rest at the 0.01 level with a Pearson correlation coefficient r ranging from 0.986 to 1.0. The linearity for all of the sensors versus load was excellent, the lowest linearity of the eight sensors was 0.996 as expressed by r(2) (coefficient of determination), with no significant difference in linearity between optical fibres and strain gauges. Bone is not an ideal isotropic material, and we found that the strain readings of the

  16. Enhancement of strain measurement accuracy using optical extensometer by application of dual-reflector imaging

    Science.gov (United States)

    Zhu, Feipeng; Bai, Pengxiang; Shi, Hongjian; Jiang, Zhencheng; Lei, Dong; He, Xiaoyuan

    2016-06-01

    At present, the accuracy of strain measurement using a common optical extensometer with 2D digital image correlation is not sufficient for experimental applications due to the effect of out-of-plane motion. Therefore, this paper proposes a dual-reflector imaging method to improve the accuracy of strain measurement when using a common optical extensometer, with which the front and rear surfaces of a specimen can be simultaneously recorded in the sensor plane of a digital camera. By averaging the strain in two optical extensometers formed on the front and rear surfaces of a specimen, the effect of any slight out-of-plane motion can be eliminated and therefore the strain measurement accuracy can also be improved. Uniaxial tensile tests with an Al-alloy specimen, including static loading and continuous loading, were conducted to validate the feasibility and reliability of the proposed method. The strain measurement results obtained with the proposed method and those obtained with an electrical-resistance strain gauge were found to be in good agreement. The average errors of the proposed method for the two continuous loading tests were found to be 8  ±  10 μɛ and  -6  ±  8 μɛ. Given that no correction sheet or compensation specimen is required, the proposed method is easy to implement and thus especially suitable for determining the mechanical properties of brittle materials due to the high level of accuracy with which strain can be measured.

  17. Strain measurement based on laser mark automatic tracking line mark on specimen

    Science.gov (United States)

    Tian, Qiuhong; Sun, Zhengrong; Le, Zhongping; Liu, Yanna; Zhang, Lijian; Xie, Sendong

    2014-12-01

    Conventional video extensometers, using a measurement mark on specimen to obtain material strain, have a problem with deformation of the measurement mark. Therefore, the accurate position of the measurement mark is difficult to evaluate, and measurement accuracy is limited. To solve this problem, a strain measurement method based on a laser mark automatically tracking a line mark on the specimen is proposed. This method is using an undeformed laser mark to replace the line mark to calculate the specimen strain and eliminates the measurement error induced by the deformation of specimen marks. The positions of the laser mark and the line mark are achieved by using digital image processing. Automatic tracking is realized by means of an intelligent motor control. Also, the strain of the specimen is obtained by analyzing the movement trace of the laser mark. A video extensometer experimental setup based on the proposed method is constructed. Two experiments were carried out. The first experiment verified the validity and the repeatability of the method via tensile testing of the specimens of low-carbon steel and cast iron. The second one demonstrated the high measurement accuracy of the method by comparing with a clip-on extensometer.

  18. Strain measurements on concrete beam and carbon fiber cable with distributed optical fiber Bragg grating sensors

    Science.gov (United States)

    Nellen, Philipp M.; Bronnimann, Rolf; Sennhauser, Urs J.; Askins, Charles G.; Putnam, Martin A.

    1996-09-01

    We report on civil engineering applications of wavelength multiplexed optical fiber Bragg grating arrays directly produced on the draw tower for testing and surveying advanced structures and materials such as carbon fiber reinforced concrete elements and prestressing cables. We equipped a 6 by 0.9 by 0.5 m concrete beam, which was reinforced with carbon fiber reinforced epoxy laminates, and a 7-m long prestressing carbon fiber cable made of seven twisted strands, with optical fiber Bragg grating sensors. Static strains up to 8000 micrometers/m and dynamic strains up to 1200 micrometers/m were measured with a Michelson interferometer used as Fourier spectrometer with a resolution of about 10 micrometers/m for all sensors. Comparative measurements with electrical resistance strain gauges were in good agreement with the fiber optical results. We installed the fiber sensors in two different arrangements: some Bragg grating array elements measured local strain while others were applied in an extensometric configuration to measure moderate strain over a base length of 0.1 to 1 m.

  19. Error analysis and measurement uncertainty for a fiber grating strain-temperature sensor.

    Science.gov (United States)

    Tang, Jaw-Luen; Wang, Jian-Neng

    2010-01-01

    A fiber grating sensor capable of distinguishing between temperature and strain, using a reference and a dual-wavelength fiber Bragg grating, is presented. Error analysis and measurement uncertainty for this sensor are studied theoretically and experimentally. The measured root mean squared errors for temperature T and strain ε were estimated to be 0.13 °C and 6 με, respectively. The maximum errors for temperature and strain were calculated as 0.00155 T + 2.90 × 10(-6) ε and 3.59 × 10(-5) ε + 0.01887 T, respectively. Using the estimation of expanded uncertainty at 95% confidence level with a coverage factor of k = 2.205, temperature and strain measurement uncertainties were evaluated as 2.60 °C and 32.05 με, respectively. For the first time, to our knowledge, we have demonstrated the feasibility of estimating the measurement uncertainty for simultaneous strain-temperature sensing with such a fiber grating sensor.

  20. Role of the interface between distributed fibre optic strain sensor and soil in ground deformation measurement

    Science.gov (United States)

    Zhang, Cheng-Cheng; Zhu, Hong-Hu; Shi, Bin

    2016-11-01

    Recently the distributed fibre optic strain sensing (DFOSS) technique has been applied to monitor deformations of various earth structures. However, the reliability of soil deformation measurements remains unclear. Here we present an integrated DFOSS- and photogrammetry-based test study on the deformation behaviour of a soil foundation model to highlight the role of strain sensing fibre–soil interface in DFOSS-based geotechnical monitoring. Then we investigate how the fibre–soil interfacial behaviour is influenced by environmental changes, and how the strain distribution along the fibre evolves during progressive interface failure. We observe that the fibre–soil interfacial bond is tightened and the measurement range of the fibre is extended under high densities or low water contents of soil. The plastic zone gradually occupies the whole fibre length when the soil deformation accumulates. Consequently, we derive a theoretical model to simulate the fibre–soil interfacial behaviour throughout the progressive failure process, which accords well with the experimental results. On this basis, we further propose that the reliability of measured strain can be determined by estimating the stress state of the fibre–soil interface. These findings may have important implications for interpreting and evaluating fibre optic strain measurements, and implementing reliable DFOSS-based geotechnical instrumentation.

  1. Reliability Assessment for PSC Box-Girder Bridges Based on SHM Strain Measurements

    Directory of Open Access Journals (Sweden)

    Chuang Chen

    2017-01-01

    Full Text Available A reliability assessment method for prestressed concrete (PSC continuous box-girder bridges based on structural health monitoring (SHM strain measurements was proposed. First, due to the fact that measured strain was compositive and the variation periods of its components were different, a series of limit state equations under normal use limit state were given. Then, a linear fitting method was used to determine the relationship between the ambient temperature and the measured strain, which was aimed at extracting the vehicle load effect and the temperature load effect from the measured strain. Finally, according to the equivalent normalization method, the load effects unsatisfying the normal distribution by probability density function fitting were transformed, and the daily failure probabilities of monitored positions were calculated for evaluating the safety state of the girder. The results show that (1 the top plate of the box girder is more sensitive than the bottom plate to the high temperature, (2 the daily and seasonal strain variations induced by uniform temperature reveal an inconsistent tendency to the seasonal variation for mid-span cross sections, and (3 the generalized extreme value distribution is recommended for temperature gradient stress and vehicle induced stress fitting for box-girder bridges.

  2. Final restoration of implants with a hybrid ceramic superstructure.

    Science.gov (United States)

    Kurbad, Andreas

    The use of materials with elastic properties for the fabrication of dental implant superstructures seems to be a promising way to reduce the functional occlusal forces on implants. Vita Enamic (Vita Zahnfabrik, Bad Säckingen), a hybrid ceramic material for CAD/CAM technology, is available in a special form that can be relatively easily combined with titanium (Ti) base connectors for the fabrication of abutment crowns and mesostructures. Thus, an easily manageable method is available for reducing peak loads on dental implant fixtures. Representative cases are presented to demonstrate the clinical workflows for a single- element solution (Ti base) and two-element solution (Ti base with mesostructure) for implant-supported crowns.

  3. Abnormal Congenital Location of Stapes’ Superstructure: Clinical and Embryological Implications

    Directory of Open Access Journals (Sweden)

    Vânia Henriques

    2016-01-01

    Full Text Available Congenital middle ear malformations are rare. Most part of them are usually associated with other malformations, such as aural atresia, microtia, and dysmorphic craniofacial features. A clinical case of a 24-year-old male with a right-sided conductive hearing loss since his childhood, without craniofacial malformation, is presented. He was proposed for exploratory tympanotomy under the suspicious diagnosis of otosclerosis. The surgery revealed an abnormal location of stapes’ superstructure, which was attached to the promontory and had an isolated and mobile osseous footplate in the oval window. A stapes prosthesis was inserted and resulted in closure of the air-bone gap by 25 dB. A review of the literature was also performed using MEDLINE. Two theories diverge on the embryologic origin of the stapes. Our findings seem to be in favour of the theory that defines two different embryologic origins to the stapes.

  4. Abnormal Congenital Location of Stapes' Superstructure: Clinical and Embryological Implications

    Science.gov (United States)

    Teles, Rafaela; Sousa, Ana; Estevão, Roberto; Rodrigues, Jorge; Gomes, Alexandra; Silva, Francisco; Fernandes, Ângelo; Fernandes, Fausto

    2016-01-01

    Congenital middle ear malformations are rare. Most part of them are usually associated with other malformations, such as aural atresia, microtia, and dysmorphic craniofacial features. A clinical case of a 24-year-old male with a right-sided conductive hearing loss since his childhood, without craniofacial malformation, is presented. He was proposed for exploratory tympanotomy under the suspicious diagnosis of otosclerosis. The surgery revealed an abnormal location of stapes' superstructure, which was attached to the promontory and had an isolated and mobile osseous footplate in the oval window. A stapes prosthesis was inserted and resulted in closure of the air-bone gap by 25 dB. A review of the literature was also performed using MEDLINE. Two theories diverge on the embryologic origin of the stapes. Our findings seem to be in favour of the theory that defines two different embryologic origins to the stapes. PMID:27648330

  5. Twin-core fiber-based sensor for measuring the strain and bending simultaneously

    Science.gov (United States)

    Yang, Yuanyuan; Zhang, Yaxun; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2013-08-01

    A novel composite interferometer sensor is presented and its sensing characteristics are investigated. Based on the infiber integrated Michelson interferometer, a quartz tube is used to encapsulate the ends of the twin-core fiber and single mode fiber to form the dual extrinsic FP cavities. Thereby, the Michelson and FP configurations are integrated into a single fiber, which we call it Michelson-FP composite interferometer sensor. The novel sensor can respond to the axial strain and radial bending simultaneously. We have derived and analyzed the interferometer principle of the new structure. The analysis results show that the interferometer sensor could be considered as the superposition of Michelson interferometer and FP interferometer. Moreover, we establish a testing system and conduct a series of experiments to investigate the strain and bending characteristics. We measure the reflection spectra with the spectrum analyzer. The spectral response of the composite interferometer sensor presents two pattern fringes with different frequencies due to the respective optical path interferometers. The experimental results indicate that the composite interferometer sensor is very sensitive to the strain and bending characteristics, and the presented sensor has different strain and bending sensitivity coefficients. Due to these characteristics, the presented sensor might be able to measure the strain and bending characteristics simultaneously. In conclusion, the presented novel interferometer sensor is of compact structure, high integration and good strain and bending sensing characteristics. Thus, many types of fiber-optic sensors may be built based on it.

  6. Hydrological and tectonic strain forces measured from a karstic cave using extensometers

    CERN Document Server

    Zhu, Ping; Quinif, Yves; Camelbeeck, Thierry; Meus, Philippe

    2014-01-01

    In order to monitor the hydrological strain forces of the karst micro fissure networks and local fault activities, six capacitive extensometers were installed inside a karstic cave near the midi-fault in Belgium. From 2004 to 2008, the nearby Lomme River experienced several heavy rains, leading to flooding inside the Rochefort cave. The highest water level rose more than thirteen meters, the karstic fissure networks were filled with water, which altered the pore pressure of the cave. The strain response to the hydrological induced pore pressure changes are separately deduced from fifteen events when the water level exceeded six meters. The strain measured from the extensometer show a linear contraction during the water recharge and a nonlinear exponential extension releasing during the water discharge. The sensitivity and stability of the sensor are constrained by comparing continuously observed tidal strain waves with a theoretical model. Finally, a local fault deformation rate around $0.03 \\pm 0.002$mm/yr i...

  7. Garden-like perovskite superstructures with enhanced photocatalytic activity

    Science.gov (United States)

    Ye, Meidan; Wang, Mengye; Zheng, Dajiang; Zhang, Nan; Lin, Changjian; Lin, Zhiqun

    2014-03-01

    By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3 architectures were coexisted in the garden, including SrTiO3 flowers composed of several hollow sword-shaped petals, many sheet-shaped petals or numerous flake-shaped petals, and SrTiO3 grass consisting of a number of long blades. These SrTiO3 superstructures were simultaneously grown on fluorine-doped tin oxide (FTO) substrates. On the basis of a comprehensive study on the effects of growth time, temperature, initial concentrations of precursor, and pH, the formation of these various hierarchical architectures was attributed primarily to the dissolution of amorphous TiO2 and precipitation of perovskite crystals, followed by the Ostwald ripening process of perovskite nanocrystals and self-organization of perovskite building blocks. Interestingly, this approach can be readily extended to create other perovskite structures, including dendritic BaTiO3 and nest-like CaTiO3, as well as PbTiO3 transformed from plate-like pyrochlore Pb2Ti2O6 after post-thermal treatment. Garden-like SrTiO3 superstructures showed a superior photocatalytic performance when compared to other as-prepared semiconductors and perovskite materials (i.e., ZnO, TiO2, BaTiO3, CaTiO3 and PbTiO3), probably due to their intrinsic photocatalytic activity and special garden-like features with a coexistence of various structures that significantly facilitated the adsorption and diffusion of methyl blue (MB) molecules and oxygen species in the photochemical reaction of MB degradation.By subjecting amorphous flower-like TiO2 to a facile hydrothermal synthesis in the presence of Sr2+, garden-like perovskite SrTiO3 superstructures were achieved. The amorphous TiO2 was preformed using ZnO flowers as templates. Different three-dimensional SrTiO3

  8. Real-time measurement system for in-plane displacement and strain based on vision

    Science.gov (United States)

    Luo, Tao; Jin, Yi; Zhu, Ye; Zhai, Chao

    2013-08-01

    In this paper, combining optical measurement with conventional material testing machine, a real-time in-plane displacement and strain measurement system is built, which is applied to the material testing machine. This system can realize displacement and strain measurement of a large deformation sample moreover it can observe the sample crack on line. The change of displacement field is obtained through the change of center coordinate of each point of a grid lattice in the surface of the testing sample, according to two-dimensional sort coding for the grid in the traditional automated grid method, in this paper, an improved one-dimensional code method is adopted which make calculating speed much faster and the algorithm more adaptable. The measurement of the stability and precision of this system are made using the calibration board whose position precision is about 1.5 micron. The results show that the short-time stability of this system is about 0.5micron. At last, this system is used for strain measurement in a sample tension test, and the result shows that the system can acquire in-plane displacement and strain measurement results accurately and real-time, the velocity of image processing can reach 10 frame per second; or it can observe sample crack on line and storage the test process, the max velocity of observation and storage is 100 frame per second.

  9. Strain measurement in individual phases of an Al/TiC composite during mechanical loading

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, M.A.M.; Goldstone, J.A.; Stout, M.G.; Lawson, A.C. (Los Alamos National Lab., NM (United States)); Allison, J.E. (Ford Motor Co., Dearborn, MI (United States). Scientific Research Lab.)

    1992-01-01

    Neutron diffraction provides a unique method for examining materials during thermo-mechanical loading because it is nondestructive and penetrating and can distinguish between the strains in individual phases. Using a pulsed neutron source, all lattice reflections are recorded in all constituents simultaneously. Preliminary in-situ strain measurements under- load of an aluminum/titanium carbide composite are presented here. The measurements were made using a compact stress rig on the neutron powder diffractometer at the Manuel Lujan Jr. Neutron Scattering Center at Los Alamos National Laboratory.

  10. Distributed Strain Measurement along a Concrete Beam via Stimulated Brillouin Scattering in Optical Fibers

    Directory of Open Access Journals (Sweden)

    Romeo Bernini

    2011-01-01

    Full Text Available The structural strain measurement of tension and compression in a 4 m long concrete beam was demonstrated with a distributed fiber-optic sensor portable system based on Brillouin scattering. Strain measurements provided by the fiber-optic sensor permitted to detect the formation of a crack in the beam resulting from the external applied load. The sensor system is valuable for structural monitoring applications, enabling the long-term performance and health of structures to be efficiently monitored.

  11. First in-situ lattice strains measurements under load at VULCAN

    Energy Technology Data Exchange (ETDEWEB)

    An, Ke [ORNL; Skorpenske, Harley David [ORNL; Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Cakmak, Ercan [ORNL

    2011-01-01

    The engineering materials diffractometer, VULCAN, at the Spallation Neutron Source began commissioning on June 26, 2009. This instrument is designed for materials science and engineering studies. In situ lattice strain measurements of a model metallic material under monotonic tensile load have been performed on VULCAN. The tensile load was applied under two different strain rates, and neutron diffraction measurements were carried out in both high-intensity and high-resolution modes. These experiments demonstrated VULCAN's in situ study capability of deformation behaviors even during the early phases of commissioning.

  12. Simultaneous Strain and Temperature Measurement with Optical Fiber Gratings: Error Analysis

    Institute of Scientific and Technical Information of China (English)

    JIA Hongzhi; LI Yulin

    2000-01-01

    Many schemes designed to simultaneously measure strain and temperature with optical fiber grating sensors have been reported in recent years. In this paper, the influence of systematic errors associated with the measurement process is analyzed and the error formulas are derived. The results are applied to a range of techniques that are of current interest in the literature. The performance of these schemes is contrasted with respect to the influence of wavelength measurement error and sensitivity matrix error.

  13. Comparison of ACL strain estimated via a data-driven model with in vitro measurements.

    Science.gov (United States)

    Weinhandl, Joshua T; Hoch, Matthew C; Bawab, Sebastian Y; Ringleb, Stacie I

    2016-11-01

    Computer modeling and simulation techniques have been increasingly used to investigate anterior cruciate ligament (ACL) loading during dynamic activities in an attempt to improve our understanding of injury mechanisms and development of injury prevention programs. However, the accuracy of many of these models remains unknown and thus the purpose of this study was to compare estimates of ACL strain from a previously developed three-dimensional, data-driven model with those obtained via in vitro measurements. ACL strain was measured as the knee was cycled from approximately 10° to 120° of flexion at 20 deg s(-1) with static loads of 100, 50, and 50 N applied to the quadriceps, biceps femoris and medial hamstrings (semimembranosus and semitendinosus) tendons, respectively. A two segment, five-degree-of-freedom musculoskeletal knee model was then scaled to match the cadaver's anthropometry and in silico ACL strains were then determined based on the knee joint kinematics and moments of force. Maximum and minimum ACL strains estimated in silico were within 0.2 and 0.42% of that measured in vitro, respectively. Additionally, the model estimated ACL strain with a bias (mean difference) of -0.03% and dynamic accuracy (rms error) of 0.36% across the flexion-extension cycle. These preliminary results suggest that the proposed model was capable of estimating ACL strains during a simple flexion-extension cycle. Future studies should validate the model under more dynamic conditions with variable muscle loading. This model could then be used to estimate ACL strains during dynamic sporting activities where ACL injuries are more common.

  14. Straining and wrinkling processes during turbulence-premixed flame interaction measured using temporally-resolved diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, Adam M.; Driscoll, James F. [Department of Aerospace Engineering, The University of Michigan, Ann Arbor, MI 48109 (United States)

    2009-12-15

    The dynamical processes of flame surface straining and wrinkling that occur as turbulence interacts with a premixed flame were measured using cinema-stereoscopic PIV (CS-PIV) and orthogonal-plane cinema-stereoscopic PIV (OPCS-PIV). These diagnostics provided temporally resolved measurements of turbulence-flame interaction at frame rates of up to 3 kHz and spatial resolutions as small as 280{mu} m. Previous descriptions of flame straining and wrinkling have typically been derived based on a canonical interaction between a pair of counter-rotating vortices and a planar flame surface. However, it was found that this configuration did not properly represent real turbulence-flame interaction. Interactions resembling the canonical configuration were observed in less than 10% of the recorded frames. Instead, straining and wrinkling were generally caused more geometrically complex turbulence, consisting of large groups of structures that could be multiply curved and intertwined. The effect of the interaction was highly dependent on the interaction geometry. Furthermore, even when the turbulence did exist in the canonical geometry, the straining and wrinkling of the flame surface were not well characterized by the vortical structures. A new mechanistic description of the turbulence-flame interaction was therefore identified and confirmed by the measurements. In this description, flame surface straining is caused by coherent structures of fluid-dynamic strain-rate (strain-rate structures). The role of vortical structures is to curve existing flame surface, creating wrinkles. By simultaneously considering both forms of turbulent structure, turbulence-flame interactions in both the canonical configuration and more complex geometries could be understood. (author)

  15. Measuring systolic ankle and toe pressure using the strain gauge technique--a comparison study between mercury and indium-gallium strain gauges

    DEFF Research Database (Denmark)

    Broholm, Rikke; Wiinberg, Niels; Simonsen, Lene

    2014-01-01

    devices was performed for both toe and ankle level. RESULTS: A total of 53 patients were included (36 male). Mean age was 69 (range, 45-92 years). Mean pressures at toe and ankle level with the mercury and the indium-gallium strain gauges were 77 (range, 0-180) mm Hg and 113 (range, 15-190) mm Hg...... ankle and toe pressure for the indium-gallium strain gauge to replace the mercury strain gauge.......BACKGROUND: Measurement of the ankle and toe pressures are often performed using a plethysmograph, compression cuffs and a strain gauge. Usually, the strain gauge contains mercury but other alternatives exist. From 2014, the mercury-containing strain gauge will no longer be available...

  16. Distributed strain measurement with polymer optical fibers integrated into multifunctional geotextiles

    Science.gov (United States)

    Liehr, Sascha; Lenke, Philipp; Krebber, Katerina; Seeger, Monika; Thiele, Elke; Metschies, Heike; Gebreselassie, Berhane; Münich, Johannes Christian; Stempniewski, Lothar

    2008-04-01

    Fiber optic sensors based on polymer optical fibers (POF) have the advantage of being very elastic and robust at the same time. Unlike silica fibers, standard PMMA POF fibers can be strained to more than 40% while fully maintaining their light guiding properties. We investigated POF as a distributed strain sensor by analysing the backscatter increase at the strained section using the optical time domain reflectometry (OTDR) technique. This sensing ability together with its high robustness and break-down strain makes POF well-suited for integration into technical textiles for structural health monitoring purposes. Within the European research project POLYTECT (Polyfunctional textiles against natural hazards) technical textiles with integrated POF sensors, among others sensors are being developed for online structural health monitoring of geotechnical structures. Mechanical deformation in slopes, dams, dikes, embankments and retrofitted masonry structures is to be detected before critical damage occurs. In this paper we present the POF strain sensor properties, reactions to disturbing influences as temperature and bends as well as the results of the different model tests we conducted within POLYTECT. We further show the potential of perfluorinated graded-index POF for distributed strain sensing with increased spatial resolution and measurement lengths.

  17. Quality and performance measures of strain on intensive care capacity: a protocol for a systematic review.

    Science.gov (United States)

    Soltani, S Abolfazi; Ingolfsson, Armann; Zygun, David A; Stelfox, Henry T; Hartling, Lisa; Featherstone, Robin; Opgenorth, Dawn; Bagshaw, Sean M

    2015-11-12

    The matching of critical care service supply with demand is fundamental for the efficient delivery of advanced life support to patients in urgent need. Mismatch in this supply/demand relationship contributes to "intensive care unit (ICU) capacity strain," defined as a time-varying disruption in the ability of an ICU to provide well-timed and high-quality intensive care support to any and all patients who are or may become critically ill. ICU capacity strain leads to suboptimal quality of care and may directly contribute to heightened risk of adverse events, premature discharges, unplanned readmissions, and avoidable death. Unrelenting strain on ICU capacity contributes to inefficient health resource utilization and may negatively impact the satisfaction of patients, their families, and frontline providers. It is unknown how to optimally quantify the instantaneous and temporal "stress" an ICU experiences due to capacity strain. We will perform a systematic review to identify, appraise, and evaluate quality and performance measures of strain on ICU capacity and their association with relevant patient-centered, ICU-level, and health system-level outcomes. Electronic databases (i.e., MEDLINE, EMBASE, CINAHL, Cochrane Database of Systematic Reviews, Cochrane Central Register of Controlled Trials, Web of Science, and the Agency of Healthcare Research and Quality (AHRQ) - National Quality Measures Clearinghouse (NQMC)) will be searched for original studies of measures of ICU capacity strain. Selected gray literature sources will be searched. Search themes will focus on intensive care, quality, operations management, and capacity. Analysis will be primarily narrative. Each identified measure will be defined, characterized, and evaluated using the criteria proposed by the US Strategic Framework Board for a National Quality Measurement and Reporting System (i.e., importance, scientific acceptability, usability, feasibility). Our systematic review will comprehensively

  18. Estimation of strain from piezoelectric effect and domain switching in morphotropic PZT by combined analysis of macroscopic strain measurements and synchrotron X-ray data

    Energy Technology Data Exchange (ETDEWEB)

    Kungl, Hans [Institute of Ceramics in Mechanical Engineering, University of Karlsruhe, Haid-und-Neu-Str. 7, 76131 Karlsruhe (Germany)]. E-mail: hans.kungl@ikm.uni-karlsruhe.de; Theissmann, Ralf [Materials Science, Darmstadt University of Technology (Germany); Knapp, Michael [Materials Science, Darmstadt University of Technology (Germany); Baehtz, Carsten [Materials Science, Darmstadt University of Technology (Germany); Fuess, Hartmut [Materials Science, Darmstadt University of Technology (Germany); Wagner, Susanne [Institute of Ceramics in Mechanical Engineering, University of Karlsruhe, Haid-und-Neu-Str. 7, 76131 Karlsruhe (Germany); Fett, Theo [Institute of Ceramics in Mechanical Engineering, University of Karlsruhe, Haid-und-Neu-Str. 7, 76131 Karlsruhe (Germany); Hoffmann, Michael J. [Institute of Ceramics in Mechanical Engineering, University of Karlsruhe, Haid-und-Neu-Str. 7, 76131 Karlsruhe (Germany)

    2007-04-15

    Morphotropic PZT ceramics are State of the art materials for ferroelectric actuators. Essential performance parameters for these materials are strain and hysteresis. On a microscopic scale the strain provided by an electric field is due to two different mechanisms. The piezoelectric effect causes an elongation of the unit cells, whereas domain switching changes their crystallographic orientation by aligning the polarization axis towards the field direction. A method is outlined to estimate the contribution of the two mechanisms to total strain by combining macroscopic strain measurements and X-ray diffraction (XRD) data. Results from macroscopic measurements of remanent and unipolar strain with the corresponding data on texture, derived from in situ synchrotron radiation XRD patterns, are analyzed and evaluated by a semi-empirical approach. The method was applied to six morphotropic, LaSr doped PZT materials of different Zr/Ti ratios. Results are discussed with respect to the differences between the materials.

  19. Transform method for laser speckle strain-rate measurements in biological tissues and biomaterials

    Science.gov (United States)

    Kirkpatrick, Sean J.

    1999-03-01

    Laser speckle strain measurements in biological tissues and some synthetic biomaterials, such as translucent dental composites and ceramics, are often complicated by the physical properties of the materials. For example, speckles generated by illuminating soft biological tissue with laser light are subject to rapid decorrelation due to the Brownian movement of water and scattering particles in the tissues and to cellular motions. In addition, the penetration of the laser beam into the tissue or translucent biomaterial results in multiple scattering and a complete depolarization of the speckle field. This may complicate the evaluation of the strain field when a force is applied to the material because the speckle pattern shift is providing information from the surface of the material as well as from the bulk sample, where the strains may or may not be the same as on the surface. This paper presents a variation of a speckle processing scheme originally called the `Transform Method' for evaluating both surface and bulk strain rates and total strains in biological tissues and translucent biomaterials. The method is not a correlation-based technique, but instead relies upon 2D frequency transforms of time series of 1D speckle pattern records stacked into 2D arrays. The method is insensitive to speckle field depolarization and, compared to correlation-based techniques, is relatively insensitive to speckle decorrelation. Strain rates and total in-plane strains were measured in both hard (cortical bone) and soft (artery segments) biological tissues and in translucent biomaterials (dental ceramics). Potential applications to medical diagnostics and biomaterials science are also discussed.

  20. High frequency electro-optic measurement of strained silicon racetrack resonators

    CERN Document Server

    Borghi, M; Merget, F; Witzens, J; Bernard, M; Ghulinyan, M; Pucker, G; Pavesi, L

    2015-01-01

    The observation of the electro-optic effect in strained silicon waveguides has been considered as a direct manifestation of an induced $\\chi^{(2)}$ non-linearity in the material. In this work, we perform high frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes independently of the applied strain when the applied voltage varies much faster than the carrier effective lifetime, and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free carrier effects, our results set an upper limit of $8\\,pm/V$ to the induced high-speed $\\chi^{(2)}_{eff,zzz}$ tensor element at an applied stress of $-0.5\\,GPa$. This upper limit is about one order of magnitude lower than the previously reported values for static electro-optic measurements.

  1. High-frequency electro-optic measurement of strained silicon racetrack resonators.

    Science.gov (United States)

    Borghi, M; Mancinelli, M; Merget, F; Witzens, J; Bernard, M; Ghulinyan, M; Pucker, G; Pavesi, L

    2015-11-15

    The observation of the electro-optic effect in strained silicon waveguides has been considered a direct manifestation of an induced χ(2) nonlinearity in the material. In this work, we perform high-frequency measurements on strained silicon racetrack resonators. Strain is controlled by a mechanical deformation of the waveguide. It is shown that any optical modulation vanishes, independent of the applied strain, when the applied voltage varies much faster than the carrier effective lifetime and that the DC modulation is also largely independent of the applied strain. This demonstrates that plasma carrier dispersion is responsible for the observed electro-optic effect. After normalizing out free-carrier effects, our results set an upper limit of (8±3) pm/V to the induced high-speed effective χeff,zzz(2) tensor element at an applied stress of -0.5 GPa. This upper limit is about 1 order of magnitude lower than previously reported values for static electro-optic measurements.

  2. Experimental measurement and elaborate analysis of strain hardening exponent in tensile deformation

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    This paper gives a set of formulae for measuring strain hardeningexponent n in different typical deforming routes by using experimental parameters p (forming load), v (velocity of cross-head) and l (gauge length of specimen). With them the uniform method for measuring n (strain hardening exponent at constant strain rate), nv (strain hardening exponent under constant velocity) and np (strain hardening exponent under constant load) is established when , v or p is constant distinctively. Furthermore, the deviation among n values via different typical deformation route is analyzed. The results indicate that there exists structural sensitivity under superplastic and plastic deformation. In addition, the experimental results also prove that the values of n, nv and np obtained with different sets of constant , v or p curves are different too, even if the formulae are the same. Thus a more profound understanding of the relation between the experimental results and the mathematic expressions of n, nv and np is reached and the parameter n is more subtly analyzed by experiment.

  3. Recrystallization-induced self-assembly for the growth of Cu₂O superstructures.

    Science.gov (United States)

    Shang, Yang; Shao, Yi-Ming; Zhang, Dong-Feng; Guo, Lin

    2014-10-20

    The assembly of inorganic nanoparticles (NPs) into 3D superstructures with defined morphologies is of particular interest. A novel strategy that is based on recrystallization-induced self-assembly (RISA) for the construction of 3D Cu2O superstructures and employs Cu2O mesoporous spheres with diameters of approximately 300 nm as the building blocks has now been developed. Balancing the hydrolysis and recrystallization rates of the CuCl precursors through precisely adjusting the experimental parameters was key to success. Furthermore, the geometry of the superstructures can be tuned to obtain either cubes or tetrahedra and was shown to be dependent on the growth behavior of bulk CuCl. The overall strategy extends the applicability of recrystallization-based processes for the guided construction of assemblies and offers unique insights for assembling larger particles into complicated 3D superstructures.

  4. Design and application of inorganic nanoparticle superstructures: current status and future challenges.

    Science.gov (United States)

    Gao, Yan; Tang, Zhiyong

    2011-08-08

    Self-assembly of inorganic nanoparticles (NPs) into superstructures, which is used as a general way to integrate functional inorganic NPs into macroscale devices, has attracted much research interest. This review will summarize the recent progress and discuss future challenges of the inorganic NP superstructures. Examples include both DNA-based and polymer-based NP assemblies with controlled positioning and geometries, and quasicrystalline ordered structures from the self-assembly of binary or ternary NPs. Different from their individual NP counterparts, these self-assembled superstructures possess unique properties, such as optical chirality and dynamic structural change under an external stimulus. Due to their diversified structures and functionalities, inorganic NP superstructures have shown a wide range of promise for applications in electronic and photonic devices, such as field-effect transistors, magnetoresistive components, optical information recording, and solar cells.

  5. Measurements of translation, rotation and strain: new approaches to seismic processing and inversion

    NARCIS (Netherlands)

    Bernauer, M.; Fichtner, A.; Igel, H.

    2012-01-01

    We propose a novel approach to seismic tomography based on the joint processing of translation, strain and rotation measurements. Our concept is based on the apparent S and P velocities, defined as the ratios of displacement velocity and rotation amplitude, and displacement velocity and divergence a

  6. Validation Tests of Fiber Optic Strain-Based Operational Shape and Load Measurements

    Science.gov (United States)

    Bakalyar, John A.; Jutte, Christine

    2012-01-01

    Aircraft design has been progressing toward reduced structural weight to improve fuel efficiency, increase performance, and reduce cost. Lightweight aircraft structures are more flexible than conventional designs and require new design considerations. Intelligent sensing allows for enhanced control and monitoring of aircraft, which enables increased structurally efficiency. The NASA Dryden Flight Research Center (DFRC) has developed an instrumentation system and analysis techniques that combine to make distributed structural measurements practical for lightweight vehicles. Dryden's Fiber Optic Strain Sensing (FOSS) technology enables a multitude of lightweight, distributed surface strain measurements. The analysis techniques, referred to as the Displacement Transfer Functions (DTF) and Load Transfer Functions (LTF), use surface strain values to calculate structural deflections and operational loads. The combined system is useful for real-time monitoring of aeroelastic structures, along with many other applications. This paper describes how the capabilities of the measurement system were demonstrated using subscale test articles that represent simple aircraft structures. Empirical FOSS strain data were used within the DTF to calculate the displacement of the article and within the LTF to calculate bending moments due to loads acting on the article. The results of the tests, accuracy of the measurements, and a sensitivity analysis are presented.

  7. A high energy microscope for local strain measurements within bulk materials

    DEFF Research Database (Denmark)

    Lienert, U.; Poulsen, H.F.; Martins, R.V.

    2000-01-01

    A novel diffraction technique for local, three dimensional strain scanning within bulk materials is presented. The technique utilizes high energy, micro-focussed synchrotron radiation which can penetrate several millimeters into typical metals. The spatial resolution can be as narrow as 1 mum....... Case studies demonstrate that steep macrostrain gradients can be resolved. Techniques for the local measurement of macro- and microstrains are discussed....

  8. A Novel Microcharacterization Technique in the Measurement of Strain and Orientation Gradient in Advanced Materials

    Science.gov (United States)

    Garmestai, H.; Harris, K.; Lourenco, L.

    1997-01-01

    Representation of morphology and evolution of the microstructure during processing and their relation to properties requires proper experimental techniques. Residual strains, lattice distortion, and texture (micro-texture) at the interface and the matrix of a layered structure or a functionally gradient material and their variation are among parameters important in materials characterization but hard to measure with present experimental techniques. Current techniques available to measure changes in interred material parameters (residual stress, micro-texture, microplasticity) produce results which are either qualitative or unreliable. This problem becomes even more complicated in the case of a temperature variation. These parameters affect many of the mechanical properties of advanced materials including stress-strain relation, ductility, creep, and fatigue. A review of some novel experimental techniques using recent advances in electron microscopy is presented here to measure internal stress, (micro)texture, interracial strength and (sub)grain formation and realignment. Two of these techniques are combined in the chamber of an Environmental Scanning Electron Microscope to measure strain and orientation gradients in advanced materials. These techniques which include Backscattered Kikuchi Diffractometry (BKD) and Microscopic Strain Field Analysis are used to characterize metallic and intermetallic matrix composites and superplastic materials. These techniques are compared with the more conventional x-ray diffraction and indentation techniques.

  9. A combined experimental with simulation approach to calibrated 3D strain measurement using shearography

    NARCIS (Netherlands)

    Goto, D.T.; Groves, R.M.

    2010-01-01

    This paper is concerned with the development of a calibrated 3D shearography strain measurement instrument, calibrated iteratively, using a combined mechanical-optical model and specially designed test objects. The test objects are a cylinder loaded by internal pressure and a flat plate under axial

  10. Thermal strain along optical fiber in lightweight composite FOG : Brillouin-based distributed measurement and finite element analysis

    Science.gov (United States)

    Minakuchi, Shu; Sanada, Teruhisa; Takeda, Nobuo; Mitani, Shinji; Mizutani, Tadahito; Sasaki, Yoshinobu; Shinozaki, Keisuke

    2014-05-01

    Thermal strain significantly affects stability of fiber optic gyroscope (FOG) performance. This study investigates thermal strain development in a lightweight carbon fiber reinforced plastic (CFRP) FOG under thermal vacuum condition simulating space environment. First, we measure thermal strain distribution along an optical fiber in a CFRP FOG using a Brillouin-based high-spatial resolution system. The key strain profile is clarified and the strain development is simulated using finite element analysis. Finally, several constituent materials for FOG are quantitatively compared from the aspect of the maximum thermal strain and the density, confirming the clear advantage of CFRP.

  11. Advanced digital speckle correlation method for strain measurement and nondestructive testing

    Science.gov (United States)

    Jin, Guan-chang; Bao, Nai-Keng; Chung, Po Sheun

    1997-03-01

    An advanced digital speckle correlation method (DSCM) is presented in this paper. The advantages of this method will not only improve the processing speed but also increase the measuring accuracy. Some mathematics tools are derived and a powerful computing program is developed for further applications. A new feature of the measuring sensitivity of DSCM that can be varied by different amplification of the optical arrangement is first presented. This advantage may be superior to those available in other optical metrology methods like Electronic Speckle Pattern Interferometry (ESPI) in micro-deformation measurements. The applications of strain measurement and nondestructive testing are described and the advantages of DSCM are obvious. Some examples of material behavior measurement and plastic strain measurement are presented. Due to the high sensitivity of DSCM, another potential application in nondestructive testing (NDT) is also described in this paper. From the application examples given, this advanced DSCM proves to be a new and effective optical strain sensing technique especially for small objects or micro-deformation measurements.

  12. Two-dimensional Moiré phase analysis for accurate strain distribution measurement and application in crack prediction.

    Science.gov (United States)

    Wang, Qinghua; Ri, Shien; Tsuda, Hiroshi; Koyama, Motomichi; Tsuzaki, Kaneaki

    2017-06-12

    Aimed at the low accuracy problem of shear strain measurement in Moiré methods, a two-dimensional (2D) Moiré phase analysis method is proposed for full-field deformation measurement with high accuracy. A grid image is first processed by the spatial phase-shifting sampling Moiré technique to get the Moiré phases in two directions, which are then conjointly analyzed for measuring 2D displacement and strain distributions. The strain especially the shear strain measurement accuracy is remarkably improved, and dynamic deformation is measurable from automatic batch processing of single-shot grid images. As an application, the 2D microscale strain distributions of a titanium alloy were measured, and the crack occurrence location was successfully predicted from strain concentration.

  13. Improved myocardial strain measured by strain-encoded magnetic resonance imaging in a patient with cardiac sarcoidosis.

    Science.gov (United States)

    Nakano, Shintaro; Kimura, Fumiko; Osman, Nael; Sugi, Keiki; Tanno, Jun; Uchida, Yoshitaka; Shiono, Ayako; Senbonmatsu, Takaaki; Nishimura, Shigeyuki

    2013-11-01

    A woman aged 64 years with cardiac sarcoidosis responded favourably to corticosteroid therapy in terms of recovered longitudinal myocardial strain, as evaluated by strain-encoded magnetic resonance imaging (SENC-MRI). In contrast, circumferential myocardial strain and late gadolinium enhancement demonstrated minimal improvement, suggesting relatively advanced pathology of the myocardial middle layer. We propose SENC-MRI as a marker of disease at an early stage of cardiac sarcoidosis.

  14. Strain measurement of pure titanium covered with soft tissue using X-ray diffraction.

    Science.gov (United States)

    Fujisaki, Kazuhiro; Tadano, Shigeru

    2010-03-01

    Measurement of the stress and strain applied to implants and bone tissue in the human body are important for fracture prediction and evaluations of implant adaptation. The strain of titanium (Ti) materials can be measuring by X-ray diffraction techniques. This study applied X-ray diffraction to the skin tissue-covered Ti. Characteristic X-rays of Mo Kalpha were used and the X-rays diffracted from the Ti were detected through the covering skin tissue. The X-ray absorption by skin tissue is large under the diffracted X-rays detected in low angles because the length of penetration depends on the angle of inclination, equal to the Bragg angle. The effects of skin tissue to detect the diffracted X-rays were investigated in the experiments. And the strain measurements were conducted under bending loads applied to the Ti specimen. The effect of skin tissue was absorption of X-rays as well as the X-rays scattered from the physiological saline contained in the tissue. The X-rays scattered by the physiological saline creates a specific background pattern near the peaks from the (002) and (011) lattice planes of Ti in the X-ray diffraction profile. Diffracted X-rays from the Ti were detected after being transmitted through 1 mm thick skin tissue by Mo Kalpha. Individual peaks such as (010), (002), (011), and (110) were clearly established by using a parallel beam arrangement. The strains of (110) lattice planes were measured with or without the tissue cover were very similar. The strain of the (110) lattice planes of Ti could be measured by Mo Kalpha when the Ti specimen was located under the skin tissue.

  15. Simultaneous strain and temperature measurement with enhanced intrinsic sensitivity using etched polymer fibre Bragg gratings

    Science.gov (United States)

    Bhowmik, Kishore; Peng, Gang-Ding; Luo, Yanhua; Ambikairajah, Eliathamby; Rajan, Ginu

    2015-09-01

    A PMMA based single-mode polymer optical fibre is etched to different diameter and it is observed that etching can lead to change in the material properties of the fibre such as Young's modulus and thermal expansion coefficient. This can play a vital role in improving the intrinsic sensing capabilities based on etched polymer optical fibre. Thus, exploiting the different strain and temperature sensitivities exhibited by the etched and un-etched polymer FBGs and by using an FBG array, strain and temperature can be measured simultaneously and also with very high sensitivity.

  16. A Polypyrrole-based Strain Sensor Dedicated to Measure Bladder Volume in Patients with Urinary Dysfunction

    Directory of Open Access Journals (Sweden)

    Vamsy P. Chodavarapu

    2008-08-01

    Full Text Available This paper describes a new technique to measure urine volume in patients with urinary bladder dysfunction. Polypyrrole – an electronically conducting polymer - is chemically deposited on a highly elastic fabric. This fabric, when placed around a phantom bladder, produced a reproducible change in electrical resistance on stretching. The resistance response to stretching is linear in 20%-40% strain variation. This change in resistance is influenced by chemical fabrication conditions. We also demonstrate the dynamic mechanical testing of the patterned polypyrrole on fabric in order to show the feasibility of passive interrogation of the strain sensor for biomedical sensing applications.

  17. 3D strain map of axially loaded mouse tibia: a numerical analysis validated by experimental measurements.

    Science.gov (United States)

    Stadelmann, Vincent A; Hocke, Jean; Verhelle, Jensen; Forster, Vincent; Merlini, Francesco; Terrier, Alexandre; Pioletti, Dominique P

    2009-02-01

    A combined experimental/numerical study was performed to calculate the 3D octahedral shear strain map in a mouse tibia loaded axially. This study is motivated by the fact that the bone remodelling analysis, in this in vivo mouse model should be performed at the zone of highest mechanical stimulus to maximise the measured effects. Accordingly, it is proposed that quantification of bone remodelling should be performed at the tibial crest and at the distal diaphysis. The numerical model could also be used to furnish a more subtle analysis as a precise correlation between local strain and local biological response can be obtained with the experimentally validated numerical model.

  18. Nonlinear Strain Measures, Shape Functions and Beam Elements for Dynamics of Flexible Beams

    Energy Technology Data Exchange (ETDEWEB)

    Sharf, I. [University of Victoria, Department of Mechanical Engineering (Canada)

    1999-05-15

    In this paper, we examine several aspects of the development of an explicit geometrically nonlinear beam element. These are: (i) linearization of the displacement field; (ii) the effect of a commonly adopted approximation for the nonlinear Lagrangian strain; and (iii) use of different-order shape functions for discretization. The issue of rigid-body check for a nonlinear beam element is also considered. An approximate check is introduced for an element based on an (approximate) intermediate strain measure. Several numerical examples are presented to support the analysis. The paper concludes with a discussion on the use of explicit nonlinear beam elements for multibody dynamics simulation.

  19. Simultaneous Strain and Temperature Measurement Using Single High-duty-cycle Sampled Fiber Bragg Grating

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A novel and simple fiber grating sensor based on high-duty-cycle sample fiber Bragg grating is proposed and demonstrated experimentally. This type of sensor can measure strain and temperature simultaneously with merits of low cost, high sensitivity and immunity to electro- magnetic interference. The sensor has an accuracy of 20με and 0.8℃ over a strain range of 500~1500με and a temperature range of 5~36℃ under experimental conditions.

  20. Initial development of an NIR strain measurement technique in brittle geo-materials

    Science.gov (United States)

    Butcher, Emily; Gibson, Andrew; Benson, Philip

    2016-04-01

    Visible-Near Infrared Spectroscopy (VIS-NIR) is a technique developed for the non-contact measurement of compositional characteristics of surfaces. The technique is rapid, sensitive to change in surface topology and has found applications ranging from planetary geology, soil science, pharmacy to materials testing. The technique has also been used in a limited fashion to measure strain changes in rocks and minerals (Ord and Hobbs 1986). However, there have been few quantitative studies linking such changes in material strains (and other rock physics parameters) to the resulting VIS-NIT signature. This research seeks to determine whether improvements in VIS-NIR equipment means that such a technique is a viable method to measure strains in rock via this remote (non-contact) method. We report new experiments carried out using 40 mm Brazilian Tensile discs of Carrera Marble and Darley Dale Sandstone using an Instron 600LX in the University of Portsmouth Rock Mechanics Laboratory. The tensile test was selected for this experiment as the sample shape and sensor arrangements allow access to a 'flat' surface area throughout the test, allowing surface measurements to be continuously taken whilst the discs are strained to failure. An ASD Labspec 5000 with 25 mm foreoptic was used to collect reflectance spectra in the range 350-2500 nm during each tensile test. Results from Carrera Marble experiments show that reflectance at 2050 nm negatively correlates (by polynomial regression) with axial strain between 0.05-0.5%, with r2 of 0.99. Results from Darley Dale Sandstone data show that reflectance at 1970 nm positively correlates with axial deformation between 0.05-0.5%, with r2 of 0.98. Initial analyses suggests that the VIS-NIR possesses an output that scales in a quantifiable manner with rock strain, and shows promise as a technique for strain measurement. The method has particular application for allowing our laboratory measurements to "ground truth" data taken from drone and

  1. Anatomopathology of the Superstructure of the Stapes in Patients with Otosclerosis

    Directory of Open Access Journals (Sweden)

    Carvalho, Bettina

    2014-07-01

    Full Text Available Introduction Otosclerosis is a disease that causes bone resorption and deposition in the auditory structures, leading to deafness. Many studies have evaluated the histopathology of the stapes footplate in this disease (osteoblasts, osteoclasts, vascular proliferation, fibroblasts, and histiocytes, but we found no studies in the literature involving the histology of the superstructure of the stapes. Objectives To perform an analysis under optical microscopy of histopathologic findings of the superstructure of the stapes from patients with otosclerosis. Methods A contemporary cross-sectional cohort study of pathology analysis of superstructures of the stapes of patients with otosclerosis. Results Fifteen superstructures of stapes in patients with otosclerosis operated in our service and four stapes of cadavers used for dissection (controls were evaluated. No areas of bone resorption or deposition or presence of osteoclasts and osteoblasts in the superstructure of the stapes were found. However, we found in the more distal portions of the crura areas with prominent cementitious lines and woven bone, which was different than the mature trabecular bone found in the head of the stapes or in the controls. Conclusion There were histologic changes in the superstructure of the stapes in patients with otosclerosis operated in our service.

  2. Antisolvent crystallization approach to construction of CuI superstructures with defined geometries.

    Science.gov (United States)

    Kozhummal, Rajeevan; Yang, Yang; Güder, Firat; Küçükbayrak, Umut M; Zacharias, Margit

    2013-03-26

    A facile high-yield production of cuprous iodide (CuI) superstructures is reported by antisolvent crystallization using acetonitrile/water as a solvent/antisolvent couple under ambient conditions. In the presence of trace water, the metastable water droplets act as templates to induce the precipitation of hollow spherical CuI superstructures consisting of orderly aligned building blocks after drop coating. With water in excess in the mixed solution, an instant precipitation of CuI random aggregates takes place due to rapid crystal growth via ion-by-ion attachment induced by a strong antisolvent effect. However, this uncontrolled process can be modified by adding polymer polyvinyl pyrrolidone (PVP) in water to restrict the size of initially formed CuI crystal nuclei through the effective coordination effect of PVP. As a result, CuI superstructures with a cuboid geometry are constructed by gradual self-assembly of the small CuI crystals via oriented attachment. The precipitated CuI superstructures have been used as competent adsorbents to remove organic dyes from the water due to their mesocrystal feature. Besides, the CuI superstructures have been applied either as a self-sacrificial template or only as a structuring template for the flexible design of other porous materials such as CuO and TiO2. This system provides an ideal platform to simultaneously investigate the superstructure formation enforced by antisolvent crystallization with and without organic additives.

  3. Internal Strain Measurement in 3D Braided Composites Using Co-braided Optical Fiber Sensors

    Institute of Scientific and Technical Information of China (English)

    Shenfang YUAN; Rui HUANG; Yunjiang RAO

    2004-01-01

    3D braided composite technology has stimulated a great deal of interest in the world at large. But due to the threedimensional nature of these kinds of composites, coupled with the shortcomings of currently-adopted experimental test methods, it is difficult to measure the internal parameters of this materials, hence causes it difficult to understand the material performance. A new method is introduced herein to measure the internal strain of braided composite materials using co-braided fiber optic sensors. Two kinds of fiber optic sensors are co-braided into 3D braided composites to measure internal strain. One of these is the Fabry-Parrot (F-P) fiber optic sensor; the other is the polarimetric fiber optic sensor. Experiments are conducted to measure internal strain under tension, bending and thermal environments in the 3D carbon fiber braided composite specimens, both locally and globally. Experimental results show that multiple fiber optic sensors can be braided into the 3D braided composites to measure the internal parameters, providing a more accurate measurement method and leading to a better understanding of these materials.

  4. Three-Axis Distributed Fiber Optic Strain Measurement in 3D Woven Composite Structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-01-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading. Keywords: fiber optic, distributed strain sensing, Rayleigh scatter, optical frequency domain reflectometry

  5. Quasi-residual strain and moduli measurements in materials using embedded acoustic waveguides

    Science.gov (United States)

    Harrold, Ronald T.; Sanjana, Zal N.; Raju, Basavaraju B.

    1996-11-01

    Following the processing and manufacture of resin and composite parts and during their lifetime, the distribution of internal residual strain and any variations in moduli are generally unknown. Real-time information on these parameters would be valuable for improving material performance and reliability. It is believed that measurements related to material residual stresses or strain and moduli can be obtained by measuring the longitudinal wave velocities within acoustic waveguides (AWG) embedded within a material. The concept is that the wave velocities within embedded AWG are related to the material bulk modulus, density and Poisson's Ratio which are all in some degree related to the material state of cure, and finally the internal residual stresses. Based on this concept it is shown that the AWG of different diameters embedded within the same resin part of uniform internal stress distribution, the AWG wave velocities should vary in relation to the square root of the AWG diameter. Experimental results using AWG of 5, 10, 16, 20, 40 and 62 mil diameter Nichrome embedded within Shell 815 clear resin with optically measured uniform strain, demonstrate a direct relationship between AWG velocities and the square root of the AWG diameter. Consequently, it is reasoned that for a part with several embedded AWG, each of the same diameter, then differences in the AWG velocities would yield information on differences in the residual strain and moduli within the part.

  6. The quantitative check-measure of the bend strain parameters of the rotating components

    Institute of Scientific and Technical Information of China (English)

    李文华; 乔中涛

    2002-01-01

    Based on the principle of the electric-magnetic check-measure, this paper puts forward a new technology and method that use the magnetic marks to check and measure the dynamic physical parameters such as angle speed, bending strain,stress and bending moment. The principles of the check-measure and the dealing and exchanging technology about signals have been demonstrated and the rotating components have been made up. The timely and quantitative check-measure of the dynamic physical parameters during the component in working has been realized by using computer control.

  7. Development of a high-sensitivity strain measurement system based on a SH SAW sensor

    Science.gov (United States)

    Oh, Haekwan; Lee, Keekeun; Eun, Kyoungtae; Choa, Sung-Hoon; Yang, Sang Sik

    2012-02-01

    A strain measurement system based on a shear horizontal surface acoustic wave (SH SAW) was developed. The developed system is composed of a SAW microsensor, a printed circuit board (PCB), an adhesive and a strain gauge. When a compression force is applied to the PCB by the strain gauge, the PCB is bent so that external strain energy can be evenly delivered to the microsensor without any detachment of the sensor from the board. When a stretching force is applied to the PCB under the condition that one side of the PCB is fixed and the other side is modulated, the actual length of the SAW delay line between the two interdigital transducers (IDTs) is increased. The increase in the delay line length causes a change in the time for the propagating SAW to reach the output IDT. If strain energy is applied to the piezoelectric substrate, the substrate density is changed, which then changes the propagation velocity of the SAW. Coupling-of-modes modeling was conducted prior to fabrication to determine the optimal device parameters. Depending on the strain, the frequency difference was linearly modulated. The obtained sensitivity for stretching was 17.3 kHz/% for the SH wave mode and split electrode. And the obtained sensitivity for bending was 46.1 kHz/% for the SH wave mode and split electrode. The SH wave showed about 15% higher sensitivity than the Rayleigh wave, and the dog-bone PCB showed about 8% higher sensitivity than the rectangular PCB. The obtained sensitivity was about five times higher than that of existing SAW-based strain sensors.

  8. Residual Strains in a Nanometer Thick Cr Film Measured on Micromachined Beams

    Institute of Scientific and Technical Information of China (English)

    Z.M. Zhou; Yong Zhou; Ying Cao; Haiping Mao

    2009-01-01

    A Cr film with a 75 nm thickness sputtered on a Si substrate was used to fabricate microbridge and microcan-tilever samples with the MEMS (microelectromechanical system) technique. The profile of the buckled beams was measured by using the interference technique with white light and fitted with a theoretical result. The uniform residual strain in the bridge samples was deduced from the variation of buckling amplitude with the beam length. On the other hand, the gradient residual strain was determined from the deflection profile of the cantilever. The residual uniform and gradient strain in the Cr film are about 4.96×10-3 and 4.2967×10-5, respectively.

  9. Mechanical stress measurement by an achromatic optical digital speckle pattern interferometry strain sensor with radial in-plane sensitivity: experimental comparison with electrical strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Viotti, Matias R.; Armando Albertazzi, G. Jr.; Kapp, Walter A.

    2011-03-01

    This paper shows the optical setup of a radial in-plane digital speckle pattern interferometer which uses an axis-symmetrical diffractive optical element (DOE) to obtain double illumination. The application of the DOE gives in-plane sensitivity which only depends on the grating period of the DOE instead of the wavelength of the laser used as illumination source. A compact optical layout was built in order to have a portable optical strain sensor with a circular measurement area of about 5 mm in diameter. In order to compare its performance with electrical strain sensors (strain gauges), mechanical loading was generated by a four-point bending device and simultaneously monitored by the optical strain sensor and by two-element strain gauge rosettes. Several mechanical stress levels were measured showing a good agreement between both sensors. Results showed that the optical sensor could measure applied mechanical strains with a mean uncertainty of about 5% and 4% for the maximum and minimum principal strains, respectively.

  10. Improvements in Measuring Sorption-Induced Strain and Permeability in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Eric P. Robertson

    2008-10-01

    Total worldwide CBM in-place reserves estimates are between 3500 Tcf and 9500 Tcf. Unminable coal beds have been recommended as good CO2 sequestration sites as the world prepares to sequester large amounts of greenhouse gases. In the U.S., these coal seams have the capacity to adsorb and sequester roughly 50 years of CO2 emissions from all the U.S. coal-fired power plants at today’s output rates. The amount and type of gas ad-sorbed in coal has a strong impact on the permeability of the coal seam. An improved mixed gas adsorption iso-therm model based on the extended-Langmuir theory is discussed and is applied to mixed gas sorption-induced strain based on pure gas strain data and a parameter accounting for gas-gas interactions that is independent of the coal substrate. Advantages and disadvantages of using freestanding versus constrained samples for sorption-induced strain measurements are also discussed. A permeability equation used to model laboratory was found to be very accurate when sorption-induced strain was small, but less accurate with higher strain gases.

  11. Dynamic strain measurements of marine propellers under non-uniform inflow

    Science.gov (United States)

    Tian, Jin; Croaker, Paul; Zhang, Zhiyi; Hua, Hongxing

    2016-09-01

    An experimental investigation was conducted to determine the dynamic strain characteristics of marine propellers under non-uniform inflow. Two 7-bladed highly skewed model propellers of identical geometries, but different elastic characteristics were tested at various rotational speeds and free stream velocities in the water tunnel. Two kinds of wire mesh wake screens located 400mm upstream of the propeller plane were used to generate four-cycle and six-cycle inflows. A laser doppler velocimetry (LDV) system located 100mm downstream of the wake screen plane was used to measure the axial velocity distributions produced by the wake screens. Strain gauges were bonded onto the propeller blades in different positions. A customized underwater data acquisition system which can record data off-line was used to record the dynamic strain. The results show that the frequency properties of the blade dynamic strain are determined by the harmonics of the inflow and that the stiffness of the propeller has an essential effect on the dynamic strain amplitudes.

  12. Research on strain and temperature measurement of OPGW based on BOTDR

    Science.gov (United States)

    Lv, Anqiang; Li, Yongqian; Li, Jing

    2013-12-01

    OPGW(Optical Fiber Composite Overhead Ground Wire) is an important part of high voltage transmission lines with characteristics of wide distribution and long distance. It is difficult for routine inspection and status detection by traditional method. So, it is necessary to monitoring the status of OPGW using distributed optical fiber strain and temperature measurement device. In this paper, the strain and temperature calibration experiment of composite optical fiber in OPGW was completed using BOTDR( Brillouin Optical Time Domain Reflectometry). The difference of Brillouin frequency shift coefficients to strain and temperature and initial frequency shifts between different optical fibers were compared. The method to accurately locate connections was provided using distributed Brillouin frequency shift curves. The status monitoring for running OPGW was realized and the data was analyzed. Results indicate that, the frequency shift coefficients to strain and temperature of single mode fibers in one OPGW are almost the same, which are 0.05MHz/μɛ and 1.05MHz/°C, but the initial frequency shifts are different with 20MHz range. The Brillouin frequency shifts at fiber connections in change obviously, which can serve as locating basis for connections. The topography, span, mark-height and climate affect the strain and temperature distribution of OPGW.

  13. Measurement of the residual stress in hot rolled strip using strain gauge method

    Science.gov (United States)

    Kumar, Lokendra; Majumdar, Shrabani; Sahu, Raj Kumar

    2017-07-01

    Measurement of the surface residual stress in a flat hot rolled steel strip using strain gauge method is considered in this paper. Residual stresses arise in the flat strips when the shear cut and laser cut is applied. Bending, twisting, central buckled and edge waviness is the common defects occur during the cutting and uncoiling process. These defects arise due to the non-uniform elastic-plastic deformation, phase transformation occurring during cooling and coiling-uncoiling process. The residual stress analysis is very important because with early detection it is possible to prevent an object from failure. The goal of this paper is to measure the surface residual stress in flat hot rolled strip using strain gauge method. The residual stress was measured in the head and tail end of hot rolled strip considering as a critical part of the strip.

  14. Light-harvesting superstructures of green plant chloroplasts lacking photosystems.

    Science.gov (United States)

    Belgio, Erica; Ungerer, Petra; Ruban, Alexander V

    2015-10-01

    The light-harvesting antenna of higher plant photosystem II (LHCII) is the major photosynthetic membrane component encoded by an entire family of homologous nuclear genes. On the contrary, the great majority of proteins of photosystems and electron transport components are encoded by the chloroplast genome. In this work, we succeeded in gradually inhibiting the expression of the chloroplast genes that led to the disappearance of the photosystem complexes, mimicking almost total photoinhibition. The treated plants, despite displaying only some early signs of senescence, sustained their metabolism and growth for several weeks. The only major remaining membrane component was LHCII antenna that formed superstructures - stacks of dozens of thylakoids or supergrana. Freeze-fracture electron microscopy revealed specific organization, directly displaying frequently bifurcated membranes with reduced or totally absent photosystem II (PSII) reaction centre complexes. Our findings show that it is possible to accumulate large amounts of light-harvesting membranes, organized into three-dimensional structures, in the absence of reaction centre complexes. This points to the reciprocal role of LHCII and PSII in self-assembly of the three-dimensional matrix of the photosynthetic membrane, dictating its size and flexible adaptation to the light environment. © 2015 John Wiley & Sons Ltd.

  15. Bilateral Congenital Absence of the Stapes Superstructure in Two Siblings

    Science.gov (United States)

    Undabeitia, Jose Ignacio; Undabeitia, José; Cianci, Laura; Padilla, Luis; Petreñas, Eduardo; Municio, Antonio

    2014-01-01

    Middle ear ossicle malformations are an uncommon event. Among them, the congenital absence of the stapes is a very rare condition that is seldom described in the literature. We report the cases of two women, aged 19 and 22 , who presented with a long history of conductive deafness. An exploratory tympanotomy was performed and the absence of the stapes superstructure and an abnormal position of the facial nerve could be observed. A bone anchored hearing aid (BAHA) was implanted in both patients with good results. It is believed that stapes agenesis is related to an abnormal development of the facial nerve, which by the 5th to 6th week of gestation would interpose between the otic capsule and the stapes blastema, preventing these structures from contacting. A long history of nonprogressive hearing loss from birth or early childhood is the key to reach a diagnosis. Several treatment options have been described. The authors opted for a hearing aid due to the high risk of facial nerve lesion, with good functional results. PMID:25045568

  16. Strain ratio measurement of femoral cartilage by real-time elastosonography: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Ipek, Ali; Unal, Ozlem; Kartal, Merve Gulbiz; Arslan, Halil [Yildirim Beyazit University, Department of Radiology, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey); Isik, Cetin; Bozkurt, Murat [Yildirim Beyazit University, Department of Orthopedics, Faculty of Medicine, Ataturk Training and Research Hospital, Ankara (Turkey)

    2015-04-01

    The purpose of this study was to evaluate strain ratio measurement of femoral cartilage using real-time elastosonography. Twenty-five patients with femoral cartilage pathology on MRI (study group) were prospectively compared with 25 subjects with normal findings on MRI (control group) using real-time elastosonography. Strain ratio measurements of pathologic and normal cartilage were performed and compared, both within the study group and between the two groups. Elastosonography colour-scale coding showed a colour change from blue to red in pathologic cartilage and only blue colour-coding in normal cartilage. In the study group, the median strain ratio was higher in pathologic cartilage areas compared to normal areas (median, 1.49 [interquartile range, 0.80-2.53] vs. median, 0.01 [interquartile range, 0.01-0.01], p < 0.001, respectively). The median strain ratio of the control group was 0.01 (interquartile range, 0.01-0.01), and there was no significant difference compared to normal areas of the study group. There was, however, a significant difference between the control group cartilage and pathologic cartilage of the study group (p < 0.001). Elastosonography may be an effective, easily accessible, and relatively simple tool to demonstrate pathologic cartilage and to differentiate it from normal cartilage in the absence of advanced imaging facility such as MRI. (orig.)

  17. Modal Strain Energy Based Structural Damage Localization for Offshore Platform using Simulated and Measured Data

    Institute of Scientific and Technical Information of China (English)

    WANG Shuqing; LIU Fushun; ZHANG Min

    2014-01-01

    Modal strain energy based methods for damage detection have received much attention. However, most of published articles use numerical methods and some studies conduct modal tests with simple 1D or 2D structures to verify the damage detection algorithms. Only a few studies utilize modal testing data from 3D frame structures. Few studies conduct performance comparisons between two different modal strain energy based methods. The objective of this paper is to investigate and compare the effectiveness of a traditional modal strain energy method (Stubbs index) and a recently developed modal strain energy decomposition (MSED) method for damage localization, for such a purpose both simulated and measured data from an offshore platform model being used. Particularly, the mode shapes used in the damage localization are identified and synthesized from only two measurements of one damage scenario because of the limited number of sensors. The two methods were first briefly reviewed. Next, using a 3D offshore platform model, the damage detection algorithms were implemented with different levels of damage severities for both single damage and multiple damage cases. Finally, a physical model of an offshore steel platform was constructed for modal testing and for validat-ing the applicability. Results indicate that the MSED method outperforms the Stubbs index method for structural damage detection.

  18. In vitro strain measurements in cerebral aneurysm models for cyber-physical diagnosis.

    Science.gov (United States)

    Shi, Chaoyang; Kojima, Masahiro; Anzai, Hitomi; Tercero, Carlos; Ikeda, Seiichi; Ohta, Makoto; Fukuda, Toshio; Arai, Fumihito; Najdovski, Zoran; Negoro, Makoto; Irie, Keiko

    2013-06-01

    The development of new diagnostic technologies for cerebrovascular diseases requires an understanding of the mechanism behind the growth and rupture of cerebral aneurysms. To provide a comprehensive diagnosis and prognosis of this disease, it is desirable to evaluate wall shear stress, pressure, deformation and strain in the aneurysm region, based on information provided by medical imaging technologies. In this research, we propose a new cyber-physical system composed of in vitro dynamic strain experimental measurements and computational fluid dynamics (CFD) simulation for the diagnosis of cerebral aneurysms. A CFD simulation and a scaled-up membranous silicone model of a cerebral aneurysm were completed, based on patient-specific data recorded in August 2008. In vitro blood flow simulation was realized with the use of a specialized pump. A vision system was also developed to measure the strain at different regions on the model by way of pulsating blood flow circulating inside the model. Experimental results show that distance and area strain maxima were larger near the aneurysm neck (0.042 and 0.052), followed by the aneurysm dome (0.023 and 0.04) and finally the main blood vessel section (0.01 and 0.014). These results were complemented by a CFD simulation for the addition of wall shear stress, oscillatory shear index and aneurysm formation index. Diagnosis results using imaging obtained in August 2008 are consistent with the monitored aneurysm growth in 2011. The presented study demonstrates a new experimental platform for measuring dynamic strain within cerebral aneurysms. This platform is also complemented by a CFD simulation for advanced diagnosis and prediction of the growth tendency of an aneurysm in endovascular surgery. Copyright © 2013 John Wiley & Sons, Ltd.

  19. Imprint of DES super-structures on the Cosmic Microwave Background

    CERN Document Server

    Kovács, A; García-Bellido, J; Nadathur, S; Crittenden, R; Gruen, D; Huterer, D; Bacon, D; DeRose, J; Dodelson, S; Gaztañaga, E; Kirk, D; Lahav, O; Miquel, R; Naidoo, K; Soergel, B; Whiteway, L; Abdalla, F B; Allam, S; Annis, J; Benoit-Lévy, A; Bertin, E; Brooks, D; Buckley-Geer, E; Rosell, A Carnero; Kind, M Carrasco; Carretero, J; Cunha, C E; D'Andrea, C B; da Costa, L N; DePoy, D L; Desai, S; Eifler, T F; Finley, D A; Flaugher, B; Fosalba, P; Frieman, J; Giannantonio, T; Goldstein, D A; Gruendl, R A; Gutierrez, G; James, D J; Kuehn, K; Kuropatkin, N; Marshall, J L; Melchior, P; Menanteau, F; Nord, B; Ogando, R; Plazas, A A; Romer, A K; Sanchez, E; Scarpine, V; Sevilla-Noarbe, I; Sobreira, F; Suchyta, E; Swanson, M; Tarle, G; Thomas, D; Walker, A R

    2016-01-01

    Small temperature anisotropies in the Cosmic Microwave Background can be sourced by density perturbations via the late-time integrated Sachs-Wolfe effect. Large voids and superclusters are excellent environments to make a localized measurement of this tiny imprint. In some cases excess signals have been reported. We probed these claims with an independent data set, using the first year data of the Dark Energy Survey in a different footprint, and using a different super-structure finding strategy. We identified 52 large voids and 102 superclusters at redshifts $0.2 < z < 0.65$. We used the Jubilee simulation to a priori evaluate the optimal ISW measurement configuration for our compensated top-hat filtering technique, and then performed a stacking measurement of the CMB temperature field based on the DES data. For optimal configurations, we detected a cumulative cold imprint of voids with $\\Delta T_{f} \\approx -5.0\\pm3.7~\\mu K$ and a hot imprint of superclusters $\\Delta T_{f} \\approx 5.1\\pm3.2~\\mu K$ ; t...

  20. Small-strain measurement in bridge connections using the digital image correlation (DIC) technique

    Science.gov (United States)

    Desai, Niranjan

    2016-04-01

    Structural health monitoring (SHM) is emerging as a vital tool to help civil engineers improve the safety, maintainability, and reliability of critical structures and assists infrastructure owners with timely information for the continued safe and economic operation of their structure. SHM involves implementing a strategy that identifies and characterizes damage or undesirable performance in engineering structures. The goal of this research project was to determine the smallest strains measurable using standard digital image correlation (DIC) based SHM equipment. This practical investigation that had strong ties to the industry was motivated by damage observed in a real-world bridge, which was initially undetected. Its early detection would have led to reduced repair costs. To accomplish the aforementioned goal, tests were performed on a laboratory specimen that replicated a steel beam-to-column connection of the concerned bridge, involving progressively loading it in a manner in which it was loaded in the actual bridge, while simultaneously measuring the strains that developed in it using the aforementioned DIC-based equipment and software. Under the controlled conditions in the laboratory, the minimum resolution of the state-of-the-art system used in this investigation was determined. Due to the challenges faced in making these small-strain measurements even under highly controlled laboratory conditions, it was concluded that it is currently unrealistic to use the existing DIC technology in a real-world situation to measure strains as small as those that would need to be measured to detect the onset of damage in bridge connections. More work needs to be done in this area.

  1. A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis

    Science.gov (United States)

    Skafte, Anders; Aenlle, Manuel L.; Brincker, Rune

    2016-02-01

    Measurement systems are being installed in more and more civil structures with the purpose of monitoring the general dynamic behavior of the structure. The instrumentation is typically done with accelerometers, where experimental frequencies and mode shapes can be identified using modal analysis and used in health monitoring algorithms. But the use of accelerometers is not suitable for all structures. Structures like wind turbine blades and wings on airplanes can be exposed to lightning, which can cause the measurement systems to fail. Structures like these are often equipped with fiber sensors measuring the in-plane deformation. This paper proposes a method in which the displacement mode shapes and responses can be predicted using only strain measurements. The method relies on the newly discovered principle of local correspondence, which states that each experimental mode can be expressed as a unique subset of finite element modes. In this paper the technique is further developed to predict the mode shapes in different states of the structure. Once an estimate of the modes is found, responses can be predicted using the superposition of the modal coordinates weighted by the mode shapes. The method is validated with experimental tests on a scaled model of a two-span bridge installed with strain gauges. Random load was applied to simulate a civil structure under operating condition, and strain mode shapes were identified using operational modal analysis.

  2. Simultaneous dual directional strain measurement using spatial phase-shift digital shearography

    Science.gov (United States)

    Wang, Yonghong; Gao, Xinya; Xie, Xin; Wu, Sijing; Liu, Yingxue; Yang, Lianxiang

    2016-12-01

    This paper presents a Dual Directional Sheared Spatial Phase-Shift Digital Shearography (DDS-SPS-DS) system for simultaneous measurement of strains/displacement derivative in two directions. Two Michelson Interferometers are used as the shearing device to create two shearograms, one in the x-shearing direction and one in the y-shearing direction, which are recorded by a single CCD camera. Two lasers with different wavelengths are used for illumination, and corresponding band pass filters are applied in front of each Michelson Interferometer to avoid cross-interference between the two shearing direction channels. Two perpendicular shearing directions in the two measurement channels introduce two different spatial frequency carriers whose spectrums are orientated in different directions after Fourier Transform. Phase maps of the recorded two shearograms can be obtained by applying a windowed inverse Fourier transform, which enables simultaneous measurement of dual directional strains/displacement derivatives. The new system is well suited for nondestructive testing and strain measurement with a continuous or dynamic load. The capability of the dual directional spatial phase-shift digital shearography system is described by theoretical discussions as well as experiments.

  3. Combined full field stress and strain measurement methods for granular materials

    Directory of Open Access Journals (Sweden)

    Broere W.

    2010-06-01

    Full Text Available The current paper re-introduces the photoelastic measurement method in experimental geomechanics. A full-field phase stepping polariscope suitable for geomechanical model tests has been developed. Additional constraints on the measurement and mechanical setup arising from geomechanical test conditions are outlined as well as the opportunity to measure the displacement fields in the sample with digital image correlation. The capability of the current setup in retrieving the stress and strain field in a granular material is demonstrated.

  4. Measurement of antimicrobial activity of isolated bacteria from the Caspian sea and molecular identification of strains with antimicrobial effect

    Directory of Open Access Journals (Sweden)

    Sajad Harounabadi

    2015-12-01

    Full Text Available Introduction: Easy access and wide use of antimicrobial compounds led to the emergence of resistance among microorganisms. Therefore, screening and identifying antimicrobial compound with high effect of microorganisms in different environments is necessary and vital . Using microorganisms for biological aims change them to an important tool to control pathogens. Streptomyces griseus is one of them. The aim of this study is isolation of marine bacteria with antimicrobial effect against gram positive and negative bacteria. Finally, molecular identification of strains with antimicrobial activity. Materials and methods: In this study, 162 strains were isolated from the Caspian Sea .The strains were cultured on special medium and finally antimicrobial activity on references strains as measured. Among them four strains with remarkable antimicrobial activity were identified and selected. The strains were subjected to 16S rDNA PCR sequencing. The strains were submitted to NCBI as new Streptomyces griseus strains. Results: Among 162 strains, 4 strains had the most antimicrobial activity. The result showed, the strains were the most effective on Bacillus subtilis and Staphylococcus aureus (Gram positive bacteria and the least effect were observed on Escherichia coli and Pseudomonas aeruginosa (Gram negative bacteria. After sequencing, the strains were classified to sterptomyces griseus genu. Discussion and conclusion: In this study, 4 strains with antimicrobial activity were identified. According to the strength of these bacteria for controlling pathogenic bacteria resistant to antibiotic, we can have more pure microorganisms in optimized and controlled conditions for using in pharmaceutical industries and also for the treatment of dangerous pathogenic bacteria.

  5. Strain measurement by cardiovascular magnetic resonance in pediatric cancer survivors: validation of feature tracking against harmonic phase imaging

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jimmy C. [C.S. Mott Children' s Hospital, University of Michigan Congenital Heart Center, Ann Arbor, MI (United States); University of Michigan, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); University of Michigan, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States); Connelly, James A. [University of Michigan, Department of Pediatrics and Communicable Diseases, Division of Hematology-Oncology, Ann Arbor, MI (United States); Zhao, Lili [University of Michigan, Department of Biostatistics, Ann Arbor, MI (United States); Agarwal, Prachi P. [University of Michigan, Department of Radiology, Division of Cardiothoracic Radiology, Ann Arbor, MI (United States); Dorfman, Adam L. [University of Michigan, Department of Pediatrics and Communicable Diseases, Division of Pediatric Cardiology, Ann Arbor, MI (United States); University of Michigan, Department of Radiology, Section of Pediatric Radiology, Ann Arbor, MI (United States)

    2014-09-15

    Left ventricular strain may be a more sensitive marker of left ventricular dysfunction than ejection fraction in pediatric cancer survivors after anthracycline therapy, but there is limited validation of strain measurement by feature tracking on cardiovascular magnetic resonance (MR) images. To compare left ventricular circumferential and radial strain by feature tracking vs. harmonic phase imaging analysis (HARP) in pediatric cancer survivors. Twenty-six patients (20.2 ± 5.6 years old) underwent cardiovascular MR at least 5 years after completing anthracycline therapy. Circumferential and radial strain were measured at the base, midventricle and apex from short-axis myocardial tagged images by HARP, and from steady-state free precession images by feature tracking. Left ventricular ejection fraction more closely correlated with global circumferential strain by feature tracking (r = -0.63, P = 0.0005) than by HARP (r = -0.39, P = 0.05). Midventricular circumferential strain did not significantly differ by feature tracking or HARP (-20.8 ± 3.4 vs. -19.5 ± 2.5, P = 0.07), with acceptable limits of agreement. Midventricular circumferential strain by feature tracking strongly correlated with global circumferential strain by feature tracking (r = 0.87, P < 0.0001). Radial strain by feature tracking had poor agreement with HARP, particularly at higher values of radial strain. Intraobserver and interobserver reproducibility was excellent for feature tracking circumferential strain, but reproducibility was poor for feature tracking radial strain. Midventricular circumferential strain by feature tracking is a reliable and reproducible measure of myocardial deformation in patients status post anthracycline therapy, while radial strain measurements are unreliable. Further studies are necessary to evaluate potential relation to long-term outcomes. (orig.)

  6. Quantitative measurement of displacement and strain by the numerical moiré method

    Institute of Scientific and Technical Information of China (English)

    Chunwang Zhao; Yongming Xing; Pucun Bai; Lifu Wang

    2008-01-01

    The numerical moié method with sensitivity as high as 0.03 nm has been presented.A quantitative displacement and strai,analysis program has been proposed by using this method.It is applied to an edge dislocation and a stacking fault in aluminum.The measured strain of edge dislocation is compared with theoretical prediction given by Peierls-Nabarro dislocation model.The displacement of stacking fault is also obtained.

  7. A fiber-optic strain measurement and quench localization system for use in superconducting accelerator dipole magnets

    NARCIS (Netherlands)

    Oort, van Johannes M.; Scanlan, Ronald M.; Kate, ten Herman H.J.

    1995-01-01

    A novel fiber-optic measurement system for superconducting accelerator magnets is described. The principal component is an extrinsic Fabry-Perot interferometer to determine localized strain and stress in coil windings. The system can be used either as a sensitive relative strain measurement system o

  8. Three-axis distributed fiber optic strain measurement in 3D woven composite structures

    Science.gov (United States)

    Castellucci, Matt; Klute, Sandra; Lally, Evan M.; Froggatt, Mark E.; Lowry, David

    2013-03-01

    Recent advancements in composite materials technologies have broken further from traditional designs and require advanced instrumentation and analysis capabilities. Success or failure is highly dependent on design analysis and manufacturing processes. By monitoring smart structures throughout manufacturing and service life, residual and operational stresses can be assessed and structural integrity maintained. Composite smart structures can be manufactured by integrating fiber optic sensors into existing composite materials processes such as ply layup, filament winding and three-dimensional weaving. In this work optical fiber was integrated into 3D woven composite parts at a commercial woven products manufacturing facility. The fiber was then used to monitor the structures during a VARTM manufacturing process, and subsequent static and dynamic testing. Low cost telecommunications-grade optical fiber acts as the sensor using a high resolution commercial Optical Frequency Domain Reflectometer (OFDR) system providing distributed strain measurement at spatial resolutions as low as 2mm. Strain measurements using the optical fiber sensors are correlated to resistive strain gage measurements during static structural loading.

  9. Evaluation of the dynamic behavior of a Pelton runner based on strain gauge measurements

    Science.gov (United States)

    Mack, Reiner; Probst, Christian

    2016-11-01

    A reliable mechanical design of Pelton runners is very important in the layout of new installations and modernizations. Especially in horizontal machines, where the housing is not embedded into concrete, a rupture of a runner bucket can have severe consequences. Even if a crack in the runner is detected on time, the outage time that follows the malfunction of the runner is shortening the return of investment. It is a fact that stresses caused by the runner rotation and the jet forces are superposed by high frequent dynamic stresses. In case of resonance it even can be the dominating effect that is limiting the lifetime of a runner. Therefore a clear understanding of the dynamic mechanisms is essential for a safe runner design. This paper describes the evaluation of the dynamic behavior of a Pelton runner installed in a model turbine based on strain gauge measurements. Equipped with strain gauges at the root area of the buckets, the time responses of the strains under the influence of various operational parameters were measured. As a result basic theories for the jet bucket excitation were verified and the influence of the water mass was detected by evaluating the frequency shift in case of resonance. Furthermore, the influence of the individual bucket masses onto the dynamic behaviour for different mode shapes got measured.

  10. Accuracy of a Wearable Sensor for Measures of Head Kinematics and Calculation of Brain Tissue Strain.

    Science.gov (United States)

    Knowles, Brooklynn M; Yu, Henry; Dennison, Christopher R

    2017-02-01

    Wearable kinematic sensors can be used to study head injury biomechanics based on kinematics and, more recently, based on tissue strain metrics using kinematics-driven brain models. These sensors require in-situ calibration and there is currently no data conveying wearable ability to estimate tissue strain. We simulated head impact (n = 871) to a 50th percentile Hybrid III (H-III) head wearing a hockey helmet instrumented with wearable GForceTracker (GFT) sensors measuring linear acceleration and angular velocity. A GFT was also fixed within the H-III head to establish a lower boundary on systematic errors. We quantified GFT errors relative to H-III measures based on peak kinematics and cumulative strain damage measure (CSDM). The smallest mean errors were 12% (peak resultant linear acceleration) and 15% (peak resultant angular velocity) for the GFT within the H-III. Errors for GFTs on the helmet were on average 54% (peak resultant linear acceleration) and 21% (peak resultant angular velocity). On average, the GFT inside the helmet overestimated CSDM by 0.15.

  11. The Effects of Smoking on Ultrasonographic Thickness and Elastosonographic Strain Ratio Measurements of Distal Femoral Cartilage.

    Science.gov (United States)

    Gungor, Harun R; Agladioglu, Kadir; Akkaya, Nuray; Akkaya, Semih; Ok, Nusret; Ozçakar, Levent

    2016-04-21

    Although adverse effects of smoking on bone health are all well known, data on how smoking interacts with cartilage structure in otherwise healthy individuals remains conflicting. Here, we ascertain the effects of cigarette smoking on sonoelastographic properties of distal femoral cartilage in asymptomatic adults. Demographic characteristics and smoking habits (packets/year) of healthy volunteers were recorded. Medial, intercondylar, and lateral distal femoral cartilage thicknesses and strain ratios on the dominant extremity were measured with ultrasonography (US) and real time US elastography. A total of 88 subjects (71 M, 17 F; aged 18-56 years, N = 43 smokers and N = 45 nonsmokers) were evaluated. Mean amount of cigarette smoking was 10.3 ± 8.9 (1-45) packets/year. Medial, intercondylar and lateral cartilage were thicker in smokers than nonsmokers (p = 0.002, p = 0.017, and p = 0.004, respectively). Medial distal femoral cartilage strain ratio was lower in smokers (p = 0.003). The amount of smoking was positively correlated with cartilage thicknesses and negatively correlated with medial cartilage strain ratios (p < 0.05). Femoral cartilage is thicker in smokers but has less strain ratio representing harder cartilage on the medial side. Future studies are needed to understand how these structural changes in the knee cartilage should be interpreted with regard to the development of knee osteoarthritis in smokers.

  12. Reflective SOA fiber cavity adaptive laser source for measuring dynamic strains

    Science.gov (United States)

    Wei, Heming; Tao, Chuanyi; Krishnaswamy, Sridhar

    2016-04-01

    Smart sensors based on Optical fiber Bragg gratings (FBGs) are suitable for structural health monitoring of dynamic strains in civil, aerospace, and mechanical structures. In these structures, dynamic strains with high frequencies reveal acoustic emissions cracking or impact loading. It is necessary to find a practical tool for monitoring such structural damages. In this work, we explore an intelligent system based on a reflective semiconductor optical amplifier (RSOA)- FBG composed as a fiber cavity for measuring dynamic strain in intelligent structures. The ASE light emitted from a RSOA laser and reflected by a FBG is amplified in the fiber cavity and coupled out by a 90:10 coupler, which is demodulated by a low frequency compensated Michelson interferometer using a proportional-integral-derivative (PID) controller and is monitored via a photodetector. As the wavelength of the FBG shifts due to dynamic strain, the wavelength of the optical output from the laser cavity shifts accordingly, which is demodulated by the Michelson Interferometer. Because the RSOA has a quick transition time, the RSOA- FBG fiber cavity shows an ability of high frequency response to the FBG reflective spectrum shift, with frequency response extending to megahertz.

  13. Evaluation of Pressure Pain Threshold as a Measure of Perceived Stress and High Job Strain.

    Science.gov (United States)

    Hven, Lisbeth; Frost, Poul; Bonde, Jens Peter Ellekilde

    2017-01-01

    To investigate whether pressure pain threshold (PPT), determined by pressure algometry, can be used as an objective measure of perceived stress and job strain. We used cross-sectional base line data collected during 1994 to 1995 within the Project on Research and Intervention in Monotonous work (PRIM), which included 3123 employees from a variety of Danish companies. Questionnaire data included 18 items on stress symptoms, 23 items from the Karasek scale on job strain, and information on discomfort in specified anatomical regions was also collected. Clinical examinations included pressure pain algometry measurements of PPT on the trapezius and supraspinatus muscles and the tibia. Associations of stress symptoms and job strain with PPT of each site was analyzed for men and women separately with adjustment for age body mass index, and discomfort in the anatomical region closest to the point of pressure algometry using multivariable linear regression. We found significant inverse associations between perceived stress and PPT in both genders in models adjusting for age and body mass index: the higher level of perceived stress, the lower the threshold. For job strain, associations were weaker and only present in men. In men all associations were attenuated when adjusting for reported discomfort in regions close to the site of pressure algometry. The distributions of PPT among stressed and non-stressed persons were strongly overlapping. Despite significant associations between perceived stress and PPT, the discriminative capability of PPT to distinguish individuals with and without stress is low. PPT measured by pressure algometry seems not applicable as a diagnostic tool of a state of mental stress.

  14. Measurement of mean rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, Oktay; Meyer, Knud Erik; Larsen, Poul Scheel

    2005-01-01

    A technique is described for measuring the mean velocity gradient (rate-of-displacement) tensor by using a conventional stereoscopic particle image velocimetry (SPIV) system. Planar measurement of the mean vorticity vector, rate-of-rotation and rate-of-strain tensors and the production of turbulent...... kinetic energy can be accomplished. Parameters of the Q criterion and negative λ2 techniques used for vortex identification can be evaluated in the mean flow field. Experimental data obtained for a circular turbulent jet issuing normal to a crossflow in a low speed wind tunnel for a jet...

  15. Light-Directed Dynamic Chirality Inversion in Functional Self-Organized Helical Superstructures.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Li, Quan

    2016-02-24

    Helical superstructures are widely observed in nature, in synthetic polymers, and in supramolecular assemblies. Controlling the chirality (the handedness) of dynamic helical superstructures of molecular and macromolecular systems by external stimuli is a challenging task, but is of great fundamental significance with appealing morphology-dependent applications. Light-driven chirality inversion in self-organized helical superstructures (i.e. cholesteric, chiral nematic liquid crystals) is currently in the limelight because inversion of the handedness alters the chirality of the circularly polarized light that they selectively reflect, which has wide potential for application. Here we discuss the recent developments toward inversion of the handedness of cholesteric liquid crystals enabled by photoisomerizable chiral molecular switches or motors. Different classes of chiral photoresponsive dopants (guests) capable of conferring light-driven reversible chirality inversion of helical superstructures fabricated from different nematic hosts are discussed. Rational molecular designs of chiral molecular switches toward endowing handedness inversion to the induced helical superstructures of cholesteric liquid crystals are highlighted. This Review is concluded by throwing light on the challenges and opportunities in this emerging frontier, and it is expected to provide useful guidelines toward the development of self-organized soft materials with stimuli-directed chirality inversion capability and multifunctional host-guest systems.

  16. Influence of superstructure geometry on the mechanical behavior of zirconia implant abutments: a finite element analysis.

    Science.gov (United States)

    Geringer, Alexander; Diebels, Stefan; Nothdurft, Frank P

    2014-12-01

    To predict the clinical performance of zirconia abutments, it is crucial to examine the mechanical behavior of different dental implant-abutment connection configurations. The international standard protocol for dynamic fatigue tests of dental implants (ISO 14801) allows comparing these configurations using standardized superstructure geometries. However, from a mechanical point of view, the geometry of clinical crowns causes modified boundary conditions. The purpose of this finite element (FE) study was to evaluate the influence of the superstructure geometry on the maximum stress values of zirconia abutments with a conical implant-abutment connection. Geometry models of the experimental setup described in ISO 14801 were generated using CAD software following the reconstruction of computerized tomography scans from all relevant components. These models served as a basis for an FE simulation. To reduce the numerical complexity of the FE model, the interaction between loading stamp and superstructure geometry was taken into account by defining the boundary conditions with regard to the frictional force. The results of the FE simulations performed on standardized superstructure geometry and anatomically shaped crowns showed a strong influence of the superstructure geometry and related surface orientations on the mechanical behavior of the underlying zirconia abutments. In conclusion, ISO testing of zirconia abutments should be accompanied by load-bearing capacity testing under simulated clinical conditions to predict clinical performance.

  17. Design and implementation of an x-ray strain measurement capability using a rotating anode machine

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, J.A.; Rangaswamy, P.; Lujan, M. Jr.; Bourke, M.A.M.

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Residual stresses close to the surface can improve the reliability and lifetime of parts for technological applications. X-ray diffraction plays a significant role in gaining an exact knowledge of the stresses at the surface and their depth distribution. An x-ray capability at Los Alamos is key to developing and maintaining industrial collaborations in strain effects. To achieve this goal, the authors implemented a residual strain measuring station on the rotating anode x-ray instrument at the Lujan Center. This capability has been used to investigate residual strains in heat treated automotive components, machining effects on titanium alloys, resistance welded steel joints, titanium matrix fiber reinforced composites, ceramic matrix composites, thin films, and ceramic coatings. The overall objective is to combine both x-ray and neutron diffraction measurements with numerical models (e.g., finite element calculations).

  18. Health monitoring of a continuous rigid frame bridge based on PZT impedance and strain measurements

    Science.gov (United States)

    Zhang, Junbing; Zhu, Hongping; Wang, Dansheng; He, Bo; Zhou, Huaqiang

    2009-07-01

    Critical civil infrastructures such as bridges, dams, and pipelines present a major investment and their safety and security affect the life of citizens and national economic development. So it is very important for engineers and researchers to monitor their integrity while in operation and throughout. In recent years, the piezoelectric-ceramic (PZT) patches, which serve both as impedance sensors and actuators, have been increasingly used for structural health monitoring. This paper presents an impedance-based method, which utilizes the electro-mechanical coupling property of PZT sensors. There are a lot of advantages of this method, such as not based on any physical models, sensitive to tiny damage for its high frequency characteristics. An engineering application of this method for health monitoring of a continuous rigid frame bridge is implemented in this study. Some PZT active sensors are embedded into critical sections of the continuous rigid-frame box beam. The electrical admittances of these distributed PZT sensors are measured when the bridge is constructing or suffering from operational loads. For comparison, strain gauges are arranged in adjacent regions of these PZT sensors to obtain the strains of concrete around them at the same time. Based on the admittance sigatures obtained form PZT sensors and the strain measurements of concrete around them, the health status of the bridge is monitored and evaluated successfully.

  19. Quantitative full-field strain measurements by SAOED (SrAl2O4:Eu2+,Dy3+) mechanoluminescent materials

    Science.gov (United States)

    Imani Azad, Ali; Rahimi, Mohammad Reza; Yun, Gun Jin

    2016-09-01

    In this paper, a new calibration method for mechano-luminescence (ML) thin film sensors was proposed to enable quantitative full-field strain measurements in pixel-level resolution for the first time along with two standard reference test methods. The proposed method has a distinct advantage of its facet-free full-field strain sensing capability with pixel-level resolution. For the ML sensor, standard reference test methods were proposed for developing calibrated relationships between ML light intensity and effective strains: (1) uniaxial tensile reference test and (2) non-uniform strain reference test. From the reference tests, two different calibration models were developed in a recurrence equation form and validated measuring general strain distributions on different experimental specimens. Verified finite element (FE) simulation results were compared with ML effective strains to confirm its accuracy. The comparisons of the ML effective strains with FE simulation results showed that the calibration models can acceptably measure full-field strains. Limitations, sources of errors, suggestions for improving accuracy and practical considerations were also discussed. A conclusion of this research is that the proposed method enables ML sensing films to measure quantitative full-field strain distributions.

  20. In-plane displacement and strain measurements using a camera phone and digital image correlation

    Science.gov (United States)

    Yu, Liping; Pan, Bing

    2014-05-01

    In-plane displacement and strain measurements of planar objects by processing the digital images captured by a camera phone using digital image correlation (DIC) are performed in this paper. As a convenient communication tool for everyday use, the principal advantages of a camera phone are its low cost, easy accessibility, and compactness. However, when used as a two-dimensional DIC system for mechanical metrology, the assumed imaging model of a camera phone may be slightly altered during the measurement process due to camera misalignment, imperfect loading, sample deformation, and temperature variations of the camera phone, which can produce appreciable errors in the measured displacements. In order to obtain accurate DIC measurements using a camera phone, the virtual displacements caused by these issues are first identified using an unstrained compensating specimen and then corrected by means of a parametric model. The proposed technique is first verified using in-plane translation and out-of-plane translation tests. Then, it is validated through a determination of the tensile strains and elastic properties of an aluminum specimen. Results of the present study show that accurate DIC measurements can be conducted using a common camera phone provided that an adequate correction is employed.

  1. Sample Disturbance in Resonant Column Test Measurement of Small-Strain Shear-Wave Velocity

    Science.gov (United States)

    Chiara, Nicola; Stokoe, K. H.

    The accurate assessment of dynamic soil properties is a crucial step in the solution process of geotechnical earthquake engineering problems. The resonant column test is one of the ordinary procedures for dynamic characterization of soil. In this paper, the impact of sample disturbance on the resonant column test measurement of small-strain S-wave velocity is examined. Sample disturbance is shown to be a function of the ratio of the laboratory to field S-wave velocities: Vs, lab/Vs,field. The influence of four parameters - soil stiffness, soil plasticity index, in-situ sample depth and in-situ effective mean confining pressure - on sample disturbance is investigated both qualitatively and quantitatively. The relative importance of each parameter in predicting the small-strain field S-wave velocity from the resonant column test values is illustrated and predictive equations are presented.

  2. Coupled stress-strain and electrical resistivity measurements on copper based shape memory single crystals

    Directory of Open Access Journals (Sweden)

    Gonzalez Cezar Henrique

    2004-01-01

    Full Text Available Recently, electrical resistivity (ER measurements have been done during some thermomechanical tests in copper based shape memory alloys (SMA's. In this work, single crystals of Cu-based SMA's have been studied at different temperatures to analyse the relationship between stress (s and ER changes as a function of the strain (e. A good consistency between ER change values is observed in different experiments: thermal martensitic transformation, stress induced martensitic transformation and stress induced reorientation of martensite variants. During stress induced martensitic transformation (superelastic behaviour and stress induced reorientation of martensite variants, a linear relationship is obtained between ER and strain as well as the absence of hys teresis. In conclusion, the present results show a direct evidence of martensite electrical resistivity anisotropy.

  3. Neutron diffraction measurements and modeling of residual strains in metal matrix composites

    Science.gov (United States)

    Saigal, A.; Leisk, G. G.; Hubbard, C. R.; Misture, S. T.; Wang, X. L.

    1996-01-01

    Neutron diffraction measurements at room temperature are used to characterize the residual strains in tungsten fiber-reinforced copper matrix, tungsten fiber-reinforced Kanthal matrix, and diamond particulate-reinforced copper matrix composites. Results of finite element modeling are compared with the neutron diffraction data. In tungsten/Kanthal composites, the fibers are in compression, the matrix is in tension, and the thermal residual strains are a strong function of the volume fraction of fibers. In copper matrix composites, the matrix is in tension and the stresses are independent of the volume fraction of tungsten fibers or diamond particles and the assumed stress free temperature because of the low yield strength of the matrix phase.

  4. LADDER SUPERSTRUCTURE-DIRECTED SYNTHESIS OF A WELL-DEFINED m-PHENELENEDIIMINO-BRIDGED LADDER POLYMETHYLSILOXANE

    Institute of Scientific and Technical Information of China (English)

    Yin-sheng Lv; Zhong-jie Ren; You-zhi Wan; Ping Xie; Rong-ben Zhang

    2009-01-01

    A well-defined m-phenylenediimino-bridged ladder polymethylsiloxane (LP) was first synthesized through a well-defined ladder superstructure (LS) acting as synthetic template, which was self-assembled by concerted interaction of hydrogen bonding and aromatic π-π stacking of the monomer (M), N,N'-bis(phenyldichlorosilyl)-m-phenylenediamine. Some key characterization data of LP and, in particular, the extremely vulnerable LS with very unstable Si--Cl and Si-N groups were given. The molecular weights (Mn) of LS and LP are 5010 and 10480, corresponding to about 15 and 46 monomer units, respectively. To monitor the real in situ status of LS in solution the XRD measurements of special freeze-drying samples were performed, demonstrating two characteristic peaks of ladder structure. Most importantly, both LP and LS display exceedingly sharp resonance absorption peaks with a half peak width (△1/2) as small as < 0.3 of MeSi(NH)O2/2 moieties in 29Si-NMR spectra. It is well-known that the higher the regularity of the ladder polysiloxane, the narrower the resonance peak of the siloxane moiety on the ladder backbone, and the smaller the half peak width △1/2. Therefore, the very small values of △1/2 for both LS and LP confirm that both LS and LP possess well-defined ladder structures.

  5. Structural health monitoring of cylindrical bodies under impulsive hydrodynamic loading by distributed FBG strain measurements

    Science.gov (United States)

    Fanelli, Pierluigi; Biscarini, Chiara; Jannelli, Elio; Ubertini, Filippo; Ubertini, Stefano

    2017-02-01

    Various mechanical, ocean, aerospace and civil engineering problems involve solid bodies impacting the water surface and often result in complex coupled dynamics, characterized by impulsive loading conditions, high amplitude vibrations and large local deformations. Monitoring in such problems for purposes such as remaining fatigue life estimation and real time damage detection is a technical and scientific challenge of primary concern in this context. Open issues include the need for developing distributed sensing systems able to operate at very high acquisition frequencies, to be utilized to study rapidly varying strain fields, with high resolution and very low noise, while scientific challenges mostly relate to the definition of appropriate signal processing and modeling tools enabling the extraction of useful information from distributed sensing signals. Building on previous work by some of the authors, we propose an enhanced method for real time deformed shape reconstruction using distributed FBG strain measurements in curved bodies subjected to impulsive loading and we establish a new framework for applying this method for structural health monitoring purposes, as the main focus of the work. Experiments are carried out on a cylinder impacting the water at various speeds, proving improved performance in displacement reconstruction of the enhanced method compared to its previous version. A numerical study is then carried out considering the same physical problem with different delamination damages affecting the body. The potential for detecting, localizing and quantifying this damage using the reconstruction algorithm is thoroughly investigated. Overall, the results presented in the paper show the potential of distributed FBG strain measurements for real time structural health monitoring of curved bodies under impulsive hydrodynamic loading, defining damage sensitive features in terms of strain or displacement reconstruction errors at selected locations along

  6. Effects of Cigarette Smoking on Elastographic Strain Ratio Measurements of Patellar and Achilles Tendons.

    Science.gov (United States)

    Ağladıoğlu, Kadir; Akkaya, Nuray; Güngör, Harun R; Akkaya, Semih; Ök, Nusret; Özçakar, Levent

    2016-11-01

    The aim of this study was to explore the sonographic and elastographic properties of patellar and Achilles tendons in smoking and nonsmoking otherwise healthy adults. We conducted a level 3 case-control analytical study. Smoking and nonsmoking volunteers (>18 years) without musculoskeletal system disorders were included in the study. Demographic characteristics and smoking habits (pack-years) were recorded. Proximal, middle, and distal third thicknesses of the patellar and Achilles tendons were measured by B-mode sonography. Strain ratio measurements of the same regions were measured by real-time ultrasound elastography. A total of 69 participants (57 male and 12 female; mean age ± SD, 35.5 ± 7.8 years) were evaluated in the study. Smoking (n = 35) and nonsmoking (n = 34) groups had no significant differences in terms of age, body mass index, sex, and activity level (all P > .05). Proximal, middle, and distal thirds of the patellar and Achilles tendons were significantly thinner in the smoking group (all P smoking group (all Psmoking amount (all P < .05). Thickness and strain ratio measurements of patellar and Achilles tendons were reduced (thinner and harder tendons) in smokers. Clinical implications of these morphologic and elastographic changes should be investigated in future studies. © 2016 by the American Institute of Ultrasound in Medicine.

  7. A distributed optical fiber sensing system for dynamic strain measurement based on artificial reflector

    Science.gov (United States)

    Sun, Zhenhong; Shan, Yuanyuan; Li, Yanting; Zhang, Yixin; Zhang, Xuping

    2016-10-01

    Phase sensitive optical time domain reflectometry (Φ-OTDR) has been widely used in many applications for its distributed sensing ability on weak disturbance all along the sensing fiber. However, traditional Φ-OTDR cannot make quantitative measurement on the external disturbance due to the randomly distributed position and reflectivity of scatters within the optical fiber. Recently, some methods have been proposed to realize quantitative measurement of dynamic strain. In these literatures, the fiber with or without FBGs in practice was easily damaged and with difficulty of maintenance. PZT is employed to generate strain event in the fiber. There is a large gap compared with the real detecting environment, which will not reveal the full performance of the sensing system. In this paper, a distributed optical fiber sensing (DOFS) system for dynamic strain measurement based on artificial reflector is proposed and demonstrated experimentally. The fiber under test (FUT) is composed by four 20-meter long single mode optical fiber patch cords (OFPCs), which are cascaded with ferrule contactor/physical contact (FC/PC) connectors via fiber flanges. The fiber facet of FC/PC connector forms an artificial reflector. When the interval between the two reflectors is changed, the phase of the interference signal will also be changed. A symmetric 3×3 coupler with table-look-up scheme is introduced to discriminate the phase change through interference intensity. In our experiment, the center 10m section of the second OFPC is attached to the bottom of an aluminum alloy plate. An ordinary loudspeaker box was located on the top of the aluminum alloy plate. The dynamic strain generated by the loudspeaker box is transmitted from the aluminum alloy plate to the OFPC. Experimental results show that the proposed method has a good frequency response characteristic up to 3.2 kHz and a linear intensity response of R2=0.9986 while the optical probe pulse width and repetition rate were 100ns

  8. In vivo measurement of rotator cuff tendon strain with ultrasound elastography: an investigation using a porcine model.

    Science.gov (United States)

    Hatta, Taku; Yamamoto, Nobuyuki; Sano, Hirotaka; Itoi, Eiji

    2014-09-01

    To clarify the relationship between the strain ratio measured by ultrasound elastography and the mechanical properties of the tendon measured by a universal testing machine. We also attempted to determine the effect of the type and depth of soft tissue overlying the tendon on the elastographic measurement. Twelve fresh porcine shoulders were prepared. Elastographic measurement was performed on the infraspinatus tendon by manually applying repetitive compressions from an ultrasound probe with an acoustic coupler consisting of an elastomer with definite elasticity as a reference material. The strain ratio, defined as tendon/reference strain, was obtained by 4 different approaches: with the probe placed on the skin, on the subcutaneous fat after removing the skin, on the muscle after removing the subcutaneous fat, and directly on the tendon. The strain ratios measured by these approaches were compared statistically. The relationship between the depth of the tendon measured on elastography and the strain ratio was also investigated. We also attempted to clarify the relationship between the strain ratio of the tendon and its elastic property. The tendon was mounted on a testing machine, and compressive force was applied. Tendon compliance was calculated as the reciprocal of the Young modulus in the range of 5% to 10% strain, which was compared to its strain ratio. The tendon/reference strain ratio significantly correlated with the tendon compliance (r = 0.73; P tendon level (P = .8). Our results indicated that the strain ratio of the rotator cuff tendon could be measured with minimal influence by overlying soft tissues if its depth from the skin was less than 22 mm. We believe that ultrasound elastography would be a useful tool for assessment of tendon elasticity in clinical practice. © 2014 by the American Institute of Ultrasound in Medicine.

  9. Linking experiment and theory for three-dimensional networked binary metal nanoparticle–triblock terpolymer superstructures

    KAUST Repository

    Li, Zihui

    2014-02-21

    © 2014 Macmillan Publishers Limited. Controlling superstructure of binary nanoparticle mixtures in three dimensions from self-assembly opens enormous opportunities for the design of materials with unique properties. Here we report on how the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles with a triblock terpolymer. Poly(isoprene-block-styrene-block-(N,N-dimethylamino)ethyl methacrylate) is synthesized and used as structure-directing agent for ligand-stabilized platinum and gold nanoparticles. Quantitative analysis provides insights into short-and long-range nanoparticle-nanoparticle correlations, and local and global contributions to structural chirality in the networks. Results provide synthesis criteria for next-generation mesoporous network superstructures from binary nanoparticle mixtures for potential applications in areas including catalysis.

  10. Abstraction Super-structuring Normal Forms: Towards a Theory of Structural Induction

    CERN Document Server

    Silvescu, Adrian

    2011-01-01

    Induction is the process by which we obtain predictive laws or theories or models of the world. We consider the structural aspect of induction. We answer the question as to whether we can find a finite and minmalistic set of operations on structural elements in terms of which any theory can be expressed. We identify abstraction (grouping similar entities) and super-structuring (combining topologically e.g., spatio-temporally close entities) as the essential structural operations in the induction process. We show that only two more structural operations, namely, reverse abstraction and reverse super-structuring (the duals of abstraction and super-structuring respectively) suffice in order to exploit the full power of Turing-equivalent generative grammars in induction. We explore the implications of this theorem with respect to the nature of hidden variables, radical positivism and the 2-century old claim of David Hume about the principles of connexion among ideas.

  11. A 3D AgCl hierarchical superstructure synthesized by a wet chemical oxidation method.

    Science.gov (United States)

    Lou, Zaizhu; Huang, Baibiao; Ma, Xiangchao; Zhang, Xiaoyang; Qin, Xiaoyan; Wang, Zeyan; Dai, Ying; Liu, Yuanyuan

    2012-12-07

    A novel 3D AgCl hierarchical superstructure, with fast growth along the 〈111〉 directions of cubic seeds, is synthesized by using a wet chemical oxidation method. The morphological structures and the growth process are investigated by scanning electron microscopy and X-ray diffraction. The crystal structures are analyzed by their crystallographic orientations. The surface energy of AgCl facets {100}, {110}, and {111} with absorbance of Cl(-) ions is studied by density functional theory calculations. Based on the experimental and computational results, a plausible mechanism is proposed to illustrate the formation of the 3D AgCl hierarchical superstructures. With more active sites, the photocatalytic activity of the 3D AgCl hierarchical superstructures is better than those of concave and cubic ones in oxygen evolution under irradiation by visible light.

  12. Superstructured Carbon Nanotube/Porous Silicon Hybrid Materials for Lithium-Ion Battery Anodes

    Science.gov (United States)

    Lee, Jun-Ki; Kang, Shin-Hyun; Choi, Sung-Min

    2015-03-01

    High energy Li-ion batteries (LIBs) are in great demand for electronics, electric-vehicles, and grid-scale energy storage. To further increase the energy and power densities of LIBs, Si anodes have been intensively explored due to their high capacity, and high abundance compared with traditional carbon anodes. However, the poor cycle-life caused by large volume expansion during charge/discharge process has been an impediment to its applications. Recently, superstructured Si materials were received attentions to solve above mentioned problem in excellent mechanical properties, large surface area, and fast Li and electron transportation aspects, but applying superstructures to anode is in early stage yet. Here, we synthesized superstructured carbon nanotubes (CNTs)/porous Si hybrid materials and its particular electrochemical properties will be presented. Department of Nuclear and Quantum Engineering

  13. Linking experiment and theory for three-dimensional networked binary metal nanoparticle-triblock terpolymer superstructures

    Science.gov (United States)

    Li, Zihui; Hur, Kahyun; Sai, Hiroaki; Higuchi, Takeshi; Takahara, Atsushi; Jinnai, Hiroshi; Gruner, Sol M.; Wiesner, Ulrich

    2014-02-01

    Controlling superstructure of binary nanoparticle mixtures in three dimensions from self-assembly opens enormous opportunities for the design of materials with unique properties. Here we report on how the intimate coupling of synthesis, in-depth electron tomographic characterization and theory enables exquisite control of superstructure in highly ordered porous three-dimensional continuous networks from single and binary mixtures of metal nanoparticles with a triblock terpolymer. Poly(isoprene-block-styrene-block-(N,N-dimethylamino)ethyl methacrylate) is synthesized and used as structure-directing agent for ligand-stabilized platinum and gold nanoparticles. Quantitative analysis provides insights into short- and long-range nanoparticle-nanoparticle correlations, and local and global contributions to structural chirality in the networks. Results provide synthesis criteria for next-generation mesoporous network superstructures from binary nanoparticle mixtures for potential applications in areas including catalysis.

  14. Monte-Carlo simulation of {Pb}/{Cu (100) } surface superstructures

    Science.gov (United States)

    Tan, S.; Ghazali, A.; Lévy, J.-C. S.

    1997-04-01

    Three surface superstructures of {Pb}/{Cu (100) } at low lead coverage are well known experimentally: c(4 × 4),c(2 × 2) and c(5√2×√2)R45°. The present study consists in (i) using generalized Lennard-Jones pair potentials for lead-lead and copper-copper interactions fitted on structural and elastic bulk properties, (ii) deriving an effective potential for lead-copper and (iii) developing a Monte-Carlo extensive relaxation of superstructure models. The MC simulations reveal the stability of these approximate superstructures and yield structural details that are all observed in STM and LEED experiments: the adlayer corrugation, surface alloying, structural modulations as well as PbPb and PbCu spacings. The simulated results on structures and on melting temperatures are in close agreement with experimental data.

  15. Fast Horizontal Contraction without Vertical Strain: Puzzling Interseismic Geodetic Measurements in the Ventura Basin, CA

    Science.gov (United States)

    Marshall, S. T.; Phillips, J. R., III; Funning, G.; Owen, S. E.

    2014-12-01

    Ongoing contraction related to the regional-scale left step in the San Andreas fault, (i.e. the Big Bend) has resulted in a complex network of oblique-reverse slip faults that now accommodate shortening across the Ventura basin. Continuous GPS sites from the Plate Boundary Observatory measure horizontal contraction rates across the Ventura basin of approximately 7 mm/yr oriented north-northwest with rates decreasing to the west and east. Inversion of horizontal GPS velocities highlights a zone of localized fast horizontal contraction rates that roughly follow the Ventura basin where seismic velocity models show low modulus sediments. This pattern of localized horizontal contraction can be explained with simple models creeping reverse faults (edge dislocations) at depth; however, such models predict significant uplift gradients that are not observed in the GPS or InSAR data. In fact, the GPS and InSAR show almost no vertical strains in the regions that exhibit fast horizontal strains. Thus, the outstanding unanswered question in the region is: how can interseismic deformation in a contractional setting produce localized horizontal contraction with little to no uplift gradients? To assess whether the simple models are inadequate in their fault geometry, we use a complex interseismic mechanical model incorporating three-dimensional, nonplanar, and geologically constrained fault surfaces from the Southern California Earthquake Center's Community Fault Model (CFM). This model produces very little vertical strains, but cannot match the magnitudes and localization of fast horizontal strains, likely due to the modeled homogeneous rock stiffness. In the end, we suggest that it is possible that a significant portion of the horizontal strains are due to strain localization in the low modulus sediments of the Ventura basin, which may not be released in a future earthquake and potentially mask the interseismic deformation due to faulting. Additionally, the CFM-based model

  16. Reproducible strain measurement in electronic devices by applying integer multiple to scanning grating in scanning moiré fringe imaging

    Directory of Open Access Journals (Sweden)

    Suhyun Kim

    2014-10-01

    Full Text Available Scanning moiré fringe (SMF imaging by high-angle annular dark field scanning transmission electron microscopy was used to measure the strain field in the channel of a transistor with a CoSi2 source and drain. Nanometer-scale SMFs were formed with a scanning grating size of ds at integer multiples of the Si crystal lattice spacing dl (ds ∼ ndl, n = 2, 3, 4, 5. The moiré fringe formula was modified to establish a method for quantifying strain measurement. We showed that strain fields in a transistor measured by SMF images were reproducible with an accuracy of 0.02%.

  17. Qualification of a truly distributed fiber optic technique for strain and temperature measurements in concrete structures

    Science.gov (United States)

    Henault, J. M.; Salin, J.; Moreau, G.; Delepine-Lesoille, S.; Bertand, J.; Taillade, F.; Quiertant, M.; Benzarti, K.

    2011-04-01

    Structural health monitoring is a key factor in life cycle management of infrastructures. Truly distributed fiber optic sensors are able to provide relevant information on large structures, such as nuclear power plants or nuclear waste disposal facilities. The sensing chain includes an optoelectronic unit and a sensing cable made of one or more optical fibers. A new instrument based on Optical Frequency Domain Reflectometry (OFDR), enables to perform temperature and strain measurements with a centimeter scale spatial resolution over hundred of meters and with a level of precision equal to 1 μ strain and 0.1 °C. Several sensing cables are designed with different materials targeting to last for decades, either embedded in the concrete or attached to the surface of the structure. They must ensure an optimal transfer of temperature and strain from the concrete matrix to the optical fiber. Based on the European guide FD CEN/TR 14748 "Non-destructive testing - Methodology for qualification of non-destructive tests", a qualification method was developed. Tests were carried out using various sensing cables embedded in the volume or fixed to the surface of plain concrete specimens and representative-scale reinforced concrete structural elements. Measurements were performed with an OFDR instrument, while mechanical solicitations were imposed to the concrete element. Preliminary experiments seem very promising since measurements performed with distributed sensing systems are found comparable to values obtained with conventional sensors used in civil engineering and with the Strength of Materials Modelling. Moreover, the distributed sensing system makes it possible to detect and localize cracks appearing in concrete during the mechanical loading.

  18. Measurement of Strain in the Left Ventricle during Diastole withcine-MRI and Deformable Image Registration

    Energy Technology Data Exchange (ETDEWEB)

    Veress, Alexander I.; Gullberg, Grant T.; Weiss, Jeffrey A.

    2005-07-20

    The assessment of regional heart wall motion (local strain) can localize ischemic myocardial disease, evaluate myocardial viability and identify impaired cardiac function due to hypertrophic or dilated cardiomyopathies. The objectives of this research were to develop and validate a technique known as Hyperelastic Warping for the measurement of local strains in the left ventricle from clinical cine-MRI image datasets. The technique uses differences in image intensities between template (reference) and target (loaded) image datasets to generate a body force that deforms a finite element (FE) representation of the template so that it registers with the target image. To validate the technique, MRI image datasets representing two deformation states of a left ventricle were created such that the deformation map between the states represented in the images was known. A beginning diastoliccine-MRI image dataset from a normal human subject was defined as the template. A second image dataset (target) was created by mapping the template image using the deformation results obtained from a forward FE model of diastolic filling. Fiber stretch and strain predictions from Hyperelastic Warping showed good agreement with those of the forward solution. The technique had low sensitivity to changes in material parameters, with the exception of changes in bulk modulus of the material. The use of an isotropic hyperelastic constitutive model in the Warping analyses degraded the predictions of fiber stretch. Results were unaffected by simulated noise down to an SNR of 4.0. This study demonstrates that Warping in conjunction with cine-MRI imaging can be used to determine local ventricular strains during diastole.

  19. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members

    Science.gov (United States)

    Ozbey, Burak; Erturk, Vakur B.; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur

    2016-01-01

    In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range. PMID:27070615

  20. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members

    Directory of Open Access Journals (Sweden)

    Burak Ozbey

    2016-04-01

    Full Text Available In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM of reinforced concrete members by its high sensitivity and wide dynamic range.

  1. A Wireless Passive Sensing System for Displacement/Strain Measurement in Reinforced Concrete Members.

    Science.gov (United States)

    Ozbey, Burak; Erturk, Vakur B; Demir, Hilmi Volkan; Altintas, Ayhan; Kurc, Ozgur

    2016-04-08

    In this study, we show a wireless passive sensing system embedded in a reinforced concrete member successfully being employed for the measurement of relative displacement and strain in a simply supported beam experiment. The system utilizes electromagnetic coupling between the transceiver antenna located outside the beam, and the sensing probes placed on the reinforcing bar (rebar) surface inside the beam. The probes were designed in the form of a nested split-ring resonator, a metamaterial-based structure chosen for its compact size and high sensitivity/resolution, which is at µm/microstrains level. Experiments were performed in both the elastic and plastic deformation cases of steel rebars, and the sensing system was demonstrated to acquire telemetric data in both cases. The wireless measurement results from multiple probes are compared with the data obtained from the strain gages, and an excellent agreement is observed. A discrete time measurement where the system records data at different force levels is also shown. Practical issues regarding the placement of the sensors and accurate recording of data are discussed. The proposed sensing technology is demonstrated to be a good candidate for wireless structural health monitoring (SHM) of reinforced concrete members by its high sensitivity and wide dynamic range.

  2. A Multiple Bridge for Elimination of Contact-Resistance Errors in Resistance Strain-Gage Measurements

    Science.gov (United States)

    1946-03-01

    g@ge. ‘ ,, 3. If’&’ ms a,b or h)k are used and a m&ing-coil galva- nometersis the’detector, an appreciable &Gsistance is introductid ‘into this...denoglnator because]it would oontrihuto only third-order % ms .” I;merting equation (39) into the identity- . . iGl ( )‘iG2””b ‘Gl”- ‘G2 (40) (37) may...measurement of alternating strains through slip .rings. --- Ii .,+- ● A A s r r Rh s Two-pole multipla -” position switch R Single-pole multiple

  3. Simultaneous Strain and Temperature Measurement Using a Single Fiber Bragg Grating Coated with a Thermochromic Material

    Science.gov (United States)

    2017-03-27

    strain and temperature measurements. Thermal-mechanical tests were conducted to validate this principle and a data analysis algorithm was developed to...longitudinal direction. If the difference between σx and σy is small, the two resonance peaks are closely packed , appearing as a single resonance...shown in figure 2.6(a). The dog-bone sample was designed in compliance with the ASTM standard B557 –15 and has a thickness of 3 mm. A Hysol E-Z Pack

  4. Measurement of the stress/strain response of energetic materials as a function of strain rate and temperature: PBX 9501 and Mock 9501

    Energy Technology Data Exchange (ETDEWEB)

    Funk, D.J.; Laabs, G.W.; Peterson, P.D.; Asay, B.W.

    1995-09-01

    We have measured the stress/strain behavior of PBX 9501, Mock 900-21 and two new mocks consisting of monoclinic granular sugar embedded in (1) a BDNPA-F/estane binder (a 9501 material mock; a hard organic crystal embedded in a plastic) and (2) neat estane (an LX-14 mock) at strain rates from 10{sup -3} to 10{sup -1}, at two L/D`s and at two temperatures (25 and 60 C). We find that the compressive strength falls with increasing temperature and rises with increasing strain rate. We also find that the new 9501 sugar mock most closely resembles the behavior of the 9501 explosive and differences may be attributable to the different ages of the estane binder used.

  5. Development and application of optical fibre strain and pressure sensors for in-flight measurements

    Science.gov (United States)

    Lawson, N. J.; Correia, R.; James, S. W.; Partridge, M.; Staines, S. E.; Gautrey, J. E.; Garry, K. P.; Holt, J. C.; Tatam, R. P.

    2016-10-01

    Fibre optic based sensors are becoming increasingly viable as replacements for traditional flight test sensors. Here we present laboratory, wind tunnel and flight test results of fibre Bragg gratings (FBG) used to measure surface strain and an extrinsic fibre Fabry-Perot interferometric (EFFPI) sensor used to measure unsteady pressure. The calibrated full scale resolution and bandwidth of the FBG and EFFPI sensors were shown to be 0.29% at 2.5 kHz up to 600 μɛ and 0.15% at up to 10 kHz respectively up to 400 Pa. The wind tunnel tests, completed on a 30% scale model, allowed the EFFPI sensor to be developed before incorporation with the FBG system into a Bulldog aerobatic light aircraft. The aircraft was modified and certified based on Certification Standards 23 (CS-23) and flight tested with steady and dynamic manoeuvres. Aerobatic dynamic manoeuvres were performed in flight including a spin over a g-range  -1g to  +4g and demonstrated both the FBG and the EFFPI instruments to have sufficient resolution to analyse the wing strain and fuselage unsteady pressure characteristics. The steady manoeuvres from the EFFPI sensor matched the wind tunnel data to within experimental error while comparisons of the flight test and wind tunnel EFFPI results with a Kulite pressure sensor showed significant discrepancies between the two sets of data, greater than experimental error. This issue is discussed further in the paper.

  6. Transient and microscale deformations and strains measured under exogenous loading by noninvasive magnetic resonance.

    Directory of Open Access Journals (Sweden)

    Deva D Chan

    Full Text Available Characterization of spatiotemporal deformation dynamics and material properties requires non-destructive methods to visualize mechanics of materials and biological tissues. Displacement-encoded magnetic resonance imaging (MRI has emerged as a noninvasive and non-destructive technique used to quantify deformation and strains. However, the techniques are not yet applicable to a broad range of materials and load-bearing tissues. In this paper, we visualize transient and internal material deformation through the novel synchrony of external mechanical loading with rapid displacement-encoded MRI. We achieved deformation measurements in silicone gel materials with a spatial resolution of 100 µm and a temporal resolution (of 2.25 ms, set by the repetition time (TR of the rapid MRI acquisition. Displacement and strain precisions after smoothing were 11 µm and 0.1%, respectively, approaching cellular length scales. Short (1/2 TR echo times enabled visualization of in situ deformation in a human tibiofemoral joint, inclusive of multiple variable T(2 biomaterials. Moreover, the MRI acquisitions achieved a fivefold improvement in imaging time over previous technology, setting the stage for mechanical imaging in vivo. Our results provide a general approach for noninvasive and non-destructive measurement, at high spatial and temporal resolution, of the dynamic mechanical response of a broad range of load-bearing materials and biological tissues.

  7. Strain-induced effects in colloidal quantum dots: lifetime measurements and blinking statistics

    Energy Technology Data Exchange (ETDEWEB)

    Veilleux, V; Lachance-Quirion, D; Landry, D B; Allen, C Ni [Centre d' optique, photonique et laser (COPL), 2375 rue de la Terrasse, Universite Laval, QC, G1V 0A6 (Canada); Dore, K [Centre de Recherche Universite Laval Robert-Giffard (CRULRG), 2601, de la Canardiere, QC, G1J 2G3 (Canada); Charette, P G, E-mail: claudine.allen@phy.ulaval.ca [Centre d' optique, photonique et laser (COPL), Universite de Sherbrooke, Sherbrooke, J1K 2R1 (Canada)

    2010-04-02

    A series of samples of CdSe/ Cd{sub x}Zn{sub 1-x}S core/shell quantum dots have been synthesized in order to measure the influence of lattice-mismatch-induced strain on the photoluminescence (PL) and blinking behaviour. The PL spectra show a significant variation of the fluorescence wavelength even though the colloidal quantum dots (cQDs) are similar in size. The PL excitation spectra show a gradual splitting of the first exciton level as the proportion of Zn is increased in the shell and as the shell grows. On the other hand, blinking studies clearly demonstrate a significant dependence on the amount of Zn present in the shell. Distributions of on and off times go from the usual power-law distributions to power-law distributions with exponential cut-offs. These cut-offs become increasingly pronounced as the proportion of Zn increases. We interpret these results in the framework of diffusion-controlled electron transfer. Exciton relaxation lifetime measurements strongly suggest that lattice mismatch is responsible for a greater number of defects in core/shell cQDs. Therefore, strain and lattice mismatch are shown to be parameters of significant importance for the electronic structure of nanocrystals, influencing the photoluminescence, exciton relaxation lifetime and blinking behaviour.

  8. C60 superstructure and carbide formation on the Al-terminated Al9Co2(001 ) surface

    Science.gov (United States)

    Ledieu, J.; Gaudry, É.; de Weerd, M.-C.; Gille, P.; Diehl, R. D.; Fournée, V.

    2015-04-01

    We report the formation of an ordered C60 monolayer on the Al9Co2 (001) surface using scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), x-ray and ultraviolet photoelectron spectroscopy (XPS/UPS), and ab initio calculations. Dosing fullerenes at 300 K results in a disordered overlayer. However, the adsorption of C60 with the sample held between 573-673 K leads to a [4, -2 ∣1 ,3 ] phase. The growth of C60 proceeds with the formation of two domains which are mirror symmetric with respect to the [100] direction. Within each domain, the superstructure unit cell contains six molecules and this implies an area per fullerene equal to 91 Å2. The molecules exhibit two types of contrast (bright and dim) which are bias dependent. The adsorption energies and preferred molecular configuration at several possible adsorption sites have been determined theoretically. These calculations lead to a possible scheme describing the configuration of each C60 in the observed superstructure. Several defects (vacancies, protrusions,…) and domain boundaries observed in the film are also discussed. If the sample temperature is higher than 693 K when dosing, impinging C60 molecules dissociate at the surface, hence leading to the formation of a carbide film as observed by STM and LEED measurements. The formation of Al4C3 domains and the molecular dissociation are confirmed by XPS/UPS measurements acquired at different stages of the experiment. The cluster substructure present at the Al9Co2 (001) surface dictates the carbide domain orientations.

  9. Application of digital image correlation to full-field measurement of shrinkage strain of dental composites

    Institute of Scientific and Technical Information of China (English)

    Jian-ying LI; Andrew LAU; Alex S.L.FOK

    2013-01-01

    Objectives:Polymerization shrinkage of dental composites remains a major concern in restorative dentistry because it can lead to micro-cracking of the tooth and debonding at the tooth-restoration interface.The aim of this study was to measure the full-field polymerization shrinkage of dental composites using the optical digital image correlation (DIC) method and to evaluate how the measurement is influenced by the factors in experiment setup and image analysis.Methods:Four commercial dental composites,Premise Dentine,Z100,Z250 and Tetric EvoCeram,were tested.Composite was first placed into a slot mould to form a bar specimen with rectangular-section of 4 mm×2 mm,followed by the surface painting to create irregular speckles.Curing was then applied at one end of the specimen while the other part were covered against curing light for simulating the clinical curing condition of composite in dental cavity.The painted surface was recorded by a charge-coupled device (CCD) camera before and after curing.Subsequently,the volumetric shrinkage of the specimen was calculated with specialist DIC software based on image cross correlation.In addition,a few factors that may influence the measuring accuracy,including the subset window size,speckle size,illumination light and specimen length,were also evaluated.Results:The volumetric shrinkage of the specimen generally decreases with increasing distance from the irradiated surface with a conspicuous exception being the composite Premise Dentine as its maximum shrinkage occurred at a subsurface distance of about 1 mm instead of the irradiated surface.Zl00 had the greatest maximum shrinkage strain,followed by Z250,Tetric EvoCeram and then Premise Dentine.Larger subset window size made the shrinkage strain contour smoother.But the cost was that some details in the heterogeneity of the material were lost.Very small subset window size resulted in a lot of noise in the data,making it difficult to discern the general pattern in the strain

  10. Experimental based calibration for strain measurement in silicon with Raman spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhlobich, Natallia; Kuettner, Martin; Heuer, Henning; Opitz, Joerg [Fraunhofer IZFP-D, Dresden (Germany)

    2009-07-01

    Raman spectroscopy becomes more and more important in research and development i.e. for pharmaceutical, chemical or biological applications. Also in semiconductor or photovoltaic industries Raman spectroscopy on silicon will be an important method to measure strain and chemical-physical interactions. To increase spatial resolution for near field Raman spectroscopy with a basically weak intensity an optimization problem between fast measurements versus perfect peak quality has to be solved. Different parameters of the experiment are used to improve the quality of Raman peaks and to decrease the exposure time. Applied stress in the samples is calculated with help of a theoretical model for 4 point bending. The dependance between mechanical stress and Raman shift is obtained. The influence of different parameters of the experiment on the interpretation of Raman data is discussed. The results of this work will be used in the further developing of a scanning near-field optical microscopy technique for stress mapping with high spatial resolution.

  11. Spatial resolution and measurement uncertainty of strains in bone and bone-cement interface using digital volume correlation.

    Science.gov (United States)

    Zhu, Ming-Liang; Zhang, Qing-Hang; Lupton, Colin; Tong, Jie

    2016-04-01

    The measurement uncertainty of strains has been assessed in a bone analogue (sawbone), bovine trabecular bone and bone-cement interface specimens under zero load using the Digital Volume Correlation (DVC) method. The effects of sub-volume size, sample constraint and preload on the measured strain uncertainty have been examined. There is generally a trade-off between the measurement uncertainty and the spatial resolution. Suitable sub-volume sizes have been be selected based on a compromise between the measurement uncertainty and the spatial resolution of the cases considered. A ratio of sub-volume size to a microstructure characteristic (Tb.Sp) was introduced to reflect a suitable spatial resolution, and the measurement uncertainty associated was assessed. Specifically, ratios between 1.6 and 4 appear to give rise to standard deviations in the measured strains between 166 and 620 με in all the cases considered, which would seem to suffice for strain analysis in pre as well as post yield loading regimes. A microscale finite element (μFE) model was built from the CT images of the sawbone, and the results from the μFE model and a continuum FE model were compared with those from the DVC. The strain results were found to differ significantly between the two methods at tissue level, consistent in trend with the results found in human bones, indicating mainly a limitation of the current DVC method in mapping strains at this level.

  12. Optical Fiber Sensors for Infrasonic Wind Noise Reduction and Earth Strain Measurement

    Science.gov (United States)

    DeWolf, Scott

    Fiber-based interferometers provide the means to sense very small displacements over long baselines, and have the advantage of being nearly completely passive in their operation, making them particularly well suited for geophysical applications. This work presents the development and results from four new systems: one in atmospheric acoustics and three in Earth strain. Turbulent pressure fluctuations (wind noise) are a significant limiting factor in low-frequency atmospheric acoustic measurements. The Optical Fiber Infrasound Sensor (OFIS) provides an alternative to traditional infrasonic wind noise reduction (WNR) techniques by providing an instantaneous average over a large spatial extent. This study shows that linear OFISs ranging in length from 30 to 270 m provide a WNR of up to 30 dB in winds up to 5 m/s, in good agreement with a new analytical model. Arrays of optical fiber strainmeters were deployed to measure sediment compaction at two sites in Bangladesh. One array at Jamalganj (in the north) consists of 20, 40, 60, and 100 m long strainmeters, while the second near Khulna (in the south) also includes lengths of 80 and 300 m. Two years of weekly measurements show a clear seasonal signal and subsidence at both sites that is in reasonable agreement with collocated GPS receivers. A new 250-meter, interferometric vertical borehole strainmeter has been developed based completely on passive optical components. Details of the prototyping, design, and deployment at the Pinon Flat Observatory (PFO) are presented. Power spectra show an intertidal noise level of -130 dB (re. 1 epsilon/Hz), consistent within 1-3 dB between redundant components. Examination of its response to Earth tides and earthquakes relative to the areal strain recorded by an orthogonal pair of collocated, 730 m horizontal laser strainmeters yield a Poisson's ratio of 0.26. Two prototype horizontal strainmeters were also developed to explore the use of similar interferometric optical fiber

  13. A Review of Surface Deformation and Strain Measurement Using Two-Dimensional Digital Image Correlation

    Directory of Open Access Journals (Sweden)

    Khoo Sze-Wei

    2016-09-01

    Full Text Available Among the full-field optical measurement methods, the Digital Image Correlation (DIC is one of the techniques which has been given particular attention. Technically, the DIC technique refers to a non-contact strain measurement method that mathematically compares the grey intensity changes of the images captured at two different states: before and after deformation. The measurement can be performed by numerically calculating the displacement of speckles which are deposited on the top of object’s surface. In this paper, the Two-Dimensional Digital Image Correlation (2D-DIC is presented and its fundamental concepts are discussed. Next, the development of the 2D-DIC algorithms in the past 33 years is reviewed systematically. The improvement of 2DDIC algorithms is presented with respect to two distinct aspects: their computation efficiency and measurement accuracy. Furthermore, analysis of the 2D-DIC accuracy is included, followed by a review of the DIC applications for two-dimensional measurements.

  14. A superstructure-based electrochemical assay for signal-amplified detection of DNA methyltransferase activity.

    Science.gov (United States)

    Zhang, Hui; Yang, Yin; Dong, Huilei; Cai, Chenxin

    2016-12-15

    DNA methyltransferase (MTase) activity is highly correlated with the occurrence and development of cancer. This work reports a superstructure-based electrochemical assay for signal-amplified detection of DNA MTase activity using M.SssI as an example. First, low-density coverage of DNA duplexes on the surface of the gold electrode was achieved by immobilized mercaptohexanol, followed by immobilization of DNA duplexes. The duplex can be cleaved by BstUI endonuclease in the absence of DNA superstructures. However, the cleavage is blocked after the DNA is methylated by M.SssI. The DNA superstructures are formed with the addition of helper DNA. By using an electroactive complex, RuHex, which can bind to DNA double strands, the activity of M.SssI can be quantitatively detected by differential pulse voltammetry. Due to the high site-specific cleavage by BstUI and signal amplification by the DNA superstructure, the biosensor can achieve ultrasensitive detection of DNA MTase activity down to 0.025U/mL. The method can be used for evaluation and screening of the inhibitors of MTase, and thus has potential in the discovery of methylation-related anticancer drugs.

  15. Ab initio study of long-period superstructures in close-packed A3B compounds

    DEFF Research Database (Denmark)

    Rosengaard, N. M.; Skriver, Hans Lomholt

    1994-01-01

    We have performed ab initio calculations of the stability of one-dimensional long-period superstructures in Cu3Pd, Cu3Al, and Ag3Mg by means of an interface Green's function technique based on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations. The ene...

  16. A generic methodology for processing route synthesis and design based on superstructure optimization

    DEFF Research Database (Denmark)

    Bertran, Maria-Ona; Frauzem, Rebecca; Sanchez-Arcilla, Ana Sofia

    2017-01-01

    In this paper, a systematic framework for novel and sustainable synthesis-design of processing routes is presented along with the associated computer-aided methods and tools. In Stage 1, superstructure optimization is used to determine the optimal processing route(s). In Stage 2, the design issue...

  17. Optical scan analysis to detect minor misfit on implant-supported superstructures

    NARCIS (Netherlands)

    Tahmaseb, A.; Mercelis, P.; de Clerck, R.; Wismeijer, D.

    2011-01-01

    PURPOSE: Despite the development of novel and more precise fabrication methods, absolute passive fit of implant-supported superstructures has yet to be consistently achieved. In the past, several laboratory techniques have been described to analyze fit. The purpose of this study was to assess two me

  18. Assembling Synthesis of Barium Chromate Nano-superstructures Using Eggshell Membrane as Template

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinku; Wu, Qingsheng; Yi, Yu [Tongji University, Shanghai (China); Ding, Yaping [Shanghai University, Shanghai (China)

    2004-12-15

    The branch-like, feather-like BaCrO{sub 4} nano-superstructures were synthesized with bioactive eggshell membrane as directing and assembly template. Studies on the two products revealed that they formed through the self-assembly of nanoparticles, and that the optical properties of the products were different from BaCrO{sub 4} bulk materials.

  19. In vivo vascular wall tissue characterization using a strain tensor measuring (STM) technique for flow-mediated vasodilation analyses

    Science.gov (United States)

    Mahmoud, Ahmed M.; Frisbee, Jefferson C.; D'Audiffret, Alexandre; Mukdadi, Osama M.

    2009-10-01

    Endothelial dysfunction is considered to be a key factor in the development of atherosclerosis, and the measurement of flow-mediated vasodilation (FMD) in brachial and other conduit arteries has become a common method to assess the status of endothelial function in vivo. Based on the direct relationship between the FMD response and local shear stress on the conduit brachial artery endothelium, we hypothesize that measuring relevant changes in the brachial wall strain tensor would provide a non-invasive tool for assessing vascular mechanics during post-occlusion reactive hyperemia. Direct measurement of the wall strain tensor due to FMD has not yet been reported in the literature. In this work, a noninvasive direct ultrasound-based strain tensor measuring (STM) technique is presented to assess changes in the mechanical parameters of the vascular wall during post-occlusion reactive hyperemia and/or FMD, including local velocities and displacements, diameter change, local strain tensor and strain rates. The STM technique utilizes sequences of B-mode ultrasound images as its input with no extra hardware requirement, and its algorithm starts with segmenting a region of interest within the artery and providing the acquisition parameters. Then a block matching technique based on speckle tracking is employed to measure the frame-to-frame local velocities. Displacements, diameter change, local strain tensor and strain rates are then calculated by integrating or differentiating velocity components. The accuracy of the STM algorithm was assessed in vitro using phantom studies, where an average error of 7% was reported using different displacement ranging from 100 µm to 1000 µm. Furthermore, in vivo studies using human subjects were performed to test the STM algorithm during pre- and post-occlusion. Good correlations (|r| >0.5, P < 0.05) were found between the post-occlusion responses of diameter change and local wall strains. Results indicate the validity and versatility of

  20. In vivo vascular wall tissue characterization using a strain tensor measuring (STM) technique for flow-mediated vasodilation analyses

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud, Ahmed M; Mukdadi, Osama M [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV 26506 (United States); Frisbee, Jefferson C [Center for Cardiovascular and Respiratory Sciences, West Virginia University, Morgantown, WV 26506 (United States); D' Audiffret, Alexandre [Division of Vascular and Endovascular Surgery, West Virginia University, Morgantown, WV 26506 (United States)], E-mail: sam.mukdadi@mail.wvu.edu

    2009-10-21

    Endothelial dysfunction is considered to be a key factor in the development of atherosclerosis, and the measurement of flow-mediated vasodilation (FMD) in brachial and other conduit arteries has become a common method to assess the status of endothelial function in vivo. Based on the direct relationship between the FMD response and local shear stress on the conduit brachial artery endothelium, we hypothesize that measuring relevant changes in the brachial wall strain tensor would provide a non-invasive tool for assessing vascular mechanics during post-occlusion reactive hyperemia. Direct measurement of the wall strain tensor due to FMD has not yet been reported in the literature. In this work, a noninvasive direct ultrasound-based strain tensor measuring (STM) technique is presented to assess changes in the mechanical parameters of the vascular wall during post-occlusion reactive hyperemia and/or FMD, including local velocities and displacements, diameter change, local strain tensor and strain rates. The STM technique utilizes sequences of B-mode ultrasound images as its input with no extra hardware requirement, and its algorithm starts with segmenting a region of interest within the artery and providing the acquisition parameters. Then a block matching technique based on speckle tracking is employed to measure the frame-to-frame local velocities. Displacements, diameter change, local strain tensor and strain rates are then calculated by integrating or differentiating velocity components. The accuracy of the STM algorithm was assessed in vitro using phantom studies, where an average error of 7% was reported using different displacement ranging from 100 {mu}m to 1000 {mu}m. Furthermore, in vivo studies using human subjects were performed to test the STM algorithm during pre- and post-occlusion. Good correlations (|r| >0.5, P < 0.05) were found between the post-occlusion responses of diameter change and local wall strains. Results indicate the validity and

  1. Linear and nonlinear modulus surfaces in stress space, from stress-strain measurements on Berea sandstone

    Directory of Open Access Journals (Sweden)

    M. Boudjema

    2003-01-01

    Full Text Available The elastic response of many rocks to quasistatic stress changes is highly nonlinear and hysteretic, displaying discrete memory. Rocks also display unusual nonlinear response to dynamic stress changes. A model to describe the elastic behavior of rocks and other consolidated materials is called the Preisach-Mayergoyz (PM space model. In contrast to the traditional analytic approach to stress-strain, the PM space picture establishes a relationship between the quasistatic data and a number density of hysteretic mesoscopic elastic elements in the rock. The number density allows us to make quantitative predictions of dynamic elastic properties. Using the PM space model, we analyze a complex suite of quasistatic stress-strain data taken on Berea sandstone. We predict a dynamic bulk modulus and a dynamic shear modulus surface as a function of mean stress and shear stress. Our predictions for the dynamic moduli compare favorably to moduli derived from time of flight measurements. We derive a set of nonlinear elastic constants and a set of constants that describe the hysteretic behavior of the sandstone.

  2. Field Strain Measurement on the Fiber-Epoxy Scale in CFRPs

    KAUST Repository

    Tao, Ran

    2015-06-08

    Laminated composites are materials with complex architecture made of continuous fibers (usually glass or carbon) embedded within a polymeric resin. The properties of the raw materials can vary from one point to another due to different local processing conditions or complex geometrical features for example. A first step towards the identification of these spatially varying material parameters is to image with precision the displacement fields in this complex microstructure when subjected to mechanical loading. Secondary electron images obtained by scanning electron microscopy (SEM) and then numerically deformed are post-processed by either local subset-based digital image correlation (DIC) or global finite-element based DIC to measure the displacement and strain fields at the fiber-matrix scale in a cross-ply composite. It is shown that when global DIC is applied with a conformal mesh, it can capture more accurate local variations in the strain fields as it takes into account the underlying microstructure. In comparison to subset DIC, global DIC is better suited for capturing gradients across the fiber-matrix interfaces.

  3. Modelisation of strains measured by X-ray diffraction in composites with spherical particles

    Energy Technology Data Exchange (ETDEWEB)

    Durand, L.; Lavelle, B.; Drira-Halouani, R.; Altibelli, A. [CNRS, Toulouse (France). CEMES

    2000-07-01

    In a particle composite, elaboration residual stresses have two main origins : differences between thermal expansion coefficients of particles and matrix on the one hand, and volume changes induced by reactions at particles / matrix interface on the other hand. We have compared calculated thermal stresses, and experimental measures on two composites, one presenting an interface reactivity and the other none. The two composites with a nickel matrix and spherical particles either of silica or of alumina have been sintered at 1400 C and analyzed between room temperature and 240 C by X-ray diffraction (Cu K{alpha} radiation). In the semi-infinite composite model, spherical particles have been distributed at the points of a simple cubic lattice. Modelised thickness is larger in comparison of the thickness analyzed by X-ray diffraction. Calculations are based on elastic theory and the difference of coefficients of thermal expansion between the matrix and the particles. Materials are supposed isotropic. At a given temperature, the strain to be observed by X-ray diffraction in a given directions calculated from the distribution of strains in matrix; absorption phenomena are taken into account. Effects of the free surface and of interfacial reactivity are thus shown off. (orig.)

  4. A thin-film aluminum strain gauges array in a flexible gastrointestinal catheter for pressure measurements

    Science.gov (United States)

    Sousa, P. J.; Silva, L. R.; Pinto, V. C.; Goncalves, L. M.; Minas, G.

    2016-08-01

    This paper presents an innovative approach to measure the pressure patterns associated with the motility and peristaltic movements in the upper gastrointestinal tract. This approach is based on inexpensive and easy to fabricate thin-film aluminum strain gauge pressure sensors using a flexible polyimide film (Kapton) as substrate and SU-8 structural support. These sensors are fabricated using well-established and standard photolithographic and wet etching techniques. Each sensor has a 3.4 mm2 area, allowing a fabrication process with a high level of sensors integration (four sensors in 1.7 cm), which is suitable for placing them in a single catheter. These strain gauges bend when pressure is applied and, consequently, their electrical resistance is changed. The fabricated sensors feature an almost linear response (R 2  =  0.9945) and an overall sensitivity of 6.4 mV mmHg-1. Their readout and control electronics were developed in a flexible Kapton ribbon cable and, together with the sensors, bonded and wrapped around a catheter-like structure. The sequential acquisition of the different signals is carried by a microcontroller with a 10 bit ADC at a sample rate of 250 Hz per-1 sensor. The signals are presented in a user friendly interface developed using the integrated development environment software, QtCreator IDE, for better visualization by physicians.

  5. Strains in Thermally Growing Alumina Films Measured in-situ usingSynchrotron X-rays

    Energy Technology Data Exchange (ETDEWEB)

    Hou, P.Y.; Paulikas, A.P.; Veal, B.W.

    2006-01-02

    Strains in thermally grown oxides have been measured in-situ, as the oxides develop and evolve. Extensive data have been acquired from oxides grown in air at elevated temperatures on different model alloys that form Al{sub 2}O{sub 3}. Using synchrotron x-rays at the Advanced Photon Source (Beamline 12BM, Argonne National Laboratory), Debye-Scherrer diffraction patterns from the oxidizing specimen were recorded every 5 minutes during oxidation and subsequent cooling. The diffraction patterns were analyzed to determine strains in the oxides, as well as phase changes and the degree of texture. To study a specimen's response to stress perturbation, the oxidizing temperature was quickly cooled from 1100 to 950 C to impose a compressive thermal stress in the scale. This paper describes this new experimental approach and gives examples from oxidized {beta}-NiAl, Fe-20Cr-10Al, Fe-28Al-5Cr and H{sub 2}-annealed Fe-28Al-5Cr (all at. %) alloys to illustrate some current understanding of the development and relaxation of growth stresses in Al{sub 2}O{sub 3}.

  6. Direct measurement of the correlated dynamics of the protein-backbone and proximal waters of hydration in mechanically strained elastin

    CERN Document Server

    Sun, Cheng; Huang, Jiaxin; Boutis, Gregory S

    2011-01-01

    We report on the direct measurement of the correlation times of the protein backbone carbons and proximal waters of hydration in mechanically strained elastin by nuclear magnetic resonance methods. The experimental data indicate a decrease in the correlation times of the carbonyl carbons as the strain on the biopolymer is increased. These observations are in good agreement with short 4ns molecular dynamics simulations of (VPGVG)3, a well studied mimetic peptide of elastin. The experimental results also indicate a reduction in the correlation time of proximal waters of hydration with increasing strain applied to the elastomer. A simple model is suggested that correlates the increase in the motion of proximal waters of hydration to the increase in frequency of libration of the protein backbone that develops with increasing strain. Together, the reduction in the protein entropy accompanied with the increase in entropy of the proximal waters of hydration with increasing strain, support the notion that the source ...

  7. Unknown Aspects of Self-Assembly of PbS Microscale Superstructures

    Science.gov (United States)

    Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.

    2012-01-01

    A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512

  8. Neutron scattering instruments for residual stress/strain measurements at KUR

    Energy Technology Data Exchange (ETDEWEB)

    Ono, Masayoshi [Kyoto Univ., Kumatori, Osaka (Japan). Research Reactor Inst.

    1997-06-01

    A Kyoto University Reactor project research finished on March, 1997 is a first trial in Japan. In this research, some residual stress measurement in accompany with thermal and processing deformation history of various superconductive composite wires and so on were conducted to obtain a lot of research results. At TOF system, simultaneous measurement of the direction dependent collective texture using a multi point detector was useful, and at PSD system the strain measurement in a region under 10{sup -4} became possible to conduct. In addition, it is intending now to establish high performance instruments such as a two-stage type disc chopper at the TOF system and a high resolution vent type Si monocrystal monochromator at the PSD system. In particular, it is expected a the TOF system that a direction dependent collective texture and a stress distribution state in various kinds of functional materials can be measured simultaneously and without destruction. The mechanical property research of the metallic materials using low speed neutron scattering method is now a big interest in and out of Japan. This research contains a lot of contents coinciding to the industrial fields in an application research field of nuclear basic research and is expected in future to powerfully promote international cooperative research and to deeply recognize its usefulness and importance. (G.K.)

  9. Ultrasonic Measurement of Strain Distribution Inside Object Cyclically Compressed by Dual Acoustic Radiation Force

    Science.gov (United States)

    Odagiri, Yoshitaka; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    One possible way to evaluate acupuncture therapy quantitatively is to measure the change in the elastic property of muscle after application of the therapy. Many studies have been conducted to measure mechanical properties of tissues using ultrasound-induced acoustic radiation force. To assess mechanical properties, strain must be generated in an object. However, a single radiation force is not effective because it mainly generates translational motion when the object is much harder than the surrounding medium. In this study, two cyclic radiation forces are simultaneously applied to a muscle phantom from two opposite horizontal directions so that the object is cyclically compressed in the horizontal direction. By the horizontal compression, the object is expanded vertically based on its incompressibility. The resultant vertical displacement is measured using another ultrasound pulse. Two ultrasonic transducers for actuation were both driven by the sum of two continuous sinusoidal signals at two slightly different frequencies [1 MHz and (1 M + 5) Hz]. The displacement of several micrometers in amplitude, which fluctuated at 5 Hz, was measured by the ultrasonic phased tracking method. Increase in thickness inside the object was observed just when acoustic radiation forces increased. Such changes in thickness correspond to vertical expansion due to horizontal compression.

  10. Application of Image Measurement and Continuum Mechanics to the Direct Measurement of Two-Dimensional Finite Strain in a Complex Fibro-Porous Material

    Science.gov (United States)

    Britton, Paul; Loughran, Jeff

    This paper outlines a computational procedure that has been implemented for the direct measurement of finite material strains from digital images taken of a material surface during plane-strain process experiments. The selection of both hardware and software components of the image processing system is presented, and the numerical procedures developed for measuring the 2D material deformations are described. The algorithms are presented with respect to two-roll milling of sugar cane bagasse, a complex fibro-porous material that undergoes large strains during processing to extract the sucrose-rich liquid. Elaborations are made in regard to numerical developments for other forms of experimentation, algorithm calibrations and measurement improvements. Finite 2D strain results are shown for both confined uniaxial compression and two-roll milling experiments.

  11. Screening of Bacillus coagulans strains in lignin supplemented minimal medium with high throughput turbidity measurements

    Directory of Open Access Journals (Sweden)

    Robert Glaser

    2014-12-01

    Full Text Available The aim of this study was to extend the options for screening and characterization of microorganism through kinetic growth parameters. In order to obtain data, automated turbidimetric measurements were accomplished to observe the response of strains of Bacillus coagulans. For the characterization, it was decided to examine the influence of varying concentrations of lignin with respect to bacterial growth. Different mathematical models are used for comparison: logistic, Gompertz, Baranyi and Richards and Stannard. The growth response was characterized by parameters like maximum growth rate, maximum population, and the lag time. In this short analysis we present a mathematical approach towards a comparison of different microorganisms. Furthermore, it can be demonstrated that lignin in low concentrations can have a positive influence on the growth of B. coagulans.

  12. Simultaneous resonant x-ray diffraction measurement of polarization inversion and lattice strain in polycrystalline ferroelectrics

    DEFF Research Database (Denmark)

    Gorfman, S.; Simons, Hugh; Iamsasri, T.

    2016-01-01

    Structure-property relationships in ferroelectrics extend over several length scales from the individual unit cell to the macroscopic device, and with dynamics spanning a broad temporal domain. Characterizing the multi-scale structural origin of electric field-induced polarization reversal...... strain and, for the first time, polarization reversal during in-situ electrical perturbation. This technique is demonstrated for BaTiO3-BiZn0.5Ti0.5O3 (BT-BZT) polycrystalline ferroelectrics, a prototypical lead-free piezoelectric with an ambiguous switching mechanism. This combines the benefits...... of spectroscopic and diffraction-based measurements into a single and robust technique with time resolution down to the ns scale, opening a new door to in-situ structure-property characterization that probes the full extent of the ferroelectric behaviour....

  13. Full-field dynamic strain prediction on a wind turbine using displacements of optical targets measured by stereophotogrammetry

    Science.gov (United States)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-10-01

    Health monitoring of rotating structures (e.g. wind turbines and helicopter blades) has historically been a challenge due to sensing and data transmission problems. Unfortunately mechanical failure in many structures initiates at components on or inside the structure where there is no sensor located to predict the failure. In this paper, a wind turbine was mounted with a semi-built-in configuration and was excited using a mechanical shaker. A series of optical targets was distributed along the blades and the fixture and the displacement of those targets during excitation was measured using a pair of high speed cameras. Measured displacements with three dimensional point tracking were transformed to all finite element degrees of freedom using a modal expansion algorithm. The expanded displacements were applied to the finite element model to predict the full-field dynamic strain on the surface of the structure as well as within the interior points. To validate the methodology of dynamic strain prediction, the predicted strain was compared to measured strain by using six mounted strain-gages. To verify if a simpler model of the turbine can be used for the expansion, the expansion process was performed both by using the modes of the entire turbine and modes of a single cantilever blade. The results indicate that the expansion approach can accurately predict the strain throughout the turbine blades from displacements measured by using stereophotogrammetry.

  14. Large-Strain Monitoring Above a Longwall Coal Mine With GPS and Seismic Measurements

    Science.gov (United States)

    Swanson, P. L.; Andreatta, V.; Meertens, C. M.; Krahenbuhl, T.; Kenner, B.

    2001-12-01

    As part of an effort to evaluate continuous GPS measurements for use in mine safety studies, a joint GPS-seismic experiment was conducted at an underground longwall coal mine near Paonia, Colorado in June, 2001. Seismic and deformation signals were measured using prototype low-cost monitoring systems as a longwall panel was excavated 150 m beneath the site. Data from both seismic and GPS instruments were logged onto low-power PC-104 Linux computers which were networked using a wireless LAN. The seismic system under development at NIOSH/SRL is based on multiple distributed 8-channel 24-bit A/D converters. The GPS system uses a serial single-frequency (L1) receiver and UNAVCO's "Jstream" Java data logging software. For this experiment, a continuously operating dual-frequency GPS receiver was installed 2.4 km away to serve as a reference site. In addition to the continuously operating sites, 10 benchmarks were surveyed daily with short "rapid-static" occupations in order to provide greater spatial sampling. Two single-frequency sites were located 35 meters apart on a relatively steep north-facing slope. As mining progressed from the east, net displacements of 1.2 meters to the north and 1.65 meters of subsidence were observed over a period of 6 days. The east component exhibited up to 0.45 meters of eastward displacement (toward the excavation) followed by reverse movement to the west. This cycle, observed approximately two days earlier at the eastern L1 site, is consistent with a change in surface strain from tension to compression as the excavation front passed underneath. As this strain "wave" propagated across the field site, surface deformation underwent a cycle of tension crack nucleation, crack opening (up to 15 cm normal displacements), subsequent crack closure, and production of low-angle-thrust compressional deformation features. Analysis of seismic results, surface deformation, and additional survey results are presented.

  15. Strain Measurements within Fiber Boards. Part I: Inhomogeneous Strain Distribution within Medium Density Fiberboards (MDF Loaded Perpendicularly to the Plane of the Board

    Directory of Open Access Journals (Sweden)

    Jörn Rathke

    2012-06-01

    Full Text Available Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup.

  16. Strain Measurements within Fiber Boards. Part I: Inhomogeneous Strain Distribution within Medium Density Fiberboards (MDF) Loaded Perpendicularly to the Plane of the Board.

    Science.gov (United States)

    Rathke, Jörn; Sinn, Gerhard; Konnerth, Johannes; Müller, Ulrich

    2012-06-19

    Internal bond strength testing is a widely used approach for testing quality traits of wood based panels. Generally, failure of internal bond specimens is due to adhesion and/or wood failure in the specimen. It has been reported that a composite product with a large variation in the vertical density profile fails in the center part of the board which is either the middle of the core layer or the transition zone between core layer and face layer. The density in the failure zone is typically 50% lower than the maximum density in the face layers. The aim of this study was to analyze the strain distribution in a specimen under tension perpendicular to the panel plane. The results showed that a high variety of strain magnitude occurred in the specimen. The strain is either aligned with the tension direction or a tension zone is built in one of the edge zones leading to failure. Vector graphics of the specimen show the problematic test setup of internal bond strength measurement. Strain spots in the edges lead to the assumption of an uneven stress distribution due to the momentum which results from non-perfect alignment or irregularities in the test setup.

  17. Photoelastic Measurement of Strain Induced by Die-Bonding of GaAs Chip on a Copper Heatsink Plate

    Science.gov (United States)

    Chu, Tao; Yamada, Masayoshi

    1999-02-01

    Die-bonding-induced strain in a GaAs chip bonded on a copper heatsink plate has been measured with a reflection type of infrared polariscope.The spatial distributions of bonding-induced strain were seen to vary from sample to sample.The maximum value of the bonding-induced strain was found to be of the order of 10-4, which corresponded to about 1/10 of that estimated from the thermal expansion difference for the unit length between GaAs and copper when it was cooled down from the die-bonding temperature to the room temperature.

  18. Composite tube and plate manufacturing repeatability as determined by precision measurements of thermal strain

    Science.gov (United States)

    Riddle, Lenn A.; Tucker, James R.; Bluth, A. Marcel

    2013-09-01

    Composite materials often carry the reputation of demonstrating high variability in critical material properties. The JWST telescope metering structure is fabricated of several thousand separate composite piece parts. The stringent dimensional stability requirements on the metering structure require the critical thermal strain response of every composite piece be verified either at the billet or piece part level. JWST is a unique composite space structure in that it has required the manufacturing of several hundred composite billets that cover many lots of prepreg and many years of fabrication. The flight billet thermal expansion acceptance criteria limits the coefficient of thermal expansion (CTE) to a tolerance ranging between +/-0.014 ppm/K to +/-0.04 ppm/K around a prescribed nominal when measured from 293 K down to 40 K. The different tolerance values represent different material forms including flat plates and different tube cross-section dimensions. A precision measurement facility was developed that could measure at the required accuracy and at a pace that supported the composite part fabrication rate. The test method and facility is discussed and the results of a statistical process analysis of the flight composite billets are surveyed.

  19. Measurement of interseismic strain accumulation across the North Anatolian Fault by satellite radar interferometry

    Science.gov (United States)

    Wright, Tim; Parsons, Barry; Fielding, Eric

    In recent years, interseismic crustal velocities and strains have been determined for a number of tectonically active areas through repeated measurements using the Global Positioning System. The terrain in such areas is often remote and difficult, and the density of GPS measurements relatively sparse. In principle, satellite radar interferometry can be used to make millimetric-precision measurements of surface displacement over large surface areas. In practice, the small crustal deformation signal is dominated over short time intervals by errors due to atmospheric, topographic and orbital effects. Here we show that these effects can be over-come by stacking multiple interferograms, after screening for atmospheric anomalies, effectively creating a new interferogram that covers a longer time interval. In this way, we have isolated a 70 km wide region of crustal deformation across the eastern end of the North Anatolian Fault, Turkey. The distribution of deformation is consistent with slip of 17-32 mm/yr below 5-33 km on the extension of the surface fault at depth. If the GPS determined slip rate of 24±1 mm/yr is accepted, the locking depth is constrained to 18±6 km.

  20. Experimental Measurement and Computational Simulation of the Strains on a Single Yarn in a Kevlar Fabric During Stretching

    Science.gov (United States)

    2010-06-01

    displacement and strain time histories matched reasonably well with the experimental data. 15. SUBJECT TERMS Photogrammetry strain measurements optical...and textile composites. For instance, Lomov et al. (1, 2) studied the in-plane deformation of yarns in a fabric that underwent shearing using two...sensitivity of the friction coefficient between yarns under a static stretching condition. 2. Experimental Method We used a 5x5 plain- weave Kevlar

  1. Advances in structural damage assessment using strain measurements and invariant shape descriptors

    Science.gov (United States)

    Patki, Amol Suhas

    to the area surrounding the damage, while damage in orthotropic materials tends to have more global repercussions. This calls for analysis of full-field strain distributions adding to the complexity of post-damage life estimation. This study explores shape descriptors used in the field of medical imagery, military targeting and biometric recognition for obtaining a qualitative and quantitative comparison between full-field strain data recorded from damaged composite panels using sophisticated experimental techniques. These descriptors are capable of decomposing images with 103 to 106 pixels into a feature vector with only a few hundred elements. This ability of shape descriptors to achieve enormous reduction in strain data, while providing unique representation, makes them a practical choice for the purpose of structural damage assessment. Consequently, it is relatively easy to statistically compare the shape descriptors of the full-field strain maps using similarity measures rather than the strain maps themselves. However, the wide range of geometric and design features in engineering components pose difficulties in the application of traditional shape description techniques. Thus a new shape descriptor is developed which is applicable to a wide range of specimen geometries. This work also illustrates how shape description techniques can be applied to full-field finite element model validations and updating.

  2. Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations.

    Science.gov (United States)

    Tanaka, Y; Naito, K; Kishimoto, S; Kagawa, Y

    2011-03-18

    We investigated a method for measuring deformation and strain distribution in a multiscale range from nanometers to millimeters via in situ FE-SEM observations. A multiscale pattern composed of a grid as well as random and nanocluster patterns was developed to measure the localized deformation at the specimen surface. Our in situ observations of a carbon fiber-reinforced polymer matrix composite with a hierarchical microstructure subjected to loading were conducted to identify local deformation behaviors at various boundaries. We measured and analyzed the multiscale deformation and strain localizations during various stages of loading.

  3. Development of a pattern to measure multiscale deformation and strain distribution via in situ FE-SEM observations

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Y; Naito, K; Kishimoto, S; Kagawa, Y, E-mail: TANAKA.Yoshihisa@nims.go.jp [The National Institute of Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2011-03-18

    We investigated a method for measuring deformation and strain distribution in a multiscale range from nanometers to millimeters via in situ FE-SEM observations. A multiscale pattern composed of a grid as well as random and nanocluster patterns was developed to measure the localized deformation at the specimen surface. Our in situ observations of a carbon fiber-reinforced polymer matrix composite with a hierarchical microstructure subjected to loading were conducted to identify local deformation behaviors at various boundaries. We measured and analyzed the multiscale deformation and strain localizations during various stages of loading.

  4. Ligament strain on the iliofemoral, pubofemoral, and ischiofemoral ligaments in cadaver specimens: biomechanical measurement and anatomical observation.

    Science.gov (United States)

    Hidaka, Egi; Aoki, Mitsuhiro; Izumi, Tomoki; Suzuki, Daisuke; Fujimiya, Mineko

    2014-10-01

    The iliofemoral, pubofemoral, and ischiofemoral ligaments are major structures that stabilize the hip joint. We have sought evidence on which to base more effective hip stretching positions. The purpose of this study was to measure strains on these ligaments and to observe them. Eight fresh/frozen translumbar cadaver specimens were used. Clinically available stretching positions for these ligaments were adopted. Strain on each ligament was measured by a displacement sensor during passive torque to the hip joint. Hip motion was measured using an electromagnetic tracking device. The strained ligaments were captured on clear photographs. Significantly, high strains were imposed on the superior iliofemoral ligament by external rotation of the hip (3.48%); on the inferior iliofemoral ligament by maximal extension and 10° or 20° of external rotation with maximal extension (1.86%, 1.46%, 1.25%); on the pubofemoral ligament by maximal abduction and 10°, 20°, or 30° of external rotation with maximal abduction (3.18%, 3.28%, 3.11%, 2.99%); and on the ischiofemoral ligament by 10° or 20° of abduction with maximal internal rotation (7.11%, 7.83%). Fiber direction in each ligament was clearly identified. Significantly, high strains on hip ligaments corresponded with the anatomical direction of the ligament fibers. Positions were identified for each ligament that imposed maximal increase in strain on it.

  5. Blood pressure measurement of all five fingers by strain gauge plethysmography

    DEFF Research Database (Denmark)

    Hirai, M; Nielsen, S L; Lassen, N A

    1976-01-01

    The aim of the present paper was to study the methodological problems involved in measuring systolic blood pressure in all five fingers by the strain gauge technique. In 24 normal subjects, blood pressure at the proximal phalanx of finger I and both at the proximal and the intermediate phalanx...... of the other fingers was measured using a 24-mm-wide cuff. Blood pressure at the proximal phalanx was higher than that at the intermediate phalanx in all fingers except finger V. The difference of blood pressure values corresponded well with circumference of the finger. In 15 normal subjects, blood pressure...... of the mean values was larter with the 27-mm-wide cuff than with the 24-mm-wide cuff, the 24-mm-wide cuff was considered to be most suitable for clinical use in fingers I, II, III, and IV. By using the 20-mm-wide cuff in finger V and the 24-mm-wide cuff in the other fingers, normal value of finger blood...

  6. Measurement of high temperature full-field strain up to 2000 °C using digital image correlation

    Science.gov (United States)

    Wang, Wei; Xu, Chenghai; Jin, Hua; Meng, Songhe; Zhang, Yumin; Xie, Weihua

    2017-03-01

    Understanding the deformation and strain at elevated temperature is a critical factor for the stability of aerodynamic shape, and an important consideration for the thermal protection system design. However, accurate measurement of deformation and strain at high temperatures is a challenge. Here, we present a measurement study for full-field strain mapping up to 2000 °C using digital image correlation (DIC) method, which mainly depends on the quality of speckle patterns on the specimen surface. In our study, the strain values are analyzed by DIC method while specimens are heated using a large electric current. Improvements in filtering and speckling allow the measured temperatures using this method to reach 2000 °C. We confirmed the validity of this method by comparison of measured Young’s modulus values with reference data for Inconel 718 Ni-based superalloy and graphite at different temperatures. Additionally, the full-field strain and Young’s modulus were demonstrated for a carbon fiber-reinforced carbon (C/C) composite uniaxial tensile specimen at 2000 °C.

  7. Direct Fabrication of Free-Standing MOF Superstructures with Desired Shapes by Micro-Confined Interfacial Synthesis.

    Science.gov (United States)

    Kim, Jin-Oh; Min, Kyoung-Ik; Noh, Hyunwoo; Kim, Dong-Hwi; Park, Soo-Young; Kim, Dong-Pyo

    2016-06-13

    Recently, metal-organic frameworks (MOFs) with multifunctional pore chemistry have been intensively investigated for positioning the desired morphology at specific locations onto substrates for manufacturing devices. Herein, we develop a micro-confined interfacial synthesis (MIS) approach for fabrication of a variety of free-standing MOF superstructures with desired shapes. This approach for engineering MOFs provides three key features: 1) in situ synthesis of various free-standing MOF superstructures with controlled compositions, shape, and thickness using a mold membrane; 2) adding magnetic functionality into MOF superstructures by loading with Fe3 O4 nanoparticles; 3) transferring the synthesized MOF superstructural array on to flat or curved surface of various substrates. The MIS route with versatile potential opens the door for a number of new perspectives in various applications.

  8. Luminescent Tension-Indicating Orthopedic Strain Gauges for Non-Invasive Measurements Through Tissue

    Science.gov (United States)

    Anker, Jeffrey (Inventor); Rogalski, Melissa (Inventor); Anderson, Dakota (Inventor); Heath, Jonathon (Inventor)

    2015-01-01

    Strain gauges that can provide information with regard to the state of implantable devices are described. The strain gauges can exhibit luminescence that is detectable through living tissue, and the detectable luminescent emission can vary according to the strain applied to the gauge. A change in residual strain of the device can signify a loss of mechanical integrity and/or loosening of the implant, and this can be non-invasively detected either by simple visual detection of the luminescent emission or through examination of the emission with a detector such as a spectrometer or a camera.

  9. Measuring unsteady pressure on rotating compressor blades. [with semiconductor strain gages under gas turbine engine operating conditions

    Science.gov (United States)

    Englund, D. R.; Grant, H. P.; Lanati, G. A.

    1979-01-01

    The capability for accurate measurement of unsteady pressure on the surface of compressor and fan blades during engine operation was established. Tests were run on miniature semiconductor strain gage pressure transducers mounted in several arrangements. Both surface mountings and recessed flush mountings were tested. Test parameters included mounting arrangement, blade material, temperature, local strain in the blade, acceleration normal to the transducer diaphragm, centripetal acceleration, and pressure. Test results showed no failures of transducers or mountings and indicated an uncertainty of unsteady pressure measurement of approximately + or - 6%, plus 0.1 kPa for a typical application.

  10. Measuring negative and positive caregiving experiences: A psychometric analysis of the Caregiver Strain Index Expanded

    NARCIS (Netherlands)

    Kruithof, WJ; Post, MWM; Meily, JMA

    2015-01-01

    Objective: To compare the psychometric properties of the Caregiver Strain Index Expanded with those of the original Caregiver Strain Index among partners of stroke patients. Design and subjects: Cross-sectional validation study among 173 caregivers of stroke patients six months post-stroke. Main

  11. The external and internal measurement impact on shear modulus distribution within cyclic small strains in triaxal studies into cohesive soil

    Directory of Open Access Journals (Sweden)

    Jastrzebska M.

    2010-06-01

    Full Text Available The paper deals with comparison of tangent shear moduli Gs of kaolin from Tułowice obtained from cyclic triaxial tests on the basis of external and internal reading in the small strains range (10-5÷10-3. The tests were carried out on a modernised test bed, enabling full saturation of specimens using the back pressure method as well as a precise internal measurement of strains by means of contactless microdisplacements sensors. The value of linearity factor L is one of adopted quality criteria for two measuring methods. Maintaining a constant deformation rate the influence of various cyclic process parameters (deviator stress amplitude – constant or variable; high or low; initial level of stress and strain, at which the unloading and reloading cycles were started; overconsolidation ratio OCR as well as cycles’ number and arrangement on the "shear modulus – axial strain" characteristic was studied. The obtained values of Gint and Gext (or Lint and Lext clearly show an underestimation (even 5 times of Gs value within the range 10-5÷10-3 when using an external measurement. In addition, the differences between Gint and Gext, which develop differently depending on specified cyclic process parameters, gradually decrease with increasing axial strains.

  12. Design and development of fixture and force measuring system for friction stir welding process using strain gauges

    Energy Technology Data Exchange (ETDEWEB)

    Parida, Biswajit; Vishwakarma, Shiv Dayal; Pal, Sukhomay [IIT Guwahati, Guwahati (India)

    2015-02-15

    We developed a clamping system and an instrumented setup for a vertical milling machine for friction stir welding (FSW) operations and measuring the process forces. Taking into account the gap formation (i.e., lateral movement) and transverse movement of the workpiece, a new type of adjustable fixture was designed to hold the workpiece being welded. For force measurement, a strain gauge based force dynamometer was designed, developed and fabricated. The strain gauges were fitted into the specially designed octagonal members to support the welding plates. When the welding force was applied onto the plates, the load was transferred to the octagonal members and strain was induced in the member. The strains of the strain gauges were measured in terms of voltages using a Wheatstone bridge. To acquire forces in FSW operations, a data acquisition system with the necessary hardware and software was devised and connected to the developed setup. The developed setup was tested in actual welding operations. It is found that the proposed setup can be used in milling machine to perform FSW operations.

  13. Application of the digital volume correlation technique for the measurement of displacement and strain fields in bone: a literature review.

    Science.gov (United States)

    Roberts, Bryant C; Perilli, Egon; Reynolds, Karen J

    2014-03-21

    Digital volume correlation (DVC) provides experimental measurements of displacements and strains throughout the interior of porous materials such as trabecular bone. It can provide full-field continuum- and tissue-level measurements, desirable for validation of finite element models, by comparing image volumes from subsequent µCT scans of a sample in unloaded and loaded states. Since the first application of DVC for measurement of strain in bone tissue, subsequent reports of its application to trabecular bone cores up to whole bones have appeared within the literature. An "optimal" set of procedures capable of precise and accurate measurements of strain, however, still remains unclear, and a systematic review focussing explicitly on the increasing number of DVC algorithms applied to bone or structurally similar materials is currently unavailable. This review investigates the effects of individual parameters reported within individual studies, allowing to make recommendations for suggesting algorithms capable of achieving high accuracy and precision in displacement and strain measurements. These recommendations suggest use of subsets that are sufficiently large to encompass unique datasets (e.g. subsets of 500 µm edge length when applied to human trabecular bone cores, such as cores 10mm in height and 5mm in diameter, scanned at 15 µm voxel size), a shape function that uses full affine transformations (translation, rotation, normal strain and shear strain), the robust normalized cross-correlation coefficient objective function, and high-order interpolation schemes. As these employ computationally burdensome algorithms, researchers need to determine whether they have the necessary computational resources or time to adopt such strategies. As each algorithm is suitable for parallel programming however, the adoption of high precision techniques may become more prevalent in the future.

  14. Instantaneous strain measurements during high-temperature stress cycling of a dispersion-strengthened niobium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, D.M.; Mishra, R.S.; Mukherjee, A.K. [Univ. of California, Davis, CA (United States). Dept. of Chemical Engineering and Materials Science

    1995-06-01

    Experimental results obtained from stress cycling tests performed during high-temperature creep of a dispersion strengthened niobium alloy indicate that the instantaneous strain following the stress change decreases with accumulated strain. The true work-hardening rate was shown to be a small fraction of the elastic modulus which remained fairly constant throughout the strain history. The instantaneous strain change from a stress addition was typically greater than the strain from the corresponding stress reduction. This effect is quite pronounced for small stress changes and diminishes as the magnitude of the stress change increases. This implies that the mobility of dislocations is impeded in the reverse direction unless the magnitude of stress reduction exceeds the value of the internal stress.

  15. Analysis of raft foundation design based on considering influence of superstructure stiffness

    Institute of Scientific and Technical Information of China (English)

    WANG Bin; QIU Jianhui; ZHAO Dong; YANG Xi; DAI Shuai

    2009-01-01

    The finite element method was used for analysis of raft foundation design in high-rise building. Compared with other conventional methods, this method is more adapted to the practical condition since both superstructure stiffness and soil conditions were considered in calculation. The calculation results by example show that the base reaction is more uniform and the maximum reaction decreases obviously. Accordingly, the raft foundation design is more economic without any loss of security for high-rise building.

  16. Vibrational properties of the Pt(111)- p(2 × 2)-K surface superstructure

    Science.gov (United States)

    Rusina, G. G.; Eremeev, S. V.; Borisova, S. D.; Chulkov, E. V.

    2008-08-01

    The vibrational spectra of the Pt(111)- p(2 × 2)-K ordered surface superstructure formed on the platinum surface upon adsorption of 0.25 potassium monolayer are calculated using the interatomic interaction potentials obtained within the tight-binding approximation. The surface relaxation, the dispersion of surface phonons, the local density of surface vibrational states, and the polarization of vibrational modes of adatoms and substrate atoms are discussed. The theoretical results are in good agreement with the recently obtained experimental data.

  17. Superstructure-based Design and Optimization of Batch Biodiesel Production Using Heterogeneous Catalysts

    Science.gov (United States)

    Nuh, M. Z.; Nasir, N. F.

    2017-08-01

    Biodiesel as a fuel comprised of mono alkyl esters of long chain fatty acids derived from renewable lipid feedstock, such as vegetable oil and animal fat. Biodiesel production is complex process which need systematic design and optimization. However, no case study using the process system engineering (PSE) elements which are superstructure optimization of batch process, it involves complex problems and uses mixed-integer nonlinear programming (MINLP). The PSE offers a solution to complex engineering system by enabling the use of viable tools and techniques to better manage and comprehend the complexity of the system. This study is aimed to apply the PSE tools for the simulation of biodiesel process and optimization and to develop mathematical models for component of the plant for case A, B, C by using published kinetic data. Secondly, to determine economic analysis for biodiesel production, focusing on heterogeneous catalyst. Finally, the objective of this study is to develop the superstructure for biodiesel production by using heterogeneous catalyst. The mathematical models are developed by the superstructure and solving the resulting mixed integer non-linear model and estimation economic analysis by using MATLAB software. The results of the optimization process with the objective function of minimizing the annual production cost by batch process from case C is 23.2587 million USD. Overall, the implementation a study of process system engineering (PSE) has optimized the process of modelling, design and cost estimation. By optimizing the process, it results in solving the complex production and processing of biodiesel by batch.

  18. Automatic recognition of ship types from infrared images using superstructure moment invariants

    Science.gov (United States)

    Li, Heng; Wang, Xinyu

    2007-11-01

    Automatic object recognition is an active area of interest for military and commercial applications. In this paper, a system addressing autonomous recognition of ship types in infrared images is proposed. Firstly, an approach of segmentation based on detection of salient features of the target with subsequent shadow removing is proposed, as is the base of the subsequent object recognition. Considering the differences between the shapes of various ships mainly lie in their superstructures, we then use superstructure moment functions invariant to translation, rotation and scale differences in input patterns and develop a robust algorithm of obtaining ship superstructure. Subsequently a back-propagation neural network is used as a classifier in the recognition stage and projection images of simulated three-dimensional ship models are used as the training sets. Our recognition model was implemented and experimentally validated using both simulated three-dimensional ship model images and real images derived from video of an AN/AAS-44V Forward Looking Infrared(FLIR) sensor.

  19. Hierarchical Self-Assembly of Cu7Te5 Nanorods into Superstructures with Enhanced SERS Performance.

    Science.gov (United States)

    Zheng, Jiaojiao; Dai, Baosong; Liu, Jia; Liu, Jialong; Ji, Muwei; Liu, Jiajia; Zhou, Yuanmin; Xu, Meng; Zhang, Jiatao

    2016-12-28

    This paper reports a strategy to get self-assembly of Cu7Te5 nanorods into hierarchical superstructures: the side-by-side self-assembly of nanorods into microscale one-dimensional (1D) nanowires (primary structure), the side-by-side alignments of the 1D nanowires into two-dimensional (2D) nanowire bundles (secondary structure), and the further rolling up of the 2D bundles into three-dimensional (3D) microtubes (tertiary structure). It was found that the oleylamine (OLA)/n-dodecanethiol (DDT) mixture as a binary capping agent was key to produce Cu7Te5 nanorods in the quantum size regime with high monodispersity, and this was a prerequisite for their hierarchical self-assembly based on elaborate control of the solvent evaporation process. The obtained Cu7Te5 microtube superstructures were used as SERS substrate and showed much stronger SERS enhancement than the as-prepared Cu7Te5 nanorods before assembly. This was probably ascribed to the remarkably enhanced local electromagnetic field arising from the plasmon coupling of Cu7Te5 nanorods in the well-assembled superstructures.

  20. Evolution of Moiré Profiles from van der Waals Superstructures of Boron Nitride Nanosheets

    Science.gov (United States)

    Liao, Yunlong; Cao, Wei; Connell, John W.; Chen, Zhongfang; Lin, Yi

    2016-05-01

    Two-dimensional (2D) van der Waals (vdW) superstructures, or vdW solids, are formed by the precise restacking of 2D nanosheet lattices, which can lead to unique physical and electronic properties that are not available in the parent nanosheets. Moiré patterns formed by the crystalline mismatch between adjacent nanosheets are the most direct features for vdW superstructures under microscopic imaging. In this article, transmission electron microscopy (TEM) observation of hexagonal Moiré patterns with unusually large micrometer-sized lateral areas (up to ~1 μm2) and periodicities (up to ~50 nm) from restacking of liquid exfoliated hexagonal boron nitride nanosheets (BNNSs) is reported. This observation was attributed to the long range crystallinity and the contaminant-free surfaces of these chemically inert nanosheets. Parallel-line-like Moiré fringes with similarly large periodicities were also observed. The simulations and experiments unambiguously revealed that the hexagonal patterns and the parallel fringes originated from the same rotationally mismatched vdW stacking of BNNSs and can be inter-converted by simply tilting the TEM specimen following designated directions. This finding may pave the way for further structural decoding of other 2D vdW superstructure systems with more complex Moiré images.

  1. Z-contrast imaging and ab initio study on "d" superstructure in sedimentary dolomite

    CERN Document Server

    Shen, Zhizhang; Szlufarska, Izabela; Brown, Philip E; Xu, Huifang

    2016-01-01

    Nano-precipitates with tripled periodicity along the c-axis are observed in a Ca-rich dolomite sample from Proterozoic carbonate rocks with "molar tooth" structure. This observation is consistent with previous description of d reflections. High-angle annular dark-field STEM imaging (or Z-contrast imaging) that avoids dynamic diffraction as seen in electron diffraction and high-resolution TEM imaging modes, confirms that d reflections correspond to nanoscale precipitates aligned parallel to (001) of the host dolomite. The lamellae precipitates have a cation ordering sequence of Ca-Ca-Mg-Ca-Ca- Mg along the c direction resulting in a chemical composition of Ca0.67Mg0.33CO3. This superstructure is attributed to the extra or d reflections, thus is referred to as the d superstructure in this study. The structure can be simply described as interstratified calcite/dolomite. The crystal structure of the d superstructure calculated from density functional theory (DFT) has a space group of P31c and has a and c unit-cel...

  2. Superstructure formation and variation in Ni-GDC cermet anodes in SOFC.

    Science.gov (United States)

    Li, Zhi-Peng; Mori, Toshiyuki; Auchterlonie, Graeme John; Zou, Jin; Drennan, John

    2011-05-28

    The microstructures and spatial distributions of constituent elements at the anode in solid oxide fuel cells (SOFCs) have been characterized by analytical transmission electron microscopy (TEM). High resolution TEM observations demonstrate two different types of superstructure formation in grain interiors and at grain boundaries. Energy-filtered TEM elemental imaging qualitatively reveals that mixture zones exist at metal-ceramic grain boundaries, which is also quantitatively verified by STEM energy dispersive X-ray spectroscopy. It was apparent that both metallic Ni and the rare-earth elements Ce/Gd in gadolinium-doped ceria can diffuse into each other with equal diffusion lengths (about 100 nm). This will lead to the existence of mutual diffusion zones at grain boundaries, accompanied by a change in the valence state of the diffusing ions, as identified by electron energy-loss spectroscopy (EELS). Such mutual diffusion is believed to be the dominant factor that gives rise to superstructure formation at grain boundaries, while a different superstructure is formed at grain interiors, as a consequence solely of the reduction of Ce(4+) to Ce(3+) during H(2) treatment. This work will enhance the fundamental understanding of microstructural evolution at the anode, correlating with advancements in sample preparation in order to improve the performance of SOFC anodes.

  3. Silver-colloid-nucleated cytochrome c superstructures encapsulated in silica nanoarchitectures.

    Science.gov (United States)

    Wallace, Jean Marie; Dening, Brett M; Eden, Kristin B; Stroud, Rhonda M; Long, Jeffrey W; Rolison, Debra R

    2004-10-12

    We recently discovered that self-organized superstructures of the heme protein cytochrome c (cyt. c) are nucleated in buffer by gold nanoparticles. The protein molecules within the superstructure survive both silica sol-gel encapsulation and drying from supercritical carbon dioxide to form air-filled biocomposite aerogels that exhibit gas-phase binding activity for nitric oxide. In this investigation, we report that viable proteins are present in biocomposite aerogels when the nucleating metal nanoparticle is silver rather than gold. Silver colloids were synthesized via reduction of an aqueous solution of Ag+ using either citrate or borohydride reductants. As determined by transmission electron microscopy and UV-visible absorption spectroscopy, the silver nanoparticles vary in size and shape depending on the synthetic route, which affects the fraction of cyt. c that survives the processing necessary to form a biocomposite aerogel. Silver colloids synthesized via the citrate preparation are polydisperse, with sizes ranging from 1 to 100 nm, and lead to low cyt. c viability in the dried bioaerogels (approximately 15%). Protein superstructures nucleated at approximately 10-nm Ag colloids prepared via the borohydride route, including citrate stabilization of the borohydride-reduced metal, retain significant protein viability within the bioaerogels (approximately 45%).

  4. The emergence of superstructural order in insulin amyloid fibrils upon multiple rounds of self-seeding

    Science.gov (United States)

    Surmacz-Chwedoruk, Weronika; Babenko, Viktoria; Dec, Robert; Szymczak, Piotr; Dzwolak, Wojciech

    2016-08-01

    Typically, elongation of an amyloid fibril entails passing conformational details of the mother seed to daughter generations of fibrils with high fidelity. There are, however, several factors that can potentially prevent such transgenerational structural imprinting from perpetuating, for example heterogeneity of mother seeds or so-called conformational switching. Here, we examine phenotypic persistence of bovine insulin amyloid ([BI]) upon multiple rounds of self-seeding under quiescent conditions. According to infrared spectroscopy, with the following passages of homologous seeding, daughter fibrils gradually depart from the mother seed’s spectral characteristics. We note that this transgenerational structural drift in [BI] amyloid leads toward fibrils with infrared, chiroptical, and morphological traits similar to those of the superstructural variant of fibrils which normally forms upon strong agitation of insulin solutions. However, in contrast to agitation-induced insulin amyloid, the superstructural assemblies of daughter fibrils isolated through self-seeding are sonication-resistant. Our results suggest that formation of single amyloid fibrils is not a dead-end of the amyloidogenic self-assembly. Instead, the process appears to continue toward the self-assembly of higher-order structures although on longer time-scales. From this perspective, the fast agitation-induced aggregation of insulin appears to be a shortcut to amyloid superstructures whose formation under quiescent conditions is slow.

  5. Full-field, high-spatial-resolution detection of local structural damage from low-resolution random strain field measurements

    Science.gov (United States)

    Yang, Yongchao; Sun, Peng; Nagarajaiah, Satish; Bachilo, Sergei M.; Weisman, R. Bruce

    2017-07-01

    Structural damage is typically a local phenomenon that initiates and propagates within a limited area. As such high spatial resolution measurement and monitoring is often needed for accurate damage detection. This requires either significantly increased costs from denser sensor deployment in the case of global simultaneous/parallel measurements, or increased measurement time and labor in the case of global sequential measurements. This study explores the feasibility of an alternative approach to this problem: a computational solution in which a limited set of randomly positioned, low-resolution global strain measurements are used to reconstruct the full-field, high-spatial-resolution, two-dimensional (2D) strain field and rapidly detect local damage. The proposed approach exploits the implicit low-rank and sparse data structure of the 2D strain field: it is highly correlated without many edges and hence has a low-rank structure, unless damage-manifesting itself as sparse local irregularity-is present and alters such a low-rank structure slightly. Therefore, reconstruction of the full-field, high-spatial-resolution strain field from a limited set of randomly positioned low-resolution global measurements is modeled as a low-rank matrix completion framework and damage detection as a sparse decomposition formulation, enabled by emerging convex optimization techniques. Numerical simulations on a plate structure are conducted for validation. The results are discussed and a practical iterative global/local procedure is recommended. This new computational approach should enable the efficient detection of local damage using limited sets of strain measurements.

  6. Automated data-based damage localization under ambient vibration using local modal filters and dynamic strain measurements: Experimental applications

    Science.gov (United States)

    Tondreau, Gilles; Deraemaeker, Arnaud

    2014-12-01

    This paper deals with the experimental application of modal filters for automated damage localization using dynamic strain measurements. Previously developed for damage detection, the extension of modal filtering to damage localization consists in splitting a very large network of dynamic strain sensors into several independent local sensor networks. An efficient signal processing coupled to control charts allows a fully automated data-based damage localization once the modal filters are initialized. The method is tested experimentally on a small clamped-free steel plate and a 3.78 m long steel I-beam, both instrumented with a network of cheap piezoelectric patches to measure the dynamic strains. A removable damage is introduced at different positions by means of a small removable damage device. For both applications, the method can successfully detect and locate all damage cases considered, showing the potentiality of the method for field applications.

  7. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.; Hamre, L.

    2014-01-01

    In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for two soil-structure interaction (SSI) models to assess the initial soil stiffness for offshore wind turbine foundations. This stiffness has a defining influence on the first natur

  8. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    NARCIS (Netherlands)

    Versteijlen, W.G.; Van Dalen, K.N.; Metrikine, A.V.; Hamre, L.

    2014-01-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an impo

  9. Towards rapid nanoscale measurement of strain in III-nitride heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Eric; Gradečak, Silvija [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Cooper, David [CEA, LETI, Minatec Campus, 17 rue des martyrs, F38054 Grenoble (France); Rouviere, Jean-Luc [CEA, INAC, Minatec Campus, 17 rue des Martyrs, F38054 Grenoble (France); Béché, Armand [CEA, LETI, Minatec Campus, 17 rue des martyrs, F38054 Grenoble (France); FEI France, 17 rue des Martyrs, F38054 Grenoble (France); Azize, Mohamed; Palacios, Tomás [Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2013-12-02

    We report the structural and compositional nanoscale characterization of InAlN/GaN nanoribbon-structured high electron mobility transistors (HEMTs) through the use of geometric phase analysis (GPA) and nanobeam electron diffraction (NBED). The strain distribution in the HEMT layer is quantified and compared to the expected strain profile for the nominal structure predicted by finite element analysis (FEA). Using the experimental strain results, the actual structure is determined and used to modify the FEA model. The improved fit of the model demonstrates that GPA and NBED provide a powerful platform for routine and rapid characterization of strain in III-V semiconducting device systems leading to insights into device evolution during processing and future device optimization.

  10. Anisotropic Behaviour of Sand in the Small Strain Domain. Experimental Measurements and Modelling

    Science.gov (United States)

    Ezaoui, A.; Di Benedetto, H.; Van Bang, D.

    This paper deals with the initial and loading path induced anisotropy for a sub angular granular material, Hostun sand. The "quasi" elastic properties observed in the small strain domain (hypoelastic model, called DBGS model, which takes into account the stress induced anisotropy, is firstly described. This model is not sufficient to properly describe experimental results at isotropic stress state as well as thus obtained during deviatoric stress path for medium and large strain. Then, an extension of the model is proposed, called DBGSP model, where strain induced anisotropy is taken into account. The concept of virtual strain induced anisotropy is introduced in this rheological hypoelastic model developed at ENTPE, and the ability of the model to foresee experimental behaviour is checked.

  11. Strain and displacement measurements for the June 9, 1980 Victoria, Mexico Earthquake

    Science.gov (United States)

    Darby, D.; Nyland, E.; Suarez, F.; Chavez, D.; Gonzalez, J.

    A microgeodetic network 22 km south east of Est. Guadalupe Victoria, Baja California Norte, installed in late May 1980, has been resurveyed in an experiment that started 12 hours after the June 9, 1980 Victoria earthquake, which had an epicenter at 10 km depth about 12 km from the network. The resurvey was complete by June 13. Both the initial observations and the resurvey were done with HP3800 distance meter equipment. Some angular control was provided with a Wild T3 theodolite. The network underwent a compressive strain of 7 ± 3 micro strain essentially parallel the Cerro Prieto fault about the time of the earthquake. Strains of this size are associated with simple dislocation models of earthquakes of this magnitude. Its direction appears to be anomalous however. This may indicate compression related to soil liquefaction processes or strain near the end of the slip plane.

  12. Measurement of hygroscopic strain in deodar wood during convective drying using lensless Fourier transform digial holography

    Science.gov (United States)

    Kumar, Manoj; Shakher, Chandra

    2016-04-01

    In this paper, moisture induced deformation and shrinkage behaviour of deodar wood during convective drying is experimentally investigated by using digital holographic interferometry. There induces dimensional changes in wood due to the moisture absorption and desorption. Lensless Fourier transform digital holographic interferometry (LLFTDH) is used to study the moisture induced deformation and strain distribution in deodar wood. The proposed technique having high sensitivity and enables the observation of deformation and strain distribution during the variations of moisture content in the deodar wood.

  13. Full elastic strain and stress tensor measurements from individual dislocation cells in copper through-Si vias.

    Science.gov (United States)

    Levine, Lyle E; Okoro, Chukwudi; Xu, Ruqing

    2015-11-01

    Nondestructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 µm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positions were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.

  14. Modulated structures of Cs2HgCl4: the 5a superstructure at 185 K and the 3c superstructure at 176 K.

    Science.gov (United States)

    Bagautdinov; Pilz; Ludecke; van Smaalen S

    1999-12-01

    Crystalline dicaesium mercury tetrachloride (Cs(2)HgCl(4)) is isomorphous with beta-K(2)SO(4) (space group Pnma, Z = 4) in its normal phase at room temperature. On cooling a sequence of incommensurate and commensurate superstructures occurs, below T = 221 K with modulations parallel to a*, and below 184 K with modulations along c*. The commensurately modulated structures at T = 185 K with q = (1/5)a* and at T = 176 K with q = (1/3)c* were determined using X-ray scattering with synchrotron radiation. The structure at T = 185 K has superspace group Pnma(alpha,0,0)0ss with alpha = 0.2. Lattice parameters were determined as a = 5 x 9.7729 (1), b = 7.5276 (4) and c = 13.3727 (7) Å. Structure refinements converged to R = 0.050 (R = 0.042 for 939 main reflections and R = 0.220 for 307 satellites) for the section t = 0.05 of superspace. The fivefold supercell has space group Pn2(1)a. The structure at T = 176 K has superspace group Pnma(0,0,gamma)0s0 with gamma = 1/3. Lattice parameters were determined as a = 9.789 (3), b = 7.541 (3) and c = 3 x 13.418 (4) Å. Structure refinements converged to R = 0.067 (R = 0.048 for 2130 main reflections, and R = 0.135 for 2382 satellite reflections) for the section t = 0. The threefold supercell has space group P112(1)/a. It is shown that the structures of both low-temperature phases can be characterized as different superstructures of the periodic room-temperature structure. The superstructure of the 5a-modulated phase is analysed in terms of displacements of the Cs atoms, and rotations and distortions of HgCl(4) tetrahedral groups. In the 3c-modulated phase the distortions of the tetrahedra are relaxed, but they are replaced by translations of the tetrahedral groups in addition to rotations.

  15. Simultaneous measurements of tidal straining and advection at two parallel transects far downstream in the Rhine ROFI

    Science.gov (United States)

    Rijnsburger, Sabine; van der Hout, Carola M.; van Tongeren, Onno; de Boer, Gerben J.; van Prooijen, Bram C.; Borst, Wil G.; Pietrzak, Julie D.

    2016-05-01

    This study identifies and unravels the processes that lead to stratification and destratification in the far field of a Region of Freshwater Influence (ROFI). We present measurements that are novel for two reasons: (1) measurements were carried out with two vessels that sailed simultaneously over two cross-shore transects; (2) the measurements were carried out in the far field of the Rhine ROFI, 80 km downstream from the river mouth. This unique four dimensional dataset allows the application of the 3D potential energy anomaly equation for one of the first times on field data. With this equation, the relative importance of the depth mean advection, straining and nonlinear processes over one tidal cycle is assessed. The data shows that the Rhine ROFI extends 80 km downstream and periodic stratification is observed. The analysis not only shows the important role of cross-shore tidal straining but also the significance of along-shore straining and depth mean advection. In addition, the nonlinear terms seem to be small. The presence of all the terms influences the timing of maximum stratification. The analysis also shows that the importance of each term varies in the cross-shore direction. One of the most interesting findings is that the data are not inline with several hypotheses on the functioning of straining and advection in ROFIs. This highlights the dynamic behaviour of the Rhine ROFI, which is valuable for understanding the distribution of fine sediments, contaminants and the protection of coasts.

  16. Measurement of Temperature and Residual Strain during Fatigue of a CFRP Composite Using Fiber Bragg Grating Sensors

    Institute of Scientific and Technical Information of China (English)

    SHEN Xiaoyan; LIN Yuchi; WANG Wei

    2009-01-01

    Fatigue behaviour has important implications for engineering composite structures in sectors ranging from automotive to aerospace. Optical sensing technology displays excellent performance in these fields for monitoring. In this paper, temperature and residual strain during fatigue of a carbon fiber reinforced polymer(CFRP) are investigated. Four autoclaved CFRP beam specimens, with fiber Bragg grating(FBG) sensors and thermocouples embedded at selected locations, are subjected to three-point bending cyclic loading on the BOSE testing machine for fatigue testing. Thermocouples are used to measure the temperature while FBGs can sense the temperature and strain as well. Seven tests in total are conducted at different frequencies, and each test lasts for several days. From the experimental results, transient steep peaks of temperature increases (up to 2.3 ℃) are discovered at the beginning of the load. The following constant temperature increments are around 1.0 ℃, which is not relevant to frequencies from 0.1 Hz to 20 Hz and suspected due to fatigue. Residual strains of 1×10-5-2×10-5 during fatigue, fading away rapidly when unloading, are also reported. Embedded FBGs here are validated to sense temperature and strains in composite structures, which demonstrates promising potentials in structure monitoring fields. CFRP are verified to have an excellent performance during fatigue with low temperature increase and residual strain.

  17. Poisson's ratio of collagen fibrils measured by small angle X-ray scattering of strained bovine pericardium

    Energy Technology Data Exchange (ETDEWEB)

    Wells, Hannah C.; Sizeland, Katie H.; Kayed, Hanan R.; Haverkamp, Richard G., E-mail: r.haverkamp@massey.ac.nz [School of Engineering and Advanced Technology, Massey University, Private Bag 11222, Palmerston North 4442 (New Zealand); Kirby, Nigel; Hawley, Adrian; Mudie, Stephen T. [Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168 (Australia)

    2015-01-28

    Type I collagen is the main structural component of skin, tendons, and skin products, such as leather. Understanding the mechanical performance of collagen fibrils is important for understanding the mechanical performance of the tissues that they make up, while the mechanical properties of bulk tissue are well characterized, less is known about the mechanical behavior of individual collagen fibrils. In this study, bovine pericardium is subjected to strain while small angle X-ray scattering (SAXS) patterns are recorded using synchrotron radiation. The change in d-spacing, which is a measure of fibril extension, and the change in fibril diameter are determined from SAXS. The tissue is strained 0.25 (25%) with a corresponding strain in the collagen fibrils of 0.045 observed. The ratio of collagen fibril width contraction to length extension, or the Poisson's ratio, is 2.1 ± 0.7 for a tissue strain from 0 to 0.25. This Poisson's ratio indicates that the volume of individual collagen fibrils decreases with increasing strain, which is quite unlike most engineering materials. This high Poisson's ratio of individual fibrils may contribute to high Poisson's ratio observed for tissues, contributing to some of the remarkable properties of collagen-based materials.

  18. Optical measurements in GaAs/In sub x Al sub 1 minus x As strained layer superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Nshioka, Y.; Yoshida, K.; Morifuji, M.; Taniguchi, K.; Hamaguchi, C. (Osaka University, Osaka (Japan). Faculty of Engineering); Kato, H.; Watanabe, Y. (Kansei Gakuin Univ., Hyogo (Japan))

    1992-04-05

    Photoluminescence and photoreflectance measurements were carried out for (GaAs){sub 10}/(In{sub x}Al{sub 1{minus}x}As){sub 20} (0.0{le} x {le} 0.1) strained layer superlattices deposited on GaAs substrates by molecular beam epitaxy (MBE). In x {le} 0.015 at 290 K, only direct transition energy was observed in both measurements, while in x {le} 0.035, direct and pseudo-direct transition energy were observed in photoreflectance and photoluminescence measurements, respectively. The direct transition energy shifted to a lower energy side with an increase in In concentration, while no shift of the pseudo-direct transition energy was observed. The crossover between the direct transition and pseudo-direct transition occurred at nearly 0.1 in In concentration, indicating a good agreement with the result calculated by Kronig-Penney model taking the effect of strain into account. 12 refs., 4 figs.

  19. Ultrasonic Measurement of Transient Change in Stress-Strain Property of Radial Arterial Wall Caused by Endothelium-Dependent Vasodilation

    Science.gov (United States)

    Ikeshita, Kazuki; Hasegawa, Hideyuki; Kanai, Hiroshi

    2008-05-01

    The endothelial dysfunction is considered to be an initial step of atherosclerosis. Additionally, it was reported that the smooth muscle, which constructs the media of the artery, changes its characteristics owing to atherosclerosis. Therefore, it is essential to develop a method for assessing the regional endothelial function and mechanical property of the arterial wall. There is a conventional technique of measuring the transient change in the diameter of the brachial artery caused by flow-mediated dilation (FMD) after the release of avascularization. For more sensitive and regional evaluation, we developed a method of measuring the change in the elasticity of the radial artery due to FMD. In this study, the transient change in the mechanical property of the arterial wall was further revealed by measuring the stress-strain relationship during each heartbeat. The minute change in the thickness (strain) of the radial arterial wall during a cardiac cycle was measured by the phased tracking method, together with the waveform of blood pressure which was continuously measured with a sphygmometer at the radial artery. The transient change in stress-strain relationship during a cardiac cycle was obtained from the measured changes in wall thickness and blood pressure to show the transient change in instantaneous viscoelasticity. From the in vivo experimental results, the stress-strain relationship shows the hysteresis loop. The slope of the loop decreased owing to FMD, which shows that the elastic modulus decreased, and the increasing area of the loop depends on the ratio of the loss modulus (depends on viscosity) to the elastic modulus when the Voigt model is assumed. These results show a potential of the proposed method for the thorough analysis of the transient change in viscoelasticity due to FMD.

  20. Measurement of strain distribution in cortical bone around miniscrew implants used for orthodontic anchorage using digital speckle pattern interferometry

    Science.gov (United States)

    Kumar, Manoj; Agarwal, Rupali; Bhutani, Ravi; Shakher, Chandra

    2016-05-01

    An application of digital speckle pattern interferometry (DSPI) for the measurement of deformations and strain-field distributions developed in cortical bone around orthodontic miniscrew implants inserted into the human maxilla is presented. The purpose of this study is to measure and compare the strain distribution in cortical bone/miniscrew interface of human maxilla around miniscrew implants of different diameters, different implant lengths, and implants of different commercially available companies. The technique is also used to measure tilt/rotation of canine caused due to the application of retraction springs. The proposed technique has high sensitivity and enables the observation of deformation/strain distribution. In DSPI, two specklegrams are recorded corresponding to pre- and postloading of the retraction spring. The DSPI fringe pattern is observed by subtracting these two specklegrams. Optical phase was extracted using Riesz transform and the monogenic signal from a single DSPI fringe pattern. The obtained phase is used to calculate the parameters of interest such as displacement/deformation and strain/stress. The experiment was conducted on a dry human skull fulfilling the criteria of intact dental arches and all teeth present. Eight different miniscrew implants were loaded with an insertion angulation of 45 deg in the inter-radicular region of the maxillary second premolar and molar region. The loading of miniscrew implants was done with force level (150 gf) by nickel-titanium closed-coil springs (9 mm). The obtained results from DSPI reveal that implant diameter and implant length affect the displacement and strain distribution in cortical bone layer surrounding the miniscrew implant.

  1. Nondestructive and Localized Measurements of Stress-Strain Curves and Fracture Toughness of Ferritic Steels at Various Temperatures Using Innovative Stress-Strain Microprobe Technology. Final Report for Period 8/13/1996--06/16/1999

    Energy Technology Data Exchange (ETDEWEB)

    Fahmy M. Haggag

    1999-10-29

    The results presented in this report demonstrate the capabilities of Advanced Technology Corporation's patented Portable/In Situ Stress-Strain Microprobe (TM) (SSM) System and its Automated Ball Indentation (ABI) test techniques to nondestructively measure the yield strength, the stress-strain curve, and the fracture toughness of ferritic steel samples and components in a reliable and accurate manner.

  2. Acquisition of the linearization process in text composition in third to ninth graders: effects of textual superstructure and macrostructural organization.

    Science.gov (United States)

    Favart, Monik; Coirier, Pierre

    2006-07-01

    Two complementary experiments analyzed the acquisition of text content linearization in writing, in French-speaking participants from third to ninth grades. In both experiments, a scrambled text paradigm was used: eleven ideas presented in random order had to be rearranged coherently so as to compose a text. Linearization was analyzed on the basis of the conceptual ordering of ideas and writing fluency. The first experiment focused on the effect of superstructural facilitation (in decreasing order: 1--instructional, 2--narrative, 3--argumentative), while the second experiment studied the effect of prewriting conditions: 1-scrambled presentation, 2--macrostructural facilitation, 3--ideas given in optimal order (control condition). As expected, scores in conceptual ordering and writing fluency improved through the grade levels. Students were most successful with respect to conceptual ordering in the instructional superstructure, followed by the narrative and finally the argumentative superstructures. The prewriting assignment also had the expected effect (control better than macrostructural presentation which, in turn, was better than the random order) but only with the argumentative superstructure. Contrary to conceptual ordering, writing fluency was not affected by the type of superstructure, although we did record an effect of the prewriting condition. The results are discussed in light of Bereiter and Scardamalia's knowledge transforming strategy (1987) taking into account cognitive development and French language curriculum.

  3. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures

    Science.gov (United States)

    Carné-Sánchez, Arnau; Imaz, Inhar; Cano-Sarabia, Mary; Maspoch, Daniel

    2013-03-01

    Metal-organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale—into nanoMOFs—is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

  4. Preparation of flowerlike BiOBr/Bi2MoO6 composite superstructures and the adsorption behavior to dyes

    Science.gov (United States)

    He, Qiong; Ni, Yonghong; Ye, Shiyong

    2017-05-01

    Flowerlike BiOBr/Bi2MoO6 composite superstructures were synthesized by a simple solvothermal route with subsequent direct precipitation at room temperature, employing bismuth nitrate, sodium molybdate, and cetyltrimethylammonium bromide (CTAB) as the raw materials. The phase and the morphology of the as-prepared products were characterized by SEM, TEM, SAED, XRD and EDS. BET investigation proved the mesoporous structure of flowerlike BiOBr/Bi2MoO6 composite superstructures. It was found that the composite superstructures exhibited higher adsorption ability to methylene blue (MB) and pyronine B (PB) dyes from their solutions than single component (BiOBr or Bi2MoO6). As a case, the adsorption behavior of MB aqueous solution on BiOBr/Bi2MoO6 composite superstructures was detailedly studied, including the adsorption isotherm, kinetics and thermodynamic parameters. The results indicated that flowerlike BiOBr/Bi2MoO6 composite superstructures have potential applications in the field of wastewater treatment.

  5. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures.

    Science.gov (United States)

    Carné-Sánchez, Arnau; Imaz, Inhar; Cano-Sarabia, Mary; Maspoch, Daniel

    2013-03-01

    Metal-organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale--into nanoMOFs--is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

  6. Simultaneous measurement of the strain tensor of 10 individual grains embedded in an Al tensile sample

    DEFF Research Database (Denmark)

    Martins, R.V.; Margulies, L.; Schmidt, Søren;

    2004-01-01

    in transmission geometry. After each load step diffraction patterns are collected with a large-area X-ray detector system for a series of different angular and lateral sample positions. An automated indexing routine was used to assign sets of diffraction spots to individual grains. The strain tensor components...

  7. Biomimetics of Campaniform Sensilla: Measuring Strain from the Deformation of Holes

    Institute of Scientific and Technical Information of China (English)

    Julian F. V. Vincent; Sally E. Clift; Carlo Menon

    2007-01-01

    We present a bio-inspired strategy for designing embedded strain sensors in space structures. In insects, the campaniform sensillum is a hole extending through the cuticle arranged such that its shape changes in response to loads. The shape change is rotated through 90 by the suspension of a bell-shaped cap whose deflection is detected by a cell beneath the cuticle. It can be sensitive to displacements of the order of 1 nm. The essential morphology, a hole formed in a plate of fibrous composite material, was modelled by Skordos et al. who showed that global deformation of the plate (which can be flat, curved or a tube) induces higher local deformation of the hole due to its locally higher compliance. Further developments reported here show that this approach can be applied to groups of holes relative to their orientation.The morphology of the sensillum in insects suggests that greater sensitivity can be achieved by arranging several holes in a regular pattern; that if the hole is oval it can be "aimed" to sense specific strain directions; and that either by controlling the shape of the hole or its relationship with other holes it can have a tuned response to dynamic strains.We investigate space applications in which novel bio-inspired strain sensors could successfully be used.

  8. Measurement of Ring Strain Using Butanols: A Physical Chemistry Lab Experiment

    Science.gov (United States)

    Martin, William R.; Davidson, Ada S.; Ball, David W.

    2016-01-01

    In this article, a bomb calorimeter experiment and subsequent calculations aimed at determining the strain energy of the cyclobutane backbone are described. Students use several butanol isomers instead of the parent hydrocarbons, and they manipulate liquids instead of gases, which makes the experiment much easier to perform. Experiments show that…

  9. Detection and identification of methicillin resistant and sensitive strains of Staphylococcus aureus using tandem measurements.

    Science.gov (United States)

    Guntupalli, Rajesh; Sorokulova, Iryna; Olsen, Eric; Globa, Ludmila; Pustovyy, Oleg; Moore, Timothy; Chin, Bryan; Barbaree, James; Vodyanoy, Vitaly

    2012-09-01

    Discrimination of methicillin resistant (MRSA) and sensitive (MSSA) strains of Staphylococcus aureus, was achieved by the specially selected lytic bacteriophage with a wide host range of S. aureus strains and a penicillin-binding protein (PBP 2a) specific antibody. A quartz crystal microbalance with dissipation monitoring (QCM-D) was employed to analyze bacteria-phage interactions. The lytic phages were transformed into phage spheroids by exposure to water-chloroform interface. Phage spheroid monolayers were transferred onto QCM-D sensors by Langmuir-Blodgett (LB) technique. Biosensors were tested in the flow mode with bacterial water suspensions, while collecting frequency and energy dissipation changes. Bacteria-spheroid interactions resulted in decreased resonance frequency and an increase in dissipation energy for both MRSA and MSSA strains. Following the bacterial binding, these sensors were further exposed to a flow of the penicillin-binding protein (PBP 2a) specific antibody conjugated latex beads. Sensors tested with MRSA responded to PBP 2a antibody beads; while sensors examined with MSSA gave no response. This experimental difference establishes an unambiguous discrimination between methicillin resistant and sensitive S. aureus strains. Both free and immobilized bacteriophages strongly inhibit bacterial growth on solid/air interfaces and in water suspensions. After lytic phages are transformed into spheroids, they retain their strong lytic activity and demonstrate high bacterial capture efficiency. The phage and phage spheroids can be used for screening and disinfection of antibiotic resistant bacteria. Other applications may include use on biosensors, bacteriophage therapy, and antimicrobial surfaces.

  10. Measurement of strain in InGaN/GaN nanowires and nanopyramids

    DEFF Research Database (Denmark)

    Stankevic, Tomas; Mickevicius, Simas; Nielsen, Mikkel Schou

    2015-01-01

    The growth and optoelectronic properties of core-shell nanostructures are influenced by the strain induced by the lattice mismatch between core and shell. In contrast with planar films, nanostructures contain multiple facets that act as independent substrates for shell growth, which enables diffe...

  11. Direct noninvasive measurement and numerical modeling of depth-dependent strains in layered agarose constructs

    NARCIS (Netherlands)

    Griebel, A.J.; Khoshgoftar, M.; Novak, T.; Donkelaar, C.C. van; Neu, C.P.

    2014-01-01

    Biomechanical factors play an important role in the growth, regulation, and maintenance of engineered biomaterials and tissues. While physical factors (e.g. applied mechanical strain) can accelerate regeneration, and knowledge of tissue properties often guide the design of custom materials with tail

  12. Solution superstructures: truncated cubeoctahedron structures of pyrogallol[4]arene nanoassemblies.

    Science.gov (United States)

    Kumari, Harshita; Kline, Steven R; Fowler, Drew A; Mossine, Andrew V; Deakyne, Carol A; Atwood, Jerry L

    2014-01-04

    Giant nanocapsules: the solution-phase structures of PgC1Ho and PgC3Ho have been investigated using in situ neutron scattering measurements. The SANS results show the presence of spherical nanoassemblies of radius 18.2 Å, which are larger than the previously reported metal-seamed PgC3 hexamers (radius = 10 Å). The spherical architectures conform to a truncated cubeoctahedron geometry, indicating formation of the first metal-containing pyrogallol[4]arene-based dodecameric nanoassemblies in solution.

  13. Left ventricular dysfunction measured by tissue Doppler imaging and strain rate imaging in hypertensive adolescents

    Directory of Open Access Journals (Sweden)

    Hye Mi Ahn

    2010-01-01

    Full Text Available Purpose : Left ventricular (LV hypertrophy and impaired diastolic function may occur early in systemic hypertension. Diastolic dysfunction is associated with increased cardiovascular risk. Tissue Doppler imaging (TDI-derived tissue velocity and strain rate are new parameters for assessing diastolic dysfunction. The aim of this study is to determine whether TDI and strain rate imaging (SRI would improve the ability to recognize early impaired diastolic and systolic functions compared with conventional echocardiography in hypertensive adolescents. Methods : We included 38 hypertensive patients with systolic blood pressure above 140 mmHg or diastolic blood pressure above 90 mmHg. Ejection fraction and myocardial performance index (MPI were estimated by conventional echocardiography. Peak systolic myocardial velocity, early diastolic myocardial velocity (Em, and peak late diastolic myocardial velocity (Am were obtained by using TDI and SRI. Results : In the hypertensive group, interventricular septal thickness was significantly increased on M-mode echocardiography. Em/Am was significantly decreased at the mitral valve annulus. Among hypertensive subjects, the E strain rate at basal, mid, and apex was significantly decreased. Systolic strain was significantly decreased at the septum in the hypertensive group. Conclusion : Strain rate might be a useful new parameter for the quantification of both regional and global LV functions and could be used in long-term follow up in hypertensive patients. Early identification by SRI of subjects at risk for hypertensive and ventricular dysfunction may help to stratify risk and guide therapy. Further studies, including serial assessment of LV structure and function in a larger number of adolescents with hypertension, is necessary.

  14. Azobenzene mesogen-passivated gold nanoparticles: Controlled preparation, self-organized superstructures, thermal behavior and photoisomerization

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Junfei [Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Department of Physics and Electronic Science, Changsha University of Science and Technology, Changsha, Hunan 410076 (China); Wang, Meng; Bian, Huafeng; Zhou, Yang; Ma, Jie; Liu, Chengjie [Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China); Chen, Dongzhong, E-mail: cdz@nju.edu.cn [Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093 (China)

    2014-12-15

    Liquid crystal nanoscience has aroused intensive interests mainly due to their unique and collective properties and a variety of potential applications. In this paper, gold nanoparticles (GNPs) coated with alkoxy azobenzene mesogenic thiol ligands of different length polymethylene spacer and linear alkyl thiol co-ligands have been prepared. The thermal properties, phase behavior of thus obtained hybrid GNPs and photophysical properties of their solid-state films have been investigated by differential scanning calorimetry (DSC), variable-temperature small and wide angle X-ray scattering (SAXS/WAXS) and UV–vis spectroscopy. The hybrid GNPs exclusively passivated with azobenzene mesogenic ligands showed lamellar structure while those with mixed ligands exhibited hexagonal columnar superstructure, and the latter complex hybrid GNPs exhibited noticeably improved thermolysis resistance. Moreover, it is very interesting that the solid-state films of the hybrid GNPs displayed reversible photoresponse owing to the trans–cis transformation of azobenzene mesogenic ligands, and compared with the hybrid GNPs coated with mesogenic ligands only, those with mixed ligands exhibited faster photoisomerization rate upon alternate UV and visible light irradiation, which may have some promising applications. - Graphical abstract: Gold nanoparticles (GNPs) coated with azobenzene mesogenic thiol ligands and linear alkyl thiol co-ligands have been prepared showing lamellar or hexagonal columnar superstructures. The complex hybrid GNPs with co-ligands exhibit much improved thermolysis resistance and the solid-state films of the hybrid GNPs display interesting reversible photoisomerization. - Highlights: • Gold nanoparticles (GNPs) coated with azobenzene thiol ligands have been prepared. • The hybrid GNPs with alkyl thiol co-ligands show enhanced thermolysis resistance. • The hybrid GNPs exhibit lamellar or hexagonal columnar superstructures. • The solid-state films of the hybrid

  15. Tide-corrected strain rate and crevasses of Campbell Glacier Tongue in East Antarctica measured by SAR interferometry

    Science.gov (United States)

    Han, H.; Lee, H.

    2016-12-01

    Measurement of flow velocity strain rate of a floating glacier is critical to the investigation of detailed flow regime and crevassing mechanism. We measured the surface deformation of Campbell Glacier Tongue (CGT) in East Antarctica from the 14 COSMO-SkyMed one-day tandem differential interferometric SAR (DInSAR) image pairs obtained in 2011. By removing the vertical tidal deflection obtained from the double-differential InSAR (DDInSAR) signals, we derived the tide-corrected ice-flow velocity and strain rate of CGT. The vertical tidal deflection of CGT was estimated by multiplying the tidal variations corresponding to the DInSAR images by the DDInSAR-derived tide deflection ratio, which was removed from the DInSAR signals to extract ice velocity only. The orientation of crevasses in CGT was nearly perpendicular to the direction of the most tensile strain rate calculated from the tide-corrected ice velocity. This demonstrates that the crevasses form by ice flow in respect of the DInSAR accuracy, not by tidal deflection. The tide correction of DInSAR signals over floating glaciers by using the DDInSAR-derived tide deflection ratio is useful for estimating accurate ice velocity and strain rate for analyzing crevasses. The tide-corrected ice velocity and strain rate will thus be of great value in a better understating of ice dynamics of floating glaciers. This research was funded by National Research Foundation of Korea (NRF-2016R1D1A1A09916630).

  16. Association between aortic stenosis severity and contractile reserve measured by two-dimensional strain under low-dose dobutamine testing

    Directory of Open Access Journals (Sweden)

    Banović Marko

    2013-01-01

    Full Text Available Background/Aim. Early detection of left ventricle (LV systolic dysfunction could be a clue for surgical treatment in patients with significant aortic stenosis (AS. Therefore, we evaluated LV peak of global longitudinal strain (PGLS using speckle tracking imaging at rest and during low-dose dobutamine infusion in asymptomatic patients with moderate and severe AS and preserved LV ejection fraction (EF. Methods. All the patients underwent coronary angiography and had no obstructive coronary disease (defined as having no stenosis greater than 50% in diameter. The patients were divided into two groups: above and below median of 0.785 cm2 aortic valve area (AVA. PGLS was measured from acquired apical 4-chamber and 2-chamber cine loops using a EchoPac PC-workstation at rest and during 5 μg/kg/min, 10 μg/kg/min, and 20 μg/kg/min dobutamine infusion, respectively. The global strain was the average of segment strains from the apical views. Results: A total of 62 patients with moderate and severe AS (AVA median reached the statistical significance (- 8.71 ± 2.68% vs -11.93 ± 3.74%, p = 0.002. In addition, PGLS increase was also significant in 4-chamber view in the patients with AVA above median, but only when comparing baseline to peak 20 μg/kg/min (-10.72 ± 3.07% vs -13.14 ± 4.79%; p = 0.034. Conversely, in both groups the increase of PGLS in 2-chamber view did not reach significance. Conclusion. Two-dimensional strain speckle tracking analysis of myocardial deformation with measurement of peak systolic strain during dobutamine infusion is a feasible and accurate method to determine myocardial longitudinal systolic function and contractile reserve and may contribute to clinical decision making in patients with significant AS.

  17. A microwave promoted continuous flow approach to self-assembled hierarchical hematite superstructures

    OpenAIRE

    Bayazit, M.K.; Cao, E; Gavriilidis, A; Tang, J.

    2016-01-01

    In this work, a microwave promoted flow (MWPF) system to reproducibly synthesize self-assembled hierarchical hematite superstructures (Hem-SSs) using the sole precursor (Fe(NO3)3·9H2O) and single mode microwave under aqueous conditions was developed. The functional characterisation by XRD, (HR)TEM, XPS, UV-vis and Raman spectroscopy proved that highly crystalline ellipsoid Hem-SSs (∼180 nm × 140 nm) were produced, built from primary hematite nanoparticles, 5–10 nm in size using 0.05 mol L−1 p...

  18. Incommensurate superstructure in heavily doped fullerene layer on Bi/Si(111) surface

    Science.gov (United States)

    Gruznev, D. V.; Bondarenko, L. V.; Tupchaya, A. Y.; Matetskiy, A. V.; Zotov, A. V.; Saranin, A. A.

    2015-08-01

    Cs adsorption onto the C60-covered Si(111)-β- √{ 3 } × √{ 3 } -Bi reconstruction has been studied by means of scanning tunneling microscopy and photoelectron spectroscopy. Unexpected increase in apparent size of every second C60 molecule has been detected, hereupon the close packed molecular array almost doubles its periodicity. The change affects only the fullerenes that are in direct contact with the metal-induced reconstruction and takes no place already in the second layer. Photoelectron studies have revealed that this incommensurate "2 × 2" superstructure of a heavily doped C60 monolayer remains in an insulating state regardless of doping level.

  19. System design optimization for stand-alone photovoltaic systems sizing by using superstructure model

    Science.gov (United States)

    Azau, M. A. M.; Jaafar, S.; Samsudin, K.

    2013-06-01

    Although the photovoltaic (PV) systems have been increasingly installed as an alternative and renewable green power generation, the initial set up cost, maintenance cost and equipment mismatch are some of the key issues that slows down the installation in small household. This paper presents the design optimization of stand-alone photovoltaic systems using superstructure model where all possible types of technology of the equipment are captured and life cycle cost analysis is formulated as a mixed integer programming (MIP). A model for investment planning of power generation and long-term decision model are developed in order to help the system engineer to build a cost effective system.

  20. Assessing the small-strain soil stiffness for offshore wind turbines based on in situ seismic measurements

    Science.gov (United States)

    Versteijlen, W. G.; van Dalen, K. N.; Metrikine, A. V.; Hamre, L.

    2014-06-01

    The fundamental natural frequency as measured on installed offshore wind turbines is significantly higher than its designed value, and it is expected that the explanation for this can be found in the currently adopted modeling of soil-structure interaction. The small-strain soil stiffness is an important design parameter, as it has a defining influence on the first natural frequency of these structures. In this contribution, in situ seismic measurements are used to derive the small-strain shear modulus of soil as input for 3D soil-structure interaction models to assess the initial soil stiffness at small strains for offshore wind turbine foundations. A linear elastic finite element model of a half-space of solids attached to a pile is used to derive an equivalent first mode shape of the foundation. The second model extends the first one by introducing contact elements between pile and soil, to take possible slip and gap-forming into account. The deflections derived with the 3D models are smaller than those derived with the p- y curve design code. This higher stiffness is in line with the higher measured natural frequencies. Finally a method is suggested to translate the response of 3D models into 1D engineering models of a beam laterally supported by uncoupled distributed springs.

  1. Measurement of the cytotoxic effects of different strains of Mycoplasma equigenitalium on the equine uterine tube using a calmodulin assay.

    Science.gov (United States)

    Bermúdez, V M; Miller, R B; Rosendal, S; Fernando, M A; Johnson, W H; O'Brien, P J

    1992-01-01

    The cytopathic effects induced by five strains of Mycoplasma equigenitalium for cells of equine uterine tube explants were tested by measuring changes in cellular and extracellular concentrations of calmodulin (CaM). Calmodulin concentrations in samples of total homogenate (TH) and total homogenate supernates (THS) of the infected equine uterine tube explants were significantly lower than respective measurements on noninfected controls. In tissue culture medium fractions (TCM) of some infected explants, CaM concentrations were significantly higher than noninfected controls (p > 0.95). The results suggest that M. equigenitalium colonization on ciliated cells of the equine uterine tube can affect the permeability of the cell membrane leading to leakage or release of CaM during cell breakdown. Measurement of CaM concentrations in samples of TH revealed significant differences in the cytotoxic effects induced by different strains of M. equigenitalium on the equine uterine tube (EUT). The data suggests that some strains of M. equigenitalium may have a role in reproductive failure in the mare. In addition comparisons of the means of the concentrations of CaM in samples of TH or THS in EUT explants from four mares in the follicular and four in the luteal phase of the estrous cycle were found to be not significantly different. PMID:1477802

  2. Residual strain measurements of a fatigued metal stick and heat treated steel pipe at JRR3M-RESA

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Kazuko; Horikawa, Takeshi; Kawashima, Hisaichi [Ryukoku Univ., Kyoto (Japan); Minakawa, Nobuaki; Tsuchiya, Yoshinori

    1997-06-01

    A residual strain on section of notched edge after fatiguing the carbon steel round bar with ring shape and semi-circular section and on thick direction of 13% Cr-steel pipe for oil well heat-treated after machining was tried to test. It was one of the initial experiments in residual strain measurement apparatus (RESA; old name is DIVE) installed at T2-1 port of JRR-3M to test a residual strain at section of 8 mm in diameter of the fatigue specimen at three (x{sup -}, y{sup -} and z{sup -}) directions on a fine mesh of 1 mm step. This test has another aim to inspect the apparatus itself such as obtained accuracy, required testing time, and so on, except original aim to find out strain of the specimen. As a result of the initial experiment, a lot of points to be investigated and improved were found out. According to these results, at present a fatigue specimen with large diameter (40 mm) is now in preparation. And, as is now processing on improvement of a monochromator to increase the beam intensity and so on, a higher resolution as well as a finer (about 1 micron) beam diameter for the specimen is expected to establish. (G.K.)

  3. Application of FOX-TEK sensors to measure strains in steel pipe with wall thinning defects under internal pressure

    Energy Technology Data Exchange (ETDEWEB)

    Tennyson, R.C.; Lin, W.; Doiron, A. [Natural Resources Canada, Ottawa, ON (Canada)

    2002-06-30

    A project was undertaken as part of the ISPIR program to investigate the application of fiber optic sensing to monitor pipelines. This report discussed the application of FOX-TEK (FT) sensors to measure strains in steel pipe with wall thinning defects under internal pressure. Sensor installation and pipe test results were both discussed. Several illustrations were offered, including the geometry of pipes with internal defects and location of FT sensors; smoothing of the pipe surface prior to bonding sensors; close-up views of 2 FT sensors bonded over defect areas of the steel pipe; an overview of steel pipe with 3 FT sensors; and an internal pressure test of steel pipe with 4 FT sensors connected to an FTI 3300 instrument. FT sensor strain results were plotted for 2 different sized cutouts and a finite element analysis was conducted to calculate the circumferential strain distribution for 24 inch and 4 inch cutouts, with and without the weld seams present. It was concluded that the FT sensors can accurately detect the hoop strains for uniform wall sections, circumferential defect areas and large regions of wall thinning for a pipe under internal pressure. 1 tab., 8 figs.

  4. Low temperature synthesis of flower-like ZnMn 2O 4 superstructures with enhanced electrochemical lithium storage

    Science.gov (United States)

    Xiao, Lifen; Yang, Yanyan; Yin, Jia; Li, Qiao; Zhang, Lizhi

    In this communication, flower-like tetragonal ZnMn 2O 4 superstructures are synthesized by a facile low temperature solvothermal process. Characterizations show that these ZnMn 2O 4 superstructures are well crystallized and of high purity. The product exhibits an initial electrochemical capacity of 763 mAh g -1 and retains stable capacity of 626 mAh g -1 after 50 cycles. Its stable capacity is significantly higher than that of nanocrystalline ZnMn 2O 4 synthesized by a polymer-pyrolysis method. It is found that the higher capacity retention can be attributed to three-dimensional superstructural nature of the as-prepared flower-like ZnMn 2O 4 material. This study suggests that the solvothermally synthesized flower-like ZnMn 2O 4 is a promising anode material for lithium-ion batteries.

  5. Investigation of a Cross-Correlation Based Optical Strain Measurement Technique for Detecting radial Growth on a Rotating Disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.

    2013-01-01

    The Aeronautical Sciences Project under NASA`s Fundamental Aeronautics Program is extremely interested in the development of novel measurement technologies, such as optical surface measurements in the internal parts of a flow path, for in situ health monitoring of gas turbine engines. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. In the present study, a cross-correlation imaging technique is investigated in a proof-of-concept study as a possible optical technique to measure the radial growth and strain field on an already cracked sub-scale turbine engine disk under loaded conditions in the NASA Glenn Research Center`s High Precision Rotordynamics Laboratory. The optical strain measurement technique under investigation offers potential fault detection using an applied high-contrast random speckle pattern and imaging the pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds induces an external load, resulting in a radial growth of the disk of approximately 50.0-im in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be .shifted`. The resulting particle displacements between the two images will then be measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. In order to develop and validate this optical strain measurement technique an initial proof-of-concept experiment is carried out in a controlled environment. Using PIV optimization principles and guidelines, three potential speckle patterns, for future use on the rotating disk, are developed

  6. 正压力对电阻应变片应变测量影响的试验研究%EXPERIMENT STUDY ON THE INFLUENCE OF POSITIVE PRESSURE ON STRAIN MEASURING OF STRAIN GAUGES

    Institute of Scientific and Technical Information of China (English)

    吕凡任; 邵红才; 金耀华; 尹继明

    2012-01-01

    Strain gauge is often used to study and monitor the strain of the component in the foundation. But the positive pressure applied to the strain gauge will influence the strain measuring. The experiments were done to study the influence. The study indicated that the positive pressure would influence the measuring of strain. As the strain to be measured was small the influence was bigger, about 10%. As the strain to be measured was bigger the influence was about 5% .%在土木基础工程研究和监测中常常使用应变片测量构件的应变,计算其应力。但应变片受到土压力等正压力的作用对应变的准确测量将产生影响。采用试验方法研究正压力对应变片应变测量的影响。研究发现,在待测应变较小时,正压力对应变测量值产生的影响较大,在10%左右;当待测应变较大时,正压力对应变测量值产生的影响在5%左右。

  7. Superstructures formed by orientationally ordered tetrahedra in the bcc lattice: new diffusionless order-disorder transition in solids.

    Science.gov (United States)

    Tamura, Ryuji

    2015-03-04

    We investigated and clarified the superstructures formed by tetrahedra in the bcc lattice within the framework of second-order transitions. Compliance with both the Landau and Lifshitz conditions was investigated for all possible superstructures and, based on this, we demonstrate that bcc crystals that contain tetrahedra at an inversion center can exhibit a variety of second-order transitions, which are regarded as a new type of diffusionless order-disorder transition with antiferroic orientational orders. Finally, we show that the transition gives rise to a new glassy state. Breaking of the local inversion symmetry may lead to a new orientational glass, which is reminiscent of spin glasses in magnetism.

  8. The Effects on the Operating Condition of a Passenger Ship Retro-fitted with a Composite Superstructure

    DEFF Research Database (Denmark)

    Karatzas, Vasileios; Hjørnet, N. K.; Kristensen, Hans Otto Holmegaard

    2016-01-01

    the stability of the ship. In this work, the superstructure of a RoPax ferry has been redesigned using composite materials emphasizing the effects on the ship from an operational per-spective. The weight reduction has been calculated for a real-istic average operating condition quantifying the effects......As sustainability and climate change have come on the politi-cal agenda, the shipping industry will have to be operating energy efficient ships. An appealing step to achieve this goal is by designing superstructures made out of Fiber Reinforced Plastics (FRP) aiming at the reduction of the ship...

  9. Space-resolved diffusing wave spectroscopy measurements of the macroscopic deformation and the microscopic dynamics in tensile strain tests

    Science.gov (United States)

    Nagazi, Med-Yassine; Brambilla, Giovanni; Meunier, Gérard; Marguerès, Philippe; Périé, Jean-Noël; Cipelletti, Luca

    2017-01-01

    We couple a laser-based, space-resolved dynamic light scattering apparatus to a universal traction machine for mechanical extensional tests. We perform simultaneous optical and mechanical measurements on polyether ether ketone, a semi-crystalline polymer widely used in the industry. Due to the high turbidity of the sample, light is multiply scattered by the sample and the diffusing wave spectroscopy (DWS) formalism is used to interpret the data. Space-resolved DWS yields spatial maps of the sample strain and of the microscopic dynamics. An excellent agreement is found between the strain maps thus obtained and those measured by a conventional stereo-digital image correlation technique. The microscopic dynamics reveals both affine motion and plastic rearrangements. Thanks to the extreme sensitivity of DWS to displacements as small as 1 nm, plastic activity and its spatial localization can be detected at an early stage of the sample strain, making the technique presented here a valuable complement to existing material characterization methods.

  10. Global positioning system measurements over a strain monitoring network in the eastern two-thirds of the United States

    Energy Technology Data Exchange (ETDEWEB)

    Strange, W.E.

    1991-09-01

    A 45-station geodetic network was established in 1987 using global positioning system (GPS) technology to provide a means of monitoring strain and deformation in the central and eastern United States. Reduction of the initial epoch data showed that accuracies of 1 to 3 cm can be achieved for horizontal position, provided sufficient observations are available and there are four or more fiducial stations whose positions are known a priori, for example from Very Long Baseline Interferometry measurements. Accuracies obtained provide the ability to determine strain at the 1:10{sup 7} to 1:10{sup 8} level. Vertical positions are less accurate because of problems in modeling refraction and are determined at the 5 to 7 cm level. It is planned to remeasure this network at regular intervals in the coming years to place bounds on the strain occurring in the central and eastern United States. This network is also expected to serve as a reference network for more detailed monitoring networks in areas of high risk such as the New Madrid area. Future measurements are expected to provide more accurate results because of increased numbers of GPS satellites available and improved computation software. The improved software will also allow future upgrading of the accuracy of the 1987 observations. 3 figs., 5 tabs.

  11. Studies of Shear Band Velocity Using Spatially and Temporally Resolved Measurements of Strain During Quasistatic Compression of Bulk Metallic Glass

    Energy Technology Data Exchange (ETDEWEB)

    Wright, W J; Samale, M; Hufnagel, T; LeBlanc, M; Florando, J

    2009-06-15

    We have made measurements of the temporal and spatial features of the evolution of strain during the serrated flow of Pd{sub 40}Ni{sub 40}P{sub 20} bulk metallic glass tested under quasistatic, room temperature, uniaxial compression. Strain and load data were acquired at rates of up to 400 kHz using strain gages affixed to all four sides of the specimen and a piezoelectric load cell located near the specimen. Calculation of the displacement rate requires an assumption about the nature of the shear displacement. If one assumes that the entire shear plane displaces simultaneously, the displacement rate is approximately 0.002 m/s. If instead one assumes that the displacement occurs as a localized propagating front, the velocity of the front is approximately 2.8 m/s. In either case, the velocity is orders of magnitude less than the shear wave speed ({approx}2000 m/s). The significance of these measurements for estimates of heating in shear bands is discussed.

  12. Comparative analysis of cogeneration power plants optimization based on stochastic method using superstructure and process simulator

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Leonardo Rodrigues de [Instituto Federal do Espirito Santo, Vitoria, ES (Brazil)], E-mail: leoaraujo@ifes.edu.br; Donatelli, Joao Luiz Marcon [Universidade Federal do Espirito Santo (UFES), Vitoria, ES (Brazil)], E-mail: joaoluiz@npd.ufes.br; Silva, Edmar Alino da Cruz [Instituto Tecnologico de Aeronautica (ITA/CTA), Sao Jose dos Campos, SP (Brazil); Azevedo, Joao Luiz F. [Instituto de Aeronautica e Espaco (CTA/IAE/ALA), Sao Jose dos Campos, SP (Brazil)

    2010-07-01

    Thermal systems are essential in facilities such as thermoelectric plants, cogeneration plants, refrigeration systems and air conditioning, among others, in which much of the energy consumed by humanity is processed. In a world with finite natural sources of fuels and growing energy demand, issues related with thermal system design, such as cost estimative, design complexity, environmental protection and optimization are becoming increasingly important. Therefore the need to understand the mechanisms that degrade energy, improve energy sources use, reduce environmental impacts and also reduce project, operation and maintenance costs. In recent years, a consistent development of procedures and techniques for computational design of thermal systems has occurred. In this context, the fundamental objective of this study is a performance comparative analysis of structural and parametric optimization of a cogeneration system using stochastic methods: genetic algorithm and simulated annealing. This research work uses a superstructure, modelled in a process simulator, IPSEpro of SimTech, in which the appropriate design case studied options are included. Accordingly, the cogeneration system optimal configuration is determined as a consequence of the optimization process, restricted within the configuration options included in the superstructure. The optimization routines are written in MsExcel Visual Basic, in order to work perfectly coupled to the simulator process. At the end of the optimization process, the system optimal configuration, given the characteristics of each specific problem, should be defined. (author)

  13. Anomalous hexagonal superstructure of aluminum oxide layer grown on NiAl(110) surface

    Science.gov (United States)

    Krukowski, Pawel; Chaunchaiyakul, Songpol; Minagawa, Yuto; Yajima, Nami; Akai-Kasaya, Megumi; Saito, Akira; Kuwahara, Yuji

    2016-11-01

    A modified method for the fabrication of a highly crystallized layer of aluminum oxide on a NiAl(110) surface is reported. The fabrication method involves the multistep selective oxidation of aluminum atoms on a NiAl(110) surface resulting from successive oxygen deposition and annealing. The surface morphology and local electronic structure of the novel aluminum oxide layer were investigated by high-resolution imaging using scanning tunneling microscopy (STM) and current imaging tunneling spectroscopy. In contrast to the standard fabrication method of aluminum oxide on a NiAl(110) surface, the proposed method produces an atomically flat surface exhibiting a hexagonal superstructure. The superstructure exhibits a slightly distorted hexagonal array of close-packed bright protrusions with a periodicity of 4.5 ± 0.2 nm. Atomically resolved STM imaging of the aluminum oxide layer reveals a hexagonal arrangement of dark contrast spots with a periodicity of 0.27 ± 0.02 nm. On the basis of the atomic structure of the fabricated layer, the formation of α-Al2O3(0001) on the NiAl(110) surface is suggested.

  14. Solving a superstructure from two-wavelength x-ray powder diffraction data- a simulation

    Institute of Scientific and Technical Information of China (English)

    陈建荣; 古元新; 范海福

    2003-01-01

    Two different kinds of phase ambiguities are intrinsic in two-wavelength x-ray powder diffraction from acentric crystal structures having pseudo-translation symmetry. In a test calculation we have solved the problem for the first time by two different phasing procedures developed originally in single-crystal structure analysis. They are the direct method of breaking enantiomorphous phase ambiguity in protein crystallography and that of breaking translational phase ambiguity for superstructures. An artificial structure was used in the test, which is based on atomic coordinates of the known structure, SHAS (C5H6O5N3K), with the atom K replaced by Rb. The arrangement of Rb atoms possesses a subperiodicity of t = (a + b + c)/2. Two-wavelength synchrotron x-ray powder diffraction data were simulated with λ1 =0.0816nm and λ2=0.1319nm. Overlapped reflections were uniformly decomposed at the beginning and redecomposed afterward when the partial-structure information became available. The enantiomorphous phase ambiguity was resolved only for reflections with h + k + l even. Phases of reflections with h + k + l odd were derived by the direct method of solving superstructures. A fragment was then obtained, which led to the complete structure in five cycles of Fourier iteration.

  15. Solving a superstructure from two—wavelength x—ray powder diffraction data—a simulation

    Institute of Scientific and Technical Information of China (English)

    陈建荣; 古元新; 等

    2003-01-01

    Two different kinds of phase ambiguities are intrinsic in two-wavelength x-ray powder diffraction from acentric crystal structures having pseudo-translation symmetry.In a test calculation we have solved the problem for the first time by two different phasing procedures developed originally in single-crystal structure analysis.They are the direct method of breaking enantiomorphous phase ambiguity in protein crystallography and that of breaking translational phase ambiguity for superstructures.An artificial structure was used in the test,which is based on atomic coordinates of the known structure,SHAS(C5H6O5N3K),with the atom K replaced by Rb.The arrangement of Rb atoms possesses a subperiodicity of t =(a+b+c)/2.Two -wavelength synchrotron x-ray powder diffraction data were simulated with λ1=0.0816nm and λ2=0.1319nm.Overlapped reflections were uniformly decomposed at the beginning and rdedcomposed afterward when the partial-structure in formation became available.The enantiomorphous phase ambiguity was resolved only for reflections with h+k+l even.Phases of reflections with h+k+l odd were derived by the direct method of solving superstructures.A fragment was then obtained.which led to the the complete structure in five cycles of Fourier iteration.

  16. Combined mass and heat exchange network synthesis based on stage-wise superstructure model☆

    Institute of Scientific and Technical Information of China (English)

    Linlin Liu; Jian Du; Fenglin Yang

    2015-01-01

    Integrating multiple systems into one has become an important trend in Process Systems Engineering research field since there is strong demand from the modern industries. In this study, a stage-wise superstructure-based method is proposed to synthesize a combined mass and heat exchange network (CM&HEN) which has two parts as the mass exchange network (MEN) and heat exchange network (HEN) involved. To express the pos-sible heat exchange requirements resulted from mass exchange operations, a so cal ed“indistinct HEN super-structure (IHS)”, which can contain the all potential matches between streams, is constructed at first. Then, a non-linear programming (NLP) mathematical model is established for the simultaneous synthesis and optimiza-tion of networks. Therein, the interaction between mass exchange and heat exchange is modeling formulated. The NLP model has later been examined using an example from literature, and the effectiveness of the proposed method has been demonstrated with the results.

  17. Antipulverization Electrode Based on Low-Carbon Triple-Shelled Superstructures for Lithium-Ion Batteries.

    Science.gov (United States)

    Zu, Lianhai; Su, Qingmei; Zhu, Feng; Chen, Bingjie; Lu, Huanhuan; Peng, Chengxin; He, Ting; Du, Gaohui; He, Pengfei; Chen, Kai; Yang, Shihe; Yang, Jinhu; Peng, Huisheng

    2017-09-01

    The realization of antipulverization electrode structures, especially using low-carbon-content anode materials, is crucial for developing high-energy and long-life lithium-ion batteries (LIBs); however, this technology remains challenging. This study shows that SnO2 triple-shelled hollow superstructures (TSHSs) with a low carbon content (4.83%) constructed by layer-by-layer assembly of various nanostructure units can withstand a huge volume expansion of ≈231.8% and deliver a high reversible capacity of 1099 mAh g(-1) even after 1450 cycles. These values represent the best comprehensive performance in SnO2 -based anodes to date. Mechanics simulations and in situ transmission electron microscopy suggest that the TSHSs enable a self-synergistic structure-preservation behavior upon lithiation/delithiation, protecting the superstructures from collapse and guaranteeing the electrode structural integrity during long-term cycling. Specifically, the outer shells during lithiation processes are fully lithiated, preventing the overlithiation and the collapse of the inner shells; in turn, in delithiation processes, the underlithiated inner shells work as robust cores to support the huge volume contraction of the outer shells; meanwhile, the middle shells with abundant pores offer sufficient space to accommodate the volume change from the outer shell during both lithiation and delithiation. This study opens a new avenue in the development of high-performance LIBs for practical energy applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Merenje torzionih oscilacija pomoću mernih traka / Measurement of torsional vibrations by using strain gages

    Directory of Open Access Journals (Sweden)

    Dragan Trifković

    2005-05-01

    Full Text Available U ovom radu prikazan je metod merenja torzionih oscilacija mehaničkih sistema na osnovu merenja torzionog napona pomoću mernih traka. Ovaj metod naročito je pogodan za proveru nivoa naprezanja elemenata sistema, koji prenose promenljive obrtne momente i torziono osciluju. Osim toga, mogu se određivati i kritične brzine obrtanja elemenata sistema, pri kojima se javljaju rezonantna naprezanja i otkazi sistema, kao što su: pojačana buka, trošenje zupčanika, zamor materijala, oštećenja i lomovi vratila, spojnica i si. Predložen je merni lanac u kojem centralno mesto zauzima suvremeni mobilni merni sistem Spider 8, koji omogućava merenje, obradu i prikaz rezultata pomoću računara. / In this work the measuring method of torsion vibrations is presented according to the measurement of torsion stress using strain gages. This method is particularly suitable in checking the system elements strain level that transfers changeable torsion moments and oscillate torsionally. Besides that, the system elements critical velocity rotation can be estimated, folio-wed by the resonant strain and problems in the function of that system such as: amplified noise, -wearing-out of gears, fatigue crack, damage and break of shafts and junctions etc. The measuring chain is proposed in -which the central part is a contemporary mobile system Spider 8, -which enables measurement, processing and displays measured results on a computer.

  19. Critical study of the method of calculating virgin rock stresses from measurement results of the CSIR triaxial strain cell

    Science.gov (United States)

    Vreede, F. A.

    1981-05-01

    The manual of instructions for the user of the CSIR triaxial rock stress measuring equipment is critically examined. It is shown that the values of the rock stresses can be obtained from the strain gauge records by means of explicit formulae, which makes the manual's computer program obsolete. Furthermore statistical methods are proposed to check for faulty data and inhomogeneity in rock properties and virgin stress. The possibility of non-elastic behavior of the rock during the test is also checked. A new computer program based on the explicit functions and including the check calculations is presented. It is much more efficient than the one in the manual since it does not require computer sub-routines, allowing it to be used directly on any modern computer. The output of the new program is in a format suitable for direct inclusion in the report of an investigation using strain cell results.

  20. A flexible strain sensor based on a Conductive Polymer Composite for in situ measurement of parachute canopy deformation.

    Science.gov (United States)

    Cochrane, Cédric; Lewandowski, Maryline; Koncar, Vladan

    2010-01-01

    A sensor based on a Conductive Polymer Composite (CPC), fully compatible with a textile substrate and its general properties, has been developed in our laboratory, and its electromechanical characterization is presented herein. In particular the effects of strain rate (from 10 to 1,000 mm/min) and of repeated elongation cycles on the sensor behaviour are investigated. The results show that strain rate seems to have little influence on sensor response. When submitted to repeated tensile cycles, the CPC sensor is able to detect accurately fabric deformations over each whole cycle, taking into account the mechanical behaviour of the textile substrate. Complementary information is given concerning the non-effect of aging on the global resistivity of the CPC sensor. Finally, our sensor was tested on a parachute canopy during a real drop test: the canopy fabric deformation during the critical inflation phase was successfully measured, and was found to be less than 9%.

  1. AGARD Flight Test Instrumentation Series. Volume 7. Strain Gauge Measurements on Aircraft

    Science.gov (United States)

    1976-04-01

    importtut for conventional materials. Increased attention has to be paid to this lact only if high-strength steels or titanium alloys are to be loaded to...installed on a titanium component (O - 9 Om/m/K). However, a strain gauge designated for steel (mT *12 tim/rn/K) can well be used for titanium ...mechanically by means of abrasion, polishing with emery, sand blasting etc or chemically by means of solvents or pickling media; in the latter case the

  2. Progress of a cross-correlation based optical strain measurement technique for detecting radial growth on a rotating disk

    Science.gov (United States)

    Clem, Michelle M.; Woike, Mark R.; Abdul-Aziz, Ali

    2014-04-01

    The Aeronautical Sciences Project under NASA's Fundamental Aeronautics Program is interested in the development of novel measurement technologies, such as optical surface measurements for the in situ health monitoring of critical constituents of the internal flow path. In situ health monitoring has the potential to detect flaws, i.e. cracks in key components, such as engine turbine disks, before the flaws lead to catastrophic failure. The present study, aims to further validate and develop an optical strain measurement technique to measure the radial growth and strain field of an already cracked disk, mimicking the geometry of a sub-scale turbine engine disk, under loaded conditions in the NASA Glenn Research Center's High Precision Rotordynamics Laboratory. The technique offers potential fault detection by imaging an applied high-contrast random speckle pattern under unloaded and loaded conditions with a CCD camera. Spinning the cracked disk at high speeds (loaded conditions) induces an external load, resulting in a radial growth of the disk of approximately 50.0-μm in the flawed region and hence, a localized strain field. When imaging the cracked disk under static conditions, the disk will be undistorted; however, during rotation the cracked region will grow radially, thus causing the applied particle pattern to be `shifted'. The resulting particle displacements between the two images is measured using the two-dimensional cross-correlation algorithms implemented in standard Particle Image Velocimetry (PIV) software to track the disk growth, which facilitates calculation of the localized strain field. A random particle distribution is adhered onto the surface of the cracked disk and two bench top experiments are carried out to evaluate the technique's ability to measure the induced particle displacements. The disk is shifted manually using a translation stage equipped with a fine micrometer and a hotplate is used to induce thermal growth of the disk, causing the

  3. Myocardial Strain Imaging Based on Two-Dimensional Displacement Vector Measurement

    Science.gov (United States)

    Nitta, Naotaka; Shiina, Tsuyoshi

    2004-05-01

    The abnormalities of myocardial wall motion caused by changes in wall stiffness often appear in the early stage of ischemic heart disease. Since the myocardium exhibits complex and large motion, a two-dimensional (2D) or three-dimensional (3D) assessment of stiffness distribution is required for accurate diagnosis. Although a 3D assessment is ultimately required, as a stepped approach for practical use, we propose novel methods for tracking the 2D motion using a one-dimensional (1D) phased array and for assessing myocardial malfunction by visualizing the invariant of a strain tensor. The feasibilities of the proposed methods were evaluated by numerically simulating the short-axis imaging of a 3D myocardial model. This model includes a hard infarction located between 1 and 3 o’clock, which is difficult to detect by conventional tissue Doppler and strain rate imaging, and the motions of the model were assigned by referring to actual myocardial motion. These results revealed that the proposed imaging methods clearly depicted the hard infarction area which conventional imaging could not detect.

  4. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    Science.gov (United States)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-07-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  5. Texture and Strain Measurements from Bending of NiTi Shape Memory Alloy Wires

    Science.gov (United States)

    Carl, Matthew; Zhang, Baozhuo; Young, Marcus L.

    2016-09-01

    Shape memory alloys (SMAs) are a new generation of materials that exhibit unique nonlinear deformations due to a phase transformation which allows the material to return to its original shape after removal of stress or a change in temperature. These unique properties are the result of a martensitic/austenitic phase transformation through the application of temperature changes or applied stress. Many technological applications of austenitic SMAs involve cyclical mechanical loading and unloading in order to take advantage of pseudoelasticity, but are limited due to poor fatigue life. In this paper, commercial pseudoelastic NiTi SMA wires (50.7 at.% Ni) were placed under different bending strains and examined using scanning electron microscopy and high-energy synchrotron radiation X-ray diffraction (SR-XRD). By observing the microstructure, phase transformation temperatures, surface texture and diffraction patterns along the wire, it is shown that the wire exhibits a strong anisotropic behavior whether on the tensile or compressive side of the bending axis and that the initiation of micro-cracks in the wires is localized on the compression side, but that crack propagation will still happen if the wire is reloaded in the opposite direction. In addition, lattice strains are examined for both the austenite and martensite phases.

  6. Aircraft health and usage monitoring system for in-flight strain measurement of a wing structure

    Science.gov (United States)

    Kim, Jin-Hyuk; Park, Yurim; Kim, Yoon-Young; Shrestha, Pratik; Kim, Chun-Gon

    2015-10-01

    This paper presents an aircraft health and usage monitoring system (HUMS) using fiber Bragg grating (FBG) sensors. This study aims to implement and evaluate the HUMS for in-flight strain monitoring of aircraft structures. An optical-fiber-based HUMS was developed and applied to an ultralight aircraft that has a rectangular wing shape with a strut-braced configuration. FBG sensor arrays were embedded into the wing structure during the manufacturing process for effective sensor implementation. Ground and flight tests were conducted to verify the integrity and availability of the installed FBG sensors and HUMS devices. A total of 74 flight tests were conducted using the HUMS implemented testbed aircraft, considering various maneuvers and abnormal conditions. The flight test results revealed that the FBG-based HUMS was successfully implemented on the testbed aircraft and operated normally under the actual flight test environments as well as providing reliable in-flight strain data from the FBG sensors over a long period of time.

  7. Time dependence of mesoscopic strain distribution for triaxial woven carbon-fiber-reinforced polymer under creep loading measured by digital image correlation

    Science.gov (United States)

    Koyanagi, Jun; Nagayama, Hideo; Yoneyama, Satoru; Aoki, Takahira

    2016-06-01

    This paper presents the time dependence of the mesoscopic strain of a triaxial woven carbon-fiber-reinforced polymer under creep loading measured using digital image correlation (DIC). Two types of DIC techniques were employed for the measurement: conventional subset DIC and mesh DIC. Static tensile and creep tests were carried out, and the time dependence of the mesoscopic strain distribution was investigated by applying these techniques. The ultimate failure of this material is dominated by inter-bundle decohesion caused by relative rigid rotation and relating shear stress. Therefore, these were focused on in the present study. During the creep tests, the fiber directional strain, shear strain, and rotation were monitored using the DIC, and the mechanism for the increase in the specimen's macro-strain over time was investigated based on the results obtained by the DIC measurement.

  8. Fiber ring laser for axial micro-strain measurement by employing few-mode concentric ring core fiber

    Science.gov (United States)

    Liu, Jingxuan; Liang, Xiao; Sun, Chunran; Jian, Shuisheng

    2017-01-01

    We proposed and demonstrated a novel few-mode concentric-ring core fiber (FM-CRCF) for axial micro-strain measurement with fiber ring laser based on few-mode-singlemode-few-mode fiber structure. The core area of CRCF consists of four concentric rings which refractive indices are 1.448, 1.441, 1.450, 1.441, respectively. LP01 and LP11 are two dominated propagating mode groups contributing in the CRCF. In this few-mode-singlemode-few-mode structure, two sections of CRCF act as the mode generator and coupler, respectively. The basis of sensing is the center single mode fiber. Moreover, this structure can be used as an optical band-pass filter. By using fiber ring cavity laser, the axial micro-strain sensing system has high intensity (∼20 dB), high optical signal to noise ratio (∼45 dB) and narrow 3 dB bandwidth (∼0.1 nm). In the axial micro-strain range from 0 to 1467 με , the lasing peak wavelength shifts from 1561.05 nm to 1559.9 nm with the experimentally sensitivity of ∼ 0.81pm / με .

  9. A biomechanical assessment of modular and monoblock revision hip implants using FE analysis and strain gage measurements

    Directory of Open Access Journals (Sweden)

    Papini Marcello

    2010-05-01

    Full Text Available Abstract Background The bone loss associated with revision surgery or pathology has been the impetus for developing modular revision total hip prostheses. Few studies have assessed these modular implants quantitatively from a mechanical standpoint. Methods Three-dimensional finite element (FE models were developed to mimic a hip implant alone (Construct A and a hip implant-femur configuration (Construct B. Bonded contact was assumed for all interfaces to simulate long-term bony ongrowth and stability. The hip implants modeled were a Modular stem having two interlocking parts (Zimmer Modular Revision Hip System, Zimmer, Warsaw, IN, USA and a Monoblock stem made from a single piece of material (Stryker Restoration HA Hip System, Stryker, Mahwah, NJ, USA. Axial loads of 700 and 2000 N were applied to Construct A and 2000 N to Construct B models. Stiffness, strain, and stress were computed. Mechanical tests using axial loads were used for Construct A to validate the FE model. Strain gages were placed along the medial and lateral side of the hip implants at 8 locations to measure axial strain distribution. Results There was approximately a 3% average difference between FE and experimental strains for Construct A at all locations for the Modular implant and in the proximal region for the Monoblock implant. FE results for Construct B showed that both implants carried the majority (Modular, 76%; Monoblock, 66% of the 2000 N load relative to the femur. FE analysis and experiments demonstrated that the Modular implant was 3 to 4.5 times mechanically stiffer than the Monoblock due primarily to geometric differences. Conclusions This study provides mechanical characteristics of revision hip implants at sub-clinical axial loads as an initial predictor of potential failure.

  10. A Critical Reassessment of Marxian Base-Superstructure Explanations of the Role of Education in Social Change.

    Science.gov (United States)

    Chun, Kyung-Kap

    1986-01-01

    Examines how four major versions of neo-Marxism (i.e., Hegelian, Phenomenological, Structuralist Marxism, and the Frankfurt School) attempt to overcome the base-superstructure thesis of the political economists of education. Considers the implicit social ontological and epistemological assumptions and the related theory of education of each.…

  11. From conventional sensors to fibre optic sensors for strain and force measurements in biomechanics applications: a review.

    Science.gov (United States)

    Roriz, Paulo; Carvalho, Lídia; Frazão, Orlando; Santos, José Luís; Simões, José António

    2014-04-11

    In vivo measurement, not only in animals but also in humans, is a demanding task and is the ultimate goal in experimental biomechanics. For that purpose, measurements in vivo must be performed, under physiological conditions, to obtain a database and contribute for the development of analytical models, used to describe human biomechanics. The knowledge and control of the mechanisms involved in biomechanics will allow the optimization of the performance in different topics like in clinical procedures and rehabilitation, medical devices and sports, among others. Strain gages were first applied to bone in a live animal in 40's and in 80's for the first time were applied fibre optic sensors to perform in vivo measurements of Achilles tendon forces in man. Fibre optic sensors proven to have advantages compare to conventional sensors and a great potential for biomechanical and biomedical applications. Compared to them, they are smaller, easier to implement, minimally invasive, with lower risk of infection, highly accurate, well correlated, inexpensive and multiplexable. The aim of this review article is to give an overview about the evolution of the experimental techniques applied in biomechanics, from conventional to fibre optic sensors. In the next sections the most relevant contributions of these sensors, for strain and force in biomechanical applications, will be presented. Emphasis was given to report of in vivo experiments and clinical applications.

  12. Rotorcraft On-Blade Pressure and Strain Measurements Using Wireless Optical Sensor System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Experimental measurements of rotor blades are important for understanding the aerodynamics and dynamics of a rotorcraft. This understanding can help in solving...

  13. Nanoscale superstructures assembled by polymerase chain reaction (PCR): programmable construction, structural diversity, and emerging applications.

    Science.gov (United States)

    Kuang, Hua; Ma, Wei; Xu, Liguang; Wang, Libing; Xu, Chuanlai

    2013-11-19

    Polymerase chain reaction (PCR) is an essential tool in biotechnology laboratories and is becoming increasingly important in other areas of research. Extensive data obtained over the last 12 years has shown that the combination of PCR with nanoscale dispersions can resolve issues in the preparation DNA-based materials that include both inorganic and organic nanoscale components. Unlike conventional DNA hybridization and antibody-antigen complexes, PCR provides a new, effective assembly platform that both increases the yield of DNA-based nanomaterials and allows researchers to program and control assembly with predesigned parameters including those assisted and automated by computers. As a result, this method allows researchers to optimize to the combinatorial selection of the DNA strands for their nanoparticle conjugates. We have developed a PCR approach for producing various nanoscale assemblies including organic motifs such as small molecules, macromolecules, and inorganic building blocks, such as nanorods (NRs), metal, semiconductor, and magnetic nanoparticles (NPs). We start with a nanoscale primer and then modify that building block using the automated steps of PCR-based assembly including initialization, denaturation, annealing, extension, final elongation, and final hold. The intermediate steps of denaturation, annealing, and extension are cyclic, and we use computer control so that the assembled superstructures reach their predetermined complexity. The structures assembled using a small number of PCR cycles show a lower polydispersity than similar discrete structures obtained by direct hybridization between the nanoscale building blocks. Using different building blocks, we assembled the following structural motifs by PCR: (1) discrete nanostructures (NP dimers, NP multimers including trimers, pyramids, tetramers or hexamers, etc.), (2) branched NP superstructures and heterochains, (3) NP satellite-like superstructures, (4) Y-shaped nanostructures and DNA

  14. Combined full field stress and strain measurement methods for granular materials

    NARCIS (Netherlands)

    Dijkstra, J.; Broere, W.

    2010-01-01

    The current paper re-introduces the photoelastic measurement method in experimental geomechanics. A full-field phase stepping polariscope suitable for geomechanical model tests has been developed. Additional constraints on the measurement and mechanical setup arising from geomechanical test conditio

  15. Measurement & Minimization of Mount Induced Strain on Double Crystal Monochromator Crystals

    Science.gov (United States)

    Kelly, J.; Alcock, S. G.

    2013-03-01

    Opto-mechanical mounts can cause significant distortions to monochromator crystals and mirrors if not designed or implemented carefully. A slope measuring profiler, the Diamond-NOM [1], was used to measure the change in tangential slope as a function of crystal clamping configuration and load. A three point mount was found to exhibit the lowest surface distortion (Diamond Light Source.

  16. Measurement of Strain in Cardiac Myocytes at Micrometer Scale Based on Rapid Scanning Confocal Microscopy and Non-Rigid Image Registration.

    Science.gov (United States)

    Lichter, J; Li, Hui; Sachse, Frank B

    2016-10-01

    Measurement of cell shortening is an important technique for assessment of physiology and pathophysiology of cardiac myocytes. Many types of heart disease are associated with decreased myocyte shortening, which is commonly caused by structural and functional remodeling. Here, we present a new approach for local measurement of 2-dimensional strain within cells at high spatial resolution. The approach applies non-rigid image registration to quantify local displacements and Cauchy strain in images of cells undergoing contraction. We extensively evaluated the approach using synthetic cell images and image sequences from rapid scanning confocal microscopy of fluorescently labeled isolated myocytes from the left ventricle of normal and diseased canine heart. Application of the approach yielded a comprehensive description of cellular strain including novel measurements of transverse strain and spatial heterogeneity of strain. Quantitative comparison with manual measurements of strain in image sequences indicated reliability of the developed approach. We suggest that the developed approach provides researchers with a novel tool to investigate contractility of cardiac myocytes at subcellular scale. In contrast to previously introduced methods for measuring cell shorting, the developed approach provides comprehensive information on the spatio-temporal distribution of 2-dimensional strain at micrometer scale.

  17. Systematic network synthesis and design: Problem formulation, superstructure generation, data management and solution

    DEFF Research Database (Denmark)

    Quaglia, Alberto; Gargalo, Carina L.; Chairakwongsa, Siwanat;

    2015-01-01

    The developments obtained in recent years in the field of mathematical programming considerably reduced the computational time and resources needed to solve large and complex Mixed Integer Non Linear Programming (MINLP) problems. Nevertheless, the application of these methods in industrial practice...... when large problems are considered. In an earlier work, we proposed a computer-aided framework for synthesis and design of process networks. In this contribution, we expand the framework by including methods and tools developed to structure, automate and simplify the mathematical formulation...... is still limited by the complexity associated with the mathematical formulation of some problems. In particular, the tasks of design space definition and representation as superstructure, as well as the data collection, validation and handling may become too complex and cumbersome to execute, especially...

  18. Template-free synthesis of beta-In2S3 superstructures and their photocatalytic activity.

    Science.gov (United States)

    Amutha, R; Akilandeswari, S; Ahmmad, Bashir; Muruganandham, M; Sillanpää, Mika

    2010-12-01

    In this article, we have successfully fabricated various morphological beta-Indium sulfide (In2S3) superstructures by using indium thiocyanate complex at acidic pH. All the synthesis has been performed by a template-free, hydrothermal method at 195 degrees C for 3 h. The photocatalytic activity of synthesized In2S3 have been investigated by using UV-B (lamda = 365 nm) light with Methyl Orange dye as a model pollutant. The synthesized photocatalyst was characterized by using XRD, FE-SEM, HR-TEM, DRS spectra and nitrogen adsorption analysis. The influence of indium precursors and solvents on the morphology as well as the surface properties has also been discussed. The XRD result shows that cubic phase beta-In2S3 formed under all experimental conditions. A plausible mechanism of the In2S3 microsphere formation has been discussed based on experimental observations.

  19. Growth and Transfer of Monolithic Horizontal ZnO Nanowire Superstructures onto Flexible Substrates

    KAUST Repository

    Xu, Sheng

    2010-04-28

    A method of fabricating horizontally aligned ZnO nanowire (NW) arrays with full control over the width and length is demonstrated. A cross-sectional view of the NWs by transmission electron microscopy shows a "mushroom-like" structure. Novel monolithic multisegment superstructures are fabricated by making use of the lateral overgrowth. Ultralong horizontal ZnO NWs of an aspect ratio on the order often thousand are also demonstrated. These horizontal NWs are lifted off and transferred onto a flexible polymer substrate, which may have many great applications in horizontal ZnO NW-based nanosensor arrays, light-emitting diodes, optical gratings, integrated circuit interconnects, and high-output-power alternating-current nanogenerators. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA.

  20. Synthesis of noble metal nanoparticles and their superstructures; Darstellung von Edelmetallnanopartikeln und deren Ueberstrukturen

    Energy Technology Data Exchange (ETDEWEB)

    Bigall, Nadja-Carola

    2009-08-18

    A modified synthesis procedure for citrate-stabilized gold nanoparticles in aqueous solution is transferred under application of equal concentrations to the systems silver, platinum, and palladium. The nanoparticles are analyzed by means of absorption spectroscopy and electron microscopy. Ordered superstructures of the noble-metal nanoparticles can be synthesized by infiltration of templates of block-copolymer films with aqueous nanoparticle solution. In dependence on the pre-treatment of the polymer films either two-dimensional periodical arrangements with a periodicity of less than 30 nm or fingerprint-like arrangements with a groove distance in the same order of magnitude. By removal of the polymer one- respectively two-dimensional arrangements of platinum nanowires respectively nanoparticles on a silicon waver arise.

  1. Application of x-ray direct methods to surface reconstructions: The solution of projected superstructures

    Science.gov (United States)

    Torrelles, X.; Rius, J.; Boscherini, F.; Heun, S.; Mueller, B. H.; Ferrer, S.; Alvarez, J.; Miravitlles, C.

    1998-02-01

    The projections of surface reconstructions are normally solved from the interatomic vectors found in two-dimensional Patterson maps computed with the intensities of the in-plane superstructure reflections. Since for difficult reconstructions this procedure is not trivial, an alternative automated one based on the ``direct methods'' sum function [Rius, Miravitlles, and Allmann, Acta Crystallogr. A52, 634 (1996)] is shown. It has been applied successfully to the known c(4×2) reconstruction of Ge(001) and to the so-far unresolved In0.04Ga0.96As (001) p(4×2) surface reconstruction. For this last system we propose a modification of one of the models previously proposed for GaAs(001) whose characteristic feature is the presence of dimers along the fourfold direction.

  2. Plasma oscillations in two-dimensional semiconductor superstructures in the presence of a high electric field

    CERN Document Server

    Glazov, S Y

    2001-01-01

    The effect of the high permanent electric field on plasma oscillations in the two-dimensional electron gas with the superstructure and taking into account the transfer processes is investigated. The dispersions omega(k) is obtained for the case of high temperature T (DELTA << T, where DELTA is the width of the conductivity miniband). It is shown that the frequency of plasmons in the high electric field depends on the value of the electric field intensity and the wave number k as the oscillating function. The spectrum is periodic with the period equal to 2 pi/d for arbitrary values of k. The numerical estimation shown that the oscillations can be manifested at the electric field intensity more than 3 x 10 sup 3 V/cm

  3. Chemical ordering beyond the superstructure in long-range ordered systems

    CERN Document Server

    Stana, Markus; Kozubski, Rafal; Leitner, Michael

    2016-01-01

    To describe chemical ordering in solid solutions systems Warren-Cowley short-range parameters are ordinarily used. However, they are not directly suited for application to long-range ordered systems, as they do not converge to zero for large separations. It is the aim of this paper to generalize the theory to long-range ordered systems and quantitatively discuss chemical short-range order beyond the superstructure arrangements. This is demonstrated on the example of a non-stoichiometric B2-ordered intermetallic alloy. Parameters of interatomic potentials are taken from an embedded atom method (EAM) calculations and the degree of order is simulated by the Monte Carlo method. Both on-lattice and off-lattice methods, where the latter allows individual atoms to deviate from their regular lattice sites, were used, and the resulting effects are discussed.

  4. Prevention of Cutaneous Tissue Contracture During Removal of Craniofacial Implant Superstructures for CT and MRI Studies

    Directory of Open Access Journals (Sweden)

    Maureen Sullivan

    2010-04-01

    Full Text Available Objectives: Head and neck cancer patients who have lost facial parts following surgical intervention frequently require craniofacial implant retained facial prostheses for restoration. Many craniofacial implant patients require computed tomography and magnetic resonance imaging scans as part of their long-term follow-up care. Consequently removal of implant superstructures and peri-abutment tissue management is required for those studies. The purpose of the present paper was to describe a method for eliminating cranial imaging artifacts in patients with craniofacial implants.Material and Methods: Three patients wearing extraoral implant retained facial prostheses needing either computed tomography or magnetic resonance imaging studies were discussed. Peri-implant soft tissues contracture after removal of percutaneous craniofacial implant abutments during computed tomography and magnetic resonance imaging studies was prevented using a method proposed by authors. The procedure involves temporary removal of the supra-implant components prior to imaging and filling of the tissue openings with polyvinyl siloxane dental impression material.Results: Immediately after filling of the tissue openings with polyvinyl siloxane dental impression material patients were sent for the imaging studies, and were asked to return for removal of the silicone plugs and reconnection of all superstructure hardware after imaging procedures were complete. The silicone plugs were easily removed with a dental explorer. The percutaneous abutments were immediately replaced and screwed into the implants which were at the bone level.Conclusions: Presented herein method eliminates the source of artifacts and prevents contracture of percutaneous tissues upon removal of the implant abutments during imaging.

  5. An effective ultrasonic strain measurement-based shear modulus reconstruction technique for superficial tissues - demonstration on in vitro pork ribs and in vivo human breast tissues

    Science.gov (United States)

    Sumi, Chikayoshi; Nakayama, Kiyoshi; Kubota, Mitsuhiro

    2000-06-01

    An effective shear modulus reconstruction technique is described which uses ultrasonic strain measurements for diagnosis of superficial tissues, i.e. our previously developed ultrasonic strain measurement and shear modulus reconstruction methods are combined and enhanced. The technique realizes very low computational load, yet yields fairly high quantitativeness, high stability and spatial resolution, and large dynamic range. The suitability of the method is demonstrated on in vitro pork ribs and in vivo human breast tissues (fibroadenoma and scirrhous carcinoma).

  6. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    Science.gov (United States)

    Geirsson, Halldór; Weber, John; La Femina, Peter; Latchman, Joan L.; Robertson, Richard; Higgins, Machel; Miller, Keith; Churches, Chris; Shaw, Kenton

    2017-04-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and overpressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure may thus cause the CRF fault creep that we observe and the lack of seismicity, as an alternative or addition to weak mineral phases on the fault.

  7. Testing Study on Concrete Surface Strain Using Electrical-resistance Strain-measurement Method%电测法应用于混凝土结构的表面应变测试

    Institute of Scientific and Technical Information of China (English)

    管东芝; 邢晨曦; 韩苏闽

    2011-01-01

    以不同标距和不同贴片时间的应变片测量预应力混凝土梁表面应变,与标距500 mm的机械表测量结果进行比较.结果表明:应变片的标距越大,测量准确度越高,通常100 mm标距的应变片测量不确定度达9%,当标距增加到300 mm时,测量不确定度下降到5%.建议在应用电测法测量混凝土结构表面应变之前,应进行同工艺务件下的应变进行标定;采用环氧黏结贴剂应变片时,黏贴应对黏贴层厚度进行严格控制,并能保证环氧黏结贴剂的充分固化条件.在无法采用规范做法对黏贴后的应变片进行固化和稳定化处理的条件下,建议尽量在短时间内使用上述条件下的应变片测量方法.该研究特别适合一般条件下,混凝土表面应变测量的研究和教学工作.%By using strain foils of different gauge and different time measuring surface strain on prestressed concrete beam and comparing the results with those of mechanical table of 500 mm gauge, the appropriate conclusions are as follows: The greater the strain gauge distance,the higher the measurement accuracy (Usually 100 mm gauge of strain gauge measurement uncertainty is 9% while that of 300 mm reach 5% ). Before the application of electrical method for measuring the surface strain of the concrete structure, the strain foils should be calibrated under the same conditions.Epoxy adhesive patches strain films, the thickness of paste should paste the strict control and to ensure sufficient curing epoxy adhesive patch conditions. In the application of epoxy adhesive to strain gauges,the thickness of paste should be under control and curing epoxy adhesive patch conditions be ensured. It is recommended to apply strain gauges in a short time without prescriptive conditions of curing and stabilization treatment. The study for the general conditions is especially suitable for the research and teaching of concrete surface strain .

  8. Measurement of rotation and strain-rate tensors by using stereoscopic PIV

    DEFF Research Database (Denmark)

    Özcan, O.; Meyer, Knud Erik; Larsen, Poul Scheel

    2004-01-01

    A simple technique is described for measuring the mean rate-of-displacement (velocity gradient) tensor in a plane by using a conventional stereoscopic PIV system. The technique involves taking PIV data in two or three closely-spaced parallel planes at different times. All components of the mean...

  9. Easy calibration method of vision system for in-situ measurement of strain of thin films

    Institute of Scientific and Technical Information of China (English)

    Jun-Hyub PARK; Dong-Joong KANG; Myung-Soo SHIN; Sung-Jo LIM; Son-Cheol YU; Kwang-Soo LEE; Jong-Eun HA; Sung-Hoon CHOA

    2009-01-01

    An easy calibration method was presented for in-situ measurement of displacement in the order of nanometer during micro-tensile test for thin films by using CCD camera as a sensing device. The calibration of the sensing camera in the system is a central element part to measure displacement in the order of nanometer using images taken with the camera. This was accomplished by modeling the optical projection through the camera lens and relative locations between the object and camera in 3D space. A set of known 3D points on a plane where the film is located on is projected to an image plane as input data. These points, known as a calibration points, are then used to estimate the projection parameters of the camera. In the measurement system of the micro-scale by CCD camera, the calibration data acquisition and one-to-one matching steps between the image and 3D planes need precise data extraction procedures and repetitive user's operation to calibrate the measuring devices. The lack of the robust image feature extraction and easy matching prevent the practical use of these methods. A data selection method was proposed to overcome these limitations and offer an easy and convenient calibration of a vision system that has the CCD camera and the 3D reference plane with calibration marks of circular type on the surface of the plane. The method minimizes the user's intervention such as the fine tuning of illumination system and provides an efficient calibration method of the vision system for in-situ axial displacement measurement of the micro-tensile materials.

  10. Sampling optimization for high-speed weigh-in-motion measurements using in-pavement strain-based sensors

    Science.gov (United States)

    Zhang, Zhiming; Huang, Ying; Bridgelall, Raj; Palek, Leonard; Strommen, Robert

    2015-06-01

    Weigh-in-motion (WIM) measurement has been widely used for weight enforcement, pavement design, freight management, and intelligent transportation systems to monitor traffic in real-time. However, to use such sensors effectively, vehicles must exit the traffic stream and slow down to match their current capabilities. Hence, agencies need devices with higher vehicle passing speed capabilities to enable continuous weight measurements at mainline speeds. The current practices for data acquisition at such high speeds are fragmented. Deployment configurations and settings depend mainly on the experiences of operation engineers. To assure adequate data, most practitioners use very high frequency measurements that result in redundant samples, thereby diminishing the potential for real-time processing. The larger data memory requirements from higher sample rates also increase storage and processing costs. The field lacks a sampling design or standard to guide appropriate data acquisition of high-speed WIM measurements. This study develops the appropriate sample rate requirements as a function of the vehicle speed. Simulations and field experiments validate the methods developed. The results will serve as guidelines for future high-speed WIM measurements using in-pavement strain-based sensors.

  11. Effect of out-of-plane specimen movement on the accuracy of the smallest specimen strain measurable using the digital image correlation technique

    Science.gov (United States)

    Poling, Joel; Desai, Niranjan

    2017-04-01

    This investigation determined the smallest strain accurately measurable by a state-of-the-art digital image correlation (DIC) - based tool used in structural health monitoring, in a specimen subjected to out-of-plane movement, building upon a study that concluded that out-of-plane specimen movement results in noise in DIC-based strain measurements. This study was motivated by initially undetected damage at low strains in connections of a real-world bridge, whose detection would have prevented its propagation, resulting in lower repair costs. The smallest strains accurately measurable using the state-of-the-art DIC tool, over a range of specimen out-of-plane displacement amplitudes, were determined.

  12. Usefulness of ultrasonic strain measurement-based mechanical properties imaging technique: toward realization of short time diagnosis/treatment

    Science.gov (United States)

    Sumi, Chikayoshi; Kubota, Mitsuhiro; Wakabayashi, Gou; Tanabe, Minoru

    2003-06-01

    For various soft tissues (e.g., liver, breast, etc.), we are developing the ultrasonic strain measurement-based mechanical properties (shear modulus, visco-shear modulus, etc.) reconstruction/imaging technique. To clarify the limitation of our quantitative reconstruction/imaging technique as a diagnostic tool for differentiating malignancies, together with improving the spatial resolution and the dynamic range we are collecting the clinical reconstruction image data. Furthermore, we are applying our technique as a monitoring technique for the effectiveness of chemical therapy (e.g., anticancer drug, ethanol, etc.), thermal therapy (e.g., micro, and rf electromagnetic wave, HIFU, LASER, etc.), and cryotherapy. As soft tissues are deformed in 3-D space due to externally situated quasi-static and/or low frequency mechanical sources, multidimensional signal processing improves strain measurement accuracy and reduces inhomogeneity-dependent modulus reconstruction artifacts. These have been verified by us through simulations and phantom/animal in vitro experiments. Briefly, here we discuss the limitations of low dimensional signal processing. Moreover, we exhibit the superiority both on differential diagnosis for these human in vivo malignancies and monitoring for these therapies of our quasi-real time imaging (using conventional US equipment) to conventional B-mode imaging. Our technique is available as a clinical visualization technique both for diagnosis and treatment, and monitored mechanical properties data can also be effectively utilized as the measure for controlling the therapy, i.e., the exposure energy, the foci, the exposure interval, etc. In the near future, suitable combination of various simple and low-invasive therapy techniques with our imaging technique will open up a new clinical style allowing diagnosis and the subsequently immediate treatment. This must substantially reduce the total medical expenses.

  13. Optical Fiber Distributed Sensing Structural Health Monitoring (SHM) Strain Measurements Taken During Cryotank Y-Joint Test Article Load Cycling at Liquid Helium Temperatures

    Science.gov (United States)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, Winfred S.

    2007-01-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240 C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  14. Optical fiber distributed sensing structural health monitoring (SHM) strain measurements taken during cryotank Y-joint test article load cycling at liquid helium temperatures

    Science.gov (United States)

    Allison, Sidney G.; Prosser, William H.; Hare, David A.; Moore, Thomas C.; Kenner, W. S.

    2007-09-01

    This paper outlines cryogenic Y-joint testing at Langley Research Center (LaRC) to validate the performance of optical fiber Bragg grating strain sensors for measuring strain at liquid helium temperature (-240°C). This testing also verified survivability of fiber sensors after experiencing 10 thermal cool-down, warm-up cycles and 400 limit load cycles. Graphite composite skins bonded to a honeycomb substrate in a sandwich configuration comprised the Y-joint specimens. To enable SHM of composite cryotanks for consideration to future spacecraft, a light-weight, durable monitoring technology is needed. The fiber optic distributed Bragg grating strain sensing system developed at LaRC is a viable substitute for conventional strain gauges which are not practical for SHM. This distributed sensing technology uses an Optical Frequency Domain Reflectometer (OFDR). This measurement approach has the advantage that it can measure hundreds of Bragg grating sensors per fiber and the sensors are all written at one frequency, greatly simplifying fiber manufacturing. Fiber optic strain measurements compared well to conventional strain gauge measurements obtained during these tests. These results demonstrated a high potential for a successful implementation of a SHM system incorporating LaRC's fiber optic sensing system on the composite cryotank and other future cryogenic applications.

  15. Temperature-compensated strain measurement of full-scale small aircraft wing structure using low-cost FBG interrogator

    Science.gov (United States)

    Kim, J. H.; Lee, Y. G.; Park, Y.; Kim, C. G.

    2013-04-01

    Recently, health and usage monitoring systems (HUMS) are being studied to monitor the real-time condition of aircrafts during flight. HUMSs can prevent aircraft accidents and reduce inspection time and cost. Fiber Bragg grating (FBG) sensors are widely used for aircraft HUMSs with many advantages such as light weight, small size, easy-multiplexing, and EMI immunity. However, commercial FBG interrogators are too expensive to apply for small aircrafts. Generally the cost of conventional FBG interrogators is over 20,000. Therefore, cost-effective FBG interrogation systems need to be developed for small aircraft HUMSs. In this study, cost-effective low speed FBG interrogator was applied to full-scale small aircraft wing structure to examine the operational applicability of the low speed FBG interrogator to the monitoring of small aircrafts. The cost of the developed low speed FBG interrogator was about 10,000, which is an affordable price for a small aircraft. 10 FBG strain sensors and 1 FBG temperature sensor were installed on the surface of the full-scale wing structure. Load was applied to the tip of the wing structure, and the low speed interrogator detected the change in the center wavelength of the FBG sensors at the sampling rate of 10Hz. To assess the applicability of the low-cost FBG interrogator to full-scale small aircraft wing structure, a temperature-compensated strain measurement algorithm was verified experimentally under various loading conditions of the wing structure with temperature variations.

  16. Entropy-driven crystal formation on highly strained substrates

    KAUST Repository

    Savage, John R.

    2013-05-20

    In heteroepitaxy, lattice mismatch between the deposited material and the underlying surface strongly affects nucleation and growth processes. The effect of mismatch is well studied in atoms with growth kinetics typically dominated by bond formation with interaction lengths on the order of one lattice spacing. In contrast, less is understood about how mismatch affects crystallization of larger particles, such as globular proteins and nanoparticles, where interparticle interaction energies are often comparable to thermal fluctuations and are short ranged, extending only a fraction of the particle size. Here, using colloidal experiments and simulations, we find particles with short-range attractive interactions form crystals on isotropically strained lattices with spacings significantly larger than the interaction length scale. By measuring the free-energy cost of dimer formation on monolayers of increasing uniaxial strain, we show the underlying mismatched substrate mediates an entropy-driven attractive interaction extending well beyond the interaction length scale. Remarkably, because this interaction arises from thermal fluctuations, lowering temperature causes such substrate-mediated attractive crystals to dissolve. Such counterintuitive results underscore the crucial role of entropy in heteroepitaxy in this technologically important regime. Ultimately, this entropic component of lattice mismatched crystal growth could be used to develop unique methods for heterogeneous nucleation and growth of single crystals for applications ranging from protein crystallization to controlling the assembly of nanoparticles into ordered, functional superstructures. In particular, the construction of substrates with spatially modulated strain profiles would exploit this effect to direct self-assembly, whereby nucleation sites and resulting crystal morphology can be controlled directly through modifications of the substrate.

  17. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... first then forms crystal with strain increasing. The stacked structure consisting of less perfect crystalline phase, mesocrystal and oriented amorphous phase emerges at the final stage of stretching. Drawing at 80 degrees C, only the crystal can be induced at lower strain with higher crystallization...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  18. Electrochemiluminescence induced photoelectrochemistry for sensing of the DNA based on DNA-linked CdS NPs superstructure with intercalator molecules.

    Science.gov (United States)

    Guo, Yingshu; Sun, Yuanshun; Zhang, Shusheng

    2011-02-07

    A novel detection protocol of DNA was developed using electrochemiluminescence (ECL) induced photoelectrochemistry (PEC) synthesis based on DNA-linked CdS NPs superstructure with methylene blue as the intercalator molecule.

  19. Comparison of residual strains measured by X-ray and neutron diffraction in a titanium (Ti-6Al-4V) matrix composite

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, P.; Daymond, M.; Bourke, M.A.M.; Clausen, B.; Choo, H. [Los Alamos Nat. Lab., NM (United States). Lujan Center; Prime, M.B. [ISIS, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon (United Kingdom); Jayaraman, N. [Department of Materials Science and Engineering, University of Cincinnati, Cincinnati, Ohio (United States)

    1999-01-31

    This research compares matrix thermal residual strains measured in a continuous fiber reinforced SiC/Ti-6Al-4V titanium matrix composite (TMC) using X-ray and neutron diffraction with finite element predictions. The strain dependence on the strains for several reflections (105, 204, 300, 213 and 312) of the matrix were explored at the surface (X-ray) and in the bulk (neutron). To determine the longitudinal surface strains from the X-ray measurements for comparison with the neutron values, the {epsilon}{sub {phi}{psi}} versus sin{sup 2}{psi} plots were extrapolated to {psi}=90 . Continuum micro-mechanics based multi-ply finite element models (FEM) simulating rectangular and hexagonal fiber distributions were explored for calculating average surface and bulk strains. For different reflections, the experimentally determined surface measured strains ranged from +1904{+-}424 to +2974{+-}321 {mu}{epsilon} and the bulk measurements ranged from +2269{+-}421 to +3022{+-}1134 {mu}{epsilon}. These values contrast with the single valued FEM prediction of+3200 {mu}{epsilon} which was the same for both the surface and the bulk. (orig.) 24 refs.

  20. Scalar mixing and strain dynamics methodologies for PIV/LIF measurements of vortex ring flows

    Science.gov (United States)

    Bouremel, Yann; Ducci, Andrea

    2017-01-01

    Fluid mixing operations are central to possibly all chemical, petrochemical, and pharmaceutical industries either being related to biphasic blending in polymerisation processes, cell suspension for biopharmaceuticals production, and fractionation of complex oil mixtures. This work aims at providing a fundamental understanding of the mixing and stretching dynamics occurring in a reactor in the presence of a vortical structure, and the vortex ring was selected as a flow paradigm of vortices commonly encountered in stirred and shaken reactors in laminar flow conditions. High resolution laser induced fluorescence and particle imaging velocimetry measurements were carried out to fully resolve the flow dissipative scales and provide a complete data set to fully assess macro- and micro-mixing characteristics. The analysis builds upon the Lamb-Oseen vortex work of Meunier and Villermaux ["How vortices mix," J. Fluid Mech. 476, 213-222 (2003)] and the engulfment model of Baldyga and Bourne ["Simplification of micromixing calculations. I. Derivation and application of new model," Chem. Eng. J. 42, 83-92 (1989); "Simplification of micromixing calculations. II. New applications," ibid. 42, 93-101 (1989)] which are valid for diffusion-free conditions, and a comparison is made between three methodologies to assess mixing characteristics. The first method is commonly used in macro-mixing studies and is based on a control area analysis by estimating the variation in time of the concentration standard deviation, while the other two are formulated to provide an insight into local segregation dynamics, by either using an iso-concentration approach or an iso-concentration gradient approach to take into account diffusion.

  1. Interseismic strain loading on the Sagaing fault (Myanmar) inferred from new GPS measurements

    Science.gov (United States)

    Socquet, A.; Vigny, C.; Chamot-Rooke, N.; Rangin, C.; Pubellier, M.

    2003-04-01

    Northward motion of India with respect to Sunda implies right-lateral shear along the eastern Indian border. Based on a new GPS processing including more than 90 stations in Asia spanning 9 years of repeated measurements, we show that the present-day relative motion between India and Sundaland reaches 35 mm/yr in the Myanmar area. It is classically accepted that all of this motion is accommodated onto a single fault : the Sagaing fault in Myanmar. The fault cuts through the Myanmar Central Basins and presently ends into extensional horsetails, both toward the South, in the Andaman pull-apart basin, and toward the North. Immediately East of the fault, the N-trending Shan Scarp follows the boundary between the thickened crust of the Shan Plateau to the East and the thinned crust of the Myanmar Central Basins to the West. In the region of Mandalay, the Sagaing fault presents a gap of seismicity between the latitudes 20° N and 23° N. GPS investigations were performed in this area. Geodetic results show that, out of the 35 mm/yr of India versus Sundaland rate, only 18 mm / yr are accommodated by the Sagaing fault. The data show a clear interseismic loading effect that can be modelled by an elastic dislocation for a locked fault down to 15 km depth. However, the location of the elastic dislocation does not seem to strictly coincide with the Sagaing geological surface trace, the offset reaching about 10 km. We discuss the origin of this asymmetry in terms of activity of the Shan Scarp in central Myanmar, lateral variations of crust rheology and thickness, dip of the fault plane or a combined effect of these phenomenons.

  2. Interseismic strain accumulation in seismic gap of south central Chile from GPS measurements

    Science.gov (United States)

    Rudloff, A.; Vigny, C.; Ruegg, J. C.; Campos, J.

    2003-04-01

    Three campaigns of Global Positioning System (GPS) measurements were carried out in the Concepcion-Constitucion seismic gap in South Central Chile in 1996, 1999, and 2002. We observed a network of about 40 sites, made of 2 east-west transects roughly perpendicular to the trench ranging from the coastal area to the Argentina border and 1 north-south profile along the coast. Data sets were processed with MIT's GAMIT/GLOBK package. Horizontal velocities have formal uncertainties around 1 to 2 mm/yr in average. Vertical velocities are also determined and have uncertainties around 2 to 5 mm/yr. We find that the convergence between Nazca and South-America plates better matches the pole previously estimated by (Larson et al, 1997) than the Nuvel-1A estimate. Our estimate predicts a convergence of 72 mm/yr at N70 to be compared with Nuvel-1A 80 mm/yr at N79. With respect to stable South America, horizontal velocities decrease from 35 mm/yr on the coast to 14 mm/yr in the Cordillera. Vertical velocities help constraint lithospheric flecture. Partionning of the slightly oblique convergence will be investigated. The gradient of convergent parallel velocities reflects aseismic elastic loading on a zone of about 400 km width. Interestingly enough, this gradient exhibit a linear pattern, marginally compatible with the expected arctangent shape. 70 mm/yr of motion accumulated since the last big event in this area (1835 Earthquake described by Darwin) represent more than 10 m of displacement. Therefore, this area is probably mature for a next large earthquake, the magnitude of which could reach 8.5.

  3. Analysis on the Superstructure of Russian Advertising Text%俄语广告语篇超结构分析

    Institute of Scientific and Technical Information of China (English)

    杨志欣

    2012-01-01

    本文把俄语广告语篇视为特殊的语篇类型,以超结构图式理论为基础分析了俄语广告语篇的超结构图式及其组成范畴,并从实义切分角度描写了俄语广告语篇的优控述位和主位的主要特征。%This paper regards Russian advertising text as a special textual type, and analyses the superstructure of Russian advertising text and its component categories on the basis of the theory of superstructure. It also describes some main features of the theme domination and themes of Russian advertising text according to theory of actual division of the sentence.

  4. Pressure-Induced Oriented Attachment Growth of Large-Size Crystals for Constructing 3D Ordered Superstructures.

    Science.gov (United States)

    Wang, Jun; Lian, Gang; Si, Haibin; Wang, Qilong; Cui, Deliang; Wong, Ching-Ping

    2016-01-26

    Oriented attachment (OA), a nonclassical crystal growth mechanism, provides a powerful bottom-up approach to obtain ordered superstructures, which also demonstrate exciting charge transmission characteristic. However, there is little work observably pronouncing the achievement of 3D OA growth of crystallites with large size (e.g., submicrometer crystals). Here, we report that SnO2 3D ordered superstructures can be synthesized by means of a self-limited assembly assisted by OA in a designed high-pressure solvothermal system. The size of primary building blocks is 200-250 nm, which is significantly larger than that in previous results (normally pressure plays the key role in the formation of 3D configuration and fusion of adjacent crystals. Furthermore, this high-pressure strategy can be readily expanded to additional materials. We anticipate that the welded structures will constitute an ideal system with relevance to applications in optical responses, lithium ion battery, solar cells, and chemical sensing.

  5. Mapping the mechanome of live stem cells using a novel method to measure local strain fields in situ at the fluid-cell interface.

    Directory of Open Access Journals (Sweden)

    Min Jae Song

    Full Text Available During mesenchymal condensation, the initial step of skeletogenesis, transduction of minute mechanical forces to the nucleus is associated with up or down-regulation of genes, ultimately resulting in formation of the skeletal template and appropriate cell lineage commitment. The summation of these biophysical cues affects the cell's shape and fate. Here, we predict and measure surface strain, in live stem cells, in response to controlled delivery of stresses, providing a platform to direct short-term structure--function relationships and long-term fate decisions. We measure local strains on stem cell surfaces using fluorescent microbeads coated with Concanavalin A. During delivery of controlled mechanical stresses, 4-Dimensional (x,y,z,t displacements of the bound beads are measured as surface strains using confocal microscopy and image reconstruction. Similarly, micro-particle image velocimetry (μ-piv is used to track flow fields with fluorescent microspheres. The measured flow velocity gradient is used to calculate stress imparted by fluid drag at the surface of the cell. We compare strain measured on cell surfaces with those predicted computationally using parametric estimates of the cell's elastic and shear modulus. Finally, cross-correlating stress--strain data to measures of gene transcription marking lineage commitment enables us to create stress--strain--fate maps, for live stem cells in situ. The studies show significant correlations between live stem cell stress--strain relationships and lineage commitment. The method presented here provides a novel means to probe the live stem cell's mechanome, enabling mechanistic studies of the role of mechanics in lineage commitment as it unfolds.

  6. Simultaneous measurement of strain and temperature using a Fabry–Perot interferometer consisting of Bragg gratings in polarization-maintaining fiber and current-modulated laser diodes

    Science.gov (United States)

    Wada, Atsushi; Tanaka, Satoshi; Takahashi, Nobuaki

    2017-03-01

    A fast and high-resolution simultaneous measurement of strain and temperature using an optical fiber sensor is presented. Temperature and strain can be measured simultaneously by using two types of reflection spectra of a Fabry–Perot interferometer consisting of fiber Bragg gratings in a polarization-maintaining fiber (PM-FBG-FPI). The fine structure of a reflection spectrum of the PM-FBG-FPI enables the high-resolution detection of wavelength shifts. We present a fast interrogation method with current modulation of a laser diode for PM-FBG-FPI sensors. The resulting fast measurement is demonstrated experimentally.

  7. Understanding the formation of CuS concave superstructures with peroxidase-like activity

    Science.gov (United States)

    He, Weiwei; Jia, Huimin; Li, Xiaoxiao; Lei, Yan; Li, Jing; Zhao, Hongxiao; Mi, Liwei; Zhang, Lizhi; Zheng, Zhi

    2012-05-01

    Copper sulfide (CuS) concave polyhedral superstructures (CPSs) have been successfully prepared in an ethanolic solution by a simple solvothermal reaction without the use of surfactants or templates. Two typical well defined, high symmetry CuS concave polyhedrons, forming a concave truncated cuboctahedron and icosahedron were prepared. The effect of the reaction time, temperature and different Cu ion and sulfur sources on the formation of CuS CPSs were investigated and a possible formation mechanism was proposed and discussed based on gas chromatography-mass spectrometry. More importantly, we found, for the first time, that the CuS CPSs exhibit intrinsic peroxidase-like activity, as they can quickly catalyze the oxidation of typical horseradish peroxidase (HRP) substrates, 3,3',5,5'-tetramethylbenzidine (TMB) and o-phenylenediamine (OPD), in the presence of hydrogen peroxide. In addition to the recent discoveries regarding peroxidase mimetics on Fe3O4 NPs and carbon nanostructures, our findings suggest a new kind of candidate for peroxidase mimics. This may open up a new application field of CuS micro-nano structures in biodetection, biocatalysis and environmental monitoring.Copper sulfide (CuS) concave polyhedral superstructures (CPSs) have been successfully prepared in an ethanolic solution by a simple solvothermal reaction without the use of surfactants or templates. Two typical well defined, high symmetry CuS concave polyhedrons, forming a concave truncated cuboctahedron and icosahedron were prepared. The effect of the reaction time, temperature and different Cu ion and sulfur sources on the formation of CuS CPSs were investigated and a possible formation mechanism was proposed and discussed based on gas chromatography-mass spectrometry. More importantly, we found, for the first time, that the CuS CPSs exhibit intrinsic peroxidase-like activity, as they can quickly catalyze the oxidation of typical horseradish peroxidase (HRP) substrates, 3

  8. Image Correlation Pattern Optimization for Micro-Scale In-Situ Strain Measurements

    Science.gov (United States)

    Bomarito, G. F.; Hochhalter, J. D.; Cannon, A. H.

    2016-01-01

    -matched shape functions. An important implication, as discussed by Sutton et al., is that in the presence of highly localized deformations (e.g., crack fronts), error can be reduced by minimizing the subset size. In other words, smaller subsets allow the more accurate resolution of localized deformations. Contrarily, the choice of optimal subset size has been widely studied and a general consensus is that larger subsets with more information content are less prone to random error. Thus, an optimal subset size balances the systematic error from under matched deformations with random error from measurement noise. The alternative approach pursued in the current work is to choose a small subset size and optimize the information content within (i.e., optimizing an applied DIC pattern), rather than finding an optimal subset size. In the literature, many pattern quality metrics have been proposed, e.g., sum of square intensity gradient (SSSIG), mean subset fluctuation, gray level co-occurrence, autocorrelation-based metrics, and speckle-based metrics. The majority of these metrics were developed to quantify the quality of common pseudo-random patterns after they have been applied, and were not created with the intent of pattern generation. As such, it is found that none of the metrics examined in this study are fit to be the objective function of a pattern generation optimization. In some cases, such as with speckle-based metrics, application to pixel by pixel patterns is ill-conditioned and requires somewhat arbitrary extensions. In other cases, such as with the SSSIG, it is shown that trivial solutions exist for the optimum of the metric which are ill-suited for DIC (such as a checkerboard pattern). In the current work, a multi-metric optimization method is proposed whereby quality is viewed as a combination of individual quality metrics. Specifically, SSSIG and two auto-correlation metrics are used which have generally competitive objectives. Thus, each metric could be viewed as a

  9. Rotational superstructure in van der Waals heterostructure of self-assembled C60 monolayer on the WSe2 surface

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Elton J.G.; Sullion, Declan; Chu, Ximo S.; Li, Duo O.; Guisinger, Nathan P.; Wang, Qing Hua

    2017-09-21

    Hybrid van der Waals (vdW) heterostructures composed of two-dimensional (2D) layered materials and self-assembled organic molecules are promising systems for electronic and optoelectronic applications with enhanced properties and performance. Control of molecular assembly is therefore paramount to fundamentally understand the nucleation, ordering, alignment, and electronic interaction of organic molecules with 2D materials. Here, we report the formation and detailed study of highly ordered, crystalline monolayers of C60 molecules self-assembled on the surface of WSe2 in well-ordered arrays with large grain sizes (∼5 μm). Using high-resolution scanning tunneling microscopy (STM), we observe a periodic 2 × 2 superstructure in the C60 monolayer and identify four distinct molecular appearances. Using vdW-corrected ab initio density functional theory (DFT) simulations, we determine that the interplay between vdW and Coulomb interactions as well as adsorbate–adsorbate and adsorbate–substrate interactions results in specific rotational arrangements of the molecules forming the superstructure. The orbital ordering through the relative positions of bonds in adjacent molecules creates a charge redistribution that links the molecule units in a long-range network. This rotational superstructure extends throughout the self-assembled monolayer and opens a pathway towards engineering aligned hybrid organic/inorganic vdW heterostructures with 2D layered materials in a precise and controlled way.

  10. "Dual-template" synthesis of one-dimensional conductive nanoparticle superstructures from coordination metal-peptide polymer crystals.

    Science.gov (United States)

    Rubio-Martínez, Marta; Puigmartí-Luis, Josep; Imaz, Inhar; Dittrich, Petra S; Maspoch, Daniel

    2013-12-20

    Bottom-up fabrication of self-assembled structures made of nanoparticles may lead to new materials, arrays and devices with great promise for myriad applications. Here a new class of metal-peptide scaffolds is reported: coordination polymer Ag(I)-DLL belt-like crystals, which enable the dual-template synthesis of more sophisticated nanoparticle superstructures. In these biorelated scaffolds, the self-assembly and recognition capacities of peptides and the selective reduction of Ag(I) ions to Ag are simultaneously exploited to control the growth and assembly of inorganic nanoparticles: first on their surfaces, and then inside the structures themselves. The templated internal Ag nanoparticles are well confined and closely packed, conditions that favour electrical conductivity in the superstructures. It is anticipated that these Ag(I)-DLL belts could be applied to create long (>100 μm) conductive Ag@Ag nanoparticle superstructures and polymetallic, multifunctional Fe3 O4 @Ag nanoparticle composites that marry the magnetic and conductive properties of the two nanoparticle types.

  11. The Lima-Peru seismic gap: a study of inter-seismic strain accumulation from a decade of GPS measurements

    Science.gov (United States)

    Norabuena, E. O.; Pollitz, F. F.; Dixon, T. H.

    2013-05-01

    The Peruvian subduction zone between the Mendaña Fracture zone and Arica, northern Chile, has been source of large megathrust earthquakes since historical to present times, The two last major events affecting the southern segment corresponds to Arequipa 2001 (Mw 8.3) and Pisco 2007 (Mw 8.1). A noteworthy event is the Lima 1746 earthquake with an assigned magnitude of Mw 8.5 and which is assumed to have broken several km of the seismogenic zone off Lima. The great shock was followed by a devastating tsunami that destroyed the main port of Callao, killing about 99 percent of its population. This extreme event was followed by quiescence of a few hundred years until the XX century when the Lima subduction zone was broken again by the earthquakes of May 1940 (Mw 8.0), October 1966 (Mw 8.0) and Lima 1974 (Mw 8.0). The broken areas overlap partially with the estimated area of the 1746 earthquake and put the region in a state of seismic gap representing a major hazard for Lima city - Peru's capital and its about 9 million of inhabitants. Our study reports the interseismic strain accumulation derived from a decade of GPS measurement at 11 geodetic monuments including one measurement in an island 80 km offshore and models variations of coupling along the plate interface.

  12. High resolution grazing-incidence in-plane x-ray diffraction for measuring the strain of a Si thin layer.

    Science.gov (United States)

    Omote, Kazuhiko

    2010-12-01

    We have measured the strain of a thin Si layer deposited on a SiGe layer using a high resolution x-ray diffraction system. The Si layer was deposited on the SiGe layer in order to introduce a tensile strain to the Si layer. To measure the in-plane lattice constant accurately, we have employed so-called grazing-incidence in-plane diffraction. For this measurement, we have made a new five-axis x-ray goniometer which has four ordinal circles (ω, 2θ, χ, φ) plus a counter-χ-axis for selecting the exit angle of the diffracted x-rays. In grazing-incidence geometry, an incident x-ray is focused on the sample surface in order to obtain good diffraction intensity even though the layer thickness is less than 5 nm. Because diffracted x-rays are detected through analyzer crystals, the diffraction angle can be determined with an accuracy of ± 0.0003°. This indicates that the strain sensitivity is about 10( - 5) when we measure in-plane Si 220 diffraction. Use of x-ray diffraction could be the best standard metrology method for determining strain in thin layers. Furthermore, we have demonstrated that incident/exit angle selected in-plane diffraction is very useful for height/depth selective strain determination.

  13. X-ray diffraction and spectroscopy of photoinduced ferroic superstructures (Conference Presentation)

    Science.gov (United States)

    Stoica, Vladimir A.; Wen, Haidan; Zhang, Xiaoyi; Zhang, Zhan; Freeland, John W.; Martin, Lane; Ramesh, Ramamoorthy; Gopalan, Venkatraman

    2016-10-01

    Complex oxides and strongly correlated electron systems are at the forefront of science due to their exquisite potential for optical, spintronic, transducing/actuating, multiferroic, electrochemical, and superconducting property enhancements. Accordingly, at the nanoscale, engineering of complex oxide compounds is a promising route for discovery of novel quantum functionalities in a vast space of synthesis technique, calling for high-resolution control and visualization of physical properties and their structural basis. The advent of optical pulse techniques and related instrumentation advances is used to access dynamical separation of correlated orders that hide at equilibrium and also to create novel phases, not available via mainstream synthesis techniques. In this this talk, I will discuss resonant and non-resonant spectroscopic manipulation of phase transitions in nanoferroic oxides, focusing on ultrafast optical creation of artificial supercrystals in epitaxial superlattices. While table top nonlinear optical techniques are used to access the ferroic properties, synchrotron based time-resolved structural techniques, including diffraction and spectroscopy are decisive tools for revealing the nature of orderings in superstructures, their symmetries, phase quantification and spatial distribution with sub-micron resolution.

  14. Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Bech, Michael Møller

    2010-01-01

    Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and descr......Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control......) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach...... for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finally two design examples are presented and the possibilities and limitations of the approach are outlined....

  15. Influence of plasma-treatments on the structure, superstructure, and function of membrane lipids

    Science.gov (United States)

    Hammer, Malte U.; Forbrig, Enrico; Weltmann, Klaus-Dieter; Reuter, Stephan

    2012-10-01

    Every cell, eu- or prokaryotic, has a membrane as an interface to the environment. Every substance that is applied from outside the cell has to interact with it. This includes plasma-generated reactive species in the liquid cell environment created by plasma-treatment. By the Singer and Nicolson model, proteins are embedded in a lipid bilayer. Proteins are the functional elements, lipids are the structural elements. Due to the amphiphilic nature of the lipids, they form (super-) structures in an aqueous environment. The exact superstructure is determined by a structural parameter of the lipid, its shape. Here, we show experiments on lipids by fluorophore-based liposome assays and raman spectroscopy. The results show a membrane-activity of plasma-born reactive species against lipids and lipid structures. Based on this results and literature, we propose a model for a lesion-forming mechanism in membranes of some reactive species created by plasma-treatment. It is based on a hydrophobic-hydrophilic mismatch due to lipid peroxidization induced by reactive species generated in liquids by plasma-treatment.

  16. Efficient exciton funneling in cascaded PbS quantum dot superstructures.

    Science.gov (United States)

    Xu, Fan; Ma, Xin; Haughn, Chelsea R; Benavides, Jamie; Doty, Matthew F; Cloutier, Sylvain G

    2011-12-27

    Benzenedithiol (BDT) and ethanedithiol (EDT) ligand-exchange treatments can be used to cross-link colloidal PbS quantum dots into nanocrystalline film structures with distinct optoelectronic properties. Such structures can provide a unique platform to study the energy transfer between layers of quantum dots with different sizes. In this report, efficient exciton funneling and recycling of surface state-bound excitons is observed in cascaded PbS quantum dot-based multilayered superstructures, where the excitons transfer from the larger band gap or donor layers to the smallest band gap or acceptor layers. In this system, both the BDT- and EDT-treated cascaded structures exhibit dramatically enhanced photoluminescence from the acceptor layers. As we show, the energy transfer mechanisms involved and their efficiencies are significantly different depending on the ligand-exchange treatment. In the future, we believe these efficient exciton recycling and funneling mechanisms could be used to improve significantly the photocurrent, charge-transport, and conversion efficiencies in low-cost nanocrystalline and hybrid solar cells and the emission efficiencies in hybrid light-emitting devices.

  17. Study of superstructure Ⅱ in multiferroic BiMnO3

    Institute of Scientific and Technical Information of China (English)

    Ge Bing-Hui; Li Fang-Hua; Li Xue-Ming; Wang Yu-Mei; Chi Zhen-Hua; Jin Chang-Qing

    2008-01-01

    The crystal structure of the minor phase,named superstructure Ⅱ,existing in multiferroic compound BiMnO3 has been studied by electron diffraction and high-resolution transmission electron microscopy.Domains of major and minor phases coexisting in BiMnO3 were observed in high-resolution electron microscope images.The unit cell of minor phase Was determined to be triclinic with the size 4×4×4 times as large as the distorted perovskitc subcell.The[111] and [101]projected structure maps of the minor phase have been derived from the corresponding images by means of the image processing.A possible rough three-dimensional(3D)structure model was proposed based on the 3D structural information extracted from the two projected structure maps.Since there is no inversion centre in the proposed model,the minor phase may contribute to the ferroelectric property of BiMnO3.

  18. Alkyl imidazolium ionic-liquid-mediated formation of gold particle superstructures.

    Science.gov (United States)

    Ji, Qingmin; Acharya, Somobrata; Richards, Gary J; Zhang, Shaoling; Vieaud, Julien; Hill, Jonathan P; Ariga, Katsuhiko

    2013-06-18

    The development of new methodologies for controlling the organization of quantum materials in multiple dimensions is crucial to the advancement of device fabrication. By using a self-assembly route using selected imidazolium ionic liquids bearing long alkyl chains (C(n)Imida, n = 8, 10, 12) as ligands, we have achieved a tunable assembly of quantum-sized gold nanoparticles. The initial stabilizer of the gold nanoparticles was partially or wholly substituted depending on the concentration and alkyl chain length. π-π interactions between imidazolium rings also promote the generation of spatially controlled aggregates from the nanometer to micrometer size regimes. In particular, in the case of an imidazolium ionic liquid with decyl chains, gold particles assemble into a core-shell spherical superstructure induced by the aggregation of imidazolium ionic liquid molecules during ligand exchange. Conceptually, the assemblies of nanoparticles mimic biological systems and provide strategies for the organization of single-component nanomaterials into functional assemblies for potential applications. Our approach is general and can be applied to other types of nanomaterials for facile manipulation of the assembly processes, permitting an exploration of physicochemical properties as well as technological applications.

  19. Two-Dimensional Bipyramid Plasmonic Nanoparticle Liquid Crystalline Superstructure with Four Distinct Orientational Packing Orders.

    Science.gov (United States)

    Shi, Qianqian; Si, Kae Jye; Sikdar, Debabrata; Yap, Lim Wei; Premaratne, Malin; Cheng, Wenlong

    2016-01-26

    Anisotropic plasmonic nanoparticles have been successfully used as constituent elements for growing ordered nanoparticle arrays. However, orientational control over their spatial ordering remains challenging. Here, we report on a self-assembled two-dimensional (2D) nanoparticle liquid crystalline superstructure (NLCS) from bipyramid gold nanoparticles (BNPs), which showed four distinct orientational packing orders, corresponding to horizontal alignment (H-NLCS), circular arrangement (C-NLCS), slanted alignment (S-NLCS), and vertical alignment (V-NLCS) of constituent particle building elements. These packing orders are characteristic of the unique shape of BNPs because all four packing modes were observed for particles with various sizes. Nevertheless, only H-NLCS and V-NLCS packing orders were observed for the free-standing ordered array nanosheets formed from a drying-mediated self-assembly at the air/water interface of a sessile droplet. This is due to strong surface tension and the absence of particle-substrate interaction. In addition, we found the collective plasmonic coupling properties mainly depend on the packing type, and characteristic coupling peak locations depend on particle sizes. Interestingly, surface-enhanced Raman scattering (SERS) enhancements were heavily dependent on the orientational packing ordering. In particular, V-NLCS showed the highest Raman enhancement factor, which was about 77-fold greater than the H-NLCS and about 19-fold greater than C-NLCS. The results presented here reveal the nature and significance of orientational ordering in controlling plasmonic coupling and SERS enhancements of ordered plasmonic nanoparticle arrays.

  20. [Composition, physico-chemical properties and molecular superstructure of dietary fiber preparations of the cellan type].

    Science.gov (United States)

    Dongowski, G; Frigge, K; Zenke, I

    1995-07-01

    Dietary fiber preparations of "cellan" type were prepared from apples, white cabbage, sugar beet pulp, soy hulls and wheat bran by treatment with amylolytic and proteolytic enzymes as well as by chemical extractions. Scanning electron microscopic examinations show different morphological structures of the preparations and a high maintenance of native biomolecular superstructure. The content of pectin, protein, polysaccharide-hexoses and -pentoses and the composition of monosaccharides (also after their treatment with 4 or 8% sodium hydroxide) were determined. The cellans possess waterbinding capacities (WBC) between 25 g H2O/g and waterholding capacities between 50 g H2O/g. The WBC is related to the internal surface; it diminishes after treatment with NaOH. The interactions between the cellans and the adsorbed water were characterized by NMR-spin-lattice relaxation time T1. The molecular mobility increases as the water content grows. The T1-values of dried cellans decreased with increasing degree of moisture before drying. The supermolecular structure is comparatively disordered. Only in case of soy cellan a crystalline cellulose-I-modification could be identified by X-ray-diffraction pattern, esp. after NaOH treatment. The low degree of order of cellans was observed in the 13C-NMR spectra, too. Only the soy hull preparation resulted in a spectrum corresponding to well-ordered cellulose. The botanic source has an essential influence on the physico-chemical properties of dietary fiber preparations of cellan type.

  1. Presenting a Multi-level Superstructure Optimization Approach for Mechatronic System Design

    DEFF Research Database (Denmark)

    Pedersen, Henrik C.; Andersen, Torben Ole; Bech, Michael Møller

    2010-01-01

    Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control) and descr......Synergism and integration in the design process is what sets apart a Mechatronic System from a traditional, multidisciplinary system. However the typical design approach has been to divide the design problem into sub problems for each technology area (mechanics, electronics and control......) and describe the interface between the technologies, whereas the lack of well-established, systematic engineering methods to form the basic set-off in analysis and design of complete mechatronic systems has been obvious. The focus of the current paper is therefore to present an integrated design approach...... for mechatronic system design, utilizing a multi-level superstructure optimization based approach. Finally two design examples are presented and the possibilities and limitations of the approach are outlined....

  2. Crystallite size measurement and micro-strain analysis of electrodeposited copper thin film using Williamson-Hall method

    Science.gov (United States)

    Augustin, Arun; Udupa, K. Rajendra; Udaya Bhat, K.

    2016-05-01

    The improvement in hydrophilicity of copper coating on aluminium for better antimicrobial activity can be achieved by increase in surface energy. The surface energy depends on the micro-strain of the coating. Micro-strain in the coatingincreases with reduction in crystallite size. In this investigation, the crystallite size in the electrodeposited copper coating was varied by varying deposition current density. Crystallite size and micro-strain in the coating were estimated using Williamson-Hall method. Values of crystallite sizes using TEM micrographs were in agreement with that using Williamson-Hall method. Also, presence of nano-twins in the coating contributed for micro-strain in copper coating.

  3. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Oddershede, Jette, E-mail: jeto@risoe.dtu.dk [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Schmidt, Soren; Poulsen, Henning Friis; Margulies, Lawrence [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Wright, Jonathan [European Synchrotron Research Facility, 38043 Grenoble (France); Moscicki, Marcin [Max-Planck-Institut fuer Eisenforschung GmbH, Max-Planck-Str. 1, 40237 Duesseldorf (Germany); Reimers, Walter [Technische Universitaet Berlin, Sekr. BH18, Ernst-Reuter-Platz 1, 10587 Berlin (Germany); Winther, Grethe [Center for Fundamental Research: Metal Structures in Four Dimensions, Materials Research Division, Riso DTU, Frederiksborgvej 399, DK-4000 Roskilde (Denmark)

    2011-07-15

    This X-ray diffraction study reports the grain-resolved elastic strains in about 1000 randomly oriented grains embedded in a polycrystalline copper sample. Diffraction data were collected in situ in the undeformed state and at a plastic strain of 1.5% while the sample was under tensile load. For each grain the centre-of-mass position was determined with an accuracy of 10 {mu}m, the volume with a relative error of 20%, the orientation to 0.05{sup o} and the axial strain to 10{sup -4}. The elastic strain along the tensile direction exhibited a grain orientation dependence with grains within 20 deg. of <100> carrying the largest strain. While the width of the strain distribution for all grains did not change upon plastic loading, the grain-resolved data show a significant widening of the distribution evaluated for small subsets of initially elastically similar grains. This widening appears independent of the grain orientation. - Research Highlights: {yields} X-ray diffraction study of {approx} 1000 Cu grains during in situ plastic deformation. {yields} Grain averaged positions, orientations, volumes and elastic strain tensors derived. {yields} Both lattice rotation and axial strain depend on the initial grain orientation. {yields} Grains within 20{sup o} of <100> carry the largest elastic strain along the tensile axis. {yields} The results enable evaluation and development of polycrystal plasticity models.

  4. Uniaxial Compressive Strength and Fracture Mode of Lake Ice at Moderate Strain Rates Based on a Digital Speckle Correlation Method for Deformation Measurement

    Directory of Open Access Journals (Sweden)

    Jijian Lian

    2017-05-01

    Full Text Available Better understanding of the complex mechanical properties of ice is the foundation to predict the ice fail process and avoid potential ice threats. In the present study, uniaxial compressive strength and fracture mode of natural lake ice are investigated over moderate strain-rate range of 0.4–10 s−1 at −5 °C and −10 °C. The digital speckle correlation method (DSCM is used for deformation measurement through constructing artificial speckle on ice sample surface in advance, and two dynamic load cells are employed to measure the dynamic load for monitoring the equilibrium of two ends’ forces under high-speed loading. The relationships between uniaxial compressive strength and strain-rate, temperature, loading direction, and air porosity are investigated, and the fracture mode of ice at moderate rates is also discussed. The experimental results show that there exists a significant difference between true strain-rate and nominal strain-rate derived from actuator displacement under dynamic loading conditions. Over the employed strain-rate range, the dynamic uniaxial compressive strength of lake ice shows positive strain-rate sensitivity and decreases with increasing temperature. Ice obtains greater strength values when it is with lower air porosity and loaded vertically. The fracture mode of ice seems to be a combination of splitting failure and crushing failure.

  5. A multiscale approach for the deformation mechanism in pearlite microstructure: Experimental measurements of strain distribution using a novel technique of precision markers

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Masaki, E-mail: masaki@zaiko.kyushu-u.ac.jp [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Yoshimi, Yusuke; Higashida, Kenji [Department of Materials Science and Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395 (Japan); Shimokawa, Tomotsugu [School of Mechanical Engineering, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192 (Japan); Ohashi, Tetsuya [Kitami Institute of Technology, 165 Koencho, Kitami 090-8507 (Japan)

    2014-01-10

    Plastic deformation of fully pearlitic steels was investigated using a multiscale approach: experimentally, the finite element method and molecular dynamics. This paper is the first in a series of three papers demonstrating the strain distribution in uniaxial tensile deformation with high-precision markers drawn by electron beam lithography. Strain was measured at loads of 1.98 kN, 2.21 kN and 2.28 kN in tensile deformation. Scanning electron microscopy (SEM) images and strain maps show the plastic deformation of cementite lamellae and homogenous plastic deformation under uniaxial tensile deformation in the area where the cementite lamellae are aligned in the tensile direction. The areas where strain was enhanced were both block/colony boundaries and the areas where the cementite lamellae are inclined approximately 45° to the tensile direction.

  6. Strain relief and disorder in commensurate water layers formed on Pd(111).

    Science.gov (United States)

    McBride, F; Omer, A; Clay, C M; Cummings, L; Darling, G R; Hodgson, A

    2012-03-28

    Water adsorbs and desorbs intact on Pd(111), forming a hydrogen-bonded wetting layer whose structure we examine by low energy electron diffraction (LEED) and He atom scattering (HAS). LEED shows that water forms commensurate (√3 × √3)R30° clusters that aggregate into a partially ordered, approximately (7 × 7) superstructure as the layer completes. HAS indicates that the water layer remains disordered on a local (approximately 10 Å) scale. Based on workfunction measurements and density functional theory simulations we propose that water forms small, flat domains of a commensurate (√3 × √3)R30° water network, separated by disordered domain boundaries containing largely H-down water. This arrangement allows the water layer to adapt its density and relieve the lateral strain associated with adsorbing water in the optimum flat atop adsorption site. We discuss different possibilities for the structure of these domain walls and compare this strain relief mechanism to the highly ordered, large unit cell structures formed on surfaces such as Pt(111).

  7. Synthesis, morphology and microstructure of pomegranate-like hematite ({alpha}-Fe{sub 2}O{sub 3}) superstructure with high coercivity

    Energy Technology Data Exchange (ETDEWEB)

    Tadic, Marin, E-mail: marint@vinca.rs [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Citakovic, Nada [Military Academy, Generala Pavla Jurisica Sturma 33, University of Belgrade, 11000 Belgrade (Serbia); Panjan, Matjaz [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Stanojevic, Boban [Vinca Institute of Nuclear Sciences, P.O. Box 522, 11001 Belgrade, University of Belgrade (Serbia); Markovic, Dragana [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Jovanovic, Dorde [Center for Solid State Physics and New Materials, Institute of Physics, University of Belgrade, Pregrevica 118, 11080 Belgrade (Serbia); Spasojevic, Vojislav [Condensed Matter Physics Laboratory, Vinca Institute, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer We found superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}). Black-Right-Pointing-Pointer TEM and HRTEM images show a pomegranate-like superstructure. Black-Right-Pointing-Pointer Magnetic measurements display high coercivity H{sub C} = 4350 Oe at the room temperature. - Abstract: We found novel and superior magnetic properties of the hematite ({alpha}-Fe{sub 2}O{sub 3}) that originate from an internal microstructure of particles and strong inter-particle interactions between nanocrystal sub-units. The hematite particles were synthesized by thermal decomposition of iron (III) nitrate without any template or surfactant. The purity, size, crystallinity, morphology, microstructure and magnetic features of the as-prepared particles were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), Raman spectroscopy (RS) and SQUID magnetometry. An XRD study reveals a pure phase of {alpha}-Fe{sub 2}O{sub 3} whereas TEM shows {alpha}-Fe{sub 2}O{sub 3} spheres with a diameter of about 150 nm. RS also shows high quality and purity of the sample. Moreover, TEM and HRTEM images show a pomegranate-like superstructure and evidence that the spherical particles are composed of individual well-crystallized nanoparticle sub-units (self-assembled nanoparticles) with a size of about 20 nm. Magnetic measurements display hysteretic behavior at the room temperature with remanent magnetization M{sub r} = 0.731 emu/g, saturation magnetization M{sub S} = 6.83 emu/g and coercivity H{sub C} = 4350 Oe, as well as the Morin transition at T{sub M} = 261 K. These results and comparison with those in the literature reveal that the sample has extremely high coercivity. The magnetic properties of the sample are discussed in relation to morphology, internal microstructure, surface

  8. Prediction of left ventricular contractile recovery using tissue Doppler strain and strain rate measurements at rest in patients undergoing percutaneous coronary intervention.

    Science.gov (United States)

    Abdelgawwad, Ihab M; Al Hawary, Ahmed A; Kamal, Hanan M; Al Maghawry, Layla M

    2017-01-13

    The aim of the study was to assess the ability of tissue Doppler (TD) deformation analysis at rest to predict left ventricular contractile recovery in patients undergoing percutaneous coronary intervention (PCI). This prospective cohort enrolled 67 patients with segmental wall motion abnormality. Assessment of each segment was performed at rest and during low dose Dobutamine stress echocardiography (DSE) using a 4 point scoring system, TD peak systolic strain (PSS) and peak systolic strain rate (PSSR). The study followed up the patients for contractile improvement after 6 months of successful PCI by echocardiography. Of a 319 dysfunctional segments, 155 (49%) showed contractile recovery and 164 (51%) did not. PSS and PSSR at rest were significantly higher in recovered segments compared to segments without recovery (PSS: -7.27 ± 0.8 Vs. -6.14 ± 0.7%, PSSR: -0.34 ± 0.13 Vs. -0.24 ± 0.1/s. p recovery group at follow up (p 0.001). Resting PSSR as well as PSS and PSSR during DSE were significant independent predictors of contractile recovery (p recovery, resting PSSR with a -0.31/s cut-off point had 76% sensitivity and 59% specificity (AUC 0.74), DSE qualitative viability assessment had a sensitivity of 75% and specificity of 77%, DSE PSS with a cut-off point of -9.1% had 74% sensitivity and 63% specificity (AUC 0.77) and DSE PSSR with a cut-off point of -0.72/s had 78% sensitivity and 77% specificity (AUC 0.81). Resting PSSR is a modest predictor of segmental contractile recovery after PCI while PSSR during DSE has a comparable diagnostic performance to subjective wall motion scoring. Recovered segments show improvement of deformation parameters after PCI.

  9. Grain-resolved elastic strains in deformed copper measured by three-dimensional X-ray diffraction

    DEFF Research Database (Denmark)

    Oddershede, Jette; Schmidt, Søren; Poulsen, Henning Friis

    2011-01-01

    . For each grain the centre-of-mass position was determined with an accuracy of 10 μm, the volume with a relative error of 20%, the orientation to 0.05° and the axial strain to 10− 4. The elastic strain along the tensile direction exhibited a grain orientation dependence with grains within 20° of carrying...

  10. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis.

    Science.gov (United States)

    Karatolios, Konstantinos; Wittek, Andreas; Nwe, Thet Htar; Bihari, Peter; Shelke, Amit; Josef, Dennis; Schmitz-Rixen, Thomas; Geks, Josef; Maisch, Bernhard; Blase, Christopher; Moosdorf, Rainer; Vogt, Sebastian

    2013-11-01

    Aortic wall strains are indicators of biomechanical changes of the aorta due to aging or progressing pathologies such as aortic aneurysm. We investigated the potential of time-resolved three-dimensional ultrasonography coupled with speckle-tracking algorithms and finite element analysis as a novel method for noninvasive in vivo assessment of aortic wall strain. Three-dimensional volume datasets of 6 subjects without cardiovascular risk factors and 2 abdominal aortic aneurysms were acquired with a commercial real time three-dimensional echocardiography system. Longitudinal and circumferential strains were computed offline with high spatial resolution using a customized commercial speckle-tracking software and finite element analysis. Indices for spatial heterogeneity and systolic dyssynchrony were determined for healthy abdominal aortas and abdominal aneurysms. All examined aortic wall segments exhibited considerable heterogenous in-plane strain distributions. Higher spatial resolution of strain imaging resulted in the detection of significantly higher local peak strains (p ≤ 0.01). In comparison with healthy abdominal aortas, aneurysms showed reduced mean strains and increased spatial heterogeneity and more pronounced temporal dyssynchrony as well as delayed systole. Three-dimensional ultrasound speckle tracking enables the analysis of spatially highly resolved strain fields of the aortic wall and offers the potential to detect local aortic wall motion deformations and abnormalities. These data allow the definition of new indices by which the different biomechanical properties of healthy aortas and aortic aneurysms can be characterized. Copyright © 2013 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Directory of Open Access Journals (Sweden)

    Vivian M. Hsu, MD

    2014-09-01

    Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  12. Evaluation of stretching position by measurement of strain on the ilio-femoral ligaments: an in vitro simulation using trans-lumbar cadaver specimens.

    Science.gov (United States)

    Hidaka, Egi; Aoki, Mitsuhiro; Muraki, Takayuki; Izumi, Tomoki; Fujii, Misaki; Miyamoto, Shigenori

    2009-08-01

    The ilio-femoral ligament is known to cause flexion contracture of the hip joint. Stretching positioning is intended to elongate the ilio-femoral ligaments, however, no quantitative analysis to measure the effect of stretching positions on the ligament has yet been performed. Strains on the superior and inferior ilio-femoral ligaments in 8 fresh/frozen trans-lumbar cadaveric hip joints were measured using a displacement sensor, and the range of movement of the hip joints was recorded using a 3Space Magnetic Sensor. Reference length (L(0)) for each ligament was determined to measure strain on the ligaments. Hip positions at 10 degrees adduction with maximal external rotation, 20 degrees adduction with maximal external rotation, and maximal external rotation showed larger strain for the superior ilio-femoral ligament than the value obtained from L(0), and hip positions at 20 degrees external rotation with maximal extension and maximal extension had larger strain for the inferior ilio-femoral ligament than the value obtained from L(0) (pligaments exhibited positive strain values with specific stretching positions. Selective stretching for the ilio-femoral ligaments may contribute to achieve lengthening of the ligaments to treat flexion contracture of the hip joint.

  13. Practical aspects of strain measurement in thin SiGe layers by (004) dark-field electron holography in Lorentz mode.

    Science.gov (United States)

    Denneulin, T; Cooper, D; Rouviere, J L

    2014-07-01

    Dark-field electron holography (DFEH) is a powerful transmission electron microscopy technique for mapping strain with nanometer resolution and high precision. However the technique can be difficult to set up if some practical steps are not respected. In this article, several measurements were performed on thin Si(1-x)Gex layers using (004) DFEH in Lorentz mode. Different practical aspects are discussed such as sample preparation, reconstruction of the holograms and interpretation of the strain maps in terms of sensitivity and accuracy. It was shown that the measurements are not significantly dependent on the preparation tool. Good results can be obtained using both FIB and mechanical polishing. Usually the most important aspect is a precise control of the thickness of the sample. A problem when reconstructing (004) dark-field holograms is the relatively high phase gradient that characterises the strained regions. It can be difficult to perform reconstructions with high sensitivity in both strained and unstrained regions. Here we introduce simple methods to minimise the noise in the different regions using a specific mask shape in Fourier space or by combining several reconstructions. As a test, DFEH was applied to the characterization of eight Si(1-x)Gex samples with different Ge concentrations. The sensitivity of the strain measured in the layers varies between 0.08% and 0.03% for spatial resolutions of 3.5-7 nm. The results were also compared to finite element mechanical simulations. A good accuracy of ±0.1% between experiment and simulation was obtained for strains up to 1.5% and ±0.25% for strains up to 2.5%.

  14. Lattice strain measurements using synchrotron diffraction to calibrate a micromechanical modeling in a ferrite-cementite steel

    Energy Technology Data Exchange (ETDEWEB)

    Taupin, V.; Pesci, R. [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux, LEM3, CNRS, University of Lorraine/Arts et Metiers ParisTech, Metz Cedex 57045 (France); Berbenni, S., E-mail: stephane.berbenni@univ-lorraine.fr [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux, LEM3, CNRS, University of Lorraine/Arts et Metiers ParisTech, Metz Cedex 57045 (France); Berveiller, S.; Ouahab, R. [Laboratoire d' Etude des Microstructures et de Mecanique des Materiaux, LEM3, CNRS, University of Lorraine/Arts et Metiers ParisTech, Metz Cedex 57045 (France); Bouaziz, O. [Arcelor Research, Arcelor Mittal, Maizieres-les-Metz 57210 (France)

    2013-01-20

    In situ tensile tests were performed at room temperature on a ferrite-cementite steel specifically designed for this study. The evolution of the average stress in ferrite during loading was analyzed by X-ray diffraction. Lattice strain measurements were performed with synchrotron ring diffraction in both ferrite and cementite. These in situ tests were complemented by macroscopic tensile and reversible tensile-compression tests to study the Bauschinger effect. In order to reproduce stresses in ferrite and cementite particles, a recently developed micromechanical Internal Length Mean Field (ILMF) model based on a generalized self-consistent scheme is applied. In this designed ferrite-cementite steel, the third 'phase' of the model represents finite intermediate 'layers' in ferrite due to large geometrically necessary dislocation (GND) densities around cementite particles. The assumed constant thickness of the layers is calibrated thanks to the obtained experimental data. The ILMF model is validated by realistic estimates of the Bauschinger stress and the large difference between mean stresses in ferrite and in cementite phases. This difference cannot be reproduced by classic two-phase homogenization schemes without intermediate GND layers.

  15. Collapse Pressure Analysis of Transversely Isotropic Thick-Walled Cylinder Using Lebesgue Strain Measure and Transition Theory

    Directory of Open Access Journals (Sweden)

    A. K. Aggarwal

    2014-01-01

    Full Text Available The objective of this paper is to provide guidance for the design of the thick-walled cylinder made up of transversely isotropic material so that collapse of cylinder due to influence of internal and external pressure can be avoided. The concept of transition theory based on Lebesgue strain measure has been used to simplify the constitutive equations. Results have been analyzed theoretically and discussed numerically. From this analysis, it has been concluded that, under the influence of internal and external pressure, circular cylinder made up of transversely isotropic material (beryl is on the safer side of the design as compared to the cylinders made up of isotropic material (steel. This is because of the reason that percentage increase in effective pressure required for initial yielding to become fully plastic is high for beryl as compared to steel which leads to the idea of “stress saving” that reduces the possibility of collapse of thick-walled cylinder due to internal and external pressure.

  16. Measurement of local strain-induced martensitic phase transformation by micro-hardness; Bisho kodo wo mochiita kyokusho hizumi yuki martensite hentai tokusei no sokutei

    Energy Technology Data Exchange (ETDEWEB)

    Shibutani, Y.; Taniyama, A.; Tomita, Y.; Adachi, T. [Kobe University, Kobe (Japan). Faculty of Engineering

    1997-08-15

    By the duplex effect produced by two kinds of phases of austenite and martensite, the transformation-induced plasticity (TRIP) steel is improved in ductility and fracture toughness. The strain-induced martensitic phase transformation could be associated with the strain localization behavior. Accordingly, the measurement of the amount of local transformation is necessary in order to construct a more physical evolution model in the constitutive equation. In this study, a new measurement system using a micro-hardness tester is proposed to obtain a volume fraction map of the martensitic phase expanding in the neighbor of strain localization. Then the system is applied to investigate the inhomogenous transformation behavior around the notch root of SUS 304 stainless steel bar under uniaxial tension. 27 refs., 11 figs., 1 tab.

  17. Strain Measurement Using Embedded Fiber Bragg Grating Sensors Inside an Anchored Carbon Fiber Polymer Reinforcement Prestressing Rod for Structural Monitoring

    DEFF Research Database (Denmark)

    Kerrouche, Abdelfateh; Boyle, William J.O.; Sun, Tong

    2009-01-01

    Results are reported from a study carried out using a series of Bragg grating based optical fiber sensors written into a very short length (60mm) optical fiber net work and integrated into carbon fiber polymer reinforcement (CFPR) rod. Such rods are used as reinforcements in concrete structures...... from the calibrated force applied by the pulling machine and from a conventional resistive strain gauge mounted on the rod itself is obtained. Calculations from strain to shear stress show a relatively uniform stress distribution along the bar anchor used. The results give confidence to results from...... various methods of insitu monitoring of strains on such CFRP rods when used in different engineering structures....

  18. Long-gauge FBGs interrogated by DTR3 for dynamic distributed strain measurement of helicopter blade model

    Science.gov (United States)

    Nishiyama, M.; Igawa, H.; Kasai, T.; Watanabe, N.

    2014-05-01

    In this paper, we describe characteristics of distributed strain sensing based on a Delayed Transmission/Reflection Ratiometric Reflectometry (DTR3) scheme with a long-gauge Fiber Bragg Grating (FBG), which is attractive to dynamic structural deformation monitoring such as a helicopter blade and an airplane wing. The DTR3 interrogator using the longgauge FBG has capability of detecting distributed strain with 50 cm spatial resolution in 100 Hz sampling rate. We evaluated distributed strain sensing characteristics of the long-gauge FBG attached on a 5.5 m helicopter blade model in static tests and free vibration dynamic tests.

  19. Qualification of a distributed optical fiber sensor bonded to the surface of a concrete structure: a methodology to obtain quantitative strain measurements

    Science.gov (United States)

    Billon, Astrid; Hénault, Jean-Marie; Quiertant, Marc; Taillade, Frédéric; Khadour, Aghiad; Martin, Renaud-Pierre; Benzarti, Karim

    2015-11-01

    Distributed optical fiber systems (DOFSs) are an emerging and innovative technology that allows long-range and continuous strain/temperature monitoring with a high resolution. Sensing cables are either surface-mounted or embedded into civil engineering structures to ensure long-term structural monitoring and early crack detection. However, strain profiles measured in the optical fiber (OF) may differ from the actual strain in the structure due to the shear transfer through the intermediate material layers between the OF and the host material (i.e., in the protective coating of the sensing cable and in the adhesive). Therefore, OF sensors need to be qualified to provide accurate quantitative strain measurements. This study presents a methodology for the qualification of a DOFS. This qualification is achieved through the calculation of the so-called mechanical transfer function (MTF), which relates the strain profile in the OF to the actual strain profile in the structure. It is proposed to establish a numerical modeling of the system, in which the mechanical parameters are calibrated from experiments. A specific surface-mounted sensing cable connected to an optical frequency domain reflectometry interrogator is considered as a case study. It was found that (i) tensile and pull-out tests can provide detailed information about materials and interfaces of the numerical model; (ii) the calibrated model made it possible to compute strain profiles along the OF and therefore to calculate the MTF of the system; (iii) the results proved to be consistent with experimental data collected on a cracked concrete beam during a four-point bending test. This paper is organized as follows: first, the technical background related to DOFSs and interrogators is briefly recalled, the MTF is defined and the above-mentioned methodology is presented. In the second part, the methodology is applied to a specific cable. Finally, a comparison with experimental evidence validates the proposed

  20. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  1. A high sensitive fiber-optic strain sensor with tunable temperature sensitivity for temperature-compensation measurement

    Science.gov (United States)

    Hu, Jie; Huang, Hui; Bai, Min; Zhan, Tingting; Yang, Zhibo; Yu, Yan; Qu, Bo

    2017-02-01

    A high sensitive fiber-optic strain sensor, which consists of a cantilever, a tandem rod and a fiber collimator, was proposed. The tandem rod, which transfer the applied strain to the cantilever, was used for tuning the temperature sensitivity from ‑0.15 to 0.19 dB/°C via changing the length ratio of the rods. Moreover, due to the small beam divergence of the collimator, high strain sensitivity can be realized via incident-angle sensitive detection-mechanism. A strain detection-range of 1.1 × 103 με (with a sensing length of 21.5 mm), a detection limit of 5.7 × 10‑3 με, and a maximum operating frequency of 1.18 KHz were demonstrated. This sensor is promising for compensating the thermal-expansion of various target objects.

  2. System identification of superstructures with rocking motion and deformation of bases; Kiso ga henkeishi rocking suru kozobutsu no shindo tokusei suiteiho

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Naito, Y.; Uchiyama, S.; Maeda, T.; Matsuda, K. [Kajima Corp., Tokyo (Japan)

    1995-12-20

    Transfer functions of individual parts against bases are generally used as a method for estimating dynamic characteristics of superstructures from observation records of earthquakes or microtremors. However, since soil-structure-interaction (SSI) is included in the observation records, it is difficult to clarify the dynamic characteristics of superstructures, independently. A method has been previously proposed, by which the dynamic characteristics of superstructures without the effect of SSI can be estimated by restricting the vibration mode using equivalent height even in the case of the ground motion condition for multi-particle systems as same as in the case of that for one-particle systems. In this study, this method has been applied to models of SSI systems with rocking and deformation of bases, to estimate the dynamic characteristics of superstructures for ground motion and top excitation conditions. Rigidity of bases was varied as a parameter. Consequently, it was confirmed that the present method can provide accurate estimates of dynamic characteristics of superstructures for both ground motion and top excitation conditions if deformation of bases is not so large. 2 refs., 11 figs., 3 tabs.

  3. On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel. III. Neutron diffraction study on the ordered Cr2N superstructure.

    Science.gov (United States)

    Lee, Tae-Ho; Kim, Sung-Joon; Shin, Eunjoo; Takaki, Setsuo

    2006-12-01

    The ordered structure of Cr(2)N precipitates in high-nitrogen austenitic steel was investigated utilizing high-resolution neutron powder diffractometry (HRPD). On the basis of the Rietveld refinement of neutron diffraction patterns, the ordered Cr2N superstructure was confirmed to be trigonal (space group P31m), with lattice parameters a=4.800 (4) and c=4.472 (5) A, as suggested in previous transmission electron microscopy studies [Lee, Oh, Han, Lee, Kim & Takaki (2005). Acta Cryst. B61, 137-144; Lee, Kim & Takaki (2006). Acta Cryst. B62, 190-196]. The occupancies of the N atoms in four crystallographic sites [1(a), 1(b), 2(d) and 2(c) Wyckoff sites] were determined to be 1.00 (5), 0.0, 0.74 (9) and 0.12 (3), respectively, reflecting a partial disordering of N atoms along the c axis. The position of the metal atom was specified to be x=0.346 (8) and z=0.244 (6), corresponding to a deviation from the ideal position (x=0.333 and z=0.250). This deviation caused the ((1/3 1/3)(0))-type superlattice reflection to appear. A comparison between the ideal and measured crystal structures of Cr2N was performed using a computer simulation of selected-area diffraction patterns.

  4. A Simplified Model of a Reinforced Square Hollow Section (SHS) T-Joint for Stress Evaluation in Bus Superstructures

    Science.gov (United States)

    Vichiensamuth, T.; Pimsarn, M.; Takahashi, K.; Tantanawat, T.

    2013-06-01

    This study aims to create a simplified model of a reinforced square hollow section (SHS) T-joint found in bus superstructures. The approach is to use a combination of one- and two-dimensional finite element models to represent a reference three-dimensional finite element (solid) model of the joint and determine stress concentration factors (SCFs) as functions of the geometrical variables of the joint. This approach requires the stiffness of the simplified model to be equivalent to the stiffness of the reference solid model. Trial models, therefore, must be proposed and their stiffnesses must be evaluated against the stiffness of the reference solid model. The best trial model is then selected based on the stiffness error function defined to represent the deviation of the simplified model's stiffness from the reference model's stiffness. After a trial model with minimum stiffness error is selected, its SCFs, relating the maximum stress in the simplified model to the maximum stress in the reference solid model, are determined. Since the maximum stress is assumed to be at the weld toe where structural discontinuity exists, the maximum stresses on both simplified model and reference solid model are evaluated based on a hot spot stress (HSS) method. In this study, three trial models, namely Model A, Model B, and Model C, were investigated. Model B, consisting of beam and shell elements with particular constraints on the joint-reinforcement geometry, was found to provide the minimum stiffness errors of 8.09%, 6.87%, and 6.44% for three different joint dimensions. The SCFs were then determined as a function of the thickness-to-width ratio of the joint under static in-plane bending load. The resulting simplified model allows the stress evaluation on the bus superstructures to be done more quickly compared to a solid model while maintaining the accuracy of the solutions. Consequently, the designs of bus superstructures can be explored more thoroughly, leading to a better

  5. Micro-scale measurements of plastic strain field, and local contributions of slip and twinning in TWIP steels during in situ tensile tests

    Energy Technology Data Exchange (ETDEWEB)

    Yang, H.K. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China); Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Doquet, V., E-mail: doquet@lms.polytechnique.fr [Laboratoire de Mécanique des Solides, Ecole Polytechnique, CNRS UMR7649, Université Paris-Saclay, 91128 Palaiseau (France); Zhang, Z.F. [Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016 (China)

    2016-08-30

    In-situ tensile tests were carried out on Fe22Mn0.6C and Fe22Mn0.6C3Al (wt%) twinning-induced plasticity (TWIP) steels specimens covered with gold micro-grids. High resolution atomic force microscopy (AFM) and scanning electron microscope (SEM) images were periodically captured. The latter were used for measurements of the plastic strain field, using digital image correlation (DIC). Although no meso-scale localization bands appeared, some areas were deformed three times more than average. Plastic deformation inside the grains was more heterogeneous in Fe22Mn0.6C, but at meso-scale, the degree of strain heterogeneity was not higher, at least up to 12% strain. Plastic deformation started from grain boundaries or annealing twin boundaries in both materials, due to a high elastic anisotropy of the grains. An original method based on DIC was developed to estimate the twin fraction in grains that exhibit a single set of slip/twin bands. Deformation twinning accommodated 60–80% of the plastic strain in some favorably oriented grains, from the onset of plastic flow in Fe22Mn0.6C, but was not observed in the Al-bearing steel until 12% strain. The back stress was important in both materials, but significantly higher in Fe22Mn0.6C.

  6. Cellulose acetate-directed growth of bamboo-raft-like single-crystalline selenium superstructures: high-yield synthesis, characterization, and formation mechanism.

    Science.gov (United States)

    Song, Ji-Ming; Zhan, Yong-Jie; Xu, An-Wu; Yu, Shu-Hong

    2007-06-19

    High-yield synthesis of bamboo-raft-like single-crystalline selenium superstructures has been realized for the first time via a facile solvothermal approach by reducing SeO2 with ethylene alcohol in the presence of cellulose acetate. The formation of a raftlike superstructure with various forms is strongly dependent on the temperature, amount of cellulose acetate, reaction time, and even preheating treatment. The suitable amount of cellulose acetate is essential for the formation of elegant and uniform raft Se. The morphology, microstructure, optical properties, and chemical compositions of bamboo-raft-like selenium were characterized using various techniques (X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution (HR) TEM, X-ray photoelectron spectroscopy, UV-vis spectroscopy, FTIR spectroscopy, and Raman spectroscopy). A possible growth mechanism has been proposed. Such special superstructures could provide a useful precursor for potential applications.

  7. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  8. The effect of strain path change on subgrain volume fraction determined from in situ X-ray measurements

    DEFF Research Database (Denmark)

    Wejdemann, Christian; Poulsen, Henning Friis; Lienert, U.

    2009-01-01

    The evolution of dislocation structures in individual bulk grains in copper during strain path changes is studied with a new in situ synchrotron technique which combines high angular resolution with fast three-dimensional reciprocal space mapping. Deformed copper contains regions with vanishing...... dislocation density called subgrains bounded by dislocation rich walls. With the new technique reciprocal space maps, consisting of sharp peaks arising from the subgrains superimposed on a cloud of lower intensity arising from the dislocation walls, are obtained, which allows properties such as subgrain...... volume fraction to be quantified. The studied strain path changes are tension-tension sequences. Polycrystalline copper sheets are pre-deformed in tension to 5% strain, and tensile samples are cut with varying angles between the first and second loading axis. The second tensile deformation up...

  9. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging

    Science.gov (United States)

    Hsu, Vivian M.; Wes, Ari M.; Tahiri, Youssef; Cornman-Homonoff, Joshua

    2014-01-01

    Background: The aim of this study is to evaluate and quantify dynamic soft-tissue strain in the human face using real-time 3-dimensional imaging technology. Methods: Thirteen subjects (8 women, 5 men) between the ages of 18 and 70 were imaged using a dual-camera system and 3-dimensional optical analysis (ARAMIS, Trilion Quality Systems, Pa.). Each subject was imaged at rest and with the following facial expressions: (1) smile, (2) laughter, (3) surprise, (4) anger, (5) grimace, and (6) pursed lips. The facial strains defining stretch and compression were computed for each subject and compared. Results: The areas of greatest strain were localized to the midface and lower face for all expressions. Subjects over the age of 40 had a statistically significant increase in stretch in the perioral region while lip pursing compared with subjects under the age of 40 (58.4% vs 33.8%, P = 0.015). When specific components of lip pursing were analyzed, there was a significantly greater degree of stretch in the nasolabial fold region in subjects over 40 compared with those under 40 (61.6% vs 32.9%, P = 0.007). Furthermore, we observed a greater degree of asymmetry of strain in the nasolabial fold region in the older age group (18.4% vs 5.4%, P = 0.03). Conclusions: This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time. PMID:25426394

  10. Quantified Facial Soft-tissue Strain in Animation Measured by Real-time Dynamic 3-Dimensional Imaging.

    Science.gov (United States)

    Hsu, Vivian M; Wes, Ari M; Tahiri, Youssef; Cornman-Homonoff, Joshua; Percec, Ivona

    2014-09-01

    The aim of this study is to evaluate and quantify dynamic soft-tissue strain in the human face using real-time 3-dimensional imaging technology. Thirteen subjects (8 women, 5 men) between the ages of 18 and 70 were imaged using a dual-camera system and 3-dimensional optical analysis (ARAMIS, Trilion Quality Systems, Pa.). Each subject was imaged at rest and with the following facial expressions: (1) smile, (2) laughter, (3) surprise, (4) anger, (5) grimace, and (6) pursed lips. The facial strains defining stretch and compression were computed for each subject and compared. The areas of greatest strain were localized to the midface and lower face for all expressions. Subjects over the age of 40 had a statistically significant increase in stretch in the perioral region while lip pursing compared with subjects under the age of 40 (58.4% vs 33.8%, P = 0.015). When specific components of lip pursing were analyzed, there was a significantly greater degree of stretch in the nasolabial fold region in subjects over 40 compared with those under 40 (61.6% vs 32.9%, P = 0.007). Furthermore, we observed a greater degree of asymmetry of strain in the nasolabial fold region in the older age group (18.4% vs 5.4%, P = 0.03). This pilot study illustrates that the face can be objectively and quantitatively evaluated using dynamic major strain analysis. The technology of 3-dimensional optical imaging can be used to advance our understanding of facial soft-tissue dynamics and the effects of animation on facial strain over time.

  11. Strain Measurements within Fibre Boards. Part II: Strain Concentrations at the Crack Tip of MDF Specimens Tested by the Wedge Splitting Method

    Directory of Open Access Journals (Sweden)

    Jörn Rathke

    2012-08-01

    Full Text Available This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.

  12. Strain Measurements within Fibre Boards. Part II: Strain Concentrations at the Crack Tip of MDF Specimens Tested by the Wedge Splitting Method

    Science.gov (United States)

    Sinn, Gerhard; Müller, Ulrich; Konnerth, Johannes; Rathke, Jörn

    2012-01-01

    This is the second part of an article series where the mechanical and fracture mechanical properties of medium density fiberboard (MDF) were studied. While the first part of the series focused on internal bond strength and density profiles, this article discusses the fracture mechanical properties of the core layer. Fracture properties were studied with a wedge splitting setup. The critical stress intensity factors as well as the specific fracture energies were determined. Critical stress intensity factors were calculated from maximum splitting force and two-dimensional isotropic finite elements simulations of the specimen geometry. Size and shape of micro crack zone were measured with electronic laser speckle interferometry. The process zone length was approx. 5 mm. The specific fracture energy was determined to be 45.2 ± 14.4 J/m2 and the critical stress intensity factor was 0.11 ± 0.02 MPa.

  13. Measurement of Longitudinal Surface Growth Strains of Trees Using Strain Gauge and CIRAD-Foret Method%应变片和轴向生长应变仪法测试树木轴向表面生长应变

    Institute of Scientific and Technical Information of China (English)

    刘晓丽; 姜笑梅; 殷亚方

    2005-01-01

    In this paper, CIRAD-Foret method and strain gauge method were used to measure the longitudinal surface growth strains released from fallen woods. Comparison was also done between two methods for measurements at the same point (sawing grooves inside the position pins)and at two points. Results showed that the values obtained from the CIRAD-Foret method were bigger than those from strain gauge method. The former was 1.3 times as high as the latter for the measurement at two points, and it was 2.0 times as high as the latter for the measurement at the same point. There was no distinct difference in the longitudinal surface growth strains from strain gauge method with measuring way at the same point and two points. However, the differences were obvious for the strains from CIRAD-Foret method with two measuring ways. They indicated that there was little effect on the values from strain gauge method with measuring way at the same point or at two points, and that the measuring way would influence measured result when CIRAD-Foret method was applied. In general, in comparison with CIRAD-Foret method, strain gauge method was more stable.

  14. Design and Application of Strain Measurement System Based on LabVIEW%基于LabVIEW的应变测量系统的设计与应用

    Institute of Scientific and Technical Information of China (English)

    马志燕

    2014-01-01

    A system of strain measurement based on virtual instrument is designed,and it com-bines the advantages of virtual instrument and Lab VIEW software.Based on the principle of strain measurement,hardware and software framework of strain measurement system is designed case study in test of warp tension,and The advantages of this measuring system is verified over traditional sys-tems.Results show that the system has advantages of simple structure,convenient operation,and which can give full play to the powerful advantage of computer in data calculation,transmission,stor-age and display.%结合虚拟仪器及其 LabVIEW软件的优点,设计了一种基于虚拟仪器的应变测量系统。在应变测量原理的基础上,以经纱张力测试为例设计了应变测量系统的软硬件结构,验证了该测量系统较传统系统的优越性。结果表明,系统硬件结构简单,操作方便,同时能够充分发挥计算机在数据计算、传输、存储和显示等方面的巨大优势。

  15. Bipartite electronic superstructures in the vortex core of Bi2Sr2CaCu2O8+δ

    Science.gov (United States)

    Machida, T.; Kohsaka, Y.; Matsuoka, K.; Iwaya, K.; Hanaguri, T.; Tamegai, T.

    2016-05-01

    The central issue in the physics of cuprate superconductivity is the mutual relationship among superconductivity, pseudogap and broken-spatial-symmetry states. A magnetic field B suppresses superconductivity, providing an opportunity to investigate the competition among these states. Although various B-induced electronic superstructures have been reported, their energy, spatial and momentum-space structures are unclear. Here, we show using spectroscopic-imaging scanning tunnelling microscopy on Bi2Sr2CaCu2O8+δ that there are two distinct B-induced electronic superstructures, both being localized in the vortex core but appearing at different energies. In the low-energy range where the nodal Bogoliubov quasiparticles are well-defined, we observe the so-called vortex checkerboard that we identify as the B-enhanced quasiparticle interference pattern. By contrast, in the high-energy region where the pseudogap develops, the broken-spatial-symmetry patterns that pre-exist at B=0 T is locally enhanced in the vortex core. This evidences the competition between superconductivity and the broken-spatial-symmetry state that is associated with the pseudogap.

  16. Self-organization of nickel nanoparticles dispersed in acetone: From separate nanoparticles to three-dimensional superstructures

    Directory of Open Access Journals (Sweden)

    I. Hernández-Pérez

    2017-02-01

    Full Text Available Sonochemical synthesis of monodisperse nickel nanoparticles (Ni-NPs by reduction of Ni acetylacetonate in the presence of polyvinylpyrrolidone stabilizer is reported. The Ni-NPs size is readily controlled to 5 nanometer diameter with a standard deviation of less than 5%. The as-prepared Ni-NPs sample was dispersed in acetone, for 4 weeks. For structural analysis was not applied to a magnetic field or heat treatment as key methods to direct the assembly. The transition from separate Ni-NPs into self-organization of three dimensions (3D superstructures was studied by electron microscopy. Experimental analysis suggests that the translation and rotation movement of the Ni-NPs are governed by magnetic frustration which promotes the formation of different geometric arrangements in two dimensions (2D. The formation of 3D superstructures is confirmed from scanning electron microscopy revealing a layered domain that consists of staking of several monolayers having multiple well-defined supercrystalline domains, enabling their use for optical, electronic and sensor applications.

  17. Facile hydrothermal synthesis of TiO2-Bi2WO6 hollow superstructures with excellent photocatalysis and recycle properties.

    Science.gov (United States)

    Hou, Ya-Fei; Liu, Shu-Juan; Zhang, Jing-huai; Cheng, Xiao; Wang, You

    2014-01-21

    One-dimensional mesoporous TiO2-Bi2WO6 hollow superstructures are prepared using a hydrothermal method and their photocatalysis and recycle properties are investigated. Experimental results indicate that anatase TiO2 nanoparticles are coupled with hierarchical Bi2WO6 hollow tubes on their surfaces. The TiO2-Bi2WO6 structure has a mesoporous wall and the pores in the wall are on average 21 nm. The hierarchical TiO2-Bi2WO6 heterostructures exhibit the highest photocatalytic activity in comparison with P25, pure Bi2WO6 hollow tube and mechanical mixture of Bi2WO6 tube and TiO2 nanoparticle in the degradation of rhodamine B (RhB) under simulated sunlight irradiation. The as-prepared TiO2-Bi2WO6 heterostructures can be easily recycled through sedimentation and they retains their high photocatalytic activity during the cycling use in the simulated sunlight-driving photodegradation process of RhB. The prepared mesoporous TiO2-Bi2WO6 with hollow superstructure is therefore a promising candidate material for water decontamination use.

  18. Stress-strain curves of adsorbed protein layers at the air/water interface measured with surface shear rheology

    NARCIS (Netherlands)

    Martin, A.; Bos, M.; Stuart, M.C.; Vliet, T. van

    2002-01-01

    Interfacial shear properties of adsorbed protein layers at the air/water interface were determined using a Couette-type surface shear rheometer. Such experiments are often used to determine a steady-state ratio between stress and rate of strain, which is then denoted as "surface shear viscosity". Ho

  19. Application of indirect stress measurement techniques (non strain gauge based technology) to quantify stress environments in mines

    CSIR Research Space (South Africa)

    Stacey, TR

    2002-03-01

    Full Text Available Reliable values of in situ stress are essential for the valid modelling of mine layouts. Available non-strain gauge methods are reviewed as potential practical techniques for South African mines. From this review it is concluded that the most...

  20. Design of triaxial test with controlled suction: measure of strain; Conception d'un essai triaxial a succion controlee: mesure des deformations

    Energy Technology Data Exchange (ETDEWEB)

    Gasc-Barbier, M.; Cosenza, Ph.; Ghoreychi, M.; Chanchole, S. [Ecole Polytechnique, 91 - Palaiseau (France); Cosenza, Ph. [Paris-6 Univ., 75 (France); Tessier, D. [Institut National de Recherches Agronomiques (INRA), Unite de Sciences du Sol, 78 - Versailles (France)

    2000-01-01

    Experimental study of mechanical behavior of clayey materials under hygrometric condition is usually performed either on unloaded samples or by means of classical odometer tests used in soil mechanics. Such methods are not well adapted to hard deep clayey rocks with little deformability, porosity and permeability. Moreover, stress and strain tensors having a significant effect on hygro-mechanical behaviour and properties cannot be measured and investigated appropriately by classical tests. This is why a specific triaxial test was designed in which the sample is surrounded by a fiber glass tissue allowing air circulation and then by silicon on which confining pressure is applied. Thus, equilibrium between air and sample was reduced. Stress and strain tensors were also measured in time on the sample subjected to a mechanical loading and to a controlled suction. After presentation of the test, preliminary results are given. (authors)