WorldWideScience

Sample records for supersonic through-flow turbofan

  1. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    Science.gov (United States)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  2. Digital integrated control of a Mach 2.5 mixed-compression supersonic inlet and an augmented mixed-flow turbofan engine

    Science.gov (United States)

    Batterton, P. G.; Arpasi, D. J.; Baumbick, R. J.

    1974-01-01

    A digitally implemented integrated inlet-engine control system was designed and tested on a mixed-compression, axisymmetric, Mach 2.5, supersonic inlet with 45 percent internal supersonic area contraction and a TF30-P-3 augmented turbofan engine. The control matched engine airflow to available inlet airflow. By monitoring inlet terminal shock position and over-board bypass door command, the control adjusted engine speed so that in steady state, the shock would be at the desired location and the overboard bypass doors would be closed. During engine-induced transients, such as augmentor light-off and cutoff, the inlet operating point was momentarily changed to a more supercritical point to minimize unstarts. The digital control also provided automatic inlet restart. A variable inlet throat bleed control, based on throat Mach number, provided additional inlet stability margin.

  3. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  4. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  5. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  6. Advanced Control of Turbofan Engines

    CERN Document Server

    Richter, Hanz

    2012-01-01

    Advanced Control of Turbofan Engines describes the operational performance requirements of turbofan (commercial)engines from a controls systems perspective, covering industry-standard methods and research-edge advances. This book allows the reader to design controllers and produce realistic simulations using public-domain software like CMAPSS: Commercial Modular Aero-Propulsion System Simulation, whose versions are released to the public by NASA. The scope of the book is centered on the design of thrust controllers for both steady flight and transient maneuvers. Classical control theory is not dwelled on, but instead an introduction to general undergraduate control techniques is provided. This book also: Develops a thorough understanding of the challenges associated with engine operability from a control systems perspective, describing performance demands and operational constraints into the framework and language of modern control theory Presents solid theoretical support for classical and advanced engine co...

  7. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  8. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    NARCIS (Netherlands)

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions bein

  9. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    NARCIS (Netherlands)

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions bein

  10. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    NARCIS (Netherlands)

    Ramanathan, A.

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions

  11. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    Science.gov (United States)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  12. Bird Ingestion into Large Turbofan Engines

    Science.gov (United States)

    1992-05-01

    AD-A255 863 DOT/FA°• I•T91/17 Bird Ingestion into Large FAA Technical Center AtlanticCity International AirportN 4urbofan Engines L -TIC ýEP 1992...Gov.ernm.nt Accistton No, 3, Rec.p.ent’s Catalog No. DOT/FAA/CT-91/1 7 4. Title and Subtitle 5. Report fote May 1992 BIRD INGESTION INTO LARGE TURBOFAN...study of bird ingestion into certain modern, large high bypass turbofan engines. The engines under consideration were certificated to current FAA

  13. Through flow analysis of pumps and fans

    Science.gov (United States)

    Neal, A. N.

    1980-08-01

    Incompressible through flow calculations in axial, mixed and centrifugal flow pumps and fans are described. An iterative scheme is used. A simple blade to blade model is applied on the surfaces of revolution defined by the meridional streamlines. This defines the fluid properties and the mean stream surface (S2 surface) for the next meridional solution. A computer program is available allowing the method to be applied for design purposes. APL is used for input and output and FORTRAN IV for computation. A typical calculation requires 30 sec of Univac 1100 time.

  14. Windmilling of turbofan engine; calculation of performance characteristics of a turbofan engine under windmilling

    OpenAIRE

    A. Ramanathan

    2014-01-01

    The turbofan is a type of air breathing jet engine that finds wide use in aircraft propulsion. During the normal operation of a turbofan engine installed in aircraft, the combustor is supplied with fuel, flow to the combustor is cut off and the engine runs under so called Windmilling conditions being driven only by the ram pressure ratio by producing drag. In-depth analysis is done to study the performance characteristics at this state.

  15. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  16. A methodology for noise prediction of turbofan engines.

    OpenAIRE

    Gustavo Di Fiore dos Santos

    2006-01-01

    A computional model is developed for prediction of noise emission from na existing or new turbofan engine. This model allows the simulation of noise generation from high bypass ratio turbofan engines, appropriate for use with computational programs for gas turbine performance developed at ITA. Analytical and empirical methods are used for spectrum shape, spectrum level, overall noise and free-field directivity noise. The most significant noise sources in turbofan engines are modeled: fan, com...

  17. Computational Fluid Dynamics Modeling of a Supersonic Nozzle and Integration into a Variable Cycle Engine Model

    Science.gov (United States)

    Connolly, Joseph W.; Friedlander, David; Kopasakis, George

    2015-01-01

    This paper covers the development of an integrated nonlinear dynamic simulation for a variable cycle turbofan engine and nozzle that can be integrated with an overall vehicle Aero-Propulso-Servo-Elastic (APSE) model. A previously developed variable cycle turbofan engine model is used for this study and is enhanced here to include variable guide vanes allowing for operation across the supersonic flight regime. The primary focus of this study is to improve the fidelity of the model's thrust response by replacing the simple choked flow equation convergent-divergent nozzle model with a MacCormack method based quasi-1D model. The dynamic response of the nozzle model using the MacCormack method is verified by comparing it against a model of the nozzle using the conservation element/solution element method. A methodology is also presented for the integration of the MacCormack nozzle model with the variable cycle engine.

  18. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  19. Parameterization of a Conventional and Regenerated UHB Turbofan

    OpenAIRE

    Oliveira Fábio; Brójo Francisco

    2015-01-01

    The attempt to improve aircraft engines efficiency resulted in the evolution from turbojets to the first generation low bypass ratio turbofans. Today, high bypass ratio turbofans are the most traditional type of engine in commercial aviation. Following many years of technological developments and improvements, this type of engine has proved to be the most reliable facing the commercial aviation requirements. In search of more efficiency, the engine manufacturers tend t...

  20. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  1. Infinitesimal Conical Supersonic Flow

    Science.gov (United States)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  2. Noise reduction in supersonic jets by nozzle fluidic inserts

    Science.gov (United States)

    Morris, Philip J.; McLaughlin, Dennis K.; Kuo, Ching-Wen

    2013-08-01

    Professor Philip Doak spent a very productive time as a consultant to the Lockheed-Georgia Company in the early 1970s. The focus of the overall research project was the prediction and reduction of noise from supersonic jets. Now, 40 years on, the present paper describes an innovative methodology and device for the reduction of supersonic jet noise. The goal is the development of a practical active noise reduction technique for low bypass ratio turbofan engines. This method introduces fluidic inserts installed in the divergent wall of a CD nozzle to replace hard-wall corrugation seals, which have been demonstrated to be effective by Seiner (2005) [1]. By altering the configuration and operating conditions of the fluidic inserts, active noise reduction for both mixing and shock noise has been obtained. Substantial noise reductions have been achieved for mixing noise in the maximum noise emission direction and in the forward arc for broadband shock-associated noise. To achieve these reductions (on the order of greater than 4 and 2 dB for the two main components respectively), practically achievable levels of injection mass flow rates have been used. The total injected mass flow rates are less than 4% of the core mass flow rate and the effective operating injection pressure ratio has been maintained at or below the same level as the nozzle pressure ratio of the core flow.

  3. Through flow analysis within axial flow turbomachinery blade rows

    Science.gov (United States)

    Girigoswami, H.

    1986-09-01

    Using Katsanis' Through Flow Code, inviscid flow through an axial flow compressor rotor blade as well as flow through inlet guide vanes are analyzed and the computed parameters such as meridional velocity distribution, axial velocity distribution along radial lines, and velocity distribution over blade surfaces are presented.

  4. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  5. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  6. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  7. 78 FR 47235 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-08-05

    ... Electric Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines. This proposed AD was prompted by the... in Boeing 747-8 flight tests had consumed more cyclic life than they would have in revenue flight cycles. These parts were then installed into engines and introduced into revenue service...

  8. 77 FR 67763 - Airworthiness Directives; Pratt & Whitney Division Turbofan Engines

    Science.gov (United States)

    2012-11-14

    ... by 16 reports of damaged or failed 3rd stage low-pressure turbine (LPT) duct segments. This AD..., or on the distribution of power and responsibilities among the various levels of government. For the... PW4650 turbofan engines, including models with any dash number suffix, with 3rd stage...

  9. 78 FR 21578 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-04-11

    ... Company (GE) model GEnx-2B67 and GEnx-2B67B turbofan engines with booster anti-ice (BAI) air duct, part... reports of cracks in the BAI air duct. This proposed AD would require initial and repetitive visual inspections of the BAI air duct, removal from service of the BAI air duct if it fails inspection and, as...

  10. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  11. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  12. An Experimental Investigation of the Aeroacoustics of a Two-Dimensional Bifurcated Supersonic Inlet

    Science.gov (United States)

    LI, S.-M.; HANUSKA, C. A.; NG, W. F.

    2001-11-01

    An experiment was conducted on a two-dimensional bifurcated, supersonic inlet to investigate the aeroacoustics at take-off and landing conditions. A 104·1 mm (4·1 in) diameter turbofan simulator was coupled to the inlet to generate the noise typical of a turbofan engine. Aerodynamic and acoustic data were obtained in an anechoic chamber under ground-static conditions (i.e., no forward flight effect). Results showed that varying the distance between the trailing edge of the bifurcated ramp of the inlet and the fan face had negligible effect on the total noise level. Thus, one can have a large freedom to design the bifurcated ramp mechanically and aerodynamically, with minimum impact on the aeroacoustics. However, the effect of inlet guide vanes' (IGV) axial spacing to the fan face has a first order effect on the aeroacoustics for the bifurcated 2-D inlet. As much as 5 dB reduction in the overall sound pressure level and as much as 15 dB reduction in the blade passing frequency tone were observed when the IGV was moved from 0·8 chord of rotor blade upstream of the fan face to 2·0 chord of the blade upstream. The wake profile similarity of the IGV was also found in the flow environment of the 2-D bifurcated inlet, i.e., the IGV wakes followed the usual Gauss' function.

  13. Software Development for EECU Platform of Turbofan Engine

    Science.gov (United States)

    Kim, Bo Gyoung; Kwak, Dohyup; Kim, Byunghyun; Choi, Hee ju; Kong, Changduk

    2017-04-01

    The turbofan engine operation consists of a number of hardware and software. The engine is controlled by Electronic Engine Control Unit (EECU). In order to control the engine, EECU communicates with an aircraft system, Actuator Drive Unit (ADU), Engine Power Unit (EPU) and sensors on the engine. This paper tried to investigate the process form starting to taking-off and aims to design the EECU software mode and defined communication data format. The software is implemented according to the designed software mode.

  14. 78 FR 50320 - Airworthiness Directives; General Electric Company Turbofan Engines

    Science.gov (United States)

    2013-08-19

    ...-2B67B turbofan engines with booster anti-ice (BAI) air duct, part number (P/N) 2469M32G01, and support bracket, P/N 2469M46G01, installed. This AD was prompted by reports of cracks in the BAI air duct. This AD requires initial and repetitive visual inspections of the BAI air duct, removal from service of the BAI...

  15. System Noise Prediction of the DGEN 380 Turbofan Engine

    Science.gov (United States)

    Berton, Jeffrey J.

    2015-01-01

    The DGEN 380 is a small, separate-flow, geared turbofan. Its manufacturer, Price Induction, is promoting it for a small twinjet application in the emerging personal light jet market. Smaller, and producing less thrust than other entries in the industry, Price Induction is seeking to apply the engine to a 4- to 5-place twinjet designed to compete in an area currently dominated by propeller-driven airplanes. NASA is considering purchasing a DGEN 380 turbofan to test new propulsion noise reduction technologies in a relevant engine environment. To explore this possibility, NASA and Price Induction have signed a Space Act Agreement and have agreed to cooperate on engine acoustic testing. Static acoustic measurements of the engine were made by NASA researchers during July, 2014 at the Glenn Research Center. In the event that a DGEN turbofan becomes a NASA noise technology research testbed, it is in the interest of NASA to develop procedures to evaluate engine system noise metrics. This report documents the procedures used to project the DGEN static noise measurements to flight conditions and the prediction of system noise of a notional airplane powered by twin DGEN engines.

  16. Tesseract supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  17. Tesseract: Supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  18. 78 FR 5712 - Airworthiness Directives; CFM International, S.A. Turbofan Engines Modified by Supplemental Type...

    Science.gov (United States)

    2013-01-28

    ..., S.A. Turbofan Engines Modified by Supplemental Type Certificate SE00034EN AGENCY: Federal Aviation... directive (AD) for CFM International, S.A. CFM56-3, CFM56-3B, and CFM56-3C turbofan engines. This AD... of multiple turbine blades, damage to the engine, and damage to the airplane. DATES: This AD...

  19. 78 FR 6749 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-01-31

    ... Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... all Rolls-Royce plc (RR) models RB211 Trent 768-60, 772-60, and 772B-60 turbofan engines. This.... For service information identified in this proposed AD, contact Rolls-Royce plc, P.O. Box 31,...

  20. 77 FR 67582 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-11-13

    ... directive (AD) for certain Rolls-Royce Deutschland Ltd & Co KG (RRD) Tay 611-8 turbofan engines. This... issued Alert Service Bulletin TAY-72-A1696, Revision 1, dated June 11, 2012. The actions described in... Ltd & Co KG (RRD) Tay 611-8 turbofan engines, serial numbers 16245, 16256, 16417, 16418, 16584, 16585...

  1. 78 FR 59291 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co. KG Turbofan Engines

    Science.gov (United States)

    2013-09-26

    ... Rolls-Royce Deutschland Ltd & Co. KG (RRD) Tay 620-15, 650-15, and 651- 54 turbofan engines. This... history of Tay series engines discovered that low pressure compressor (LPC) fan blade leading edge could... Rolls-Royce Deutschland Ltd & Co. KG (RRD) Tay 620-15, 650-15, and 651-54 turbofan engines. (d) Reason...

  2. 77 FR 16917 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-03-23

    ... ] Rolls-Royce Deutschland (RRD) Models Tay 611-8 and Tay 611-8C turbofan engines. This AD requires... Bulletin No. TAY-72-A1769, dated March 9, 2012. The actions described in this service information are...-Royce Deutschland Ltd & Co KG (RRD) turbofan engines: (1) TAY 611-8 engines, serial numbers (S/Ns) 16870...

  3. 75 FR 77570 - Airworthiness Directives; General Electric Company CF6 Series Turbofan Engines

    Science.gov (United States)

    2010-12-13

    ... engine mount assembly (also known ] as Configuration 2). These engines are installed on, but not limited... Company CF6 Series Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...) for General Electric (GE) CF6-45/-50 series and CF6-80A series turbofan engines with certain...

  4. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  5. Properties of Supersonic Evershed Downflows

    Science.gov (United States)

    Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  6. Properties of Supersonic Evershed Downflows

    CERN Document Server

    Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz

    2016-01-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...

  7. Research on performance requirements of turbofan engine used on carrier-based UAV

    Science.gov (United States)

    Zhao, Shufan; Li, Benwei; Zhang, Wenlong; Wu, Heng; Feng, Tang

    2017-05-01

    According to the mission requirements of the carrier-based unmanned aerial vehicle (UAV), a mode level flight was established to calculate the thrust requirements from altitude 9 km to 13 km. Then, the estimation method of flight profile was used to calculate the weight of UAV in each stage to get the specific fuel consumption requirements of the UAV in standby stage. The turbofan engine of carrier-based UAV should meet the thrust and specific fuel consumption requirements. Finally, the GSP software was used to verify the simulation of a small high-bypass turbofan engine. The conclusion is useful for the turbofan engine selection of carrier-based UAV.

  8. Kalman Filtering with Inequality Constraints for Turbofan Engine Health Estimation

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2003-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops two analytic methods of incorporating state variable inequality constraints in the Kalman filter. The first method is a general technique of using hard constraints to enforce inequalities on the state variable estimates. The resultant filter is a combination of a standard Kalman filter and a quadratic programming problem. The second method uses soft constraints to estimate state variables that are known to vary slowly with time. (Soft constraints are constraints that are required to be approximately satisfied rather than exactly satisfied.) The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is proven theoretically and shown via simulation results. The use of the algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate health parameters. The turbofan engine model contains 16 state variables, 12 measurements, and 8 component health parameters. It is shown that the new algorithms provide improved performance in this example over unconstrained Kalman filtering.

  9. Preliminary design study of a quiet, high flow fan (QHF) stage. [turbofans - quiet engine program

    Science.gov (United States)

    Walker, C. L.; Kisner, L. S.; Delaney, R. A.; Beguhn, A. A.; Frye, D. E.

    1974-01-01

    Concepts selected to reduce fan generated noise in a turbofan are presented. Near-sonic flow at the fan inlet to reduce upstream propagated noise and the use of long-chord vanes to reduce downstream noise is discussed. The near-sonic condition at the rotor inlet plane was achieved by designing for high specific mass flow and by maintaining the high flow at reduced power by variable stators and variable fan exhaust nozzle. The long-chord vanes reduce response to unsteady flow. The acoustic design showed that long-chord stators would significantly reduce turbofan source noise and that other stator design parameters have no appreciable effect on noise for the spacing and chord length of the turbofan design. Four rig flow paths studied in the aerodynamic preliminary design are discussed. Noise prediction results indicate that a turbofan powered aircraft would be under federal air regulations levels without any acoustic treatment.

  10. 77 FR 20987 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2012-04-09

    ..., Amendment 39-16970 (77 FR 13485, March 7, 2012), currently requires inspecting the front combustion liner...; AD 2012-04-14] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc Turbofan Engines...

  11. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  12. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  13. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  14. Acoustic control study of turbofan nozzles with triangular chevrons

    Directory of Open Access Journals (Sweden)

    Grigore CICAN

    2014-03-01

    Full Text Available This paper has a small part dealing with the notion of chevron and the process that helps reducing the noise pollution. Based on the gas dynamics and the geometrical parameters of the turbofan jet engine a model of CFD data processing is created. In this process the influence of chevrons on acoustic wave intensity produced by the jet is observed by analyzing this process. A series of tests have been made on 10 si 20 lobed chevrons. The combination between them and the 7 resulting cases have been studied, namely the triangular chevrons in order to settle the influence of the geometrical parameters on the flow and on the jet acoustics. Finally the contribution of the chevrons in noise pollution reduction has been highlighted.

  15. Control Design for an Advanced Geared Turbofan Engine

    Science.gov (United States)

    Chapman, Jeffryes W.; Litt, Jonathan

    2017-01-01

    This paper describes the design process for the control system of an advanced geared turbofan engine. This process is applied to a simulation that is representative of a 30,000 lbf thrust class concept engine with two main spools, ultra-high bypass ratio, and a variable area fan nozzle. Control system requirements constrain the non-linear engine model as it operates throughout its flight envelope of sea level to 40,000 ft and from 0 to 0.8 Mach. The control architecture selected for this project was developed from literature and reflects a configuration that utilizes a proportional integral controller integrated with sets of limiters that enable the engine to operate safely throughout its flight envelope. Simulation results show the overall system meets performance requirements without exceeding system operational limits.

  16. Exergetic optimization of turbofan engine with genetic algorithm method

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    With the growth of passenger numbers, emissions from the aeronautics sector are increasing and the industry is now working on improving engine efficiency to reduce fuel consumption. The aim of this study is to present the use of genetic algorithms, an optimization method based on biological principles, to optimize the exergetic performance of turbofan engines. The optimization was carried out using exergy efficiency, overall efficiency and specific thrust of the engine as evaluation criteria and playing on pressure and bypass ratio, turbine inlet temperature and flight altitude. Results showed exergy efficiency can be maximized with higher altitudes, fan pressure ratio and turbine inlet temperature; the turbine inlet temperature is the most important parameter for increased exergy efficiency. This study demonstrated that genetic algorithms are effective in optimizing complex systems in a short time.

  17. Turbofan gas turbine engine with variable fan outlet guide vanes

    Science.gov (United States)

    Wood, Peter John (Inventor); Zenon, Ruby Lasandra (Inventor); LaChapelle, Donald George (Inventor); Mielke, Mark Joseph (Inventor); Grant, Carl (Inventor)

    2010-01-01

    A turbofan gas turbine engine includes a forward fan section with a row of fan rotor blades, a core engine, and a fan bypass duct downstream of the forward fan section and radially outwardly of the core engine. The forward fan section has only a single stage of variable fan guide vanes which are variable fan outlet guide vanes downstream of the forward fan rotor blades. An exemplary embodiment of the engine includes an afterburner downstream of the fan bypass duct between the core engine and an exhaust nozzle. The variable fan outlet guide vanes are operable to pivot from a nominal OGV position at take-off to an open OGV position at a high flight Mach Number which may be in a range of between about 2.5-4+. Struts extend radially across a radially inwardly curved portion of a flowpath of the engine between the forward fan section and the core engine.

  18. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  19. Flow in a Narrow Gap Along an Enclosed Rotating disk with Through-Flow

    OpenAIRE

    黒川, 淳一; 佐久問, 真人

    1988-01-01

    Flow in a narrow gap along an enclosed rotating disk superimposed with through-flow is studied theoretically and experimentally. When the axial gap is narrow, or a large outward through-flow is imposed, the boundary layers on the rotating and the stationary walls interfere with each other. The present study proposes an analytical model for such interference of gap flow and gives a theoretical analysis which is easily applicable to various boundary conditions. For non-interference of gap flow,...

  20. Propulsion and Energetics Panel Working Group 12 on through Flow Calculations in Axial Turbomachines

    Science.gov (United States)

    1981-10-01

    form: of" z•G* (2 (M1 - Micr) + 1) cr = critical where again the double prime denotes the corrected value. 3. For off-design operation a parabolic... prime importance, but frequently very difficult, to determine what simplifications are made in each method. Whether a specific through-flow method is...unsteady through-flow calculations Erdos , Alzner and McNally (1977) have developed a time- dependent, inviscid computation system with capability in

  1. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  2. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  3. Kalman Filter Constraint Tuning for Turbofan Engine Health Estimation

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2005-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints are often neglected because they do not fit easily into the structure of the Kalman filter. Recently published work has shown a new method for incorporating state variable inequality constraints in the Kalman filter, which has been shown to generally improve the filter s estimation accuracy. However, the incorporation of inequality constraints poses some risk to the estimation accuracy as the Kalman filter is theoretically optimal. This paper proposes a way to tune the filter constraints so that the state estimates follow the unconstrained (theoretically optimal) filter when the confidence in the unconstrained filter is high. When confidence in the unconstrained filter is not so high, then we use our heuristic knowledge to constrain the state estimates. The confidence measure is based on the agreement of measurement residuals with their theoretical values. The algorithm is demonstrated on a linearized simulation of a turbofan engine to estimate engine health.

  4. Interactive Educational Tool for Turbofan and Afterburning Turbojet Engines

    Science.gov (United States)

    Benson, Thomas J.

    1997-01-01

    A workstation-based, interactive educational computer program has been developed at the NASA Lewis Research Center to aid in the teaching and understanding of turbine engine design and analysis. This tool has recently been extended to model the performance of two-spool turbofans and afterburning turbojets. The program solves for the flow conditions through the engine by using classical one-dimensional thermodynamic analysis found in various propulsion textbooks. Either an approximately thermally perfect or calorically perfect gas can be used in the thermodynamic analysis. Students can vary the design conditions through a graphical user interface; engine performance is calculated immediately. A variety of graphical formats are used to present results, including numerical results, moving bar charts, and student-generated temperature versus entropy (Ts), pressure versus specific volume (pv), and engine performance plots. The package includes user-controlled printed output, restart capability, online help screens, and a browser that displays teacher-prepared lessons in turbomachinery. The program runs on a variety of workstations or a personal computer using the UNIX operating system and X-based graphics. It is being tested at several universities in the midwestern United States; the source and executables are available free from the author.

  5. CLASSIFICATION OF NEURAL NETWORK FOR TECHNICAL CONDITION OF TURBOFAN ENGINES BASED ON HYBRID ALGORITHM

    Directory of Open Access Journals (Sweden)

    Valentin Potapov

    2016-12-01

    Full Text Available Purpose: This work presents a method of diagnosing the technical condition of turbofan engines using hybrid neural network algorithm based on software developed for the analysis of data obtained in the aircraft life. Methods: allows the engine diagnostics with deep recognition to the structural assembly in the presence of single structural damage components of the engine running and the multifaceted damage. Results: of the optimization of neural network structure to solve the problems of evaluating technical state of the bypass turbofan engine, when used with genetic algorithms.

  6. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  7. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  8. Towards an Aero-Propulso-Servo-Elasticity Analysis of a Commercial Supersonic Transport

    Science.gov (United States)

    Connolly, Joseph W.; Kopasakis, George; Chwalowski, Pawel; Sanetrik, Mark D.; Carlson, Jan-Renee; Silva, Walt A.; McNamara, Jack

    2016-01-01

    This paper covers the development of an aero-propulso-servo-elastic (APSE) model using computational fluid dynamics (CFD) and linear structural deformations. The APSE model provides the integration of the following two previously developed nonlinear dynamic simulations: a variable cycle turbofan engine and an elastic supersonic commercial transport vehicle. The primary focus of this study is to provide a means to include relevant dynamics of a turbomachinery propulsion system into the aeroelastic studies conducted during a vehicle design, which have historically neglected propulsion effects. A high fidelity CFD tool is used here for the integration platform. The elastic vehicle neglecting the propulsion system serves as a comparison of traditional approaches to the APSE results. An overview of the methodology is presented for integrating the propulsion system and elastic vehicle. Static aeroelastic analysis comparisons between the traditional and developed APSE models for a wing tip detection indicate that the propulsion system impact on the vehicle elastic response could increase the detection by approximately ten percent.

  9. Influence of through-flow on linear pattern formation properties in binary mixture convection

    CERN Document Server

    Jung, C; Büchel, P; Jung, Ch.

    1996-01-01

    We investigate how a horizontal plane Poiseuille shear flow changes linear convection properties in binary fluid layers heated from below. The full linear field equations are solved with a shooting method for realistic top and bottom boundary conditions. Through-flow induced changes of the bifurcation thresholds (stability boundaries) for different types of convective solutions are deter- mined in the control parameter space spanned by Rayleigh number, Soret coupling (positive as well as negative), and through-flow Reynolds number. We elucidate the through-flow induced lifting of the Hopf symmetry degeneracy of left and right traveling waves in mixtures with negative Soret coupling. Finally we determine with a saddle point analysis of the complex dispersion relation of the field equations over the complex wave number plane the borders between absolute and convective instabilities for different types of perturbations in comparison with the appropriate Ginzburg-Landau amplitude equation approximation. PACS:47.2...

  10. Design, evaluation and test of an electronic, multivariable control for the F100 turbofan engine

    Science.gov (United States)

    Skira, C. A.; Dehoff, R. L.; Hall, W. E., Jr.

    1980-01-01

    A digital, multivariable control design procedure for the F100 turbofan engine is described. The controller is based on locally linear synthesis techniques using linear, quadratic regulator design methods. The control structure uses an explicit model reference form with proportional and integral feedback near a nominal trajectory. Modeling issues, design procedures for the control law and the estimation of poorly measured variables are presented.

  11. The completion of the mathematical model by parameter identification for simulating a turbofan engine

    Directory of Open Access Journals (Sweden)

    Irina Carmen ANDREI

    2015-09-01

    Full Text Available The purpose of this paper is to set up a method to determine the missing engine design parameters (turbine inlet temperature T3T, airflow rate which significantly influence the jet engines thrust. The authors have introduced a new non-linear equation connecting the fan specific work with the temperature T3T, customized for turbofan. The method of chords, since it converges unconditionally, has been used for solving the non-linear equation of variable temperature T3T. An alternate method, based for the same relation between fan specific work and T3T, has been presented in purpose to determine airflow rate and fan pressure ratio. Two mixed flows turbofans have been considered as study cases. For case #1 it was determined a value comparable to the Turbomeca Larzac turbofan series 04-C6 and 04-C20 which power the AlphaJet machines (series A - Luftwaffe, series E - Dassault Dornier. For the F100-PW229 turbofan, as case #2, being given T3T, then have been determined the airflow rate, fan pressure ratio and fan specific work. After completing the mathematical model with the missing parameters, the performances of the engines at off-design regimes and the operational envelopes revealing i.e. the variations of thrust, specific thrust and fuel specific consumption with altitude and Mach number have been calculated.

  12. 78 FR 61171 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-10-03

    ...-01-AD; Amendment 39-17599; AD 2013-19-17] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc... adopting a new airworthiness directive (AD) for all Rolls-Royce plc (RR) RB211-535E4-B-37 series turbofan... directive (AD): 200X-19-17 Rolls-Royce plc Amendment 39-17599; Docket No. FAA-2013- 0029;...

  13. 78 FR 68360 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Science.gov (United States)

    2013-11-14

    ...-01-AD; Amendment 39-17599; AD 2013-19-17] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc.... That AD applies to all Rolls-Royce plc (RR) RB211-535E4-B-37 series turbofan engines. The AD number is...-17 Rolls-Royce plc: Amendment 39-17599; Docket No. FAA-2013- 0029; * * * * * Issued in...

  14. 76 FR 65136 - Airworthiness Directives; Rolls-Royce plc (RR) Turbofan Engines

    Science.gov (United States)

    2011-10-20

    ... Directives; Rolls-Royce plc (RR) Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT. ACTION... Friday, except Federal holidays. For service information identified in this AD, contact Rolls-Royce plc...-07, Amendment 39-166679 (76 FR 24793, May 3, 2011), and adding the following new AD: Rolls-Royce...

  15. Minimum time acceleration of aircraft turbofan engines by using an algorithm based on nonlinear programming

    Science.gov (United States)

    Teren, F.

    1977-01-01

    Minimum time accelerations of aircraft turbofan engines are presented. The calculation of these accelerations was made by using a piecewise linear engine model, and an algorithm based on nonlinear programming. Use of this model and algorithm allows such trajectories to be readily calculated on a digital computer with a minimal expenditure of computer time.

  16. 77 FR 71085 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-11-29

    ... serial number (S/N) Rolls-Royce Deutschland Ltd & Co KG (RRD) TAY 620- 15 turbofan engines. This AD... specified products. The MCAI states: Fan blade off on a TAY 620-15 engine has recently been reported... AD applies to Rolls-Royce Deutschland Ltd & Co KG (RRD) TAY 620-15 engines, serial numbers 17054...

  17. 78 FR 17075 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-03-20

    ... Ltd & Co KG (RRD) Tay 611-8 turbofan engines. This AD requires inspection and replacement, if... ADs None. (c) Applicability This AD applies to Rolls-Royce Deutschland Ltd & Co KG (RRD) Tay 611-8... Agency AD 2012-0163, dated August 28, 2012, and RRD Alert Service Bulletin TAY-72-A1696, Revision 1...

  18. 78 FR 70198 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-11-25

    ... & Co KG (RRD) model Tay 620-15, 650-15, and 651-54 turbofan engines. This AD requires a one-time... review of the service history of Tay engines discovered that the High Pressure (HP) air bleed valve...''. Request To Change Applicability RRD requested that we change the scope of the AD to include Tay 650-15 and...

  19. 76 FR 68634 - Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines

    Science.gov (United States)

    2011-11-07

    ... visual inspections of the forward engine mount assembly side links for cracks, stripping and reapplying... 9346M99P04, installed on the forward engine mount assembly (also known as Configuration 2). Unsafe Condition...-04] RIN 2120-AA64 Airworthiness Directives; General Electric Company (GE) CF6 Turbofan Engines...

  20. Design project: LONGBOW supersonic interceptor

    Science.gov (United States)

    Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark

    1993-01-01

    A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.

  1. On highly focused supersonic microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.

  2. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  3. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  4. Effect of reference environment on the turbofan engine with the aid of specific-exergy based methods

    Energy Technology Data Exchange (ETDEWEB)

    Turan, Onder [Anadolu University, School of Civil Aviation (Turkey)], e-mail: onderturan@anadolu.edu.tr

    2011-07-01

    Research is being carried out in the aeronautics sector on improving engine efficiency, and thereby increasing engine power, while reducing fuel consumption. The aim of this study was to determine the performance and efficiency of a turbofan engine and assess the impact of altitude on its performance. An exergetic analysis was carried out at different altitudes on a simple turbofan engine composed of inlet, fan, high pressure compressor and turbine, fan nozzle, compression chamber and exhaust. Exergy analysis allows the loss locations to be assessed and efficiencies evaluated in a meaningful way. Results showed that the turbofan engine has an efficiency of 25.68% to 28.11% and an exergy efficiency of 48.91% to 50.34%. It was found, moreover, that the combustion chamber was where the greatest efficiency losses occurred. This study permitted the exergy performance of a turbofan engine to be determined and identified the components where the greater losses occurred.

  5. Simulating Supersonic Turbulence in Galaxy Outflows

    CERN Document Server

    Scannapieco, Evan

    2010-01-01

    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...

  6. Sea Level Operation Demonstration of F404-GE-400 Turbofan Engine with JP-5/Bio-Fuel Mixture

    Science.gov (United States)

    2010-03-30

    Aircraft Test and Evaluation Facility Hush House at Naval Air Station Patuxent River, Maryland, on 13 October 2009. The test consisted of two separate...turbofan engine inside the Aircraft Test and Evaluation Facility Hush House at Naval Air Station Patuxent River, Maryland, on 13 October 2009. The test...turbofan engine (ESN 310810) inside the Aircraft Test and Evaluation Facility Hush House at Naval Air Station (NAS) Patuxent River, Maryland, on 13

  7. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  8. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  9. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  10. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  11. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  12. Numerical and experimental investigations on supersonic ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS

    2005-02-01

    Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)

  13. Preliminary Evaluation of Altitude Scaling for Turbofan Engine Ice Crystal Icing

    Science.gov (United States)

    Tsao, Jen-Ching

    2017-01-01

    Preliminary evaluation of altitude scaling for turbofan engine ice crystal icing simulation was conducted during the 2015 LF11 engine icing test campaign in PSL.The results showed that a simplified approach for altitude scaling to simulate the key reference engine ice growth feature and associated icing effects to the engine is possible. But special considerations are needed to address the facility operation limitation for lower altitude engine icing simulation.

  14. 78 FR 71532 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-11-29

    ...- 02 for all Rolls-Royce Deutschland (RRD) Tay 620-15, Tay 650-15, and Tay 651-54 turbofan engines. AD... on certain serial number (S/N) Tay 650-15 engines. AD 2007-03-02 also requires, for all Tay 611-8, 620-15, Tay 650-15, and Tay 651-54 engines, initial and repetitive UIs of LP compressor fan blades. AD...

  15. 78 FR 17079 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2013-03-20

    ... Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This AD was prompted by RRD... Mandatory Continuing Airworthiness Information states: The Tay 650-15 and Tay 650-15/10 engine Time Limits... installed in Tay 650-15 and Tay 650-15/10 engines as well as in Tay 620-15 and Tay 620-15/20 engines...

  16. 77 FR 74123 - Airworthiness Directives; Rolls-Royce Deutschland Ltd & Co KG Turbofan Engines

    Science.gov (United States)

    2012-12-13

    ... Rolls-Royce Deutschland Ltd & Co KG (RRD) models Tay 620-15 and Tay 650-15 turbofan engines. This... correct an unsafe condition for the specified products. The MCAI states: The Tay 650-15 and Tay 650-15/10... assemblies installed in Tay 650-15 and Tay 650-15/10 engines as well as in Tay 620-15 and Tay 620-15/20...

  17. Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    Science.gov (United States)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1986-01-01

    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0.

  18. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  19. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  20. Study of active cooling for supersonic transports

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  1. Supersonic Motions of Galaxies in Clusters

    CERN Document Server

    Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan

    2004-01-01

    We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...

  2. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  3. Spiral and Taylor vortex fronts and pulses in axial through-flow

    CERN Document Server

    Pinter, A; Hoffmann, C; Hoffmann, Ch.

    2003-01-01

    The influence of an axial through-flow on the spatiotemporal growth behavior of different vortex structures in the Taylor-Couette system with radius ratio eta=0.5 is determined. The Navier Stokes equations (NSE) linearized around the basic Couette-Poiseuille flow are solved numerically with a shooting method in a wide range of through-flow strengths Re and different rates of co- and counterrotating cylinders for toroidally closed vortices with azimuthal wave number m=0 and for spiral vortex flow with m=+1 and m=-1. For each of these three different vortex varieties we have investigated (i) axially extended vortex structures, (ii) axially localized vortex pulses, and (iii) vortex fronts. The complex dispersion relations of the linearized NSE for vortex modes with the three different m are evaluated for real axial wave numbers for (i) and over the plane of complex axial wave numbers for (ii,iii). We have also determined the Ginzburg-Landau amplitude equation (GLE) approximation in order to analyze its predictio...

  4. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  5. Research of low boom and low drag supersonic aircraft design

    OpenAIRE

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...

  6. Supersonic and subsonic measurements of mesospheric ionization.

    Science.gov (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.

    1972-01-01

    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  7. Supersonic Jet Excitation using Flapping Injection

    CERN Document Server

    Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

    2013-01-01

    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

  8. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  9. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  10. Spiral and Taylor vortex fronts and pulses in axial through flow.

    Science.gov (United States)

    Pinter, A; Lücke, M; Hoffmann, Ch

    2003-02-01

    The influence of an axial through flow on the spatiotemporal growth behavior of different vortex structures in the Taylor-Couette system with radius ratio eta=0.5 is determined. The Navier-Stokes equations (NSE) linearized around the basic Couette-Poiseuille flow are solved numerically with a shooting method in a wide range of through flow strengths Re and different rates of co-rotating and counter-rotating cylinders for toroidally closed vortices with azimuthal wave number m=0 and for spiral vortex flow with m=+/-1. For each of these three different vortex varieties we have investigated (i) axially extended vortex structures, (ii) axially localized vortex pulses, and (iii) vortex fronts. The complex dispersion relations of the linearized NSE for vortex modes with the three different m are evaluated for real axial wave numbers for (i) and over the plane of complex axial wave numbers for (ii) and (iii). We have also determined the Ginzburg-Landau amplitude equation (GLE) approximation in order to analyze its predictions for the vortex structures (ii) and (iii). Critical bifurcation thresholds for extended vortex structures are evaluated. The boundaries between absolute and convective instability of the basic state for vortex pulses are determined with a saddle-point analysis of the dispersion relations. Fit parameters for power-law expansions of the boundaries up to Re4 are listed in two tables. Finally, the linearly selected front behavior of growing vortex structures is investigated using saddle-point analyses of the dispersion relations of NSE and GLE. For the two front intensity profiles (increasing in positive or negative axial direction) we have determined front velocities, axial growth rates, and the wave numbers and frequencies of the unfolding vortex patterns with azimuthal wave numbers m=0,+/-1, respectively.

  11. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  12. Investigation on the pressure matching performance of the constant area supersonic-supersonic ejector

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.

  13. Development of dynamic simulation of TF34-GE-100 turbofan engine with post-stall capability

    Science.gov (United States)

    Krosel, S. M.

    1984-01-01

    This paper describes the development of a hybrid computer simulation of a TF34-GE-100 turbofan engine with post-stall capability. The simulation operates in real-time and will be used to test and evaluate stall recovery control modes for this engine. The simulation calculations are performed by an analog computer with a peripheral multivariable function generation unit used for computing bivariate functions. Tabular listings of simulation variables are obtained by interfacing to a digital computer and using a custom software package for data collection and display.

  14. Status report - DARPA/NASA convertible turbofan/turboshaft engine program

    Science.gov (United States)

    Bellin, A. I.; Brooks, A.

    1983-01-01

    A development status report is presented for the NASA/Defense Advanced Research Projects Agency convertible turbofan-turboshaft engine, which can power a high speed rotorcraft in vertical flight, as well as in horizontal flight up to speeds of Mach 0.85. The basis for this development program is a modified TF34-GE-400 engine. Program objectives include both the demonstration of dual output mode (jet thrust and shaft horsepower) capability and the development of a control system which will operate the engine in either mode and convert operation between the modes.

  15. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  16. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  17. 75 FR 69611 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 768, 772, and 772B Turbofan Engines

    Science.gov (United States)

    2010-11-15

    ... Directives; Rolls-Royce plc RB211-Trent 768, 772, and 772B Turbofan Engines AGENCY: Federal Aviation... require the same initial and repetitive visual inspections of Rolls-Royce plc RB211-Trent 768 and 772... directive (AD) 98-09-27, Amendment 39-10508 (63 FR 24911, May 6, 1998): Rolls-Royce plc: Docket No....

  18. 76 FR 40217 - Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan Engines

    Science.gov (United States)

    2011-07-08

    ...; AD 2011-13-01] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc (RR) RB211-524 Series Turbofan... plc (RR): Amendment 39-16724; Docket No. FAA- 2011-0624; Directorate Identifier 2010-NE-11-AD.... (2) For service information identified in this AD, contact Rolls-Royce plc, P.O. Box 31, Derby,...

  19. Demonstration of a Packaged Capacitive Pressure Sensor System Suitable for Jet Turbofan Engine Health Monitoring

    Science.gov (United States)

    Scardelletti, Maximilian C.; Jordan, Jennifer L.; Meredith, Roger D.; Harsh, Kevin; Pilant, Evan; Usrey, Michael W.; Beheim, Glenn M.; Hunter, Gary W.; Zorman, Christian A.

    2016-01-01

    In this paper, the development and characterization of a packaged pressure sensor system suitable for jet engine health monitoring is demonstrated. The sensing system operates from 97 to 117 MHz over a pressure range from 0 to 350 psi and a temperature range from 25 to 500 deg. The sensing system consists of a Clapp-type oscillator that is fabricated on an alumina substrate and is comprised of a Cree SiC MESFET, MIM capacitors, a wire-wound inductor, chip resistors and a SiCN capacitive pressure sensor. The pressure sensor is located in the LC tank circuit of the oscillator so that a change in pressure causes a change in capacitance, thus changing the resonant frequency of the sensing system. The chip resistors, wire-wound inductors and MIM capacitors have all been characterized at temperature and operational frequency, and perform with less than 5% variance in electrical performance. The measured capacitive pressure sensing system agrees very well with simulated results. The packaged pressure sensing system is specifically designed to measure the pressure on a jet turbofan engine. The packaged system can be installed by way of borescope plug adaptor fitted to a borescope port exposed to the gas path of a turbofan engine.

  20. Certain Type Turbofan Engine Whole Vibration Model with Support Looseness Fault and Casing Response Characteristics

    Directory of Open Access Journals (Sweden)

    H. F. Wang

    2014-01-01

    Full Text Available Support looseness fault is a type of common fault in aeroengine. Serious looseness fault would emerge under larger unbalanced force, which would cause excessive vibration and even lead to rubbing fault, so it is important to analyze and recognize looseness fault effectively. In this paper, based on certain type turbofan engine structural features, a rotor-support-casing whole model for certain type turbofan aeroengine is established. The rotor and casing systems are modeled by means of the finite element beam method; the support systems are modeled by lumped-mass model; the support looseness fault model is also introduced. The coupled system response is obtained by numerical integral method. In this paper, based on the casing acceleration signals, the impact characteristics of symmetrical stiffness and asymmetric stiffness models are analyzed, finding that the looseness fault would lead to the longitudinal asymmetrical characteristics of acceleration time domain wave and the multiple frequency characteristics, which is consistent with the real trial running vibration signals. Asymmetric stiffness looseness model is verified to be fit for aeroengine looseness fault model.

  1. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    Science.gov (United States)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-07-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  2. A Comparison of Hybrid Approaches for Turbofan Engine Gas Path Fault Diagnosis

    Science.gov (United States)

    Lu, Feng; Wang, Yafan; Huang, Jinquan; Wang, Qihang

    2016-09-01

    A hybrid diagnostic method utilizing Extended Kalman Filter (EKF) and Adaptive Genetic Algorithm (AGA) is presented for performance degradation estimation and sensor anomaly detection of turbofan engine. The EKF is used to estimate engine component performance degradation for gas path fault diagnosis. The AGA is introduced in the integrated architecture and applied for sensor bias detection. The contributions of this work are the comparisons of Kalman Filters (KF)-AGA algorithms and Neural Networks (NN)-AGA algorithms with a unified framework for gas path fault diagnosis. The NN needs to be trained off-line with a large number of prior fault mode data. When new fault mode occurs, estimation accuracy by the NN evidently decreases. However, the application of the Linearized Kalman Filter (LKF) and EKF will not be restricted in such case. The crossover factor and the mutation factor are adapted to the fitness function at each generation in the AGA, and it consumes less time to search for the optimal sensor bias value compared to the Genetic Algorithm (GA). In a word, we conclude that the hybrid EKF-AGA algorithm is the best choice for gas path fault diagnosis of turbofan engine among the algorithms discussed.

  3. Constrained Kalman Filtering Via Density Function Truncation for Turbofan Engine Health Estimation

    Science.gov (United States)

    Simon, Dan; Simon, Donald L.

    2006-01-01

    Kalman filters are often used to estimate the state variables of a dynamic system. However, in the application of Kalman filters some known signal information is often either ignored or dealt with heuristically. For instance, state variable constraints (which may be based on physical considerations) are often neglected because they do not fit easily into the structure of the Kalman filter. This paper develops an analytic method of incorporating state variable inequality constraints in the Kalman filter. The resultant filter truncates the PDF (probability density function) of the Kalman filter estimate at the known constraints and then computes the constrained filter estimate as the mean of the truncated PDF. The incorporation of state variable constraints increases the computational effort of the filter but significantly improves its estimation accuracy. The improvement is demonstrated via simulation results obtained from a turbofan engine model. The turbofan engine model contains 3 state variables, 11 measurements, and 10 component health parameters. It is also shown that the truncated Kalman filter may be a more accurate way of incorporating inequality constraints than other constrained filters (e.g., the projection approach to constrained filtering).

  4. Dynamic Analysis for a Geared Turbofan Engine with Variable Area Fan Nozzle

    Science.gov (United States)

    Csank, Jeffrey T.; Thomas, George L.

    2017-01-01

    Aggressive design goals have been set for future aero-propulsion systems with regards to fuel economy, noise, and emissions. To meet these challenging goals, advanced propulsion concepts are being explored and current operating margins are being re-evaluated to find additional concessions that can be made. One advanced propulsion concept being evaluated is a geared turbofan with a variable area fan nozzle (VAFN), developed by NASA. This engine features a small core, a fan driven by the low pressure turbine through a reduction gearbox, and a shape memory alloy (SMA)-actuated VAFN. The VAFN is designed to allow both a small exit area for efficient operation at cruise, while being able to open wider at high power conditions to reduce backpressure on the fan and ensure a safe level of stall margin is maintained. The VAFN is actuated via a SMA-based system instead of a conventional system to decrease overall weight of the system, however, SMA-based actuators respond relatively slowly, which introduces dynamic issues that are investigated in this work. This paper describes both a control system designed specifically for issues associated with SMAs, and dynamic analysis of the geared turbofan VAFN with the SMA actuators. Also, some future recommendations are provided for this type of propulsion system.

  5. Load Sharing Behavior of Star Gearing Reducer for Geared Turbofan Engine

    Science.gov (United States)

    Mo, Shuai; Zhang, Yidu; Wu, Qiong; Wang, Feiming; Matsumura, Shigeki; Houjoh, Haruo

    2017-03-01

    Load sharing behavior is very important for power-split gearing system, star gearing reducer as a new type and special transmission system can be used in many industry fields. However, there is few literature regarding the key multiple-split load sharing issue in main gearbox used in new type geared turbofan engine. Further mechanism analysis are made on load sharing behavior among star gears of star gearing reducer for geared turbofan engine. Comprehensive meshing error analysis are conducted on eccentricity error, gear thickness error, base pitch error, assembly error, and bearing error of star gearing reducer respectively. Floating meshing error resulting from meshing clearance variation caused by the simultaneous floating of sun gear and annular gear are taken into account. A refined mathematical model for load sharing coefficient calculation is established in consideration of different meshing stiffness and supporting stiffness for components. The regular curves of load sharing coefficient under the influence of interactions, single action and single variation of various component errors are obtained. The accurate sensitivity of load sharing coefficient toward different errors is mastered. The load sharing coefficient of star gearing reducer is 1.033 and the maximum meshing force in gear tooth is about 3010 N. This paper provides scientific theory evidences for optimal parameter design and proper tolerance distribution in advanced development and manufacturing process, so as to achieve optimal effects in economy and technology.

  6. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  7. Numerical simulation of supersonic gap flow.

    Science.gov (United States)

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  8. Numerical simulation of supersonic gap flow.

    Directory of Open Access Journals (Sweden)

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  9. Coupling dynamic of twin supersonic jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2015-11-01

    In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.

  10. Location of South Georgia and potential impact on early Pacific-Atlantic through flow

    Science.gov (United States)

    Carter, A.; Curtis, M.

    2013-12-01

    One of the most significant Cenozoic reconfigurations of global ocean circulation involved the initiation of Pacific to Atlantic exchange that led to the isolation of Antarctica by the Antarctica Circumpolar Current though the separation of South America and Antarctica and the opening of the Scotia Sea and Drake Passage. Whether significant Pacific to Atlantic through-flow was possible in the early Cenozoic has remained unclear because it is not certain where continental fragments such as South Georgia, a potential barrier, were located before seafloor spreading created the Scotia Sea. Establishing where South Georgia was located is also critical to reconstructing the Scotia arc and understanding its evolution. Detrital zircon U-Pb geochronology and apatite thermochronometry are used to constrain the pre-drift location of South Georgia. Data from Cretaceous turbidites exposed on South Georgia are consistent with a former connection to the Rocas Verdes back-arc basin giving support to models that have argued for a pre- tectonic translation location southeast of Tierra del Fuego. Following an early phase of rock uplift, thermal history models of the apatite chronometry data indicate that the South Georgia continental fragment underwent burial related heating and was therefore not a significant topographic feature until it emerged c. 10-7 Ma coeval with the cessation of spreading at the West Scotia Ridge and collision between the South Georgia continental block and the Northeast Georgia Rise.

  11. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  12. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  13. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  14. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  15. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  16. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  17. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  18. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  19. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  20. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  1. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  2. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  3. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  4. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  5. Theoretical aspects of an electrostatic aerosol filter for civilian turbofan engines

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2012-03-01

    Full Text Available The paper addresses the problem of aerosol filtration in turbofan engines. The current problem of very fine aerosol admission is the impossibility for mechanical filtration; another aspect of the problem is the high mass flow of air to be filtered. Non-attended, the aerosol admission can -and usually does- lead to clogging of turbine cooling passages and can damage the engine completely. The approach is theoretical and relies on the principles of electrostatic dust collectors known in other industries. An estimative equation is deduced in order to quantify the electrical charge required to obtain the desired filtration. Although the device still needs more theoretical and experimental work, it could one day be used as a means of increasing the safety of airplanes passing trough an aerosol laden mass of air.

  6. Performance (Off-Design) Cycle Analysis for a Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Mattingly, J. D.; Marek, C. J.

    2005-01-01

    This report presents the performance of a steady-state, dual-spool, separate-exhaust turbofan engine, with an interstage turbine burner (ITB) serving as a secondary combustor. The ITB, which is located in the transition duct between the high- and the low-pressure turbines, is a relatively new concept for increasing specific thrust and lowering pollutant emissions in modern jet-engine propulsion. A detailed off-design performance analysis of ITB engines is written in Microsoft(Registered Trademark) Excel (Redmond, Washington) macrocode with Visual Basic Application to calculate engine performances over the entire operating envelope. Several design-point engine cases are pre-selected using a parametric cycle-analysis code developed previously in Microsoft(Registered Trademark) Excel, for off-design analysis. The off-design code calculates engine performances (i.e. thrust and thrust-specific-fuel-consumption) at various flight conditions and throttle settings.

  7. Unsteady Operation of New Type Turbofan Engine with Aerodynamic Torque Converter Reducing Front Fan Speed

    Institute of Scientific and Technical Information of China (English)

    Toshiaki KANEMOTO; Seita SEKI; Kazunori IDENO; Ahmed Mohamed GALAL

    2005-01-01

    It is desired to increase the rotational speed of the core engine of the turbofan so as to get the best efficiency for the next leap of engine technology. The conventional mechanism in which the front fan is directly connected to the output shaft of a core engine, have a limit of increasing the spool speed, because the fan diameter is very large. The authors have proposed a new driving system in which the front fan is driven through the aerodynamic torque converter. The front fan can work at the best performance at slower speed while the core engine runs more efficiently at higher speed. Continuously, this paper discusses the response of the front fan in the unsteady operation of the core engine, accompanying with the internal flow. The system has the acceptable responsibility in the unsteady operation which is very important for the aircrafts.

  8. Commercial turbofan engine exhaust nozzle flow analyses using PAB3D

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Uenishi, K.; Carlson, John R.; Keith, B. D.

    1992-01-01

    Recent developments of a three-dimensional (PAB3D) code have paved the way for a computational investigation of complex aircraft aerodynamic components. The PAB3D code was developed for solving the simplified Reynolds Averaged Navier-Stokes equations in a three-dimensional multiblock/multizone structured mesh domain. The present analysis was applied to commercial turbofan exhaust flow systems. Solution sensitivity to grid density is presented. Laminar flow solutions were developed for all grids and two-equation k-epsilon solutions were developed for selected grids. Static pressure distributions, mass flow and thrust quantities were calculated for on-design engine operating conditions. Good agreement between predicted surface static pressures and experimental data was observed at different locations. Mass flow was predicted within 0.2 percent of experimental data. Thrust forces were typically within 0.4 percent of experimental data.

  9. Review and prospect of supersonic business jet design

    Science.gov (United States)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  10. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  11. A linear control design structure to maintain loop properties during limit operation in a multi-nozzle turbofan engine

    Science.gov (United States)

    Mattern, Duane; Ouzts, Peter

    1991-01-01

    The implementation of multi-variable control systems on turbofan engines requires the use of limit protection to maintain safe engine operation. Since a turbofan engine typically encounters limits during transient operation, the use of a limit protection scheme that modifies the feedback loop may void the desired 'guarantees' associated with linear multi-variable control design methods, necessitating considerable simulation to validate the control with limit protection. An alternative control design structure is proposed that maintains the desired linear feedback properties when certain safety limits are encountered by moving the limit protection scheme outside of the feedback loop. This proposed structure is compared to a structure with a limit protection scheme that modifies the feedback loop properties. The two design structures are compared using both linear and nonlinear simulations. The evaluation emphasizes responses where the fan surge margin limit is encountered.

  12. Investigation of Inlet Guide Vane Wakes in a F109 Turbofan Engine with and without Flow Control

    OpenAIRE

    Kozak, Jeffrey D

    2000-01-01

    A series of experiments were conducted in a F109 turbofan engine to investigate the unsteady wake profiles of an Inlet Guide Vane (IGV) at a typical spacing to the downstream fan at subsonic and transonic relative blade velocities. The sharp trailing-edge vanes were designed to produce a wake profile consistent with modern IGV. Time averaged baseline measurements were first performed with the IGV located upstream of the aerodynamic influence of the fan. Unsteady experiments were performed ...

  13. 75 FR 801 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Science.gov (United States)

    2010-01-06

    ... requires replacing the fuel-to-oil heat exchanger (FOHE). This proposed AD would require replacing the FOHE..., 553A2-61, 556A2-61, 556B2-61, and 560A2-61 turbofan engines with fuel-to-oil heat exchangers (FOHEs... through Friday, except Federal holidays. Fax: (202) 493-2251. Contact Rolls-Royce plc, P.O. Box 31,...

  14. 75 FR 15326 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 500, 700, and 800 Series Turbofan Engines

    Science.gov (United States)

    2010-03-29

    ... aviation product, and results from the risk of engine fuel-to-oil heat exchanger (FOHE) blockage. The MCAI..., 556A2-61, 556B2-61, and 560A2-61 turbofan engines with fuel-to-oil heat exchangers (FOHEs) part number...., West Building Ground Floor, Room W12-140, Washington, DC 20590- 0001. Contact Rolls-Royce plc, P.O....

  15. A study of flow and initial stage of water condensation in the exhaust jet of the aircraft turbofan engine

    OpenAIRE

    Lobanova, Maria,; Tsirkunov, Yury,

    2013-01-01

    The paper describes the results of numerical study of flow in the exhaust jet of turbofan engine CFM 56-3. Influence of computational domain decomposition, grid refinement and flow model on the jet flow field is discussed. Special attention is payed to simulation of nucleation and condensation processes in the exhaust jet. Growth of water clusters in the jet and cluster distribution in size are obtained.; International audience; The paper describes the results of numerical study of flow in th...

  16. 76 FR 12277 - Airworthiness Directives; Rolls-Royce plc RB211-Trent 768, 772, and 772B Turbofan Engines

    Science.gov (United States)

    2011-03-07

    ...-AD; Amendment 39-16620; AD 98-09-27R1] RIN 2120-AA64 Airworthiness Directives; Rolls-Royce plc RB211... of Rolls-Royce plc RB211-Trent 768 and 772 series turbofan engine thrust reverser hinge lugs and..., Amendment 39-10508 (63 FR 24911, May 6, 1998): 98-09-27R1 Rolls-Royce plc: Amendment 39-16620. Docket...

  17. Inlet Acoustic Data from a High Bypass Ratio Turbofan Rotor in an Internal Flow Component Test Facility

    Science.gov (United States)

    Bozak, Richard F.

    2017-01-01

    In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.

  18. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  19. Supersonic Jet Noise Reduction Using Microjets

    Science.gov (United States)

    Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra

    2013-11-01

    Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.

  20. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  1. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  2. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  3. Supersonic collisions between two gas streams

    CERN Document Server

    Lee, H M; Ryu, D; Lee, Hyung Mok; Kang, Hyesung; Ryu, Dongsu

    1995-01-01

    A star around a massive black hole can be disrupted tidally by the gravity of the black hole. Then, its debris may form a precessing stream which may even collide with itself. In order to understand the dynamical effects of the stream-stream collision on the eventual accretion of the stellar debris onto the black hole, we have studied how gas flow behaves when the outgoing stream collides supersonically with the incoming stream. We have investigated the problem analytically with one-dimensional plane-parallel streams and numerically with more realistic three-dimensional streams. A shock formed around the contact surface converts the bulk of the orbital streaming kinetic energy into thermal energy. In three-dimensional simulations, the accumulated hot post-shock gas then expands adiabatically and drives another shock into the low density ambient region. Through this expansion, thermal energy is converted back to the kinetic energy associated with the expanding motion. Thus, in the end, only a small fraction of...

  4. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  5. Supersonic Magnetic Flows in the Quiet Sun

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A

    2012-01-01

    In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.

  6. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  7. Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.

  8. Modeling of Commercial Turbofan Engine with Ice Crystal Ingestion; Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  9. Modeling of Commercial Turbofan Engine With Ice Crystal Ingestion: Follow-On

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.; Coennen, Ryan

    2014-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which is ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  10. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  11. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  12. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas

    CERN Document Server

    Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G

    2014-01-01

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...

  13. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  14. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  15. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  16. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  17. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  18. Flow Through Aerodynamic Torque Converter Installed in New Type Turbofan Engine

    Institute of Scientific and Technical Information of China (English)

    Toshiaki Kanemoto; Dai Sakihama; Seita Seki; Ahmed Mohamed Galal; FengQin Han; YeXiang Xiao

    2007-01-01

    It is desired to increase the core engine speed of the turbofan, to get the best efficiency for the next leap of the engine technology. The conventional mechanism in which the front fan is directly connected to the output shaft of the core engine has a limit of increasing the spool speed because the fan diameter is very large. The authors have proposed a new driving system in which the front fan is driven through the aerodynamic torque converter. The front fan can work at the conventional speed while the core engine runs more efficiently at higher speed. Continuously, in this paper, the flow through the converter is simulated numerically by CFX-5 with the k-εturbulence model of the commercial CFD code. The secondary flow occurred on the hub wall affects markedly the flow condition on the blade surfaces, and the flow along the suction surface of the driver blade separates near the trailing edge, which is deviated to the blade tip by the centrifugal force due to the wheel rotation.

  19. Application of the Systematic Sensor Selection Strategy for Turbofan Engine Diagnostics

    Science.gov (United States)

    Sowers, T. Shane; Kopasakis, George; Simon, Donald L.

    2008-01-01

    The data acquired from available system sensors forms the foundation upon which any health management system is based, and the available sensor suite directly impacts the overall diagnostic performance that can be achieved. While additional sensors may provide improved fault diagnostic performance, there are other factors that also need to be considered such as instrumentation cost, weight, and reliability. A systematic sensor selection approach is desired to perform sensor selection from a holistic system-level perspective as opposed to performing decisions in an ad hoc or heuristic fashion. The Systematic Sensor Selection Strategy is a methodology that optimally selects a sensor suite from a pool of sensors based on the system fault diagnostic approach, with the ability of taking cost, weight, and reliability into consideration. This procedure was applied to a large commercial turbofan engine simulation. In this initial study, sensor suites tailored for improved diagnostic performance are constructed from a prescribed collection of candidate sensors. The diagnostic performance of the best performing sensor suites in terms of fault detection and identification are demonstrated, with a discussion of the results and implications for future research.

  20. 3D Multistage Simulation of Each Component of the GE90 Turbofan Engine

    Science.gov (United States)

    Turner, Mark; Topp, Dave; Veres, Joe

    1999-01-01

    A 3D multistage simulation of each component of the GE90 Turbofan engine has been made. This includes 49 blade rows. A coupled simulation of all blade rows will be made very soon. The simulation is running using two levels of parallelism. The first level is on a blade row basis with information shared using files. The second level is using a grid domain decomposition with information shared using MPI. Timings will be shown for running on the SP2, an SGI Origin and a distributed system of HP workstations. On the HP workstations, the CHIMP version of MPI is used, with queuing supplied by LSF (Load Sharing Facility). A script-based control system is used to ensure reliability. An MPEG movie illustrating the flow simulation of the engine has been created using PV3, a parallel visualization library created by Bob Haimes of MIT. PVM is used to create a virtual machine from 10 HP workstations and display on an SGI workstation. A representative component simulation will be compared to rig data to demonstrate its usefulness in turbomachinery design and analysis.

  1. Time Delay Analysis of Turbofan Engine Direct and Indirect Combustion Noise Sources

    Science.gov (United States)

    Miles, Jeffrey Hilton

    2008-01-01

    The core noise components of a dual spool turbofan engine were separated by the use of a coherence function. A source location technique based on adjusting the time delay between the combustor pressure sensor signal and the far-field microphone signal to maximize the coherence and remove as much variation of the phase angle with frequency as possible was used. The discovery was made that for the 130o microphone a 90.027 ms time shift worked best for the frequency band from 0 to 200 Hz while a 86.975 ms time shift worked best for the frequency band from 200 to 400 Hz. Hence, the 0 to 200 Hz band signal took more time than the 200 to 400 Hz band signal to travel the same distance. This suggests the 0 to 200 Hz coherent cross spectral density band is partly due to indirect combustion noise attributed to entropy fluctuations, which travel at the flow velocity, interacting with the turbine. The signal in the 200 to 400 Hz frequency band is attributed mostly to direct combustion noise. Results are presented herein for engine power settings of 48, 54, and 60 percent of the maximum power setting

  2. Source Methodology for Turbofan Noise Prediction (SOURCE3D Technical Documentation)

    Science.gov (United States)

    Meyer, Harold D.

    1999-01-01

    This report provides the analytical documentation for the SOURCE3D Rotor Wake/Stator Interaction Code. It derives the equations for the rotor scattering coefficients and stator source vector and scattering coefficients that are needed for use in the TFANS (Theoretical Fan Noise Design/Prediction System). SOURCE3D treats the rotor and stator as isolated source elements. TFANS uses this information, along with scattering coefficients for inlet and exit elements, and provides complete noise solutions for turbofan engines. SOURCE3D is composed of a collection of FORTRAN programs that have been obtained by extending the approach of the earlier V072 Rotor Wake/Stator Interaction Code. Similar to V072, it treats the rotor and stator as a collection of blades and vanes having zero thickness and camber contained in an infinite, hardwall annular duct. SOURCE3D adds important features to the V072 capability-a rotor element, swirl flow and vorticity waves, actuator disks for flow turning, and combined rotor/actuator disk and stator/actuator disk elements. These items allow reflections from the rotor, frequency scattering, and mode trapping, thus providing more complete noise predictions than previously. The code has been thoroughly verified through comparison with D.B. Hanson's CUP2D two- dimensional code using a narrow annulus test case.

  3. Acoustic theory of axisymmetric multisectioned ducts. [reduction of turbofan engine noise

    Science.gov (United States)

    Zorumski, W. E.

    1974-01-01

    Equations are developed for the acoustic field in a duct system which is made up of a number of connected circular and annular ducts. These equations are suitable for finding the acoustic field inside of and radiated from an aircraft turbofan engine. Acoustic modes are used as generalized coordinates in order to develop a set of matrix equations for the acoustic field. Equations for these modes are given for circular and annular ducts with uniform flow. Modal source equations are derived for point acoustic sources. General equations for mode transmission and reflection are developed and detailed equations are derived for ducts with multiple sections of acoustic treatment and for ducts with circumferential splitter rings. The general theory is applied to the special case of a uniform area circular duct with multisection liners and it is shown that the mode reflection effects are proportional to differences of the acoustic admittances of adjacent liners. A numerical example is given which shows that multisection liners may provide greater noise suppression than uniform liners.

  4. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    Science.gov (United States)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  5. Full-Scale Turbofan Engine Noise-Source Separation Using a Four-Signal Method

    Science.gov (United States)

    Hultgren, Lennart S.; Arechiga, Rene O.

    2016-01-01

    Contributions from the combustor to the overall propulsion noise of civilian transport aircraft are starting to become important due to turbofan design trends and expected advances in mitigation of other noise sources. During on-ground, static-engine acoustic tests, combustor noise is generally sub-dominant to other engine noise sources because of the absence of in-flight effects. Consequently, noise-source separation techniques are needed to extract combustor-noise information from the total noise signature in order to further progress. A novel four-signal source-separation method is applied to data from a static, full-scale engine test and compared to previous methods. The new method is, in a sense, a combination of two- and three-signal techniques and represents an attempt to alleviate some of the weaknesses of each of those approaches. This work is supported by the NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject and the NASA Glenn Faculty Fellowship Program.

  6. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  7. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  8. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  9. SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW

    Directory of Open Access Journals (Sweden)

    Tropina, A. A.

    2013-06-01

    Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.

  10. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... for attendees. The purpose of the meeting is to raise public awareness of the continuing technological... joint meeting of the 159th Acoustical Society of America and NOISE-CON 2010 in Baltimore, Maryland 21202. The purpose of these meetings is to raise public awareness on advances in supersonic technology,...

  11. Experimental study of mixing enhancement using pylon in supersonic flow

    Science.gov (United States)

    Vishwakarma, Manmohan; Vaidyanathan, Aravind

    2016-01-01

    The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.

  12. NASA F-16XL supersonic laminar flow control program overview

    Science.gov (United States)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  13. Multiresolution analysis of density fluctuation in supersonic mixing layer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.

  14. A flamelet model for turbulent diffusion combustion in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.

  15. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-02-15

    applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close

  16. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  17. A kernel principal component analysis–based degradation model and remaining useful life estimation for the turbofan engine

    Directory of Open Access Journals (Sweden)

    Delong Feng

    2016-05-01

    Full Text Available Remaining useful life estimation of the prognostics and health management technique is a complicated and difficult research question for maintenance. In this article, we consider the problem of prognostics modeling and estimation of the turbofan engine under complicated circumstances and propose a kernel principal component analysis–based degradation model and remaining useful life estimation method for such aircraft engine. We first analyze the output data created by the turbofan engine thermodynamic simulation that is based on the kernel principal component analysis method and then distinguish the qualitative and quantitative relationships between the key factors. Next, we build a degradation model for the engine fault based on the following assumptions: the engine has only had constant failure (i.e. no sudden failure is included, and the engine has a Wiener process, which is a covariate stand for the engine system drift. To predict the remaining useful life of the turbofan engine, we built a health index based on the degradation model and used the method of maximum likelihood and the data from the thermodynamic simulation model to estimate the parameters of this degradation model. Through the data analysis, we obtained a trend model of the regression curve line that fits with the actual statistical data. Based on the predicted health index model and the data trend model, we estimate the remaining useful life of the aircraft engine as the index reaches zero. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this prediction method that we propose. At last, a case study involving engine simulation data demonstrates the precision and performance advantages of this proposed method, the precision of the method can reach to 98.9% and the average precision is 95.8%.

  18. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    Science.gov (United States)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  19. CARDIAD approach to system dominance with application to turbofan engine models. [Complex Acceptability Region for DIAgonal Dominance in multivariable systems analysis and design

    Science.gov (United States)

    Schafer, R. M.; Sain, M. K.

    1980-01-01

    The paper presents the CARDIAD (complex acceptability region for diagonal dominance) method for achieving the diagonal dominance condition in the inverse Nyquist array approach to the analysis and design of multivariable systems in the frequency domain. A design example is given for a sixth order, 4-input, 4-output model of a turbofan engine.

  20. 75 FR 34924 - Airworthiness Directives; CFM International, S.A. CFM56-5, -5B, and -7B Series Turbofan Engines

    Science.gov (United States)

    2010-06-21

    ... stage 3 low-pressure turbine (LPT) disks, identified by serial number (S/N). This AD results from the... International CFM56-5, -5B, and -7B series turbofan engines with stage 3 low-pressure turbine (LPT) disks part... distribution of power and responsibilities among the various levels of government. For the reasons...

  1. The Effect of Bypass Nozzle Exit Area on Fan Aerodynamic Performance and Noise in a Model Turbofan Simulator

    Science.gov (United States)

    Hughes, Christopher E.; Podboy, Gary, G.; Woodward, Richard P.; Jeracki, Robert, J.

    2013-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on identifying and understanding the noise sources and noise generation mechanisms in the modern turbofan engine, as well as determining their contribution to the overall aircraft noise signature. Therefore, a comprehensive aeroacoustic wind tunnel test program was conducted called the Fan Broadband Source Diagnostic Test as part of the NASA Quiet Aircraft Technology program. The test was performed in the anechoic NASA Glenn 9- by 15-Foot Low Speed Wind Tunnel using a 1/5 scale model turbofan simulator which represented a current generation, medium pressure ratio, high bypass turbofan aircraft engine. The investigation focused on simulating in model scale only the bypass section of the turbofan engine. The test objectives were to: identify the noise sources within the model and determine their noise level; investigate several component design technologies by determining their impact on the aerodynamic and acoustic performance of the fan stage; and conduct detailed flow diagnostics within the fan flow field to characterize the physics of the noise generation mechanisms in a turbofan model. This report discusses results obtained for one aspect of the Source Diagnostic Test that investigated the effect of the bypass or fan nozzle exit area on the bypass stage aerodynamic performance, specifically the fan and outlet guide vanes or stators, as well as the farfield acoustic noise level. The aerodynamic performance, farfield acoustics, and Laser Doppler Velocimeter flow diagnostic results are presented for the fan and four different fixed-area bypass nozzle configurations. The nozzles simulated fixed engine operating lines and encompassed the fan stage operating envelope from near stall to cruise. One nozzle was selected as a baseline reference, representing the nozzle area which would achieve the design point operating conditions and fan stage performance. The total area change from

  2. Supersonic flow past a flat lattice of cylindrical rods

    Science.gov (United States)

    Guvernyuk, S. V.; Maksimov, F. A.

    2016-06-01

    Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.

  3. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  4. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  5. Features of Ignition and Stable Combustion in Supersonic Combustor

    Science.gov (United States)

    Goldfeld, M.; Starov, A.; Timofeev, K.

    2009-01-01

    Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.

  6. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  7. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    CERN Document Server

    Thun, Daniel; Schmidt, Franziska; Kley, Wilhelm

    2016-01-01

    The supersonic motion of gravitating objects through a gaseous medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planets up to galaxies. Especially the dynamical friction, caused by the forming wake behind the object, plays an important role for the dynamics of the system. To calculate the dynamical friction, standard formulae, based on linear theory are often used. It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem. We perform sequences of high resolution numerical studies of rigid bodies moving supersonically through a homogeneous medium, and calculate the total drag acting on the object, which is the sum of gravitational and hydro drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. From the final equilibrium state of the sim...

  8. The effects of profiles on supersonic jet noise

    Science.gov (United States)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  9. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  10. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  11. Providing Compassion through Flow

    Directory of Open Access Journals (Sweden)

    Lydia Royeen

    2015-07-01

    Full Text Available Meg Kral, MS, OTR/L, CLT, is the cover artist for the Summer 2015 issue of The Open Journal of Occupational Therapy. Her untitled piece of art is an oil painting and is a re-creation of a photograph taken while on vacation. Meg is currently supervisor of outpatient services at Rush University Medical Center. She is lymphedema certified and has a specific interest in breast cancer lymphedema. Art and occupational therapy serve similar purposes for Meg: both provide a sense of flow. She values the outcomes, whether it is a piece of art or improved functional status

  12. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    Science.gov (United States)

    1959-12-01

    Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston

  13. Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation

    Science.gov (United States)

    Winterberg, F.

    1988-02-01

    Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.

  14. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  15. Dynamical separation of spherical bodies in supersonic flow

    OpenAIRE

    Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf

    2012-01-01

    An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...

  16. Aeroelastic coupling in sonic boom optimization of a supersonic aircraft

    OpenAIRE

    Vázquez, Mariano; Dervieux, Alain; Koobus, Bruno

    2003-01-01

    In this paper, we consider a multi-disciplinary optimization problem where the initial shape of a wing is sought in order to cope, after elastic deformation by the flow, with some optimality conditions. We propose a medium-strong coupling which allows to consider different softwares communicating a small number of times. Applications to the optimization of the AGARD Wing 445.6 and a flexible supersonic aircraft wing are presented.

  17. Study on the Characteristics of Supersonic Coanda Jet

    Institute of Scientific and Technical Information of China (English)

    ShigeruMatsuo; ShenYu; 等

    1998-01-01

    Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.

  18. Research on the mechanics of underwater supersonic gas jets

    Science.gov (United States)

    Shi, Honghui; Wang, Boyi; Dai, Zhenqing

    2010-03-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

  19. Technical and environmental challenges for the next generation supersonic transport

    Energy Technology Data Exchange (ETDEWEB)

    Pacull, M. [Aerospatiale (France); Hume, Ch. [British Aerospace (United Kingdom)

    1994-12-31

    The next century will be marked by the entry into service of new supersonic transport. The real question concerning the next generation supersonic transport is not will it happen, but when, and how. There is a general agreement that such an airplane will result from a worldwide venture. Who will participate, to what extend and how we will put the vehicle and partners together, are an interesting concern that will need some time to resolve. The other challenges will be to design, build and market an aircraft that will be a viable product: for the passenger, who wants the service of a fast airliner with a reasonable surcharge; for the airline which wants competitive operating cost so that it will make sense to introduce such an airplane in its fleet; for the manufacturer, which not only does not want to go bankruptcy, but seeks to make a profit in the long term within the environmental constraints: no adverse impact on high atmosphere ozone; compliance with noise requirements, operations compatible with sonic boom. This paper does not try to answer all these question, but rather highlight major technical and environmental issues for the next generation supersonic transport. The topics discussed are: general specification, noise, atmospheric emissions, sonic boom, aerodynamics, structures, engine integration, systems. (authors)

  20. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  1. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-03-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  2. Research on the mechanics of underwater supersonic gas jets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.

  3. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-09-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  4. Manufacturing of A micro probe using supersonic aided electrolysis process

    CERN Document Server

    Shyu, R F; Ho, Chi-Ting

    2008-01-01

    In this paper, a practical micromachining technology was applied for the fabrication of a micro probe using a complex nontraditional machining process. A series process was combined to machine tungsten carbide rods from original dimension. The original dimension of tungsten carbide rods was 3mm ; the rods were ground to a fixed-dimension of 50 micrometers using precision grinding machine in first step. And then, the rod could be machined to a middle-dimension of 20 micrometers by electrolysis. A final desired micro dimension can be achieved using supersonic aided electrolysis. High-aspect-ratio of micro tungsten carbide rod was easily obtained by this process. Surface roughness of the sample with supersonic aided agitation was compared with that with no agitation in electrolysis. The machined surface of the sample is very smooth due to ionized particles of anode could be removed by supersonic aided agitation during electrolysis. Deep micro holes can also be achieved by the machined high-aspect-rati tungsten c...

  5. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  6. Mixed exhaust flow supersonic jet engine and method

    Energy Technology Data Exchange (ETDEWEB)

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  7. Mass flow and its pulsation measurements in supersonic wing wake

    Science.gov (United States)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  8. Study of the flow characteristics of supersonic coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)

    2001-12-01

    Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.

  9. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  10. Experimental investigation of the structure of supersonic two-dimensional air microjets

    Science.gov (United States)

    Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey

    2016-10-01

    We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.

  11. An experimental study of the structure of supersonic flat underexpanded microjets

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.

    2015-05-01

    We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.

  12. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  13. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  14. An analytical study on the performance of the organic Rankine cycle for turbofan engine exhaust heat recovery

    Science.gov (United States)

    Saadon, S.; Abu Talib, A. R.

    2016-10-01

    Due to energy shortage and global warming, issues of energy saving have become more important. To increase the energy efficiency and reduce the fuel consumption, waste heat recovery is a significant method for energy saving. The organic Rankine cycle (ORC) has great potential to recover the waste heat from the core jet exhaust of a turbofan engine and use it to produce power. Preliminary study of the design concept and thermodynamic performance of this ORC system would assist researchers to predict the benefits of using the ORC system to extract the exhaust heat engine. In addition, a mathematical model of the heat transfer of this ORC system is studied and developed. The results show that with the increment of exhaust heat temperature, the mass flow rate of the working fluid, net power output and the system thermal efficiency will also increase. Consequently, total consumption of jet fuel could be significantly saved as well.

  15. Acoustic Performance of Novel Fan Noise Reduction Technologies for a High Bypass Model Turbofan at Simulated Flights Conditions

    Science.gov (United States)

    Elliott, David M.; Woodward, Richard P.; Podboy, Gary G.

    2010-01-01

    Two novel fan noise reduction technologies, over the rotor acoustic treatment and soft stator vane technologies, were tested in an ultra-high bypass ratio turbofan model in the NASA Glenn Research Center s 9- by 15-Foot Low-Speed Wind Tunnel. The performance of these technologies was compared to that of the baseline fan configuration, which did not have these technologies. Sideline acoustic data and hot film flow data were acquired and are used to determine the effectiveness of the various treatments. The material used for the over the rotor treatment was foam metal and two different types were used. The soft stator vanes had several internal cavities tuned to target certain frequencies. In order to accommodate the cavities it was necessary to use a cut-on stator to demonstrate the soft vane concept.

  16. The role of finite-difference methods in design and analysis for supersonic cruise

    Science.gov (United States)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  17. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  18. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  19. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    Science.gov (United States)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  20. 3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO

    Science.gov (United States)

    1956-01-01

    3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL

  1. Modeling of a Turbofan Engine with Ice Crystal Ingestion in the NASA Propulsion System Laboratory

    Science.gov (United States)

    Veres, Joseph P.; Jorgenson, Philip C. E.; Jones, Scott M.; Nili, Samaun

    2017-01-01

    The main focus of this study is to apply a computational tool for the flow analysis of the turbine engine that has been tested with ice crystal ingestion in the Propulsion Systems Laboratory (PSL) at NASA Glenn Research Center. The PSL has been used to test a highly instrumented Honeywell ALF502R-5A (LF11) turbofan engine at simulated altitude operating conditions. Test data analysis with an engine cycle code and a compressor flow code was conducted to determine the values of key icing parameters, that can indicate the risk of ice accretion, which can lead to engine rollback (un-commanded loss of engine thrust). The full engine aerothermodynamic performance was modeled with the Honeywell Customer Deck specifically created for the ALF502R-5A engine. The mean-line compressor flow analysis code, which includes a code that models the state of the ice crystal, was used to model the air flow through the fan-core and low pressure compressor. The results of the compressor flow analyses included calculations of the ice-water flow rate to air flow rate ratio (IWAR), the local static wet bulb temperature, and the particle melt ratio throughout the flow field. It was found that the assumed particle size had a large effect on the particle melt ratio, and on the local wet bulb temperature. In this study the particle size was varied parametrically to produce a non-zero calculated melt ratio in the exit guide vane (EGV) region of the low pressure compressor (LPC) for the data points that experienced a growth of blockage there, and a subsequent engine called rollback (CRB). At data points where the engine experienced a CRB having the lowest wet bulb temperature of 492 degrees Rankine at the EGV trailing edge, the smallest particle size that produced a non-zero melt ratio (between 3 percent - 4 percent) was on the order of 1 micron. This value of melt ratio was utilized as the target for all other subsequent data points analyzed, while the particle size was varied from 1 micron - 9

  2. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  3. Full Flight Envelope Direct Thrust Measurement on a Supersonic Aircraft

    Science.gov (United States)

    Conners, Timothy R.; Sims, Robert L.

    1998-01-01

    Direct thrust measurement using strain gages offers advantages over analytically-based thrust calculation methods. For flight test applications, the direct measurement method typically uses a simpler sensor arrangement and minimal data processing compared to analytical techniques, which normally require costly engine modeling and multisensor arrangements throughout the engine. Conversely, direct thrust measurement has historically produced less than desirable accuracy because of difficulty in mounting and calibrating the strain gages and the inability to account for secondary forces that influence the thrust reading at the engine mounts. Consequently, the strain-gage technique has normally been used for simple engine arrangements and primarily in the subsonic speed range. This paper presents the results of a strain gage-based direct thrust-measurement technique developed by the NASA Dryden Flight Research Center and successfully applied to the full flight envelope of an F-15 aircraft powered by two F100-PW-229 turbofan engines. Measurements have been obtained at quasi-steady-state operating conditions at maximum non-augmented and maximum augmented power throughout the altitude range of the vehicle and to a maximum speed of Mach 2.0 and are compared against results from two analytically-based thrust calculation methods. The strain-gage installation and calibration processes are also described.

  4. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet – results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    L. Gulstad

    2007-05-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but

  5. Flying qualities design criteria applicable to supersonic cruise aircraft

    Science.gov (United States)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  6. Development of air to air ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2014-03-01

    Full Text Available The contribution deals with the development of design of new conception of ejector with twelve primary annular nozzles arranged around the inlet part of the mixing chamber. The ejector is proposed to be used for propulsion of supersonic experimental wind tunnel with variable test section, which is now in development. The ejector is considered to be placed on outlet of this wind tunnel. The original design of the ejector has been modified to ensure its manufacturability. Software Ansys Fluent 14.0 was used for numerical verification of earlier work. The new design and dissimilarities of numerical results are presented in this work.

  7. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  8. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    Science.gov (United States)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.

  9. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  10. Pulsed supersonic helium beams for plasma edge diagnosis

    Science.gov (United States)

    Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.

  11. Pulsed supersonic helium beams for plasma edge diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}

  12. Installation effects of wing-mounted turbofan nacelle-pylons on a 1/17-scale, twin-engine, low-wing transport model

    Science.gov (United States)

    Pendergraft, Odis C., Jr.; Ingraldi, Anthony M.; Re, Richard J.; Kariya, Timmy T.

    1992-01-01

    A twin-engine, low-wing transport model, with a supercritical wing of aspect ratio 10.8 designed for a cruise Mach number of 0.77 and a lift coefficient of 0.55, was tested in the Langley 16-Foot Transonic Tunnel. The purpose of this test was to compare the wing-nacelle interference effects of flow-through nacelles simulating superfan engines (very high bypass ratio (BPR is approx. = 18) turbofan engines) with the wing-nacelle interference effects of current-technology turbofans (BPR is approx. = 6). Forces and moments on the complete model were measured with a strain-gage balance, and extensive external static-pressure measurements (383 orifice locations) were made on the wing, nacelles, and pylons of the model. Data were taken at Mach numbers from 0.50 to 0.80 and at model angles of attack from -4 deg to 8 deg. Test results indicate that flow-through nacelles with a very high bypass ratio can be installed on a low-wing transport model with a lower installation drag penalty than for a conventional turbofan nacelle at a design cruise Mach number of 0.77 and lift coefficient of 0.55.

  13. Instability of a supersonic shock free elliptic jet

    Energy Technology Data Exchange (ETDEWEB)

    Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.

  14. Super-Sonic Turbulence in the Perseus Molecular Cloud

    CERN Document Server

    Padoan, P; Billawala, Y N; Juvela, M; Nordlund, A A; Padoan, Paolo; Bally, John; Billawala, Youssef; Juvela, Mika; Nordlund, AAke

    1999-01-01

    We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra, computed solving the non-LTE radiative transfer problem for a model cloud obtained as solutions of the three dimensional magneto-hydrodynamic (MHD) equations. The model cloud is a randomly forced super-Alfvenic and highly super-sonic turbulent isothermal flow. The purpose of the present work is to test if idealized turbulent flows, without self-gravity, stellar radiation, stellar outflows, or any other effect of star formation, are inconsistent or not with statistical properties of star forming molecular clouds. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. Statistical properties of molecular clouds like Perseus are appropriately described by random super-sonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single prot...

  15. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  16. a Continuous Supersonic Expansion Discharge Nozzle for Rotationally Cold Ions

    Science.gov (United States)

    Kauffman, Carrie A.; Crabtree, Kyle N.; McCall, Benjamin J.

    2009-06-01

    Molecular ions play an important role in chemistry and astronomy. In particular, molecular ions are key reaction intermediates, and in the interstellar medium, where temperatures and densities are low, they dominate the chemistry. Studying these ions spectroscopically in the laboratory poses a difficult challenge due to their reactivity. In our effort to study molecular ions, our research group is building SCRIBES (Sensitive Cooled Resolved Ion BEam Spectroscopy), which combines a cold ion source, mass spectrometry, and cavity ring-down spectroscopy. With this apparatus, we will be able to record rotationally-resolved gas-phase spectra, enabling interstellar searches for these species. The SCRIBES instrument requires a source of rotationally cold ions, and this has been accomplished by coupling a supersonic expansion with an electric discharge. Other groups (e.g. Thaddeus and McCarthy at Harvard, Salama et. al at NASA-Ames) have produced cold ions in a similar fashion, but always with a pulsed discharge source. Due to our need for a continuous ion source for SCRIBES, we have designed a continuous supersonic expansion discharge nozzle. We will discuss the various design factors considered during the construction of our continuous self-aligning cold ion source.

  17. Experiments on supersonic turbulent flow development in a square duct

    Science.gov (United States)

    Gessner, F. B.; Ferguson, S. D.; Lo, C. H.

    1986-01-01

    The nature of supersonic, turbulent, adiabatic-wall flow in a square duct is investigated experimentally over a development length of x/D between 0 and 20 for a uniform flow, Mach 3.9 condition at the duct inlet. Initial discussion centers on the duct configuration itself, which was designed specifically to minimize wave effects and nozzle-induced distortion in the flow. Total pressure contours and local skin friction coefficient distributions are presented which show that the flow develops in a manner similar to that observed for the incompressible case. In particular, undulations exist in total pressure contours within the cross plane and in transverse skin friction coefficient distributions, which are indicative of the presence of a well-defined secondary flow superimposed upon the primary flow. The results are analyzed to show that local law-of-the-wall behavior extends well into the corner region, which implies that wall functions conventionally applied in two-equation type turbulence models, when suitably defined for compressible flow, may also be applied to supersonic streamwise corner flows.

  18. Supersonic Line Broadening within Young and Massive Super Star Clusters

    CERN Document Server

    Tenorio-Tagle, G; Silich, S; Munoz-Tunon, C; Palous, J

    2009-01-01

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters are discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines are here shown to occur in clusters that undergo a bimodal hydrodynamic solution (Tenorio-Tagle et al. 2007), that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass vs the size of the cluster (Silich et al. 2004). The plethora of repressurizing shocks is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind, are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster...

  19. Observation of supersonic turbulent wakes by laser Fourier densitometry (LFD)

    Science.gov (United States)

    Gresillon, D.; Cabrit, B.; Bonnet, J. P.; Gemaux, G.

    Laser Fourier Densitometry (LFD) is an optical method appropriate for turbulent flow observations. It uses the collective scattering of coherent light, by optical index inhomogeneities. The principle of this method is described. It provides a signal proportional to the space Fourier transform amplitude of index distribution for a wavevector k defined by the optical arrangement. For a fluctuating flow, this amplitude is a function of time, and its frequency spectrum can be observed. The spectrum shape provides elementary parameters of the flow, such as: direction, modulus of mean velocity, and local temperature. It also provides means to distinguish different kinds of density fluctuations, such as convected inhomogeneities, or acoustic waves. The respective level of these different fluctuations types can be measured, as well as their power scale-law and absolute level. A compact optical bench has been set on a nozzle flow. The results of measurements performed in two supersonic wake configurations are presented, for Mach numbers of 1.6 and 4.2. These include density fluctuation spectra in supersonic flows, acoustic waves, variations with position, and comparison with hot wire anemometry.

  20. A compressible multiphase framework for simulating supersonic atomization

    Science.gov (United States)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  1. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  2. Structural concept trends for commercial supersonic cruise aircraft design

    Science.gov (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  3. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  4. The significance and lag-time of deep through flow: an example from a small, ephemeral catchment with contrasting soil types in the Adelaide Hills, South Australia

    Directory of Open Access Journals (Sweden)

    J. VanLeeuwen

    2009-07-01

    Full Text Available The importance of deep soil-regolith through flow in a small (3.4 km2 ephemeral catchment in the Adelaide Hills of South Australia was investigated by detailed hydrochemical analysis of soil water and stream flow during autumn and early winter rains. In this Mediterranean climate with strong summer moisture deficits, several significant rainfalls are required to generate soil through flow and stream flow [in ephemeral streams]. During autumn 2007, a large (127 mm drought-breaking rain occurred in April followed by significant May rains; most of this April and May precipitation occurred prior to the initiation of stream flow in late May. These early events, especially the 127 mm April event, had low stable water isotope values compared with later rains during June and July and average winter precipitation. Thus, this large early autumn rain event with low isotopic values (δ18O, δD provided an excellent natural tracer. During later June and July rainfall events, daily stream and soil water samples were collected and analysed. Results from major and trace elements, water isotopes (δ18O, δD, and dissolved organic carbon analysis clearly demonstrate that a large component of this early April and May rain was stored and later pushed out of deep soil and regolith zones. This pre-event water was identified in the stream as well as identified in deep soil horizons due to its different isotopic signature which contrasted sharply with the June–July event water. Based on this data, the soil-regolith hydrologic system for this catchment has been re-thought. The catchment area consists of about 60% sandy and 40% clayey soils. Regolith flow in the sandy soil system and not the clayey soil system is now thought to dominate the deep subsurface flow in this catchment. The clayey texture contrast soils had rapid response to rain events and saturation excess overland flow. The sandy soils had delayed soil through flow and

  5. Experimental and numerical investigation of an air to air supersonic ejector for propulsion of a small supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2015-01-01

    Full Text Available The article deals with experimental and numerical investigation of an air to air supersonic ejector with twelve primary nozzles. The ejector is supposed to be used for propulsion of a small experimental supersonic wind tunnel which is situated in laboratories of Technical University of Liberec. A novel arrangement with 12 primary nozzles is used. The nozzles are placed at the periphery of the mixing chamber. The secondary stream enters the ejector through the free centre of the mixing chamber and is sucked into the space between the primary nozzles. Moreover the declination of the primary nozzles towards to ejector axis is 8.2° and the shape of the mixing chamber and diffuser walls is given by normal cubic spline function, which was investigated in previous work. The declination of the primary nozzles is supposed to eliminate reversal flow in the centre of the mixing chamber. Experimental results for different numbers of simultaneously activated primary nozzles are carried out. Experimental results are compared to the numerical simulation made with the help of Ansys Fluent software.

  6. Advanced Engine Cycles Analyzed for Turbofans With Variable-Area Fan Nozzles Actuated by a Shape Memory Alloy

    Science.gov (United States)

    Berton, Jeffrey J.

    2002-01-01

    Advanced, large commercial turbofan engines using low-fan-pressure-ratio, very high bypass ratio thermodynamic cycles can offer significant fuel savings over engines currently in operation. Several technological challenges must be addressed, however, before these engines can be designed. To name a few, the high-diameter fans associated with these engines pose a significant packaging and aircraft installation challenge, and a large, heavy gearbox is often necessary to address the differences in ideal operating speeds between the fan and the low-pressure turbine. Also, the large nacelles contribute aerodynamic drag penalties and require long, heavy landing gear when mounted on conventional, low wing aircraft. Nevertheless, the reduced fuel consumption rates of these engines are a compelling economic incentive, and fans designed with low pressure ratios and low tip speeds offer attractive noise-reduction benefits. Another complication associated with low-pressure-ratio fans is their need for variable flow-path geometry. As the design fan pressure ratio is reduced below about 1.4, an operational disparity is set up in the fan between high and low flight speeds. In other words, between takeoff and cruise there is too large a swing in several key fan parameters-- such as speed, flow, and pressure--for a fan to accommodate. One solution to this problem is to make use of a variable-area fan nozzle (VAFN). However, conventional, hydraulically actuated variable nozzles have weight, cost, maintenance, and reliability issues that discourage their use with low-fan-pressure-ratio engine cycles. United Technologies Research, in cooperation with NASA, is developing a revolutionary, lightweight, and reliable shape memory alloy actuator system that can change the on-demand nozzle exit area by up to 20 percent. This "smart material" actuation technology, being studied under NASA's Ultra-Efficient Engine Technology (UEET) Program and Revolutionary Concepts in Aeronautics (Rev

  7. Constant-temperature hot-wire anemometer practice in supersonic flows. II - The inclined wire

    Science.gov (United States)

    Smits, A. J.; Muck, K. C.

    1983-01-01

    The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that calibration techniques applicable to subsonic flow, such as the cosine cooling law cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. Experimental results for different wires indicate that the sensitivities do not seem to depend on flow direction according to any simple correlation. When the sensitivity exhibits a strong dependence on flow direction, the wire should be discarded to avoid errors due to nonlinear effects.

  8. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore;

    2016-01-01

    The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades is ...... the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....

  9. Parametric (On-Design) Cycle Analysis for a Separate-Exhaust Turbofan Engine With Interstage Turbine Burner

    Science.gov (United States)

    Liew, K. H.; Urip, E.; Yang, S. L.; Siow, Y. K.; Marek, C. J.

    2005-01-01

    Today s modern aircraft is based on air-breathing jet propulsion systems, which use moving fluids as substances to transform energy carried by the fluids into power. Throughout aero-vehicle evolution, improvements have been made to the engine efficiency and pollutants reduction. The major advantages associated with the addition of ITB are an increase in thermal efficiency and reduction in NOx emission. Lower temperature peak in the main combustor results in lower thermal NOx emission and lower amount of cooling air required. This study focuses on a parametric (on-design) cycle analysis of a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). The ITB considered in this paper is a relatively new concept in modern jet engine propulsion. The ITB serves as a secondary combustor and is located between the high- and the low-pressure turbine, i.e., the transition duct. The objective of this study is to use design parameters, such as flight Mach number, compressor pressure ratio, fan pressure ratio, fan bypass ratio, and high-pressure turbine inlet temperature to obtain engine performance parameters, such as specific thrust and thrust specific fuel consumption. Results of this study can provide guidance in identifying the performance characteristics of various engine components, which can then be used to develop, analyze, integrate, and optimize the system performance of turbofan engines with an ITB. Visual Basic program, Microsoft Excel macrocode, and Microsoft Excel neuron code are used to facilitate Microsoft Excel software to plot engine performance versus engine design parameters. This program computes and plots the data sequentially without forcing users to open other types of plotting programs. A user s manual on how to use the program is also included in this report. Furthermore, this stand-alone program is written in conjunction with an off-design program which is an extension of this study. The computed result of a selected design

  10. Aerothermodynamic cycle analysis of a dual-spool, separate-exhaust turbofan engine with an interstage turbine burner

    Science.gov (United States)

    Liew, Ka Heng

    This study focuses on a specific engine, i.e., a dual-spool, separate-flow turbofan engine with an Interstage Turbine Burner (ITB). This conventional turbofan engine has been modified to include a secondary isobaric burner, i.e., ITB, in a transition duct between the high-pressure turbine and the low-pressure turbine. The preliminary design phase for this modified engine starts with the aerothermodynamics cycle analysis is consisting of parametric (i.e., on-design) and performance ( i.e., off-design) cycle analyses. In parametric analysis, the modified engine performance parameters are evaluated and compared with baseline engine in terms of design limitation (maximum turbine inlet temperature), flight conditions (such as flight Mach condition, ambient temperature and pressure), and design choices (such as compressor pressure ratio, fan pressure ratio, fan bypass ratio etc.). A turbine cooling model is also included to account for the effect of cooling air on engine performance. The results from the on-design analysis confirmed the advantage of using ITB, i.e., higher specific thrust with small increases in thrust specific fuel consumption, less cooling air, and less NOx production, provided that the main burner exit temperature and ITB exit temperature are properly specified. It is also important to identify the critical ITB temperature, beyond which the ITB is turned off and has no advantage at all. With the encouraging results from parametric cycle analysis, a detailed performance cycle analysis of the identical engine is also conducted for steady-state engine performance prediction. The results from off-design cycle analysis show that the ITB engine at full throttle setting has enhanced performance over baseline engine. Furthermore, ITB engine operating at partial throttle settings will exhibit higher thrust at lower specific fuel consumption and improved thermal efficiency over the baseline engine. A mission analysis is also presented to predict the fuel

  11. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  12. Performance of Several High Order Numerical Methods for Supersonic Combustion

    Science.gov (United States)

    Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.

  13. Optical wavefront distortion due to supersonic flow fields

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiQiang; FU Song

    2009-01-01

    The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.

  14. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  15. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  16. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  17. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  18. Vortex development on slender missiles at supersonic speeds

    Science.gov (United States)

    Allen, J. M.; Dillenius, M. F. E.

    1979-01-01

    A theoretical and experimental effort has been made to develop a vortex-prediction capability on circular and noncircular missiles at supersonic speeds. Predicted vortex patterns are computed by two linear-theory computer codes. One calculates the strengths and initial locations of the vortices, and the other calculates their trajectories. A short color motion picture has been produced from the calculations to illustrate the predicted vortex patterns on a typical missile. Experimental vapor-screen photographs are presented to show the longitudinal development of the vortices on a fin-control missile. Comparisons are made between these data and the predicted vortices to assess the accuracy of the theory. The theory appears to be fairly accurate in predicting the number, locations, and relative strengths of individual vortices which develop over the missile, but cannot predict vortex sheets or diffuse vorticity whenever they occur.

  19. Gas dynamics of a supersonic radial jet. Part II

    Science.gov (United States)

    Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.

    2016-05-01

    The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.

  20. Supersonic flutter analysis of thin cracked functionally graded material plates

    CERN Document Server

    Natarajan, S; Bordas, S

    2012-01-01

    In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.

  1. Modeling supersonic combustion using a fully-implicit numerical method

    Science.gov (United States)

    Maccormack, Robert W.; Wilson, Gregory J.

    1990-01-01

    A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.

  2. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    CERN Document Server

    Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph

    2015-01-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...

  3. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  4. Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    CERN Document Server

    Yoo, Jaiyul; Seljak, Uros

    2011-01-01

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...

  5. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    CERN Document Server

    Kritsuk, Alexei G; Collins, David; Padoan, Paolo; Norman, Michael L; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Mueller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D; Vogel, Christian; Xu, Hao

    2011-01-01

    We employ simulations of supersonic super-Alfv\\'enic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high...

  6. High-frequency supersonic heating of hydrogen for propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Jacques M.

    1963-03-15

    The possibility of increasing the specific impulse of hydrogen by supersonic heating is shown on the basis of thermodynamics. The application of high-frequency electric fields to heat the gas permits a control over the heating rates in the nozzle, and results in a reduction in energy losses to walls, electrodes, etc. The efficiencies of the various energy transfer processes are considered in some detail. A simple process of expansion and heating is presented. Results of calculations of heat transfer rates to the nozzle wall are given. A consistent set of electron densities and electric fields are also calculated and presented. Some qualitative results of experimental work previously carried out are included. It is concluded that the process should increase the specific impulse of hydrogen appreciably, in a reasonably efficient manner, and that further experimental work is indicated. (auth)

  7. Fluid-structure interaction of panel in supersonic fluid passage

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; ZHANG Yun-feng; TIAN Xin

    2008-01-01

    Fluid-structure interaction of panel in supersonic fluid passage is studied with subcycling and spline interpolation based predict-correct scheme.The passage is formed with two parallel panels,one is risid and the other is flexible.The interaction between fluid flows and flexible panel is numerically studied,mainly focused on the effect of dynamic pressure and distance between two parallel panels.Subcycling and spline interpolation based predict-correct scheme is utihzed to combine the vibration and fluid analysis and to stabilize long-term calculations to get accurate resuhs.It's demonstrated that the flutter characteristic of flexible panel is more complex with the increase of dynamic pressure and the decrease of distance between two parallel panels.Via analyzing the propagation and reflection of disturbance in passage,it's determined as a main cause of the variations.

  8. An analytical theory of heated duct flows in supersonic combustors

    Directory of Open Access Journals (Sweden)

    Chenxi Wu

    2014-01-01

    Full Text Available One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a selfsimilar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A relation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.

  9. Plasma-enhanced mixing and flameholding in supersonic flow

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  10. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  11. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  12. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  13. Unsteady flow in a supersonic cascade with strong in-passage shocks

    Science.gov (United States)

    Goldstein, M. E.; Braun, W.; Adamczyk, J. J.

    1977-01-01

    Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.

  14. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  15. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  16. Numerical simulation of carbon dioxide removal from natural gas using supersonic nozzles

    Science.gov (United States)

    Sun, Wenjuan; Cao, Xuewen; Yang, Wen; Jin, Xuetang

    2017-03-01

    Supersonic separation is a technology potentially applicable to natural gas decarbonation process. Preliminary research on the performance of supersonic nozzle in the removal of carbon dioxide from natural gas is presented in this study. Computational Fluid Dynamics (CFD) technique is used to simulate the flow behavior inside the supersonic nozzle. The CFD model is validated successfully by comparing its results to the data borrowed from the literature. The results indicate that the liquefaction of carbon dioxide can be achieved in the properly designed nozzle. Shock wave occurs in the divergent section of the nozzle with the increase of the back pressure, destroying the liquefaction process. In the supersonic separator, the shock wave should be kept outside of the nozzle.

  17. Energy-Deposition to Reduce Skin Friction in Supersonic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  18. Experimental Investigation on Noise Suppression in Supersonic Jets from Convergent-Divergent Nozzles with Baffles

    Institute of Scientific and Technical Information of China (English)

    Yoshiaki Miyazato; Yong-Hun Kweon; Toshiyuki Aoki; Mitsuharu Masuda; Kwon-Hee Lee; Heuy-Dong Kim; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were conducted in a carefully designed anechoic room providing a free-field environment. A new approach for screech noise suppression by a cross-wire is proposed. Schlieren photographs were taken to visualize the shock wave patterns in the supersonic jet with and without the cross-wire. The effects of the baffle and the cross-wire on acoustic properties are discussed. It is shown that the baffle has little effect on the screech frequency for the underexpanded supersonic jet without the cross-wire. Also, the cross-wire introduced in supersonic jets is found to lead to a significant reduction in overall sound pressure level.

  19. Sting Supported Bell XS-2 in the 9 Inch Supersonic Tunnel

    Science.gov (United States)

    1947-01-01

    A sting supported model of the Bell XS-2 was tested in the 9 Inch Supersonic Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 316.

  20. Effect of Nonequilibrium Homogenous COndensation on Flow Fields in a Supersonic Nozzle

    Institute of Scientific and Technical Information of China (English)

    ToshiakiSetoguchi; ShenYu; 等

    1997-01-01

    When condensation occurs in a supersonic flow field,the flow is affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in a supersonic circular nozzle,and,by inserting a wedge-type shock generator placed in the supersonic part of the nozzle,the experimental investigations were carried out to clarify the effect of condensation on the normal shock wave and the boundary layer.As a result,the position of the shock wave relative to the condensation zone was discussed,together with the effect of condensation on pressure fluctuations.Furthermore,a compressible viscous two-phase flow of moist air in a supersonic half nozzle was calculated to investigate the effect of condensation on boundary layer.

  1. Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body

    Institute of Scientific and Technical Information of China (English)

    HideoKashimura; ShenYu; 等

    1998-01-01

    The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.

  2. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  3. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  4. Exhaust emissions survey of a turbofan engine for flame holder swirl type augmentors at simulated altitude flight conditions

    Science.gov (United States)

    Moss, J. E., Jr.

    1981-01-01

    Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.

  5. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads

    Science.gov (United States)

    Sinha, Sunil K.

    2013-04-01

    Loss of a blade from a running turbofan rotor introduces not only huge imbalance into the dynamical system rather it makes the entire rotor asymmetric as well. In a nonsymmetric rotor, the various terms of mass, gyroscopic and stiffness matrices also become time-dependent. In this paper, all the dynamical equations include the effect of the rotary inertia and gyroscopic moments as a result of both shaft bending as well as staggered blades flexing in-and-out of the plane of the disk. The governing equations also account for internal material damping in the shaft and the external damping in the support bearing system. In addition to the unbalance load at the disk location, the shaft may also be subjected to a torque and axial forces. Here, the fan blades are modeled as pre-twisted thin shallow shells. They have coupled flexural-torsional motion in the lateral out-of-plane direction as well as extensional degrees-of-freedom in the longitudinal spanwise direction of the blade airfoil. The effect of blade tip rub forces being transmitted to the shaft are analyzed in terms of the dynamic stability of the rotor, especially during windmilling.

  6. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  7. The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-04-01

    Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.

  8. A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight

    Science.gov (United States)

    2014-07-01

    motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL

  9. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  10. 超-超引射器多目标优化设计%Multi-objective optimization of supersonic-supersonic ejector

    Institute of Scientific and Technical Information of China (English)

    陈钦; 陈吉明; 蔡光明; 任泽斌

    2012-01-01

    推导出了超-超引射器性能计算和优化设计模型,借助Pareto优胜、Pareto最优解和Pareto前端等概念,采用基于多目标进化/分解算法(MOEA/D)的多目标优化方法,计算得到超-超引射器多目标优化问题的Pareto前端,解决了超-超引射器多目标优化设计问题,并与常规参数分析方法进行了比较.结果表明:超超引射器性能影响参数相互关系复杂,增压比和引射系数作为引射器主要性能参数相互冲突,通过常规分析难以得到较清晰的设计准则,利用多目标优化设计方法可有效地辅助多属性决策和系统优化设计.%For supersonic-supersonic ejector, the design model and corresponding analysis were presented, and the relation of design parameters and the performance was partly revealed. The results revealed the confliction of two performance objectives and the complexity of the design problem. To clarify the entangled relation of design parameters and objectives and to afford facilities for the design process, the Pareto front(PF) concept was introduced and an MOEA/D algorithm was programmed to calculate the PFs of specific supersonic-supersonic ejector multi-objective optimization problems. The methodology adopted here proved to be effective and efficient for the supersonic-supersonic ejector design problem.

  11. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at

  12. Collaboration with Williams International to Demonstrate the Characteristics of a Foam-Metal-Liner Installed Over-the-Rotor of a Turbofan Engine

    Science.gov (United States)

    Sutliff, Daniel; Elliott, Dave; Jones, Mike; Hartley, Tom

    2008-01-01

    A Williams International FJ44-3A 3000-lb thrust class turbofan engine was used as a demonstrator for foam-metal liner installed in close proximity to the fan. Two foam metal liner designs were tested and compared to the hardwall. Traditional Single-Degree-of-Freedom liner designs were also evaluated to provide a comparison. Normalized information on farfield acoustics is presented in this paper. The results show that up to 5 dB PWL overall attenuation was achieved in the forward quadrant. In general, the foam-metal liners performed better when the fan tip speed was below sonic.

  13. CFD simulations of the flow control performance applied for inlet of low drag high-bypass turbofan engine at cross flow regimes

    Science.gov (United States)

    Kursakov, I. A.; Kazhan, E. V.; Lysenkov, A. V.; Savelyev, A. A.

    2016-10-01

    Paper describes the optimization procedure for low cruise drag inlet of high-bypass ratio turbofan engine (HBRE). The critical cross-flow velocity when the flow separation on the lee side of the inlet channel occurs is determined. The effciency of different flow control devices used to improve the flow parameters at inlet section cross flow regime is analyzed. Boundary layer suction, bypass slot and vortex generators are considered. It is shown that flow control devices enlarge the stability range of inlet performance at cross flow regimes.

  14. Measurements of leading edge vortices in a supersonic stream

    Science.gov (United States)

    Milanovic, Ivana Milija

    An experimental investigation of the leading edge vortices from a 75° sweptback, sharp edge delta wing has been carried out in a Mach 2.49 stream. Five-hole conical probe traverses were conducted vertically and horizontally through the primary vortices at the trailing edge and at one half chord downstream station for 7° and 12° angles of attack. The main objective was to determine the Mach number and pressure distributions in the primary vortex and to present comparisons of flow properties at different survey stations. In response to the continued interest in efficient supersonic flight vehicles, particularly in the missile arena, the motivation for this research has been to provide the quantitative details of supersonic leading edge vortices, the understanding of which up to now has been largely based on flow visualizations and presumed similarity to low speed flows. As a prerequisite to the measurement campaign, the employed five-hole conical probe was numerically calibrated using a three-dimensional Thin Layer Navier-Stokes solver in order to circumvent the traditional experimental approach vastly demanding on resources. The pressure readings at the probe orifices were computed for a range of Mach numbers and pitch angles, and subsequently verified in wind tunnel tests. The calibration phase also demonstrated the profound influence of the probe bluntness on the nearby static pressure ports, its relevance to the ultimate modeling strategy and the resulting calibration charts. Flow diagnostics of the leading edge vortices included both qualitative flow visualizations, as well as quantitative measurements. Shadowgraphs provided information regarding the trajectory and relative size of the generated vortices while assuring that no probe-induced vortex breakdown occurred. Surface oil patterns revealed the general spanwise locations of leeward vortices, and confirmed topological similarity to their low speed counterparts. The probe measurements revealed substantial

  15. A novel vector potential formulation of 3D Navier-Stokes equations with through-flow boundaries by a local meshless method

    Science.gov (United States)

    Young, D. L.; Tsai, C. H.; Wu, C. S.

    2015-11-01

    An alternative vector potential formulation is used to solve the Navier-Stokes (N-S) equations in 3D incompressible viscous flow problems with and without through-flow boundaries. Difficulties of the vector potential formulation include the implementation of boundary conditions for through-flow boundaries and the numerical treatment of fourth-order partial differential equations. The advantages on the other hand are the automatic satisfaction of the continuity equation; and pressure is decoupled from the velocity. The objective of this paper is to introduce the appropriate gauge and boundary conditions on the vector potential formulation by a localized meshless method. To handle the divergence-free property, a Coulomb gauge condition is enforced on the vector potential to ensure its existence and uniqueness mathematically. We further improve the algorithm to through-flow problems for the boundary conditions of vector potential by introducing the concept of Stokes' theorem. Based on this innovation, there is no need to include an additional variable to tackle the through-flow fields. This process will greatly simplify the imposition of boundary conditions by the vector potential approach. Under certain conditions, the coupled fourth-order partial differential equations can be easily solved by using this meshless local differential quadrature (LDQ) method. Due to the LDQ capability to deal with the high order differential equations, this algorithm is very attractive to solve this fourth-order vector potential formulation for the N-S equations as comparing to the conventional numerical schemes such as finite element or finite difference methods. The proposed vector potential formulation is simpler and has improved accuracy and efficiency compared to other pressure-free or pressure-coupled algorithms. This investigation can be regarded as the first complete study to obtain the N-S solutions by vector potential formulation through a LDQ method. Two classic 3D benchmark

  16. Structure and Chemistry of Atomic Clusters from Supersonic Beams.

    Science.gov (United States)

    Yang, Shi-He.

    A tandem time-of-flight (TOF) apparatus was designed to study the structure and chemistry of cold transition metal cluster ions from supersonic beams. By means of a photodissociation laser fluence dependence technique, binding energies of Nb_{rm x }^{+} (x = 2 - 20), Co_{rm x}^{+ } (x = 4 - 20) and etc. were found to generally increase with cluster size. The desorption energies of Nb_{rm x}N _2^{+} (x = 2 - 17) and Nb_{rm x} CO^{+} (x = 2 - 10) also increase with cluster size with some oscillations similar to the size dependent reactivities of these clusters. Photodetachment studies revealed that electron affinities of copper clusters increase with cluster size with a sharp even/odd alternation. Unlike other noble metals, Ag_{rm x}^ {-} clusters display two competing processes: photodissociation and photodetachment. Relative reactivities of cluster ions of Nb, Co, Ag, and etc. have been measured using a fast flow cluster reactor, displaying a similar function of cluster size to that of the neutrals. In addition, preliminary photoelectron experiments have been performed on Cu_{ rm x}^{-} and Nb _{rm x}^{-}. A magnetic Time-of-flight ultraviolet photoelectron spectrometer (MTOFUPS) has been developed to study electronic structures of cold metal and semiconductor cluster anions prepared in supersonic beams. Application of this spectrometer to carbon clusters with a F_2 laser (7.9 eV) allowed their electron affinities and UPS patterns to be measured,demonstrating a remarkable structural evolution of these clusters: Chains (C_2^{ -}-C_9^{-} ) - Rings (C_{10}^ {-}-C_{29}^ {-}) - Cages (C_{38 }^{-}-C_{84 }^{-}). In particular, the UPS of C_{60}^{-} is in excellent agreement with the CNDO/S calculation, providing a striking spectral evidence for the highly symmetric icosahedral soccer ball structure--Buckminsterfullerene. For comparison, the UPS of Si_ {rm x}^{-} and Ge_{rm x}^{ -} are presented. Unlike carbon clusters which prefer structures of low dimensionality, these

  17. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    Science.gov (United States)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of

  18. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    Science.gov (United States)

    Kritsuk, Alexei G.; Nordlund, Åke; Collins, David; Padoan, Paolo; Norman, Michael L.; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Müller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D.; Vogel, Christian; Xu, Hao

    2011-08-01

    Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the

  19. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 2; BFaNS User's Manual and Developer's Guide

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the second volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User s Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running BFaNS. It concludes with technical documentation of the BFaNS computer program.

  20. Broadband Fan Noise Prediction System for Turbofan Engines. Volume 1; Setup_BFaNS User's Manual and Developer's Guide

    Science.gov (United States)

    Morin, Bruce L.

    2010-01-01

    Pratt & Whitney has developed a Broadband Fan Noise Prediction System (BFaNS) for turbofan engines. This system computes the noise generated by turbulence impinging on the leading edges of the fan and fan exit guide vane, and noise generated by boundary-layer turbulence passing over the fan trailing edge. BFaNS has been validated on three fan rigs that were tested during the NASA Advanced Subsonic Technology Program (AST). The predicted noise spectra agreed well with measured data. The predicted effects of fan speed, vane count, and vane sweep also agreed well with measurements. The noise prediction system consists of two computer programs: Setup_BFaNS and BFaNS. Setup_BFaNS converts user-specified geometry and flow-field information into a BFaNS input file. From this input file, BFaNS computes the inlet and aft broadband sound power spectra generated by the fan and FEGV. The output file from BFaNS contains the inlet, aft and total sound power spectra from each noise source. This report is the first volume of a three-volume set documenting the Broadband Fan Noise Prediction System: Volume 1: Setup_BFaNS User s Manual and Developer s Guide; Volume 2: BFaNS User's Manual and Developer s Guide; and Volume 3: Validation and Test Cases. The present volume begins with an overview of the Broadband Fan Noise Prediction System, followed by step-by-step instructions for installing and running Setup_BFaNS. It concludes with technical documentation of the Setup_BFaNS computer program.

  1. Hybrid Wing Body Shielding Studies Using an Ultrasonic Configurable Fan Artificial Noise Source Generating Typical Turbofan Modes

    Science.gov (United States)

    Sutliff, Daniel l.; Brown, Clifford A.; Walker, Bruce E.

    2014-01-01

    An Ultrasonic Configurable Fan Artificial Noise Source (UCFANS) was designed, built, and tested in support of the NASA Langley Research Center's 14- by 22-ft wind tunnel test of the Hybrid Wing Body (HWB) full 3-D 5.8 percent scale model. The UCFANS is a 5.8 percent rapid prototype scale model of a high-bypass turbofan engine that can generate the tonal signature of proposed engines using artificial sources (no flow). The purpose of the test was to provide an estimate of the acoustic shielding benefits possible from mounting the engine on the upper surface of an HWB aircraft using the projected signature of the engine currently proposed for the HWB. The modal structures at the rating points were generated from inlet and exhaust nacelle configurations--a flat plate model was used as the shielding surface and vertical control surfaces with correct plan form shapes were also tested to determine their additional impact on shielding. Radiated acoustic data were acquired from a traversing linear array of 13 microphones, spanning 36 in. Two planes perpendicular, and two planes parallel, to the axis of the nacelle were acquired from the array sweep. In each plane the linear array traversed four sweeps, for a total span of 168 in. acquired. The resolution of the sweep is variable, so that points closer to the model are taken at a higher resolution. Contour plots of Sound Pressure Levels, and integrated Power Levels, from nacelle alone and shielded configurations are presented in this paper; as well as the in-duct mode power levels

  2. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  3. Pulsed rotating supersonic source used with merged molecular beams

    CERN Document Server

    Sheffield, L; Krasovitskiy, V; Rathnayaka, K D D; Lyuksyutov, I F; Herschbach, D R

    2012-01-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12 molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when...

  4. The IMF as a function of supersonic turbulence

    CERN Document Server

    Motta, Clio Bertelli; Glover, Simon C O; Klessen, Ralf S; Pasquali, Anna

    2016-01-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particles hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise...

  5. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  6. Turbulence characteristics in a supersonic cascade wake flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, P.L.; Ng, W.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

    1994-10-01

    The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 [times] 10[sup 6], respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties were found to be strongly influenced by upstream shock-boundary-layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23%, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.

  7. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  8. Quasi-DC electrical discharge characterization in a supersonic flow

    Science.gov (United States)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  9. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  10. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.

  11. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    徐胜利; R.D.Archer; B.E.Milton; 岳朋涛

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj

  12. Damping insert materials for settling chambers of supersonic wind tunnels

    Science.gov (United States)

    Wu, Jie; Radespiel, Rolf

    2017-03-01

    This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.

  13. Characteristics of Supersonic Closed Loop with Disk CCMHD Generator

    Science.gov (United States)

    Yamasaki, Hiroyuki; Murakami, Tomoyuki; Okuno, Yoshihiro

    Results of experimental study on performance of the supersonic closed loop with a disk MHD generator are described. The high temperature (> 1900K) argon circulation was carried out successfully during 2.4 hours. The heat gain and loss of argon was investigated, and a large heat loss was found at the diffuser and the exhausting duct although an energy efficiency of recuperator was high. The large heat loss was ascribed to water cooling at the diffuser and the exhausting duct. At the same time, the enhancement of heat transfer coefficient was suggested. The argon temperature and the heat loss calculated under an assumption of four times larger heat transfer coefficient have shown a good agreement with experimental ones. The pressure ratio inside the loop was discussed, and the result has indicated that the total pressure at the upstream of nozzle throat is decided by the total temperature and the mass flow. On the other hand, the total pressure at the downstream is determined by the total mass in the loop and the total pressure at the upstream. The first power generation was carried out, and a good correlation between the load resistance and the Hall voltage was observed. However, the power output remained very small.

  14. Studies of the unsteady supersonic base flows around three afterbodies

    Institute of Scientific and Technical Information of China (English)

    Zhixiang Xiao; Song Fu

    2009-01-01

    Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow patterns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5 BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.

  15. Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices

    Science.gov (United States)

    Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun

    1997-11-01

    Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.

  16. Field Ionization detection of supersonic helium atom beams

    Science.gov (United States)

    Doak, R. B.

    2003-10-01

    Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.

  17. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  18. Supersonic Propagation of Heat Waves in Low Density Heavy Material

    Institute of Scientific and Technical Information of China (English)

    Jiang Shaoen; Zhang Wenhai; Yi Rongqing; Cui Yanli; Chen Jiusen; Xu Yan; Ding Yongkun; Lai Dongxian; Zheng Zhijian; Huang Yikiang; Li Jinghong; Sun Kexu; Hu Xin

    2005-01-01

    The propagation of a supersonic heat-wave through copper-doped foam with a density of 50 mg/cm3 was experimentally investigated. The wave is driven by 140 eV Holhraum radiations generated in a cylindrical gold cavity heated by a 2 k J, 1ns laser pulse (0.35 μm). The delayed breakout time of the radiation waves from the rear side of the foam is measured by a threechromatic streaked x-ray spectrometer (TCS) consisting of a set of three-imaging pinholes and an array of three transmission gratings coupled with an x-ray streak camera (XSC). With one shot,simultaneous measurements of the delays of the drive source and the radiation with two different energies (210 eV, 840 eV) through the foam have been made for the first time. The experimental results indicate that the time delays vary with photon energies. The radiation with an energy of 210 eV propagates at a lower velocity. The radiating heat wave propagates with a velocity that is larger than the sound speed. Using TGS, the transmitting spectrum was measured, and then lower limit of the optical depth which is more than 1, was obtained. The experimental data were in agreement with numerical simulations.

  19. CFD-based Analysis of Aeroelastic behavior of Supersonic Fins

    Directory of Open Access Journals (Sweden)

    Tianxing Cai

    2011-02-01

    Full Text Available The main goal of this paper is to analyze the flutter boundary, transient loads of a supersonic fin, and the flutter with perturbation. Reduced order mode (ROM based on Volterra Series is presented to calculate the flutter boundary, and CFD/CSD coupling is used to compute the transient aerodynamic load. The Volterra-based ROM is obtained using the derivative of unsteady aerodynamic step-response, and the infinite plate spline is used to perform interpolation of physical quantities between the fluid and the structural grids. The results show that inertia force plays a significant role in the transient loads, the moment cause by inertia force is lager than the aerodynamic force, because of the huge transient loads, structure may be broken by aeroelasticity below the flutter dynamic pressure. Perturbations of aircraft affect the aeroelastic response evident, the reduction of flutter dynamic pressure by rolling perturbation form 15.4% to 18.6% when Mach from 2.0 to 3.0. It is necessary to analyze the aeroelasticity behaviors under the compositive force environment.

  20. Flight tests of a supersonic natural laminar flow airfoil

    Science.gov (United States)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  1. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  2. Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation

    Science.gov (United States)

    Rosenwaks, Salman; Barmashenko, Boris D.; Waichman, Karol

    2014-02-01

    The feasibility of operating diode pumped alkali lasers (DPALs) with supersonic expansion of the gaseous laser mixture, consisting of alkali atoms, He atoms and (frequently) hydrocarbon molecules, is explored. Taking into account fluid dynamics and kinetic processes, both semi-analytical and three-dimensional (3D) computational fluid dynamics (CFD) modeling of supersonic DPALs is reported. Using the semi-analytical model, the operation of supersonic DPALs is compared with that measured and modeled in subsonic lasers for both Cs and K. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. Using the 3D CFD model, the flow pattern and spatial distributions of the pump and laser intensities in the resonator are calculated for Cs DPALs. Comparison between the semi-analytical and 3D CFD models for Cs shows that the latter predicts much larger maximum achievable laser power than the former. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  3. Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars

    Science.gov (United States)

    Fagin, Maxwell H.

    Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.

  4. Study of density field measurement based on NPLS technique in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to the influence of shock wave and turbulence, supersonic density field exhibits strongly inhomogeneous and unsteady characteristics. Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution, limitation of measuring 3D density field, and low signal to noise ratio (SNR). A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field. This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles, which would display the density fluctuation due to the influence of shock waves and vortexes. The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper, and the results reveal shock wave, turbulent boundary layer in the flow with the spatial resolution of 93.2 μm/pixel. By analyzing the results at interval of 5 μs, temporal evolution of density field can be observed.

  5. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  6. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  7. Study of density field measurement based on NPLS technique in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    TIAN LiFeng; YI ShiHe; ZHAO YuXin; HE Lin; CHENG ZhongYu

    2009-01-01

    Due to the influence of shock wave and turbulence,supersonic density field exhibits strongly inho-mogeneous and unsteady characteristics.Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution,limitation of measuring 3D density field,and low signal to noise ratio (SNR).A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field.This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles,which would display the density fluctuation due to the influence of shock waves and vortexes.The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper,and the results reveal shock wave,turbulent boundary layer in the flow with the spatial resolution of 93.2 pm/pixel.By analyzing the results at interval of 5 μs,temporal evolution of density field can be observed.

  8. Analytical and computational investigations of a magnetohydrodynamics (MHD) energy-bypass system for supersonic gas turbine engines to enable hypersonic flight

    Science.gov (United States)

    Benyo, Theresa Louise

    Historically, the National Aeronautics and Space Administration (NASA) has used rocket-powered vehicles as launch vehicles for access to space. A familiar example is the Space Shuttle launch system. These vehicles carry both fuel and oxidizer onboard. If an external oxidizer (such as the Earth's atmosphere) is utilized, the need to carry an onboard oxidizer is eliminated, and future launch vehicles could carry a larger payload into orbit at a fraction of the total fuel expenditure. For this reason, NASA is currently researching the use of air-breathing engines to power the first stage of two-stage-to-orbit hypersonic launch systems. Removing the need to carry an onboard oxidizer leads also to reductions in total vehicle weight at liftoff. This in turn reduces the total mass of propellant required, and thus decreases the cost of carrying a specific payload into orbit or beyond. However, achieving hypersonic flight with air-breathing jet engines has several technical challenges. These challenges, such as the mode transition from supersonic to hypersonic engine operation, are under study in NASA's Fundamental Aeronautics Program. One propulsion concept that is being explored is a magnetohydrodynamic (MHD) energy- bypass generator coupled with an off-the-shelf turbojet/turbofan. It is anticipated that this engine will be capable of operation from takeoff to Mach 7 in a single flowpath without mode transition. The MHD energy bypass consists of an MHD generator placed directly upstream of the engine, and converts a portion of the enthalpy of the inlet flow through the engine into electrical current. This reduction in flow enthalpy corresponds to a reduced Mach number at the turbojet inlet so that the engine stays within its design constraints. Furthermore, the generated electrical current may then be used to power aircraft systems or an MHD accelerator positioned downstream of the turbojet. The MHD accelerator operates in reverse of the MHD generator, re-accelerating the

  9. The fractal measurement of experimental images of supersonic turbulent mixing layer

    Institute of Scientific and Technical Information of China (English)

    ZHAO YuXin; YI ShiHe; TIAN LiFeng; HE Lin; CHENG ZhongYu

    2008-01-01

    Flow Visualization of supersonic mixing layer has been studied based on the high spatiotemporal resolution Nano-based Planar Laser Scattering (NPLS) method in SML-1 wind tunnel. The corresponding images distinctly reproduced the flow structure of laminar, transitional and turbulent region, with which the fractal meas-urement can be implemented. Two methods of measuring fractal dimension wereintroduced and compared. The fractal dimension of the transitional region and the fully developing turbulence region of supersonic mixing layer were measured based on the box-counting method. In the transitional region, the fractal dimension will increase with turbulent intensity. In the fully developing turbulent region, the fractal dimension will not vary apparently for different flow structures, which em-bodies the self-similarity of supersonic turbulence.

  10. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    Science.gov (United States)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.

  11. The fractal measurement of experimental images of supersonic turbulent mixing layer

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Flow visualization of supersonic mixing layer has been studied based on the high spatiotemporal resolution Nano-based Planar Laser Scattering(NPLS) method in SML-1 wind tunnel. The corresponding images distinctly reproduced the flow structure of laminar,transitional and turbulent region,with which the fractal measurement can be implemented. Two methods of measuring fractal dimension were introduced and compared. The fractal dimension of the transitional region and the fully developing turbulence region of supersonic mixing layer were measured based on the box-counting method. In the transitional region,the fractal dimension will increase with turbulent intensity. In the fully developing turbulent region,the fractal dimension will not vary apparently for different flow structures,which em-bodies the self-similarity of supersonic turbulence.

  12. An experimental study of aero-optical aberration and dithering of supersonic mixing layer via BOS

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The optical performance of supersonic mixing layer is heavily deteriorated by the aero-optical aberration and dithering of coherent structures, but current measuring methods limit the spatiotemporal resolution in relevant studies. A high resolution whole-field aero-optical aberration and dithering measuring method based on the Background Orient Schlieren (BOS) technique was studied. The systematic structure, sensitivity and resolution of BOS are analyzed in this paper. The aero-optical aberration and dithering of streamwise structures in supersonic mixing layers were quantificationally studied with BOS. The aberration field of spanwise structures revealed the ribbon-like aberration structures, which heavily restrict the optical performance of a mixing layer. The quantifications of aero-optical aberration and dithering are very important in studying aero-optical performance of supersonic mixing layer.

  13. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  14. Trajectory Analysis of Fuel Injection into Supersonic Cross Flow Based on Schlieren Method

    Institute of Scientific and Technical Information of China (English)

    YANG Hui; LI Feng; SUN Baigang

    2012-01-01

    Trajectory analysis of fuel injection into supersonic cross flow is studied in this paper.A directly-connected wind tunnel is constructed to provide stable supersonic freestream.Based on the test rig,the schlieren system is established to reveal the fuel injection process visually.Subsequently,the method of quantitative schlieren is adopted to obtain data of both fuel/air interface and bow shock with the aid of Photoshop and Origin.Finally,the mechanism based on two influential factors of fuel injection angle and fuel injection driven pressure,is researched by vector analysis.A dimensionless model is deduced and analyzed.The curve fitting result is achieved.The relationship between the data and the two influential factors is established.The results provide not only the quantitative characteristics of the fuel injection in supersonic cross flow but also the valuable reference for the future computational simulation.

  15. Navier—Stokes Computations of the Supersonic Ejector—Diffuser System with a Second Throat

    Institute of Scientific and Technical Information of China (English)

    Heuy-DongKim; ToshiakiSetoguchi; 等

    1999-01-01

    The supersonic ejector-diffuser system with a second throat was simulated using CFD.An explicit finite volume scheme was applied to solve two-dimensional Navier-Stokes equations with standard κ-εturbulence model.The vacuum performance of the supersonic ejector-diffuser system was investigated by changing the ejector throat area ration and the operating pressure ratio.Two convergent-divergent nozzles with design Mach number of 2.11 and 3.41 were selected to give the supersonic operation of the ejector-diffuser system.The presence of a second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle.There were optimum values of the operating pressure ratio and ejector throat area ratio for the vacuum performance of the system to maximize.

  16. Flow Patterns and Thermal Drag in Supersonic Duct Flow with Heating

    Institute of Scientific and Technical Information of China (English)

    Zeng-YuanGuo; Zhi-HongLiu

    1994-01-01

    The supersonic duct flow with fixed back pressure to stagnation pressure ratio Pb/P0 under heating is investigated analytically.A “Flow Pattern Diagram” Which consists of six pattern zones is developed.By this diagram the actual flow state in supersonic duct flow system can be determined conveniently when Pb/Po and heating intensity are knows.It is impossible for flow with heavy heating to become supersonic,even though the pressure ratio is much smaller than the critical pressure ratio,Based on the analogy between viscous effect and heating effect a thermal drag factor has een defined.which can predict the flow property variation due to heating and the relaive importance of viscous effect and heating effect.

  17. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  18. Reverse Circulation Drilling Method Based on a Supersonic Nozzle for Dust Control

    Directory of Open Access Journals (Sweden)

    Dongyu Wu

    2016-12-01

    Full Text Available To reduce dust generated from drilling processes, a reverse circulation drilling method based on a supersonic nozzle is proposed. The suction performance is evaluated by the entrainment ratio. A series of preliminary laboratory experiments based on orthogonal experimental design were conducted to test the suction performance and reveal the main factors. Computational fluid dynamics (CFD were conducted to thoroughly understand the interaction mechanism of the flows. The Schlieren technique was further carried out to reveal the flow characteristic of the nozzle. The results show that the supersonic nozzle can significantly improve the reverse circulation effect. A high entrainment ratio up to 0.76 was achieved, which implied strong suction performance. The CFD results agreed well with experimental data with a maximum difference of 17%. This work presents the great potential for supersonic nozzles and reverse circulation in dust control, which is significant to protect the envrionment and people’s health.

  19. Numerical Simulation of the Supersonic Flows in the Second Throat Ejector —Diffuser Systems

    Institute of Scientific and Technical Information of China (English)

    HeuydongKim; ToshiakiSetoguchi; 等

    1999-01-01

    The supersonic ejector-diffuser system with a second throat was simulated using CFD.A fully implicity finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations and a standard k-ε turbulence model was used to close the governing equations,The flow field in the supersonic ejectordiffuser system was investigated by changing the ejector throat area ratio and the secondary mass flow ratio at a fixed operating pressure ratio of 10. A convergent-divergent nozzle with a design Mach number of 2.11 was selected to give the supersonic operation of the ejector -diffuser system.For the constant area mixing tube the secondary mass flow seemed not to singnificantly change the flow field in the ejector-diffuser systems.It was however,found that the flow in the ejector-diffuser systems having the second throat is strongly dependent on the secondary mass flow.

  20. Linear models for sound from supersonic reacting mixing layers

    Science.gov (United States)

    Chary, P. Shivakanth; Samanta, Arnab

    2016-12-01

    We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.

  1. The IMF as a function of supersonic turbulence

    Science.gov (United States)

    Bertelli Motta, C.; Clark, P. C.; Glover, S. C. O.; Klessen, R. S.; Pasquali, A.

    2016-11-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star-forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particle hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star-forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.

  2. Laser Desorption Supersonic Jet Spectroscopy of Hydrated Tyrosine

    Science.gov (United States)

    Oba, Hikari; Shimozono, Yoko; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Carcabal, Pierre

    2013-06-01

    The structure of tyrosine (tyr) consists of amino-acid chain and phenol, and it has roughly two possible binding sites for water, amino-acid site and phenolic OH site. Investigating how water molecule binds to tyr will give fundamental information for hydrations of peptide and protein. Resonance enhanced multi photon ionization (REMPI) spectrum of tyr-water 1:1 cluster has already been reported by de Vries and co-workers, however, no analysis on the hydrated structures has been reported. In the REMPI spectrum, two clusters of bands are observed; one appears at ˜35600 cm^{-1} energy region which is the almost same with 0-0 transitions of tyr monomer, and another is observed at ˜300 cm^{-1} lower than the former. Based on the electronic transition energy of phenylalanine and the hydrated clusters, the former is expected to be derived from a structure that water binds to amino acid site. On the other hand, it is plausibly predicted that the latter originates from a structure that water binds to phenolic OH group, because the electronic transition of mono hydrated phenol is ˜300 cm^{-1} red-shifted from the monomer. We applied IR dip spectroscopy which can measure conformer selective IR spectra to the tyr-(H_{2}O)_{1} clusters by using laser desorption supersonic jet technique to confirm the assignments. Especially in the phenolic OH bound isomer, it was found that the intra molecular hydrogen bond within amino-acid chain, which is far from the water molecule and cannot interact directly with each other, is strengthened by the hydration. A. Abio-Riziq et al., J. Phys. Chem. A, 115, 6077 (2011). Y. Shimozono, et al., Phys. Chem. Chem. Phys., (2013) DOI: 10.1039/c3cp43573c. T. Ebata et al., Phys. Chem. Chem. Phys., 8, 4783 (2006). T. Watanabe et al., J. Chem. Phys., 105, 408 (1996).

  3. Analyzing the structure of the optical path difference of the supersonic film cooling

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    While high-speed aircraft are flying in the atmosphere, its optical-hood is subjected to severe aerodynamic heating. Supersonic film cooling method can effectively isolate external heating, but the flow structures formed by the supersonic film cooling can cause the beam degradation and affect the imaging quality. To research the aero-optics of supersonic film cooling, an experimental model was adopted in this paper, its mainstream Mach number 3.4, designed jet Mach number 2.5, measured jet Mach number 2.45. High-resolution images of flow were acquired by the nano-based planar laser scattering (NPLS) technique, by reconstructing the density field of supersonic film cooling, and then, the optical path difference (OPD) were acquired by the ray-tracing method. Depending on the comparison between K-H vortex and OPD distribution, the valleys of OPD correspond to the vortex `rollers' and the peaks to the `braids'. However, the corresponding relationship becomes quite irregular for the flow field with developed vortices, and cannot be summarized in this manner. And then, the OPD were analyzed by correlation function and structure function, show that, there is a relationship between the shape of OPD correlation function and the vortex structure, the correlation function type changed with the development of the vortex. The correctness that the mixing layer makes a main contribution to the aero-optics of supersonic film cooling was verified, and the structure function of aero-optical distortion has a power relationship that is similar to that of atmospheric optics. At last, the power spectrum corresponding to the typical region of supersonic film cooling were acquired by improved periodgram.

  4. Computer simulation and visualization of supersonic jet for gas cluster equipment

    Science.gov (United States)

    Ieshkin, A.; Ermakov, Y.; Chernysh, V.; Ivanov, I.; Kryukov, I.; Alekseev, K.; Kargin, N.; Insepov, Z.

    2015-09-01

    Supersonic nozzle is a key component of a gas cluster condensation system. We describe a flow visualization system using glow discharge with annular or plane electrodes. The geometric parameters of a supersonic jet under typical conditions used in a gas cluster ion beam accelerator are investigated. As well numerical simulations were performed. Dependence of inlet and ambient pressures and nozzle throat diameter on the shock bottle dimensions is described for different working gases. Influence of condensation rate on shock bottle axial size is discussed.

  5. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies

    Science.gov (United States)

    Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh

    1991-01-01

    This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.

  6. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam

    Energy Technology Data Exchange (ETDEWEB)

    Narevicius, E [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Parthey, C G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Libson, A [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Narevicius, J [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Chavez, I [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States); Even, U [Sackler School of Chemistry, Tel-Aviv University, Tel-Aviv (Israel); Raizen, M G [Center for Nonlinear Dynamics and Department of Physics, Univesity of Texas at Austin, Austin, TX 78712-1081 (United States)

    2007-10-15

    We report the experimental demonstration of a novel method to slow atoms and molecules with permanent magnetic moments using pulsed magnetic fields. In our experiments, we observe the slowing of a supersonic beam of metastable neon from 461.0 {+-} 7.7 to 403 {+-} 16 m s{sup -1} in 18 stages, where the slowed peak is clearly separated from the initial distribution. This method has broad applications as it may easily be generalized, using seeding and entrainment into supersonic beams, to all paramagnetic atoms and molecules.

  7. Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory

    Science.gov (United States)

    Adamczyk, J. J.

    1978-01-01

    An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.

  8. Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows

    Institute of Scientific and Technical Information of China (English)

    Kazuyasu Matsuo

    2003-01-01

    When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.

  9. Implicit LES for Supersonic Microramp Vortex Generator: New Discoveries and New Mechanisms

    OpenAIRE

    Qin Li; Chaoqun Liu

    2011-01-01

    This paper serves as a summary of our recent work on LES for supersonic MVG. An implicitly implemented large eddy simulation (ILES) by using the fifth-order WENO scheme is applied to study the flow around the microramp vortex generator (MVG) at Mach 2.5 and Re⁡θ=1440. A number of new discoveries on the flow around supersonic MVG have been made including spiral points, surface separation topology, source of the momentum deficit, inflection surface, Kelvin-Helmholtz instability, vortex ring ge...

  10. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  11. Computer simulation and visualization of supersonic jet for gas cluster equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ieshkin, A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Ermakov, Y. [Scobeltsyn Nuclear Physics Research Institute, Lomonosov State Moscow University, GSP-1, Leninskiye Gory, Moscow 119991 (Russian Federation); Chernysh, V.; Ivanov, I. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Kryukov, I. [Institute for Problems in Mechanics, Russian Academy of Sciences, prosp. Vernadskogo, 101, Block 1, Moscow 119526 (Russian Federation); Alekseev, K.; Kargin, N. [National Research Nuclear University «MEPhI», Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Insepov, Z., E-mail: zinsepov@purdue.edu [Purdue University, 500 Central Drive, West Lafayette, IN (United States); Nazarbayev University Research and Innovation System, Kabanbay Batyr Avenue 53, Astana (Kazakhstan)

    2015-09-21

    Supersonic nozzle is a key component of a gas cluster condensation system. We describe a flow visualization system using glow discharge with annular or plane electrodes. The geometric parameters of a supersonic jet under typical conditions used in a gas cluster ion beam accelerator are investigated. As well numerical simulations were performed. Dependence of inlet and ambient pressures and nozzle throat diameter on the shock bottle dimensions is described for different working gases. Influence of condensation rate on shock bottle axial size is discussed.

  12. Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow.

    Science.gov (United States)

    Wan, W C; Malamud, G; Shimony, A; Di Stefano, C A; Trantham, M R; Klein, S R; Shvarts, D; Kuranz, C C; Drake, R P

    2015-10-02

    We report the first observation, in a supersonic flow, of the evolution of the Kelvin-Helmholtz instability from a single-mode initial condition. To obtain these data, we used a novel experimental system to produce a steady shock wave of unprecedented duration in a laser-driven experiment. The shocked, flowing material creates a shear layer between two plasmas at high energy density. We measured the resulting interface structure using radiography. Hydrodynamic simulations reproduce the large-scale structures very well and the medium-scale structures fairly well, and imply that we observed the expected reduction in growth rate for supersonic shear flow.

  13. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    Science.gov (United States)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  14. Molecular dynamics computations of two dimensional supersonic rarefied gas flow past blunt bodies

    Science.gov (United States)

    Greber, Isaac; Wachman, Harold Y.; Woo, Myeung-Jouh

    1991-01-01

    This paper presents results of molecular dynamics computations of supersonic flow past a circular cylinder and past a flat plate perpendicular to a supersonic stream. The results are for Mach numbers of approximately 5 and 10, for several Knudsen numbers and several ratios of surface to free stream temperatures. A special feature of the computations is the use of relatively small numbers of particles in the molecular dynamics simulation, and an examination of the adequacy of using small numbers of particles to obtain physically useful results.

  15. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System

    Science.gov (United States)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos

    2009-01-01

    In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale

  16. Performance of air breathing combined cycle engines with a turbofan; Leistungsverhalten luftatmender Kombinationstriebwerke mit Zweistrom-Turboteil

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, H.

    2003-07-01

    In this paper the influence of the design and control parameters on the performance characteristic of a combined cycle engine consisting of a turbofan engine with a reheat system and a convergent-divergent nozzle is investigated. The studies are not based on a special mission but the two sections of a mission dominating the fuel consumption of the propulsion system - the acceleration flight and the cruise segment - are considered seperately. By that it is shown which design of the turbo engine is suitable for each section of the mission and how far these designs differ from each other. The studies start with the so-called baseline engine. Applying a performance calculation program the performance characteristic of the engine is calculated for given flight conditions and engine control parameter settings. The particularly for high speed propulsion systems important interaction between the engine and the aircraft is considered, iteratively adjusting the angle of attack of the aircraft given for the performance calculation to the one fulfilling the equations of motion of the aircraft. Based on the results of the baseline engine the design parameters of the turbo engine, namely (a) the turbine inlet temperature T{sub t4,A}, (b) the overall pressure ratio {pi}{sub tV,A} and (c) the bypass ratio {mu}{sub A} are varied systematically and the effect of these changes on the performance of the engine along the flight Mach Number is investigated. First the studies are carried out for the acceleration flight and afterwards they are being extended to the cruise flight segment. The valuation criteria for the engine performance in the acceleration section is the so-called acceleration efficiency. This efficiency is defined as the ratio of the potential and kinetic energy rise and the therefore needed fuel energy. In the cruise section the engine performance is valuated using a so-called cruise number which considers the quality of the conversion of fuel energy into propulsive

  17. Characterization of the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, A.-M.; Stephan, S.; Radespiel, R.

    2017-03-01

    The wake flow of a generic axisymmetric space-launcher model is investigated experimentally for flow cases with and without propulsive jet to gain insight into the wake-flow phenomena at a supersonic stage of the flight trajectory which is especially critical with respect to dynamic loads on the structure. Measurements are performed at Mach 2.9 and a Reynolds number Re D = 1.3 × 106 based on model diameter D. The nozzle exit velocity of the jet is at Mach 2.5, and the flow is moderately underexpanded ( p e/ p ∞ = 5.7). The flow topology is described based on velocity measurements in the wake by means of particle image velocimetry and schlieren visualizations. Mean and fluctuating mass-flux profiles are obtained from hot-wire measurements, and unsteady wall-pressure measurements on the main-body base are performed simultaneously. This way, the evolution of the wake flow and its spectral content can be observed along with the footprint of this highly dynamic flow on the launcher main-body base. For the case without propulsive jet, a large separated zone is forming downstream of the main body shoulder, and the flow is reattaching further downstream on the afterbody. The afterexpanding propulsive jet (air) causes a displacement of the shear layer away from the wall, preventing the reattachment of the flow. In the spectral analysis of the baseline case, a dominant frequency around St D = 0.25 is found in the pressure-fluctuation signal at the main-body base of the launcher. This frequency is related to the shedding of the separation bubble and is less pronounced in the presence of the propulsive jet. In the shear layer itself, the spectra obtained from the hot-wire signal have a more broadband low-frequency content, which also reflects the characteristic frequency of turbulent structures convected in the shear layer, a swinging motion ( St D = 0.6), as well as the radial flapping motion of the shear layer ( St D = 0.85), respectively. Moving downstream along the

  18. Azimuthally Varying Noise Reduction Techniques Applied to Supersonic Jets

    Science.gov (United States)

    Heeb, Nicholas S.

    An experimental investigation into the effect of azimuthal variance of chevrons and fluidically enhanced chevrons applied to supersonic jets is presented. Flow field measurements of streamwise and cross-stream particle imaging velocimetry were employed to determine the causes of noise reduction, which was demonstrated through acoustic measurements. Results were obtained in the over- and under- expanded regimes, and at the design condition, though emphasis was placed on the overexpanded regime due to practical application. Surveys of chevron geometry, number, and arrangement were undertaken in an effort to reduce noise and/or incurred performance penalties. Penetration was found to be positively correlated with noise reduction in the overexpanded regime, and negatively correlated in underexpanded operation due to increased effective penetration and high frequency penalty, respectively. The effect of arrangement indicated the beveled configuration achieved optimal abatement in the ideally and underexpanded regimes due to superior BSAN reduction. The symmetric configuration achieved optimal overexpanded noise reduction due to LSS suppression from improved vortex persistence. Increases in chevron number generally improved reduction of all noise components for lower penetration configurations. Higher penetration configurations reached levels of saturation in the four chevron range, with the potential to introduce secondary shock structures and generate additional noise with higher number. Alternation of penetration generated limited benefit, with slight reduction of the high frequency penalty caused by increased shock spacing. The combination of alternating penetration with beveled and clustered configurations achieved comparable noise reduction to the standard counterparts. Analysis of the entire data set indicated initial improvements with projected area that saturated after a given level and either plateaued or degraded with additional increases. Optimal reductions

  19. Supersonic Turbulent Convection and the Origin of the Planets

    Science.gov (United States)

    Prentice, A. J. R.; Dyt, C. P.

    2000-10-01

    We report a new set of calculations which support the view that supersonic turbulent convection played a major role in the formation of the solar system. A flux-corrected transport scheme (Zalesak, J. Comp. Phys.} 31 335 1979) is used to numerically simulate thermal convection in a 2D ideal gas layer that is heated from below and is stratified gravitationally across many scale heights. The temperature T0 at the top boundary and the temperature gradient (∂ T/∂ z)1 at the lower boundary are kept constant during the computation. The initial atmosphere is superadiabatic with polytropic index m = 1, specific heats ratio γ = 1.4 and temperature contrast T1}/T{0 = 11. This layer mimics a section of the outer layer of the proto-solar cloud (Dyt & Prentice, MNRAS 296 56 1998). Because the Reynolds number of the real atmosphere is so large, motions whose scale is less than the computational grid size are represented with a Smagorinsky sub-grid scale turbulence approximation (Chan et al, Ap.J.} 263 935 1982). That is, a velocity-dependent turbulent viscosity ν t and thermal diffusivity κ t are chosen so that the high wavenumber kinetic energy spectrum follows Kolmogorov's -5/3 law. The flow soon evolves to a configuration consisting of a network of giant convective cells. At cell boundaries, the downflows are spatially concentrated and rapid. Turbulent pressures t range up to 3 times the local gas pressure pgas. The convection eliminates nearly all of the superadiabaticity in the lower 90% of the atmosphere. In the top 10%, ∂ T/∂ z increases sharply and a steep density inversion occurs, with ρ increasing by a factor of 3-4. This result gives new credibility to the modern Laplacian theory of solar system origin (Moon & Planets} 19 341 1978; ibid 73 237 1996; Phys. Lett. A} 213 253 1996). Even so, we need t ≈ 10 pgas if the proto-solar cloud is to shed discrete gas rings whose orbits match the mean planetary spacings and whose chemical condensates match the

  20. Micro Ramps in Supersonic Turbulent Boundary Layers: An experimental and numerical study

    NARCIS (Netherlands)

    Sun, Z.

    2014-01-01

    The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of t

  1. An Interactive Method of Characteristics Java Applet to Design and Analyze Supersonic Aircraft Nozzles

    Science.gov (United States)

    Benson, Thomas J.

    2014-01-01

    The Method of Characteristics (MOC) is a classic technique for designing supersonic nozzles. An interactive computer program using MOC has been developed to allow engineers to design and analyze supersonic nozzle flow fields. The program calculates the internal flow for many classic designs, such as a supersonic wind tunnel nozzle, an ideal 2D or axisymmetric nozzle, or a variety of plug nozzles. The program also calculates the plume flow produced by the nozzle and the external flow leading to the nozzle exit. The program can be used to assess the interactions between the internal, external and plume flows. By proper design and operation of the nozzle, it may be possible to lessen the strength of the sonic boom produced at the rear of supersonic aircraft. The program can also calculate non-ideal nozzles, such as simple cone flows, to determine flow divergence and nonuniformities at the exit, and its effect on the plume shape. The computer program is written in Java and is provided as free-ware from the NASA Glenn central software server.

  2. A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory

    Science.gov (United States)

    Barnhart, Paul J.

    1996-01-01

    A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.

  3. Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.

    Science.gov (United States)

    Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C

    2008-03-01

    The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.

  4. Lateral Reaction Jet Flow Interaction Effects on a Generic Fin-Stabilized Munition in Supersonic Crossflows

    Science.gov (United States)

    2013-11-01

    269–275. 9. Stahl, B.; Edmunds , H.; Gulhan, A. Experimental Investigation of Hot and Cold Side Jet Interaction With a Supersonic Cross Flow...LICHTENBERG-SCANLAN G MALEJKO T RECCHIA C STOUT W TOLEDO J TRAVAILLE E VAZQUEZ C WILSON 4 PM CAS (PDF) M BURKE R KIEBLER

  5. Supersonic Virtual Valve Design for Numerical Simulation of a Large-Bore Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.-H.; Kirkpatrick, A.; Mitchell, C.

    2007-10-01

    In many applications of supersonic injection devices, three-dimensional computation that can model a complex supersonic jet has become critical. However, in spite of its increasing necessity, it is computationally costly to capture the details of supersonic structures in intricate three-dimensional geometries with moving boundaries. In large-bore stationary natural gas fueled engine research, one of the most promising mixing enhancement technologies currently used for natural gas engines is high-pressure fuel injection. Consequently, this creates considerable interest in three-dimensional computational simulations that can examine the entire injection and mixing process in engines using high-pressure injection and can determine the impact of injector design on engine performance. However, the cost of three-dimensional engine simulations-including a moving piston and the kinetics of combustion and pollutant production quickly becomes considerable in terms of simulation time requirements. One limiting factor is the modeling of the small length scales of the poppet valve flow. Such length scales can be three orders of magnitude smaller than cylinder length scales. The objective of this paper is to describe the development of a methodology for the design of a simple geometry supersonic virtual valve that can be substituted in three-dimensional numerical models for the complex shrouded poppet valve injection system actually installed in the engine to be simulated.

  6. EOIL power scaling in a 1-5 kW supersonic discharge-flow reactor

    Science.gov (United States)

    Davis, Steven J.; Lee, Seonkyung; Oakes, David B.; Haney, Julie; Magill, John C.; Paulsen, Dwane A.; Cataldi, Paul; Galbally-Kinney, Kristin L.; Vu, Danthu; Polex, Jan; Kessler, William J.; Rawlins, Wilson T.

    2008-02-01

    Scaling of EOIL systems to higher powers requires extension of electric discharge powers into the kW range and beyond with high efficiency and singlet oxygen yield. We have previously demonstrated a high-power microwave discharge approach capable of generating singlet oxygen yields of ~25% at ~50 torr pressure and 1 kW power. This paper describes the implementation of this method in a supersonic flow reactor designed for systematic investigations of the scaling of gain and lasing with power and flow conditions. The 2450 MHz microwave discharge, 1 to 5 kW, is confined near the flow axis by a swirl flow. The discharge effluent, containing active species including O II(a1Δ g, b1Σ g +), O( 3P), and O 3, passes through a 2-D flow duct equipped with a supersonic nozzle and cavity. I2 is injected upstream of the supersonic nozzle. The apparatus is water-cooled, and is modular to permit a variety of inlet, nozzle, and optical configurations. A comprehensive suite of optical emission and absorption diagnostics is used to monitor the absolute concentrations of O II(a), O II(b), O( 3P), O 3, I II, I(2P 3/2), I(2P 1/2), small-signal gain, and temperature in both the subsonic and supersonic flow streams. We discuss initial measurements of singlet oxygen and I* excitation kinetics at 1 kW power.

  7. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

    NARCIS (Netherlands)

    Elsinga, G.E.; Adrian, R.J.; Van Oudheusden, B.W.; Scarano, F.

    2010-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity f

  8. Unsteady transonic aerodynamics and aeroelastic calculations at low-supersonic freestreams

    Science.gov (United States)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1988-01-01

    A computational procedure is presented to simulate transonic unsteady flows and corresponding aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic small-perturbation theory. The structural equations of motions are modeled using modal equations of motion directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled aeroelastic equations of motion are solved by an integration procedure based on the time-accurate, linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings. Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams. The extension of the transonic dip into the upper transonic regime is illustrated.

  9. Study on Turbulent Behavior of Water Jet in Supersonic Steam Injector

    Science.gov (United States)

    Fukuichi, Akira; Abe, Yutaka; Fujiwara, Akiko; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    One of the most interesting devices for light water reactor systems aimed at simplified system, improvement of safety and reliability is a supersonic steam injector. Supersonic steam injector is a passive jet pump without rotating machine and high efficient heat exchanger because of direct contact condensation between supersonic steam and a subcooled water jet. It is considered that flow behavior in the supersonic steam injector is related to complicated turbulent flow with large shear stress induced by velocity difference between steam and water and direct contact condensation. However, studies about turbulent flow under large shear stress with direct contact condensation are not enough. Especially, mechanisms of momentum and heat transfer are not clarified in detail. Objective of the present study is to investigate turbulent behaviors of a water jet and interface that play an important role in heat transfer and momentum transfer. Radial distribution of streamwise velocity and fluctuation of total pressure are measured by a pitot measurement. Visual measurement of the turbulent water jet is conducted by a high speed camera in order to identify location of unstable interface and its behavior. It is found that streamwise velocity increases as it approaches downstream of the mixing nozzle. Fluctuation of total pressure is large at water-steam mixture region. It is confirmed that waves propagated on the interface. And its velocity is obtained.

  10. Discussion of the target-missile control scheme with supersonic speed at minimum altitude

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    An antiship missile with supersonic speed at minimum altitude is an effective weapon to break through a defense line. The former Soviet Union was a leader in this field since it had developed several kinds of antiship missiles which obtained supersonic speed at minimum altitudes. To counter this kind of missile,many countries have been developing corresponding antimissiles. For the purpose of verifing the antimissile missile's effectiveness in intercepting antiship missiles, a target-missile is needed. A target-missle is cheaper and can imitate the main characteristics of antiship missiles with supersonic speed at minimum altitude. In this paper, the control scheme of a target missile flying with supersonic speed at minimum altitude is studied. To counter the problem of hedgehopping over the sea, a control scheme utilizing a SINS + altimeter was proposed.In this scheme, both the quick response ability of altitude control and the anti-jamming problem were considered. A simulation experiment shows that when an integrated altitude control system is used, the anti-disturbance ability of the integrated altitude is good and the response speed of altitude control system can be dramatically improved.

  11. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Institute of Scientific and Technical Information of China (English)

    Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing

    2015-01-01

    The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  12. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Jin Di

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  13. Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.

    2005-01-01

    Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d

  14. Investigation on flow and mixing characteristics of supersonic mixing layer induced by forced vibration of cantilever

    Science.gov (United States)

    Zhang, Dongdong; Tan, Jianguo; Lv, Liang

    2015-12-01

    The mixing process has been an important issue for the design of supersonic combustion ramjet engine, and the mixing efficiency plays a crucial role in the improvement of the combustion efficiency. In the present study, nanoparticle-based planar laser scattering (NPLS), particle image velocimetry (PIV) and large eddy simulation (LES) are employed to investigate the flow and mixing characteristics of supersonic mixing layer under different forced vibration conditions. The indexes of fractal dimension, mixing layer thickness, momentum thickness and scalar mixing level are applied to describe the mixing process. Results show that different from the development and evolution of supersonic mixing layer without vibration, the flow under forced vibration is more likely to present the characteristics of three-dimensionality. The laminar flow region of mixing layer under forced vibration is greatly shortened and the scales of rolled up Kelvin-Helmholtz vortices become larger, which promote the mixing process remarkably. The fractal dimension distribution reveals that comparing with the flow without vibration, the turbulent fluctuation of supersonic mixing layer under forced vibration is more intense. Besides, the distribution of mixing layer thickness, momentum thickness and scalar mixing level are strongly influenced by forced vibration. Especially, when the forcing frequency is 4000 Hz, the mixing layer thickness and momentum thickness are 0.0391 m and 0.0222 m at the far field of 0.16 m, 83% and 131% higher than that without vibration at the same position, respectively.

  15. Synthesis of photocatalytic TiO2 nano-coatings by supersonic cluster beam deposition

    NARCIS (Netherlands)

    Fraters, B.D.; Cavaliere, E; Mul, G.; Gavioli, L.

    2014-01-01

    In this paper we report on the photocatalytic behavior in gas phase propane oxidation of well-defined TiO2 nanoparticle (NP) coatings prepared via Supersonic Cluster Beam Deposition (SCBD) on Si-wafers and quartz substrates. The temperature dependent crystal phase of the coatings was analyzed by Ram

  16. Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge

    Institute of Scientific and Technical Information of China (English)

    Hui Cheng YIN

    2006-01-01

    This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.

  17. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    Science.gov (United States)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  18. The three-dimensional flow organization past a micro-ramp in a supersonic boundary layer

    NARCIS (Netherlands)

    Sun, Z.; Schrijer, F.F.J.; Scarano, F.; Van Oudheusden, B.W.

    2012-01-01

    The three-dimensional instantaneous flow organization in the near wake of a micro-ramp interacting with a Mach 2.0 supersonic turbulent boundary layer is studied using tomographic particle image velocimetry. The mean flow reveals a wake with approximately circular cross section dominated by a pair o

  19. Effect of inlet and outlet flow conditions on natural gas parameters in supersonic separation process.

    Directory of Open Access Journals (Sweden)

    Yan Yang

    Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.

  20. Numerical analysis of Chevron nozzle effects on performance of the supersonic ejector-diffuser system

    Science.gov (United States)

    Kong, Fanshi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2013-10-01

    The supersonic nozzle is the most important device of an ejector-diffuser system. The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated around the nozzle extent. In the present study, the primary stream nozzle was redesigned using convergent nozzle to activate the shear actions between the primary and secondary streams, by means of longitudinal vortices generated between the Chevron lobes. Exactly same geometrical model of ejector-diffuser system was created to validate the results of experimental data. The operation characteristics of the ejector system were compared between Chevron nozzle and conventional convergent nozzle for the primary stream. A CFD method has been applied to simulate the supersonic flows and shock waves inside the ejector. It is observed that the flow structure and shock system were changed and primary numerical analysis results show that the Chevron nozzle achieve a positive effect on the supersonic ejector-diffuser system performance. The ejector with Chevron nozzle can entrain more secondary stream with less primary stream mass flow rate.

  1. Ongoing Validation of Computational Fluid Dynamics for Supersonic Retro-Propulsion

    Science.gov (United States)

    Schauerhamer, Guy; Trumble, Kerry; Carlson, Jan-Renee; Edquist, Karl; Buning, Pieter; Sozer, Emre

    2011-01-01

    During the Entry, Decent, and Landing phase of planetary exploration, previous methods of deceleration do not scale with high mass spacecraft. Supersonic Retro-Propulsion(SRP)is a viable method to decelerate large spacecraft including those that will carry humans to Mars. Flow data at these conditions are difficult to obtain through flight or wind tunnel experiments

  2. Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft

    Science.gov (United States)

    Bulat, Pavel V.; Volkov, Konstantin N.

    2016-01-01

    In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…

  3. CFD modeling of particle behavior in supersonic flows with strong swirls for gas separation

    DEFF Research Database (Denmark)

    Yang, Yan; Wen, Chuang

    2017-01-01

    flow from the dry gas outlet. The separation efficiency reached over 80%, when the droplet diameter was more than 1.5 μm. The optimum length of the cyclonic separation section was approximate 16–20 times of the nozzle throat diameter to obtain higher collection efficiency for the supersonic separator...

  4. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    Science.gov (United States)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  5. Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems

    Science.gov (United States)

    Chen, Gui-Qiang

    2017-08-01

    When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle -- the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less or larger than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue -- whether one or both of the steady weak and strong shocks are physically admissible solutions -- has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.

  6. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  7. 涡扇发动机位置对外吹式增升效果影响的数值模拟%Numerical Simulation of Externally Blown Flap Effect with Different Turbofan Positions

    Institute of Scientific and Technical Information of China (English)

    史经纬; 王占学; 刘增文; 张建东

    2012-01-01

    A two-dimensional numerical simulation employing S-A model was conducted to determine the effect caused by altering the position of turbofan which is relative to the wing.Seen from numerical simulation results ,it is concluded that there are three main facts-.nozzle jet impact on the flap, ejector effect on upper surface of wing by high-speed jet from flap slot and the effect of nozzle jet pressure on the lower surface of wing .Analysis from turbofan s position relative to the wing shows that in the axial direction turbofan has a best position for a highest lift coefficient and in the vertical direction,the closer the turbofan gets to the wing,the higher the lift coefficient is.%基于CFD技术,对涡扇发动机相对机翼轴向和垂直安装位置对增升效果的影响进行了数值模拟.从数值模拟结果可以看出,涡扇发动机喷流对增升效果的影响主要体现在:喷管喷流对襟翼的冲击,流经襟翼翼缝的高速喷流对杌翼上表面气流的引射作用及喷管喷流压力对机翼下表面流动的影响等方面.从发动机相对机翼位置方面分析,发动机相对机翼的轴向位置存在一个使升力系数达到最大的最佳位置,而在垂直方向,发动机越靠近机翼升力系数越大.

  8. Fast, high temperature and thermolabile GC--MS in supersonic molecular beams

    Science.gov (United States)

    Dagan, Shai; Amirav, Aviv

    1994-05-01

    This work describes and evaluates the coupling of a fast gas chromatograph (GC) based on a short column and high carrier gas flow rate to a supersonic molecular beam mass spectrometer (MS). A 50 cm long megabore column serves for fast GC separation and connects the injector to the supersonic nozzle source. Sampling is achieved with a conventional syringe based splitless sample injection. The injector contains no septum and is open to the atmosphere. The linear velocity of the carrier gas is controlled by a by-pass (make-up) gas flow introduced after the column and prior to the supersonic nozzle. The supersonic expansion serves as a jet separator and the skimmed supersonic molecular beam (SMB) is highly enriched with the heavier organic molecules. The supersonic molecular beam constituents are ionized either by electron impact (EI) or hyperthermal surface ionization (HSI) and mass analyzed. A 1 s fast GC--MS of four aromatic molecules in methanol is demonstrated and some fundamental aspects of fast GC--MS with time limit constraints are outlined. The flow control (programming) of the speed of analysis is shown and the analysis of thermolabile and relatively non-volatile molecules is demonstrated and discussed. The tail-free, fast GC--MS of several mixtures is shown and peak tailing of caffeine is compared with that of conventional GC--MS. The improvement of the peak shapes with the SMB--MS is analyzed with the respect to the elimination of thermal vacuum chamber background. The extrapolated minimum detected amount was about 400 ag of anthracence-d10, with an elution time which was shorter than 2s. Repetitive injections could be performed within less than 10 s. The fast GC--MS in SMB seems to be ideal for fast target compound analysis even in real world, complex mixtures. The few seconds GC--MS separation and quantification of lead (as tetraethyllead) in gasoline, caffeine in coffee, and codeine in a drug is demonstrated. Controlled HSI selectivity is demonstrated in

  9. ANALYTICAL SYNTHESIS OF THE METHOD OF TARGETING A SUPERSONIC UNMANNED AERIAL VECHICLE BASED ON MULTI-DIMENSIONAL NONLINEAR DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    V. E. Markevich

    2017-01-01

    Full Text Available A method of analytical synthesis of an optimal controller for the terminal control task of supersonic unmanned aerial vehicles based on synergetic approach to the design of control systems for nonlinear multidimensional dynamic objects is considered.The article provides analytical expressions describing the algorithm for control the velocity vector position of a supersonic UAV, the simulation results and the comparative analysis of the proposed control algorithm with the modified method of proportional navigation.

  10. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    Science.gov (United States)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  11. Abiotic and biotic factors influencing the mobility of arsenic in groundwater of a through-flow island in the Okavango Delta, Botswana

    Science.gov (United States)

    Mladenov, Natalie; Wolski, Piotr; Hettiarachchi, Ganga M.; Murray-Hudson, Michael; Enriquez, Hersy; Damaraju, Sivaramakrishna; Galkaduwa, Madhubhashini B.; McKnight, Diane M.; Masamba, Wellington

    2014-10-01

    The Okavango Delta of Botswana is a large arid-zone wetland comprising 20,000 km2 of permanent and seasonal floodplains and over 100,000 islands. It has been shown that island groundwater can have very high dissolved arsenic (As) concentration, but the abiotic and biotic controls on As mobility are not well understood in this setting. At New Island, an island located in the seasonal swamp, dissolved As concentration increased from below detection limits in the surface water to 180 μg/L in groundwater, present as As(III) species. We investigated the relative importance of hydrologic, geochemical, and geomicrobial processes, as well as influences of recent extreme flooding events, in mobilizing and sequestering As in the shallow groundwater system under this island. Our results suggest that evapotranspiration and through-flow conditions control the location of the high arsenic zone. A combination of processes is hypothesized to control elevated As in the concentration zone of New Island: high evapotranspiration rates concentrate As and other solutes, more alkaline pH leads to desorption of arsenic or dissolution of arsenic sulfides, and formation of thioarsenic complexes acts to keep arsenic in solution. Evidence from X-ray absorption near-edge structure spectroscopy (XANES) and sulfate reducing bacteria (SRB) measurements further suggests that SRBs influence arsenic sequestration as orpiment (As2S3). Although dissolved organic matter (DOM) was not significantly correlated to dissolved As in the groundwater, our results suggest that DOM may serve as an electron donor for sulfate reduction or other microbial reactions that influence redox state and As mobility. These results have important implications for water management in the region and in other large wetland environments. The processes evaluated in this study are also relevant for arsenic removal in subsurface constructed wetland systems that may exhibit rapidly changing processes over small spatial scales.

  12. Interhemispheric teleconnections: Late Pliocene change in Mediterranean outflow water linked to changes in Indonesian Through-Flow and Atlantic Meridional Overturning Circulation, a review and update

    Science.gov (United States)

    Sarnthein, Michael; Grunert, Patrick; Khélifi, Nabil; Frank, Martin; Nürnberg, Dirk

    2017-07-01

    The ultimate, possibly geodynamic control and potential impact of changes in circulation activity and salt discharge of Mediterranean outflow waters (MOW) on Atlantic meridional overturning circulation have formed long-standing objectives in paleoceanography. Late Pliocene changes in the distal advection of MOW were reconstructed on orbital timescales for northeast Atlantic DSDP/ODP sites 548 and 982 off Brittany and on Rockall Plateau, supplemented by a proximal record from Site U1389 west off Gibraltar, and compared to Western Mediterranean surface and deep-water records of Alboran Sea Site 978. From 3.43 to 3.3 Ma, MOW temperatures and salinities form a prominent rise by 2-4 °C and 3 psu, induced by a preceding and coeval rise in sea surface and deep-water salinity and increased summer aridity in the Mediterranean Sea. We speculate that these changes triggered an increased MOW flow and were ultimately induced by a persistent 2.5 °C cooling of Indonesian Through-Flow waters. The temperature drop resulted from the northward drift of Australia that crossed a threshold value near 3.6-3.3 Ma and led to a large-scale cooling of the eastern subtropical Indian Ocean and in turn, to a reduction of African monsoon rains. Vice versa, we show that the distinct rise in Mediterranean salt export after 3.4 Ma induced a unique long-term rise in the formation of Upper North Atlantic Deep Water, that followed with a phase lag of 100 ky. In summary, we present evidence for an interhemispheric teleconnection of processes in the Indonesian Gateways, the Mediterranean and Labrador Seas, jointly affecting Pliocene climate.

  13. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  14. Imaging of the Space-time Structure of a Vortex Generator in Supersonic Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Dengpan; XIA Zhixun; ZHAO Yuxin; WANG Bo; ZHAO Yanhui

    2012-01-01

    The fine space-time structure of a vortex generator (VG) in supersonic flow is studied with the nanoparticle-based planar laser scattering (NPLS) method in a quiet supersonic wind tunnel.The fine coherent structure at the symmetrical plane of the flow field around the VG is imaged with NPLS.The spatial structure and temporal evolution characteristics of the vortical structure are analyzed,which demonstrate periodic evolution and similar geometry,and the characteristics of rapid movement and slow change.Because the NPLS system yields the flow images at high temporal and spatial resolutions,from these images the position of a large scale structure can be extracted precisely.The position and velocity of the large scale structures can be evaluated with edge detection and correlation algorithms.The shocklet structures induced by vortices are imaged,from which the generation and development of shocklets are discussed in this paper.

  15. A flow control study of a supersonic mixing layer via NPLS

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The flow control of a supersonic mixing layer was studied in a supersonic mixing layer wind tunnel with convective Mach number (Mc) at 0.5. The passive control of the mixing layer was achieved by perturbation tapes on the trailing edge of the splitter plate. The control effects of 2D and 3D perturbation tapes with different sizes were compared. The mixing layer was visualized via NPLS,and the transient fine structures were identifiable in NPLS images,which were used to analyze the effects of flow control. The results show that the 2D tapes can enhance the 2D characteristic of the mixing layer,delaying mixing layer transition; and the 3D tapes can enhance the 3D characteristic of the mixing layer,advancing mixing layer transition. 3D structures of the mixing layer were visualized,and the H-type Λ vortexes were found with 3D tapes control.

  16. Optimization on a Network-based Parallel Computer System for Supersonic Laminar Wing Design

    Science.gov (United States)

    Garcia, Joseph A.; Cheung, Samson; Holst, Terry L. (Technical Monitor)

    1995-01-01

    A set of Computational Fluid Dynamics (CFD) routines and flow transition prediction tools are integrated into a network based parallel numerical optimization routine. Through this optimization routine, the design of a 2-D airfoil and an infinitely swept wing will be studied in order to advance the design cycle capability of supersonic laminar flow wings. The goal of advancing supersonic laminar flow wing design is achieved by wisely choosing the design variables used in the optimization routine. The design variables are represented by the theory of Fourier series and potential theory. These theories, combined with the parallel CFD flow routines and flow transition prediction tools, provide a design space for a global optimal point to be searched. Finally, the parallel optimization routine enables gradient evaluations to be performed in a fast and parallel fashion.

  17. Minimally Intrusive and Nonintrusive Supersonic Injectors for LANTR and RBCC/Scramjet Propulsion Systems

    Science.gov (United States)

    Buggele, Alvin E.; Gallagher, John R.

    2002-10-01

    A family of supersonic injectors for use on spaceplanes, rockets and missiles and the like is disclosed and claimed. Each injector maintains a specific constant (uniform) Mach number along its length when used while being minimally intrusive at significantly higher injectant pressure than combuster freestream total pressure. Each injector is substantially non-intrusive when it is not being used. The injectors may be used individually or in a group. Different orientations of the injectors in a group promotes greater penetration and mixing of fuel or oxidizer into a supersonic combustor. The injectors can be made from single piece of Aluminum, investment cast metal, or ceramic or they can be made from starboard and port blocks strapped together to accurately control the throat area. Each injector includes an elongated body having an opening which in cross section is an hour glass (venturi shaped) and the opening diverges in width and depth from the bow section to the stem section of the opening.

  18. The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow

    Science.gov (United States)

    Fernando, E. M.; Donovan, J. F.; Smits, A. J.

    1987-01-01

    The calibration and operation of a constant-temperature crossed-wire probe in supersonic flow is considered. Crossed-wire probes offer considerable advantages over single, inclined wires: the kinematic shear stress can be derived from a single point measurement; the rms quantities can be derived from the same measurement, and the instantaneous quantities can be obtained as a continuous function of time. However, using a crossed-wire probe in supersonic flow is subject to the following practical difficulties: the problem of flow interference, where the shock waves from one wire and its supports interfere with the flow over the other wire; the necessity for high frequency response to resolve the spectral content, and the sensitivity of the results to small changes in the calibration constants. In the present contribution, each of these problems is addressed. Practical solutions are suggested, and some encouraging results are presented.

  19. Supersonic Magnetic Upflows in Granular Cells Observed with Sunrise/IMaX

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Schmidt, W; Barthol, P; Gandorfer, A; Domingo, V; Knoelker, M

    2010-01-01

    Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {\\AA} spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersonic events occur at a rate of $1.3\\times10^{-5}$ occurrences per second per arcsec$^{2}$.

  20. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  1. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  2. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    Science.gov (United States)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  3. Computing supersonic non-premixed turbulent combustion by an SMLD flamelet progress variable model

    CERN Document Server

    Coclite, A; Gurtner, M; De Palma, P; Haidnd, O J; Pascazio, G

    2015-01-01

    This paper describes the numerical simulation of the NASA Langley Research Center supersonic H2 -Air combustion chamber performed using two approaches to model the presumed probability density function (PDF) in the flamelet progress variable (FPV) framework. The first one is a standard FPV model, built presuming the functional shape of the PDFs of the mixture fraction, Z, and of the progress parameter, {\\Lambda}. In order to enhance the prediction capabilities of such a model in high-speed reacting flows, a second approach is proposed employing the statistically most likely distribution (SMLD) techcnique to presume the joint PDF of Z and {\\Lambda}, without any assumption about their behaviour. The standard and FPV-SMLD models have been developed using the low Mach number assumption. In both cases, the temperature is evaluated by solving the total-energy conservation equation, providing a more suitable approach for the simulation of supersonic combustion. By comparison with experimental data, the proposed SMLD...

  4. LES of an inclined jet into a supersonic cross-flow

    CERN Document Server

    Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall

    2008-01-01

    This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.

  5. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  6. The Density Variance--Mach Number Relation in Supersonic Turbulence: I. Isothermal, magnetised gas

    CERN Document Server

    Molina, F Z; Federrath, C; Klessen, R S

    2012-01-01

    It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum continuity equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density....

  7. Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition

    Science.gov (United States)

    Lee, Jong-Gun; Cha, You-Hong; Kim, Do-Yeon; Lee, Jong-Hyuk; Lee, Tae-Kyu; Kim, Woo-Young; Park, Jieun; Lee, Dongyun; James, Scott C.; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-08-01

    Electrically insulating alumina films were fabricated on steel substrates using supersonic aerosol deposition and their hardness and scratchability were measured. Alumina particles (0.4-μm diameter) were supersonically sprayed inside a low-pressure chamber using between 1 and 20 nozzle passes. These alumina particles were annealed between 300 and 800 K to determine the temperature's effect on film crystal size (37-41 nm). Smoother surface morphology and increased electrical resistance of the thin films were observed as their thicknesses grew by increasing the number of passes. Resistances of up to 10,000 MΩ demonstrate robust electrical insulation. Significant hardness was measured (1232 hv or 13.33 GPa), but the alumina films could be peeled off with normal loads of 36 and 47 N for films deposited on stainless steel and SKD11 substrates, respectively. High insulation and hardness confirm that these alumina films would make excellent electrical insulators.

  8. Stability of a laminar premixed supersonic free shear layer with chemical reactions

    Science.gov (United States)

    Menon, S.; Anderson, J. D., Jr.; Pai, S. I.

    1984-01-01

    The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.

  9. Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets

    Science.gov (United States)

    Berry, M. G.; Magstadt, A. S.; Glauser, M. N.

    2017-02-01

    In this paper, we present an experimental investigation of a supersonic rectangular nozzle with aft deck used for three-stream engines. The jet utilizes a single expansion ramp nozzle (SERN) configuration along with multiple streams, operating at a bulk flow Mj,1 = 1.6 and bypass stream Mj,3 = 1.0. This idealized representation consists of two canonical flows: a supersonic convergent-divergent (CD) jet and a sonic wall jet. Time-resolved schlieren experiments were performed up to 100 kHz. Proper orthogonal decomposition (POD), as suggested by Lumley for structure identification in turbulent flows, is applied to the schlieren images and the spatial eigenfunctions and time-dependent coefficients are related to the flow structures. This research seeks to lay a foundation for fundamental testing of multi-stream SERNs and the identification of the flow physics that dominate these modern military nozzles.

  10. Initiation of Explosives From the Bow Shock of a Supersonic Penetrator

    Science.gov (United States)

    Ferm, Eric

    2009-06-01

    An analytic and computational study of supersonic penetration of an explosive is presented. The goal is the development of an initiation criterion relating projectile diameter and threshold projectile velocity determined by fundamental material and explosive parameters. The basis of the initiation criterion is an examination of the steady flow structure around a supersonic penetrator in the unreacted materials, yielding the states along the bow shock and the size and sonic character of the flow structure. The state is used to determine the time scale of the reacting explosive using initiation experiment results (Pop Plot). The size of the subsonic region is compared to the failure diameter to examine the viability of the initiation. The results are compared with experimental initiation criterion.

  11. The Effect of Magnetohydrodynamic (MHD) Energy Bypass on Specific Thrust for a Supersonic Turbojet Engine

    Science.gov (United States)

    Benyo, Theresa L.

    2010-01-01

    This paper describes the preliminary results of a thermodynamic cycle analysis of a supersonic turbojet engine with a magnetohydrodynamic (MHD) energy bypass system that explores a wide range of MHD enthalpy extraction parameters. Through the analysis described here, it is shown that applying a magnetic field to a flow path in the Mach 2.0 to 3.5 range can increase the specific thrust of the turbojet engine up to as much as 420 N/(kg/s) provided that the magnitude of the magnetic field is in the range of 1 to 5 Tesla. The MHD energy bypass can also increase the operating Mach number range for a supersonic turbojet engine into the hypersonic flight regime. In this case, the Mach number range is shown to be extended to Mach 7.0.

  12. Bibliography of Supersonic Cruise Research (SCR) program from 1977 to mid-1980

    Science.gov (United States)

    Hoffman, S.

    1980-01-01

    The supersonic cruise research (SCR) program, initiated in July 1972, includes system studies and the following disciplines: propulsion, stratospheric emission impact, structures and materials, aerodynamic performance, and stability and control. In a coordinated effort to provide a sound basis for any future consideration that may be given by the United States to the development of an acceptable commercial supersonic transport, integration of the technical disciplines was undertaken, analytical tools were developed, and wind tunnel, flight, and laboratory investigations were conducted. The present bibliography covers the time period from 1977 to mid-1980. It is arranged according to system studies and the above five SCR disciplines. There are 306 NASA reports and 135 articles, meeting papers, and company reports cited.

  13. A Study on the Estimation of Aeroheating upon the Warhead Nose at Supersonic Speed

    Institute of Scientific and Technical Information of China (English)

    LI Fu-song; TANG Li-tie; XU Min; MA Xu-hui

    2006-01-01

    An expression for estimating the aeroheating on a warhead nose at different supersonic speeds is proposed by incorporating CFD (computational fluid dynamics) and the least-square method. Compared with the traditional estimation formula, the expression is more accurate, convenient and can be used in the optimized design of warheads. The error from the result obtained in the test of a ball cartridge flight is less than 3 %. It satisfies the engineering requirements.

  14. Blockage Testing in the NASA Glenn 225 Square Centimeter Supersonic Wind Tunnel

    Science.gov (United States)

    Sevier, Abigail; Davis, David O.; Schoenenberger, Mark

    2017-01-01

    The starting characteristics for three different model geometries were tested in the Glenn Research Center 225 Square Centimeter Supersonic Wind Tunnel. The test models were tested at Mach 2, 2.5 and 3 in a square test section and at Mach 2.5 again in an asymmetric test section. The results gathered in this study will help size the test models and inform other design features for the eventual implementation of a magnetic suspension system.

  15. Aerodynamic analysis of a supersonic cascade vibrating in a complex mode

    Science.gov (United States)

    Caruthers, J. E.; Riffel, R. E.

    1980-01-01

    An analysis is presented which has been used to predict the unsteady aerodynamic behavior of a finite supersonic cascade of airfoils forced in harmonic oscillation with airfoil-to-airfoil variations in amplitude. Theoretical predictions are compared with some recent experimental results at a reduced frequency representative of actual fan or compressor flutter cases. The similarity of the experimental situation in the finite cascade to the flutter of a severely mistuned rotor is noted.

  16. Parameters of the plasma of a dc pulsating discharge in a supersonic air flow

    Energy Technology Data Exchange (ETDEWEB)

    Shibkov, V. M., E-mail: shibkov@phys.msu.ru; Shibkova, L. V.; Logunov, A. A. [Moscow State University, Faculty of Physics (Russian Federation)

    2017-03-15

    A dc discharge in a cold (T = 200 K) supersonic air flow at a static pressure of 200–400 Torr was studied experimentally. The excited unsteady pulsating discharge has the form of a thin plasma channel with a diameter of ≤1 mm, stretched downstream the flow. Depending on the discharge current, the pulsation frequency varies from 800 to 1600 Hz and the electron temperature varies from 8000 to 15000 K.

  17. High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods

    Science.gov (United States)

    2016-08-24

    decades, however methods of measurably controlling -reducing jet noise in an efficient and robust manner remain evasive. Previous research has shown...2016 1-May-2013 30-Apr-2016 High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods The views...and Control using Advanced Actuation Methods Report Title Understanding and controlling jet noise has been the focus of analytical, computational and

  18. Improved method of analyzing hot-wire measurements in supersonic turbulence

    Science.gov (United States)

    Logan, Pamela

    1989-01-01

    The present analysis method for hot-wire data in supersonic turbulence takes sound field effects into account and yields greater accuracy in its treatment of flow variable fluctuations than existing methods despite requiring only a moderately accurate estimate of static pressure fluctuations. The method demonstrates the way in which neglecting pressure fluctuations will affect hot-wire data analysis, as well as indicating the probable direction the errors will take.

  19. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    Science.gov (United States)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical

  20. Effect of sidewall configurations on aerodynamic performance of supersonic air-intake

    OpenAIRE

    Watanabe, Yasushi; Murakami, Akira; Fujiwara, Hitoshi; 渡辺 安; 村上 哲; 藤原 仁志

    2004-01-01

    The effects of sidewall configurations on the aerodynamic performance of two dimensional external compression supersonic air-intakes were investigated experimentally and numerically. The aerodynamic performance for various yaw angles and ramp angles was obtained by wind tunnel tests performed in the Mach number range of 1.5 to 2.0. It was found that the major advantage of an air-intake with a larger sidewall configuration is its wider stable range in subcritical operation. On the other hand, ...

  1. Cavity Ignition in Supersonic Flow by Spark Discharge and Pulse Detonation

    Science.gov (United States)

    2014-08-18

    constant volume, through a detonation , or some combination. While a deflagration (flame) through constant volume combustion can provide rapid heat release...significantly disrupted, and the detonation was able to ignite and burn most of the fuel within the cavity. This led to decreased heat release in regime IV...locate/proci of the Combustion InstituteCavity ignition in supersonic flow by spark discharge and pulse detonation Timothy M. Ombrello a,⇑, Campbell D

  2. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  3. Axis retrieval of a supersonic source in a reverberant space using time reversal

    Science.gov (United States)

    Mahenc, Guillaume; Éric Bavu; Hamery, Pascal; Hengy, Sébastien; Melon, Manuel

    2017-08-01

    Localizing the axis of the Mach cone created by the supersonic displacement of a bullet in a reverberant environment is a challenging task, not only because of the high velocity of the moving source, but also because of the multiple wave reflections off of the walls. Although time reversal (TR) techniques allow static acoustic source localization in a reverberant space, they have not been explored yet on non stationary waves caused by supersonic displacements in urban canyons. The acoustic wave produced by a supersonic projectile has a conical wavefront and a N-shaped acoustic pressure signature. In this paper, this acoustic wave is reproduced using a line array of point-like sources (simulations) and loudspeakers (experiments). During the propagation of this conical wave in an urban canyon, the resulting pressure signals are measured using a time reversal array flush mounted into the ground. These acoustic signals allow to automatically retrieve with a high accuracy the location of the Mach cone axis using time reversal techniques. This inverse problem is solved using the maximization of a fourth-order statistical criterion of the backpropagated pressures. This criterion allows to estimate the intersections between the Mach cone axis and several vertical planes in the urban canyon. These estimations are then fitted to a 3D trajectory with a robust three dimensional interpolation technique based on the Random Sample Consensus (RANSAC) algorithm. This method allows to automatically retrieve the axis of the supersonic source with an angular accuracy of less than 0.5° and a misdistance of 0.5 cm for both numerical simulations and experimental measurements.

  4. A single theory for some quasi-static, supersonic, atomic, and tectonic scale applications of dislocations

    Science.gov (United States)

    Zhang, Xiaohan; Acharya, Amit; Walkington, Noel J.; Bielak, Jacobo

    2015-11-01

    We describe a model based on continuum mechanics that reduces the study of a significant class of problems of discrete dislocation dynamics to questions of the modern theory of continuum plasticity. As applications, we explore the questions of the existence of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.

  5. Nonlinear effects of energy sources and the jet at supersonic flow in the channel

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2016-10-01

    The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.

  6. ON THE ASYMPTOTIC BEHAVIOUR OF THE STEADY SUPERSONIC FLOWS AT INFINITY

    Institute of Scientific and Technical Information of China (English)

    ZHANG YONGQIAN

    2005-01-01

    This paper studies the asymptotic behaviour of steady supersonic flow past a piecewise smooth corner or bend. Under the hypothese that both vertex angle and the total variation of tangent along the boundary are small, it is shown that the solution can be obtained by a modified Glimm scheme, and that the asymptotic behaviour of the solution is determined by the velocity of incoming flow and the limit of the tangent of the boundary at infinity.

  7. On the origin of Fanaroff-Riley classification of radio galaxies: Deceleration of supersonic radio lobes

    CERN Document Server

    Kawakatu, Nozomu; Nagai, Hiroshi

    2009-01-01

    We argue that the origin of "FRI/FRI{-.1em}I dichotomy" -- the division between Fanaroff-Riley class I (FRI) with subsonic lobes and class I{-.1em}I (FRI{-.1em}I) radio sources with supersonic lobes is sharp in the radio-optical luminosity plane (Owen-White diagram) -- can be explained by the deceleration of advancing radio lobes. The deceleration is caused by the growth of the effective cross-sectional area of radio lobes. We derive the condition in which an initially supersonic lobe turns into a subsonic lobe, combining the ram-pressure equilibrium between the hot spots and the ambient medium with the relation between "the hot spot radius" and "the linear size of radio sources" obtained from the radio observations. We find that the dividing line between the supersonic lobes and subsonic ones is determined by the ratio of the jet power $L_{\\rm j}$ to the number density of the ambient matter at the core radius of the host galaxy $\\bar{n}_{\\rm a}$. It is also found that there exists the maximal ratio of $(L_{\\...

  8. On the Origin of Fanaroff-Riley Classification of Radio Galaxies: Deceleration of Supersonic Radio Lobes

    Science.gov (United States)

    Kawakatu, Nozomu; Kino, Motoki; Nagai, Hiroshi

    2009-06-01

    We argue that the origin of "FRI/FRII dichotomy"—the division between Fanaroff-Riley class I (FRI) with subsonic lobes and class II (FRII) radio sources with supersonic lobes is sharp in the radio-optical luminosity plane (Owen-White diagram)—can be explained by the deceleration of advancing radio lobes. The deceleration is caused by the growth of the effective cross-sectional area of radio lobes. We derive the condition in which an initially supersonic lobe turns into a subsonic lobe, combining the ram pressure equilibrium between the hot spots and the ambient medium with the relation between "the hot spot radius" and "the linear size of radio sources" obtained from the radio observations. We find that the dividing line between the supersonic lobes and subsonic ones is determined by the ratio of the jet power L j to the number density of the ambient matter at the core radius of the host galaxy \\bar{n}_a. It is also found that the maximal ratio of (L_j/\\bar{n}_a) exists and its value resides in (L_j/\\bar{n}_a)_max≈ 10^{44-47} erg s^{-1} cm^{3}, taking into account considerable uncertainties. This suggests that the maximal value (L_j/\\bar{n}_a)_max separates between FRIs and FRIIs.

  9. Surface destructive mechanism on high-temperature ablation, supersonic-erosion, dreg-adherence and corrosion

    Institute of Scientific and Technical Information of China (English)

    XIAO Jun; CHEN Jian-min; ZHOU Hui-di; LI Tie-hu; ZHANG Qiu-yu

    2004-01-01

    The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide track, causing serious problems to the operation and decreasing the lifetime of the launcher. Therefore, it is imperative to study the destructive mechanism so as to guarantee the smooth operation and increase the lifetime of military equipments. Accordingly, HTASED and corrosion were systematically observed and analyzed with the emphasis placed on the mechanism investigations making use of a series evaluation tests, typical missile engine simulation tests, national military standard methods, scanning electron microscopy and electrochemical corrosion tests. It is found that the thermal impact of high-temperature flame and supersonic erosion of corrosive melting particle jet of the SAMHSE lead to surface defects of micro-cracks, denudation and corrosive residue. Some defects reach to metal base becoming to "corrosive channels". Repetitive HTASED may cause ablation-adhesion fatigue stress, which enhances the surface corrosion and destruction. HTASED and corrosion are related to the type of a SAMHSE fuel and experience of the launcher. Surface destruction is related to synergistic effects of the HTASED. The ablated and failed Al or steel surface is liable to electrochemical corrosion characterized by pitting in humid and salt-spray environment.

  10. Nonlinear evolution of subsonic and supersonic disturbances on a compressible free shear layer

    Science.gov (United States)

    Leib, S. J.

    1991-01-01

    The effects of a nonlinear-nonequilibrium-viscous critical layer on the spatial evolution of subsonic and supersonic instability modes on a compressible free shear layer is considered. It is shown that the instability wave amplitude is governed by an integrodifferential equation with cubic-type nonlinearity. Numerical and asymptotic solutions to this equation show that the amplitude either ends in a singularity at a finite downstream distance or reaches an equilibrium value, depending on the Prandtl number, viscosity law, viscous parameter and a real parameter which is determined by the linear inviscid stability theory. A necessary condition for the existence of the equilibrium solution is derived, and whether or not this condition is met is determined numerically for a wide range of physical parameters including both subsonic and supersonic disturbances. it is found that no equilibrium solution exists for the subsonic modes unless the temperature ratio of the low-to-high-speed streams exceeds a critical value, while equilibrium solutions for the most rapidly growing supersonic mode exist over most of the parameter range examined.

  11. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  12. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    Science.gov (United States)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  13. Flow characteristic of in-flight particles in supersonic plasma spraying process

    Science.gov (United States)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2016-09-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  14. The Effect of Reflector with Sound-Absorbing Material on Supersonic Jet Noise

    Institute of Scientific and Technical Information of China (English)

    Y.-H. KWEON; M. TSUCHIDA; Y. MIYAZATO; T. AOKI; H.-D. KIM; T. SETOGUCHI

    2005-01-01

    This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0. In the present study, a metal reflector and reflectors made of three different sound-absorbing materials (grass wool and polyurethane foam) were employed,and the reflector size was varied. Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency, amplitude of screech tone and overall sound pressure level (OASPL). A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet. The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size. It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB, compared with those of the metal reflector.

  15. Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

    Science.gov (United States)

    Slater, J. W.; Saunders, J. D.

    2015-01-01

    Computational simulations and wind tunnel testing were conducted to explore the operation of the Abe Silverstein Supersonic Wind Tunnel at the NASA Glenn Research Center at test section Mach numbers above the current limit of Mach 3.5. An increased Mach number would enhance the capability for testing of supersonic and hypersonic propulsion systems. The focus of the explorations was on understanding the flow within the second throat of the tunnel, which is downstream of the test section and is where the supersonic flow decelerates to subsonic flow. Methods of computational fluid dynamics (CFD) were applied to provide details of the shock boundary layer structure and to estimate losses in total pressure. The CFD simulations indicated that the tunnel could be operated up to Mach 4.0 if the minimum width of the second throat was made smaller than that used for previous operation of the tunnel. Wind tunnel testing was able to confirm such operation of the tunnel at Mach 3.6 and 3.7 before a hydraulic failure caused a stop to the testing. CFD simulations performed after the wind tunnel testing showed good agreement with test data consisting of static pressures along the ceiling of the second throat. The CFD analyses showed increased shockwave boundary layer interactions, which was also observed as increased unsteadiness of dynamic pressures collected in the wind tunnel testing.

  16. Experimental Study of Ignition over Impact-Driven Supersonic Liquid Fuel Jet

    Directory of Open Access Journals (Sweden)

    Anirut Matthujak

    2013-01-01

    Full Text Available This study experimentally investigates the mechanism of the ignition of the supersonic liquid fuel jet by the visualization. N-Hexadecane having the cetane number of 100 was used as a liquid for the jet in order to enhance the ignition potential of the liquid fuel jet. Moreover, the heat column and the high intensity CO2 laser were applied to initiate the ignition. The ignition over the liquid fuel jet was visualized by a high-speed digital video camera with a shadowgraph system. From the shadowgraph images, the autoignition or ignition of the supersonic liquid fuel jet, at the velocity of 1,186 m/s which is a Mach number relative to the air of 3.41, did not take place. The ignition still did not occur, even though the heat column or the high intensity CO2 laser was alone applied. The attempt to initiate the ignition over the liquid fuel jet was achieved by applying both the heat column and the high intensity CO2 laser. Observing the signs of luminous spots or flames in the shadowgraph would readily indicate the presence of ignitions. The mechanism of the ignition and combustion over the liquid fuel jet was clearly clarified. Moreover, it was found that the ignition over the supersonic liquid fuel jet in this study was rather the force ignition than being the auto-ignition induced by shock wave heating.

  17. Characteristics of laser supersonic heating method for producing micro metallic particles

    Science.gov (United States)

    Lin, Shih-Lung; Lin, Jehnming

    2005-10-01

    In this article, the authors analyzed the process characteristics of laser supersonic heating method for producing metallic particles and predicted the in-flight tracks and shapes of micro-particles. A pulse Nd-YAG laser was used to heat the carbon steel target placed within an air nozzle. The high-pressure air with supersonic velocity was used to carry out carbon steel particles in the nozzle. The shock wave structures at the nozzle exit were visualized by the shadowgraph method. The carbon steel particles produced by laser supersonic heating method were grabbed and the spraying angles of the particle tracks were visualized. The velocity of the in-flight particles was measured by a photodiode sensor and compared with the numerical result. The solidification of carbon steel particles with diameters of 1-50 μm in compressible flow fields were investigated. The result shows that there is no significant difference in the dimension of solid carbon steel particles produced at shock wave fields under various entrance pressures (3-7 bar) with a constant laser energy radiation.

  18. Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview

    Science.gov (United States)

    Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.

    2017-01-01

    Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.

  19. DYNAMICAL ANALYSIS OF BANDA SEA CONCERNING WITH EL NINO, INDONESIAN THROUGH FLOW AND MONSOON BY USING SATELLITE DATA AND NUMERICAL MODEL

    Directory of Open Access Journals (Sweden)

    Bambang Sukresno

    2012-11-01

    Full Text Available Banda sea is subjected to external force such as El Nino South Oscillation (ENSO, Indonesian Through Flow (ITF andMonsoon. All of these component Combined with Current System, caused sea dynamic. This study aimed to get further knowledge aboutBanda sea dynamic. Based on this phenomenon , this study was conducted with an hypothesis that sea level anomaly (SLA and seasufrace temperature (SST will decrease during ENSO event. Also that SLA and SST will seasonally change concerning with Monsoon.The pattern of current in eastern of Banda sea will be seasonally different concerning with monsoon while in western of Banda sea isalmost constant according to ITFThis research carried out in Banda Sea within the rectangular region from 122.42 E to 131.47 E , Latitude 03.47 S to 07.65 S.in period of 1996 to 2006 consist of northwest monsoon, southeast monsoon, 1st transitional month in April and 2nd transitional monthin October. Spatial analysis used to analyze annual and seasonal distribution of SST and SLA from satellite dataset, also by comparisonbetween wind data, ITF pathway and numerical model. SST derived from NOAA / AVHRR satellite data by applying MCSST algorithm,SLA derived from Topex/ Poseidon and Jason-1 Satellite data by applying Inverse distance weighted interpolation, while numerical modelderived from barothropic model using Princeton ocean model.Sea level anomaly and sea surface temperature is decrease according to ENSO event, such as descrease of SLA and SST duringENSO event in 1997 , 2002 and 2004. Sea level anomaly and sea surface temperature is change according to Monsoon that reverse every6 (six month. SST and SLA get maximum level during northwest monsoon in November to March and get Minimum during Southeastmonsoon in May to September. There are strong correlation coefficient between annual Sea level anomaly and annual Sea SurfaceTemperature with index value up to 0.817104. on the other side correlation coefficient between seasonal Sea

  20. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms

  1. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector

    Science.gov (United States)

    Karthick, S. K.; Rao, Srisha M. V.; Jagadeesh, G.; Reddy, K. P. J.

    2016-07-01

    We use the rectangular gaseous supersonic ejector as a platform to study the mixing characteristics of a confined supersonic jet. The entrainment ratio (ER) of the ejector, the non-mixed length (LNM), and potential core length (LPC) of the primary supersonic jet are measures to characterize mixing within the supersonic ejector. Experiments are carried out on a low area ratio rectangular supersonic ejector with air as the working fluid in both primary and secondary flows. The design Mach number of the nozzle (MPD = 1.5-3.0) and primary flow stagnation pressure (Pop = 4.89-9.89 bars) are the parameters that are varied during experimentation. Wall static pressure measurements are carried out to understand the performance of the ejector as well as to estimate the LNM (the spatial resolution is limited by the placement of pressure transducers). Well-resolved flow images (with a spatial resolution of 50 μm/pixel and temporal resolution of 1.25 ms) obtained through Planar Laser Mie Scattering (PLMS) show the flow dynamics within the ejector with clarity. The primary flow and secondary flow are seeded separately with acetone that makes the LNM and LPC clearly visible in the flow images. These parameters are extracted from the flow images using in-house image processing routines. A significant development in this work is the definition of new scaling parameters within the ejector. LNM, non-dimensionalized with respect to the fully expanded jet height hJ, is found to be a linear function of the Mach number ratio (Mach number ratio is defined as the ratio of design Mach number (MPD) and fully expanded Mach number (MPJ) of the primary jet). This definition also provides a clear demarcation of under-expanded and over-expanded regimes of operation according to [MPD/MPJ] > 1 and [MPD/MPJ] < 1, respectively. It is observed that the ER increased in over-expanded mode (to 120%) and decreased in under-expanded mode (to 68%). Similarly, LNM decreased (to 21.8%) in over-expanded mode

  2. 某涡扇发动机加速性能试验研究%Experimental Study on Accelerating Ability of a Turbo-fan Engine

    Institute of Scientific and Technical Information of China (English)

    王玲玲

    2014-01-01

    In order to study the accelerating ability of a turbo-fan engine,the parameters of engine are converted.Then,the steady operating line of engine is determined by flight test.The acceler-ating ability of engine is studied by comparing the parameters of engine in accelerating process with the parameters of engine in steady state.The deficiencies of engine in accelerating process are gained,which can provide some reference for the test and optimization of engine in accelera-ting process.%为了更好地研究某发动机加速性能,对发动机相关截面参数进行加改装,然后通过飞行试验,确定发动机稳定工作线。通过对加速过程发动机参数与稳态发动机参数的对比分析,研究发动机的加速性能,得到发动机加速过程存在的可改进空间,从而为后续发动机加速过程优化和试验提供指导。

  3. Development of a Twin-spool Turbofan Engine Simulation Using the Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Johathan S.

    2014-01-01

    The Toolbox for Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3 of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  4. Development of a Twin-Spool Turbofan Engine Simulation Using the Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS)

    Science.gov (United States)

    Zinnecker, Alicia M.; Chapman, Jeffryes W.; Lavelle, Thomas M.; Litt, Jonathan S.

    2014-01-01

    The Toolbox for the Modeling and Analysis of Thermodynamic Systems (T-MATS) is a tool that has been developed to allow a user to build custom models of systems governed by thermodynamic principles using a template to model each basic process. Validation of this tool in an engine model application was performed through reconstruction of the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) (v2) using the building blocks from the T-MATS (v1) library. In order to match the two engine models, it was necessary to address differences in several assumptions made in the two modeling approaches. After these modifications were made, validation of the engine model continued by integrating both a steady-state and dynamic iterative solver with the engine plant and comparing results from steady-state and transient simulation of the T-MATS and C-MAPSS models. The results show that the T-MATS engine model was accurate within 3% of the C-MAPSS model, with inaccuracy attributed to the increased dimension of the iterative solver solution space required by the engine model constructed using the T-MATS library. This demonstrates that, given an understanding of the modeling assumptions made in T-MATS and a baseline model, the T-MATS tool provides a viable option for constructing a computational model of a twin-spool turbofan engine that may be used in simulation studies.

  5. Towards the characterization of noise sources in a supersonic three-stream jet using advanced analysis tools

    Science.gov (United States)

    Ruscher, Christopher; Gogineni, Sivaram

    2016-11-01

    Strict noise regulation set by governing bodies currently make supersonic commercial aviation impractical. One of the many challenges that exist in developing practical supersonic commercial aircraft is the noise produced by the engine's exhaust jet. A promising method of jet noise reduction for supersonic applications is through the addition of extra exhaust streams. Data for an axisymmetric three-stream nozzle were generated using the Naval Research Laboratory's JENRE code. This data will be compared to experimental results obtained by NASA for validation purposes. Once the simulation results show satisfactory agreement to the experiments, advanced analysis tools will be applied to the simulation data to characterize potential noise sources. The tools to be applied include methods that are based on proper orthogonal decomposition, wavelet decomposition, and stochastic estimation. Additionally, techniques such as empirical mode decomposition and momentum potential theorem will be applied to the data as well.

  6. 支线客机和涡扇发动机的总体参数统计分析%Statistical Analysis of the Overall Parameters for Regional Jets and Turbofans

    Institute of Scientific and Technical Information of China (English)

    杨华中; 李海涛; 余雄庆

    2012-01-01

    为设计某大型支线客机总体方案,在自行设计支线客机总体参数数据库的基础上,应用统计方法对支线客机总体参数和涡扇发动机总体参数进行分析,获得了一些有用的统计关系式,包括使用空重和最大起飞重量、后掠角与展弦比、进近速度与着陆场长等飞机总体参数之间的统计关系式和起飞推力与发动机风扇直径、起飞推力与发动机净重、起飞推力与短舱长度等涡扇发动机参数之间的统计关系式。这些统计结果为大型客机方案设计提供了一定的参考。%To design the overall scheme of a large regional jet, the overall parameters of current regional jets and turbofans are investigated using a statistical method based on the self-designed overall parameters database. Some useful statistic formulas for aircraft overall parameters and aircraft overall parameters of turbofan are ob- tained. Aircraft overall parameter relations are as follow: operating empty weight and the maximum takeoff weight, sweep angle and wing aspect ratio, approach velocity and length of landing site, etc. Aircraft overall parameter of turbofan relations are as follows., takeoff thrust and fan diameter, takeoff thrust and engine weight, takeoff thrust and length of nacelle, etc. These statistical results supply an important reference for the scheme design of a large regional jet.

  7. 大涵道比间冷回热涡扇发动机总体方案研究%Study of an intercooled recuperated turbofan engine with high bypass ratio

    Institute of Scientific and Technical Information of China (English)

    李刚团; 黄莺; 龚昊

    2016-01-01

    在分析间冷回热涡扇发动机工作机理的基础上,进行了大涵道比间冷回热涡扇发动机循环参数分析。以波音767-200ER量级飞机为装机对象,开展了间冷回热发动机方案研究。对比分析了间冷回热涡扇发动机与多种类型涡扇发动机的总体性能方案,并从发动机总体性能及特性的角度,比较分析了大涵道比涡扇发动机引入间冷回热技术所带来的收益。最后,提出了研制间冷回热涡扇发动机需突破的主要关键技术。%Cycle parameters study and performance calculations of an intercooled recuperated turbofan en⁃gine with high bypass ratio for aircraft as large as Boeing 767-200ER were carried out on the basis of inter⁃cooled recuperated cycle working principle. The advantages of introducing intercooling and recuperation in⁃to turbofan engine were analyzed by means of comparison of performance and characteristics with other kinds of turbofan engines. At the end, key technologies for developing intercooled recuperated aero engine were proposed.

  8. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  9. Methodology for the Design of Streamline-Traced External-Compression Supersonic Inlets

    Science.gov (United States)

    Slater, John W.

    2014-01-01

    A design methodology based on streamline-tracing is discussed for the design of external-compression, supersonic inlets for flight below Mach 2.0. The methodology establishes a supersonic compression surface and capture cross-section by tracing streamlines through an axisymmetric Busemann flowfield. The compression system of shock and Mach waves is altered through modifications to the leading edge and shoulder of the compression surface. An external terminal shock is established to create subsonic flow which is diffused in the subsonic diffuser. The design methodology was implemented into the SUPIN inlet design tool. SUPIN uses specified design factors to design the inlets and computes the inlet performance, which includes the flow rates, total pressure recovery, and wave drag. A design study was conducted using SUPIN and the Wind-US computational fluid dynamics code to design and analyze the properties of two streamline-traced, external-compression (STEX) supersonic inlets for Mach 1.6 freestream conditions. The STEX inlets were compared to axisymmetric pitot, two-dimensional, and axisymmetric spike inlets. The STEX inlets had slightly lower total pressure recovery and higher levels of total pressure distortion than the axisymmetric spike inlet. The cowl wave drag coefficients of the STEX inlets were 20% of those for the axisymmetric spike inlet. The STEX inlets had external sound pressures that were 37% of those of the axisymmetric spike inlet, which may result in lower adverse sonic boom characteristics. The flexibility of the shape of the capture cross-section may result in benefits for the integration of STEX inlets with aircraft.

  10. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  11. Vortex Generators in a Streamline-Traced, External-Compression Supersonic Inlet

    Science.gov (United States)

    Baydar, Ezgihan; Lu, Frank K.; Slater, John W.; Trefny, Charles J.

    2017-01-01

    Vortex generators within a streamline-traced, external-compression supersonic inlet for Mach 1.66 were investigated to determine their ability to increase total pressure recovery and reduce total pressure distortion. The vortex generators studied were rectangular vanes arranged in counter-rotating and co-rotating arrays. The vane geometric factors of interest included height, length, spacing, angle-of-incidence, and positions upstream and downstream of the inlet terminal shock. The flow through the inlet was simulated numerically through the solution of the steady-state, Reynolds-averaged Navier-Stokes equations on multi-block, structured grids using the Wind-US flow solver. The vanes were simulated using a vortex generator model. The inlet performance was characterized by the inlet total pressure recovery and the radial and circumferential total pressure distortion indices at the engine face. Design of experiments and statistical analysis methods were applied to quantify the effect of the geometric factors of the vanes and search for optimal vane arrays. Co-rotating vane arrays with negative angles-of-incidence positioned on the supersonic diffuser were effective in sweeping low-momentum flow from the top toward the sides of the subsonic diffuser. This distributed the low-momentum flow more evenly about the circumference of the subsonic diffuser and reduced distortion. Co-rotating vane arrays with negative angles-of-incidence or counter-rotating vane arrays positioned downstream of the terminal shock were effective in mixing higher-momentum flow with lower-momentum flow to increase recovery and decrease distortion. A strategy of combining a co-rotating vane array on the supersonic diffuser with a counter-rotating vane array on the subsonic diffuser was effective in increasing recovery and reducing distortion.

  12. Behavior of Boundary Layer in Supersonic Flow with Applied Lorentz Force

    Science.gov (United States)

    Udagawa, Keisuke; Saito, Shinya; Kawaguchi, Kenji; Tomioka, Sadatake; Yamasaki, Hiroyuki

    Experimental study on behavior of boundary layer in supersonic flow with applied Lorentz force was carried out. In the experiment, Mach 1.5 supersonic wind tunnel driven by a shock-tube was used. At the test section, the current from the external DC power supply and the magnetic field of 2.4 Tesla were applied to the boundary layer developing on the bottom wall. Argon seeded with cesium was used as an electrically conducting gas. Effect of the direction of the Lorentz force on static pressure distribution was investigated, and the remarkable increase of static pressure at the test section was observed for the decelerating Lorentz force. It is noted that the acceleration of the flow inside the boundary layer was demonstrated for the first time without accelerating the main flow when the accelerating Lorentz force was applied. At the same time, the acceleration efficiency defined by a ratio of work done by the Lorentz force to energy input into the flow was found 54-61%. These results have suggested the possibility of the boundary layer separation control by applying the accelerating Lorentz force. In the case of the decelerating Lorentz force, the significant reduction of Mach number was observed not only inside the boundary layer but also in the main flow. The reduction of Mach number could be ascribed to the growth of the boundary layer due to gas heating inside the boundary layer. When the direction of the current was changed, the difference of light emission from the discharge inside the boundary layer was observed, and this was due to the difference of the electromotive force induced in the supersonic flow.

  13. Evolution of supersonic corner vortex in a hypersonic inlet/isolator model

    Science.gov (United States)

    Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu

    2016-12-01

    There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.

  14. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    Science.gov (United States)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  15. Development of semi-free jet test facility for supersonic engine; Choonsoku engine shiken shisetsu semi free jet shiken sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Taguchi, H.; Omi, J.; Sakamoto, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-01-01

    IHI has been developing the SETF (Supersonic Engine Test Facility) to aim at the research and development of engines for the next generation commercial supersonic transport in the NAL (National Aerospace Laboratory in Japan). The SETF will supply the functions to test the supersonic engine performance in high altitude flight condition and supersonic intake-engine matching. The semi-free jet test mode was adopted for the supersonic intake-engine matching test, but this test configuration has not been conducted previously in Japan and there were a large number of unknown factors. IHI has developed a sub-scale test model in cooperation with NAL to identify the test conditions and a start sequence of the semi-free jet test mode. In addition, the designs of facility component were optimized and verified by using the CFD (Computational Fluid Dynamics) method. (author)

  16. A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project

    Science.gov (United States)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf

    2016-01-01

    An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.

  17. Fatigue of titanium alloys in a supersonic-cruise airplane environment

    Science.gov (United States)

    Imig, L. A.

    1976-01-01

    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location.

  18. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  19. Supersonic acoustic intensity with statistically optimized near-field acoustic holography

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn

    2011-01-01

    and circulating energy in the near-field of the source. This quantity is of concern because it makes it possible to identify the regions of a source that contribute to the far field radiation, which is often the ultimate concern in noise control. Therefore, this is a very useful analysis tool complementary...... to the information provided by the near-field acoustic holography technique. This study proposes a version of the supersonic acoustic intensity applied to statistically optimized near-field acoustic holography (SONAH). The theory, numerical results and an experimental study are presented. The possibility of using...

  20. CFD modelling of condensation process of water vapor in supersonic flows

    DEFF Research Database (Denmark)

    Wen, Chuang; Walther, Jens Honore; Yan, Yuying;

    2016-01-01

    -liquid phase change both in space and in time. The spontaneous condensation of water vapor will not appear immediately when the steam reaches the saturation state. Instead, it occurs further downstream the nozzle throat, where the steam is in the state of supersaturation.......The condensation phenomenon of vapor plays an important role in various industries, such as the steam flow in turbines and refrigeration system. A mathematical model is developed to predict the spontaneous condensing phenomenon in the supersonic conditions using the nucleation and droplet growth...

  1. Modeling of turbulent supersonic H2-air combustion with a multivariate beta PDF

    Science.gov (United States)

    Baurle, R. A.; Hassan, H. A.

    1993-01-01

    Recent calculations of turbulent supersonic reacting shear flows using an assumed multivariate beta PDF (probability density function) resulted in reduced production rates and a delay in the onset of combustion. This result is not consistent with available measurements. The present research explores two possible reasons for this behavior: use of PDF's that do not yield Favre averaged quantities, and the gradient diffusion assumption. A new multivariate beta PDF involving species densities is introduced which makes it possible to compute Favre averaged mass fractions. However, using this PDF did not improve comparisons with experiment. A countergradient diffusion model is then introduced. Preliminary calculations suggest this to be the cause of the discrepancy.

  2. Computing 3-D steady supersonic flow via a new Lagrangian approach

    Science.gov (United States)

    Loh, C. Y.; Liou, M.-S.

    1993-01-01

    The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.

  3. Testing SiC fiber-reinforced ZrB2 sharp component in supersonic regime

    OpenAIRE

    Silvestroni, Laura; Monteverde, Frederic; Savino, Raffaele; SCITI, Diletta

    2012-01-01

    Ultra-high temperature ceramics are currently the most promising materials for thermal protection structures like wing leading edges in next generation space vehicles flying at hypersonic speed or/and re-entering the earth's atmosphere, which are characterized by sharp profiles to increase performances and maneuverability. In this contribution, the aero-dynamic behaviour of a very sharp ZrB2-SiC fiber composite is tested in a plasma wind tunnel in supersonic regime. A wedge with curvature rad...

  4. Nonlinear vibrations of cylindrical shells with initial imperfections in a supersonic flow

    Science.gov (United States)

    Kurilov, E. A.; Mikhlin, Yu. V.

    2007-09-01

    The paper studies the dynamics of nonlinear elastic cylindrical shells using the theory of shallow shells. The aerodynamic pressure on the shell in a supersonic flow is found using piston theory. The effect of the flow and initial deflections on the vibrations of the shell is analyzed in the flutter range. The normal modes of both perfect shells in a flow and shells with initial imperfections are studied. In the latter case, the trajectories of normal modes in the configuration space are nearly rectilinear, only one mode determined by the initial imperfections being stable

  5. Condensed-Phase Mass Fraction in a Supersonic Molecular Beam Containing Clusters

    Science.gov (United States)

    Knuth, Eldon L.; Toennies, J. Peter

    2008-12-01

    For a supersonic molecular beam containing clusters, a relatively general and simple conservation-of-energy procedure for deducing from time-of-flight measurements the fraction of the beam in the condensed phase is developed. The procedure is applied to measurements for 4He beams formed by expansions which approach the two-phase region either near the critical point or to the liquid side of the critical point. The deduced values of the mass fraction are correlated using a scaling parameter which was used previously for correlating mean values of cluster sizes formed via fragmentation in free-jet expansions of liquid 4He.

  6. Fundamental Structure of High-Speed Reacting Flows: Supersonic Combustion and Detonation

    Science.gov (United States)

    2016-04-30

    supersonic. Oblique Shock Interface Inert Reactants β θ P1 P2e P3eUCJ P1 UCJ P2i Detonation Figure 3. Idealized flow model of a detonation wave with an...Propagation With No Confinement But With Transvers Flow A consistent cross-flow was established by calibrating the height of the gases in time relative...to the controller commands, and then staggering the triggering of the gases such that each species – hydrogen, helium, and oxygen – independently

  7. Computational Comparison of the Interaction of a Lateral Jet on a Supersonic Generic Missile

    OpenAIRE

    Gnemmi, Patrick; Adeli, Reza; Longo, José Maria

    2008-01-01

    The paper deals with the comparison of computations made at DLR and ISL on the interaction between a lateral jet issuing from a generic missile body and the oncoming supersonic cross-flow. Steady-state numerical simulations are carried out by 3D, viscous, turbulent, Reynolds-Averaged Navier-Stokes Codes; at DLR, a hybrid mesh is used for the TAU calculation, whereas at ISL a hexahedral mesh is used for the CFX computation. Experimental data acquired in the DLR wind tunnel TMK in Cologne act a...

  8. Unsteady flow in a supersonic cascade with subsonic leading-edge locus

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.

    1978-01-01

    Linearized theory is used to predict the unsteady flow in a supersonic cascade with subsonic axial flow velocity. A closed-form analytical solution is obtained by using a double application of the Wiener-Hopf technique. Although numerical and semianalytical solutions of this problem have already appeared in the literature, this paper contains the first completely analytical solution. It has been stated in the literature that the blade source should vanish at the infinite duct resonance condition. The present analysis shows that this does not occur. This apparent discrepancy is explained in the paper.

  9. EVOLUTION OF A 2-D DISTURBANCE IN A SUPERSONIC BOUNDARY LAYER AND THE GENERATION OF SHOCKLETS

    Institute of Scientific and Technical Information of China (English)

    黄章峰; 周恒

    2004-01-01

    Through direct numerical simulation, the evolution of a 2-D disturbance in a supersonic boundary layer has been investigated. At a chosen location, a small amplitude T-S wave was fed into the boundary layer to investigate its evolution. Characteristics of nonlinear evolution have been found. Two methods were applied for the detection of shocklets ,and it was found that when the amplitude of the disturbance reached a certain value,shocklets would be generated, which should be taken into consideration when nonlinear theory of hydrodynamic stability for compressible flows is to be established.

  10. NUMERICAL INVESTIGATION OF EVOLUTION OF DISTURBANCES IN SUPERSONIC SHARP CONE BOUNDARY LAYERS

    Institute of Scientific and Technical Information of China (English)

    DONG Ming; LUO Ji-sheng; CAO Wei

    2006-01-01

    The spatial evolution of 2-D disturbances in supersonic sharp cone boundary layers was investigated by direct numerical simulation (DNS) in high order compact difference scheme. The results suggested that, although the normal velocity in the sharp cone boundary layer was not small, the evolution of amplitude and phase for small amplitude disturbances would be well in accordance with the results obtained by the linear stability theory (LST) which supposes the flow was parallel. The evolution of some finite amplitude disturbances was also investigated, and the characteristic of the evolution was shown. Shocklets were also found when the amplitude of disturbances increased over some value.

  11. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    Science.gov (United States)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study

  12. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers

    Science.gov (United States)

    Neumann, Richard D.; Freeman, Delma C.

    2011-01-01

    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  13. Multiobjective Design Optimization of Supersonic Jet Engine in Different Cruise Mach Numbers

    Science.gov (United States)

    Ogawa, Masamichi; Sato, Tetsuya; Kobayashi, Hiroaki; Taguchi, Hideyuki

    The aim of this paper is to apply a multi-objective optimization generic algorithm (MOGA) to the conceptual design of the hypersonic/supersonic vehicles with different cruise Mach number. The pre-cooled turbojet engine is employed as a propulsion system and some engine parameters such as the precooler size, compressor size, compression ratio and fuel type are varied in the analysis. The result shows that the optimum cruise Mach number is about 4 if hydrogen fuel is used. Methane fuel instead of hydrogen reduces the vehicle gross weight by 33% in case of the Mach 2 vehicle.

  14. Supersonic propagation of ionization waves in an under-dense, laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, C; Back, C A; Fournier, K B; Gregori, G; Landen, O L; Glenzer, S H; Dewald, E L; Miller, M C

    2004-10-22

    We observe a laser-driven supersonic ionization wave heating a mm-scale plasma of sub-critical density up to 2-3 keV electron temperatures. Propagation velocities initially 10 times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a 2D radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat wave propagation.

  15. Constant-temperature hot-wire anemometer practice in supersonic flows. I - The normal wire

    Science.gov (United States)

    Smits, A. J.; Hayakawa, K.; Muck, K. C.

    1983-01-01

    The performance of a constant-temperature normal hot-wire in a supersonic flow is critically examined. It is shown that this instrument is inherently unsuitable for measuring turbulent temperature correlations because of the highly nonlinear response to temperature fluctuations, particularly at low overheat ratios. The instrument is therefore limited to measurements of mean and fluctuating mass-flow rates. Suitable calibration procedures, as well as the limits on spatial and temporal resolution are discussed, and corrections for mean stagnation temperature changes are suggested.

  16. Computations of the Magnus effect for slender bodies in supersonic flow

    Science.gov (United States)

    Sturek, W. B.; Schiff, L. B.

    1980-01-01

    A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.

  17. Investigation of coatings of austenitic steels produced by supersonic laser deposition

    Science.gov (United States)

    Gorunov, A. I.; Gilmutdinov, A. Kh.

    2017-02-01

    The structure and properties of stainless austenitic steel coatings obtained by the supersonic laser deposition are studied in the paper. Implantation of the powder particles into the substrate surface and simultaneous plastic deformation at partial melting improved the mechanical properties of the coatings - tensile strength limit was 650 MPa and adhesion strength was 105 MPa. It was shown that insufficient laser power leads to disruption of the deposition process stability and coating cracking. Surface temperature increase caused by laser heating above 1300 °C resulted in coating melting. The X-ray analysis showed that radiation intensifies the cold spray process and does not cause changes in the austenitic base structure.

  18. CFD-Exergy analysis of the flow in a supersonic steam ejector

    Science.gov (United States)

    Boulenouar, M.; Ouadha, A.

    2015-01-01

    The current study aims to carry out a CFD-exergy based analysis to assess the main areas of loss in a supersonic steam ejector encountered in ejector refrigeration systems. The governing equations for a compressible flow are solved using finite volume approach based on SST k-ω model to handle turbulence effects. Flow rates and the computed mean temperatures and pressures have been used to calculate the exergy losses within the different regions of the ejector as well as its overall exergy efficiency. The primary mass flow rate, the secondary mass flow rate and the entrainment ratio predicted by the model have been compared with the experimental data from the literature.

  19. Computer-aided methods for analysis and synthesis of supersonic cruise aircraft structures

    Science.gov (United States)

    Giles, G. L.

    1976-01-01

    Computer-aided methods are reviewed which are being developed by Langley Research Center in-house work and by related grants and contracts. Synthesis methods to size structural members to meet strength and stiffness (flutter) requirements are emphasized and described. Because of the strong interaction among the aerodynamic loads, structural stiffness, and member sizes of supersonic cruise aircraft structures, these methods are combined into systems of computer programs to perform design studies. The approaches used in organizing these systems to provide efficiency, flexibility of use in an iterative process, and ease of system modification are discussed.

  20. Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle

    Science.gov (United States)

    Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon

    Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become