Codoni, Joshua R.; Berry, Scott A.
2012-01-01
Recent experimental supersonic retropropulsion tests were conducted at the NASA Langley Research Center Unitary Plan Wind Tunnel Test Section 2 for a range of Mach numbers from 2.4 to 4.6. A 5-inch 70-degree sphere-cone forebody model with a 10-inch cylindrical aftbody experimental model was used which is capable of multiple retrorocket configurations. These configurations include a single central nozzle on the center point of the forebody, three nozzles at the forebody half-radius, and a combination of the first two configurations with no jets being plugged. A series of measurements were achieved through various instrumentation including forebody and aftbody pressure, internal pressures and temperatures, and high speed Schlieren visualization. Specifically, several high speed pressure transducers on the forebody and in the plenum were implemented to look at unsteady flow effects. The following work focuses on analyzing frequency traits due to the unsteady flow for a range of thrust coefficients for single, tri, and quad-nozzle test cases at freestream Mach 4.6 and angle of attack ranging from -8 degrees to +20 degrees. This analysis uses Matlab s fast Fourier transform, Welch's method (modified average of a periodogram), to create a power spectral density and analyze any high speed pressure transducer frequency traits due to the unsteady flow.
Ellison, J. C.
1977-01-01
An investigation was conducted to determine the supersonic longitudinal aerodynamic characteristics of 0.015 scale models of the Rockwell International 089B and 139B space shuttle orbiter configurations and the 139B orbiter with a modifier forebody. The models each had a 45 deg swept delta wing that was blended into the body with an 81 deg swept fillet to form a double delta planform. The vertical tail had a split rudder deflected 27.5 deg on each side to form a speed brake. Tests were conducted at Mach numbers of 2.5, 3.9, and 4.6 at a Reynolds number, based on the body length of the 089B model, of 4,150,000. Angles of attack varied from -4 deg to 44 deg at 0 deg sideslip.
Operational flow visualization techniques in the Langley Unitary Plan Wind Tunnel
Corlett, W. A.
1982-01-01
The unitary plan wind tunnel (UPWT) uses in daily operation are shown. New ideas for improving the quality of established flow visualization methods are developed and programs on promising new flow visualization techniques are pursued. The unitary plan wind tunnel is a supersonic facility, referred to as a production facility, although the majority of tests are inhouse basic research investigations. The facility has two 4 ft. by 4 ft. test sections which span a Mach range from 1.5 to 4.6. The cost of operation is about $10 per minute. Problems are the time required for a flow visualization test setup and investigation costs and the ability to obtain consistently repeatable results. Examples of sublimation, vapor screen, oil flow, minitufts, schlieren, and shadowgraphs taken in UPWT are presented. All tests in UPWT employ one or more of the flow visualization techniques.
Vapor-screen technique for flow visualization in the Langley Unitary Plan Wind Tunnel
Morris, O. A.; Corlett, W. A.; Wassum, D. L.; Babb, C. D.
1985-01-01
The vapor-screen technique for flow visualization, as developed for the Langley Unitary Plan Wind Tunnel, is described with evaluations of light sources and photographic equipment. Test parameters including dew point, pressure, and temperature were varied to determine optimum conditions for obtaining high-quality vapor-screen photographs. The investigation was conducted in the supersonic speed range for Mach numbers from 1.47 to 4.63 at model angles of attack up to 35 deg. Vapor-screen photographs illustrating various flow patterns are presented for several missile and aircraft configurations. Examples of vapor-screen results that have contributed to the understanding of complex flow fields and provided a basis for the development of theoretical codes are presented with reference to other research.
Description and calibration of the Langley unitary plan wind tunnel
Jackson, C. M., Jr.; Corlett, W. A.; Monta, W. J.
1981-01-01
The two test sections of the Langley Unitary Plan Wind Tunnel were calibrated over the operating Mach number range from 1.47 to 4.63. The results of the calibration are presented along with a a description of the facility and its operational capability. The calibrations include Mach number and flow angularity distributions in both test sections at selected Mach numbers and tunnel stagnation pressures. Calibration data are also presented on turbulence, test-section boundary layer characteristics, moisture effects, blockage, and stagnation-temperature distributions. The facility is described in detail including dimensions and capacities where appropriate, and example of special test capabilities are presented. The operating parameters are fully defined and the power consumption characteristics are discussed.
Garbeff, Theodore J., II; Baerny, Jennifer K.
2017-01-01
The following details recent efforts undertaken at the NASA Ames Unitary Plan wind tunnels to design and deploy an advanced, production-level infrared (IR) flow visualization data system. Highly sensitive IR cameras, coupled with in-line image processing, have enabled the visualization of wind tunnel model surface flow features as they develop in real-time. Boundary layer transition, shock impingement, junction flow, vortex dynamics, and buffet are routinely observed in both transonic and supersonic flow regimes all without the need of dedicated ramps in test section total temperature. Successful measurements have been performed on wing-body sting mounted test articles, semi-span floor mounted aircraft models, and sting mounted launch vehicle configurations. The unique requirements of imaging in production wind tunnel testing has led to advancements in the deployment of advanced IR cameras in a harsh test environment, robust data acquisition storage and workflow, real-time image processing algorithms, and evaluation of optimal surface treatments. The addition of a multi-camera IR flow visualization data system to the Ames UPWT has demonstrated itself to be a valuable analyses tool in the study of new and old aircraft/launch vehicle aerodynamics and has provided new insight for the evaluation of computational techniques.
Erickson, G. E.; Burner, A. W.; DeLoach, R.
1999-01-01
Pressure-sensitive paint (PSP) and video model deformation (VMD) systems have been installed in the Unitary Plan Wind Tunnel at the NASA Langley Research Center to support the supersonic wind tunnel testing requirements of the High Speed Research (HSR) program. The PSP and VMD systems have been operational since early 1996 and provide the capabilities of measuring global surface static pressures and wing local twist angles and deflections (bending). These techniques have been successfully applied to several HSR wind tunnel models for wide ranges of the Mach number, Reynolds number, and angle of attack. A review of the UPWT PSP and VMD systems is provided, and representative results obtained on selected HSR models are shown. A promising technique to streamline the wind tunnel testing process, Modern Experimental Design, is also discussed in conjunction with recently-completed wing deformation measurements at UPWT.
Wilcox, Floyd J., Jr.; Pinier, Jeremy T.; Chan, David T.; Crosby, William A.
2016-01-01
A wind-tunnel investigation of a 0.009 scale model of the Space Launch System (SLS) was conducted in the NASA Langley Unitary Plan Wind Tunnel to characterize the aerodynamics of the core and solid rocket boosters (SRBs) during booster separation. High-pressure air was used to simulate plumes from the booster separation motors (BSMs) located on the nose and aft skirt of the SRBs. Force and moment data were acquired on the core and SRBs. These data were used to corroborate computational fluid dynamics (CFD) calculations that were used in developing a booster separation database. The SRBs could be remotely positioned in the x-, y-, and z-direction relative to the core. Data were acquired continuously while the SRBs were moved in the axial direction. The primary parameters varied during the test were: core pitch angle; SRB pitch and yaw angles; SRB nose x-, y-, and z-position relative to the core; and BSM plenum pressure. The test was conducted at a free-stream Mach number of 4.25 and a unit Reynolds number of 1.5 million per foot.
Laser transit anemometer measurements on a slender cone in the Langley unitary plan wind tunnel
Humphreys, William M., Jr.; Hunter, William W., Jr.; Covell, Peter F.; Nichols, Cecil E., Jr.
1990-01-01
A laser transit anemometer (LTA) system was used to probe the boundary layer on a slender (5 degree half angle) cone model in the Langley unitary plan wind tunnel. The anemometer system utilized a pair of laser beams with a diameter of 40 micrometers spaced 1230 micrometers apart to measure the transit times of ensembles of seeding particles using a cross-correlation technique. From these measurements, boundary layer profiles around the model were constructed and compared with CFD calculations. The measured boundary layer profiles representing the boundary layer velocity normalized to the edge velocity as a function of height above the model surface were collected with the model at zero angle of attack for four different flow conditions, and were collected in a vertical plane that bisected the model's longitudinal center line at a location 635 mm from the tip of the forebody cone. The results indicate an excellent ability of the LTA system to make velocity measurements deep into the boundary layer. However, because of disturbances in the flow field caused by onboard seeding, premature transition occurred implying that upstream seeding is mandatory if model flow field integrity is to be maintained. A description and results of the flow field surveys are presented.
Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion
Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.
2011-01-01
A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.
Corlett, W. A.
1979-01-01
A metric half-span model is considered as a means of mechanical support for a wind-tunnel model which allows measurement of aerodynamic forces and moments without support interference or model distortion. This technique can be applied to interference-free propulsion models. The vapor screen method of flow visualization at supersonic Mach numbers is discussed. The use of smoke instead of water vapor as a medium to produce the screen is outlined. Vapor screen data are being used in the development of analytical vortex tracking programs. Test results for a remote control model system are evaluated. Detailed control effectiveness and cross-coupling data were obtained with a single run. For the afterbody tail configuration, tested control boundaries at several roll orientations were established utilizing the facility's on-line capability to 'fly' the model in the wind tunnel.
Bradley, P. F.; Siemers, P. M., III; Flanagan, P. F.; Henry, M. W.
1983-01-01
Pressure distribution tests on a 0.04-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Langley Unitary Plan Wind Tunnel (UPWT). The UPWT has two different test sections operating in the continuous mode. Each test section has its own Mach number range. The model was tested at angles of attack from -2.5 deg to 30 deg and angles of sideslip from -5 deg to 5 deg in both test sections. The test Reynolds number was 6.6 x 10 to the 6th power per meter. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS pressure orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations currently existing on the Space Shuttle Orbiter Columbia (OV-102). This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel data.
Unitary lens semiconductor device
Lear, Kevin L.
1997-01-01
A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.
Cowling, W R
2001-06-01
Unitary appreciative inquiry is described as an orientation, process, and approach for illuminating the wholeness, uniqueness, and essence that are the pattern of human life. It was designed to bring the concepts, assumptions, and perspectives of the science of unitary human beings into reality as a mode of inquiry. Unitary appreciative inquiry provides a way of giving fullest attention to important facets of human life that often are not fully accounted for in current methods that have a heavier emphasis on diagnostic representations. The participatory, synoptic, and transformative qualities of the unitary appreciative process are explicated. The critical dimensions of nursing knowledge development expressed in dialectics of the general and the particular, action and theory, stories and numbers, sense and soul, aesthetics and empirics, and interpretation and emancipation are considered in the context of the unitary appreciative stance. Issues of legitimacy of knowledge and credibility of research are posed and examined in the context of four quality standards that are deemed important to evaluate the worthiness of unitary appreciative inquiry for the advancement of nursing science and practice.
Entanglement quantification by local unitaries
Monras, A; Giampaolo, S M; Gualdi, G; Davies, G B; Illuminati, F
2011-01-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "shield entanglement". They are constructed by first considering the (squared) Hilbert- Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these shield entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary f...
Shrout, B. L.; Corlett, W. A.; Collins, I. K.
1979-01-01
The tabulated results of surface pressure tests conducted on the wing and fuselage of an airplane model in the Langley Unitary Plan wind tunnel are presented without analysis. The model tested was that of a supersonic-cruise airplane with a highly swept arrow-wing planform, two engine nacelles mounted beneath the wing, and outboard vertical tails. Data were obtained at Mach numbers of 2.30, 2.96, and 3.30 for angles of attack from -4 deg to 12 deg. The Reynolds number for these tests was 6,560,000 per meter.
Siemers, P. M., III; Henry, M. W.
1986-01-01
Pressure distribution test data obtained on a 0.10-scale model of the forward fuselage of the Space Shuttle Orbiter are presented without analysis. The tests were completed in the Ames Unitary Wind Tunnel (UPWT). The UPWT tests were conducted in two different test sections operating in the continuous mode, the 8 x 7 feet and 9 x 7 feet test sections. Each test section has its own Mach number range, 1.6 to 2.5 and 2.5 to 3.5 for the 9 x 7 feet and 8 x 7 feet test section, respectively. The test Reynolds number ranged from 1.6 to 2.5 x 10 to the 6th power ft and 0.6 to 2.0 x 10 to the 6th power ft, respectively. The tests were conducted in support of the development of the Shuttle Entry Air Data System (SEADS). In addition to modeling the 20 SEADS orifices, the wind-tunnel model was also instrumented with orifices to match Development Flight Instrumentation (DFI) port locations that existed on the Space Shuttle Columbia (OV-102) during the Orbiter Flight test program. This DFI simulation has provided a means for comparisons between reentry flight pressure data and wind-tunnel and computational data.
Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.
2016-04-12
A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Entanglement Continuous Unitary Transformations
Sahin, S; Orus, R
2016-01-01
Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators, and we present proof-of-principle results for the spin-1/2 1d quantum Ising model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermo...
Entanglement continuous unitary transformations
Sahin, Serkan; Schmidt, Kai Phillip; Orús, Román
2017-01-01
Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called “entanglement-CUT” or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators. We also present proof-of-principle results for the spin-(1/2) 1d quantum Ising model and the 3-state quantum Potts model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermodynamic limit.
Unitary Transformation in Quantum Teleportation
Institute of Scientific and Technical Information of China (English)
WANG Zheng-Chuan
2006-01-01
In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.
All maximally entangling unitary operators
Energy Technology Data Exchange (ETDEWEB)
Cohen, Scott M. [Department of Physics, Duquesne University, Pittsburgh, Pennsylvania 15282 (United States); Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States)
2011-11-15
We characterize all maximally entangling bipartite unitary operators, acting on systems A and B of arbitrary finite dimensions d{sub A}{<=}d{sub B}, when ancillary systems are available to both parties. Several useful and interesting consequences of this characterization are discussed, including an understanding of why the entangling and disentangling capacities of a given (maximally entangling) unitary can differ and a proof that these capacities must be equal when d{sub A}=d{sub B}.
Unitary pattern: a review of theoretical literature.
Musker, Kathleen M
2012-07-01
It is the purpose of this article to illuminate the phenomenon of unitary pattern through a review of theoretical literature. Unitary pattern is a phenomenon of significance to the discipline of nursing because it is manifested in and informs all person-environment health experiences. Unitary pattern was illuminated by: addressing the barriers to understanding the phenomenon, presenting a definition of unitary pattern, and exploring Eastern and Western theoretical literature which address unitary pattern in a way that is congruent with the definition presented. This illumination of unitary pattern will expand nursing knowledge and contribute to the discipline of nursing.
Despair: a unitary appreciative inquiry.
Cowling, W Richard
2004-01-01
A unitary appreciative case study method was used to explicate unitary understandings of despair embedded in the unique personal life contexts of the participants. Fourteen women engaged in dialogical, appreciative interviews that led to the creation of profiles of the life pattern or course associated with despair for each woman. Three exemplar cases are detailed including the profiles that incorporate story, metaphor, music, and imagery. The voices of the women provide morphogenic knowledge of the contexts, nature, consequences, and contributions of despair as well as practical guidance for healthcare providers.
Teleportation of M-Qubit Unitary Operations
Institute of Scientific and Technical Information of China (English)
郑亦庄; 顾永建; 郭光灿
2002-01-01
We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.
Houlihan, S. R.
1992-01-01
Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA19OA/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA19OA) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA19OB). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline; (2) GO2 pressure line; (3) LO2 antigeyser line; (4) GH2 pressure line; (5) LH2 tank cable tray; (6) LO2 tank cable tray; (7) Bipod; (8) ET/SRB cable tray; and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above; 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements; Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures; and Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.
Houlihan, S. R.
1992-01-01
Data were obtained on a 3-percent model of the Space Shuttle launch vehicle in the NASA/Ames Research Center 11x11-foot and 9x7-foot Unitary Plan Wind Tunnels. This test series has been identified as IA190A/B and was conducted from 7 Feb. 1980 to 19 Feb. 1980 (IA190A) and from 17 March 1980 to 19 March 1980 and from 8 May 1980 to 30 May 1980 (IA190B). The primary test objective was to obtain structural loads on the following external tank protuberances: (1) LO2 feedline, (2) GO2 pressure line, (3) LO2 antigeyser line, (4) GH2 pressure line, (5) LH2 tank cable tray, (6) LO2 tank cable tray, (7) Bipod, (8) ET/SRB cable tray, and (9) Crossbeam/Orbiter cable tray. To fulfill these objectives the following steps were taken: (1) Eight 3-component balances were used to measure forces on various sections of 1 thru 6 above. (2) 315 pressure orifices were distributed over all 9 above items. The LO2 feedline was instrumented with 96 pressure taps and was rotated to four positions to yield 384 pressure measurements. The LO2 antigeyser line was instrumented with 64 pressure taps and was rotated to two positions to yield 128 pressure measurements. (3) Three Chrysler miniature flow direction probes were mounted on a traversing mechanism on the tank upper surface centerline to obtain flow field data between the forward and aft attach structures. (4) Schlieren photographs and ultraviolet flow photographs were taken at all test conditions. Data from each of the four test phases are presented.
Unitary equivalence of quantum walks
Energy Technology Data Exchange (ETDEWEB)
Goyal, Sandeep K., E-mail: sandeep.goyal@ucalgary.ca [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); Konrad, Thomas [School of Chemistry and Physics, University of KwaZulu-Natal, Private Bag X54001, 4000 Durban (South Africa); National Institute for Theoretical Physics (NITheP), KwaZulu-Natal (South Africa); Diósi, Lajos [Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, H-1525 Budapest 114, P.O.B. 49 (Hungary)
2015-01-23
Highlights: • We have found unitary equivalent classes in coined quantum walks. • A single parameter family of coin operators is sufficient to realize all simple one-dimensional quantum walks. • Electric quantum walks are unitarily equivalent to time dependent quantum walks. - Abstract: A simple coined quantum walk in one dimension can be characterized by a SU(2) operator with three parameters which represents the coin toss. However, different such coin toss operators lead to equivalent dynamics of the quantum walker. In this manuscript we present the unitary equivalence classes of quantum walks and show that all the nonequivalent quantum walks can be distinguished by a single parameter. Moreover, we argue that the electric quantum walks are equivalent to quantum walks with time dependent coin toss operator.
Truncations of random unitary matrices
Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Juergen
1999-01-01
We analyze properties of non-hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N>M, distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N. For the truncated CUE we derive analytically the joint density of eigenvalues from which easily all correlation functions are obtained. For N-M fixed and N--> infinity the universal resonance-width distribution with N-M open channels is recovered.
Direct dialling of Haar random unitary matrices
Russell, Nicholas J.; Chakhmakhchyan, Levon; O’Brien, Jeremy L.; Laing, Anthony
2017-03-01
Random unitary matrices find a number of applications in quantum information science, and are central to the recently defined boson sampling algorithm for photons in linear optics. We describe an operationally simple method to directly implement Haar random unitary matrices in optical circuits, with no requirement for prior or explicit matrix calculations. Our physically motivated and compact representation directly maps independent probability density functions for parameters in Haar random unitary matrices, to optical circuit components. We go on to extend the results to the case of random unitaries for qubits.
Singular Value Decomposition for Unitary Symmetric Matrix
Institute of Scientific and Technical Information of China (English)
ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda
2003-01-01
A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.
Unitary Root Music and Unitary Music with Real-Valued Rank Revealing Triangular Factorization
2010-06-01
AFRL-RY-WP-TP-2010-1213 UNITARY ROOT MUSIC AND UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) Nizar...DATES COVERED (From - To) June 2010 Journal Article Postprint 08 September 2006 – 31 August 2009 4. TITLE AND SUBTITLE UNITARY ROOT MUSIC AND...UNITARY MUSIC WITH REAL-VALUED RANK REVEALING TRIANGULAR FACTORIZATION (Postprint) 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA8650-05-D-1912-0007 5c
Institute of Scientific and Technical Information of China (English)
袁生学
1999-01-01
Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.
Unitary symmetry, combinatorics, and special functions
Energy Technology Data Exchange (ETDEWEB)
Louck, J.D.
1996-12-31
From 1967 to 1994, Larry Biedenham and I collaborated on 35 papers on various aspects of the general unitary group, especially its unitary irreducible representations and Wigner-Clebsch-Gordan coefficients. In our studies to unveil comprehensible structures in this subject, we discovered several nice results in special functions and combinatorics. The more important of these will be presented and their present status reviewed.
Spectral stability of unitary network models
Asch, Joachim; Bourget, Olivier; Joye, Alain
2015-08-01
We review various unitary network models used in quantum computing, spectral analysis or condensed matter physics and establish relationships between them. We show that symmetric one-dimensional quantum walks are universal, as are CMV matrices. We prove spectral stability and propagation properties for general asymptotically uniform models by means of unitary Mourre theory.
Complex positive maps and quaternionic unitary evolution
Energy Technology Data Exchange (ETDEWEB)
Asorey, M [Departamento de Fisica Teorica, Universidad de Zaragoza, 50009 Zaragoza (Spain); Scolarici, G [Dipartimento di Fisica dell' Universita di Lecce and INFN, Sezione di Lecce, I-73100 Lecce (Italy)
2006-08-04
The complex projection of any n-dimensional quaternionic unitary dynamics defines a one-parameter positive semigroup dynamics. We show that the converse is also true, i.e. that any one-parameter positive semigroup dynamics of complex density matrices with maximal rank can be obtained as the complex projection of suitable quaternionic unitary dynamics.
Composed ensembles of random unitary ensembles
Pozniak, M; Kus, M; Pozniak, Marcin; Zyczkowski, Karol; Kus, Marek
1997-01-01
Composed ensembles of random unitary matrices are defined via products of matrices, each pertaining to a given canonical circular ensemble of Dyson. We investigate statistical properties of spectra of some composed ensembles and demonstrate their physical relevance. We discuss also the methods of generating random matrices distributed according to invariant Haar measure on the orthogonal and unitary group.
Tensor Products of Random Unitary Matrices
Tkocz, Tomasz; Kus, Marek; Zeitouni, Ofer; Zyczkowski, Karol
2012-01-01
Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M=2, N become large or M become large and N=2.
Energy Transfer Using Unitary Transformations
Directory of Open Access Journals (Sweden)
Winny O'Kelly de Galway
2013-11-01
Full Text Available We study the unitary time evolution of a simple quantum Hamiltonian describing two harmonic oscillators coupled via a three-level system. The latter acts as an engine transferring energy from one oscillator to the other and is driven in a cyclic manner by time-dependent external fields. The S-matrix (scattering matrix of the cycle is obtained in analytic form. The total number of quanta contained in the system is a conserved quantity. As a consequence, the spectrum of the S-matrix is purely discrete, and the evolution of the system is quasi-periodic. The explicit knowledge of the S-matrix makes it possible to do accurate numerical evaluations of the time-dependent wave function. They confirm the quasi-periodic behavior. In particular, the energy flows back and forth between the two oscillators in a quasi-periodic manner.
Extremal spacings of random unitary matrices
Smaczynski, Marek; Kus, Marek; Zyczkowski, Karol
2012-01-01
Extremal spacings between unimodular eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Probability distributions for the minimal spacing for various ensembles are derived for N=4. We show that for large matrices the average minimal spacing s_min of a random unitary matrix behaves as N^(-1/(1+B)) for B equal to 0,1 and 2 for circular Poisson, orthogonal and unitary ensembles, respectively. For these ensembles also asymptotic probability distributions P(s_min) are obtained and the statistics of the largest spacing s_max are investigated.
Intercept Capacity: Unknown Unitary Transformation
Directory of Open Access Journals (Sweden)
Bill Moran
2008-11-01
Full Text Available We consider the problem of intercepting communications signals between Multiple-Input Multiple-Output (MIMO communication systems. To correctly detect a transmitted message it is necessary to know the gain matrix that represents the channel between the transmitter and the receiver. However, even if the receiver has knowledge of the message symbol set, it may not be possible to estimate the channel matrix. Blind Source Separation (BSS techniques, such as Independent Component Analysis (ICA can go some way to extracting independent signals from individual transmission antennae but these may have been preprocessed in a manner unknown to the receiver. In this paper we consider the situation where a communications interception system has prior knowledge of the message symbol set, the channel matrix between the transmission system and the interception system and is able to resolve the transmissionss from independent antennae. The question then becomes: what is the mutual information available to the interceptor when an unknown unitary transformation matrix is employed by the transmitter.
Unitary Approximations in Fault Detection Filter Design
Directory of Open Access Journals (Sweden)
Dušan Krokavec
2016-01-01
Full Text Available The paper is concerned with the fault detection filter design requirements that relax the existing conditions reported in the previous literature by adapting the unitary system principle in approximation of fault detection filter transfer function matrix for continuous-time linear MIMO systems. Conditions for the existence of a unitary construction are presented under which the fault detection filter with a unitary transfer function can be designed to provide high residual signals sensitivity with respect to faults. Otherwise, reflecting the emplacement of singular values in unitary construction principle, an associated structure of linear matrix inequalities with built-in constraints is outlined to design the fault detection filter only with a Hurwitz transfer function. All proposed design conditions are verified by the numerical illustrative examples.
Quantum unitary dynamics in cosmological spacetimes
Energy Technology Data Exchange (ETDEWEB)
Cortez, Jerónimo, E-mail: jacq@ciencias.unam.mx [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, México D.F. 04510 (Mexico); Mena Marugán, Guillermo A., E-mail: mena@iem.cfmac.csic.es [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006 Madrid (Spain); Velhinho, José M., E-mail: jvelhi@ubi.pt [Departamento de Física, Faculdade de Ciências, Universidade da Beira Interior, R. Marquês D’Ávila e Bolama, 6201-001 Covilhã (Portugal)
2015-12-15
We address the question of unitary implementation of the dynamics for scalar fields in cosmological scenarios. Together with invariance under spatial isometries, the requirement of a unitary evolution singles out a rescaling of the scalar field and a unitary equivalence class of Fock representations for the associated canonical commutation relations. Moreover, this criterion provides as well a privileged quantization for the unscaled field, even though the associated dynamics is not unitarily implementable in that case. We discuss the relation between the initial data that determine the Fock representations in the rescaled and unscaled descriptions, and clarify that the S-matrix is well defined in both cases. In our discussion, we also comment on a recently proposed generalized notion of unitary implementation of the dynamics, making clear the difference with the standard unitarity criterion and showing that the two approaches are not equivalent.
Asymptotic Evolution of Random Unitary Operations
Novotny, J; Jex, I
2009-01-01
We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator. We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.
Non-unitary probabilistic quantum computing
Gingrich, Robert M.; Williams, Colin P.
2004-01-01
We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.
Entanglement quantification by local unitary operations
Energy Technology Data Exchange (ETDEWEB)
Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)
2011-07-15
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Right-unitary transformation theory and applications
Tang, Zhong
1996-01-01
We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two le...
Entanglement quantification by local unitary operations
Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.
2011-07-01
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.
Study of optical techniques for the Ames unitary wind tunnel, part 7
Lee, George
1993-01-01
A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.
Uncertainty relations for general unitary operators
Bagchi, Shrobona; Pati, Arun Kumar
2016-10-01
We derive several uncertainty relations for two arbitrary unitary operators acting on physical states of a Hilbert space. We show that our bounds are tighter in various cases than the ones existing in the current literature. Using the uncertainty relation for the unitary operators, we obtain the tight state-independent lower bound for the uncertainty of two Pauli observables and anticommuting observables in higher dimensions. With regard to the minimum-uncertainty states, we derive the minimum-uncertainty state equation by the analytic method and relate this to the ground-state problem of the Harper Hamiltonian. Furthermore, the higher-dimensional limit of the uncertainty relations and minimum-uncertainty states are explored. From an operational point of view, we show that the uncertainty in the unitary operator is directly related to the visibility of quantum interference in an interferometer where one arm of the interferometer is affected by a unitary operator. This shows a principle of preparation uncertainty, i.e., for any quantum system, the amount of visibility for two general noncommuting unitary operators is nontrivially upper bounded.
Black holes, quantum information, and unitary evolution
Giddings, Steven B
2012-01-01
The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...
Color Energy Of A Unitary Cayley Graph
Directory of Open Access Journals (Sweden)
Adiga Chandrashekar
2014-11-01
Full Text Available Let G be a vertex colored graph. The minimum number χ(G of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G and computed the color energy of few families of graphs with χ(G colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xnc and some gcd-graphs.
Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig
2010-01-01
The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight
Supersonic flows over cavities
Institute of Scientific and Technical Information of China (English)
Tianwen FANG; Meng DING; Jin ZHOU
2008-01-01
The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.
Supersonic Retro-Propulsion Experimental Design for Computational Fluid Dynamics Model Validation
Berry, Scott A.; Laws, Christopher T.; Kleb, W. L.; Rhode, Matthew N.; Spells, Courtney; McCrea, Andrew C.; Truble, Kerry A.; Schauerhamer, Daniel G.; Oberkampf, William L.
2011-01-01
The development of supersonic retro-propulsion, an enabling technology for heavy payload exploration missions to Mars, is the primary focus for the present paper. A new experimental model, intended to provide computational fluid dynamics model validation data, was recently designed for the Langley Research Center Unitary Plan Wind Tunnel Test Section 2. Pre-test computations were instrumental for sizing and refining the model, over the Mach number range of 2.4 to 4.6, such that tunnel blockage and internal flow separation issues would be minimized. A 5-in diameter 70-deg sphere-cone forebody, which accommodates up to four 4:1 area ratio nozzles, followed by a 10-in long cylindrical aftbody was developed for this study based on the computational results. The model was designed to allow for a large number of surface pressure measurements on the forebody and aftbody. Supplemental data included high-speed Schlieren video and internal pressures and temperatures. The run matrix was developed to allow for the quantification of various sources of experimental uncertainty, such as random errors due to run-to-run variations and bias errors due to flow field or model misalignments. Some preliminary results and observations from the test are presented, although detailed analyses of the data and uncertainties are still on going.
Erickson, Gary E.
2010-01-01
Response surface methodology was used to estimate the longitudinal stage separation aerodynamic characteristics of a generic, bimese, winged multi-stage launch vehicle configuration at supersonic speeds in the NASA LaRC Unitary Plan Wind Tunnel. The Mach 3 staging was dominated by shock wave interactions between the orbiter and booster vehicles throughout the relative spatial locations of interest. The inference space was partitioned into several contiguous regions within which the separation aerodynamics were presumed to be well-behaved and estimable using central composite designs capable of fitting full second-order response functions. The underlying aerodynamic response surfaces of the booster vehicle in belly-to-belly proximity to the orbiter vehicle were estimated using piecewise-continuous lower-order polynomial functions. The quality of fit and prediction capabilities of the empirical models were assessed in detail, and the issue of subspace boundary discontinuities was addressed. Augmenting the central composite designs to full third-order using computer-generated D-optimality criteria was evaluated. The usefulness of central composite designs, the subspace sizing, and the practicality of fitting lower-order response functions over a partitioned inference space dominated by highly nonlinear and possibly discontinuous shock-induced aerodynamics are discussed.
Boundary Relations, Unitary Colligations, and Functional Models
Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk
2009-01-01
Recently a new notion, the so-called boundary relation, has been introduced involving an analytic object, the so-called Weyl family. Weyl families and boundary relations establish a link between the class of Nevanlinna families and unitary relations acting from one Krein in space, a basic (state) sp
Developmental Dyspraxia: Is It a Unitary Function?
Ayres, A. Jean; And Others
1987-01-01
A group of 182 children (ages four through nine) with known or suspected sensory integrative dysfunction were assessed using tests and clinical observations to examine developmental dyspraxia. The study did not justify the existence of either a unitary function or different types of developmental dyspraxia. (Author/CH)
Dirac cohomology of unitary representations of equal rank exceptional groups
Institute of Scientific and Technical Information of China (English)
2007-01-01
In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.
Infinitesimal Conical Supersonic Flow
Busemann, Adolf
1947-01-01
The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.
Pseudo-random unitary operators for quantum information processing.
Emerson, Joseph; Weinstein, Yaakov S; Saraceno, Marcos; Lloyd, Seth; Cory, David G
2003-12-19
In close analogy to the fundamental role of random numbers in classical information theory, random operators are a basic component of quantum information theory. Unfortunately, the implementation of random unitary operators on a quantum processor is exponentially hard. Here we introduce a method for generating pseudo-random unitary operators that can reproduce those statistical properties of random unitary operators most relevant to quantum information tasks. This method requires exponentially fewer resources, and hence enables the practical application of random unitary operators in quantum communication and information processing protocols. Using a nuclear magnetic resonance quantum processor, we were able to realize pseudorandom unitary operators that reproduce the expected random distribution of matrix elements.
Identical Wells, Symmetry Breaking, and the Near-Unitary Limit
Harshman, N. L.
2017-03-01
Energy level splitting from the unitary limit of contact interactions to the near unitary limit for a few identical atoms in an effectively one-dimensional well can be understood as an example of symmetry breaking. At the unitary limit in addition to particle permutation symmetry there is a larger symmetry corresponding to exchanging the N! possible orderings of N particles. In the near unitary limit, this larger symmetry is broken, and different shapes of traps break the symmetry to different degrees. This brief note exploits these symmetries to present a useful, geometric analogy with graph theory and build an algebraic framework for calculating energy splitting in the near unitary limit.
Transition from Poisson to circular unitary ensemble
Indian Academy of Sciences (India)
Vinayak; Akhilesh Pandey
2009-09-01
Transitions to universality classes of random matrix ensembles have been useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions involving Poisson as the initial ensemble have been particularly interesting. The exact two-point correlation function was derived by one of the present authors for the Poisson to circular unitary ensemble (CUE) transition with uniform initial density. This is given in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the contour-integral method of Brezin and Hikami. We show that their method is applicable to Poisson to CUE transition with arbitrary initial density. Their method is also applicable to the more general ℓ CUE to CUE transition where CUE refers to the superposition of ℓ independent CUE spectra in arbitrary ratio.
Complete Pick Positivity and Unitary Invariance
Bhattacharya, Angshuman
2009-01-01
The characteristic function for a contraction is a classical complete unitary invariant devised by Sz.-Nagy and Foias. Just as a contraction is related to the Szego kernel $k_S(z,w) = (1 - z\\ow)^{-1}$ for $|z|, |w| < 1$, by means of $(1/k_S)(T,T^*) \\ge 0$, we consider an arbitrary open connected domain $\\Omega$ in $\\BC^n$, a complete Nevanilinna-Pick kernel $k$ on $\\Omega$ and a tuple $T = (T_1, ..., T_n)$ of commuting bounded operators on a complex separable Hilbert space $\\clh$ such that $(1/k)(T,T^*) \\ge 0$. For a complete Pick kernel the $1/k$ functional calculus makes sense in a beautiful way. It turns out that the model theory works very well and a characteristic function can be associated with $T$. Moreover, the characteristic function then is a complete unitary invariant for a suitable class of tuples $T$.
Quantum Mutual Information Along Unitary Orbits
Jevtic, Sania; Rudolph, Terry
2011-01-01
Motivated by thermodynamic considerations, we analyse the variation of the quantum mutual information on a unitary orbit of a bipartite system state, with and without global constraints such as energy conservation. We solve the full optimisation problem for the smallest system of two qubits, and explore thoroughly the effect of unitary operations on the space of reduced-state spectra. We then provide applications of these ideas to physical processes within closed quantum systems, such as a generalized collision model approach to thermal equilibrium and a global Maxwell demon playing tricks on local observers. For higher dimensions, the maximization of correlations is relatively straightforward, however the minimisation of correlations displays non-trivial structures. We characterise a set of separable states in which the minimally correlated state resides, and find a collection of classically correlated states admitting a particular "Young tableau" form. Furthermore, a partial order exists on this set with re...
On unitary reconstruction of linear optical networks
Tillmann, Max; Walther, Philip
2015-01-01
Linear optical elements are pivotal instruments in the manipulation of classical and quantum states of light. The vast progress in integrated quantum photonic technology enables the implementation of large numbers of such elements on chip while providing interferometric stability. As a trade-off these structures face the intrinsic challenge of characterizing their optical transformation as individual optical elements are not directly accessible. Thus the unitary transformation needs to be reconstructed from a dataset generated with having access to the input and output ports of the device only. Here we present a novel approach to unitary reconstruction that significantly improves upon existing approaches. We compare its performance to several approaches via numerical simulations for networks up to 14 modes. We show that an adapted version of our approach allows to recover all mode-dependent losses and to obtain highest reconstruction fidelities under such conditions.
Unitary and room air-conditioners
Energy Technology Data Exchange (ETDEWEB)
Christian, J.E.
1977-09-01
The scope of this technology evaluation on room and unitary air conditioners covers the initial investment and performance characteristics needed for estimating the operating cost of air conditioners installed in an ICES community. Cooling capacities of commercially available room air conditioners range from 4000 Btu/h to 36,000 Btu/h; unitary air conditioners cover a range from 6000 Btu/h to 135,000 Btu/h. The information presented is in a form useful to both the computer programmer in the construction of a computer simulation of the packaged air-conditioner's performance and to the design engineer, interested in selecting a suitably sized and designed packaged air conditioner.
Scalable Noise Estimation with Random Unitary Operators
Emerson, J; Zyczkowski, K; Emerson, Joseph; Alicki, Robert; Zyczkowski, Karol
2005-01-01
We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation -- quantified by the trace of the superoperator describing the non--unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies a...
Scalable noise estimation with random unitary operators
Energy Technology Data Exchange (ETDEWEB)
Emerson, Joseph [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Alicki, Robert [Institute of Theoretical Physics and Astrophysics, University of Gdansk, Wita Stwosza 57, PL 80-952 Gdansk (Poland); Zyczkowski, Karol [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)
2005-10-01
We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation, quantified by the trace of the superoperator describing the non-unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies, additional information about the noise can be determined.
Generalized Unitaries and the Picard Group
Indian Academy of Sciences (India)
Michael Skeide
2006-11-01
After discussing some basic facts about generalized module maps, we use the representation theory of the algebra $\\mathscr{B}^a(E)$ of adjointable operators on a Hilbert $\\mathcal{B}$-module to show that the quotient of the group of generalized unitaries on and its normal subgroup of unitaries on is a subgroup of the group of automorphisms of the range ideal $\\mathcal{B}_E$ of in $\\mathcal{B}$. We determine the kernel of the canonical mapping into the Picard group of $\\mathcal{B}_E$ in terms of the group of quasi inner automorphisms of $\\mathcal{B}_E$. As a by-product we identify the group of bistrict automorphisms of the algebra of adjointable operators on modulo inner automorphisms as a subgroup of the (opposite of the) Picard group.
Recurrence for discrete time unitary evolutions
Grünbaum, F A; Werner, A H; Werner, R F
2012-01-01
We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \\phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \\phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.
Integral Compressor/Generator/Fan Unitary Structure
Dreiman, Nelik
2016-01-01
INTEGRAL COMPRESSOR / GENERATOR / FAN UNITARY STRUCTURE.*) Dr. Nelik Dreiman Consultant, P.O.Box 144, Tipton, MI E-mail: An extremely compact, therefore space saving single compressor/generator/cooling fan structure of short axial length and light weight has been developed to provide generation of electrical power with simultaneous operation of the compressor when power is unavailable or function as a regular AC compressor powered by a power line. The generators and ai...
Unitary representations and harmonic analysis an introduction
Sugiura, M
1990-01-01
The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou''s theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.
Optimal control theory for unitary transformations
Palao, J P; Palao, Jose P.
2003-01-01
The dynamics of a quantum system driven by an external field is well described by a unitary transformation generated by a time dependent Hamiltonian. The inverse problem of finding the field that generates a specific unitary transformation is the subject of study. The unitary transformation which can represent an algorithm in a quantum computation is imposed on a subset of quantum states embedded in a larger Hilbert space. Optimal control theory (OCT) is used to solve the inversion problem irrespective of the initial input state. A unified formalism, based on the Krotov method is developed leading to a new scheme. The schemes are compared for the inversion of a two-qubit Fourier transform using as registers the vibrational levels of the $X^1\\Sigma^+_g$ electronic state of Na$_2$. Raman-like transitions through the $A^1\\Sigma^+_u$ electronic state induce the transitions. Light fields are found that are able to implement the Fourier transform within a picosecond time scale. Such fields can be obtained by pulse-...
Stable unitary integrators for the numerical implementation of continuous unitary transformations
Savitz, Samuel; Refael, Gil
2017-09-01
The technique of continuous unitary transformations has recently been used to provide physical insight into a diverse array of quantum mechanical systems. However, the question of how to best numerically implement the flow equations has received little attention. The most immediately apparent approach, using standard Runge-Kutta numerical integration algorithms, suffers from both severe inefficiency due to stiffness and the loss of unitarity. After reviewing the formalism of continuous unitary transformations and Wegner's original choice for the infinitesimal generator of the flow, we present a number of approaches to resolving these issues including a choice of generator which induces what we call the "uniform tangent decay flow" and three numerical integrators specifically designed to perform continuous unitary transformations efficiently while preserving the unitarity of flow. We conclude by applying one of the flow algorithms to a simple calculation that visually demonstrates the many-body localization transition.
The Study of Delta Wing Structure Plan of A Supersonic Aircraft%一种超音速飞机三角机翼结构方案研究
Institute of Scientific and Technical Information of China (English)
刘健; 杨华保; 王建; 尚琳
2011-01-01
针对某超音速飞机的三角翼,设计了带平行翼梁的梁式三角翼结构和带内撑梁的梁式三角翼结构两种方案;分析了三角翼两种结构方案的受力特点,并采用有限元方法对比分析了两种结构方案的强度和刚度特点.通过分析和比较得出了带平行翼梁的梁式三角翼结构受力特性更好,更适合于能够布置中央翼的三角翼飞机.%Two types of wing structure plan were designed for a supersonic aircraft, which were the delta wing structure containing parallel beams and the delta wing structure with support beams. The two types of wing structure's mechanics characteristics were analyzed, and their stiffness and strength were compared with FEA. Through analysis and compare of the two types of wing structure, the delta wing structure containing parallel beams is better than the other and is more suitable for the aircraft with delta wing which can be arranged the central wing.
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1968-01-01
The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1969-01-01
The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...
Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian
1992-01-01
As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).
On unitary representability of topological groups
Galindo Pastor, Jorge
2006-01-01
We prove that the additive group $(E^\\ast,\\tau_k(E))$ of an $\\mathscr{L}_\\infty$-Banach space $E$, with the topology $\\tau_k(E)$ of uniform convergence on compact subsets of $E$, is topologically isomorphic to a subgroup of the unitary group of some Hilbert space (is \\emph{unitarily representable}). This is the same as proving that the topological group $(E^\\ast,\\tau_k(E))$ is uniformly homeomorphic to a subset of $\\ell_2^\\kappa$ for some $\\kappa$. As an immediate consequence, preduals of com...
Quantum remote control Teleportation of unitary operations
Huelga, S F; Chefles, A; Plenio, M B
2001-01-01
We consider the implementation of an unknown arbitrary unitary operation U upon a distant quantum system. This teleportation of U can be viewed as a quantum remote control. We investigate the protocols which achieve this using local operations, classical communication and shared entanglement (LOCCSE). Lower bounds on the necessary entanglement and classical communication are determined using causality and the linearity of quantum mechanics. We examine in particular detail the resources required if the remote control is to be implemented as a classical black box. Under these circumstances, we prove that the required resources are, necessarily, those needed for implementation by bidirectional state teleportation.
Unitary Gas Constraints on Nuclear Symmetry Energy
Kolomeitsev, Evgeni E; Ohnishi, Akira; Tews, Ingo
2016-01-01
We show the existence of a lower bound on the volume symmetry energy parameter $S_0$ from unitary gas considerations. We further demonstrate that values of $S_0$ above this minimum imply upper and lower bounds on the symmetry energy parameter $L$ describing its lowest-order density dependence. The bounds are found to be consistent with both recent calculations of the energies of pure neutron matter and constraints from nuclear experiments. These results are significant because many equations of state in active use for simulations of nuclear structure, heavy ion collisions, supernovae, neutron star mergers, and neutron star structure violate these constraints.
Shear Viscosity of a Unitary Fermi Gas
Wlazłowski, Gabriel; Magierski, Piotr; Drut, Joaquín E.
2012-01-01
We present the first ab initio determination of the shear viscosity eta of the Unitary Fermi Gas, based on finite temperature quantum Monte Carlo calculations and the Kubo linear-response formalism. We determine the temperature dependence of the shear viscosity to entropy density ratio eta/s. The minimum of eta/s appears to be located above the critical temperature for the superfluid-to-normal phase transition with the most probable value being eta/s approx 0.2 hbar/kB, which almost saturates...
Universal dynamics in a Unitary Bose Gas
Klauss, Catherine; Xie, Xin; D'Incao, Jose; Jin, Deborah; Cornell, Eric
2016-05-01
We investigate the dynamics of a unitary Bose gas with an 85 Rb BEC, specifically to determine whether the dynamics scale universally with density. We find that the initial density affects both the (i) projection of the strongly interacting many-body wave-function onto the Feshbach dimer state when the system is rapidly ramped to a weakly interacting value of the scattering length a and (ii) the overall decay rate to deeper bound states. We will present data on both measurements across two orders of magnitude in density, and will discuss how the data illustrate the competing roles of universality and Efimov physics.
Unitary Quantum Lattice Algorithms for Turbulence
2016-05-23
collision operator, based on the 3D relativistic Dirac particle dynamics theory of Yepez, ĈD = cosθ x( ) −i sinθ x( ) −i sinθ x( ) cosθ x... based algorithm it will result in a finite difference representation of the GP Eq. (24) provided the parameters are so chosen to yield diffusion-like...Fluid Dynamics, ed. H. W. Oh, ( InTech Publishers, Croatia, 2012) [20] “Unitary qubit lattice simulations of complex vortex structures
Unitary water-to-air heat pumps
Energy Technology Data Exchange (ETDEWEB)
Christian, J.E.
1977-10-01
Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.
Quantum mechanics with non-unitary symmetries
Bistrovic, B
2000-01-01
This article shows how to properly extend symmetries of non-relativistic quantum mechanics to include non-unitary representations of Lorentz group for all spins. It follows from this that (almost) all existing relativistic single particle Lagrangians and equations are incorrect. This is shown in particular for Dirac's equation and Proca equations. It is shown that properly constructed relativistic extensions have no negative energies, zitterbewegung effects and have proper symmetric energy-momentum tensor and angular momentum density tensor. The downside is that states with negative norm are inevitable in all representations.
Unitary appreciative inquiry: evolution and refinement.
Cowling, W Richard; Repede, Elizabeth
2010-01-01
Unitary appreciative inquiry (UAI), developed over the past 20 years, provides an orientation and process for uncovering human wholeness and discovering life patterning in individuals and groups. Refinements and a description of studies using UAI are presented. Assumptions and conceptual underpinnings of the method distinguishing its contributions from other methods are reported. Data generation strategies that capture human wholeness and elucidate life patterning are proposed. Data synopsis as an alternative to analysis is clarified and explicated. Standards that suggest enhancing the legitimacy of knowledge and credibility of research are specified. Potential expansions of UAI offer possibilities for extending epistemologies, aesthetic integration, and theory development.
Asymptotic expansions for the Gaussian unitary ensemble
DEFF Research Database (Denmark)
Haagerup, Uffe; Thorbjørnsen, Steen
2012-01-01
Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...
Endoscopic classification of representations of quasi-split unitary groups
Mok, Chung Pang
2015-01-01
In this paper the author establishes the endoscopic classification of tempered representations of quasi-split unitary groups over local fields, and the endoscopic classification of the discrete automorphic spectrum of quasi-split unitary groups over global number fields. The method is analogous to the work of Arthur on orthogonal and symplectic groups, based on the theory of endoscopy and the comparison of trace formulas on unitary groups and general linear groups.
Study of optical techniques for the Ames unitary wind tunnels. Part 3: Angle of attack
Lee, George
1992-01-01
A review of optical sensors that are capable of accurate angle of attack measurements in wind tunnels was conducted. These include sensors being used or being developed at NASA Ames and Langley Research Centers, Boeing Airplane Company, McDonald Aircraft Company, Arnold Engineering Development Center, National Aerospace Laboratory of the Netherlands, National Research Council of Canada, and the Royal Aircraft Establishment of England. Some commercial sensors that may be applicable to accurate angle measurements were also reviewed. It was found that the optical sensor systems were based on interferometers, polarized light detector, linear or area photodiode cameras, position sensing photodetectors, and laser scanners. Several of the optical sensors can meet the requirements of the Ames Unitary Plan Wind Tunnel. Two of these, the Boeing interferometer and the Complere lateral effect photodiode sensors are being developed for the Ames Unitary Plan Wind Tunnel.
Hernandez, Gloria; Wood, Richard M.; Covell, Peter F.
1994-01-01
An experimental investigation of the aerodynamic characteristics of thin, moderately swept fighter wings has been conducted to evaluate the effect of camber and twist on the effectiveness of leading- and trailing-edge flaps at supersonic speeds in the Langley Unitary Plan Wind Tunnel. The study geometry consisted of a generic fuselage with camber typical of advanced fighter designs without inlets, canopy, or vertical tail. The model was tested with two wing configurations an uncambered (flat) wing and a cambered and twisted wing. Each wing had an identical clipped delta planform with an inboard leading edge swept back 65 deg and an outboard leading edge swept back 50 deg. The trailing edge was swept forward 25 deg. The leading-edge flaps were deflected 4 deg to 15 deg, and the trailing-edge flaps were deflected from -30 deg to 10 deg. Longitudinal force and moment data were obtained at Mach numbers of 1.60, 1.80, 2.00, and 2.16 for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.16 x 10(exp 6) per foot and for an angle-of-attack range 4 deg to 20 deg at a Reynolds number of 2.0 x 10(exp 6) per foot. Vapor screen, tuft, and oil flow visualization data are also included.
Study of optical techniques for the Ames unitary wind tunnel. Part 5: Infrared imagery
Lee, George
1992-01-01
A survey of infrared thermography for aerodynamics was made. Particular attention was paid to boundary layer transition detection. IR thermography flow visualization of 2-D and 3-D separation was surveyed. Heat transfer measurements and surface temperature measurements were also covered. Comparisons of several commercial IR cameras were made. The use of a recently purchased IR camera in the Ames Unitary Plan Wind Tunnels was studied. Optical access for these facilities and the methods to scan typical models was investigated.
Mixing in Supersonic Turbulence
Pan, Liubin
2010-01-01
In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...
Right-unitary transformation theory and applications
Tang, Z
1996-01-01
We develop a new transformation theory in quantum physics, where the transformation operators, defined in the infinite dimensional Hilbert space, have right-unitary inverses only. Through several theorems, we discuss the properties of state space of such operators. As one application of the right-unitary transformation (RUT), we show that using the RUT method, we can solve exactly various interactions of many-level atoms with quantized radiation fields, where the energy of atoms can be two levels, three levels in Lambda, V and equiv configurations, and up to higher (>3) levels. These interactions have wide applications in atomic physics, quantum optics and quantum electronics. In this paper, we focus on two typical systems: one is a two-level generalized Jaynes-Cummings model, where the cavity field varies with the external source; the other one is the interaction of three-level atom with quantized radiation fields, where the atoms have Lambda-configuration energy levels, and the radiation fields are one-mode...
Perfect state transfer in unitary Cayley graphs over local rings
Directory of Open Access Journals (Sweden)
Yotsanan Meemark
2014-12-01
Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.
Hydrodynamics of a unitary Bose gas
Man, Jay; Fletcher, Richard; Lopes, Raphael; Navon, Nir; Smith, Rob; Hadzibabic, Zoran
2016-05-01
In general, normal-phase Bose gases are well described by modelling them as ideal gases. In particular, hydrodynamic flow is usually not observed in the expansion dynamics of normal gases, and is more readily observable in Bose-condensed gases. However, by preparing strongly-interacting clouds, we observe hydrodynamic behaviour in normal-phase Bose gases, including the `maximally' hydrodynamic unitary regime. We avoid the atom losses that often hamper experimental access of this regime by using radio-frequency injection, which switches on interactions much faster than trap or loss timescales. At low phase-space densities, we find excellent agreement with a collisional model based on the Boltzmann equation. At higher phase-space densities our results show a deviation from this model in the vicinity of an Efimov resonance, which cannot be accounted for by measured losses.
Energy Technology Data Exchange (ETDEWEB)
Christian, J.E.
1977-07-01
This technology evaluation covers commercially available unitary heat pumps ranging from nominal capacities of 1/sup 1///sub 2/ to 45 tons. The nominal COP of the heat pump models, selected as representative, vary from 2.4 to 2.9. Seasonal COPs for heat pump installations and single-family dwellings are reported to vary from 2.5 to 1.1, depending on climate. For cooling performance, the nominal EER's vary from 6.5 to 8.7. Representative part-load performance curves along with cost estimating and reliability data are provided to aid: (1) the systems design engineer to select suitably sized heat pumps based on life-cycle cost analyses, and (2) the computer programmer to develop a simulation code for heat pumps operating in an Integrated Community Energy System.
Biphoton transmission through non-unitary objects
Reichert, Matthew; Sun, Xiaohang; Fleischer, Jason W
2016-01-01
Losses should be accounted for in a complete description of quantum imaging systems, and yet they are often treated as undesirable and largely neglected. In conventional quantum imaging, images are built up by coincidence detection of spatially entangled photon pairs (biphotons) transmitted through an object. However, as real objects are non-unitary (absorptive), part of the transmitted state contains only a single photon, which is overlooked in traditional coincidence measurements. The single photon part has a drastically different spatial distribution than the two-photon part. It contains information both about the object, and, remarkably, the spatial entanglement properties of the incident biphotons. We image the one- and two-photon parts of the transmitted state using an electron multiplying CCD array both as a traditional camera and as a massively parallel coincidence counting apparatus, and demonstrate agreement with theoretical predictions. This work may prove useful for photon number imaging and lead ...
Unitary Quantum Relativity - (Work in Progress)
Finkelstein, David Ritz
2016-12-01
A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.
Unitary Quantum Relativity. (Work in Progress)
Finkelstein, David Ritz
2017-01-01
A quantum universe is expressed as a finite unitary relativistic quantum computer network. Its addresses are subject to quantum superposition as well as its memory. It has no exact mathematical model. It Its Hilbert space of input processes is also a Clifford algebra with a modular architecture of many ranks. A fundamental fermion is a quantum computer element whose quantum address belongs to the rank below. The least significant figures of its address define its spin and flavor. The most significant figures of it adress define its orbital variables. Gauging arises from the same quantification as space-time. This blurs star images only slightly, but perhaps measurably. General relativity is an approximation that splits nature into an emptiness with a high symmetry that is broken by a filling of lower symmetry. Action principles result from self-organization pf the vacuum.
Quantum Entanglement Growth under Random Unitary Dynamics
Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan
2017-07-01
Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Quantum Entanglement Growth under Random Unitary Dynamics
Directory of Open Access Journals (Sweden)
Adam Nahum
2017-07-01
Full Text Available Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ equation. The mean entanglement grows linearly in time, while fluctuations grow like (time^{1/3} and are spatially correlated over a distance ∝(time^{2/3}. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i a stochastic model of a growing surface, (ii a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.
Supersonic induction plasma jet modeling
Energy Technology Data Exchange (ETDEWEB)
Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I
2001-06-01
Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.
The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers
Neumann, Richard D.; Freeman, Delma C.
2011-01-01
In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.
Sequential scheme for locally discriminating bipartite unitary operations without inverses
Li, Lvzhou
2017-08-01
Local distinguishability of bipartite unitary operations has recently received much attention. A nontrivial and interesting question concerning this subject is whether there is a sequential scheme for locally discriminating between two bipartite unitary operations, because a sequential scheme usually represents the most economic strategy for discrimination. An affirmative answer to this question was given in the literature, however with two limitations: (i) the unitary operations to be discriminated were limited to act on d ⊗d , i.e., a two-qudit system, and (ii) the inverses of the unitary operations were assumed to be accessible, although this assumption may be unrealizable in experiment. In this paper, we improve the result by removing the two limitations. Specifically, we show that any two bipartite unitary operations acting on dA⊗dB can be locally discriminated by a sequential scheme, without using the inverses of the unitary operations. Therefore, this paper enhances the applicability and feasibility of the sequential scheme for locally discriminating unitary operations.
Tesseract supersonic business transport
Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary
1992-01-01
This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.
Tesseract: Supersonic business transport
Reshotko, Eli; Garbinski, Gary
1992-01-01
This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.
Quantum Entanglement Growth Under Random Unitary Dynamics
Nahum, Adam; Vijay, Sagar; Haah, Jeongwan
2016-01-01
Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...
A unitary test of the Ratios Conjecture
Goes, John; Miller, Steven J; Montague, David; Ninsuwan, Kesinee; Peckner, Ryan; Pham, Thuy
2009-01-01
The Ratios Conjecture of Conrey, Farmer and Zirnbauer predicts the answers to numerous questions in number theory, ranging from n-level densities and correlations to mollifiers to moments and vanishing at the central point. The conjecture gives a recipe to generate these answers, which are believed to be correct up to square-root cancelation. These predictions have been verified, for suitably restricted test functions, for the 1-level density of orthogonal and symplectic families of L-functions. In this paper we verify the conjecture's predictions for the unitary family of all Dirichlet $L$-functions with prime conductor; we show square-root agreement between prediction and number theory if the support of the Fourier transform of the test function is in (-1,1), and for support up to (-2,2) we show agreement up to a power savings in the family's cardinality. The interesting feature in this family (which has not surfaced in previous investigations) is determining what is and what is not a diagonal term in the R...
Quantum metrology with unitary parametrization processes.
Liu, Jing; Jing, Xiao-Xing; Wang, Xiaoguang
2015-02-24
Quantum Fisher information is a central quantity in quantum metrology. We discuss an alternative representation of quantum Fisher information for unitary parametrization processes. In this representation, all information of parametrization transformation, i.e., the entire dynamical information, is totally involved in a Hermitian operator H. Utilizing this representation, quantum Fisher information is only determined by H and the initial state. Furthermore, H can be expressed in an expanded form. The highlights of this form is that it can bring great convenience during the calculation for the Hamiltonians owning recursive commutations with their partial derivative. We apply this representation in a collective spin system and show the specific expression of H. For a simple case, a spin-half system, the quantum Fisher information is given and the optimal states to access maximum quantum Fisher information are found. Moreover, for an exponential form initial state, an analytical expression of quantum Fisher information by H operator is provided. The multiparameter quantum metrology is also considered and discussed utilizing this representation.
Unitary Evolution and Cosmological Fine-Tuning
Carroll, Sean M
2010-01-01
Inflationary cosmology attempts to provide a natural explanation for the flatness and homogeneity of the observable universe. In the context of reversible (unitary) evolution, this goal is difficult to satisfy, as Liouville's theorem implies that no dynamical process can evolve a large number of initial states into a small number of final states. We use the invariant measure on solutions to Einstein's equation to quantify the problems of cosmological fine-tuning. The most natural interpretation of the measure is the flatness problem does not exist; almost all Robertson-Walker cosmologies are spatially flat. The homogeneity of the early universe, however, does represent a substantial fine-tuning; the horizon problem is real. When perturbations are taken into account, inflation only occurs in a negligibly small fraction of cosmological histories, less than $10^{-6.6\\times 10^7}$. We argue that while inflation does not affect the number of initial conditions that evolve into a late universe like our own, it neve...
Decomposition of Unitary Matrices for Finding Quantum Circuits
Daskin, Anmer
2010-01-01
Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Here, we use the group leaders optimization algorithm, which is an effective and simple global optimization algorithm, to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. Using this procedure, we present new circuit designs for the simulation of the Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, the sender part of the quantum teleportation and the Hamiltonian for the Hydrogen molecule. In addition, we give two algorithmic methods for the construction of unitary matrices with respect to the different types of the quantum control gates. Our results indicate that the procedure is effective, general, and easy to implement.
Transitioning to Low-GWP Alternatives in Unitary Air Conditioning
This fact sheet provides current information on low-Global Warming Potential (GWP) refrigerant alternatives used in unitary air-conditioning equipment, relevant to the Montreal Protocol on Substances that Deplete the Ozone Layer.
Modeling Sampling in Tensor Products of Unitary Invariant Subspaces
Directory of Open Access Journals (Sweden)
Antonio G. García
2016-01-01
Full Text Available The use of unitary invariant subspaces of a Hilbert space H is nowadays a recognized fact in the treatment of sampling problems. Indeed, shift-invariant subspaces of L2(R and also periodic extensions of finite signals are remarkable examples where this occurs. As a consequence, the availability of an abstract unitary sampling theory becomes a useful tool to handle these problems. In this paper we derive a sampling theory for tensor products of unitary invariant subspaces. This allows merging the cases of finitely/infinitely generated unitary invariant subspaces formerly studied in the mathematical literature; it also allows introducing the several variables case. As the involved samples are identified as frame coefficients in suitable tensor product spaces, the relevant mathematical technique is that of frame theory, involving both finite/infinite dimensional cases.
Virial theorem and universality in a unitary fermi gas.
Thomas, J E; Kinast, J; Turlapov, A
2005-09-16
Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics.
Exact and Approximate Unitary 2-Designs: Constructions and Applications
Dankert, C; Emerson, J; Livine, E; Dankert, Christoph; Cleve, Richard; Emerson, Joseph; Livine, Etera
2006-01-01
We consider an extension of the concept of spherical t-designs to the unitary group in order to develop a unified framework for analyzing the resource requirements of randomized quantum algorithms. We show that certain protocols based on twirling require a unitary 2-design. We describe an efficient construction for an exact unitary 2-design based on the Clifford group, and then develop a method for generating an epsilon-approximate unitary 2-design that requires only O(n log(1/epsilon)) gates, where n is the number of qubits and epsilon is an appropriate measure of precision. These results lead to a protocol with exponential resource savings over existing experimental methods for estimating the characteristic fidelities of physical quantum processes.
The Theory of Unitary Development of Chengdu and Chongqing
Institute of Scientific and Technical Information of China (English)
HuangQing
2005-01-01
Chengdu and Chongqing are two megalopolises with the synthesized economic strength and the strongest urban competitiveness in the entire western region, which have very important positions in the development of western China. Through horizontal contrast of social economic developing level of the two cities, the two cities' economic foundation of unitary development is analyzed from complementary and integrative relationship. Then the policies and measures of economic unitary development of two cities is put forward.
Free Energies and Fluctuations for the Unitary Brownian Motion
Dahlqvist, Antoine
2016-12-01
We show that the Laplace transforms of traces of words in independent unitary Brownian motions converge towards an analytic function on a non trivial disc. These results allow one to study the asymptotic behavior of Wilson loops under the unitary Yang-Mills measure on the plane with a potential. The limiting objects obtained are shown to be characterized by equations analogue to Schwinger-Dyson's ones, named here after Makeenko and Migdal.
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.
2016-06-01
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
Properties of Supersonic Evershed Downflows
Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.
2016-12-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.
Implementation of bipartite or remote unitary gates with repeater nodes
Yu, Li; Nemoto, Kae
2016-08-01
We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.
Properties of Supersonic Evershed Downflows
Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz
2016-01-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...
Efficient unitary designs with nearly time-independent Hamiltonian dynamics
Nakata, Yoshifumi; Koashi, Masato; Winter, Andreas
2016-01-01
We provide new constructions of unitary $t$-designs for general $t$ on one qudit and $N$ qubits, and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a unitary design after a threshold time, as a basic framework to investigate randomising time evolution in quantum many-body systems. The new constructions are based on recently proposed schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary $t$-design after $O(t)$ repetitions. We then construct quantum circuits on $N$ qubits that achieve unitary $t$-designs for $t = o(N^{1/2})$ using $O(t N^2)$ gates, improving the previous result using $O(t^{10}N^2)$ gates in terms of $t$. Based on these results, we present a design Hamiltonian with periodically changing two-local spin-glass-type interactions, leading to fast and relatively natural realisations of unitary designs in complex many-bo...
Bloch-Messiah reduction of Gaussian unitaries by Takagi factorization
Cariolaro, Gianfranco; Pierobon, Gianfranco
2016-12-01
The Bloch-Messiah (BM) reduction allows the decomposition of an arbitrarily complicated Gaussian unitary into a very simple scheme in which linear optical components are separated from nonlinear ones. The nonlinear part is due to the squeezing possibly present in the Gaussian unitary. The reduction is usually obtained by exploiting the singular value decomposition (SVD) of the matrices appearing in the Bogoliubov transformation of the given Gaussian unitary. This paper discusses a different approach, where the BM reduction is obtained in a straightforward way. It is based on the Takagi factorization of the (complex and symmetric) squeeze matrix and has the advantage of avoiding several matrix operations of the previous approach (polar decomposition, eigendecomposition, SVD, and Takagi factorization). The theory is illustrated with an application example in which the previous and present approaches are compared.
Defect of a Kronecker product of unitary matrices
Tadej, Wojciech
2010-01-01
The defect d(U) of an NxN unitary matrix U with no zero entries is the dimension (called the generalized defect D(U)) of the real space of directions, moving into which from U we do not disturb the moduli |U_ij| as well as the Gram matrix U'*U in the first order, diminished by 2N-1. Calculation of d(U) involves calculating the dimension of the space in R^(N^2) spanned by a certain set of vectors associated with U. We split this space into a direct sum, assuming that U is a Kronecker product of unitary matrices, thus making it easier to perform calculations numerically. Basing on this, we give a lower bound on D(U) (equivalently d(U)), supposing it is achieved for most unitaries with a fixed Kronecker product structure. Also supermultiplicativity of D(U) with respect to Kronecker subproducts of U is shown.
Compressor-fan unitary structure for air conditioning system
Dreiman, N.
2015-08-01
An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.
Amending entanglement-breaking channels via intermediate unitary operations
Cuevas, Á.; De Pasquale, A.; Mari, A.; Orieux, A.; Duranti, S.; Massaro, M.; Di Carli, A.; Roccia, E.; Ferraz, J.; Sciarrino, F.; Mataloni, P.; Giovannetti, V.
2017-08-01
We report a bulk optics experiment demonstrating the possibility of restoring the entanglement distribution through noisy quantum channels by inserting a suitable unitary operation (filter) in the middle of the transmission process. We focus on two relevant classes of single-qubit channels consisting in repeated applications of rotated phase-damping or rotated amplitude-damping maps, both modeling the combined Hamiltonian and dissipative dynamics of the polarization state of single photons. Our results show that interposing a unitary filter between two noisy channels can significantly improve entanglement transmission. This proof-of-principle demonstration could be generalized to many other physical scenarios where entanglement-breaking communication lines may be amended by unitary filters.
Non-unitary fusion categories and their doubles via endomorphisms
Evans, David E
2015-01-01
We realise non-unitary fusion categories using subfactor-like methods, and compute their quantum doubles and modular data. For concreteness we focus on generalising the Haagerup-Izumi family of Q-systems. For example, we construct endomorphism realisations of the (non-unitary) Yang-Lee model, and non-unitary analogues of one of the even subsystems of the Haagerup subfactor and of the Grossman-Snyder system. We supplement Izumi's equations for identifying the half-braidings, which were incomplete even in his Q-system setting. We conjecture a remarkably simple form for the modular S and T matrices of the doubles of these fusion categories. We would expect all of these doubles to be realised as the category of modules of a rational VOA and conformal net of factors. We expect our approach will also suffice to realise the non-semisimple tensor categories arising in logarithmic conformal field theories.
Time reversal and exchange symmetries of unitary gate capacities
Harrow, A W; Harrow, Aram W.; Shor, Peter W.
2005-01-01
Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.
Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria
2013-01-01
The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the
Directory of Open Access Journals (Sweden)
Akihito Soeda
2010-06-01
Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.
Potential Energy Surfaces Using Algebraic Methods Based on Unitary Groups
Directory of Open Access Journals (Sweden)
Renato Lemus
2011-01-01
Full Text Available This contribution reviews the recent advances to estimate the potential energy surfaces through algebraic methods based on the unitary groups used to describe the molecular vibrational degrees of freedom. The basic idea is to introduce the unitary group approach in the context of the traditional approach, where the Hamiltonian is expanded in terms of coordinates and momenta. In the presentation of this paper, several representative molecular systems that permit to illustrate both the different algebraic approaches as well as the usual problems encountered in the vibrational description in terms of internal coordinates are presented. Methods based on coherent states are also discussed.
A construction of fully diverse unitary space-time codes
Institute of Scientific and Technical Information of China (English)
YU Fei; TONG HongXi
2009-01-01
Fully diverse unitary space-time codes are useful in multiantenna communications,especially in multiantenna differential modulation.Recently,two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced.We propose a new construction method based on the constructions.In the present paper,fully diverse codes for systems of odd prime number antennas are obtained from this construction.Space-time codes from present construction are found to have better error performance than many best known ones.
Non-unitary probabilistic quantum computing circuit and method
Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)
2009-01-01
A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.
A construction of fully diverse unitary space-time codes
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Fully diverse unitary space-time codes are useful in multiantenna communications, especially in multiantenna differential modulation. Recently, two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced. We propose a new construction method based on the constructions. In the present paper, fully diverse codes for systems of odd prime number antennas are obtained from this construction. Space-time codes from present construction are found to have better error performance than many best known ones.
Pattern, participation, praxis, and power in unitary appreciative inquiry.
Cowling, W Richard
2004-01-01
This article is an explication and clarification of unitary appreciative inquiry based on several recent projects. Four central dimensions of the inquiry process are presented: pattern, participation, praxis, and power. Examples of inquiry projects demonstrate and illuminate the possibilities of unitary appreciative inquiry. The relationship of these central dimensions to experiential, presentational, propositional, and practical knowledge outcomes is articulated. A matrix framework integrating pattern, participation, praxis, and power demonstrates the potential for generating knowledge relevant to the lives of participants and creating an inquiry process worthy of human aspiration.
Tables of the principal unitary representations of Fedorov groups
Faddeyev, D K
1961-01-01
Tables of the Principal Unitary Representations of Fedorov Groups contains tables of all the principal representations of Fedorov groups from which all irreducible unitary representations can be obtained with the help of some standard operations. The work originated at a seminar on mathematical crystallography held in 1952-1953 at the Faculty of Mathematics and Mechanics of the Leningrad State University. The book is divided into two parts. The first part discusses the relation between the theory of representations and the generalized Fedorov groups in Shubnikov's sense. It shows that all un
Supersonic Plasma Flow Control Experiments
2005-12-01
to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing
Supersonic Chordwise Bending Flutter in Cascades
1975-05-31
such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD
Supersonic flow imaging via nanoparticles
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.
Two-Element Generation of Unitary Groups Over Finite Fields
2013-01-31
like to praise my Lord and Savior, Jesus Christ , for allowing me this opportunity to work on a Ph.D in mathematics, and for His sustaining grace...Ishibashi’s original result. The paper’s main theorem will show that all unitary groups over finite fields of odd characteristic are generated by only two
Universal Loss Dynamics in a Unitary Bose Gas
Eismann, Ulrich; Khaykovich, Lev; Laurent, Sébastien; Ferrier-Barbut, Igor; Rem, Benno S.; Grier, Andrew T.; Delehaye, Marion; Chevy, Frédéric; Salomon, Christophe; Ha, Li-Chung; Chin, Cheng
2016-04-01
The low-temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here, we present experiments performed with unitary 133Cs and 7Li atoms in two different setups, which enable quantitative comparison of the three-body recombination rate in the low-temperature domain. We develop a theoretical model that describes the dynamic competition between two-body evaporation and three-body recombination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal "magic" trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the two-dimensional evaporation case, and it fully supports our experimental findings. Combined 133Cs and 7Li experimental data allow investigations of loss dynamics over 2 orders of magnitude in temperature and 4 orders of magnitude in three-body loss rate. We confirm the 1 /T2 temperature universality law. In particular, we measure, for the first time, the Efimov inelasticity parameter η*=0.098 (7 ) for the 47.8-G d -wave Feshbach resonance in 133Cs. Our result supports the universal loss dynamics of trapped unitary Bose gases up to a single parameter η*.
Experimental Realization of Perfect Discrimination for Two Unitary Operations
Institute of Scientific and Technical Information of China (English)
LIU Jian-Jun; HONG Zhi
2008-01-01
We experimentally demonstrate perfect discrimination between two unitary operations by using the sequential scheme proposed by Duan et al.[Phys. Rev. Lett. 98 (2007) 100503] Also, we show how to understand the scheme and to calculate the parameters for two-dimensional operations in the picture of the Bloch sphere.
Unitary operator bases and q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica
1995-11-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs.
Unitary operator bases and Q-deformed algebras
Energy Technology Data Exchange (ETDEWEB)
Galetti, D.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fisica Nuclear e Teorica e Fenomenologia de Particulas Elementares; Lunardi, J.T. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Matematica e Estatistica
1998-03-01
Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author)
The Wilson loop in the Gaussian Unitary Ensemble
Gurau, Razvan
2016-01-01
Using the supersymmetric formalism we compute exactly at finite $N$ the expectation of the Wilson loop in the Gaussian Unitary Ensemble and derive an exact formula for the spectral density at finite $N$. We obtain the same result by a second method relying on enumerative combinatorics and show that it leads to a novel proof of the Harer-Zagier series formula.
An algebraic study of unitary one dimensional quantum cellular automata
Arrighi, P
2005-01-01
We provide algebraic characterizations of unitary one dimensional quantum cellular automata. We do so both by algebraizing existing decision procedures, and by adding constraints into the model which do not change the quantum cellular automata's computational power. The configurations we consider have finite but unbounded size.
CONSTRUCTION OF AUTHENTICATION CODES WITH ARBITRATION FROM UNITARY GEOMETRY
Institute of Scientific and Technical Information of China (English)
LiRuihu; OuoLuobin
1999-01-01
A family of authentication codes with arbitration is constructed from unitary geome-try,the parameters and the probabilities of deceptions of the codes are also computed. In a spe-cial case a perfect authentication code with arbitration is ohtalned.
Establishing the Unitary Classroom: Organizational Change and School Culture.
Eddy, Elizabeth M.; True, Joan H.
1980-01-01
This paper examines the organizational changes introduced in two elementary schools to create unitary (desegregated) classrooms. The different models adopted by the two schools--departmentalization and team teaching--are considered as expressions of their patterns of interaction, behavior, and values. (Part of a theme issue on educational…
Linear programming bounds for unitary space time codes
Creignou, Jean
2008-01-01
The linear programming method is applied to the space $\\U_n(\\C)$ of unitary matrices in order to obtain bounds for codes relative to the diversity sum and the diversity product. Theoretical and numerical results improving previously known bounds are derived.
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
Large Representation Recurrences in Large N Random Unitary Matrix Models
Karczmarek, Joanna L
2011-01-01
In a random unitary matrix model at large N, we study the properties of the expectation value of the character of the unitary matrix in the rank k symmetric tensor representation. We address the problem of whether the standard semiclassical technique for solving the model in the large N limit can be applied when the representation is very large, with k of order N. We find that the eigenvalues do indeed localize on an extremum of the effective potential; however, for finite but sufficiently large k/N, it is not possible to replace the discrete eigenvalue density with a continuous one. Nonetheless, the expectation value of the character has a well-defined large N limit, and when the discreteness of the eigenvalues is properly accounted for, it shows an intriguing approximate periodicity as a function of k/N.
Efimov-driven phase transitions of the unitary Bose gas.
Piatecki, Swann; Krauth, Werner
2014-03-20
Initially predicted in nuclear physics, Efimov trimers are bound configurations of three quantum particles that fall apart when any one of them is removed. They open a window into a rich quantum world that has become the focus of intense experimental and theoretical research, as the region of 'unitary' interactions, where Efimov trimers form, is now accessible in cold-atom experiments. Here we use a path-integral Monte Carlo algorithm backed up by theoretical arguments to show that unitary bosons undergo a first-order phase transition from a normal gas to a superfluid Efimov liquid, bound by the same effects as Efimov trimers. A triple point separates these two phases and another superfluid phase, the conventional Bose-Einstein condensate, whose coexistence line with the Efimov liquid ends in a critical point. We discuss the prospects of observing the proposed phase transitions in cold-atom systems.
Universal unitary gate for single-photon spinorbit ququart states
Slussarenko, Sergei; Piccirillo, Bruno; Marrucci, Lorenzo; Santamato, Enrico
2009-01-01
The recently demonstrated possibility of entangling opposite values of the orbital angular momentum (OAM) of a photon with its spin enables the realization of nontrivial one-photon spinorbit ququart states, i.e., four-dimensional photon states for quantum information purposes. Hitherto, however, an optical device able to perform arbitrary unitary transformations on such spinorbit photon states has not been proposed yet. In this work we show how to realize such a ``universal unitary gate'' device, based only on existing optical technology, and describe its operation. Besides the quantum information field, the proposed device may find applications wherever an efficient and convenient manipulation of the combined OAM and spin of light is required.
On an average over the Gaussian Unitary Ensemble
Mezzadri, F
2009-01-01
We study the asymptotic limit for large matrix dimension N of the partition function of the unitary ensemble with weight exp(-z^2/2x^2 + t/x - x^2/2). We compute the leading order term of the partition function and of the coefficients of its Taylor expansion. Our results are valid in the range N^(-1/2) < z < N^(1/4). Such partition function contains all the information on a new statistics of the eigenvalues of matrices in the Gaussian Unitary Ensemble (GUE) that was introduced by Berry and Shukla (J. Phys. A: Math. Theor., Vol. 41 (2008), 385202, arXiv:0807.3474). It can also be interpreted as the moment generating function of a singular linear statistics.
Random unitary evolution model of quantum Darwinism with pure decoherence
Balanesković, Nenad
2015-10-01
We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S- E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.
All unitary cubic curvature gravities in D dimensions
Energy Technology Data Exchange (ETDEWEB)
Sisman, Tahsin Cagri; Guellue, Ibrahim; Tekin, Bayram, E-mail: sisman@metu.edu.tr, E-mail: e075555@metu.edu.tr, E-mail: btekin@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)
2011-10-07
We construct all the unitary cubic curvature gravity theories built on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom, which greatly simplifies the highly complicated problem of finding the propagator of cubic curvature theories in constant curvature backgrounds. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories using different techniques and the string generated cubic curvature gravity model. We also study the scattering in critical gravity and give its cubic curvature extensions.
Unitary Noise and the Mermin-GHZ Game
Fialík, Ivan
2010-01-01
Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.
Unitary Noise and the Mermin-GHZ Game
Institute of Scientific and Technical Information of China (English)
Ivan Fialík
2011-01-01
Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.
Unitary Noise and the Mermin-GHZ Game
Directory of Open Access Journals (Sweden)
Ivan Fialík
2010-06-01
Full Text Available Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.
Derandomizing Quantum Circuits with Measurement-Based Unitary Designs
Turner, Peter S.; Markham, Damian
2016-05-01
Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.
The Shear Viscosity in an Anisotropic Unitary Fermi Gas
Samanta, Rickmoy; Trivedi, Sandip P
2016-01-01
We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...
ROTATION CONSTELLATION FOR DIFFERENTIAL UNITARY SPACE-TIME MODULATION
Institute of Scientific and Technical Information of China (English)
Li Jun; Cao Haiyan; Wei Gang
2006-01-01
A new constellation which is the multiplication of the rotation matrix and the diagonal matrix according to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.
Unitary-matrix models as exactly solvable string theories
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Unitary transformation method for solving generalized Jaynes-Cummings models
Indian Academy of Sciences (India)
Sudha Singh
2006-03-01
Two fully quantized generalized Jaynes-Cummings models for the interaction of a two-level atom with radiation field are treated, one involving intensity dependent coupling and the other involving multiphoton interaction between the field and the atom. The unitary transformation method presented here not only solves the time dependent problem but also allows a determination of the eigensolutions of the interacting Hamiltonian at the same time.
Unitary representations of the fundamental group of orbifolds
Indian Academy of Sciences (India)
INDRANIL BISWAS; AMIT HOGADI
2016-10-01
Let $X$ be a smooth complex projective variety of dimension $n$ and $\\mathcal{L}$ an ample line bundle on it. There is a well known bijective correspondence between the isomorphism classes of polystable vector bundles $E$ on $X$ with $c_{1}(E) = 0 = c_{2}(E) \\cdot c_{1} \\mathcal (L)^{n−2}$ and the equivalence classes of unitary representations of $\\pi_{1}(X)$. We show that this bijective correspondence extends to smooth orbifolds.
Unitary approach to the quantum forced harmonic oscillator
2014-01-01
In this paper we introduce an alternative approach to studying the evolution of a quantum harmonic oscillator subject to an arbitrary time dependent force. With the purpose of finding the evolution operator, certain unitary transformations are applied successively to Schr\\"odinger's equation reducing it to its simplest form. Therefore, instead of solving the original Schr\\"odinger's partial differential equation in time and space the problem is replaced by a system of ordinary differential eq...
Unitary Application of the Quantum Error Correction Codes
Institute of Scientific and Technical Information of China (English)
游波; 许可; 吴小华
2012-01-01
For applying the perfect code to transmit quantum information over a noise channel, the standard protocol contains four steps： the encoding, the noise channel, the error-correction operation, and the decoding. In present work, we show that this protocol can be simplified. The error-correction operation is not necessary if the decoding is realized by the so-called complete unitary transformation. We also offer a quantum circuit, which can correct the arbitrary single-qubit errors.
Unitary-matrix models as exactly solvable string theories
Periwal, Vipul; Shevitz, Danny
1990-01-01
Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.
Two Combinations of Unitary Operators and Frame Representations
Institute of Scientific and Technical Information of China (English)
李祚; 朱红鲜; 张慧; 杜鸿科
2005-01-01
In this paper, we prove that the norm closure of all linear combinations of two unitary operators is equal to the norm closure of all invertible operators in B(H). We apply the results to frame representations and give some simple and alternative proofs of the propositions in “P. G. Casazza, Every frame is a sum of three (but not two) orthonormal bases-and other frame representations, J. Fourier Anal. Appl., 4(6)(1998), 727-732.”
Unitary fermions on the lattice I: in a harmonic trap
Endres, Michael G; Lee, Jong-Wan; Nicholson, Amy N
2011-01-01
We present a new lattice Monte Carlo approach developed for studying large numbers of strongly interacting nonrelativistic fermions, and apply it to a dilute gas of unitary fermions confined to a harmonic trap. Our lattice action is highly improved, with sources of discretization and finite volume errors systematically removed; we are able to demonstrate the expected volume scaling of energy levels of two and three untrapped fermions, and to reproduce the high precision calculations published previously for the ground state energies for N = 3 unitary fermions in a box (to within our 0.3% uncertainty), and for N = 3, . . ., 6 unitary fermions in a harmonic trap (to within our ~ 1% uncertainty). We use this action to determine the ground state energies of up to 70 unpolarized fermions trapped in a harmonic potential on a lattice as large as 64^3 x 72; our approach avoids the use of importance sampling or calculation of a fermion determinant and employs a novel statistical method for estimating observables, allo...
Entanglement entropy of non-unitary integrable quantum field theory
Directory of Open Access Journals (Sweden)
Davide Bianchini
2015-07-01
Full Text Available In this paper we study the simplest massive 1+1 dimensional integrable quantum field theory which can be described as a perturbation of a non-unitary minimal conformal field theory: the Lee–Yang model. We are particularly interested in the features of the bi-partite entanglement entropy for this model and on building blocks thereof, namely twist field form factors. Non-unitarity selects out a new type of twist field as the operator whose two-point function (appropriately normalized yields the entanglement entropy. We compute this two-point function both from a form factor expansion and by means of perturbed conformal field theory. We find good agreement with CFT predictions put forward in a recent work involving the present authors. In particular, our results are consistent with a scaling of the entanglement entropy given by ceff3logℓ where ceff is the effective central charge of the theory (a positive number related to the central charge and ℓ is the size of the region. Furthermore the form factor expansion of twist fields allows us to explore the large region limit of the entanglement entropy and find the next-to-leading order correction to saturation. We find that this correction is very different from its counterpart in unitary models. Whereas in the latter case, it had a form depending only on few parameters of the model (the particle spectrum, it appears to be much more model-dependent for non-unitary models.
Pdf prediction of supersonic hydrogen flames
Eifler, P.; Kollmann, W.
1993-01-01
A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.
Bhatnagar, Manav R
2012-01-01
In this paper, we derive a maximum likelihood (ML) decoder of the differential data in a decode-and-forward (DF) based cooperative communication system utilizing uncoded transmissions. This decoder is applicable to complex-valued unitary and non-unitary constellations suitable for differential modulation. The ML decoder helps in improving the diversity of the DF based differential cooperative system using an erroneous relaying node. We also derive a piecewise linear (PL) decoder of the differential data transmitted in the DF based cooperative system. The proposed PL decoder significantly reduces the decoding complexity as compared to the proposed ML decoder without any significant degradation in the receiver performance. Existing ML and PL decoders of the differentially modulated uncoded data in the DF based cooperative communication system are only applicable to binary modulated signals like binary phase shift keying (BPSK) and binary frequency shift keying (BFSK), whereas, the proposed decoders are applicab...
High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology
Energy Technology Data Exchange (ETDEWEB)
Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J
2010-12-31
Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.
Castner, Ray
2012-01-01
The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency
Castner, Raymond
2011-01-01
The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.
Flight assessment of a large supersonic drone aircraft for research use
Eckstrom, C. V.; Peele, E. L.
1974-01-01
An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.
Experiments on free and impinging supersonic microjets
Energy Technology Data Exchange (ETDEWEB)
Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)
2008-05-15
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)
Experiments on free and impinging supersonic microjets
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
Cross-talk in phase encoded volume holographic memories employing unitary matrices
Zhang, X.; Berger, G.; Dietz, M.; Denz, C.
2006-12-01
The cross-talk noise in phase encoded holographic memories employing unitary matrices is theoretically investigated. After reviewing some earlier work in this area, we derive a relationship for the noise-to-signal ratio for phase-code multiplexing with unitary matrices. The noise-to-signal ratio rises in a zigzag way on increasing the storage capacity. Cross-talk is mainly caused by high-frequency phase codes. Unitary matrices of even orders have only one bad code, while unitary matrices of odd orders have four bad codes. The signal-to-noise ratios of all other codes can in each case be drastically improved by omission of these bad codes. We summarize the optimal orders of Hadamard and unitary matrices for recording a given number of holograms. The unitary matrices can enable us to adjust the available spatial light modulators to achieve the maximum possible storage capacity in both circumstances with and without bad codes.
Global unitary fixing and matrix-valued correlations in matrix models
Adler, S L; Horwitz, Lawrence P.
2003-01-01
We consider the partition function for a matrix model with a global unitary invariant energy function. We show that the averages over the partition function of global unitary invariant trace polynomials of the matrix variables are the same when calculated with any choice of a global unitary fixing, while averages of such polynomials without a trace define matrix-valued correlation functions, that depend on the choice of unitary fixing. The unitary fixing is formulated within the standard Faddeev-Popov framework, in which the squared Vandermonde determinant emerges as a factor of the complete Faddeev-Popov determinant. We give the ghost representation for the FP determinant, and the corresponding BRST invariance of the unitary-fixed partition function. The formalism is relevant for deriving Ward identities obeyed by matrix-valued correlation functions.
Abstract structure of unitary oracles for quantum algorithms
Directory of Open Access Journals (Sweden)
William Zeng
2014-12-01
Full Text Available We show that a pair of complementary dagger-Frobenius algebras, equipped with a self-conjugate comonoid homomorphism onto one of the algebras, produce a nontrivial unitary morphism on the product of the algebras. This gives an abstract understanding of the structure of an oracle in a quantum computation, and we apply this understanding to develop a new algorithm for the deterministic identification of group homomorphisms into abelian groups. We also discuss an application to the categorical theory of signal-flow networks.
Unitary evolution for a quantum Kantowski-Sachs cosmology
Pal, Sridip
2015-01-01
It is shown that like Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows a unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of the anisotropy. Non-unitarity, if there is any, cannot escape notice in this as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave-packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving time independent probability density. For $\\alpha\
Introduction to orthogonal, symplectic and unitary representations of finite groups
Riehm, Carl R
2011-01-01
Orthogonal, symplectic and unitary representations of finite groups lie at the crossroads of two more traditional subjects of mathematics-linear representations of finite groups, and the theory of quadratic, skew symmetric and Hermitian forms-and thus inherit some of the characteristics of both. This book is written as an introduction to the subject and not as an encyclopaedic reference text. The principal goal is an exposition of the known results on the equivalence theory, and related matters such as the Witt and Witt-Grothendieck groups, over the "classical" fields-algebraically closed, rea
Deformations of polyhedra and polygons by the unitary group
Livine, Etera R.
2013-12-01
We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient {{C}}^{2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in {{C}}2 satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N-2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in a
UV radiation sensors with unitary and binary superficial barrier
Dorogan, Valerian; Vieru, Tatiana; Kosyak, V.; Damaskin, I.; Chirita, F.
1998-07-01
UV radiation sensors with unitary and binary superficial barrier, made on the basis of GaP - SnO2 and GaAs - AlGaAs - SnO2 heterostructures, are presented in the paper. Technological and constructive factors, which permit to realize a high conversion efficiency and to exclude the influence of visible spectrum upon the photoanswer, are analyzed. It was established that the presence of an isotypical superficial potential barrier permits to suppress the photoanswer component formed by absorption of visible and infrared radiation in semiconductor structure bulk.
Non-unitary neutrino propagation from neutrino decay
Directory of Open Access Journals (Sweden)
Jeffrey M. Berryman
2015-03-01
Full Text Available Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.
Multiscale differential phase contrast analysis with a unitary detector
Lopatin, Sergei
2015-12-30
A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.
Non-unitary neutrino propagation from neutrino decay
Energy Technology Data Exchange (ETDEWEB)
Berryman, Jeffrey M., E-mail: jeffreyberryman2012@u.northwestern.edu [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Oliveira, Roberto L.N. [Northwestern University, Department of Physics & Astronomy, 2145 Sheridan Road, Evanston, IL 60208 (United States); Instituto de Física Gleb Wataghin Universidade Estadual de Campinas, UNICAMP 13083-970, Campinas, São Paulo (Brazil)
2015-03-06
Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.
Computing a logarithm of a unitary matrix with general spectrum
Loring, Terry A
2012-01-01
In theory, a unitary matrix U has a skew-hermitian logarithm H. In a computing environment one expects only to know U^*U \\approx I and might wish to compute H with e^H \\approx U and H^*= -H. This is relatively easy to accomplish using the Schur decomposition. Reasonable error bounds are derived. In cases where the norm of U^*U-I is somewhat large we discuss the utility of pre-processing with Newton's method of approximating the polar decomposition. In the case of U being J-skew-symmetric, one can insist that H be J-skew-symmetric and skew-Hermitian.
Thermoelectric-induced unitary Cooper pair splitting efficiency
Energy Technology Data Exchange (ETDEWEB)
Cao, Zhan; Fang, Tie-Feng [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Lin [Department of Physics, Southern University of Science and Technology of China, Shenzhen 518005 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)
2015-11-23
Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an s-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature difference rather than bias voltage between the two normal leads, and tuning the two dot levels such that the transmittance of elastic cotunneling process is particle-hole symmetric, we find current flowing through the normal leads are totally contributed from the splitting of Cooper pairs emitted from the superconductor. Such a unitary splitting efficiency is significantly better than the efficiencies obtained in experiments so far.
Implementing controlled-unitary operations over the butterfly network
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S.; Murao, Mio
2014-12-01
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
Unitary cycles on Shimura curves and the Shimura lift II
Sankaran, Siddarth
2013-01-01
We consider two families of arithmetic divisors defined on integral models of Shimura curves. The first was studied by Kudla, Rapoport and Yang, who proved that if one assembles these divisors in a formal generating series, one obtains the q-expansion of a modular form of weight 3/2. The present work concerns the Shimura lift of this modular form: we identify the Shimura lift with a generating series comprised of unitary divisors, which arose in recent work of Kudla and Rapoport regarding cyc...
Luria: a unitary view of human brain and mind.
Mecacci, Luciano
2005-12-01
Special questions the eminent Russian psychologist and neuropsychologist Aleksandr R. Luria (1902-1977) dealt with in his research regarded the relationship between animal and human brain, child and adult mind, normal and pathological, theory and rehabilitation, clinical and experimental investigation. These issues were integrated in a unitary theory of cerebral and psychological processes, under the influence of both different perspectives active in the first half of the Nineteenth century (psychoanalysis and historical-cultural school, first of all) and the growing contribution of neuropsychological research on brain-injured patients.
Implementing controlled-unitary operations over the butterfly network
Energy Technology Data Exchange (ETDEWEB)
Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)
2014-12-04
We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.
Graphical description of unitary transformations on hypergraph states
Gachechiladze, Mariami; Tsimakuridze, Nikoloz; Gühne, Otfried
2017-05-01
Hypergraph states form a family of multiparticle quantum states that generalizes cluster states and graph states. We study the action and graphical representation of nonlocal unitary transformations between hypergraph states. This leads to a generalization of local complementation and graphical rules for various gates, such as the CNOT gate and the Toffoli gate. As an application, we show that already for five qubits local Pauli operations are not sufficient to check local equivalence of hypergraph states. Furthermore, we use our rules to construct entanglement witnesses for three-uniform hypergraph states.
Simulating Entangling Unitary Operator Using Non-maximally Entangled States
Institute of Scientific and Technical Information of China (English)
LI Chun-Xian; WANG Cheng-Zhi; NIE Liu-Ying; LI Jiang-Fan
2009-01-01
We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) w/th a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.
The science of unitary human beings and interpretive human science.
Reeder, F
1993-01-01
Natural science and human science are identified as the bases of most nursing theories and research programs. Natural science has been disclaimed by Martha Rogers as the philosophy of science that undergirds her work. The question remains, is the science of unitary human beings an interpretive human science? The author explores the works of Rogers through a dialectic with two human scientists' works. Wilhelm Dilthey's works represent the founding or traditional view, and Jurgen Habermas' works represent a contemporary, reconstructionist view. The ways Rogerian thought contributes to human studies but is distinct from traditional and reconstructionist human sciences are illuminated.
The universal sound velocity formula for the strongly interacting unitary Fermi gas
Institute of Scientific and Technical Information of China (English)
Liu Ke; Chen Ji-Sheng
2011-01-01
Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/ZV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.
Kitaev honeycomb tensor networks: exact unitary circuits and applications
Schmoll, Philipp
2016-01-01
The Kitaev honeycomb model is a paradigm of exactly-solvable models, showing non-trivial physical properties such as topological quantum order, abelian and non-abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely: Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear u...
Shortcut to adiabaticity for an anisotropic unitary Fermi gas
Deng, Shujin; Yu, Qianli; Wu, Haibin
2016-01-01
Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...
On the construction of unitary quantum group differential calculus
Pyatov, Pavel
2016-10-01
We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.
Event-specific versus unitary causal accounts of optimism bias.
Chua, F J; Job, R F
1999-10-01
Optimism bias is often assumed to have a unitary cause regardless of the event, however, factors causing it may actually be event-specific. In Experiment 1 (N = 23), subjects rated the importance of various causes for individual events. The results identified consistent differences in perceptions of causal factors across events. Experiment 2 (N = 190) employed the possible causal factors absent/exempt error and degree of motivation to investigate an event-specific theory of optimism bias in a manipulation design. Participants were encouraged to view one causal factor (absent/exempt or motivation) as either important or unimportant to future risk when they estimated their risk of absent/exempt-related, motivation-related and unrelated events (as determined in Experiment 1). A hanging control group received no manipulation. The event-specific theory's prediction that these manipulations would affect particular events and not others were not supported. However, discouraging the absent/exempt error reduced optimism bias across events, generally. Hence, a unitary and not an event-specific theory of optimism bias was supported. Furthermore, for the first time, the possible role of and confounding of cognitive manipulations of optimism bias by mood were evaluated, and not supported.
Universal Structure and Universal PDE for Unitary Ensembles
Rumanov, Igor
2009-01-01
An attempt is made to describe random matrix ensembles with unitary invariance of measure (UE) in a unified way, using a combination of Tracy-Widom (TW) and Adler-Shiota-Van Moerbeke (ASvM) approaches to derivation of partial differential equations (PDE) for spectral gap probabilities. First, general 3-term recurrence relations for UE restricted to subsets of real line, or, in other words, for functions in the resolvent kernel, are obtained. Using them, simple universal relations between all TW dependent variables and one-dimensional Toda lattice $\\tau$-functions are found. A universal system of PDE for UE is derived from previous relations, which leads also to a {\\it single independent PDE} for spectral gap probability of various UE. Thus, orthogonal function bases and Toda lattice are seen at the core of correspondence of different approaches. Moreover, Toda-AKNS system provides a common structure of PDE for unitary ensembles. Interestingly, this structure can be seen in two very different forms: one arises...
Boson-Faddeev in the Unitary Limit and Efimov States
K"\\ohler, H S
2010-01-01
A numerical study of the Faddeev equation for bosons is made with two-body interactions at or close to the Unitary limit. Separable interactions are obtained from phase-shifts defined by scattering length and effective range. In EFT-language this would correspond to NLO. Both ground and Efimov state energies are calculated. For effective ranges $r_0 > 0$ and rank-1 potentials the total energy $E_T$ is found to converge with momentum cut-off $\\Lambda$ for $\\Lambda > \\sim 10/r_0$ . In the Unitary limit ($1/a=r_0= 0$) the energy does however diverge. It is shown (analytically) that in this case $E_T=E_u\\Lambda^2$. Calculations give $E_u=-0.108$ for the ground state and $E_u=-1.\\times10^{-4}$ for the single Efimov state found. The cut-off divergence is remedied by modifying the off-shell t-matrix by replacing the rank-1 by a rank-2 phase-shift equivalent potential. This is somewhat similar to the counterterm method suggested by Bedaque et al. This investigation is exploratory and does not refer to any specific ph...
Design project: LONGBOW supersonic interceptor
Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark
1993-01-01
A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.
On highly focused supersonic microjets
Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef
2011-01-01
By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.
Anathpindika, S
2009-01-01
In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...
Silent and Efficient Supersonic Bi-Directional Flying Wing Project
National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...
Supersonic combustion engine testbed, heat lightning
Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.
1990-01-01
The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.
Simulating Supersonic Turbulence in Galaxy Outflows
Scannapieco, Evan
2010-01-01
We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...
Compactifications of the Heterotic string with unitary bundles
Energy Technology Data Exchange (ETDEWEB)
Weigand, T.
2006-05-23
In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing
The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle
Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz
2003-01-01
The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced
47 CFR 65.101 - Initiation of unitary rate of return prescription proceedings.
2010-10-01
... 47 Telecommunication 3 2010-10-01 2010-10-01 false Initiation of unitary rate of return...) COMMON CARRIER SERVICES (CONTINUED) INTERSTATE RATE OF RETURN PRESCRIPTION PROCEDURES AND METHODOLOGIES Procedures § 65.101 Initiation of unitary rate of return prescription proceedings. (a) Whenever...
Wanjala, G; Kaashoek, MA; Seatzu, S; VanDerMee, C
2005-01-01
A generalized Schur function which is holomorphic at z = 0 can be written as the characteristic function of a closely connected unitary colligation with a Pontryagin state space. We describe the closely connected unitary colligation of a solution s(z) of the basic interpolation problem for generaliz
Molecular Quantum Computing by an Optimal Control Algorithm for Unitary Transformations
Palao, J P; Palao, Jose P.; Kosloff, Ronnie
2002-01-01
Quantum computation is based on implementing selected unitary transformations which represent algorithms. A generalized optimal control theory is used to find the driving field that generates a prespecified unitary transformation. The approach is illustrated in the implementation of one and two qubits gates in model molecular systems.
Supersonic Flutter of Laminated Curved Panels
Directory of Open Access Journals (Sweden)
M. Ganapathi
1995-04-01
Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.
Supersonic gas shell for puff pinch experiments
Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.
1982-09-01
An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.
Unitary equilibrations: probability distribution of the Loschmidt echo
Venuti, Lorenzo Campos
2009-01-01
Closed quantum systems evolve unitarily and therefore cannot converge in a strong sense to an equilibrium state starting out from a generic pure state. Nevertheless for large system size one observes temporal typicality. Namely, for the overwhelming majority of the time instants, the statistics of observables is practically indistinguishable from an effective equilibrium one. In this paper we consider the Loschmidt echo (LE) to study this sort of unitary equilibration after a quench. We draw several conclusions on general grounds and on the basis of an exactly-solvable example of a quasi-free system. In particular we focus on the whole probability distribution of observing a given value of the LE after waiting a long time. Depending on the interplay between the initial state and the quench Hamiltonian, we find different regimes reflecting different equilibration dynamics. When the perturbation is small and the system is away from criticality the probability distribution is Gaussian. However close to criticali...
Husserlian phenomenology and nursing in a unitary-transformative paradigm
DEFF Research Database (Denmark)
Hall, Elisabeth
1996-01-01
The aim of this article is to discuss Husserlian phenomenology as philosophy and methodology, and its relevance for nursing research. The main content in Husserl's phenomenological world view is described and compared to the unitary-transformative paradigm as mentioned by Newman et al....... The phenomenological methodology according to Spiegelberg is described, and exemplified through the author's ongoing study. Different critiques of phenomenology and phenomenological reports are mentioned, and the phenomenological description is illustrated as the metaphor «using a handful of colors». The metaphor...... is used to give phenomenological researchers and readers an expanding reality picturing, including memories and hopes and not only a reality of the five senses. It is concluded that phenomenology as a world view and methodology can contribute to nursing research and strengthen the identity of nursing...
Momentum Distribution in the Unitary Bose Gas from First Principles
Comparin, Tommaso; Krauth, Werner
2016-11-01
We consider a realistic bosonic N -particle model with unitary interactions relevant for Efimov physics. Using quantum Monte Carlo methods, we find that the critical temperature for Bose-Einstein condensation is decreased with respect to the ideal Bose gas. We also determine the full momentum distribution of the gas, including its universal asymptotic behavior, and compare this crucial observable to recent experimental data. Similar to the experiments with different atomic species, differentiated solely by a three-body length scale, our model only depends on a single parameter. We establish a weak influence of this parameter on physical observables. In current experiments, the thermodynamic instability of our model from the atomic gas towards an Efimov liquid could be masked by the dynamical instability due to three-body losses.
The Reid93 Potential Triton in the Unitary Pole Approximation
Afnan, I. R.; Gibson, B. F.
2013-12-01
The Reid93 potential provides a representation of the nucleon-nucleon ( NN) scattering data that rivals that of a partial wave analysis. We present here a unitary pole approximation (UPA) for this contemporary NN potential that provides a rank one separable potential for which the wave function of the deuteron (3S1-3D1) and singlet anti-bound (1S0) state are exactly those of the original potential. Our motivation is to use this UPA potential to investigate the sensitivity of the electric dipole moment for the deuteron and 3H and 3He to the ground state nuclear wave function. We compare the Reid93 results with those for the original Reid (Reid68) potential to illustrate the accuracy of the bound state properties.
Unitary theory of pion photoproduction in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Araki, M.; Afnan, I.R.
1987-07-01
We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or ..delta..(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ..pi pi..B and ..gamma pi..B intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.
Unitary theory of pion photoproduction in the chiral bag model
Araki, M.; Afnan, I. R.
1987-07-01
We present a multichannel unitary theory of single pion photoproduction from a baryon B. Here, B is the nucleon or Δ(1232), with possible extension to include the Roper resonance and strange baryons. We treat the baryon as a three-quark state within the framework of the gauge and chiral Lagrangian, derived from the Lagrangian for the chiral bag model. By first exposing two-body, and then three-body unitarity, taking into consideration the ππB and γπB intermediate states, we derive a set of equations for the amplitudes both on and off the energy shell. The Born term in the expansion of the amplitude has the new feature that the vertices in the pole diagram are undressed, while those in the crossed, contact, and pion pole diagrams are dressed.
An Informal Overview of the Unitary Group Approach
Energy Technology Data Exchange (ETDEWEB)
Sonnad, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kruse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, R. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy
2016-06-13
The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.
C T for non-unitary CFTs in higher dimensions
Osborn, Hugh; Stergiou, Andreas
2016-06-01
The coefficient C T of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large- N calculations for the CFTs arising from the O( N) non-linear sigma and Gross-Neveu models in specific even dimensions. C T is also calculated for the CFT arising from ( n - 1)-form gauge fields with derivatives in 2 n + 2 dimensions. Results for ( n - 1)-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting C T differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.
The unitary conformal field theory behind 2D Asymptotic Safety
Nink, Andreas
2015-01-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a...
Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls
Osuga, Kento
2016-01-01
We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon and fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.
Quantized superfluid vortex rings in the unitary Fermi gas.
Bulgac, Aurel; Forbes, Michael McNeil; Kelley, Michelle M; Roche, Kenneth J; Wlazłowski, Gabriel
2014-01-17
In a recent article, Yefsah et al. [Nature (London) 499, 426 (2013)] report the observation of an unusual excitation in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe oscillations almost an order of magnitude slower than predicted by any theory of domain walls which they interpret as a "heavy soliton" of inertial mass some 200 times larger than the free fermion mass or 50 times larger than expected for a domain wall. We present compelling evidence that this "soliton" is instead a quantized vortex ring, by showing that the main aspects of the experiment can be naturally explained within the framework of time-dependent superfluid density functional theories.
Kitaev honeycomb tensor networks: Exact unitary circuits and applications
Schmoll, Philipp; Orús, Román
2017-01-01
The Kitaev honeycomb model is a paradigm of exactly solvable models, showing nontrivial physical properties such as topological quantum order, Abelian and non-Abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely, Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear understanding of several properties of the model. In particular, we show how the fidelity diagram is straightforward both at zero temperature and at finite temperature in the vortex-free sector. We also show how the properties of two-point correlation functions follow easily. Finally, we also discuss the pros and cons of contracting of our 3d TN down to a 2d projected entangled pair state (PEPS) with finite bond dimension. The results in this paper can be extended to generalizations of the Kitaev model, e.g., to other lattices, spins, and dimensions.
Alpay, D.; Dijksma, A.; Langer, H.
2004-01-01
We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.
Supersonic Injection of Aerated Liquid Jet
Choudhari, Abhijit; Sallam, Khaled
2016-11-01
A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.
Conditions for supersonic bent Marshak waves
Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong
2014-01-01
Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.
Dielectric barrier discharge source for supersonic beams
Energy Technology Data Exchange (ETDEWEB)
Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)
2009-10-15
We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.
Numerical and experimental investigations on supersonic ejectors
Energy Technology Data Exchange (ETDEWEB)
Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS
2005-02-01
Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)
Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity
Directory of Open Access Journals (Sweden)
Matthews Paul
2004-11-01
Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.
Unitary theories in the work of Mira Fernandes (beyond general relativity and differential geometry)
Lemos, José P S
2010-01-01
An analysis of the work of Mira Fernandes on unitary theories is presented. First it is briefly mentioned the Portuguese scientific context of the 1920s. A short analysis of the extension of Riemann geometries to new generalized geometries with new affine connections, such as those of Weyl and Cartan, is given. Based on these new geometries, the unitary theories of the gravitational and electromagnetic fields, proposed by Weyl, Eddington, Einstein, and others are then explained. Finally, the book and one paper on connections and two papers on unitary theories, all written by Mira Fernandes, are analyzed and put in context.
[Reactualization of the concept of unitary psychosis introduced by Joseph Guislain].
van Renynghe de Voxvrie, G
1993-01-01
This paper reminds the concept of a unitary nosological and pathogenic process that may be traced back to Joseph Guislain (1797-1860). The "phrénalgie initiale" was regarded as the initial stage of psychic illness by Guislain (Leçons orales, Ghent, 1852). That vision inspired the work of Wilhelm Griesinger (1817-1869) who further elaborated the concept of "Einheitspsychose" (Psychose unique--Unitary psychosis). That concept partially inspired Emil Kräpelin (1856-1926). Current classification systems like ICD-10 and DSM-III-R attempt to synthesize different views and the concept of unitary psychosis is actualized in the contemporary transnosography.
Participatory dreaming: a conceptual exploration from a unitary appreciative inquiry perspective.
Repede, Elizabeth J
2009-10-01
Dreaming is a universal phenomenon in human experience and one that carries multiple meanings in the narrative discourse across disciplines. Dreams can be collective, communal, and emancipatory, as well as individual. While individual dreaming has been extensively studied in the literature, the participatory nature of dreaming as a unitary phenomenon is limited. The concept of participatory dreaming within a unitary appreciative framework for healing is explored from perspectives in anthropology, psychology, and nursing. A participatory model of dreaming is proposed from a synthesis of the literature for use in future research using unitary appreciative inquiry.
Participatory dreaming: a unitary appreciative inquiry into healing with women abused as children.
Repede, Elizabeth
2011-01-01
Unitary appreciative inquiry was used to explore healing in the lives of 11 women abused as children using a model of participatory dreaming. Aesthetics, imagery, and journaling were used in a participatory design aimed at the appreciation of healing in the lives of the participants as it related to the abuse. Using Cowling's theory of unitary healing, research and practice were combined within a unitary-transformative framework. Participatory dreaming was useful in illuminating the life patterning in the lives of the women and promoted the development of new knowledge and skills that led to change and transformation, both individually and collectively.
Deformations of Polyhedra and Polygons by the Unitary Group
Livine, Etera R
2013-01-01
We introduce the set of framed convex polyhedra with N faces as the symplectic quotient C^2N//SU(2). A framed polyhedron is then parametrized by N spinors living in C^2 satisfying suitable closure constraints and defines a usual convex polyhedron plus a phase for each face. We show that there is an action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any polyhedron onto any other with the same total area. This realizes the isomorphism of the space of framed polyhedra with the Grassmannian space U(N)/SU(2)*U(N-2). We show how to write averages and correlations of geometrical observables over the ensemble of polyhedra as polynomial integrals over U(N) and we use the Itzykson-Zuber formula from matrix models as the generating function for them. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners. The individual face areas are quantized as half-integers (spins) and the Hilbert spaces...
Unitary Networks from the Exact Renormalization of Wave Functionals
Fliss, Jackson R; Parrikar, Onkar
2016-01-01
The exact renormalization group (ERG) for $O(N)$ vector models (at large $N$) on flat Euclidean space can be interpreted as the bulk dynamics corresponding to a holographically dual higher spin gauge theory on $AdS_{d+1}$. This was established in the sense that at large $N$ the generating functional of correlation functions of single trace operators is reproduced by the on-shell action of the bulk higher spin theory, which is most simply presented in a first-order (phase space) formalism. In this paper, we extend the ERG formalism to the wave functionals of arbitrary states of the $O(N)$ vector model at the free fixed point. We find that the ERG flow of the ground state and a specific class of excited states is implemented by the action of unitary operators which can be chosen to be local. Consequently, the ERG equations provide a continuum notion of a tensor network. We compare this tensor network with the entanglement renormalization networks, MERA, and its continuum version, cMERA, which have appeared rece...
Renormalization of the unitary evolution equation for coined quantum walks
Boettcher, Stefan; Li, Shanshan; Portugal, Renato
2017-03-01
We consider discrete-time evolution equations in which the stochastic operator of a classical random walk is replaced by a unitary operator. Such a problem has gained much attention as a framework for coined quantum walks that are essential for attaining the Grover limit for quantum search algorithms in physically realizable, low-dimensional geometries. In particular, we analyze the exact real-space renormalization group (RG) procedure recently introduced to study the scaling of quantum walks on fractal networks. While this procedure, when implemented numerically, was able to provide some deep insights into the relation between classical and quantum walks, its analytic basis has remained obscure. Our discussion here is laying the groundwork for a rigorous implementation of the RG for this important class of transport and algorithmic problems, although some instances remain unresolved. Specifically, we find that the RG fixed-point analysis of the classical walk, which typically focuses on the dominant Jacobian eigenvalue {λ1} , with walk dimension dw\\text{RW}={{log}2}{λ1} , needs to be extended to include the subdominant eigenvalue {λ2} , such that the dimension of the quantum walk obtains dw\\text{QW}={{log}2}\\sqrt{{λ1}{λ2}} . With that extension, we obtain analytically previously conjectured results for dw\\text{QW} of Grover walks on all but one of the fractal networks that have been considered.
Unitary fermions and Lüscher's formula on a crystal
Valiente, Manuel; Zinner, Nikolaj T.
2016-11-01
We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the naïve continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak, intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.
Conditional Mutual Information of Bipartite Unitaries and Scrambling
Ding, Dawei; Walter, Michael
2016-01-01
One way to diagnose chaos in bipartite unitary channels is via the negativity of the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other inputs are maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure i...
On the infinite fern of Galois representations of unitary type
Chenevier, Gaetan
2009-01-01
Let E be a CM number field, F its maximal totally real subfield, c the generator of Gal(E/F), p an odd prime totally split in E, and S a finite set of places of E containing the places above p. Let r : G_{E,S} --> GL_3(F_p^bar) be a modular, absolutely irreducible, Galois representation of type U(3), i.e. such that r^* = r^c, and let X(r) be the rigid analytic generic fiber of its universal G_{E,S}-deformation of type U(3). We show that each irreducible component of the Zariski-closure of the modular points in X(r) has dimension at least 6[F:Q]. We study an analogue of the infinite fern of Gouvea-Mazur in this context and deal with the Hilbert modular case as well. As important steps, we prove that any first order deformation of a generic enough crystalline representation of Gal(Q_p^bar/Q_p) (of any dimension) is a linear combination of trianguline deformations, and that unitary eigenvarieties (of any rank) are etale over the weight space at the non-critical classical points. As another application, we obtain...
Holographic Fluctuations from Unitary de Sitter Invariant Field Theory
Banks, Tom; Torres, T J; Wainwright, Carroll L
2013-01-01
We continue the study of inflationary fluctuations in Holographic Space Time models of inflation. We argue that the holographic theory of inflation provides a physical context for what is often called dS/CFT. The holographic theory is a quantum theory which, in the limit of a large number of e-foldings, gives rise to a field theory on $S^3$, which is the representation space for a unitary representation of SO(1,4). This is not a conventional CFT, and we do not know the detailed non-perturbative axioms for correlation functions. However, the two- and three-point functions are completely determined by symmetry, and coincide up to a few constants (really functions of the background FRW geometry) with those calculated in a single field slow-roll inflation model. The only significant deviation from slow roll is in the tensor fluctuations. We predict zero tensor tilt and roughly equal weight for all three conformally invariant tensor 3-point functions (unless parity is imposed as a symmetry). We discuss the relatio...
Spectral Characteristics of the Unitary Critical Almost-Mathieu Operator
Fillman, Jake; Ong, Darren C.; Zhang, Zhenghe
2016-10-01
We discuss spectral characteristics of a one-dimensional quantum walk whose coins are distributed quasi-periodically. The unitary update rule of this quantum walk shares many spectral characteristics with the critical Almost-Mathieu Operator; however, it possesses a feature not present in the Almost-Mathieu Operator, namely singularity of the associated cocycles (this feature is, however, present in the so-called Extended Harper's Model). We show that this operator has empty absolutely continuous spectrum and that the Lyapunov exponent vanishes on the spectrum; hence, this model exhibits Cantor spectrum of zero Lebesgue measure for all irrational frequencies and arbitrary phase, which in physics is known as Hofstadter's butterfly. In fact, we will show something stronger, namely, that all spectral parameters in the spectrum are of critical type, in the language of Avila's global theory of analytic quasiperiodic cocycles. We further prove that it has empty point spectrum for each irrational frequency and away from a frequency-dependent set of phases having Lebesgue measure zero. The key ingredients in our proofs are an adaptation of Avila's Global Theory to the present setting, self-duality via the Fourier transform, and a Johnson-type theorem for singular dynamically defined CMV matrices which characterizes their spectra as the set of spectral parameters at which the associated cocycles fail to admit a dominated splitting.
Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System
Energy Technology Data Exchange (ETDEWEB)
Tiax Llc
2006-02-28
Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.
Neutron matter at low density and the unitary limit
Baldo, M
2007-01-01
Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below $k_F = 0.4$ fm$^{-1}$ does not indicate any pathological behavior of the neutron Equation of State.
Energy Technology Data Exchange (ETDEWEB)
Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)
2014-12-04
We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.
Unitary background gauges and hamiltonian approach to Yang-Mills theories
Dubin, A Yu
1995-01-01
A variety of unitary gauges for perturbation theory in a background field is considered in order to find those most suitable for a Hamiltonian treatment of the system. We select two convenient gauges and derive the propagators D_{\\mu\
Error correcting codes for binary unitary channels on multipartite quantum systems
Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol
2006-01-01
We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.
Palao, J P; Palao, Jose P.; Kosloff, Ronnie
2002-01-01
A quantum gate is realized by specific unitary transformations operating on states representing qubits. Considering a quantum system employed as an element in a quantum computing scheme, the task is therefore to enforce the pre-specified unitary transformation. This task is carried out by an external time dependent field. Optimal control theory has been suggested as a method to compute the external field which alters the evolution of the system such that it performs the desire unitary transformation. This study compares two recent implementations of optimal control theory to find the field that induces a quantum gate. The first approach is based on the equation of motion of the unitary transformation. The second approach generalizes the state to state formulation of optimal control theory. This work highlight the formal relation between the two approaches.
Matrix Elements of One- and Two-Body Operators in the Unitary Group Approach (II) - Application
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong; PAN Feng
2001-01-01
Simple analytical expressions for one- and two-body matrix elements in the unitary group approach to the configuration interaction problems of many-electron systems are obtained based on the previous results for general Un irreps.
Institute of Scientific and Technical Information of China (English)
FAN Hong-Yi; HU Shan
2006-01-01
We present a general formalism for setting up unitary transform operators from classical transforms via the technique of integration within an ordered product of operators, their normally ordered form can be obtained too.
Supersonic Turbulent Boundary Layer: DNS and RANS
Institute of Scientific and Technical Information of China (English)
XU Jing-Lei; MA Hui-Yang
2007-01-01
We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.
Turbulent Shear Layers in Supersonic Flow
Smits, Alexander J
2006-01-01
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Study of active cooling for supersonic transports
Brewer, G. D.; Morris, R. E.
1975-01-01
The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.
Supersonic Motions of Galaxies in Clusters
Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan
2004-01-01
We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...
Control of star formation by supersonic turbulence
MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.
2004-01-01
Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)
Can a non-unitary effect be prominent In neutrino oscillation measurements?
Institute of Scientific and Technical Information of China (English)
L(U) Lei; WANG Wen-Yu; XIONG zhao-Hua
2010-01-01
Subject to neutrino experiments, the mixing matrix of ordinary neutrinos can still have small vi-olation from unitarity. We introduce a quasi-unitary matrix to interpret this violation and propose a natural scheme to parameterize it. A quasi-unitary factor △QF is defined to be measured in neutrino oscillation exper-iments and the numerical results show that the improvement in experimental precision may help us figure out the secret of neutrino mixing.
Directory of Open Access Journals (Sweden)
Chau Hoi
2011-01-01
Full Text Available Abstract We give elementary proofs of two theorems concerning bounds on the maximum argument of the eigenvalues of a product of two unitary matrices--one by Childs et al. [J. Mod. Phys. 47, 155 (2000] and the other one by Chau [Quant. Inf. Comp. 11, 721 (2011]. Our proofs have the advantages that the necessary and sufficient conditions for equalities are apparent and that they can be readily generalized to the case of infinite-dimensional unitary operators.
Branching laws for small unitary representations of GL(n,C)
DEFF Research Database (Denmark)
Möllers, Jan; Schwarz, Benjamin
2014-01-01
The unitary principal series representations of $G=GL(n,\\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\\mathbb{C})\\times GL(n-1,\\mathbb{C}))\\ltimes\\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary representati...... representations of $G$. We find the explicit branching laws for the restriction of these representations to symmetric subgroups of $G$....
Conceptual Design of a Supersonic Jet Engine
Kareliusson, Joakim; Nordqvist, Melker
2014-01-01
This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...
Chemically reacting supersonic flow calculation using an assumed PDF model
Farshchi, M.
1990-01-01
This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.
Research of low boom and low drag supersonic aircraft design
Feng Xiaoqiang; Li Zhanke; Song Bifeng
2014-01-01
Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...
Supersonic and subsonic measurements of mesospheric ionization.
Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.
1972-01-01
An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.
Supersonic Jet Excitation using Flapping Injection
Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik
2013-01-01
Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...
Supersonic Gas-Liquid Cleaning System
Kinney, Frank
1996-01-01
The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.
Skin Friction and Pressure Measurements in Supersonic Inlets Project
National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...
An ancilla-based quantum simulation framework for non-unitary matrices
Daskin, Ammar; Kais, Sabre
2017-01-01
The success probability in an ancilla-based circuit generally decreases exponentially in the number of qubits consisted in the ancilla. Although the probability can be amplified through the amplitude amplification process, the input dependence of the amplitude amplification makes difficult to sequentially combine two or more ancilla-based circuits. A new version of the amplitude amplification known as the oblivious amplitude amplification runs independently of the input to the system register. This allows us to sequentially combine two or more ancilla-based circuits. However, this type of the amplification only works when the considered system is unitary or non-unitary but somehow close to a unitary. In this paper, we present a general framework to simulate non-unitary processes on ancilla-based quantum circuits in which the success probability is maximized by using the oblivious amplitude amplification. In particular, we show how to extend a non-unitary matrix to an almost unitary matrix. We then employ the extended matrix by using an ancilla-based circuit design along with the oblivious amplitude amplification. Measuring the distance of the produced matrix to the closest unitary matrix, a lower bound for the fidelity of the final state obtained from the oblivious amplitude amplification process is presented. Numerical simulations for random matrices of different sizes show that independent of the system size, the final amplified probabilities are generally around 0.75 and the fidelity of the final state is mostly high and around 0.95. Furthermore, we discuss the complexity analysis and show that combining two such ancilla-based circuits, a matrix product can be implemented. This may lead us to efficiently implement matrix functions represented as infinite matrix products on quantum computers.
Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I
2016-01-01
Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)
Directory of Open Access Journals (Sweden)
Chen Jian
2015-01-01
Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.
High speed titanium coating by Supersonic Laser Deposition
LUPOI, ROCCO
2011-01-01
PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...
Advanced Noise Abatement Procedures for a Supersonic Business Jet
Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.
2017-01-01
Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.
Secure two-party quantum evaluation of unitaries against specious adversaries
Dupuis, Frédéric; Salvail, Louis
2010-01-01
We describe how any two-party quantum computation, specified by a unitary which simultaneously acts on the registers of both parties, can be privately implemented against a quantum version of classical semi-honest adversaries that we call specious. Our construction requires two ideal functionalities to garantee privacy: a private SWAP between registers held by the two parties and a classical private AND-box equivalent to oblivious transfer. If the unitary to be evaluated is in the Clifford group then only one call to SWAP is required for privacy. On the other hand, any unitary not in the Clifford requires one call to an AND-box per R-gate in the circuit. Since SWAP is itself in the Clifford group, this functionality is universal for the private evaluation of any unitary in that group. SWAP can be built from a classical bit commitment scheme or an AND-box but an AND-box cannot be constructed from SWAP. It follows that unitaries in the Clifford group are to some extent the easy ones. We also show that SWAP cann...
Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)
Energy Technology Data Exchange (ETDEWEB)
Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S. [School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4072 (Australia)
2015-12-15
The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.
Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.
1992-01-01
A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.
A note on local unitary equivalence of isotropic-like states
Zhang, Ting-Gui; Hua, Bo-Bo; Li, Ming; Zhao, Ming-Jing; Yang, Hong
2015-12-01
We consider the local unitary equivalence of a class of quantum states in a bipartite case and a multipartite case. The necessary and sufficient condition is presented. As special cases, the local unitary equivalent classes of isotropic state and Werner state are provided. Then we study the local unitary similar equivalence of this class of quantum states and analyze the necessary and sufficient condition. Project supported by the National Natural Science Foundation of China (Grant Nos. 11401032, 61473325, 11501153, 11105226, 11275131, and 11401106), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 15CX08011A and 24720122013), the Natural Science Foundation of Hainan Province, China (Grant Nos. 20151005 and 20151010), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.
Accurate and robust unitary transformation of a high-dimensional quantum system
Anderson, B E; Riofrío, C A; Deutsch, I H; Jessen, P S
2014-01-01
Quantum control in large dimensional Hilbert spaces is essential for realizing the power of quantum information processing. For closed quantum systems the relevant input/output maps are unitary transformations, and the fundamental challenge becomes how to implement these with high fidelity in the presence of experimental imperfections and decoherence. For two-level systems (qubits) most aspects of unitary control are well understood, but for systems with Hilbert space dimension d>2 (qudits), many questions remain regarding the optimal design of control Hamiltonians and the feasibility of robust implementation. Here we show that arbitrary, randomly chosen unitary transformations can be efficiently designed and implemented in a large dimensional Hilbert space (d=16) associated with the electronic ground state of atomic 133Cs, achieving fidelities above 0.98 as measured by randomized benchmarking. Generalizing the concepts of inhomogeneous control and dynamical decoupling to d>2 systems, we further demonstrate t...
DOA estimation for monostatic MIMO radar based on unitary root-MUSIC
Wang, Wei; Wang, Xianpeng; Li, Xin; Song, Hongru
2013-11-01
Direction of arrival (DOA) estimation is an important issue for monostatic MIMO radar. A DOA estimation method for monostatic MIMO radar based on unitary root-MUSIC is presented in this article. In the presented method, a reduced-dimension matrix is first utilised to transform the high dimension of received signal data into low dimension one. Then, a low-dimension real-value covariance matrix is obtained by forward-backward (FB) averaging and unitary transformation. The DOA of targets can be achieved by unitary root-MUSIC. Due to the FB averaging of received signal data and the eigendecomposition of the real-valued matrix covariance, the proposed method owns better angle estimation performance and lower computational complexity. The simulation results of the proposed method are presented and the performances are investigated and discussed.
Supersonic Jet Interactions in a Plenum Chamber
Directory of Open Access Journals (Sweden)
K. M. Venugopal
2004-07-01
Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.
Numerical simulation of supersonic gap flow.
Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo
2015-01-01
Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Numerical simulation of supersonic gap flow.
Directory of Open Access Journals (Sweden)
Xu Jing
Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.
Coupling dynamic of twin supersonic jets
Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo
2015-11-01
In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.
Fujii, Kazuyuki
2008-01-01
In this paper we treat the time evolution of unitary elements in the N level system and consider the reduced dynamics from the unitary group U(N) to flag manifolds of the second type (in our terminology). Then we derive a set of differential equations of matrix Riccati types interacting with one another and present an important problem on a nonlinear superposition formula that the Riccati equation satisfies. Our result is a natural generalization of the paper {\\bf Chaturvedi et al} (arXiv : 0706.0964 [quant-ph]).
Classical 1D maps, quantum graphs and ensembles of unitary matrices
Energy Technology Data Exchange (ETDEWEB)
Pakonski, Prot [Uniwersytet Jagiellonski, Instytut Fizyki im. M. Smoluchowskiego, Cracow (Poland)]. E-mail: pakonski@if.uj.edu.pl; Zyczkowski, Karol; Kus, Marek [Centrum Fizyki Teoretycznej PAN, Warsaw (Poland)]. E-mails: karol@cft.edu.pl; marek@cft.edu.pl
2001-10-26
We study a certain class of classical one-dimensional piecewise linear maps. For these systems we introduce an infinite family of Markov partitions in equal cells. The symbolic dynamics generated by these systems is described by bi-stochastic (doubly stochastic) matrices. We analyse the structure of graphs generated from the corresponding symbolic dynamics. We demonstrate that the spectra of quantized graphs corresponding to the regular classical systems have locally Poissonian statistics, while quantized graphs derived from classically chaotic systems display statistical properties characteristic of the circular unitary ensemble, even though the corresponding unitary matrices are sparse. (author)
Elementary Proof for Asymptotics of Large Haar-Distributed Unitary Matrices
Mastrodonato, Christian; Tumulka, Roderich
2007-01-01
We provide an elementary proof for a theorem due to Petz and R\\'effy which states that for a random $n\\times n$ unitary matrix with distribution given by the Haar measure on the unitary group U(n), the upper left (or any other) $k\\times k$ submatrix converges in distribution, after multiplying by a normalization factor $\\sqrt{n}$ and as $n\\to\\infty$, to a matrix of independent complex Gaussian random variables with mean 0 and variance 1.
Unitary representations of the Poincaré group and relativistic wave equations
Ohnuki, Yoshio
1976-01-01
This book is devoted to an extensive and systematic study on unitary representations of the Poincaré group. The Poincaré group plays an important role in understanding the relativistic picture of particles in quantum mechanics. Complete knowledge of every free particle states and their behaviour can be obtained once all the unitary irreducible representations of the Poincaré group are found. It is a surprising fact that a simple framework such as the Poincaré group, when unified with quantum theory, fixes our possible picture of particles severely and without exception. In this connection, the
Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature
Pandey, Sachin
2016-01-01
Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.
Unitary evolution for anisotropic quantum cosmologies: models with variable spatial curvature
Pandey, Sachin; Banerjee, Narayan
2016-11-01
Contrary to the general belief, there has recently been quite a few examples of unitary evolution of quantum cosmological models. The present work gives more examples, namely Bianchi type VI and type II. These examples are important as they involve varying spatial curvature unlike the most talked about homogeneous but anisotropic cosmological models like Bianchi I, V and IX. We exhibit either an explicit example of the unitary solutions of the Wheeler-DeWitt equation, or at least show that a self-adjoint extension is possible.
An Introduction to the Supersonic Molecular Beam Injection
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.
Magnetic geometry and particle source drive of supersonic divertor regimes
Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.
2014-12-01
We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.
Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator
Directory of Open Access Journals (Sweden)
Silong Zhang
2014-02-01
Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.
Gas turbine engine with supersonic compressor
Roberts, II, William Byron; Lawlor, Shawn P.
2015-10-20
A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Linear stability analysis of supersonic axisymmetric jets
Directory of Open Access Journals (Sweden)
Zhenhua Wan
2014-01-01
Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.
The shock waves in decaying supersonic turbulence
Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.
2000-01-01
We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...
Aeroacoustic properties of supersonic elliptic jets
Kinzie, Kevin W.; McLaughlin, Dennis K.
1999-09-01
The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.
Novel differential unitary space-time modulation schemes for fast fading channels
Institute of Scientific and Technical Information of China (English)
Tian Jifeng; Jiang Haining; Song Wentao; Luo Hanwen
2006-01-01
Differential unitary space-time modulation (DUSTM), which obtains full transmit diversity in slowly flat-fading channels without channel state information, has generated significant interests recently. To combat frequency-selective fading, DUSTM has been applied to each subcarrier of an OFDM system and DUSTM-OFDM system was proposed. Both DUSTM and DUSTM-OFDM, however, are designed for slowly fading channels and suffer performance deterioration in fast fading channels. In this paper, two novel differential unitary space-time modulation schemes are proposed for fast fading channels. For fast flat-fading channels, a sub-matrix interleaved DUSTM (SMI-DUSTM) scheme is proposed, in which matrix-segmentation and sub-matrix based interleaving are introduced into DUSTM system. For fast frequency-selective fading channels, a differential unitary space-frequency modulation (DUSFM) scheme is proposed, in which existing unitary space-time codes are employed across transmit antennas and OFDM subcarriers simultaneously and differential modulation is performed between two adjacent OFDM blocks. Compared with DUSTM and DUSTM-OFDM schemes, SMI-DUSTM and DUSFM-OFDM are more robust to fast channel fading with low decoding complexity, which is demonstrated by performance analysis and simulation results.
J(l)-unitary factorization and the Schur algorithm for Nevanlinna functions in an indefinite setting
Alpay, D.; Dijksma, A.; Langer, H.
2006-01-01
We introduce a Schur transformation for generalized Nevanlinna functions and show that it can be used in obtaining the unique minimal factorization of a class of rational J(l)-unitary 2 x 2 matrix functions into elementary factors from the same class. (c) 2006 Elsevier Inc. All rights reserved.
Campoamor-Stursberg, R.; Rausch de Traubenberg, M.
2017-04-01
The representation theory of three dimensional real and complex Lie groups is reviewed from the perspective of harmonic functions defined over certain appropriate manifolds. An explicit construction of all unitary representations is given. The realisations obtained are shown to be related with each other by either natural operations as real forms or Inönü-Wigner contractions.
The flexible focus: whether spatial attention is unitary or divided depends on observer goals.
Jefferies, Lisa N; Enns, James T; Di Lollo, Vincent
2014-04-01
The distribution of visual attention has been the topic of much investigation, and various theories have posited that attention is allocated either as a single unitary focus or as multiple independent foci. In the present experiment, we demonstrate that attention can be flexibly deployed as either a unitary or a divided focus in the same experimental task, depending on the observer's goals. To assess the distribution of attention, we used a dual-stream Attentional Blink (AB) paradigm and 2 target pairs. One component of the AB, Lag-1 sparing, occurs only if the second target pair appears within the focus of attention. By varying whether the first-target-pair could be expected in a predictable location (always in-stream) or not (unpredictably in-stream or between-streams), observers were encouraged to deploy a divided or a unitary focus, respectively. When the second-target-pair appeared between the streams, Lag-1 sparing occurred for the Unpredictable group (consistent with a unitary focus) but not for the Predictable group (consistent with a divided focus). Thus, diametrically different outcomes occurred for physically identical displays, depending on the expectations of the observer about where spatial attention would be required.
On Parseval Wavelet Frames with Two or Three Generators via the Unitary Extension Principle
DEFF Research Database (Denmark)
Christensen, Ole; Kim, Hong Oh; Kim, Rae Young
2014-01-01
The unitary extension principle (UEP) by A. Ron and Z. Shen yields a sufficient condition for the construction of Parseval wavelet frames with multiple generators. In this paper we characterize the UEP-type wavelet systems that can be extended to a Parseval wavelet frame by adding just one UEP-ty...
Lorentz Spin-Foam with Non Unitary Representations by use of Holomorphic Peter-Weyl Theorem
Perlov, Leonid
2013-01-01
We use the non-unitary spinor representations of SL(2,C) and the recently proved Holomorphic Peter-Weyl theorem to define the Hilbert space based on the holomorphic spin-networks, the non-unitary spin-foam, solve the simplicity constraints and calculate the vertex amplitude. The diagonal simplicity constraint provides two solutions. The first solution: Immirzi $\\gamma = i$ with the irreducible representations $(j_1, j_2)$ projected to $(0, j)$ and the second solution: Immirzi $\\gamma = -i$ and the irreducible non-unitary representations projected to $(j, 0)$. The off-diagonal constraint selects only the first of these two solutions. The solution is interesting in two aspects: a) it turns to be a topological BF model. b) Immirzi parameter $\\gamma = i$ corresponds to Ashtekar's self-dual connection of the complexified algebra $sl(2,C)\\otimes C$. The transition amplitude is finite and very similar to BF Euclidean model. We discuss the inner product Lorentz invariance and the viability of the non-unitary represen...
Gaussian elimination in split unitary groups with an application to public-key cryptography
Directory of Open Access Journals (Sweden)
Ayan Mahalanobis
2017-07-01
Full Text Available Gaussian elimination is used in special linear groups to solve the word problem. In this paper, we extend Gaussian elimination to split unitary groups. These algorithms have an application in building a public-key cryptosystem, we demonstrate that.
Factorization and uniton numbers for harmonic maps into the unitary group U(N)
Institute of Scientific and Technical Information of China (English)
东瑜昕; 沈一兵
1996-01-01
The factorization of harmonic maps from a simply-connected domain to the unitary group is studied, showing that the theory of isotropic harmonic maps is equivalent to that of 2-unitons. Furthermore, a positive answer is given to the Uhlenbeck’s conjecture on the upper bound of minimal uniton numbers.
Entanglement capacity of two-qubit unitary operator for rank two mixed states
Institute of Scientific and Technical Information of China (English)
DI; YaoMin
2007-01-01
The entanglement capacity of two-qubit unitary operator acting on rank two mixed states in concurrence is discussed. The condition of perfect entangler is the same as that acting on pure states and the entanglement capacity is the mixing parameter v1. For non-perfect entangler, the upper and lower bound of the entanglement capacity are given.……
Secure Two-Party Quantum Evaluation of Unitaries against Specious Adversaries
DEFF Research Database (Denmark)
Dupuis, Frédéric; Nielsen, Jesper Buus; Salvail, Louis
2010-01-01
We describe how any two-party quantum computation, specified by a unitary which simultaneously acts on the registers of both parties, can be privately implemented against a quantum version of classical semi-honest adversaries that we call specious. Our construction requires two ideal functionalit...
Entanglement capacity of two-qubit unitary operator for rank two mixed states
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
@@ The entanglement capacity of two-qubit unitary operator acting on rank two mixed states in concurrence is discussed. The condition of perfect entangler is the same as that acting on pure states and the entanglement capacity is the mixing parameter v1. For non-perfect entangler, the upper and lower bound of the entanglement capacity are given.
Measuring the Leptonic CP Phase in Neutrino Oscillations with Non-Unitary Mixing
Ge, Shao-Feng; Tortola, M; Valle, J W F
2016-01-01
Non-unitary neutrino mixing implies an extra CP violating phase that can fake the leptonic Dirac CP phase $\\delta_{CP}$ of the simplest three-neutrino mixing benchmark scheme. This would hinder the possibility of probing for CP violation in accelerator-type experiments. We take T2K and T2HK as examples to demonstrate the degeneracy between the "standard" (or "unitary") and "non-unitary" CP phases. We find, under the assumption of non-unitary mixing, that their CP sensitivities severely deteriorate. Fortunately, the TNT2K proposal of supplementing T2(H)K with a $\\mu$DAR source for better measurement of $\\delta_{CP}$ can partially break the CP degeneracy by probing both $\\cos \\delta_{CP}$ and $\\sin \\delta_{CP}$ dependences in the wide spectrum of the $\\mu$DAR flux. We also show that the further addition of a near detector to the $\\mu$DAR setup can eliminate the degeneracy completely.
ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-11-01
Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.
Supersonic Wing Optimization Using SpaRibs
Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.
2014-01-01
This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.
1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37
Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...
Supersonic Jet Noise: Main Sources and Reduction Methodologies
Directory of Open Access Journals (Sweden)
Mohammadreza Azimi
2014-07-01
Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.
THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION
Directory of Open Access Journals (Sweden)
Dejan P Ninković
2010-01-01
Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.
Direct Connect Supersonic Combustion Facility (Research Cell 22)
Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...
Entropy Minimization Design Approach of Supersonic Internal Passages
Directory of Open Access Journals (Sweden)
Jorge Sousa
2015-08-01
Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.
Bang, Jeongho; Yoo, Seokwon
2014-01-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the ...
Review and prospect of supersonic business jet design
Sun, Yicheng; Smith, Howard
2017-04-01
This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.
A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels
Clark, Kylen D.
Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one
Stationary flow conditions in pulsed supersonic beams.
Christen, Wolfgang
2013-10-21
We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.
Supersonic Jet Noise Reduction Using Microjets
Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra
2013-11-01
Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.
Coherent structures in a supersonic complex nozzle
Magstadt, Andrew; Berry, Matthew; Glauser, Mark
2016-11-01
The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.
Accretion of Supersonic Winds on Boson Stars
Gracia-Linares, M
2016-01-01
We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...
Particle Streak Velocimetry of Supersonic Nozzle Flows
Willits, J. D.; Pourpoint, T. L.
2016-01-01
A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.
Supersonic collisions between two gas streams
Lee, H M; Ryu, D; Lee, Hyung Mok; Kang, Hyesung; Ryu, Dongsu
1995-01-01
A star around a massive black hole can be disrupted tidally by the gravity of the black hole. Then, its debris may form a precessing stream which may even collide with itself. In order to understand the dynamical effects of the stream-stream collision on the eventual accretion of the stellar debris onto the black hole, we have studied how gas flow behaves when the outgoing stream collides supersonically with the incoming stream. We have investigated the problem analytically with one-dimensional plane-parallel streams and numerically with more realistic three-dimensional streams. A shock formed around the contact surface converts the bulk of the orbital streaming kinetic energy into thermal energy. In three-dimensional simulations, the accumulated hot post-shock gas then expands adiabatically and drives another shock into the low density ambient region. Through this expansion, thermal energy is converted back to the kinetic energy associated with the expanding motion. Thus, in the end, only a small fraction of...
Drag Force Anemometer Used in Supersonic Flow
Fralick, Gustave C.
1998-01-01
To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.
Supersonic Magnetic Flows in the Quiet Sun
Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A
2012-01-01
In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.
External-Compression Supersonic Inlet Design Code
Slater, John W.
2011-01-01
A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.
Quantum Implementation of Unitary Coupled Cluster for Simulating Molecular Electronic Structure
Shen, Yangchao; Zhang, Shuaining; Zhang, Jing-Ning; Yung, Man-Hong; Kim, Kihwan
2015-01-01
Quantum simulation represents an efficient solution to a certain classically intractable problem in various research area including quantum chemistry. The central problem of quantum chemistry is to determine the electronic structure and the ground-state energy of atoms and molecules. The exact classical calculation of the problem is demanding even for molecules with moderate size due to the "exponential catastrophe." To deal with such quantum chemistry problem, the coupled-cluster methods have been successfully developed, which are considered to be the current "gold standard" in classical computational chemistry. However, the coupled-cluster ansatz is built with non-unitary operation, which leads to drawbacks such as lacking variational bound of ground-state energy. The unitary version of the coupled-cluster methods would perfectly address the problem, whereas it is classically inefficient without proper truncation of the infinite series expansion. It has been a long-standing challenge to build an efficient c...
Entanglement Entropy from Corner Transfer Matrix in Forrester Baxter non-unitary RSOS models
Bianchini, Davide
2015-01-01
Using a Corner Transfer Matrix approach, we compute the bipartite entanglement R\\'enyi entropy in the off-critical perturbations of non-unitary conformal minimal models realised by lattice spin chains Hamiltonians related to the Forrester Baxter RSOS models in regime III. This allows to show on a set of explicit examples that the R\\'enyi entropies for non-unitary theories rescale near criticality as the logarithm of the correlation length with a coefficient proportional to the effective central charge. This complements a similar result, recently established for the size rescaling at the critical point, showing the expected agreement of the two behaviours. We also compute the first subleading unusual correction to the scaling behaviour, showing that it is expressible in terms of expansions of various fractional powers of the correlation length, related to the differences $\\Delta-\\Delta_{\\min}$ between the conformal dimensions of fields in the theory and the minimal conformal dimension. Finally, a few observati...
A Proposal for measuring Anisotropic Shear Viscosity in Unitary Fermi Gases
Samanta, Rickmoy; Trivedi, Sandip P
2016-01-01
We present a proposal to measure anisotropic shear viscosity in a strongly interacting, ultra-cold, unitary Fermi gas confined in a harmonic trap. We introduce anisotropy in this setup by strongly confining the gas in one of the directions with relatively weak confinement in the remaining directions. This system has a close resemblance to anisotropic strongly coupled field theories studied recently in the context of gauge-gravity duality. Computations in such theories (which have gravity duals) revealed that some of the viscosity components of the anisotropic shear viscosity tensor can be made much smaller than the entropy density, thus parametrically violating the bound proposed by Kovtun, Son and Starinets (KSS): $\\frac {\\eta} {s} \\geq \\frac{1}{4 \\pi}$. A Boltzmann analysis performed in a system of weakly interacting particles in a linear potential also shows that components of the viscosity tensor can be reduced. Motivated by these exciting results, we propose two hydrodynamic modes in the unitary Fermi ga...
Exact Calculations of Vertex (-s)γb and (-s)Zb in the Unitary Gauge
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
In this paper, we present the exact calculations for the vertex -sγb and -sZb in the unitary gauge. We find that we sum up the contributions from four related Feynman diagrams; (b) for an on-shell photon, such terms do not contribute et al.; (c) for off-shell photon, these terms will be canceled when the contributions from both vertex -sγb and -sZb are taken into account simultaneously, and therefore the finite and gauge-independent function Z0 (xt) = C0 (xt) + D0 (xt) / 4,which governs the semi-leptonic decay b → sl-l+, is derived in the unitary gauge.
Beamspace Unitary ESPRIT Algorithm for Angle Estimation in Bistatic MIMO Radar
Directory of Open Access Journals (Sweden)
Dang Xiaofang
2015-01-01
Full Text Available The beamspace unitary ESPRIT (B-UESPRIT algorithm for estimating the joint direction of arrival (DOA and the direction of departure (DOD in bistatic multiple-input multiple-output (MIMO radar is proposed. The conjugate centrosymmetrized DFT matrix is utilized to retain the rotational invariance structure in the beamspace transformation for both the receiving array and the transmitting array. Then the real-valued unitary ESPRIT algorithm is used to estimate DODs and DOAs which have been paired automatically. The proposed algorithm does not require peak searching, presents low complexity, and provides a significant better performance compared to some existing methods, such as the element-space ESPRIT (E-ESPRIT algorithm and the beamspace ESPRIT (B-ESPRIT algorithm for bistatic MIMO radar. Simulation results are conducted to show these conclusions.
M-P invertible matrices and unitary groups over Fq2
Institute of Scientific and Technical Information of China (English)
戴宗铎; 万哲先
2002-01-01
The Moor-Penrose generalized inverses (M-P inverses for short) of matrices over a finite field Fq2, which is a generalization of the Moor-Penrose generalized inverses over the complex field, are studied in the present paper. Some necessary and sufficient conditions for an m×n matrix A over Fq2 having an M-P inverse are obtained, which make clear the set of m×n matrices over Fq2 having M-P inverses and reduce the problem of constructing and enumerating the M-P invertible matrices to that of constructing and enumerating the non-isotropic subspaces with respect to the unitary group. Based on this reduction, both the construction problem and the enumeration problem are solved by borrowing the results in geometry of unitary groups over finite fields.
Comparison of the unitary pole and Adhikari-Sloan expansions in the three-nucleon system
Energy Technology Data Exchange (ETDEWEB)
Afnan, I.R.; Birrell, N.D.
1977-08-01
The binding energy of /sup 3/H, the percentage S-, S'-, and D-state probability, and the charge form factor of /sup 3/He are calculated using the unitary pole and Adhikari-Sloan separable expansions to the Reid soft core potential. Comparison of the results for the two separable expansions show that the expansion of Adhikari and Sloan has the better convergence property, and the lowest rank expansion considered (equivalent to the unitary pole approximation) gives a good approximation to the binding energy of /sup 3/H and the charge form factor of /sup 3/He, even at large momentum transfer (K/sup 2/ < 20 fm/sup -2/).
The $\\Xi^* \\bar{K}$ and $\\Omega \\eta$ interaction within a chiral unitary approach
Xu, Siqi; Chen, Xurong; Jia, Duojie
2015-01-01
In this work we study the interaction of the coupled channels $\\Omega \\eta$ and $\\Xi^* \\bar{K}$ within the chiral unitary approach. The systems under consideration have total isospins $0$, strangeness $S = -3$, and spin $3/2$. We studied the $s$ wave interaction which implies that the possible resonances generated in the system can have spin-parity $J^P = 3/2^-$. The unitary amplitudes in coupled channels develop poles that can be associated with some known baryonic resonances. We find there is a dynamically generated $3/2^-$ $\\Omega$ state with mass around $1800$ MeV, which is in agreement with the predictions of the five-quark model.
A Remark on the Unitary Group of a Tensor Product of Finite-Dimensional Hilbert Spaces
Indian Academy of Sciences (India)
K R Parthasarathy
2003-02-01
Let $H_i, 1 ≤ i ≤ n$ be complex finite-dimensional Hilbert spaces of dimension $d_i, 1 ≤ i ≤ n$ respectively with $d_i ≥ 2$ for every . By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product $H = H_1 \\otimes H_2 \\otimes\\ldots \\otimes H_n$ can be expressed as a composition of a finite number of unitary operators living on pair products $H_i \\otimes H_j, 1 ≤ i, j ≤ n$. An estimate of the number of operators appearing in such a composition is obtained.
Non-Perturbative, Unitary Quantum-Particle Scattering Amplitudes from Three-Particle Equations
Energy Technology Data Exchange (ETDEWEB)
Lindesay, James V
2002-03-19
We here use our non-perturbative, cluster decomposable relativistic scattering formalism to calculate photon-spinor scattering, including the related particle-antiparticle annihilation amplitude. We start from a three-body system in which the unitary pair interactions contain the kinematic possibility of single quantum exchange and the symmetry properties needed to identify and substitute antiparticles for particles. We extract from it unitary two-particle amplitude for quantum-particle scattering. We verify that we have done this correctly by showing that our calculated photon-spinor amplitude reduces in the weak coupling limit to the usual lowest order, manifestly covariant (QED) result with the correct normalization. That we are able to successfully do this directly demonstrates that renormalizability need not be a fundamental requirement for all physically viable models.
Quantum implementation of the unitary coupled cluster for simulating molecular electronic structure
Shen, Yangchao; Zhang, Xiang; Zhang, Shuaining; Zhang, Jing-Ning; Yung, Man-Hong; Kim, Kihwan
2017-02-01
In classical computational chemistry, the coupled-cluster ansatz is one of the most commonly used ab initio methods, which is critically limited by its nonunitary nature. The unitary modification as an ideal solution to the problem is, however, extremely inefficient in classical conventional computation. Here, we provide experimental evidence that indeed the unitary version of the coupled-cluster ansatz can be reliably performed in a physical quantum system, a trapped-ion system. We perform a simulation on the electronic structure of a molecular ion (HeH+), where the ground-state energy surface curve is probed, the energies of the excited states are studied, and bond dissociation is simulated nonperturbatively. Our simulation takes advantages from quantum computation to overcome the intrinsic limitations in classical computation, and our experimental results indicate that the method is promising for preparing molecular ground states for quantum simulations.
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Gourevitch, Dmitry
2011-01-01
In this paper we study irreducible unitary representations of GL(n,R) and prove a number of results. Our first result establishes a precise connection between the annihilator of a representation and the existence of degenerate Whittaker functionals, for both smooth and K-finite vectors, thereby generalizing results of Kostant, Matumoto and others. Our second result relates the annihilator to the sequence of highest derivatives, as defined in this setting by one of the authors. Based on those results, we suggest a new notion of rank of a smooth admissible representation of GL(n,R), which for unitarizable representations refines Howe's notion of rank. Our third result computes the highest derivatives for (almost) all unitary representations in terms of the Vogan classification. We also indicate briefly the analogous results over complex and p-adic fields.
Minář, Jiří; Grémaud, Benoît
2015-04-01
In this paper we show that a Dirac Hamiltonian in a curved background spacetime can be interpreted, when discretized, as a tight-binding Hamiltonian with non-unitary tunneling amplitudes. We find the form of the non-unitary tunneling matrices in terms of the metric tensor. The main motivation behind this exercise is the feasibility of such Hamiltonians by means of laser-assisted tunnelings in cold atomic experiments. The mapping thus provides a physical interpretation of such Hamiltonians. We demonstrate the use of the mapping on the example of a time-dependent metric in 2+1 dimensions. Studying the spin dynamics, we find qualitative agreement with known theoretical predictions, namely particle pair creation in an expanding Universe.
Operators associated with soft and hard spectral edges from unitary ensembles
Blower, Gordon
2008-01-01
Using Hankel operators and shift-invariant subspaces on Hilbert space, this paper develops the theory of the integrable operators associated with soft and hard edges of eigenvalue distributions of random matrices. Such Tracy-Widom operators are realized as controllability operators for linear systems, and are reproducing kernels for weighted Hardy spaces, known as Sonine spaces. Periodic solutions of Hill's equation give a new family of Tracy-Widom type operators. This paper identifies a pair of unitary groups that satisfy the von Neumann-Weyl anti-commutation relations and leave invariant the subspaces of L2 that are the ranges of projections given by the Tracy-Widom operators for the soft edge of the Gaussian unitary ensemble and hard edge of the Jacobi ensemble.
Institute of Scientific and Technical Information of China (English)
YAN Feng-Li; GAO Ting; LI You-Cheng
2008-01-01
@@ We propose a scheme of quantum secret sharing between Alice's group and Bob's group with single photons and unitary transformations. In the protocol, one member in Alice's group prepares a sequence of single photons in one of four different states, while other members directly encode their information on the sequence of single photons via unitary operations; after that, the last member sends the sequence of single photons to Bob's group.Then Bob's, except for the last one, do work similarly. Finally the last member in Bob's group measures the qubits. If the security of the quantum channel is guaranteed by some tests, then the qubit states sent by the last member of Alice's group can be used as key bits for secret sharing. It is shown that this scheme is safe.
Eta-photoproduction in a gauge-invariant chiral unitary framework
Ruic, Dino; Meissner, Ulf-G
2011-01-01
We analyse photoproduction of eta mesons off the proton in a gauge-invariant chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the leading order chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. The recent precise threshold data from the Crystal Ball at MAMI can be described rather well and the complex pole corresponding to the S11(1535) is extracted. An extension of the kernel is also discussed.
Phases of quantum states in completely positive non-unitary evolution
De Faria, J G P; Nemes, M C
2003-01-01
We define an operational notion of phases in interferometry for a quantum system undergoing a completely positive non-unitary evolution. This definition is based on the concepts of quantum measurement theory. The suitable generalization of the Pancharatnan connection allows us to determine the dynamical and geometrical parts of the total phase between two states linked by a completely positive map. These results reduce to the knonw expressions of total, dynamical and geometrical phases for pure and mixed states evolving unitarily.
Institute of Scientific and Technical Information of China (English)
WANG Shao-Kai; REN Ji-Gang; PENG Cheng-Zhi; JIANG Shuo; WANG Xiang-Bin
2007-01-01
We report a method to realize the arbitrary inverse unitary transformation imposed by a single-mode fibre on photon's polarization by the succession of two quarter-wave plates and a half-wave plate. The process of realization by polarization state vector. The method is meaningful in quantum communication experiment such as quantum teleportation, in which an unknown arbitrary quantum state should be kept to be unchanged in the case of using a single-mode fibre for time delay.
Algebraic synthesis of time-optimal unitaries in SU(2) with alternating controls
Aiello, Clarice D.; Allegra, Michele; Hemmerling, Boerge; Wang, Xiaoting; Cappellaro, Paola
2015-01-01
We present an algebraic framework to study the time-optimal synthesis of arbitrary unitaries in SU(2), when the control set is restricted to rotations around two non-parallel axes in the Bloch sphere. Our method bypasses commonly used control-theoretical techniques, and easily imposes necessary conditions on time-optimal sequences. In a straightforward fashion, we prove that time-optimal sequences are solely parametrized by three rotation angles and derive general bounds on those angles as a ...
Study of optical techniques for the Ames unitary wind tunnel: Digital image processing, part 6
Lee, George
1993-01-01
A survey of digital image processing techniques and processing systems for aerodynamic images has been conducted. These images covered many types of flows and were generated by many types of flow diagnostics. These include laser vapor screens, infrared cameras, laser holographic interferometry, Schlieren, and luminescent paints. Some general digital image processing systems, imaging networks, optical sensors, and image computing chips were briefly reviewed. Possible digital imaging network systems for the Ames Unitary Wind Tunnel were explored.
REDUCED-COMPLEXITY DECODING ALGORITHMS FOR UNITARY SPACE-TIME CODES
Institute of Scientific and Technical Information of China (English)
Su Xin; Yi Kechu; Tian Bin; Sun Yongjun
2007-01-01
Two reduced-complexity decoding algorithms for unitary space-time codes based on tree-structured constellation are presented. In this letter original unitary space-time constellation is divided into several groups. Each one is treated as the leaf nodes set of a subtree. Choosing the unitary signals that represent each group as the roots of these subtrees generates a tree-structured constellation.The proposed tree search decoder decides to which sub tree the receive signal belongs by searching in the set of subtree roots. The final decision is made after a local search in the leaf nodes set of the selected sub tree. The adjacent subtree joint decoder performs joint search in the selected sub tree and its "surrounding" subtrees, which improves the Bit Error Rate (BER) performance of purely tree search method. The exhaustively search in the whole constellation is avoided in our proposed decoding algorithms, a lower complexity is obtained compared to that of Maximum Likelihood (ML) decoding.Simulation results have also been provided to demonstrate the feasibility of these new methods.
On the complete classification of unitary N=2 minimal superconformal field theories
Energy Technology Data Exchange (ETDEWEB)
Gray, Oliver
2009-08-03
Aiming at a complete classification of unitary N=2 minimal models (where the assumption of space-time supersymmetry has been dropped), it is shown that each candidate for a modular invariant partition function of such a theory is indeed the partition function of a minimal model. A family of models constructed via orbifoldings of either the diagonal model or of the space-time supersymmetric exceptional models demonstrates that there exists a unitary N=2 minimal model for every one of the allowed partition functions in the list obtained from Gannon's work. Kreuzer and Schellekens' conjecture that all simple current invariants can be obtained as orbifolds of the diagonal model, even when the extra assumption of higher-genus modular invariance is dropped, is confirmed in the case of the unitary N=2 minimal models by simple counting arguments. We nd a nice characterisation of the projection from the Hilbert space of a minimal model with k odd to its modular invariant subspace, and we present a new simple proof of the superconformal version of the Verlinde formula for the minimal models using simple currents. Finally we demonstrate a curious relation between the generating function of simple current invariants and the Riemann zeta function. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Lindesay, James V
2002-03-12
Starting from a unitary, Lorentz invariant two-particle scattering amplitude, we show how to use an identification and replacement process to construct a unique, unitary particle-antiparticle amplitude. This process differs from conventional on-shell Mandelstam s,t,u crossing in that the input and constructed amplitudes can be off-diagonal and off-energy shell. Further, amplitudes are constructed using the invariant parameters which are appropriate to use as driving terms in the multi-particle, multichannel nonperturbative, cluster decomposable, relativistic scattering equations of the Faddeev-type integral equations recently presented by Alfred, Kwizera, Lindesay and Noyes. It is therefore anticipated that when so employed, the resulting multi-channel solutions will also be unitary. The process preserves the usual particle-antiparticle symmetries. To illustrate this process, we construct a J=0 scattering length model chosen for simplicity. We also exhibit a class of physical models which contain a finite quantum mass parameter and are Lorentz invariant. These are constructed to reduce in the appropriate limits, and with the proper choice of value and sign of the interaction parameter, to the asymptotic solution of the nonrelativistic Coulomb problem, including the forward scattering singularity , the essential singularity in the phase, and the Bohr bound-state spectrum.
论成渝经济统筹发展%The Theory of Unitary Development of Chengdu and Chongqing
Institute of Scientific and Technical Information of China (English)
黄庆; 滕少霞
2005-01-01
Chengdu and Chongqing are two megalopolises with the synthesized economic strength and the strongest urban competitiveness in the entire western region, which have very important positions in the development of western China. Through horizontal contrast of social economic developing level of the two cities, the two cities' economic foundation of unitary development is analyzed from complementary and integrative relationship. Then the policies and measures of economic unitary development of two cities is put forward.
Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid
Directory of Open Access Journals (Sweden)
Minasyan V.
2010-10-01
Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.
Simulation of underexpanded supersonic jet flows with chemical reactions
Directory of Open Access Journals (Sweden)
Fu Debin
2014-06-01
Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.
Simulation of underexpanded supersonic jet flows with chemical reactions
Institute of Scientific and Technical Information of China (English)
Fu Debin; Yu Yong; Niu Qinglin
2014-01-01
To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.
The Turbulent Dynamo in Highly Compressible Supersonic Plasmas
Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G
2014-01-01
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...
Study of the shock structure of supersonic, dual, coaxial, jets
Energy Technology Data Exchange (ETDEWEB)
Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)
2001-07-01
The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.
Supersonic stall flutter of high-speed fans
Adamczyk, J. J.; Stevans, W.; Jutras, R.
1981-01-01
An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.
The impact of emerging technologies on an advanced supersonic transport
Driver, C.; Maglieri, D. J.
1986-01-01
The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.
Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS
Balakumar, P.; Owis, Farouk
1999-01-01
Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.
Unitary Cyclic ESPRIT based on real-valued decomposition technique%基于实值分解技术的Unitary Cyclic ESPRIT算法
Institute of Scientific and Technical Information of China (English)
刘志刚; 汪晋宽; 薛延波
2007-01-01
针对多径传播环境中的信号到来方向估计问题,提出了一种基于实值分解技术的Unitary Cyclic ESPRIT算法,通过重新构造了循环自相关矩阵的数据模型,使其具有厄尔米特特性,较好地解决了多径传播环境中信号高度相关问题,通过实值分解降低了计算量,而且具有信号选择特性.仿真实验结果证明,与Cyclic ESPRIT算法相比,该算法适应多径传播环境,具有计算量小和性能好等特点.
Study of excited nucleon states at EBAC: status and plans
Energy Technology Data Exchange (ETDEWEB)
Hiroyuki Kamano
2009-12-01
We present an overview of a research program for the excited nucleon states in Excited Baryon Analysis Center (EBAC) at Jefferson Lab. Current status of our analysis of the meson production reactions based on the unitary dynamical coupled-channels model is summarized, and the N* pole positions extracted from the constructed scattering amplitudes are presented. Our plans for future developments are also discussed.
Bang, Jeongho; Yoo, Seokwon
2014-12-01
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the "genetic parameter vector" of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Energy Technology Data Exchange (ETDEWEB)
Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)
2014-12-15
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Research of low boom and low drag supersonic aircraft design
Institute of Scientific and Technical Information of China (English)
Feng Xiaoqiang; Li Zhanke; Song Bifeng
2014-01-01
Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.
Titanium honeycomb structure. [for supersonic aircraft wing structure
Davis, R. A.; Elrod, S. D.; Lovell, D. T.
1972-01-01
A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.
SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW
Directory of Open Access Journals (Sweden)
Tropina, A. A.
2013-06-01
Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.
76 FR 30231 - Civil Supersonic Aircraft Panel Discussion
2011-05-24
... for attendees. The purpose of the meeting is to raise public awareness of the continuing technological... joint meeting of the 159th Acoustical Society of America and NOISE-CON 2010 in Baltimore, Maryland 21202. The purpose of these meetings is to raise public awareness on advances in supersonic technology,...
Experimental study of mixing enhancement using pylon in supersonic flow
Vishwakarma, Manmohan; Vaidyanathan, Aravind
2016-01-01
The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.
NASA F-16XL supersonic laminar flow control program overview
Fischer, Michael C.
1992-01-01
The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.
Multiresolution analysis of density fluctuation in supersonic mixing layer
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.
A flamelet model for turbulent diffusion combustion in supersonic flow
Institute of Scientific and Technical Information of China (English)
LEE; ChunHian
2010-01-01
In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.
Toward Active Control of Noise from Hot Supersonic Jets
2013-02-15
applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close
Research of low boom and low drag supersonic aircraft design
Directory of Open Access Journals (Sweden)
Feng Xiaoqiang
2014-06-01
Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.
Circular Languages Generated by Complete Splicing Systems and Pure Unitary Languages
Directory of Open Access Journals (Sweden)
Paola Bonizzoni
2009-11-01
Full Text Available Circular splicing systems are a formal model of a generative mechanism of circular words, inspired by a recombinant behaviour of circular DNA. Some unanswered questions are related to the computational power of such systems, and finding a characterization of the class of circular languages generated by circular splicing systems is still an open problem. In this paper we solve this problem for complete systems, which are special finite circular splicing systems. We show that a circular language L is generated by a complete system if and only if the set Lin(L of all words corresponding to L is a pure unitary language generated by a set closed under the conjugacy relation. The class of pure unitary languages was introduced by A. Ehrenfeucht, D. Haussler, G. Rozenberg in 1983, as a subclass of the class of context-free languages, together with a characterization of regular pure unitary languages by means of a decidable property. As a direct consequence, we characterize (regular circular languages generated by complete systems. We can also decide whether the language generated by a complete system is regular. Finally, we point out that complete systems have the same computational power as finite simple systems, an easy type of circular splicing system defined in the literature from the very beginning, when only one rule is allowed. From our results on complete systems, it follows that finite simple systems generate a class of context-free languages containing non-regular languages, showing the incorrectness of a longstanding result on simple systems.
Universal range corrections to Efimov trimers for a class of paths to the unitary limit
Kievsky, A.; Gattobigio, M.
2015-12-01
Using potential models, we analyze range corrections to the universal law dictated by the Efimov theory of three bosons. In the case of finite-range interactions, we have observed that at first order, it is necessary to supplement the theory with one finite-range parameter Γn3 for each specific n level [A. Kievsky and M. Gattobigio, Phys. Rev. A 87, 052719 (2013), 10.1103/PhysRevA.87.052719]. The value of Γn3 depends on the way the potentials are changed to tune the scattering length toward the unitary limit. In this work, we analyze a particular path in which the length rB=a -aB , measuring the difference between the two-body scattering length a and the energy-scattering length aB, is almost constant. Analyzing systems with very different scales, such as atomic or nuclear systems, we observe that the finite-range parameter remains almost constant along the path with a numerical value of Γ03≈0.87 for the ground-state level. This observation suggests the possibility of constructing a single universal function that incorporates finite-range effects for this class of paths. The result is used to estimate the three-body parameter κ* in the case of real atomic systems brought to the unitary limit through broad Feshbach resonances. Furthermore, we show that the finite-range parameter can be put in relation to the two-body contact C2 at the unitary limit.
Fortran code for generating random probability vectors, unitaries, and quantum states
Directory of Open Access Journals (Sweden)
Jonas eMaziero
2016-03-01
Full Text Available The usefulness of generating random configurations is recognized in many areas of knowledge. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.
The unitary ability of IQ and indexes in WAIS-IV
A. Orsini; Pezzuti, L.; Hulbert, S.
2015-01-01
Lichtenberger and Kaufman (2009, p. 167) defined unitary ability as ‘an ability […] that is represented by a cohesive set of scaled scores, each reflecting slightly different or unique aspects of the ability’. Flanagan and Kaufman (2009) and Lichtenberger and Kaufman (2012) used a difference of 23 IQ points between the highest score (Max) and the lowest score (Min) obtained by a subject in the four Indexes of the WAIS-IV to define unitarity of the total IQ score. A similar method has been use...
Pore dimensions and the role of occupancy in unitary conductance of Shaker K channels
Díaz-Franulic, Ignacio; Sepúlveda, Romina V.; Navarro-Quezada, Nieves; González-Nilo, Fernando
2015-01-01
K channels mediate the selective passage of K+ across the plasma membrane by means of intimate interactions with ions at the pore selectivity filter located near the external face. Despite high conservation of the selectivity filter, the K+ transport properties of different K channels vary widely, with the unitary conductance spanning a range of over two orders of magnitude. Mutation of Pro475, a residue located at the cytoplasmic entrance of the pore of the small-intermediate conductance K channel Shaker (Pro475Asp (P475D) or Pro475Gln (P475Q)), increases Shaker’s reported ∼20-pS conductance by approximately six- and approximately threefold, respectively, without any detectable effect on its selectivity. These findings suggest that the structural determinants underlying the diversity of K channel conductance are distinct from the selectivity filter, making P475D and P475Q excellent probes to identify key determinants of the K channel unitary conductance. By measuring diffusion-limited unitary outward currents after unilateral addition of 2 M sucrose to the internal solution to increase its viscosity, we estimated a pore internal radius of capture of ∼0.82 Å for all three Shaker variants (wild type, P475D, and P475Q). This estimate is consistent with the internal entrance of the Kv1.2/2.1 structure if the effective radius of hydrated K+ is set to ∼4 Å. Unilateral exposure to sucrose allowed us to estimate the internal and external access resistances together with that of the inner pore. We determined that Shaker resistance resides mainly in the inner cavity, whereas only ∼8% resides in the selectivity filter. To reduce the inner resistance, we introduced additional aspartate residues into the internal vestibule to favor ion occupancy. No aspartate addition raised the maximum unitary conductance, measured at saturating [K+], beyond that of P475D, suggesting an ∼200-pS conductance ceiling for Shaker. This value is approximately one third of the maximum
Kottwitz's nearby cycles conjecture for a class of unitary Shimura varieties
Rostami, Sean
2011-01-01
This paper proves that the nearby cycles complex on a certain family of PEL local models is central with respect to the convolution product of sheaves on the corresponding affine flag variety. As a corollary, the semisimple trace function defined using the action of Frobenius on that nearby cycles complex is, via the sheaf-function dictionary, in the center of the corresponding Iwahori-Hecke algebra. This is commonly referred to as Kottwitz's conjecture. The reductive groups associated to the PEL local models under consideration are unramified unitary similitude groups with even dimension. The proof follows the method of [Haines-Ngo 2002].
Classical states and decoherence by unitary evolution in the thermodynamic limit
Frasca, M
2002-01-01
It is shown how classical states, meant as states representing a classical object, can be produced in the thermodynamic limit, retaining the unitary evolution of quantum mechanics. Besides, using a simple model of a single spin interacting with a spin-bath, it is seen how decoherence, with the off-diagonal terms in the density matrix going to zero, can be obtained when the number of the spins in the bath is taken to go formally to infinity. In this case, indeed, the system appears to flop at a frequency being formally infinity that, from a physical standpoint, can be proved equivalent to a time average.
Godoy, Roberto L M
2009-01-01
The present essay is intended to oppose to the bipartite thesis of the capacity of penal culpability ("to be able to understand the criminality of the act or to be able to direct the actions"), a unitary thesis in which it seems biopsychologically impossible to direct the behaviour towards an object that hasn't been previously understood, nor a complete divorce of action from understanding (as it results from a maximum integration of the intellective, volitive and affective spheres of a dynamic psyche).
Two $\\Lambda(1405)$ states in a chiral unitary approach with a fully-calculated loop function
Dong, Fang-Yong; Pang, Jing-Long
2016-01-01
The Bethe-Salpeter equation is solved in the framework of unitary coupled-channel approximation by using the pseudoscalar meson-baryon octet interaction. The loop function of the intermediate meson and baryon is deduced accurately in a fully dimensional regularization scheme, where the off-shell correction is supplemented. Two $\\Lambda(1405)$ states are generated dynamically in the strangeness $S=-1$ and isospin $I=0$ sector, and their masses, decay widths and couplings to the meson and the baryon are similar to those values obtained in the on-shell factorization. However, the scattering amplitudes at these two poles become weaker than the cases in the on-shell factorization.
A phenomenological approach to the equation of state of a unitary Fermi gas
Indian Academy of Sciences (India)
M V N Murthy; M Brack; R K Bhaduri
2014-06-01
We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrized in terms of Fermi–Dirac integrals. This reproduces the experimental data over the accessible range of fugacity and normalized temperature, but cannot describe the superfluid phase transition found in the MIT experiment [Ku et al, Science 335, 563 (2012)]. The most sensitive data for compressibility and specific heat at phase transition can, however, be fitted by introducing into the grand partition function a pair of complex conjugate zeros lying in the complex fugacity plane slightly off the real axis.
Scalar Lambda N and Lambda Lambda interaction in a chiral unitary approach
Sasaki, K; Vacas, M J V
2006-01-01
We study the central part of Lambda N and Lambda Lambda potential by considering the correlated and uncorrelated two-meson exchange besides the omega exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find that a short range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizeable attraction in all cases which is counterbalanced by omega exchange contribution.
Study of optical techniques for the Ames unitary wind tunnels. Part 1: Schlieren
Lee, George
1992-01-01
Alignment procedures and conceptual designs for the rapid alignment of the Ames Unitary Wind Tunnel schlieren systems were devised. The schlieren systems can be aligned by translating the light source, the mirrors, and the knife edge equal distances. One design for rapid alignment consists of a manual pin locking scheme. The other is a motorized electronic position scheme. A study of two optical concepts which can be used with the schlieren system was made. These are the 'point diffraction interferometers' and the 'focus schlieren'. Effects of vibrations were studied.
Physical Aspects of Unitary evolution of Bianchi-I Quantum Cosmological Model
Pal, Sridip
2015-01-01
In this work, we study some physical aspects of unitary evolution of Bianchi-I model. In particular, we study the behavior of the volume and the scale factor as a function of time for the Bianchi-I universe with ultra-relativistic fluid ($\\alpha=1$). The expectation value of volume is shown not to hit any singularity. We elucidate on the anisotropic nature of the solution and physically interpret the wavefunction as a superposition of collapsing universe and expanding universe mimicking Hartle-Hawking type wavefunction. The same analysis has been done for $\\alpha\
Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations
Institute of Scientific and Technical Information of China (English)
LI Chun-Yan; ZHOU Hong-Yu; WANG Yan; DENG Fu-Guo
2005-01-01
@@ We propose a theoretical scheme for secure quantum key distribution network following the ideas in quantum dense coding. In this scheme, the server of the network provides the service for preparing and measuring the Bell states,and the users encode the states with local unitary operations. For preventing the server from eavesdropping, we design a decoy when the particle is transmitted between the users. The scheme has high capacity as one particle carries two bits of information and its efficiency for qubits approaches 100%. Moreover, it is unnecessary for the users to store the quantum states, which makes this scheme more convenient in applications than others.
A CLT for Plancherel representations of the infinite-dimensional unitary group
Borodin, Alexei
2012-01-01
We study asymptotics of traces of (noncommutative) monomials formed by images of certain elements of the universal enveloping algebra of the infinite-dimensional unitary group in its Plancherel representations. We prove that they converge to (commutative) moments of a Gaussian process that can be viewed as a collection of simply yet nontrivially correlated two-dimensional Gaussian Free Fields. The limiting process has previously arisen via the global scaling limit of spectra for submatrices of Wigner Hermitian random matrices. This note is an announcement, proofs will appear elsewhere.
A new derivation of the highest-weight polynomial of a unitary lie algebra
Energy Technology Data Exchange (ETDEWEB)
P Chau, Huu-Tai; P Van, Isacker [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)
2000-07-01
A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)
String-theoretic unitary S-matrix at the threshold of black-hole production
Veneziano, Gabriele
2004-01-01
Previous results on trans-Planckian collisions in superstring theory are rewritten in terms of an explicitly unitary S-matrix whose validity covers a large region of the energy/impact-parameter plane. Amusingly, as part of this region's border is approached, properties of the final state start resembling those expected from the evaporation of a black-hole even well below its production threshold. More specifically, we conjecture that, in an energy window extending up such a threshold, inclusive cross sections satisfy a peculiar "anti-scaling" behaviour seemingly preparing for a smooth transition to black-hole physics.
Absolutely Maximally Entangled states, combinatorial designs and multi-unitary matrices
Goyeneche, Dardo; Latorre, José I; Riera, Arnau; Życzkowski, Karol
2015-01-01
Absolutely Maximally Entangled (AME) states are those multipartite quantum states that carry absolute maximum entanglement in all possible partitions. AME states are known to play a relevant role in multipartite teleportation, in quantum secret sharing and they provide the basis novel tensor networks related to holography. We present alternative constructions of AME states and show their link with combinatorial designs. We also analyze a key property of AME, namely their relation to tensors that can be understood as unitary transformations in every of its bi-partitions. We call this property multi-unitarity.
Baker-Campbell-Hausdorff relation for special unitary groups SU(N)
Weigert, S
1997-01-01
Multiplication of two elements of the special unitary group SU(N) determines uniquely a third group element. A BAker-Campbell-Hausdorff relation is derived which expresses the group parameters of the product (written as an exponential) in terms of the parameters of the exponential factors. This requires the eigen- values of three (N-by-N) matrices. Consequently, the relation can be stated analytically up to N=4, in principle. Similarity transformations encoding the time evolution of quantum mechanical observables, for example, can be worked out by the same means.
A gauge invariant chiral unitary framework for kaon photo- and electroproduction on the proton
Borasoy, B; Meißner, Ulf-G; Nißler, R
2007-01-01
We present a gauge invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed.
Ren, Shiwei; Ma, Xiaochuan; Yan, Shefeng; Hao, Chengpeng
2013-03-28
A unitary transformation-based algorithm is proposed for two-dimensional (2-D) direction-of-arrival (DOA) estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT)-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.
Directory of Open Access Journals (Sweden)
Chengpeng Hao
2013-03-01
Full Text Available A unitary transformation-based algorithm is proposed for two-dimensional (2-D direction-of-arrival (DOA estimation of coherent signals. The problem is solved by reorganizing the covariance matrix into a block Hankel one for decorrelation first and then reconstructing a new matrix to facilitate the unitary transformation. By multiplying unitary matrices, eigenvalue decomposition and singular value decomposition are both transformed into real-valued, so that the computational complexity can be reduced significantly. In addition, a fast and computationally attractive realization of the 2-D unitary transformation is given by making a Kronecker product of the 1-D matrices. Compared with the existing 2-D algorithms, our scheme is more efficient in computation and less restrictive on the array geometry. The processing of the received data matrix before unitary transformation combines the estimation of signal parameters via rotational invariance techniques (ESPRIT-Like method and the forward-backward averaging, which can decorrelate the impinging signalsmore thoroughly. Simulation results and computational order analysis are presented to verify the validity and effectiveness of the proposed algorithm.
Universality of the unitary Fermi gas: a few-body perspective
Levinsen, Jesper; Massignan, Pietro; Endo, Shimpei; Parish, Meera M.
2017-04-01
We revisit the properties of the two-component Fermi gas with short-range interactions in three dimensions, in the limit where the s-wave scattering length diverges. Such a unitary Fermi gas possesses universal thermodynamic and dynamical observables that are independent of any interaction length scale. Focusing on trapped systems of N fermions, where N≤slant 10, we investigate how well we can determine the zero-temperature behavior of the many-body system from published few-body data on the ground-state energy and the contact. For the unpolarized case, we find that the Bertsch parameters extracted from trapped few-body systems all lie within 15% of the established value. Furthermore, the few-body values for the contact are well within the range of values determined in the literature for the many-body system. In the limit of large spin polarization, we obtain a similar accuracy for the polaron energy, and we estimate the polaron’s effective mass from the dependence of its energy on N. We also compute an upper bound for the squared wave-function overlap between the unitary Fermi system and the non-interacting ground state, both for the trapped and uniform cases. This allows us to prove that the trapped unpolarized ground state at unitarity has zero overlap with its non-interacting counterpart in the many-body limit N\\to ∞ .
Aceh Shariah Court in The Unitary State of the Republic of Indonesia and Human Rights Context
Directory of Open Access Journals (Sweden)
Rifqi Ridlo Phahlevy
2014-01-01
Full Text Available Birth of Special Region Nanggroe Aceh Darussalam based on Law No. 18/2001 on Special Autonomy for Aceh as Nanggroe Aceh Darussalam that changed through Law No. 11 of 2006 on the Governing of Aceh is an attempt to realize a democratic government and prosperous (welfare state. The implication of the birth of NAD is the application of Islamic law as a tool of law and governance NAD, which also puts the Shariah Court as the main pillar of Islamic sharia enforcement in NAD. The existence of the Shariah Court as an instrument of law enforcement in NAD institutionally and functionally problematic. The first, related to the position of the Shariah Court that institutionally a part of the religious court, but has a broader scope of authority. Second, related to aspects of Islamic sharia holding capacity is possible to be imposed on non-Muslims, were both these problems can ultimately hurt the Unitary Republic of Indonesia principles and protection of human rights. How To Cite: Phahlevy, R. (2014. Aceh Shariah Court in The Unitary State of the Republic of Indonesia and Human Rights Context. Rechtsidee, 1(1, 71-84. doi:http://dx.doi.org/10.21070/jihr.v1i1.103
Mo, Tone Opdahl
2008-01-01
The paper seeks to explore whether the development in department management in Norwegian hospitals after the unitary management reform in 2001 constitutes a development in the direction of general management. Interviews were conducted with ten managers from different levels in a large Norwegian university hospital in 2001-2002, as a unitary management model was implemented. There is an emerging change of practice among the physician managers according to this study. The manager function is more explicit and takes a more general responsibility for the department and the professions. However, the managerial function is substantiated by conditions related to the professional field of knowledge, which gives legitimacy within a medical logic. Contact with the clinic is stressed as important, but it is possible to adjust both amount and content of a clinical engagement to the demands of the new manager position. This has both a symbolic and a practical significance, as it involves both legitimacy and identity issues. The paper shows that the institutionalised medical understanding of management has a bearing on managerial reforms. Managerial changes need to relate to this if they are to have consequences for the managerial roles and structures on department level in hospitals. The paper suggests that the future development of this role will depend on the way the collectivist and individualist aspects of responsibility are handled, as well as on the further development of managerial knowledge of physicians.
A unitary ESPRIT scheme of joint angle estimation for MOTS MIMO radar.
Wen, Chao; Shi, Guangming
2014-08-07
The transmit array of multi-overlapped-transmit-subarray configured bistatic multiple-input multiple-output (MOTS MIMO) radar is partitioned into a number of overlapped subarrays, which is different from the traditional bistatic MIMO radar. In this paper, a new unitary ESPRIT scheme for joint estimation of the direction of departure (DOD) and the direction of arrival (DOA) for MOTS MIMO radar is proposed. In our method, each overlapped-transmit-subarray (OTS) with the identical effective aperture is regarded as a transmit element and the characteristics that the phase delays between the two OTSs is utilized. First, the measurements corresponding to all the OTSs are partitioned into two groups which have a rotational invariance relationship with each other. Then, the properties of centro-Hermitian matrices and real-valued rotational invariance factors are exploited to double the measurement samples and reduce computational complexity. Finally, the close-formed solution of automatically paired DOAs and DODs of targets is derived in a new manner. The proposed scheme provides increased estimation accuracy with the combination of inherent advantages of MOTS MIMO radar with unitary ESPRIT. Simulation results are presented to demonstrate the effectiveness and advantage of the proposed scheme.
Non-Abelian 1-Form Gauge Theory With Dirac Fields: Supersymmetric Unitary Operator
Bhanja, T; Malik, R P
2015-01-01
Within the framework of augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, we derive the supersymmetric (SUSY) unitary operator (and its hermitian conjugate) in the context of four (3 + 1)-dimensional (4D) interacting non-Abelian 1-form gauge theory with Dirac fields. The ordinary 4D non-Abelian theory, defined on the flat 4D Minkowski spacetime manifold, is generalized onto a (4, 2)-dimensional supermanifold which is parameterized by the spacetime bosonic coordinates x^\\mu (with \\mu = 0, 1, 2, 3) and a pair of Grassmannian variables (\\theta, \\bar\\theta) which satisfy the standard relationships: \\theta^2 = {\\bar\\theta}^2 = 0, \\theta\\,\\bar\\theta + \\bar\\theta\\,\\theta = 0. Various consequences of the application of the above SUSY unitary operator (and its hermitian conjugate) are discussed. In particular, we obtain the results of the application of the horizontality condition (HC) and gauge invariant restriction (GIR) in the language of the above SUSY operators. One of the no...
Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics
Cortez, Jerónimo; Navascués, Beatriz Elizaga; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.; Olmedo, Javier; Velhinho, José M.
2016-11-01
The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, a choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invariance under the spatial Killing symmetries, unitarity of the dynamics selects a unique Fock representation for the canonical commutation relations, up to unitary equivalence. In this work, we generalize these results to anisotropic spacetimes with shear, which are therefore not conformally symmetric, by considering the case of a free scalar field in a Bianchi I cosmology.
Quantum and classical resources for unitary design of open-system evolutions
Ticozzi, Francesco; Viola, Lorenza
2017-09-01
A variety of tasks in quantum control, ranging from purification and cooling to quantum stabilisation and open-system simulation, rely on the ability to implement a target quantum channel over a specified time interval within prescribed accuracy. This can be achieved by engineering a suitable unitary dynamics of the system of interest along with its environment, which, depending on the available level of control, is fully or partly exploited as a coherent quantum controller. After formalising a controllability framework for completely positive trace-preserving quantum dynamics, we provide sufficient conditions on the environment state and dimension that allow for the realisation of relevant classes of quantum channels, including extreme channels, stochastic unitaries or simply any channel. The results hinge on generalisations of Stinespring’s dilation via a subsystem principle. In the process, we show that a conjecture by Lloyd on the minimal dimension of the environment required for arbitrary open-system simulation, albeit formally disproved, can in fact be salvaged, provided that classical randomisation is included among the available resources. Existing measurement-based feedback protocols for universal simulation, dynamical decoupling and dissipative state preparation are recast within the proposed coherent framework as concrete applications, and the resources they employ discussed in the light of the general results.
Niemiec, Piotr
2011-01-01
An \\textit{ideal} of $N$-tuples of operators is a class invariant with respect to unitary equivalence which contains direct sums of arbitrary collections of its members as well as their (reduced) parts. New decomposition theorems (with respect to ideals) for $N$-tuples of closed densely defined linear operators acting in a common (arbitrary) Hilbert space are presented. Algebraic and order (with respect to containment) properties of the class $CDD_N$ of all unitary equivalence classes of such $N$-tuples are established and certain ideals in $CDD_N$ are distinguished. It is proved that infinite operations in $CDD_N$ may be reconstructed from the direct sum operation of a pair. \\textit{Prime decomposition} in $CDD_N$ is proposed and its (in a sense) uniqueness is established. The issue of classification of ideals in $CDD_N$ (up to isomorphism) is discussed. A model for $CDD_N$ is described and its concrete realization is presented. A new partial order of $N$-tuples of operators is introduced and its fundamental...
Unitary Supermultiplets of $OSp(8^{*}|4)$ and the $AdS_{7}/CFT_{6}$ Duality
Günaydin, M; Gunaydin, Murat; Takemae, Seiji
2000-01-01
We study the unitary supermultiplets of the N=4 d=7 anti-de Sitter (AdS_7) superalgebra OSp(8^*|4), with the even subalgebra SO(6,2) X USp(4), which is the symmetry superalgebra of M-theory on AdS_7 X S^4. We give a complete classification of the positive energy doubleton and massless supermultiplets of OSp(8^*|4) . The ultra-short doubleton supermultiplets do not have a Poincaré limit in AdS_7 and correspond to superconformal field theories on the boundary of AdS_7 which can be identified with d=6 Minkowski space. We show that the six dimensional Poincare mass operator vanishes identically for the doubleton representations. By going from the compact U(4) basis of SO^*(8)=SO(6,2) to the noncompact basis SU^*(4)XD (d=6 Lorentz group times dilatations) one can associate the positive (conformal) energy representations of SO^*(8) with conformal fields transforming covariantly under the Lorentz group in d=6. The oscillator method used for the construction of the unitary supermultiplets of OSp(8^*|4) can be given ...
Xia, Dong; Dumitrescu, Sorina
2011-01-01
In this paper, a novel concept called a \\textit{uniquely factorable constellation pair} (UFCP) is proposed for the systematic design of a noncoherent full diversity collaborative unitary space-time block code by normalizing two Alamouti codes for a wireless communication system having two transmitter antennas and a single receiver antenna. It is proved that such a unitary UFCP code assures the unique identification of both channel coefficients and transmitted signals in a noise-free case as well as full diversity for the noncoherent maximum likelihood (ML) receiver in a noise case. To further improve error performance, an optimal unitary UFCP code is designed by appropriately and uniquely factorizing a pair of energy-efficient cross quadrature amplitude modulation (QAM) constellations to maximize the coding gain subject to a transmission bit rate constraint. After a deep investigation of the fractional coding gain function, a technical approach developed in this paper to maximizing the coding gain is to caref...
Slevin, Keith; Ohtsuki, Tomi
2016-10-01
Disordered non-interacting systems are classified into ten symmetry classes, with the unitary class being the most fundamental. The three and four-dimensional unitary universality classes are attracting renewed interest because of their relation to three-dimensional Weyl semi-metals and four-dimensional topological insulators. Determining the critical exponent of the correlation/localisation length for the Anderson transition in these classes is important both theoretically and experimentally. Using the transfer matrix technique, we report numerical estimations of the critical exponent in a U(1) model in three and four dimensions.
Supersonic flow past a flat lattice of cylindrical rods
Guvernyuk, S. V.; Maksimov, F. A.
2016-06-01
Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.
Passive Acoustic Radar for Detecting Supersonic Cruise Missile
Institute of Scientific and Technical Information of China (English)
XIAO Feng; XIAO Hui
2005-01-01
A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.
Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing
Directory of Open Access Journals (Sweden)
A. Suzuki
2013-06-01
Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.
Features of Ignition and Stable Combustion in Supersonic Combustor
Goldfeld, M.; Starov, A.; Timofeev, K.
2009-01-01
Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.
Supersonic laser-induced jetting of aluminum micro-droplets
Energy Technology Data Exchange (ETDEWEB)
Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)
2015-05-04
The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.
Dynamical friction for supersonic motion in a homogeneous gaseous medium
Thun, Daniel; Schmidt, Franziska; Kley, Wilhelm
2016-01-01
The supersonic motion of gravitating objects through a gaseous medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planets up to galaxies. Especially the dynamical friction, caused by the forming wake behind the object, plays an important role for the dynamics of the system. To calculate the dynamical friction, standard formulae, based on linear theory are often used. It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem. We perform sequences of high resolution numerical studies of rigid bodies moving supersonically through a homogeneous medium, and calculate the total drag acting on the object, which is the sum of gravitational and hydro drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. From the final equilibrium state of the sim...
The effects of profiles on supersonic jet noise
Tiwari, S. N.; Bhat, T. R. S.
1994-01-01
The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.
Effect of Microjet Injection on Supersonic Jet Noise
Zaman, K. B. M. Q.; Podboy, G. G.
2010-01-01
The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.
Flight Research and Validation Formerly Experimental Capabilities Supersonic Project
Banks, Daniel
2009-01-01
This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).
a Perspective on the Magic Square and the "special Unitary" Realization of Real Simple Lie Algebras
Santander, Mariano
2013-07-01
This paper contains the last part of the minicourse "Spaces: A Perspective View" delivered at the IFWGP2012. The series of three lectures was intended to bring the listeners from the more naive and elementary idea of space as "our physical Space" (which after all was the dominant one up to the 1820s) through the generalization of the idea of space which took place in the last third of the 19th century. That was a consequence of first the discovery and acceptance of non-Euclidean geometry and second, of the views afforded by the works of Riemann and Klein and continued since then by many others, outstandingly Lie and Cartan. Here we deal with the part of the minicourse which centers on the classification questions associated to the simple real Lie groups. We review the original introduction of the Magic Square "á la Freudenthal", putting the emphasis in the role played in this construction by the four normed division algebras ℝ, ℂ, ℍ, 𝕆. We then explore the possibility of understanding some simple real Lie algebras as "special unitary" over some algebras 𝕂 or tensor products 𝕂1 ⊗ 𝕂2, and we argue that the proper setting for this construction is not to confine only to normed division algebras, but to allow the split versions ℂ‧, ℍ‧, 𝕆‧ of complex, quaternions and octonions as well. This way we get a "Grand Magic Square" and we fill in all details required to cover all real forms of simple real Lie algebras within this scheme. The paper ends with the complete lists of all realizations of simple real Lie algebras as "special unitary" (or only unitary when n = 2) over some tensor product of two *-algebras 𝕂1, 𝕂2, which in all cases are obtained from ℝ, ℂ, ℂ‧, ℍ, ℍ‧, 𝕆, 𝕆‧ as sets, endowing them with a *-conjugation which usually but not always is the natural complex, quaternionic or octonionic conjugation.
Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes
1959-12-01
Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston
Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation
Winterberg, F.
1988-02-01
Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.
Wave-driven Rotation in Supersonically Rotating Mirrors
Energy Technology Data Exchange (ETDEWEB)
A. Fetterman and N.J. Fisch
2010-02-15
Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.
Dynamical separation of spherical bodies in supersonic flow
Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf
2012-01-01
An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...
Aeroelastic coupling in sonic boom optimization of a supersonic aircraft
Vázquez, Mariano; Dervieux, Alain; Koobus, Bruno
2003-01-01
In this paper, we consider a multi-disciplinary optimization problem where the initial shape of a wing is sought in order to cope, after elastic deformation by the flow, with some optimality conditions. We propose a medium-strong coupling which allows to consider different softwares communicating a small number of times. Applications to the optimization of the AGARD Wing 445.6 and a flexible supersonic aircraft wing are presented.
Study on the Characteristics of Supersonic Coanda Jet
Institute of Scientific and Technical Information of China (English)
ShigeruMatsuo; ShenYu; 等
1998-01-01
Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.
Research on the mechanics of underwater supersonic gas jets
Shi, Honghui; Wang, Boyi; Dai, Zhenqing
2010-03-01
An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.
Technical and environmental challenges for the next generation supersonic transport
Energy Technology Data Exchange (ETDEWEB)
Pacull, M. [Aerospatiale (France); Hume, Ch. [British Aerospace (United Kingdom)
1994-12-31
The next century will be marked by the entry into service of new supersonic transport. The real question concerning the next generation supersonic transport is not will it happen, but when, and how. There is a general agreement that such an airplane will result from a worldwide venture. Who will participate, to what extend and how we will put the vehicle and partners together, are an interesting concern that will need some time to resolve. The other challenges will be to design, build and market an aircraft that will be a viable product: for the passenger, who wants the service of a fast airliner with a reasonable surcharge; for the airline which wants competitive operating cost so that it will make sense to introduce such an airplane in its fleet; for the manufacturer, which not only does not want to go bankruptcy, but seeks to make a profit in the long term within the environmental constraints: no adverse impact on high atmosphere ozone; compliance with noise requirements, operations compatible with sonic boom. This paper does not try to answer all these question, but rather highlight major technical and environmental issues for the next generation supersonic transport. The topics discussed are: general specification, noise, atmospheric emissions, sonic boom, aerodynamics, structures, engine integration, systems. (authors)
Hydrogen tube vehicle for supersonic transport: 2. Speed and energy
Energy Technology Data Exchange (ETDEWEB)
Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)
2010-06-15
The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-03-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Research on the mechanics of underwater supersonic gas jets
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-09-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Manufacturing of A micro probe using supersonic aided electrolysis process
Shyu, R F; Ho, Chi-Ting
2008-01-01
In this paper, a practical micromachining technology was applied for the fabrication of a micro probe using a complex nontraditional machining process. A series process was combined to machine tungsten carbide rods from original dimension. The original dimension of tungsten carbide rods was 3mm ; the rods were ground to a fixed-dimension of 50 micrometers using precision grinding machine in first step. And then, the rod could be machined to a middle-dimension of 20 micrometers by electrolysis. A final desired micro dimension can be achieved using supersonic aided electrolysis. High-aspect-ratio of micro tungsten carbide rod was easily obtained by this process. Surface roughness of the sample with supersonic aided agitation was compared with that with no agitation in electrolysis. The machined surface of the sample is very smooth due to ionized particles of anode could be removed by supersonic aided agitation during electrolysis. Deep micro holes can also be achieved by the machined high-aspect-rati tungsten c...
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
Mixed exhaust flow supersonic jet engine and method
Energy Technology Data Exchange (ETDEWEB)
Klees, G.W.
1993-06-08
A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.
Mass flow and its pulsation measurements in supersonic wing wake
Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.
2016-10-01
The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.
Study of the flow characteristics of supersonic coaxial jets
Energy Technology Data Exchange (ETDEWEB)
Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)
2001-12-01
Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.
Flow and acoustic features of a supersonic tapered nozzle
Gutmark, E.; Bowman, H. L.; Schadow, K. C.
1992-05-01
The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.
Experimental investigation of the structure of supersonic two-dimensional air microjets
Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey
2016-10-01
We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.
An experimental study of the structure of supersonic flat underexpanded microjets
Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.
2015-05-01
We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.
Energy Technology Data Exchange (ETDEWEB)
Hayashi, Nobuhiko, E-mail: n-hayashi@21c.osakafu-u.ac.jp [NanoSquare Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); CREST(JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Higashi, Yoichi [NanoSquare Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Department of Mathematical Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531 (Japan); CREST(JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Nakai, Noriyuki; Suematsu, Hisataka [NanoSquare Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); CREST(JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan)
2013-01-15
Highlights: ► We study non-magnetic impurity effect on a vortex in moderately clean regime. ► Impurity effect on s-wave vortex core in unitary limit is weaker than in Born one. ► Kramer–Pesch vortex core shrinkage is stronger in unitary limit than in Born one. -- Abstract: We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a single-band s-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the impurity effect inside a vortex core in the unitary limit is weaker than in the Born one when a system is in the moderately clean regime, which results in a stronger core shrinkage in the unitary limit than in the Born one.
Temperature dependence of the universal contact parameter in a unitary Fermi gas.
Kuhnle, E D; Hoinka, S; Dyke, P; Hu, H; Hannaford, P; Vale, C J
2011-04-29
The contact I, introduced by Tan, has emerged as a key parameter characterizing universal properties of strongly interacting Fermi gases. For ultracold Fermi gases near a Feshbach resonance, the contact depends upon two quantities: the interaction parameter 1/(k(F)a), where k(F) is the Fermi wave vector and a is the s-wave scattering length, and the temperature T/T(F), where T(F) is the Fermi temperature. We present the first measurements of the temperature dependence of the contact in a unitary Fermi gas using Bragg spectroscopy. The contact is seen to follow the predicted decay with temperature and shows how pair-correlations at high momentum persist well above the superfluid transition temperature.
Isospin-violating nucleon-nucleon forces using the method of unitary transformation
Energy Technology Data Exchange (ETDEWEB)
Evgeny Epelbaum; Ulf-G. Meissner
2005-02-01
Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.
Siminovitch, David; Untidt, Thomas; Nielsen, Niels Chr
2004-01-01
Our recent exact effective Hamiltonian theory (EEHT) for exact analysis of nuclear magnetic resonance (NMR) experiments relied on a novel entanglement of unitary exponential operators via finite expansion of the logarithmic mapping function. In the present study, we introduce simple alternant quotient expressions for the coefficients of the polynomial matrix expansion of these entangled operators. These expressions facilitate an extension of our previous closed solution to the Baker-Campbell-Hausdorff problem for SU(N) systems from Nfunction. The general applicability of these expressions is demonstrated by several examples with relevance for NMR spectroscopy. The specific form of the alternant quotients is also used to demonstrate the fundamentally important equivalence of Sylvester's theorem (also known as the spectral theorem) and the EEHT expansion.
Constraints on the chiral unitary $\\bar KN$ amplitude from $\\pi\\Sigma K^+$ photoproduction data
Mai, Maxim
2014-01-01
A chiral unitary approach for antikaon-nucleon scattering in on-shell factorization is studied. We find multiple sets of parameters for which the model describes all existing hadronic data similarly well. We confirm the two-pole structure of the $\\Lambda (1405)$. The narrow $\\Lambda(1405)$ pole appears at comparable positions in the complex energy plane, whereas the location of the broad pole suffers from a large uncertainty. In the second step, we use a simple model for photoproduction of $K^+\\pi\\Sigma$ off the proton and confront it with the experimental data from the CLAS collaboration. It is found that only a few of the hadronic solutions allow for a consistent description of the CLAS data within the assumed reaction mechanism.
Mai, Maxim
2015-01-01
A chiral unitary approach for antikaon-nucleon scattering in on-shell factorization is studied. We find multiple sets of parameters for which the model describes all existing hadronic data similarly well. We confirm the two-pole structure of the ${\\Lambda}(1405)$. The narrow ${\\Lambda}(1405)$ pole appears at comparable positions in the complex energy plane, whereas the location of the broad pole suffers from a large uncertainty. In the second step, we use a simple model for photoproduction of $K^+{\\pi}{\\Sigma}$ off the proton and confront it with the experimental data from the CLAS collaboration. It is found that only a few of the hadronic solutions allow for a consistent description of the CLAS data within the assumed reaction mechanism.
Penning traps with unitary architecture for storage of highly charged ions.
Tan, Joseph N; Brewer, Samuel M; Guise, Nicholas D
2012-02-01
Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two-magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.
Construction of KbarN potential and structure of Lambda(1405) based on chiral unitary approach
Miyahara, Kenta
2015-01-01
Based on chiral unitary approach, we construct the realistic KbarN local potential, which is useful for the quantitative calculation of Kbar-nuclei. Since the resonance pole structure of the KbarN system seems important for the Kbar-nuclei and the spacial structure of Lambda(1405), we establish the construction procedure of the local potential paying attention to the scattering amplitude in the complex energy plane. Furthermore, for the quantitative study of the Kbar-nuclei, we consider the constraint from the recent experimental data measured by SIDDHARTA, which significantly reduces the uncertainty of the KbarN amplitude. With this new local potential, we estimate the spacial structure of Lambda(1405) and obtain the result indicating the meson-baryon molecular state of Lambda(1405).
Uniqueness of the Fock quantization of scalar fields in a Bianchi I cosmology with unitary dynamics
Cortez, Jerónimo; Martín-Benito, Mercedes; Marugán, Guillermo A Mena; Olmedo, Javier; Velhinho, José M
2016-01-01
The Fock quantization of free scalar fields is subject to an infinite ambiguity when it comes to choosing a set of annihilation and creation operators, choice that is equivalent to the determination of a vacuum state. In highly symmetric situations, this ambiguity can be removed by asking vacuum invariance under the symmetries of the system. Similarly, in stationary backgrounds, one can demand time-translation invariance plus positivity of the energy. However, in more general situations, additional criteria are needed. For the case of free (test) fields minimally coupled to a homogeneous and isotropic cosmology, it has been proven that the ambiguity is resolved by introducing the criterion of unitary implementability of the quantum dynamics, as an endomorphism in Fock space. This condition determines a specific separation of the time dependence of the field, so that this splits into a very precise background dependence and a genuine quantum evolution. Furthermore, together with the condition of vacuum invaria...
Unitary input DEA model to identify beef cattle production systems typologies
Directory of Open Access Journals (Sweden)
Eliane Gonçalves Gomes
2012-08-01
Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.
Ground State Energy of Unitary Fermion Gas with the Thomson Problem Approach
Institute of Scientific and Technical Information of China (English)
CHEN Ji-Sheng
2007-01-01
The dimensionless universal coefficient § defines the ratio of the unitary fermions energy density to that for the ideal non-interacting ones in the non-relativistic limit with T = 0. The classical Thomson problem is taken as a nonperturbative quantum many-body arm to address the ground state energy including the Iow energy nonlinear quantum fluctuation/correlation effects. With the relativistic Dirac continuum field theory formalism, the concise expression for the energy density functional of the strongly interacting limit fermions at both finite temperature and density is obtained. Analytically, the universal factor is calculated to be § = 4/9. The energy gap is △ = 5/18 k2f/(2m).
Life-cycle cost and payback period analysis for commercial unitary air conditioners
Energy Technology Data Exchange (ETDEWEB)
Rosenquist, Greg; Coughlin, Katie; Dale, Larry; McMahon, James; Meyers, Steve
2004-03-31
This report describes an analysis of the economic impacts of possible energy efficiency standards for commercial unitary air conditioners and heat pumps on individual customers in terms of two metrics: life-cycle cost (LCC) and payback period (PBP). For each of the two equipment classes considered, the 11.5 EER provides the largest mean LCC savings. The results show how the savings vary among customers facing different electricity prices and other conditions. At 11.5 EER, at least 80% of the users achieve a positive LCC savings. At 12.0 EER, the maximum efficiency analyzed, mean LCC savings are lower but still positive. For the {ge} $65,000 Btu/h to <135,000 Btu/h equipment class, 59% of users achieve a positive LCC savings. For the $135,000 Btu/h to <240,000 Btu/h equipment class, 91% of users achieve a positive LCC savings.
Statistical Mechanical Approach to the Equation of State of Unitary Fermi Gases
De Silva, Theja N
2016-01-01
We combine a Tan's universal relation with a basic statistical mechanical approach to derive a general equation of state for unitary Fermi gases. The universal equation of state is written as a series solution to a self consistent integral equation where the general solution is a linear combination of Fermi functions. By truncating our series solution to four terms with already known exact theoretical inputs at limiting cases, namely the first three virial coefficients and the Bertsch parameter, we find a good agreement with experimental measurements in the entire temperature region in the normal state. Our analytical equation of state agrees with experimental data up to the fugacity $z = 18$, which is a vast improvement over the other analytical equations of state available where the agreements is \\emph{only} up to $z \\approx 7$.
Irreversibility in a unitary finite-rate protocol: the concept of internal friction
Çakmak, Selçuk; Altintas, Ferdi; Müstecaplıoğlu, Özgür E.
2016-07-01
The concept of internal friction, a fully quantum mechanical phenomena, is investigated in a simple, experimentally accessible quantum system in which a spin-1/2 is driven by a transverse magnetic field in a quantum adiabatic process. The irreversible production of the waste energy due to the quantum friction is quantitatively analyzed in a forward-backward unitary transform of the system Hamiltonian by using the quantum relative entropy between the actual density matrix obtained in a parametric transformation and the one in a reversible adiabatic process. Analyzing the role of total transformation time and the different pulse control schemes on the internal friction reveal the non-monotone character of the internal friction as a function of the total protocol time and the possibility for almost frictionless solutions in finite-time transformations.
Unitary evolution of the quantum universe with a Brown-Kuchar dust
Maeda, Hideki
2015-01-01
We study the time evolution of a wave function for the Friedmann-Lemaitre-Robertson-Walker universe governed by the Wheeler-DeWitt equation in both analytic and numerical methods. We consider a Brown-Kuchar dust as a matter field in order to introduce a "clock" in quantum cosmology and adopt the Laplace-Beltrami operator-ordering. The Hamiltonian operator admits an infinite number of self-adjoint extensions corresponding to a one-parameter family of boundary conditions at the origin in the minisuperspace. For any value of the extension parameter in the boundary condition, the evolution of a wave function is unitary and the classical initial singularity is avoided and replaced by the big bounce in the quantum system. It is shown that the expectation value of the spatial volume of the universe obeys the classical time evolution in the late time.
Gomar, Laura Castelló; Blas, Daniel Martín-de; Marugán, Guillermo A Mena; Velhinho, José M
2012-01-01
We study the Fock quantization of scalar fields with a time dependent mass in cosmological scenarios with flat compact spatial sections. This framework describes physically interesting situations like, e.g., cosmological perturbations in flat Friedmann-Robertson-Walker spacetimes, generally including a suitable scaling of them by a background function. We prove that the requirements of vacuum invariance under the spatial isometries and of a unitary quantum dynamics select (a) a unique canonical pair of field variables among all those related by time dependent canonical transformations which scale the field configurations, and (b) a unique Fock representation for the canonical commutation relations of this pair of variables. Though the proof is generalizable to other compact spatial topologies in three or less dimensions, we focus on the case of the three-torus owing to its relevance in cosmology, paying a especial attention to the role played by the spatial isometries in the determination of the representatio...
Penning traps with unitary architecture for storage of highly charged ions
Tan, Joseph N; Guise, Nicholas D; 10.1063/1.3685246
2012-01-01
Penning traps are made extremely compact by embedding rare-earth permanent magnets in the electrode structure. Axially-oriented NdFeB magnets are used in unitary architectures that couple the electric and magnetic components into an integrated structure. We have constructed a two- magnet Penning trap with radial access to enable the use of laser or atomic beams, as well as the collection of light. An experimental apparatus equipped with ion optics is installed at the NIST electron beam ion trap (EBIT) facility, constrained to fit within 1 meter at the end of a horizontal beamline for transporting highly charged ions. Highly charged ions of neon and argon, extracted with initial energies up to 4000 eV per unit charge, are captured and stored to study the confinement properties of a one-magnet trap and a two-magnet trap. Design considerations and some test results are discussed.
Fortran code for generating random probability vectors, unitaries, and quantum states
Maziero, Jonas
2015-01-01
The usefulness of generating random configurations is recognized in a variety of contexts, as for instance in the simulation of physical systems, in the verification of bounds and/or ansatz solutions for optimization problems, and in secure communications. Fortran was born for scientific computing and has been one of the main programming languages in this area since then. And the several ongoing projects targeting towards its betterment indicate that it will keep this status in the decades to come. In this article, we describe Fortran codes produced, or organized, for the generation of the following random objects: numbers, probability vectors, unitary matrices, and quantum state vectors and density matrices. Some matrix functions are also included and may be of independent interest.
Pinkel, I Irving; Serafini, John S; Gregg, John L
1952-01-01
The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.
A composite autonomic index as unitary metric for heart rate variability: a proof of concept.
Sala, Roberto; Malacarne, Mara; Solaro, Nadia; Pagani, Massimo; Lucini, Daniela
2017-03-01
This study addresses whether a unitary cardiac autonomic nervous system index (ANSI), obtained combining multiple metrics from heart rate variability (HRV) into a radar plot could provide an easy appreciation of autonomic performance in a clinical setting. Data are standardized using percentile ranking of autonomic proxies from a relatively large reference population (n = 1593, age 39 ± 13 years). Autonomic indices are obtained from autoregressive spectral analysis of (ECG derived) HRV at rest and during standing up. A reduced ANSI (using RR, RR variance and rest-stand difference of LFnu) is then constructed as a radar plot, quantified according to its combined area and tested against different risk subgroups. With growing risk profile, there is a marked reduction of the rank value of ANSI, quantified individually by the radar plot area. The practical usefulness of the approach was tested in small groups of additional subjects putatively characterized by elevated or poor autonomic performance. Data show that elite endurance athletes are characterized by elevated values of ANSI (80·6 ± 14·9, P values (DM1 = 37·0 ± 18·9 and DM2 = 26·8 ± 23·3, P = 0·002), and patients with coronary artery disease (CAD) represent a nadir (17 ± 20, P < 0·001). This observational study shows the feasibility of testing simpler metrics of cardiac autonomic regulation based on a multivariate unitary index in a preventive setting. This simple approach might foster a wider application of HRV in the clinical arena, and permit an easier appreciation of autonomic performance. © 2017 Stichting European Society for Clinical Investigation Journal Foundation.
Koelling, S; Krebs, H; Meißner, U -G
2009-01-01
We derive the leading two-pion exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.
A note on local smoothing effects for the unitary group associated with the KdV equation
Directory of Open Access Journals (Sweden)
Xavier Carvajal
2008-04-01
Full Text Available In this note we show interesting local smoothing effects for the unitary group associated to Korteweg-de Vries type equation. Our main tools are the Hardy-Littlewood-Sobolev and Hausdorff-Young inequalities. Using our local smoothing effect and a dual version, we estimate the growth of the norm of solutions of the complex modified KdV equation.
Mideros, A.; O'Donoghue, C.
2014-01-01
We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the nationa
Mideros, A.; O'Donoghue, C.
2014-01-01
We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the
Institute of Scientific and Technical Information of China (English)
CHEN Jing-Ling; XUE Kang; GE Mo-Lin
2009-01-01
We show that all pure entangled states of two d-dimensional quantum systems (i.e.,two qudits) can be generated from an initial separable state via a universal Yang-Baxter matrix if one is assisted by local unitary transformations.
Mideros, A.; O'Donoghue, C.
2014-01-01
We examine the effect of unconditional cash transfers by a unitary discrete labour supply model. We argue that there is no negative income effect of social transfers in the case of poor adults because leisure could not be assumed to be a normal good under such conditions. Using data from the nationa
Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam
2015-01-01
The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.
Study of optical techniques for the Ames unitary wind tunnels. Part 2: Light sheet and vapor screen
Lee, George
1992-01-01
Light sheet and vapor screen methods have been studied with particular emphasis on those systems that have been used in large transonic and supersonic wind tunnels. The various fluids and solids used as tracers or light scatters and the methods for tracing generation have been studied. Light sources from high intensity lamps and various lasers have been surveyed. Light sheet generation and projection methods were considered. Detectors and location of detectors were briefly studied. A vapor screen system and a technique for location injection of tracers for the NASA Ames 9 by 7 foot Supersonic Wind Tunnel were proposed.
Blair, A. B., Jr.
1990-01-01
Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.
The role of finite-difference methods in design and analysis for supersonic cruise
Townsend, J. C.
1976-01-01
Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.
Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.
2013-01-01
Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.
Institute of Scientific and Technical Information of China (English)
Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO
2016-01-01
As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.
Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983
Hoffman, S.
1984-01-01
A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.
3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO
1956-01-01
3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL
Unsteady Flow in a Supersonic Turbine with Variable Specific Heats
Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)
2001-01-01
Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier
Directory of Open Access Journals (Sweden)
L. Gulstad
2007-05-01
Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but
Flying qualities design criteria applicable to supersonic cruise aircraft
Chalk, C. R.
1980-01-01
A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.
Development of air to air ejector for supersonic wind tunnel
Directory of Open Access Journals (Sweden)
Kracík Jan
2014-03-01
Full Text Available The contribution deals with the development of design of new conception of ejector with twelve primary annular nozzles arranged around the inlet part of the mixing chamber. The ejector is proposed to be used for propulsion of supersonic experimental wind tunnel with variable test section, which is now in development. The ejector is considered to be placed on outlet of this wind tunnel. The original design of the ejector has been modified to ensure its manufacturability. Software Ansys Fluent 14.0 was used for numerical verification of earlier work. The new design and dissimilarities of numerical results are presented in this work.
Direct formulation of the supersonic acoustic intensity in space domain
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin
2012-01-01
This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...
Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence
Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel
1989-01-01
Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.
Laboratory plasma physics experiments using merging supersonic plasma jets
Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.
2014-01-01
We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...
Pulsed supersonic helium beams for plasma edge diagnosis
Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.
1997-03-01
An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.
Pulsed supersonic helium beams for plasma edge diagnosis
Energy Technology Data Exchange (ETDEWEB)
Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)
1997-03-01
An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}
Hayashi, Nobuhiko; Higashi, Yoichi; Nakai, Noriyuki; Suematsu, Hisataka
2013-01-01
We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer-Pesch effect) in a single-band s-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the impurity effect inside a vortex core in the unitary limit is weaker than in the Born one when a system is in the moderately clean regime, which results in a stronger core shrinkage in the unitary limit than in the Born one.
Simakov, A V; Sneve, M K; Abramov, Yu V; Kochetkov, O A; Smith, G M; Tsovianov, A G; Romanov, V V
2008-12-01
The site of temporary storage of spent nuclear fuel and radioactive waste, situated at Andreeva Bay in Northwest Russia, was developed in the 1960s, and it has carried out receipt and storage of fresh and spent nuclear fuel, and solid and liquid radioactive waste generated during the operation of nuclear submarines and nuclear-powered icebreakers. The site is now operated as the western branch of the Federal State Unitary Enterprise, SevRAO. In the course of operation over several decades, the containment barriers in the Spent Nuclear Fuel and Radioactive Waste storage facilities partially lost their containment effectiveness, so workshop facilities and parts of the site became contaminated with radioactive substances. This paper describes work being undertaken to provide an updated regulatory basis for the protection of workers during especially hazardous remediation activities, necessary because of the unusual radiation conditions at the site. It describes the results of recent survey work carried out by the Burnasyan Federal Medical Biophysical Centre, within a programme of regulatory cooperation between the Norwegian Radiation Protection Authority and the Federal Medical-Biological Agency of Russia. The survey work and subsequent analyses have contributed to the development of special regulations setting out radiological protection requirements for operations planned at the site. Within these requirements, and taking account of a variety of other factors, a continuing need arises for the implementation of optimisation of remediation at Andreeva Bay.
Directory of Open Access Journals (Sweden)
Kahriman Emina
2008-01-01
Full Text Available Paper discuss specific features of internet plan as well as planning as management process in general in the contemporary environment. No need to stress out that marketing plan and marketing planning is core activity in approaching to market. At the same time, there are a lot specific c request in preparing marketing plan comparing to business planning due to marketing plan is an essential part. The importance of internet plan and planning rely on specific features of the internet network but as a part of general corporate as well as marketing strategy.
Anatomy of the Higgs Boson Decay into Two Photons in the Unitary Gauge
Directory of Open Access Journals (Sweden)
Athanasios Dedes
2013-01-01
Full Text Available We review and clarify computational issues about the W -gauge boson one-loop contribution to the H → γ γ decay amplitude, in the unitary gauge and in the Standard Model. We find that highly divergent integrals depend upon the choice of shifting momenta with arbitrary vectors. One particular combination of these arbitrary vectors reduces the superficial divergency down to a logarithmic one. The remaining ambiguity is then fixed by exploiting gauge invariance and the Goldstone Boson Equivalence Theorem. Our method is strictly realised in four dimensions. The result for the amplitude agrees with the “famous” one obtained using dimensional regularisation (DR in the limit d → 4 , where d is the number of spatial dimensions in Euclidean space. At the exact equality d = 4 , a three-sphere surface term appears that renders the Ward Identities and the equivalence theorem inconsistent. We also examined a recently proposed four-dimensional regularisation scheme and found agreement with the DR outcome.
Kock, B. E.
2008-12-01
The increased availability and understanding of agent-based modeling technology and techniques provides a unique opportunity for water resources modelers, allowing them to go beyond traditional behavioral approaches from neoclassical economics, and add rich cognition to social-hydrological models. Agent-based models provide for an individual focus, and the easier and more realistic incorporation of learning, memory and other mechanisms for increased cognitive sophistication. We are in an age of global change impacting complex water resources systems, and social responses are increasingly recognized as fundamentally adaptive and emergent. In consideration of this, water resources models and modelers need to better address social dynamics in a manner beyond the capabilities of neoclassical economics theory and practice. However, going beyond the unitary curve requires unique levels of engagement with stakeholders, both to elicit the richer knowledge necessary for structuring and parameterizing agent-based models, but also to make sure such models are appropriately used. With the aim of encouraging epistemological and methodological convergence in the agent-based modeling of water resources, we have developed a water resources-specific cognitive model and an associated collaborative modeling process. Our cognitive model emphasizes efficiency in architecture and operation, and capacity to adapt to different application contexts. We describe a current application of this cognitive model and modeling process in the Arkansas Basin of Colorado. In particular, we highlight the potential benefits of, and challenges to, using more sophisticated cognitive models in agent-based water resources models.
Macroscopicity of quantum superpositions on a one-parameter unitary path in Hilbert space
Volkoff, T. J.; Whaley, K. B.
2014-12-01
We analyze quantum states formed as superpositions of an initial pure product state and its image under local unitary evolution, using two measurement-based measures of superposition size: one based on the optimal quantum binary distinguishability of the branches of the superposition and another based on the ratio of the maximal quantum Fisher information of the superposition to that of its branches, i.e., the relative metrological usefulness of the superposition. A general formula for the effective sizes of these states according to the branch-distinguishability measure is obtained and applied to superposition states of N quantum harmonic oscillators composed of Gaussian branches. Considering optimal distinguishability of pure states on a time-evolution path leads naturally to a notion of distinguishability time that generalizes the well-known orthogonalization times of Mandelstam and Tamm and Margolus and Levitin. We further show that the distinguishability time provides a compact operational expression for the superposition size measure based on the relative quantum Fisher information. By restricting the maximization procedure in the definition of this measure to an appropriate algebra of observables, we show that the superposition size of, e.g., NOON states and hierarchical cat states, can scale linearly with the number of elementary particles comprising the superposition state, implying precision scaling inversely with the total number of photons when these states are employed as probes in quantum parameter estimation of a 1-local Hamiltonian in this algebra.
A Tree-level Unitary Noncompact Weyl-Einstein-Yang-Mills Model
Dengiz, Suat
2016-01-01
We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a $3+1$-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus $SU(N)$ phase invariant Higgs-like field, conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable constant curvature vacuum. The model is unitary in de Si...
Visual, Haptic and Bimodal Scene Perception: Evidence for a Unitary Representation
Intraub, Helene; Morelli, Frank; Gagnier, Kristin M.
2015-01-01
Participants studied seven meaningful scene-regions bordered by removable boundaries (30 s each). In Experiment 1 (N=80) participants used visual or haptic exploration and then minutes later, reconstructed boundary position using the same or the alternate modality. Participants in all groups shifted boundary placement outward (boundary extension), but visual study yielded the greater error. Critically, this modality-specific difference in boundary extension transferred without cost in the cross-modal conditions, suggesting a functionally unitary scene representation. In Experiment 2 (N= 20), bimodal study led to boundary extension that did not differ from haptic exploration alone, suggesting that bimodal spatial memory was constrained by the more “conservative” haptic modality. In Experiment 3 (N=20), as in picture studies, boundary memory was tested 30 s after viewing each scene-region and as with pictures, boundary extension still occurred. Results suggest that scene representation is organized around an amodal spatial core that organizes bottom-up information from multiple modalities in combination with top-down expectations about the surrounding world. PMID:25725370
Multiple symbol differential detection based on sphere decoding for unitary space-time modulation
Institute of Scientific and Technical Information of China (English)
LI Ying; WEI JiBo; WANG Xin; YU Quan
2009-01-01
Recently, s multiple symbol differential (MSD) sphere decoding (SD) algorithm for unitary spacetime modulation over quasi-static channel has been proved to achieve the performance of maximumlikelihood (ML) detection with relatively low complexity. However, an error floor occurs if the algorithm is applied over rapid-fading channels. Based on the assumption of continuous fading, a multiple symbol differential automatic sphere decoding (MSDASD) algorithm is developed by incorporating a recursive form of an ML metric into automatic SD (ASD) algorithm. Furthermore, two algorithms, termed as MSD approximate ASD (MSDAASD) and MSD pruning ASD (MSDPASD), are proposed to reduce computational complexity and the number of comparisons, respectively. Compared with the existing typical algorithms, i.e., multiple symbol differential feedback detection (MS-DFD) and noncoherent sequence detection (NSD), the performance of the proposed algorithms is much superior to that of MS-DFD and s little inferior to that of NSD, while the complexity is lower than that of MS-DFD in most cases and significantly lower than that of NSD.
$C_T$ for Non-unitary CFTs in Higher Dimensions
Osborn, Hugh
2016-01-01
The coefficient $C_T$ of the conformal energy-momentum tensor two-point function is determined for the non-unitary scalar CFTs with four- and six-derivative kinetic terms. The results match those expected from large-$N$ calculations for the CFTs arising from the $O(N)$ non-linear sigma and Gross-Neveu models in specific even dimensions. $C_T$ is also calculated for the CFT arising from $(n-1)$-form gauge fields with derivatives in $2n+2$ dimensions. Results for $(n-1)$-form theory extended to general dimensions as a non-gauge-invariant CFT are also obtained; the resulting $C_T$ differs from that for the gauge-invariant theory. The construction of conformal primaries by subtracting descendants of lower-dimension primaries is also discussed. For free theories this also leads to an alternative construction of the energy-momentum tensor, which can be quite involved for higher-derivative theories.
A New Family of Unitary Space-Time Codes with a Fast Parallel Sphere Decoder Algorithm
Chen, Xinjia; Aravena, Jorge L
2007-01-01
In this paper we propose a new design criterion and a new class of unitary signal constellations for differential space-time modulation for multiple-antenna systems over Rayleigh flat-fading channels with unknown fading coefficients. Extensive simulations show that the new codes have significantly better performance than existing codes. We have compared the performance of our codes with differential detection schemes using orthogonal design, Cayley differential codes, fixed-point-free group codes and product of groups and for the same bit error rate, our codes allow smaller signal to noise ratio by as much as 10 dB. The design of the new codes is accomplished in a systematic way through the optimization of a performance index that closely describes the bit error rate as a function of the signal to noise ratio. The new performance index is computationally simple and we have derived analytical expressions for its gradient with respect to constellation parameters. Decoding of the proposed constellations is reduc...
The unitary Fermi gas at finite temperature: momentum distribution and contact
Drut, Joaquín E; Ten, Timour
2011-01-01
The Unitary Fermi Gas (UFG) is one of the most strongly interacting systems known to date, as it saturates the unitarity bound on the quantum mechanical scattering cross section. The UFG corresponds to a two-component Fermi gas in the limit of short interaction range and large scattering length, and is currently realized in ultracold-atom experiments via Feshbach resonances. While easy to define, the UFG poses a challenging quantum many-body problem, as it lacks any characteristic scale other than the density. As a consequence, accurate quantitative predictions of the thermodynamic properties of the UFG require Monte Carlo calculations. However, significant progress has also been made with purely analytical methods. Notably, in 2005 Tan derived a set of exact thermodynamic relations in which a universal quantity known as the "contact" C plays a crucial role. Recently, C has also been found to determine the prefactor of the high- frequency power-law decay of correlators as well as the right-hand-sides of shear...
Structural and quantum properties of van der Waals cluster near the unitary regime
Lekala, M. L.; Chakrabarti, B.; Haldar, S. K.; Roy, R.; Rampho, G. J.
2017-07-01
We study the structural and several quantum properties of three-dimensional bosonic cluster interacting through van der Waals potential at large scattering length. We use Faddeev-type decomposition of the many-body wave function which includes all possible two-body correlations. At large scattering length, we observe spatially extended states which exhibit the exponential dependence on the state number. The cluster ground state energy shows universal nature at large negative scattering length. We also find the existence of generalized Tjon lines for N-body clusters. Signature of universal behaviour of weakly bound clusters can be observed in experiments of ultracold Bose gases. We also study the spectral statistics of the system. We calculate both the short-range fluctuation and long-range correlation and observe semi-Poisson distribution which interpolates the Gaussian Orthogonal Ensemble (GOE) and Poisson statistics of random matrix theory. It indicates that the van der Waal cluster near the unitary becomes highly complex and correlated. However additional study of P (r) distribution (without unfolding of energy spectrum) reveals the possibility of chaos for larger cluster.
Veloz, Tomas; Desjardins, Sylvie
2015-01-01
Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked. In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations. PMID:26617556