WorldWideScience

Sample records for supersonic technology concept

  1. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  2. Unstructured Grid Euler Method Assessment for Longitudinal and Lateral/Directional Aerodynamic Performance Analysis of the HSR Technology Concept Airplane at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a High Speed Civil Transport (HSCT) configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at M (sub infinity) = 2.4 for a range of angles-of-attack and sideslip. Although all the present computations are performed for the complete TCA configuration, appropriate assumptions derived from the fundamental supersonic aerodynamic principles have been made to extract aerodynamic predictions to complement the experimental data obtained from a 1.675%-scaled truncated (aft fuselage/empennage components removed) TCA model. The validity of the computational results, derived from the latter assumptions, are thoroughly addressed and discussed in detail. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex flow structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics for the truncated TCA configuration are shown to correlate very well with the corresponding wind-tunnel data across the examined range of angles-of-attack and sideslip. The complementary computational results for the longitudinal and lateral/directional performance characteristics for the complete TCA configuration are also presented along with the aerodynamic effects due to empennage components. Results are also presented to assess the computational method performance, solution sensitivity to grid refinement, and solution convergence characteristics.

  3. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  4. Structural concept trends for commercial supersonic cruise aircraft design

    Science.gov (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  5. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  6. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    Science.gov (United States)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  7. N plus 3 Advanced Concept Studies for Supersonic Commercial Transport Aircraft Entering Service in the 2030-2035 Period

    Science.gov (United States)

    Welge, H. Robert; Bonet, John; Magee, Todd; Tompkins, Daniel; Britt, Terry R.; Nelson, Chet; Miller, Gregory; Stenson, Douglas; Staubach, J. Brent; Bala, Naushir; hide

    2011-01-01

    Boeing, with Pratt & Whitney, General Electric, Rolls-Royce, M4 Engineering, Wyle Laboratories and Georgia Institute of Technology, conducted a study of supersonic commercial aircraft concepts and enabling technologies for the year 2030-2035 timeframe. The work defined the market and environmental/regulatory conditions that could evolve by the 2030/35 time period, from which vehicle performance goals were derived. Relevant vehicle concepts and technologies are identified that are anticipated to meet these performance and environmental goals. A series of multidisciplinary analyses trade studies considering vehicle sizing, mission performance and environmental conformity determined the appropriate concepts. Combinations of enabling technologies and the required technology performance levels needed to meet the desired goals were identified. Several high priority technologies are described in detail, including roadmaps with risk assessments that outline objectives, key technology challenges, detailed tasks and schedules and demonstrations that need to be performed. A representative configuration is provided for reference purposes, along with associated performance estimates based on these key technologies.

  8. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  9. Propulsion System Dynamic Modeling of the NASA Supersonic Concept Vehicle for AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph W.; Seiel, Jonathan

    2016-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report

  10. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  11. Interactive Inverse Design Optimization of Fuselage Shape for Low-Boom Supersonic Concepts

    Science.gov (United States)

    Li, Wu; Shields, Elwood; Le, Daniel

    2008-01-01

    This paper introduces a tool called BOSS (Boom Optimization using Smoothest Shape modifications). BOSS utilizes interactive inverse design optimization to develop a fuselage shape that yields a low-boom aircraft configuration. A fundamental reason for developing BOSS is the need to generate feasible low-boom conceptual designs that are appropriate for further refinement using computational fluid dynamics (CFD) based preliminary design methods. BOSS was not developed to provide a numerical solution to the inverse design problem. Instead, BOSS was intended to help designers find the right configuration among an infinite number of possible configurations that are equally good using any numerical figure of merit. BOSS uses the smoothest shape modification strategy for modifying the fuselage radius distribution at 100 or more longitudinal locations to find a smooth fuselage shape that reduces the discrepancies between the design and target equivalent area distributions over any specified range of effective distance. For any given supersonic concept (with wing, fuselage, nacelles, tails, and/or canards), a designer can examine the differences between the design and target equivalent areas, decide which part of the design equivalent area curve needs to be modified, choose a desirable rate for the reduction of the discrepancies over the specified range, and select a parameter for smoothness control of the fuselage shape. BOSS will then generate a fuselage shape based on the designer's inputs in a matter of seconds. Using BOSS, within a few hours, a designer can either generate a realistic fuselage shape that yields a supersonic configuration with a low-boom ground signature or quickly eliminate any configuration that cannot achieve low-boom characteristics with fuselage shaping alone. A conceptual design case study is documented to demonstrate how BOSS can be used to develop a low-boom supersonic concept from a low-drag supersonic concept. The paper also contains a study

  12. Design and Testing of CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)

    2015-06-01

    This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.

  13. Propulsion System Dynamic Modeling for the NASA Supersonic Concept Vehicle: AeroPropulsoServoElasticity

    Science.gov (United States)

    Kopasakis, George; Connolly, Joseph; Seidel, Jonathan

    2014-01-01

    A summary of the propulsion system modeling under NASA's High Speed Project (HSP) AeroPropulsoServoElasticity (APSE) task is provided with a focus on the propulsion system for the low-boom supersonic configuration developed by Lockheed Martin and referred to as the N+2 configuration. This summary includes details on the effort to date to develop computational models for the various propulsion system components. The objective of this paper is to summarize the model development effort in this task, while providing more detail in the modeling areas that have not been previously published. The purpose of the propulsion system modeling and the overall APSE effort is to develop an integrated dynamic vehicle model to conduct appropriate unsteady analysis of supersonic vehicle performance. This integrated APSE system model concept includes the propulsion system model, and the vehicle structural-aerodynamics model. The development to date of such a preliminary integrated model will also be summarized in this report.propulsion system dynamics, the structural dynamics, and aerodynamics.

  14. Design and Testing of CO2 Compression Using Supersonic Shockware Technology

    Energy Technology Data Exchange (ETDEWEB)

    Joe Williams; Michael Aarnio; Kirk Lupkes; Sabri Deniz

    2010-08-31

    Documentation of work performed by Ramgen and subcontractors in pursuit of design and construction of a 10 MW supersonic CO{sub 2} compressor and supporting facility. The compressor will demonstrate application of Ramgen's supersonic compression technology at an industrial scale using CO{sub 2} in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aero tools.

  15. High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology

    Energy Technology Data Exchange (ETDEWEB)

    Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J

    2010-12-31

    Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.

  16. New technological concepts

    Energy Technology Data Exchange (ETDEWEB)

    Fiechter, A.

    1980-01-01

    Topics are: The loop reactor for cultivating yeast on n-paraffin substrate, production of extracellular microbial polysaccharides, use of immobilized lactase in milk systems, immobilized enzymes in analytical chemistry. In all these documents fundamental problems in food technology and food production are discussed.

  17. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  18. Inverse Design of Low-Boom Supersonic Concepts Using Reversed Equivalent-Area Targets

    Science.gov (United States)

    Li, Wu; Rallabhand, Sriam

    2011-01-01

    A promising path for developing a low-boom configuration is a multifidelity approach that (1) starts from a low-fidelity low-boom design, (2) refines the low-fidelity design with computational fluid dynamics (CFD) equivalent-area (Ae) analysis, and (3) improves the design with sonic-boom analysis by using CFD off-body pressure distributions. The focus of this paper is on the third step of this approach, in which the design is improved with sonic-boom analysis through the use of CFD calculations. A new inverse design process for off-body pressure tailoring is formulated and demonstrated with a low-boom supersonic configuration that was developed by using the mixed-fidelity design method with CFD Ae analysis. The new inverse design process uses the reverse propagation of the pressure distribution (dp/p) from a mid-field location to a near-field location, converts the near-field dp/p into an equivalent-area distribution, generates a low-boom target for the reversed equivalent area (Ae,r) of the configuration, and modifies the configuration to minimize the differences between the configuration s Ae,r and the low-boom target. The new inverse design process is used to modify a supersonic demonstrator concept for a cruise Mach number of 1.6 and a cruise weight of 30,000 lb. The modified configuration has a fully shaped ground signature that has a perceived loudness (PLdB) value of 78.5, while the original configuration has a partially shaped aft signature with a PLdB of 82.3.

  19. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period Phase 2

    Science.gov (United States)

    Morgenstern, John; Buonanno, Michael; Yao, Jixian; Murugappan, Mugam; Paliath, Umesh; Cheung, Lawrence; Malcevic, Ivan; Ramakrishnan, Kishore; Pastouchenko, Nikolai; Wood, Trevor; Martens, Steve; Viars, Phil; Tersmette, Trevor; Lee, Jason; Simmons, Ron; Plybon, David; Alonso, Juan; Palacios, Francisco; Lukaczyk, Trent; Carrier, Gerald

    2015-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR) and Stanford University, executed a 19 month program responsive to the NASA sponsored "N+2 Supersonic Validation: Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018-2020 Period" contract. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies necessary to realize a supersonic vehicle capable of meeting the N+2 environmental and performance goals. The N+2 program is aligned with NASA's Supersonic Project and is focused on providing system level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight. The N+2 environmental and performance goals are outlined in the technical paper, AIAA-2014-2138 (Ref. 1) along with the validated N+2 Phase 2 results. Our Phase 2 efforts built upon our Phase 1 studies (Ref. 2) and successfully demonstrated the ability to design and test realistic configurations capable of shaped sonic booms over the width of the sonic boom carpet. Developing a shaped boom configuration capable of meeting the N+2 shaped boom targets is a key goal for the N+2 program. During the LM Phase 1 effort, LM successfully designed and tested a shaped boom trijet configuration (1021) capable of achieving 85 PLdB under track (forward and aft shock) and up to 28 deg off-track at Mach 1.6. In Phase 2 we developed a refined configuration (1044-2) that extended the under 85 PLdB sonic boom level over the entire carpet of 52 deg off-track at a cruise Mach number of 1.7. Further, the loudness level of the configuration throughout operational conditions calculates to an average of 79 PLdB. These calculations rely on propagation employing Burger's (sBOOM) rounding methodology, and there are indications that the configuration average loudness would actually be 75 PLdB. We also added

  20. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Science.gov (United States)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  1. A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project

    Science.gov (United States)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf

    2016-01-01

    An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.

  2. Electron ionization LC-MS with supersonic molecular beams--the new concept, benefits and applications.

    Science.gov (United States)

    Seemann, Boaz; Alon, Tal; Tsizin, Svetlana; Fialkov, Alexander B; Amirav, Aviv

    2015-11-01

    A new type of electron ionization LC-MS with supersonic molecular beams (EI-LC-MS with SMB) is described. This system and its operational methods are based on pneumatic spray formation of the LC liquid flow in a heated spray vaporization chamber, full sample thermal vaporization and subsequent electron ionization of vibrationally cold molecules in supersonic molecular beams. The vaporized sample compounds are transferred into a supersonic nozzle via a flow restrictor capillary. Consequently, while the pneumatic spray is formed and vaporized at above atmospheric pressure the supersonic nozzle backing pressure is about 0.15 Bar for the formation of supersonic molecular beams with vibrationally cold sample molecules without cluster formation with the solvent vapor. The sample compounds are ionized in a fly-though EI ion source as vibrationally cold molecules in the SMB, resulting in 'Cold EI' (EI of vibrationally cold molecules) mass spectra that exhibit the standard EI fragments combined with enhanced molecular ions. We evaluated the EI-LC-MS with SMB system and demonstrated its effectiveness in NIST library sample identification which is complemented with the availability of enhanced molecular ions. The EI-LC-MS with SMB system is characterized by linear response of five orders of magnitude and uniform compound independent response including for non-polar compounds. This feature improves sample quantitation that can be approximated without compound specific calibration. Cold EI, like EI, is free from ion suppression and/or enhancement effects (that plague ESI and/or APCI) which facilitate faster LC separation because full separation is not essential. The absence of ion suppression effects enables the exploration of fast flow injection MS-MS as an alternative to lengthy LC-MS analysis. These features are demonstrated in a few examples, and the analysis of the main ingredients of Cannabis on a few Cannabis flower extracts is demonstrated. Finally, the advantages of

  3. Distributed Aviation Concepts and Technologies

    Science.gov (United States)

    Moore, Mark D.

    2008-01-01

    industry, and will also significantly alter the functionality of future distributed aviation concepts. Many hurdles exist, including technology, regulation, and perception. Aviation has an inherent governmental role not present in other recent on-demand transformations, which may pose a risk of curtailing aviation democratization .

  4. Controlling the potential hazards of government-sponsored technology. [such as weather modification and the supersonic transports

    Science.gov (United States)

    Wollan, M. J.

    1975-01-01

    The ability was examined of governmental agencies to adequately assess technological programs or projects to which they are committed. The hazards of government-sponsored activities are discussed; these include weather modification, supersonic transport noise, and the value conflicts involved in the fluoridation controversy. These three case studies indicate that the Federal vested interests in the continuation of its technological programs limit its ability to provide adequate technology assessment.

  5. [Health Technology Dependency: A Concept Analysis].

    Science.gov (United States)

    Chen, Miao-Yi; Chen, Ting-Yu; Kao, Chi-Wen

    2016-02-01

    Health technology dependence is a widely recognized concept that refers to the utilization of technology, including drugs, equipment, instruments, and related devices, to compensate for a physical disability or to prevent the progression of a disability. Although technology may significantly prolong the life of a patient, technology may also increase the psychological pressure of these patients and the burdens of their caregivers. There is a current dearth of related research and discussions related to the concept of "health technology dependency". Therefore, the present paper uses the strategies of concept analysis described by Walker & Avant (2010) to analyze this concept. The characteristic definition of health technology dependence addresses individuals who: (1) currently live with health technology, (2) may perceive physical or psychological burdens due to health technology, and (3) feel physical and psychological well-being when coping positively with their health technology dependency and, further, regard health technology as a part of their body. Further, the present paper uses case examples to help analyze the general concept. It is hoped that nurses may better understand the concept of "health technology dependency", consider the concerns of health-technology-dependent patients and their families, and develop relevant interventions to promote the well-being of these patients and their families.

  6. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  7. Effect of Stagnation Temperature on the Supersonic Two Dimensional Plug Nozzle Conception. Application for Air

    Institute of Scientific and Technical Information of China (English)

    Toufik Zebbiche; ZineEddine Youbi

    2007-01-01

    When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air.

  8. The Renaissance Conception Regarding Technology

    Directory of Open Access Journals (Sweden)

    Robert Arnăutu

    2011-11-01

    Full Text Available The Renaissance creates a clear-cut distinction between mechanical arts, which will come to be considered applied science by Bacon and Descartes, and fine arts. Dealing with the Renaissance approach to technology, this paper will focus, on the one hand, on those domains that combine theoretical and practical skills in order to create artifacts or to transform materials, and, on the other hand, with authors who debate the status of technological practices and knowledge. Thus, we will look at the developments and arguments regarding mechanics, alchemy, natural magic, mining and metallurgy, and at authors such as Georgius Agricola, Paracelsus, Masilio Ficino, Nicholas of Cusa, Galileo Galilei. The aim is to reconstruct the arguments regarding technology that challenged the established Scholastic-Aristotelian framework and made possible the Modern approaches.

  9. Teaching Embedded System Concepts for Technological Literacy

    Science.gov (United States)

    Winzker, M.; Schwandt, A.

    2011-01-01

    A basic understanding of technology is recognized as important knowledge even for students not connected with engineering and computer science. This paper shows that embedded system concepts can be taught in a technological literacy course. An embedded system teaching block that has been used in an electronics module for non-engineers is…

  10. Surface mount technology terms and concepts

    CERN Document Server

    Zarrow, Phil

    1997-01-01

    In today's fast-paced world of technology, keeping up with new terms and concepts can be quite a challenge. Surface Mount Technology Terms and Concepts is an invaluable reference containing over 1000 terms and definitions used in the SMT field. Each term is followed by a paragraph or two explaining the meaning and how it fits into the surface mount industry. The easy lookup and concise explanations make it ideal for those starting out in the field as well as professionals already involved in surface mount design and assembly.Glossary of over 1000 surface mount technology terms

  11. Health Information Systems (HIS): Concept and Technology

    CERN Document Server

    Almunawar, Mohammad Nabil

    2012-01-01

    A health information system (HIS) is the intersection of between healthcare's business process, and information systems to deliver better healthcare services. The nature of healthcare industry, which is highly influenced by economic, social, politic, and technological factors, has changed over time. This paper will address some important concepts of healthcare and related terminologies to provide a holistic view for HIS. Related technological milestones and major events are briefly summarized. The trends and rapid development of health information technologies are also discussed.

  12. Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    Science.gov (United States)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1986-01-01

    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0.

  13. Health Information Systems (HIS): Concept and Technology

    OpenAIRE

    Almunawar, Mohammad Nabil; Anshari, Muhammad

    2012-01-01

    A health information system (HIS) is the intersection of between healthcare's business process, and information systems to deliver better healthcare services. The nature of healthcare industry, which is highly influenced by economic, social, politic, and technological factors, has changed over time. This paper will address some important concepts of healthcare and related terminologies to provide a holistic view for HIS. Related technological milestones and major events are briefly summarized...

  14. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration

    Science.gov (United States)

    Turner, M. J.; Grande, D. L.

    1978-01-01

    Based on estimated graphite and boron fiber properties, allowable stresses and strains were established for advanced composite materials. Stiffened panel and conventional sandwich panel concepts were designed and analyzed, using graphite/polyimide and boron/polyimide materials. The conventional sandwich panel was elected as the structural concept for the modified wing structure. Upper and lower surface panels of the arrow wing structure were then redesigned, using high strength graphite/polyimide sandwich panels, retaining the titanium spars and ribs from the prior study. The ATLAS integrated analysis and design system was used for stress analysis and automated resizing of surface panels. Flutter analysis of the hybrid structure showed a significant decrease in flutter speed relative to the titanium wing design. The flutter speed was increased to that of the titanium design by selective increase in laminate thickness and by using graphite fibers with properties intermediate between high strength and high modulus values.

  15. Solar power generation technology, new concepts & policy

    CERN Document Server

    Reddy, P Jayarama

    2012-01-01

    This book provides an overview of the current state of affairs in the field of solar power engineering from a global perspective. In four parts, this well-researched volume informs about (1) established solar PV (photovoltaic) technologies; (2) third-generation PV technologies based on new materials with potential for low-cost large-scale production; (3) solar cell technology based on new (third-generation) concepts such as quantum dot solar cells and nano wire solar cells using silicon and compound semiconductors; and (4) economic implications and effects, as well as policies and incentives i

  16. Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows

    Science.gov (United States)

    Huang, Wei; Jiang, Yan-ping; Yan, Li; Liu, Jun

    2016-04-01

    The thermal protection on the surface of hypersonic vehicles attracts an increasing attention worldwide, especially when the vehicle enters the atmosphere at high speed. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Menter's shear stress transport (SST) model have been employed to investigate the heat flux reduction mechanism induced by the variations of the cavity configuration, the jet pressure ratio and the injectant molecular weight in the combinational opposing jet and cavity concept. The length of the cavity is set to be 6 mm, 8 mm and 10 mm in order to make sure that the cavity configuration is the "open" cavity, and the jet pressure ratio is set to be 0.4, 0.6 and 0.8 in order to make sure that the flow field is steady. The injectant is set to be nitrogen and helium. The obtained results show that the aft angle of the cavity only has a slight impact on the heat flux reduction, and the heat flux peak decreases with the decrease of the length of the cavity. The design of the thermal protection system for the hypersonic blunt body is a multi-objective design exploration problem, and the heat flux distribution depends on the jet pressure ratio, the aft wall of the cavity and the injectant molecular weight. The heat flux peak decreases with the increase of the jet pressure ratio when the aft angle of the cavity is large enough, and this value is 45°.

  17. Concept and technology development for HOPE spaceplane

    Science.gov (United States)

    Ito, Testsuichi; Akimoto, Toshio; Miyaba, Hiroshi; Kano, Yasuomi; Suzuki, Norio

    1990-10-01

    HOPE spaceplane has been studied for several years in NASDA. The purpose of the current study is to establish the feasible concept of HOPE and to prepare the technical bases. The primary mission of HOPE is the Space Station Freedom/JEM logistics transportation complementing with U.S. Space Shuttle fleet. Besides previous concept of ten ton class orbiter launched by H-II rocket, extended size orbiter concept has been studied along with enhancement of H-II rocket, which is called H-IID (derivative) rocket. An orbiter derived from this study weighs 20t at lift off and has three to five tons of payload capability, based on the H-IID configuration of H-II first stage with six solid boosters strapped on. Subsystems design and technology development in such field as aerodynamics, structure and materials, guidance-navigation and control, and Space Station interface are in progress. In order to acquire the reentry flight data, orbital reentry experiment is planned and under development utilizing orbital flight opportunity of H-II test flight in 1993. These concepts are under review and trade off in NASDA for establishing HOPE development scenario.

  18. Technology and applications of advanced accelerator concepts

    CERN Document Server

    Chou, Weiren

    2016-01-01

    Since its invention in the 1920s, particle accelerators have made tremendous progress in accelerator science, technology and applications. However, the fundamental acceleration principle, namely, to apply an external radiofrequency (RF) electric field to accelerate charged particles, remains unchanged. As this method (either room temperature RF or superconducting RF) is approaching its intrinsic limitation in acceleration gradient (measured in MeV/m), it becomes apparent that new methods with much higher acceleration gradient (measured in GeV/m) must be found for future very high energy accelerators as well as future compact (table-top or room-size) accelerators. This volume introduces a number of advanced accelerator concepts (AAC) — their principles, technologies and potential applications. For the time being, none of them stands out as a definitive direction in which to go. But these novel ideas are in hot pursuit and look promising. Furthermore, some AAC requires a high power laser system. This has the ...

  19. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  20. Technology concept in the view of Iranian nurses.

    Science.gov (United States)

    Mehraban, Marzieh Adel; Hassanpour, Marzieh; Yazdannik, Ahmadreza; Ajami, Sima

    2013-05-01

    Over the years, the concept technology has modified, especially from the viewpoint of the development of scientific knowledge as well as the philosophical and artistic aspects. However, the concept of technology in nursing are still poorly understood. Only small qualitative studies, especially in Iran, have investigated this phenomenon and they just are about information technology. The aim of this study is to gain a better understanding of the concept of technology in the view of Iranian nurses. This study was qualitative explorative study which was done with a purposeful sampling of 23 nurses (staffs, supervisors and chief nurse managers) working in Isfahan hospitals. Unstructured interviews were including 13 individual interviews and 2 focused-group interviews. In addition to this, filed notes and memos were used in data collection. After this data transcribing was done and then conventional content analysis was used for data coding and classification. The results showed that there are various definitions for technology among nurses. In the view of nurses, technology means using new equipment, computers, information technology, etc). Data analysis revealed that nurses understand technology up to three main concepts: Change, Equipment and Knowledge. In deep overview on categories, we found that the most important concept about technology in nursing perspective is equipment. Therefore, it is necessary to develop deep understanding about the possible concepts technology among nurses. We suppose that technology concepts must be defined separately in all disciplines.

  1. Physics students` conceptions of energy and technological development in energy

    Energy Technology Data Exchange (ETDEWEB)

    Zain, A.N.M. [University of Science Malaysia, Penang (Malaysia). School of Educational Studies; Sulaiman, F. [University of Science Malaysia, Penang (Malaysia). School of Physics

    1998-05-01

    This study was designed to find out students` conceptions of the relationship of energy use and technological development in energy. It was conducted by administering a questionnaire to 133 first year physics students at a University. The results were analyzed to identify students` conceptions on energy use and technological development in energy. Finally, implications on teaching of energy is discussed in this paper. (author)

  2. Trusted Autonomy: Concept Development in Technology Foresight

    Science.gov (United States)

    2015-09-01

    Science and Technology Group TFF Technology Forecasting and Futures US United States UNCLASSIFIED DST-Group-TR-3153 UNCLASSIFIED 1 1...organisations across the world are increasingly being pressed to employ a range of disparate technologies in new and innovative ways to retain a...Program Objectives Technology Futures and Forecasting (TFF) group, within the DST Group, is a collaborative research facility for the study of

  3. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  4. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  5. Concept-oriented research and development in information technology

    CERN Document Server

    Mori, Kinji

    2014-01-01

    This book thoroughly analyzes the relationships between concept, technology, and market-which are the main factors in shifting information technology research and development (R&D) to a new approach. It discusses unconventional methods and viewpoints of concept creation, technology innovation, and market cultivation. Featuring contributions from international experts and case studies from IBM and Hitachi, this book is perfect for graduate students in information technology, engineering, technology management, operation research, and business-as well as for R&D researchers, directors, strategis

  6. Mathematics Preservice Teachers' Beliefs and Conceptions of Appropriate Technology Use

    Science.gov (United States)

    Wachira, Patrick; Keengwe, Jared; Onchwari, Grace

    2008-01-01

    Many preservice teachers report having had little exposure on the use of technology in the teaching and learning of mathematics. Without guidance on the appropriate use of technology, prospective teachers are left to form their own beliefs about what is appropriate technology use. This study assessed preservice teacher beliefs and conceptions of…

  7. Politicizing science: conceptions of politics in science and technology studies.

    Science.gov (United States)

    Brown, Mark B

    2015-02-01

    This essay examines five ideal-typical conceptions of politics in science and technology studies. Rather than evaluating these conceptions with reference to a single standard, the essay shows how different conceptions of politics serve distinct purposes: normative critique, two approaches to empirical description, and two views of democracy. I discuss each conception of politics with respect to how well it fulfills its apparent primary purpose, as well as its implications for the purpose of studying a key issue in contemporary democratic societies: the politicization of science. In this respect, the essay goes beyond classifying different conceptions of politics and also recommends the fifth conception as especially conducive to understanding and shaping the processes whereby science becomes a site or object of political activity. The essay also employs several analytical distinctions to help clarify the differences among conceptions of politics: between science as 'political' (adjective) and science as a site of 'politics' (noun), between spatial-conceptions and activity-conceptions of politics, between latent conflicts and actual conflicts, and between politics and power. The essay also makes the methodological argument that the politics of science and technology is best studied with concepts and methods that facilitate dialogue between actors and analysts. The main goal, however, is not to defend a particular view of politics, but to promote conversation on the conceptions of politics that animate research in social studies of science and technology.

  8. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  9. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  10. Concept relation discovery and innovation enabling technology (CORDIET)

    NARCIS (Netherlands)

    Poelmans, J.; Elzinga, P.; Neznanov, A.; Viaene, S.; Kuznetsov, S.O.; Ignatov, D.; Dedene, G.

    2011-01-01

    Concept Relation Discovery and Innovation Enabling Technology (CORDIET), is a toolbox for gaining new knowledge from unstructured text data. At the core of CORDIET is the C-K theory which captures the essential elements of innovation. The tool uses Formal Concept Analysis (FCA), Emergent Self

  11. Theoretical Insights for Developing the Concept of Social Technologies

    Directory of Open Access Journals (Sweden)

    Monika Skaržauskaitė

    2012-12-01

    Full Text Available Purpose—Social technologies continue to grow in popularity in society. Even though the term “social technology” is most commonly used to refer to new social media such as Twitter and Facebook, a redefinition of this concept based on the original definition is needed. Nowadays the concept of “social technology” has several aspects, which destabilize the dominant image of technology. It emphasizes the social sciences and the humanities as shapers of society, reconsiders the strength of “soft technologies.” The aim of this paper is to provide rich insight into the concept of social technologies’ and to develop the meaning of social technologies in information and knowledge society by analysing new needs and application forms of social technologies.Findings—the research contributed to the understanding of the concept of social technologies. Based on the analysis and synthesis of the scientific literature, a theoretical framework for defining social technologies was developed.Research limitations/implications—the research is limited in a few aspects. For a deeper understanding of social technologies and for developing technological perspectives in social sciences a broader theoretical, as well as empirical, research is necessary. In order to generalise the research findings, further research should include different dimensions from the perspective of other sciences.

  12. Science and Technology Text Mining Basic Concepts

    Science.gov (United States)

    2003-01-01

    from author. Kostoff, R. N. (1993). Database Tomography for Technical Intelligence. Competitive Intelligence Review. 4:1. Kostoff, R.N. (1994...Database Tomography: Origins and Applications. Competitive Intelligence Review, Special Issue on Technology, 5:1. Kostoff, R.N. et al (1995) System and

  13. Key Technology and Experimental Results of the Clean Air Heated Facility for Supersonic Combustion

    Institute of Scientific and Technical Information of China (English)

    ZHONG Zipeng; SONG Wenyan; LE Jialing

    2009-01-01

    The scramjet, which is the propulsion of hypersonic vehicle, has become the focus in many military developed countries. The ground tests play an important role in the research of scramjet. There is defect of test medium contamination (the thermochemical characteristic of the ground test medium is different from that of the flight medium) in existing ground test facilities for scramjet combustor experiment. To solve the problem of test medium contamination, the first clean air heated facility of China for scramjet combustor experiment is designed. The key technology of designing the clean air heated facility is summarized. By using bypass duct, combustor model is protected from high temperature. To reduce the switching time between main duct and bypass duct, solenoid valve and water-cooled system were used. Having centrosymmetric structure, the heat radiating area of the facility and heat loss of the facility are much lower than others. Clean air heated facility is adopted to conduct experiment, which is the first experiment of China in clean air inflow, research on hydrogen-fueled and ethylene-fueled ignition and combustion for scramjet combustor at different equivalence ratio. Successful ignition and sustained combustion of hydrogen has been achieved. Successful ethylene ignition and sustained main stream combustion is achieved with normal fuel injection and taking hydrogen as pilot flame. Experiment result shows that the wall pressure of combustor model rises when the equivalence ratio of hydrogen rises. As the wall pressure of combustor model rises, the pressure disturbance influences the shock train in the upstream.

  14. Laser technology inspires new accelerator concepts

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  15. Integrating technology education concepts into China's educational system

    Science.gov (United States)

    Yang, Faxian

    The problem of this study was to develop a strategy for integrating technology education concepts within the Chinese mathematics and science curricula. The researcher used a case study as the basic methodology. It included three methods for collecting data: literature review, field study in junior and senior secondary schools in America and China, and interviews with experienced educators who were familiar with the status of technology education programs in the selected countries. The data came from the following areas: Japan, Taiwan, the United Kingdom, China, and five states in the United States: Illinois, Iowa, Maryland, Massachusetts, and New York. The researcher summarized each state and country's educational data, identified the advantages and disadvantages of their current technology education program, and identified the major concepts within each program. The process determined that identified concepts would be readily acceptable into the current Chinese educational system. Modernization of, industry, agriculture, science and technology, and defense have been recent objectives of the Chinese government. Therefore, Chinese understanding of technology, or technology education, became important for the country. However, traditional thought and culture curb the implementation of technology education within China's current education system. The proposed solution was to integrate technology education concepts into China's mathematics and science curricula. The purpose of the integration was to put new thoughts and methods into the current educational structure. It was concluded that the proposed model and interventions would allow Chinese educators to carry out the integration into China's education system.

  16. Organic electronics emerging concepts and technologies

    CERN Document Server

    Santato, Clara

    2013-01-01

    An overview of the tremendous potential of organic electronics, concentrating on those emerging topics and technologies that will form the focus of research over the next five to ten years. The young and energetic team of editors with an excellent research track record has brought together internationally renowned authors to review up-and-coming topics, some for the first time, such as organic spintronics, iontronics, light emitting transistors, organic sensors and advanced structural analysis. As a result, this book serves the needs of experienced researchers in organic electronics, graduate

  17. Emerging medical technologies and emerging conceptions of health.

    Science.gov (United States)

    Stempsey, William E

    2006-01-01

    Using ideas gleaned from the philosophy of technology of Martin Heidegger and Hans Jonas and the philosophy of health of Georges Canguilhem, I argue that one of the characteristics of emerging medical technologies is that these technologies lead to new conceptions of health. When technologies enable the body to respond to more and more challenges of disease, we thus establish new norms of health. Given the continued development of successful technologies, we come to expect more and more that our bodies should be able to respond to ever-new challenges of environment and disease by establishing ever-new norms of health. Technologies may aim at the prevention and treatment of disease, but they also bring about modifications of what we consider normal for the human being. Thus, new norms of health arise from technological innovation.

  18. Satellite systems for personal applications concepts and technology

    CERN Document Server

    Richharia, Madhavendra

    2010-01-01

    Presents the concepts, technology, and role of satellite systems in support of personal applications, such as mobile and broadband communications, navigation, television, radio and multimedia broadcasting, safety of life services, etc. This book presents a novel perspective on satellite systems, reflecting the modern personal technology context, and hence a focus on the individual as end-user. The book begins by outlining key generic concepts before discussing techniques adopted in particular application areas; next, it exemplifies these techniques through discussion of state-of-art c

  19. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  20. Design project: LONGBOW supersonic interceptor

    Science.gov (United States)

    Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark

    1993-01-01

    A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.

  1. Determination of concept technology - the ontology of the concept as a component of the knowledge development in caring science.

    Science.gov (United States)

    Korhonen, Eila-Sisko; Nordman, Tina; Eriksson, Katie

    2014-12-01

    The purpose of this study is to determine the ontology of the concept of technology from the perspective of caring science. The aim is to increase knowledge of the concept in caring science and to answer the research question concerning what the concept of technology is in caring science. In literature, the concept of technology is used diversely referring it to caring technology, nursing technology, wellbeing technology, information technology, telenursing and technology in care named by a specific device or an area of nursing or medicine. The definition of the concept of technology and its ontology has not been determined from the viewpoint of caring science. Eriksson's model of concept determination provides a method to explore the ontology of the concept. This includes an etymological and semantic analysis as well as a determination of essence and basic category of the concept. The results showed that the concept of technology is multidimensional. It has evolved and altered over the centuries. The origin of the concept formulated from the Greek word 'techne', which has wider ontological dimensions. It is universal, it can be taught and it depends on the substance. Subsequently, the concept was introduced an ethical dimension, and it also developed more to the direction of engineering, mechanics and technical know-how. The semantic analysis revealed synonyms of the concept: art, equipment and knowledge. These introduced concepts such as craft, skill, treatment, engineering, science, study method and way. The nuances of the concept framed its nature. On the one hand, it stands out as practical and advanced, but on the other hand, it is difficult and conventional. The knowledge gained in this study will help to understand the phenomenon of technology in caring science.

  2. Advanced laser sensing receiver concepts based on FPA technology.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P. L. (Phillip L.); Petrin, R. R. (Roger R.); Jolin, J. L. (John L.); Foy, B. R. (Bernard R.); Lowrance, J. L.; Renda, G. (George)

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  3. Usage Concepts of Augmented Reality Technology in Islamic Study

    Directory of Open Access Journals (Sweden)

    Norabeerah Saforrudin

    2012-06-01

    Full Text Available The augmented reality (AR has been identified to be suitable for use in education. However, studies that particularly identify this concept are still rare. Therefore, this qualitative study was conducted with objectives to determine the perception of teacher educators from the Islamic Study Department, Teacher Training Institute in Central Zone of Malaysia towards AR, and to develop a usage concept that can be implemented when teaching and learning Islamic Study. Explorative case study method involving three teacher educators was used. They were interviewed by using an in-depth semi-structured interview schedule. From the interview, all responses provided by the informants are very positive and admitted that AR technology is suitable to be used in the Islamic Study. The usage concepts discussed in this paper can be used as guidelines to those who are interested in developing or using the AR application based on Islamic Study topics.

  4. INTELLIGENT NETWORKS, SMART GRIDS CONCEPT, CRUCIAL TECHNOLOGIES FOR SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Constantin RADU

    2011-05-01

    Full Text Available In this article is presented the concept of smart grids, a very important technology for sustainable development. In the context of globalization of the world lives in an increasingly complex security environment, with rapid changes, some obvious, others less obvious implications in the short, medium or long term, international, national, local and up to every citizen. All countries in the globalized world economy is facing energy problems in terms of climate change have intensified in the twentieth century.

  5. Material Identification Technology (MIT) concept technical feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J.L.; Harker, Y.D.; Yoon, W.Y.; Johnson, L.O.

    1993-09-01

    The Idaho National Engineering Laboratory (INEL) has initiated the design and development of a novel pulsed accelerator-based, active interrogation concept. The proposed concept, referred to as the Material Identification Technology (MIT), enables rapid (between accelerator pulses), non-destructive, elemental composition analysis of both nuclear and non-nuclear materials. Applications of this technique include material monitoring in support of counter-proliferation activities, such as export controls (at domestic and international inspection locations), SNM controls, nuclear weapon dismantlement, and chemical weapon verification. Material Identification Technology combines a pulsed, X-ray source (an electron accelerator) and a gamma detection system. The accelerator must maximize neutron production (pulse width, beam current, beam energy, and repetition rate) and minimize photon dose to the object. Current available accelerator technology can meet these requirements. The detection system must include detectors which provide adequate gamma energy resolution capability, rapid recovery after the initial X-ray interrogation pulse, and multiple single gamma event detection between accelerator pulses. Further research is required to develop the detection system. This report provides the initial feasibility assessment of the MIT concept.

  6. Technology Development and Demonstration Concepts for the Space Elevator

    Science.gov (United States)

    Smitherman, David V., Jr.

    2004-01-01

    During the 1990s several discoveries and advances in the development of carbon nano-tube (CNT) materials indicated that material strengths many times greater than common high-strength composite materials might be possible. Progress in the development of this material led to renewed interest in the space elevator concept for construction of a tether structure from the surface of the Earth through a geostationary orbit (GEO) and thus creating a new approach to Earth-to-orbit transportation infrastructures. To investigate this possibility the author, in 1999, managed for NASA a space elevator work:hop at the Marshall Space Flight Center to explore the potential feasibility of space elevators in the 21 century, and to identify the critical technologies and demonstration missions needed to make development of space elevators feasible. Since that time, a NASA Institute for Advanced Concepts (NIAC) funded study of the Space Elevator proposed a concept for a simpler first space elevator system using more near-term technologies. This paper will review some of the latest ideas for space elevator development, the critical technologies required, and some of the ideas proposed for demonstrating the feasibility for full-scale development of an Earth to GEO space elevator. Critical technologies include CNT composite materials, wireless power transmission, orbital object avoidance, and large-scale tether deployment and control systems. Numerous paths for technology demonstrations have been proposed utilizing ground experiments, air structures. LEO missions, the space shuttle, the international Space Station, GEO demonstration missions, demonstrations at the lunar L1 or L2 points, and other locations. In conclusion, this paper finds that the most critical technologies for an Earth to GEO space elevator include CNT composite materials development and object avoidance technologies; that lack of successful development of these technologies need not preclude continued development of

  7. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  8. SUCCESS CONCEPT ANALYSIS APPLIED TO THE INFORMATION TECHNOLOGY PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Cassio C. Montenegro Duarte

    2012-05-01

    Full Text Available This study evaluates the concept of success in project management that is applicable to the IT universe, from the classical theory associated with the techniques of project management. Therefore, it applies the theoretical analysis associated to the context of information technology in enterprises as well as the classic literature of traditional project management, focusing on its application in business information technology. From the literature developed in the first part of the study, four propositions were prepared for study which formed the basis for the development of the field research with three large companies that develop projects of Information Technology. The methodology used in the study predicted the development of the multiple case study. Empirical evidence suggests that the concept of success found in the classical literature in project management adjusts to the environment management of IT projects. Showed that it is possible to create the model of standard IT projects in order to replicate it in future derivatives projects, which depends on the learning acquired at the end of a long and continuous process and sponsorship of senior management, which ultimately results in its merger into the company culture.

  9. NASA's ATM Technology Demonstration-1: Integrated Concept of Arrival Operations

    Science.gov (United States)

    Baxley, Brian T.; Swenson, Harry N.; Prevot, Thomas; Callantine, Todd J.

    2012-01-01

    This paper describes operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) demonstration will integrate three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to touchdown. It also enables aircraft to conduct Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and implantation into an operational environment. Goals of the ATD-1 demonstration include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  10. Concept Relation Discovery and Innovation Enabling Technology (CORDIET)

    CERN Document Server

    Poelmans, Jonas; Neznanov, Alexey; Viaene, Stijn; Kuznetsov, Sergei O; Ignatov, Dmitry; Dedene, Guido

    2012-01-01

    Concept Relation Discovery and Innovation Enabling Technology (CORDIET), is a toolbox for gaining new knowledge from unstructured text data. At the core of CORDIET is the C-K theory which captures the essential elements of innovation. The tool uses Formal Concept Analysis (FCA), Emergent Self Organizing Maps (ESOM) and Hidden Markov Models (HMM) as main artifacts in the analysis process. The user can define temporal, text mining and compound attributes. The text mining attributes are used to analyze the unstructured text in documents, the temporal attributes use these document's timestamps for analysis. The compound attributes are XML rules based on text mining and temporal attributes. The user can cluster objects with object-cluster rules and can chop the data in pieces with segmentation rules. The artifacts are optimized for efficient data analysis; object labels in the FCA lattice and ESOM map contain an URL on which the user can click to open the selected document.

  11. A Critical Review on the Concept of Social Technology

    Directory of Open Access Journals (Sweden)

    Bettina Leibetseder

    2011-08-01

    Full Text Available Purpose—A critical analysis of the term social technology from a social science point of view.Design/Methodology/Approach—Review of the term “social technology” from a social science point of perspective in connection to the study of governmentality and power in a Foucauldian way.Findings—The article covers the perspective that social technology provides social science knowledge for a purpose. Such a notion allows an in depth debate about the meaning of social order in modern societies. Establishing distinctive techniques now forms the basis of the modern state and governance. Social technology forms the basis of governmental decisions; it allows for a use of social theories and methods for a purpose in politics and introduces a specific conception of power between the individual and public powers. Therefore, it alters government in three ways: It provides expert power to define solutions for social problems based on social science knowledge. It transforms government. Social technology exemplifies a support system for an ordered method of the way of government, it allows for the conduct of others and self based on scientific expertise. It can define new areas of problems in need of a change of government.Research limitations/implications—Consequently, social technology requests a critical analysis using a governmental approach. Such an approach focuses on problems on the governed subject and how governing works and why it has evolved in that way towards the subject and what kind of ideas and thinking lies within the discourse.

  12. Enterprise security IT security solutions : concepts, practical experiences, technologies

    CERN Document Server

    Fumy, Walter

    2013-01-01

    Addressing IT managers and staff, as well as CIOs and other executives dealing with corporate IT security, this book provides a broad knowledge on the major security issues affecting today's corporations and organizations, and presents state-of-the-art concepts and current trends for securing an enterprise.Areas covered include information security management, network and system security, identity and access management (IAM), authentication (including smart card based solutions and biometrics), and security certification. In-depth discussion of relevant technologies and standards (including cr

  13. Technological Innovation: Concept, Process, Typology and Implications in the Economy

    Directory of Open Access Journals (Sweden)

    Mihaela DIACONU

    2011-10-01

    Full Text Available Growing interest worldwide to boost innovation in business sector activities, especially the technology, is intended to maintain or increase national economic competitiveness, inclusively as an effect of awareness concerning the effects resulting from economic activity on consumption of resources and environment, which requires design of new patterns of production and consumption. In this paper we review the most important contributions in the literature in terms of the implications of technological innovation in the economy, at the microand macroeconomic level, viewing the organization's ability to generate new ideas in support of increasing production, employment and environmental protection, starting from the concepts of innovation, innovation process and, respectively, from the innovation typology analysis.

  14. Advanced Gas Storage Concepts: Technologies for the Future

    Energy Technology Data Exchange (ETDEWEB)

    Freeway, Katy (PB-KBB Inc.); Rogers, R.E. (Mississippi State University); DeVries, Kerry L.; Nieland, Joel D.; Ratigan, Joe L.; Mellegard, Kirby D. (RESPEC)

    2000-02-01

    This full text product includes: 1) A final technical report titled Advanced Underground Gas Storage Concepts, Refrigerated-Mined Cavern Storage and presentations from two technology transfer workshops held in 1998 in Houston, Texas, and Pittsburgh, Pennsylvania (both on the topic of Chilled Gas Storage in Mined Caverns); 2) A final technical report titled Natural Gas Hydrates Storage Project, Final Report 1 October 1997 - 31 May 1999; 3) A final technical report titled Natural Gas Hydrates Storage Project Phase II: Conceptual Design and Economic Study, Final Report 9 June - 10 October 1999; 4) A final technical report titled Commerical Potential of Natural Gas Storage in Lined Rock Caverns (LRC) and presentations from a DOE-sponsored workshop on Alternative Gas Storage Technologies, held Feb 17, 2000 in Pittsburgh, PA; and 5) Phase I and Phase II topical reports titled Feasibility Study for Lowering the Minimum Gas Pressure in Solution-Mined Caverns Based on Geomechanical Analyses of Creep-Induced Damage and Healing.

  15. Hybrid propulsion technology program. Volume 1: Conceptional design package

    Science.gov (United States)

    Jensen, Gordon E.; Holzman, Allen L.; Leisch, Steven O.; Keilbach, Joseph; Parsley, Randy; Humphrey, John

    1989-01-01

    A concept design study was performed to configure two sizes of hybrid boosters; one which duplicates the advanced shuttle rocket motor vacuum thrust time curve and a smaller, quarter thrust level booster. Two sizes of hybrid boosters were configured for either pump-fed or pressure-fed oxygen feed systems. Performance analyses show improved payload capability relative to a solid propellant booster. Size optimization and fuel safety considerations resulted in a 4.57 m (180 inch) diameter large booster with an inert hydrocarbon fuel. The preferred diameter for the quarter thrust level booster is 2.53 m (96 inches). As part of the design study critical technology issues were identified and a technology acquisition and demonstration plan was formulated.

  16. Technology as a Time Challenge: Study, Concept and Types of Technology

    Directory of Open Access Journals (Sweden)

    Vadim M. Rozin

    2017-09-01

    Full Text Available In the article divorce the concepts of engineering and technology. Designated four stages of technological development: the fi rst phase — “pilot technique”, it is characterized by magical conceptualization, the second — engineering (rational conceptualization, third design, fourth technology. For technical equipment is characterized by four features: technology is the artifacts, the technique can be considered as a “social body” of a person or society, technology is a useful way to use the forces of nature, and fi nally, the mediation in the form of tools, machines, and material environment that allows you to implement the ideas of man. It is argued that the conceptualization of technology is the essential characteristic of the concept. If you write, for example, about the technology of the Neolithic age or era of construction of the Egyptian pyramids, then we are talking about retrospective interpretation, from the point of view of modern understanding of technology. It’s not useless, for example, to determine preconditions of formation technology, but in terms of thinking creates problems and contradictions. The author argues that technology develops in the second half of the eighteenth century as a new reality, which describes the industrial activities in language operations and their conditions of division of labor and management. At the same time, technology is being characterized by the installation of quality, savings, standardization, and rational description of the production processes, their optimization for the training of new technologists. Discusses three stages of development of the technology and features of the main types of technology: production technology, engineering, large techno-social projects, global technology. Considering the author and the conditions of the development of new technologies. These include “technological zone of proximal development”, as well as two situation — relevant issues and

  17. Aerodynamic Models for the Low Density Supersonic Decelerator (LDSD) Test Vehicles

    Science.gov (United States)

    Van Norman, John W.; Dyakonov, Artem; Schoenenberger, Mark; Davis, Jody; Muppidi, Suman; Tang, Chun; Bose, Deepak; Mobley, Brandon; Clark, Ian

    2016-01-01

    An overview of aerodynamic models for the Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) campaign test vehicle is presented, with comparisons to reconstructed flight data and discussion of model updates. The SFDT campaign objective is to test Supersonic Inflatable Aerodynamic Decelerator (SIAD) and large supersonic parachute technologies at high altitude Earth conditions relevant to entry, descent, and landing (EDL) at Mars. Nominal SIAD test conditions are attained by lifting a test vehicle (TV) to 36 km altitude with a helium balloon, then accelerating the TV to Mach 4 and 53 km altitude with a solid rocket motor. Test flights conducted in June of 2014 (SFDT-1) and 2015 (SFDT-2) each successfully delivered a 6 meter diameter decelerator (SIAD-R) to test conditions and several seconds of flight, and were successful in demonstrating the SFDT flight system concept and SIAD-R technology. Aerodynamic models and uncertainties developed for the SFDT campaign are presented, including the methods used to generate them and their implementation within an aerodynamic database (ADB) routine for flight simulations. Pre- and post-flight aerodynamic models are compared against reconstructed flight data and model changes based upon knowledge gained from the flights are discussed. The pre-flight powered phase model is shown to have a significant contribution to off-nominal SFDT trajectory lofting, while coast and SIAD phase models behaved much as predicted.

  18. A Critical Review on the Concept of Social Technology

    Directory of Open Access Journals (Sweden)

    Bettina Leibetseder

    2013-08-01

    Full Text Available Purpose—A critical analysis of the term social technology from a social science point of view.Design/Methodology/Approach—Review of the term “social technology” from a social science point of perspective in connection to the study of governmentality and power in a Foucauldian way.Findings—The article covers the perspective that social technology provides social science knowledge for a purpose. Such a notion allows an in depth debate about the meaning of social order in modern societies. Establishing distinctive techniques now forms the basis of the modern state and governance. Social technology forms the basis of governmental decisions; it allows for a use of social theories and methods for a purpose in politics and introduces a specific conception of power between the individual and public powers. Therefore, it alters government in three ways: It provides expert power to define solutions for social problems based on social science knowledge. It transforms government. Social technology exemplifies a support system for an ordered method of the way of government, it allows for the conduct of others and self based on scientific expertise. It can define new areas of problems in need of a change of government.Research limitations/implications—Consequently, social technology requests a critical analysis using a governmental approach. Such an approach focuses on problems on the governed subject and how governing works and why it has evolved in that way towards the subject and what kind of ideas and thinking lies within the discourse.Research type—general review.

  19. From concept to consumer -- The commercialization of technology

    Energy Technology Data Exchange (ETDEWEB)

    Bienert, W.B.; Eastman, G.Y.; Ernst, D.M.; Longsderff, R.W.; Scicchitano, E.A. [DTX Corp., Lancaster, PA (United States)

    1996-12-31

    This paper examines the commercialization of heat pipe technology as seen through the eyes of the authors, who themselves helped to make it happen. It covers the period from August 1962 to the present. This is the time span from the initial concept of the heat pipe, as reinvented by Dr. George M. Grover of the Los Alamos National Laboratory, to the present day production at DTX of more than 4,000 heat pipes per day. The initial application, Government-sponsored nuclear power in space, has not prospered. The present volume market lies in the cooling of CPU chips in notebook computers. The paper explores the personal, engineering, facilitation and market aspects of this transition.

  20. Applying SOA Concepts to Distributed Industrial Applications Using WCF Technology

    Science.gov (United States)

    Stopper, Markus; Gastermann, Bernd

    2010-10-01

    Software Development is subject to a constant process of change. In the meantime web services, access to remote services or distributed applications are already the standard. Simultaneously with their advancement demands on these techniques are rising significantly. Defined support for security issues, coordination of transactions and reliable communications are expected. Windows Communication Foundation (WCF)—as a part of Microsoft Corporation's .NET Framework—supports these requirements in line with wide range interoperability. WCF provides the development of distributed and interconnected software applications by means of a service-oriented programming model. This paper introduces a service-oriented communication concept based on WCF, which is specifically designed for industrial applications within a production environment using a central manufacturing information system (MIS) database. It introduces applied technologies and provides an overview of some important design aspects and base service sets of WCF. Additionally, this paper also shows a factual implementation of the presented service-oriented communication concept in the form of an industrial software application used in plastics industry.

  1. Developing an instrument for assessing students' concepts of the nature of technology

    Science.gov (United States)

    Liou, Pey-Yan

    2015-05-01

    Background:The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students' concepts of the nature of technology. Purpose:This study aims to engage in discourse on students' concepts of the nature of technology based on a proposed theoretical framework. Moreover, another goal is to develop an instrument for measuring students' concepts of the nature of technology. Sample:Four hundred and fifty-five high school students' perceptions of technology were qualitatively analyzed. Furthermore, 530 students' responses to a newly developed questionnaire were quantitatively analyzed in the final test. Design and method:First, content analysis was utilized to discuss and categorize students' statements regarding technology and its related issues. The Student Concepts of the Nature of Technology Questionnaire was developed based on the proposed theoretical framework and was supported by the students' qualitative data. Finally, exploratory factor analysis and reliability analysis were applied to determine the structure of the items and the internal consistency of each scale. Results:Through a process of instrument development, the Student Concepts of the Nature of Technology Questionnaire was shown to be a valid and reliable tool for measuring students' concepts of the nature of technology. This newly developed questionnaire is composed of 29 items in six scales, namely 'technology as artifacts,' 'technology as an innovation change,' 'the current role of technology in society,' 'technology as a double-edged sword,' 'technology as a science-based form,' and 'history of technology.' Conclusions:The Student Concepts of the Nature of Technology Questionnaire has been confirmed as a reasonably valid and reliable

  2. Advanced Technology Subsonic Transport Study: N+3 Technologies and Design Concepts

    Science.gov (United States)

    Raymer, Daniel P.; Wilson, Jack; Perkins, H. Douglas; Rizzi, Arthur; Zhang, Mengmeng; RamirezPuentes, Alfredo

    2011-01-01

    Conceptual Research Corporation, the Science of the Possible, has completed a two-year study of concepts and technologies for future airliners in the 180-passenger class. This NASA-funded contract was primarily focused on the ambitious goal of a 70 percent reduction in fuel consumption versus the market-dominating Boeing 737-800. The study is related to the N+3 contracts awarded in 2008 by NASA s Aeronautics Research Mission Directorate to teams led by Boeing, GE Aviation, MIT, and Northrop Grumman, but with more modest goals and funding. CRC s contract featured a predominant emphasis on propulsion and fuel consumption, but since fuel consumption depends upon air vehicle design as much as on propulsion technology, the study included notional vehicle design, analysis, and parametric studies. Other NASA goals including NOx and noise reduction are of long-standing interest but were not highlighted in this study, other than their inclusion in the propulsion system provided to CRC by NASA. The B-737-800 was used as a benchmark, parametric tool, and design point of departure. It was modeled in the RDS-Professional aircraft design software then subjected to extensive parametric variations of parasitic drag, drag-due-to-lift, specific fuel consumption, and unsized empty weight. These studies indicated that the goal of a 70 percent reduction in fuel consumption could be attained with roughly a 30 percent improvement in all four parameters. The results were then fit to a Response Surface and coded for ease of use in subsequent trade studies. Potential technologies to obtain such savings were identified and discussed. More than 16 advanced concept designs were then prepared, attempting to investigate almost every possible emerging concept for application to this class airliner. A preliminary assessment of these concepts was done based on their total wetted area after design normalization of trimmed maximum lift. This assessment points towards a Tailless Airliner concept which

  3. NASA's Advanced Information Systems Technology (AIST) Program: Advanced Concepts and Disruptive Technologies

    Science.gov (United States)

    Little, M. M.; Moe, K.; Komar, G.

    2014-12-01

    NASA's Earth Science Technology Office (ESTO) manages a wide range of information technology projects under the Advanced Information Systems Technology (AIST) Program. The AIST Program aims to support all phases of NASA's Earth Science program with the goal of enabling new observations and information products, increasing the accessibility and use of Earth observations, and reducing the risk and cost of satellite and ground based information systems. Recent initiatives feature computational technologies to improve information extracted from data streams or model outputs and researchers' tools for Big Data analytics. Data-centric technologies enable research communities to facilitate collaboration and increase the speed with which results are produced and published. In the future NASA anticipates more small satellites (e.g., CubeSats), mobile drones and ground-based in-situ sensors will advance the state-of-the-art regarding how scientific observations are performed, given the flexibility, cost and deployment advantages of new operations technologies. This paper reviews the success of the program and the lessons learned. Infusion of these technologies is challenging and the paper discusses the obstacles and strategies to adoption by the earth science research and application efforts. It also describes alternative perspectives for the future program direction and for realizing the value in the steps to transform observations from sensors to data, to information, and to knowledge, namely: sensor measurement concepts development; data acquisition and management; data product generation; and data exploitation for science and applications.

  4. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  5. Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept

    Directory of Open Access Journals (Sweden)

    Preben Godoe

    2012-05-01

    Full Text Available Discovering the antecedents of technology use is of major importance in the field of technology adoption. This study investigates the relationship between the personality dimensions of TRI (Technology Readiness Index and the system specific dimensions of TAM (Technology Acceptance Model. Data was collected from 186 employees in various Norwegian organisations. Structural equation modelling was used to test the relationship between dimensions of TRI and TAM. The results show that optimism and innovativeness significantly influences perceived usefulness and perceived ease of use. Further, perceived usefulness has a significant positive influence on actual usage. The results imply that both personality dimensions and system specific dimensions are of major importance when adopting new technology. This should be considered when organisations develop implementation strategies.

  6. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  7. Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologi

    Science.gov (United States)

    2010-01-01

    Fiber-Reinforced-Foam (FRF) Core Composite Sandwich Panel Concept for Advanced Composites Technologies Project - Preliminary Manufacturing Demonstration Articles for Ares V Payload Shroud Barrel Acreage Structure

  8. Evaluation of pressure sensing concepts: A technology assessment

    Energy Technology Data Exchange (ETDEWEB)

    Shepard, R.L.; Thacker, L.H.

    1993-09-01

    Advanced distributed control systems for electric power plants will require more accurate and reliable pressure gauges than those now installed. Future developments in power plant control systems are expected to use digital/optical networks rather than the analog/electric data transmission used in existing plants. Many pressure transmitters now installed use oil filling to separate process fluids from the gauge mechanism and are subject to insidious failures when the oil leaks. Testing and maintenance of pressure channels occupy a disproportionately large amount of effort to restore their accuracy and verify their operability. These and similar concerns have prompted an assessment of a broad spectrum of sensor technologies to aid in selecting the most likely candidates for adaptation to power plant applications. Ten representative conventional and thirty innovational pressure sensors are described and compared. Particular emphasis is focused on two categories: Silicon-integrated pressure sensors and fiber-optic sensors, and both of these categories are discussed in detail. Additional attractive concepts include variable reluctance gauges and resonant structure gauges that may not require oil buffering from the process fluid.

  9. Developing an Instrument for Assessing Students' Concepts of the Nature of Technology

    Science.gov (United States)

    Liou, Pey-Yan

    2015-01-01

    Background: The nature of technology has been rarely discussed despite the fact that technology plays an essential role in modern society. It is important to discuss students' concepts of the nature of technology, and further to advance their technological literacy and adaptation to modern society. There is a need to assess high school students'…

  10. Essential Concepts of Engineering Design Curriculum in Secondary Technology Education

    Science.gov (United States)

    Wicklein, Robert; Smith, Phillip Cameron, Jr.; Kim, Soo Jung

    2009-01-01

    Technology education is a field of study that seeks to promote technological literacy for all students. Wright and Lauda defined technology education as a program designed to help students "develop an understanding and competence in designing, producing, and using technological products and systems, and in assessing the appropriateness of…

  11. Architectures, Concepts and Technologies for Service Oriented Computing : Proceedings of the 2nd International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing - ACT4SOC 2008

    NARCIS (Netherlands)

    Sinderen, van Marten

    2008-01-01

    This volume contains the proceedings of the Second International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC 2008), held on July 5 in Porto, Portugal, in conjunction with the Third International Conference on Software and Data Technologies (ICSOFT 200

  12. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  13. Self-concept, self-esteem, gender, race, and information technology use.

    Science.gov (United States)

    Jackson, Linda A; Zhao, Yong; Witt, Edward A; Fitzgerald, Hiram E; von Eye, Alexander; Harold, Rena

    2009-08-01

    This research addressed two fundamental questions regarding self-concept, self-esteem, gender, race, and information technology use. First, is technology use related to dimensions of self-concept and/or to self-esteem? Second, are there gender and/or race differences in self-concept, self-esteem, and technology use? Five hundred youth, average age 12 years old, one third African American and two thirds Caucasian American, completed multidimensional measures of self-concept, the Rosenberg Self-Esteem scale, and measures of frequency of Internet use, Internet use for communication (e-mail and instant messaging), video game playing, and cell phone use. Findings indicated that technology use predicted dimensions of self-concept and self-esteem, with video game playing having a negative influence and Internet use having a positive influence on self-concept dimensions. Gender differences were observed on several self-concept dimensions, but contrary to expectations, girls did not score higher than boys in social self-concept. Only one race difference was observed: African Americans had lower behavioral self-concept than did Caucasian Americans. Implications of the benefits and liabilities of youth's current and projected technology use are discussed.

  14. Malaysian Teachers' Conceptions and Uses of Digital Technology in English Writing Instruction: A Multiple Case Study

    Science.gov (United States)

    Mohamed Razali, Abu Bakar

    2013-01-01

    Very little is known about how teachers' "conceptualizations" of digital technology and their "uses" of the technology evolve and relate. Yet knowing about and understanding teachers' conceptions and uses of digital technology are essential for learning how teachers integrate it effectively for student learning. By applying…

  15. How Does Technology-Enabled Active Learning Affect Undergraduate Students' Understanding of Electromagnetism Concepts?

    Science.gov (United States)

    Dori, Yehudit Judy; Belcher, John

    2005-01-01

    Educational technology supports meaningful learning and enables the presentation of spatial and dynamic images, which portray relationships among complex concepts. The Technology-Enabled Active Learning (TEAL) Project at the Massachusetts Institute of Technology (MIT) involves media-rich software for simulation and visualization in freshman…

  16. Connecting Knowledge Domains: An Approach to Concept Learning in Primary Science and Technology Education

    NARCIS (Netherlands)

    Koski, M.

    2014-01-01

    In order to understand our dependency on technology and the possible loss of control that comes with it, it is necessary for people to understand the nature of technology as well as its roots in science. Learning basic science and technology concepts should be a part of primary education since it gi

  17. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  18. Partnership With Parents of Technology-Dependent Children: Clarification of the Concept.

    Science.gov (United States)

    Mendes, Michele A

    2016-01-01

    A strategy based on the Hybrid Model of Concept Development was used to integrate previous concept analyses and research with data from interviews with parents and nurses caring for children dependent on technology to clarify the concept. Partnership was generally described positively in the literature, but some cautions were noted. Six characteristics of partnering were identified from the fieldwork data: respect, flexibility, caring professionalism, communication, acknowledgment of parental control, and support for parents. The concept of participation is clarified and extended to a unique area of nursing practice, the care of children dependent on technology in the home.

  19. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  20. Infinitesimal Conical Supersonic Flow

    Science.gov (United States)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  1. Concept for lightweight spaced-based deposition technology

    Energy Technology Data Exchange (ETDEWEB)

    Fulton, Michael; Anders, Andre

    2006-02-28

    In this contribution we will describe a technology path to very high quality coatings fabricated in the vacuum of space. To accomplish the ambitious goals set out in NASA's Lunar-Mars proposal, advanced thin-film deposition technology will be required. The ability to deposit thin-film coatings in the vacuum of lunar-space could be extremely valuable for executing this new space mission. Developing lightweight space-based deposition technology (goal:<300 g, including power supply) will enable the future fabrication and repair of flexible large-area space antennae and fixed telescope mirrors for lunar-station observatories. Filtered Cathodic Arc (FCA) is a proven terrestrial energetic thin-film deposition technology that does not need any processing gas but is well suited for ultra-high vacuum operation. Recently, miniaturized cathodic arcs have already been developed and considered for space propulsion. It is proposed to combine miniaturized pulsed FCA technology and robotics to create a robust, enabling space-based deposition system for the fabrication, improvement, and repair of thin films, especially of silver and aluminum, on telescope mirrors and eventually on large area flexible substrates. Using miniature power supplies with inductive storage, the typical low-voltage supply systems used in space are adequate. It is shown that high-value, small area coatings are within the reach of existing technology, while medium and large area coatings are challenging in terms of lightweight technology and economics.

  2. Microencapsulation: concepts, mechanisms, methods and some applications in food technology

    Directory of Open Access Journals (Sweden)

    Pablo Teixeira da Silva

    2014-07-01

    Full Text Available Microencapsulation is a process in which active substances are coated by extremely small capsules. It is a new technology that has been used in the cosmetics industry as well as in the pharmaceutical, agrochemical and food industries, being used in flavors, acids, oils, vitamins, microorganisms, among others. The success of this technology is due to the correct choice of the wall material, the core release form and the encapsulation method. Therefore, in this review, some relevant microencapsulation aspects, such as the capsule, wall material, core release forms, encapsulation methods and their use in food technology will be briefly discussed.

  3. Concept design and key technology of new deep-water SPAR and TLP

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    @@ The study of Concept Design and Key Technology of New DeepWater SPAR and TLP came to an end successfully after scientific and technical personnel had made two years' endeavor.The study, which was sponsored by CSIC Ship Design and Research Center Company with the participation of CSIC no 702 Institute, Shanghai LICE Company and Dalian SHI, is part of the national hi-tech study program (863), category Ocean Technology, project key technology and equipment for deep-sea oil and gas prospecting and exploration in South China Sea, subject concept design and key technology of new deepwater SPAR and TLP.

  4. Open standard building in South Africa: new concepts, strategies and technologies

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2008-03-01

    Full Text Available ” of the structures prohibited adaptation over time. This paper constructs a framework for developing, validating, and applying Open Standard Building in South Africa. The paper finds that Open Standard Building concepts, strategies and technologies can deliver...

  5. New concept single screw compressors and their manufacture technology

    Science.gov (United States)

    Feng, Q.; Liu, F.; Chang, L.; Feng, C.; Peng, C.; Xie, J.; van den Broek, M.

    2017-08-01

    Single screw compressors were generally acknowledged as one of the nearly perfect machines by compressor researchers and manufacturers. However the rapid wear of the star-wheel in a single screw compressor during operation is a key reason why it hasn’t previously joined the main current compressors’ market. After more than ten years of effective work, the authors of this paper have proposed a new concept single screw compressor whose mesh-couple profile is enveloped with multi-column. Also a new design method and manufacture equipment for this kind of compressor have been developed and are described in this paper. A lot of prototype tests and a long period of industrial operations under full loading conditions have shown that the mesh-couple profiles of the new concept single compressors have excellent anti-wearness.

  6. Concepts and Technologies for Radioactive Waste Disposal in Rock Salt

    Directory of Open Access Journals (Sweden)

    Wernt Brewitz

    2007-01-01

    Full Text Available In Germany, rock salt was selected to host a repository for radioactive waste because of its excellent mechanical properties. During 12 years of practical disposal operation in the Asse mine and 25 years of disposal in the disused former salt mine Morsleben, it was demonstrated that low-level wastes (LLW and intermediate-level wastes (ILW can be safely handled and economically disposed of in salt repositories without a great technical effort. LLW drums were stacked in old mining chambers by loading vehicles or emplaced by means of the dumping technique. Generally, the remaining voids were backfilled by crushed salt or brown coal filter ash. ILW were lowered into inaccessible chambers through a borehole from a loading station above using a remote control.Additionally, an in-situ solidification of liquid LLW was applied in the Morsleben mine. Concepts and techniques for the disposal of heat generating high-level waste (HLW are advanced as well. The feasibility of both borehole and drift disposal concepts have been proved by about 30 years of testing in the Asse mine. Since 1980s, several full-scale in-situ tests were conducted for simulating the borehole emplacement of vitrified HLW canisters and the drift emplacement of spent fuel in Pollux casks. Since 1979, the Gorleben salt dome has been investigated to prove its suitability to host the national final repository for all types of radioactive waste. The “Concept Repository Gorleben” disposal concepts and techniques for LLW and ILW are widely based on the successful test operations performed at Asse. Full-scale experiments including the development and testing of adequate transport and emplacement systems for HLW, however, are still pending. General discussions on the retrievability and the reversibility are going on.

  7. Information Technology and Art: Concepts and State of the Practice

    Science.gov (United States)

    Ahmed, Salah Uddin; Camerano, Cristoforo; Fortuna, Luigi; Frasca, Mattia; Jaccheri, Letizia

    The interaction between information technology (IT) and art is an increasing trend. Science, art and technology have been connected since the 60's, when scientists, artists, and inventors started to cooperate and use electronic instruments to create art. In 1960 Marshall McLuhan predicted the idea that the era of "machine-age" technology was next to close, and the electronic media were creating a new way to perform art [1]. The literature is full with examples of artists applying mathematics, robotic technology, and computing to the creation of art. The work in [2] is a good introduction to the merge of IT and art and introduces genetic art, algorithmic art, applications of complex systems and artificial intelligence. The intersection is drawing attention of people from diverse background and it is growing in size and scope. For these reasons, it is beneficiary for people interested in art and technology to know each other's background and interests well. In a multidisciplinary collaboration, the success depends on how well the different actors in the project collaborate and understand each other. See [3] for an introduction about multidisciplinary issues. Meyer and others in [4] explains the collaboration process between artists and technologists.

  8. Environmental Connections and Concept Mapping: Implementing a New Learning Technology at Lewis & Clark College

    Science.gov (United States)

    Proctor, James D.; Bernstein, Jennifer

    2013-01-01

    What is environment? The answer to this question is fundamental to how we teach environmental studies and sciences (ESS). We follow recent scholarly literature in approaching environment as connection, not as some category of reality, and consider pedagogical implications via concept mapping, a new learning technology. Concept maps potentially…

  9. Seventh Grade Students' Perceptions of Using Concept Cartoons in Science and Technology Course

    Science.gov (United States)

    Ören, Fatma Sasmaz; Meriç, Gülçin

    2014-01-01

    The aim of this study is to determine the efficiency of use of concept cartoons in elementary school 7th grade students Science and Technology course according to students' perceptions. In terms of this aim, the unit of "Force and Motion" has been taught by concept cartoons and at the end of this period, semi-structured interviews were…

  10. Saenger: The reference concept and its technological requirements - aerothermodynamics

    Science.gov (United States)

    Hirschel, E. H.

    1991-08-01

    The objectives of the technology program 'aerothermodynamics and propulsion integration' are defined. An overview of the special aerothermodynamic phenomena which must be regarded in the design of the Saenger lower stage which presently stands in the center of the technology program is given. The design tools, which must be provided; the components like the inlet, the afterbody, etc., which must be designed and tested; and the special problems like forebody optimization, heat load determination, upper stage integration, etc., which must be treated, are discussed. The general work plan is presented, showing the major activities up to start of the development of the Saenger space transportation system. It includes the development and manufacturing of the experimental vehicle (HYTEXT) as a means for the validation of the design tools and methods which are achieved in the technology program, and for the creation of a freeflight data base.

  11. Resource sharing in libraries concepts, products, technologies, and trends

    CERN Document Server

    Breeding, Marshall

    2014-01-01

    Supplementing your local collection through resource sharing is a smart way to ensure your library has the resources to satisfy the needs of your users. Marshall Breeding's new Library Technology Report explores technologies and strategies for sharing resources, helping you streamline workflows and improve resource-sharing services by covering key strategies like interlibrary loan, consortial borrowing, document delivery, and shared collections. You'll also learn about such trends and services as:OCLC WorldCat Resource Sharing, and other systems that facilitate cooperative, reciprocal lendingS

  12. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  13. Advanced Monobore Concept, Development of CFEX Self-Expanding Tubular Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jeff Spray

    2007-09-30

    The Advanced Monobore Concept--CFEX{copyright} Self-Expanding Tubular Technology Development was a successfully executed fundamental research through field demonstration project. This final report is presented as a progression, according to basic technology development steps. For this project, the research and development steps used were: concept development, engineering analysis, manufacturing, testing, demonstration, and technology transfer. The CFEX{copyright} Technology Development--Advanced Monobore Concept Project successfully completed all of the steps for technology development, covering fundamental research, conceptual development, engineering design, advanced-level prototype construction, mechanical testing, and downhole demonstration. Within an approximately two year period, a partially defined, broad concept was evolved into a substantial new technological area for drilling and production engineering applicable a variety of extractive industries--which was also successfully demonstrated in a test well. The demonstration achievement included an actual mono-diameter placement of two self-expanding tubulars. The fundamental result is that an economical and technically proficient means of casing any size of drilling or production well or borehole is indicated as feasible based on the results of the project. Highlighted major accomplishments during the project's Concept, Engineering, Manufacturing, Demonstration, and Technology Transfer phases, are given.

  14. Conception of a management tool of Technology Enhanced Learning Environments

    CERN Document Server

    Ferreira, Sergio Andre

    2012-01-01

    This paper describes the process of the conception of a software tool of TELE management. The proposed management tool combines information from two sources: i) the automatic reports produced by the Learning Content Management System (LCMS) Blackboard and ii) the views of students and teachers on the use of the LCMS in the process of teaching and learning. The results show that the architecture of the proposed management tool has the features of a management tool, since its potential to control, to reset and to enhance the use of an LCMS in the process of teaching and learning and teacher training, is shown.

  15. Conception of a management tool of Technology Enhanced Learning Environments

    Directory of Open Access Journals (Sweden)

    Sérgio André Ferreira

    2012-02-01

    Full Text Available This paper describes the process of the conception of a software tool of TELE management. The proposed management tool combines information from two sources: i the automatic reports produced by the Learning Content Management System (LCMS Blackboard and ii the views of students and teachers on the use of the LCMS in the process of teaching and learning. The results show that the architecture of the proposed management tool has the features of a management tool, since its potential to control, to reset and to enhance the use of an LCMS in the process of teaching and learning and teacher training, is shown.

  16. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  17. Technological advances in perioperative monitoring: Current concepts and clinical perspectives.

    Science.gov (United States)

    Chilkoti, Geetanjali; Wadhwa, Rachna; Saxena, Ashok Kumar

    2015-01-01

    Minimal mandatory monitoring in the perioperative period recommended by Association of Anesthetists of Great Britain and Ireland and American Society of Anesthesiologists are universally acknowledged and has become an integral part of the anesthesia practice. The technologies in perioperative monitoring have advanced, and the availability and clinical applications have multiplied exponentially. Newer monitoring techniques include depth of anesthesia monitoring, goal-directed fluid therapy, transesophageal echocardiography, advanced neurological monitoring, improved alarm system and technological advancement in objective pain assessment. Various factors that need to be considered with the use of improved monitoring techniques are their validation data, patient outcome, safety profile, cost-effectiveness, awareness of the possible adverse events, knowledge of technical principle and ability of the convenient routine handling. In this review, we will discuss the new monitoring techniques in anesthesia, their advantages, deficiencies, limitations, their comparison to the conventional methods and their effect on patient outcome, if any.

  18. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    1999-04-01

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  19. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    None

    1998-12-31

    The objective of this project is to develop a hot-gas desulfurization process scheme for control of H{sub 2}S in HTHP coal gas that can be more simply and economically integrated with known regenerable sorbents in DOE/METC-sponsored work than current leading hot-gas desulfurization technologies. In addition to being more economical, the process scheme to be developed must yield an elemental sulfur byproduct.

  20. Space Design for the Acitc Educational technology Office Area Using a Workplace neighborhood Concept

    OpenAIRE

    Zhu, Ping

    1997-01-01

    Today, the workplace is undergoing dramatic changes, featuring increased team activities and informal interactions. The work place neighborhood is a design concept derived from a city planning theory that may solve the workplace design problems arising from these changes, and provided a focus for this project. The Educational Technology office area of the Advanced Communication and Information Technology Center...

  1. Factors that influence the rejection of new manufacturing technologies and concepts

    Science.gov (United States)

    Kristen G. Hoff; Timothy J. Greene; Timothy J. Greene

    1998-01-01

    New manufacturing technologies or concepts often are adopted to improve a firm's competitive advantage over other firms in the same industry. The benefits that a firm expects to receive as a result of that adoption are presumed to outweigh the risk factors that accompany the adoption of a new manufacturing technology. Much research has been conducted to...

  2. Concepts and technologies used in contemporary DAQ systems

    CERN Document Server

    CERN. Geneva

    2004-01-01

    based trigger processor and event building farms. We have also seen a shift from standard or proprietary bus systems used in event building to GigaBit networks and commodity components, such as PCs. With the advances in processing power, network throughput, and storage technologes, today's data rates in large experiments routinely reach hundreds of MegaBytes/s. We will present examples of contemporary DAQ systems from different experiments, try to identify or categorize new approaches, and will compare the performance and throughput of existing DAQ systems with the projected data rates of the LHC experiments to see how close we have come to accomplish these goals. We will also tr...

  3. ADVANCED SULFUR CONTROL CONCEPTS FOR HOT-GAS DESULFURIZATION TECHNOLOGY

    Energy Technology Data Exchange (ETDEWEB)

    A. LOPEZ ORTIZ; D.P. HARRISON; F.R. GROVES; J.D. WHITE; S. ZHANG; W.-N. HUANG; Y. ZENG

    1998-10-31

    This research project examined the feasibility of a second generation high-temperature coal gas desulfurization process in which elemental sulfur is produced directly during the sorbent regeneration phase. Two concepts were evaluated experimentally. In the first, FeS was regenerated in a H2O-O2 mixture. Large fractions of the sulfur were liberated in elemental form when the H2O-O2 ratio was large. However, the mole percent of elemental sulfur in the product was always quite small (<<1%) and a process based on this concept was judged to be impractical because of the low temperature and high energy requirements associated with condensing the sulfur. The second concept involved desulfurization using CeO2 and regeneration of the sulfided sorbent, Ce2O2S, using SO2 to produce elemental sulfur directly. No significant side reactions were observed and the reaction was found to be quite rapid over the temperature range of 500°C to 700°C. Elemental sulfur concentrations (as S2) as large as 20 mol% were produced. Limitations associated with the cerium sorbent process are concentrated in the desulfurization phase. High temperature and highly reducing coal gas such as produced in the Shell gasification process are required if high sulfur removal efficiencies are to be achieved. For example, the equilibrium H2S concentration at 800°C from a Shell gas in contact with CeO2 is about 300 ppmv, well above the allowable IGCC specification. In this case, a two-stage desulfurization process using CeO2 for bulk H2S removal following by a zinc sorbent polishing step would be required. Under appropriate conditions, however, CeO2 can be reduced to non-stoichiometric CeOn (n<2) which has significantly greater affinity for H2S. Pre-breakthrough H2S concentrations in the range of 1 ppmv to 5 ppmv were measured in sulfidation tests using CeOn at 700°C in highly reducing gases, as measured by equilibrium O2 concentration, comparable to the Shell gas. Good sorbent durability was indicated in

  4. Identifying concepts for studying implementation of information technology in facilities management

    DEFF Research Database (Denmark)

    Ebbesen, Poul; Bonke, Sten

    2014-01-01

    of taking into account organizational and value adding perspectives. Research limitations: The theoretical concepts discussed in this paper are mainly generic and non-technical, and the list is not complete. Finally the concepts discussed have no direct link to the concept of added value. Originality......Purpose: To contribute to identifying a conceptual framework for describing and understanding the processes involved when implementing and using Information Technology (IT) in Facilities Management (FM). This paper discusses how basic concepts from different theories can be applied in parallel when...... from exciting research on IT implementation a range of more generic theoretical concepts applicable to the typical setting or situation of IT implementation in FM has been found. These theoretical concepts all clarify and describe different aspects of the implementation process and they may all...

  5. A concept of technology for freight wagons modernization

    Science.gov (United States)

    Pɫaczek, M.; Wróbel, A.; Buchacz, A.

    2016-11-01

    Rail transport is a very important part of the modern economy, one of the components determining its dynamic development. It is therefore important to conduct research and taking action aimed at the development and refinement of this branch of industry. Such actions directly translate into an increase in its effectiveness, safety, reduction of burden on the environment and society. Nowadays numerous studies are conducted, aimed at introducing new technologies and solutions, both in terms of railway infrastructure and logistics management systems, as well as in traction vehicles themselves. Introduction of modern technology helps eliminate or reduce nuisance problems associated with the implementation of any kind of transport or the operation of the used technical means. Presented paper concerns an issue of freight wagon modernization using composite materials. It presents a part of a research project that aim is to develop a technology of freight wagons modernization during their periodic repair. The main problem during exploitation of concerned types of freight wagons designed for coal transport is corrosion of the wagon's body shell. The goal of the project is to elongate the period between periodic repairs (by better corrosion protection) and improve conditions of exploitation of modernized freight wagons (for example easier unloading during winter conditions - no freezes of the charge to the freight wagon body shell). One of elements of the project is also to develop a system for diagnosing the technical condition of the modernized shell of wagon body during operation. For this purpose the use of non-destructive testing methods of technical state of constructions will be used, including methods that use the analysis of dynamic response of the object. Application of the composite panels to the freight wagon's body shell was proposed as the solution that can solve mentioned problems during exploitation of freight wagons. The composite panels composed of

  6. Technology Insights and Perspectives for Nuclear Fuel Cycle Concepts

    Energy Technology Data Exchange (ETDEWEB)

    S. Bays; S. Piet; N. Soelberg; M. Lineberry; B. Dixon

    2010-09-01

    The following report provides a rich resource of information for exploring fuel cycle characteristics. The most noteworthy trends can be traced back to the utilization efficiency of natural uranium resources. By definition, complete uranium utilization occurs only when all of the natural uranium resource can be introduced into the nuclear reactor long enough for all of it to undergo fission. Achieving near complete uranium utilization requires technologies that can achieve full recycle or at least nearly full recycle of the initial natural uranium consumed from the Earth. Greater than 99% of all natural uranium is fertile, and thus is not conducive to fission. This fact requires the fuel cycle to convert large quantities of non-fissile material into fissile transuranics. Step increases in waste benefits are closely related to the step increase in uranium utilization going from non-breeding fuel cycles to breeding fuel cycles. The amount of mass requiring a disposal path is tightly coupled to the quantity of actinides in the waste stream. Complete uranium utilization by definition means that zero (practically, near zero) actinide mass is present in the waste stream. Therefore, fuel cycles with complete (uranium and transuranic) recycle discharge predominately fission products with some actinide process losses. Fuel cycles without complete recycle discharge a much more massive waste stream because only a fraction of the initial actinide mass is burned prior to disposal. In a nuclear growth scenario, the relevant acceptable frequency for core damage events in nuclear reactors is inversely proportional to the number of reactors deployed in a fuel cycle. For ten times the reactors in a fleet, it should be expected that the fleet-average core damage frequency be decreased by a factor of ten. The relevant proliferation resistance of a fuel cycle system is enhanced with: decreasing reliance on domestic fuel cycle services, decreasing adaptability for technology misuse

  7. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... for attendees. The purpose of the meeting is to raise public awareness of the continuing technological... joint meeting of the 159th Acoustical Society of America and NOISE-CON 2010 in Baltimore, Maryland 21202. The purpose of these meetings is to raise public awareness on advances in supersonic technology,...

  8. Review and prospect of supersonic business jet design

    Science.gov (United States)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  9. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  10. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  11. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    Science.gov (United States)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  12. Technology images and concepts of technology in transition. An analysis in the philosophy of technology and general technology; Technikbilder und Technikkonzepte im Wandel. Eine technikphilosophische und allgemeintechnische Analyse

    Energy Technology Data Exchange (ETDEWEB)

    Banse, G. [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (DE). Inst. fuer Technikfolgen-Abschaetzung und Systemanalyse (ITAS); Meier, B. [Potsdam Univ. (Germany). Inst. fuer Arbeitslehre/Technik; Wolffgramm, H. (eds.)

    2002-02-01

    This volume contains contributions resulting from an expert discussion on 'Technology Images and Concepts of Technology in Transition - an analysis in the philosophy of technology and general technology. This expert discussion took place on 6 October 2000 at the State Pedagogical Institute Brandenburg in Ludwigsfelde-Struveshof and was conceived and organized co-operatively by the Forschungszentrum Karlsruhe, Institute for Technology Assessment and Systems Analysis, the University of Potsdam, Institute for the Theory of Work/Technology and Professor Horst Wolffgramm, Frankfurt (Oder). It was the aim of the expert discussion to compile, compare and relate the various positions in the philosophy of technology, general technology science, the history of technology and the didactics of technology of the 'conceptualisation' of technology as a basis for generally understanding technology or for a scientifically based 'image of technology' to each other, and then to make them accessible for curricula within a framework of conceiving general technical education at all school levels. The contributions are grouped according to the two main foci of the event: On the one hand they are concerned with determining a contemporary concept of technology ('Image of technology'). One of the aims is to characterize technological change from the historical-genetic perspective and in this way to access technology as a work of mankind, as an important element of our culture. At the same time it is necessary to forecast future developments or to make future paths of development visible to enable the indication of change by basic innovations. Second, on this basis and supported by educational theory, conclusions are drawn for future-oriented technical general education for all students. The main focus in this is on the linkage between goals, content and subject-specific methods. In order to enable the determination of competence of any individual

  13. Exploring the Concept of Big Data : Technologies, Solutions and Best Practices

    OpenAIRE

    Ritola, Ilkka

    2014-01-01

    This research work aims to explore the concept of Big Data in detail. More specifically, the objective is to define and clarify the concept by examining the exact meaning of Big Data and understanding its underlying technologies. Moreover, this research discusses Big Data analytics solutions offered in the market today, along with best practices on implementing at strategic level. Big Data is one of the most talked about topics of the recent years in both business and information technolo...

  14. Knowledge representation and communication with concept maps in teacher training of science and technology

    Directory of Open Access Journals (Sweden)

    Pontes Pedrajas, Alfonso

    2012-01-01

    Full Text Available This paper shows the development of an educational innovation that we have made in the context of initial teacher training for secondary education of science and technology. In this educational experience computing resources and concept maps are used to develop teaching skills related to knowledge representation, oral communication, teamwork and practical use of ICT in the classroom. Initial results indicate that future teachers value positively the use of concept maps and computer resources as useful tools for teacher training.

  15. Visible Parts, Invisible Whole: Swedish Technology Student Teachers' Conceptions about Technological Systems

    Science.gov (United States)

    Hallström, Jonas; Klasander, Claes

    2017-01-01

    Technological systems are included as a component of national technology curricula and standards for primary and secondary education as well as corresponding teacher education around the world. Little is known, however, of how pupils, students, and teachers conceive of technological systems. In this article we report on a study investigating…

  16. Manufacturing Concepts of the Future – Upcoming Technologies Solving Upcoming Challenges

    DEFF Research Database (Denmark)

    Hadar, Ronen; Bilberg, Arne

    concepts and technologies that are being developed today which may be used to solve manufacturing challenges in the future, such as: (self) reconfigurable manufacturing systems, (focused) flexible manufacturing systems, and AI inspired manufacturing. The paper will try to offer a critical point of view...... on manufacturing challenges, concepts, and technologies, and is meant to address both academia and industry. Keywords: Reconfigurable manufacturing systems, manufacturing challenges, cognitive factory, mass-customization......This paper presents an examination of Western European manufacturers’ future challenges as can be predicted today. Some of the challenges analyzed in the paper are: globalization, individualism and customization and agility challenges. Hereafter, the paper presents a broad analysis on manufacturing...

  17. Overview: Solar Electric Propulsion Concept Designs for SEP Technology Demonstration Mission

    Science.gov (United States)

    Mcguire, Melissa L.; Hack, Kurt J.; Manzella, David; Herman, Daniel

    2014-01-01

    JPC presentation of the Concept designs for NASA Solar Electric Propulsion Technology Demonstration mission paper. Multiple Solar Electric Propulsion Technology Demonstration Missions were developed to assess vehicle performance and estimated mission cost. Concepts ranged from a 10,000 kg spacecraft capable of delivering 4000 kg of payload to one of the Earth Moon Lagrange points in support of future human-crewed outposts to a 180 kg spacecraft capable of performing an asteroid rendezvous mission after launched to a geostationary transfer orbit as a secondary payload.

  18. Proceedings of the Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications

    Science.gov (United States)

    Paul, Lori (Editor)

    1991-01-01

    The Workshop on Advanced Network and Technology Concepts for Mobile, Micro, and Personal Communications was held at NASA's JPL Laboratory on 30-31 May 1991. It provided a forum for reviewing the development of advanced network and technology concepts for turn-of-the-century telecommunications. The workshop was organized into three main categories: (1) Satellite-Based Networks (L-band, C-band, Ku-band, and Ka-band); (2) Terrestrial-Based Networks (cellular, CT2, PCN, GSM, and other networks); and (3) Hybrid Satellite/Terrestrial Networks. The proceedings contain presentation papers from each of the above categories.

  19. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  20. Development Challenges of Game-Changing Entry System Technologies From Concept to Mission Infusion

    Science.gov (United States)

    Venkatapathy, Ethiraj; Beck, Robin; Ellerby, Don; Feldman, Jay; Gage, Peter; Munk, Michelle; Wercinski, Paul

    2016-01-01

    Realization within the US and NASA that future exploration both Human and Robotic will require innovative new technologies led to the creation of the Space Technology Mission Directorate and investment in game changing technologies with high pay-off. Some of these investments will see success and others, due to many of the constraints, will not attain their goal. The co-authors of this proposed presentation have been involved from concept to mission infusion aspects of entry technologies that are game changing. The four example technologies used to describe the challenges experienced along the pathways to success are at different levels of maturity. They are Conformal, 3-D MAT, HEEET and ADEPT. The four examples in many ways capture broad aspects of the challenges of maturation and illustrate what led some to be exceptionally successful and how others had to be altered in order remain viable game changing technologies.

  1. NASA Langley Systems Analysis & Concepts Directorate Technology Assessment/Portfolio Analysis

    Science.gov (United States)

    Cavanaugh, Stephen; Chytka, Trina; Arcara, Phil; Jones, Sharon; Stanley, Doug; Wilhite, Alan W.

    2006-01-01

    Systems analysis develops and documents candidate mission and architectures, associated system concepts, enabling capabilities and investment strategies to achieve NASA s strategic objectives. The technology assessment process connects the mission and architectures to the investment strategies. In order to successfully implement a technology assessment, there is a need to collect, manipulate, analyze, document, and disseminate technology-related information. Information must be collected and organized on the wide variety of potentially applicable technologies, including: previous research results, key technical parameters and characteristics, technology readiness levels, relationships to other technologies, costs, and potential barriers and risks. This information must be manipulated to facilitate planning and documentation. An assessment is included of the programmatic and technical risks associated with each technology task as well as potential risk mitigation plans. Risks are assessed and tracked in terms of likelihood of the risk occurring and consequences of the risk if it does occur. The risk assessments take into account cost, schedule, and technical risk dimensions. Assessment data must be simplified for presentation to decision makers. The Systems Analysis and Concepts Directorate (SACD) at NASA Langley Research Center has a wealth of experience in performing Technology Assessment and Portfolio Analysis as this has been a business line since 1978.

  2. Using Technology To Bring Abstract Concepts into Focus: A Programming Case Study.

    Science.gov (United States)

    Crews, Thad; Butterfield, Jeff

    2002-01-01

    Discusses the three-step implementation of an instructional technology tool and associated pedagogy to support teaching and learning computer programming concepts. The Flowchart Interpreter (FLINT) was proven through experiments to support novice programmers better than the traditional textbook approach. (EV)

  3. Groundwork for the Concept of Technique in Education: Herbert Marcuse and Technological Society

    Science.gov (United States)

    Pierce, Clayton

    2006-01-01

    This article articulates the groundwork for a new understanding of the concept of technique through a critical engagement with Herbert Marcuse's critical theory of technology. To this end, it identifies and engages three expressions of technique in Marcuse's work: mimesis, reified labor, and the happy consciousness. It is argued that this mapping…

  4. Groundwork for the Concept of Technique in Education: Herbert Marcuse and Technological Society

    Science.gov (United States)

    Pierce, Clayton

    2006-01-01

    This article articulates the groundwork for a new understanding of the concept of technique through a critical engagement with Herbert Marcuse's critical theory of technology. To this end, it identifies and engages three expressions of technique in Marcuse's work: mimesis, reified labor, and the happy consciousness. It is argued that this mapping…

  5. A Phenomenographic Study of Lecturers' Conceptions of Using Learning Technology in a Pakistani Context

    Science.gov (United States)

    Hodgson, Vivien; Shah, Uzair

    2017-01-01

    While there are many studies exploring the phenomenon of lecturers' use of learning technology within teaching practices in western higher education contexts, currently we know little about this phenomenon within less developed countries. In the paper, we discuss the findings from a phenomenographic study of lecturers' conceptions of using…

  6. 'Enlivening' Development Concepts through Workshops: A Case Study of Appropriate Technology and Soil Conservation.

    Science.gov (United States)

    Jones, Samantha

    2000-01-01

    Describes a workshop designed to communicate to students the idea of appropriate technology in soil conservation enabling them to experience concepts in the geography of development. Explains that the workshop was evaluated by students using open and closed style questions. Includes references. (CMK)

  7. 论医学专家的技术观%On medical experts' conception of technology

    Institute of Scientific and Technical Information of China (English)

    杜治政

    2014-01-01

    The scientific conception of technology is a critical condition for technology innova-tion for every medical expert. Technology is the main carrier of medicine, while medicine is not equal to technology. The technology, a means rather than an end, must be combined with humanity. It has double-edged characteristics. All above are the contents of the conception of technology, requiring medical experts to concern about the current appearance of SCI thermal and the tendency of the sub-jectification of technology, pay great attentions to the double roots of technology alienation, and be cautious of the unconscious results of technology. In short, it is necessary to conduct humanity and social control to technology, so that the medical technology can better benefit human health.%科学的技术观是医学专家从事技术创造能否获得成功的重要条件。医学的主要载体是技术,医学不等于技术,技术是手段而不是目的,技术具有双刃性,技术必须与人文相结合。医学技术观的这些内容,要求医学专家关注当前出现的SCI热和技术主体化倾向,重视技术异化的双重根源,审慎对待技术的无意识结果。因而需要对技术进行人文社会管控,使医学技术更好地造福于人类健康。

  8. A Short Review of U. S. Naval Ship Concept Design Technology Development Features

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-01-01

    Full Text Available In present study, a history analysis and review of last 30 years for U.S. naval ship concept design development trend is proposed. Based on the development of naval ship concept design model history, the three features of development process are further summarized. The first is that model-based system engineering (MBSE becomes the basic of naval ship concept design, while the second one is that the multi-discipline crossing and combination becomes a general innovation model. And the third one is that systematization oriented naval system integration is the developing goal. Some detailed examples are presented to illustrate these three characteristics. Finally, the technology difficulties in naval ship concept design are also presented.

  9. Research Students' Conceptions of the Role of Information and Communication Technologies in Educational Technology Research

    Science.gov (United States)

    Markauskaite, Lina; Wardak, Dewa

    2015-01-01

    The emergence of "big data," "digital scholarship" and "eResearch" raises the question of how these digital developments in research methods and practices affect research students. This paper presents findings from a phenomenographic study that investigated postgraduate students' conceptions of the role of information…

  10. Research Students' Conceptions of the Role of Information and Communication Technologies in Educational Technology Research

    Science.gov (United States)

    Markauskaite, Lina; Wardak, Dewa

    2015-01-01

    The emergence of "big data," "digital scholarship" and "eResearch" raises the question of how these digital developments in research methods and practices affect research students. This paper presents findings from a phenomenographic study that investigated postgraduate students' conceptions of the role of information…

  11. Native voice, self-concept and the moral case for personalized voice technology.

    Science.gov (United States)

    Nathanson, Esther

    2017-01-01

    Purpose (1) To explore the role of native voice and effects of voice loss on self-concept and identity, and survey the state of assistive voice technology; (2) to establish the moral case for developing personalized voice technology. Methods This narrative review examines published literature on the human significance of voice, the impact of voice loss on self-concept and identity, and the strengths and limitations of current voice technology. Based on the impact of voice loss on self and identity, and voice technology limitations, the moral case for personalized voice technology is developed. Results Given the richness of information conveyed by voice, loss of voice constrains expression of the self, but the full impact is poorly understood. Augmentative and alternative communication (AAC) devices facilitate communication but, despite advances in this field, voice output cannot yet express the unique nuances of individual voice. The ethical principles of autonomy, beneficence and equality of opportunity establish the moral responsibility to invest in accessible, cost-effective, personalized voice technology. Conclusions Although further research is needed to elucidate the full effects of voice loss on self-concept, identity and social functioning, current understanding of the profoundly negative impact of voice loss establishes the moral case for developing personalized voice technology. Implications for Rehabilitation Rehabilitation of voice-disordered patients should facilitate self-expression, interpersonal connectedness and social/occupational participation. Proactive questioning about the psychological and social experiences of patients with voice loss is a valuable entry point for rehabilitation planning. Personalized voice technology would enhance sense of self, communicative participation and autonomy and promote shared healthcare decision-making. Further research is needed to identify the best strategies to preserve and strengthen identity and sense of

  12. West Europe report: Science and technology. FRG: Concept paper on microelectronics, communications technology

    Science.gov (United States)

    1984-07-01

    Precisely because the Federal Republic of Germany is a nation with a strong export orientation the capability to develop and apply, with an eye to the market, modern information and communication technologies and microelectronics which provides the basis for them has a very important bearing on the nations competitive position. To attain a leadership position in information technology, the men and women of the FRG must take up the challenge of this technology in terms of training and continuing education as well as in the media and in public life. Industry must agressively seek out markets and engage in international competition and the state must remove existing obstacles and create the kind of conditions that will make its assistance programs most effective. Programs which reflect the government's resolve to meet the challenge of information technology and to help improve the FRG's competitive position in this field are outlined.

  13. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Science.gov (United States)

    Anuar, Nuraslinda; Muhamad Pauzi, Anas

    2016-01-01

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the βmin is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the βmin, resulting in a list of candidate designs that possess the β value that is larger than the βmin. The proposed methodology can also be applied to purposes other than technological foresight.

  14. Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm

    Science.gov (United States)

    Robinson, John W.; McCleskey, Carey M.; Rhodes, Russel E.; Lepsch, Roger A.; Henderson, Edward M.; Joyner, Claude R., III; Levack, Daniel J. H.

    2013-01-01

    This paper describes Advanced Space Transportation Concepts and Propulsion Technologies for a New Delivery Paradigm. It builds on the work of the previous paper "Approach to an Affordable and Productive Space Transportation System". The scope includes both flight and ground system elements, and focuses on their compatibility and capability to achieve a technical solution that is operationally productive and also affordable. A clear and revolutionary approach, including advanced propulsion systems (advanced LOX rich booster engine concept having independent LOX and fuel cooling systems, thrust augmentation with LOX rich boost and fuel rich operation at altitude), improved vehicle concepts (autogeneous pressurization, turbo alternator for electric power during ascent, hot gases to purge system and keep moisture out), and ground delivery systems, was examined. Previous papers by the authors and other members of the Space Propulsion Synergy Team (SPST) focused on space flight system engineering methods, along with operationally efficient propulsion system concepts and technologies. This paper continues the previous work by exploring the propulsion technology aspects in more depth and how they may enable the vehicle designs from the previous paper. Subsequent papers will explore the vehicle design, the ground support system, and the operations aspects of the new delivery paradigm in greater detail.

  15. A mechanism for proven technology foresight for emerging fast reactor designs and concepts

    Energy Technology Data Exchange (ETDEWEB)

    Anuar, Nuraslinda, E-mail: nuraslinda@uniten.edu.my; Muhamad Pauzi, Anas, E-mail: anas@uniten.edu.my [College of Engineering, Universiti Tenaga Nasional, Jalan IKRAM-UNITEN, 43000 Kajang, Selangor (Malaysia)

    2016-01-22

    The assessment of emerging nuclear fast reactor designs and concepts viability requires a combination of foresight methods. A mechanism that allows for the comparison and quantification of the possibility of being a proven technology in the future, β for the existing fast reactor designs and concepts is proposed as one of the quantitative foresight method. The methodology starts with the identification at the national or regional level, of the factors that would affect β. The factors are then categorized into several groups; economic, social and technology elements. Each of the elements is proposed to be mathematically modelled before all of the elemental models can be combined. Once the overall β model is obtained, the β{sub min} is determined to benchmark the acceptance as a candidate design or concept. The β values for all the available designs and concepts are then determined and compared with the β{sub min}, resulting in a list of candidate designs that possess the β value that is larger than the β{sub min}. The proposed methodology can also be applied to purposes other than technological foresight.

  16. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  17. The strategic relevance of manufacturing technology: An overall quality concept to promote innovation preventing drug shortage.

    Science.gov (United States)

    Panzitta, Michele; Ponti, Mauro; Bruno, Giorgio; Cois, Giancarlo; D'Arpino, Alessandro; Minghetti, Paola; Mendicino, Francesca Romana; Perioli, Luana; Ricci, Maurizio

    2017-01-10

    Manufacturing is the bridge between research and patient: without product, there is no clinical outcome. Shortage has a variety of causes, in this paper we analyse only causes related to manufacturing technology and we use shortage as a paradigm highliting the relevance of Pharmaceutical Technology. Product and process complexity and capacity issues are the main challenge for the Pharmaceutical Industry Supply chain. Manufacturing Technology should be acknowledged as a R&D step and as a very important matter during University degree in Pharmacy and related disciplines, promoting collaboration between Academia and Industry, measured during HTA step and rewarded in terms of price and reimbursement. The above elements are not yet properly recognised, and manufacturing technology is taken in to consideration only when a shortage is in place. In a previous work, Panzitta et al. proposed to perform a full technology assessment at the Health Technological Assessment stage, evaluating three main technical aspects of a medicine: manufacturing process, physicochemical properties, and formulation characteristics. In this paper, we develop the concept of manufacturing appraisal, providing a technical overview of upcoming challenges, a risk based approach and an economic picture of shortage costs. We develop also an overall quality concept, not limited to GMP factors but broaden to all elements leading to a robust supply and promoting technical innovation.

  18. «Smart Grid» Concept As A Modern Technology For The Power Industry Development

    Science.gov (United States)

    Vidyaev, Igor G.; Ivashutenko, Alexandr S.; Samburskaya, Maria A.

    2017-01-01

    The article discusses the main problems of the power industry and energy supply to the distribution networks. One of the suggested solutions for these problems is the use of intelligent energy networks on the basis of digital reality simulation, in particular, the concept of «SMART GRID». The article presents the basic points of the concept and the peculiarities of its application at the enterprises. It was demonstrated that the use of this technology eliminates power shortage, reduces the energy intensity and improves the energy efficiency throughout the operation of an enterprise as a whole.

  19. Analysis of the concept of nursing educational technology applied to the patient

    Directory of Open Access Journals (Sweden)

    Aline Cruz Esmeraldo Áfio

    2014-04-01

    Full Text Available It is aimed at analyzing the concept of educational technology, produced by nursing, applied to the patient. Rodgers´ Evolutionary Method of Concept Analysis was used, identifying background, attributes and consequential damages. 13 articles were selected for analysis in which the background was identified: knowledge deficiency, shortage of nursing professionals' time, to optimize nursing work, the need to achieve the goals of the patients. Attributes: tool, strategy, innovative approach, pedagogical approach, mediator of knowledge, creative way to encourage the acquisition of skills, health production instrument. Consequences: to improve the quality of life, encouraging healthy behavior, empowerment, reflection and link. It emphasizes the importance of educational technologies for the care in nursing, to boost health education activities.

  20. Overview and appraisal of the current concept and technologies for improvement of sublingual drug delivery.

    Science.gov (United States)

    Wang, Zhijun; Chow, Moses Ss

    2014-07-01

    Sublingual drug delivery is capable of achieving high bioavailability by avoiding first-pass liver extraction and enzymatic degradation in the gastrointestinal tract, as well as achieving rapid onset of effect. Thus, this route of administration can offer attractive therapeutic advantages for certain drugs as a convenient substitute for parenteral administration and has been applied successfully to a number of therapeutic conditions, especially urgent cardiovascular conditions and acute severe pain control. However, due to inherent limitations such as small sublingual mucosa area for absorption, primarily passive mechanism of transport, short residence time, and potential local irritation, a relatively small number of sublingual products have been successfully developed to date. In this Review, key concepts and technologies for potential improvement of sublingual drug delivery are reviewed. The optimal application of these concepts and technologies, together with clinical need for non-parenteral delivery, will hopefully broaden the development of sublingual drug delivery in the future.

  1. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  2. Distributed optimal technology networks: a concept and strategy for potable water sustainability.

    Science.gov (United States)

    Weber, W J

    2002-01-01

    Viable strategies for ensuring adequate supplies of potable water are essential to long-term societal sustainability. The steadily increasing necessity for multiple reuse of water in urban societies is even now taxing our technical and financial abilities to meet ongoing needs for water suitable for human consumption. As a consequence, the current practice of treating the entire water demands of urban communities to the increasingly stringent standards required for drinking water is becoming an unsustainable practice, and thus a questionable strategy for planning and development of urban water systems. An innovative technology-based concept for implementation of a more sustainable strategy and practice for potable water is developed here. The concept is predicated on the inherent advantages of flexibility and responsiveness associated with decentralization of complex functions and operations. Specifically, it calls for strategic dispersal of flexible advanced treatment and control technologies throughout urban water transport and storage networks. This is in direct contradistinction to current strategies and practices of centralized and inflexible monolithic facilities. By integrating use-related satellite systems with critical components of existing systems and infrastructures, the concept can enable and facilitate optimal cost-effective applications of highly sophisticated advanced treatment and on-line monitoring and control technologies to in-place infrastructures in a holistic and sustainable manner.

  3. Tesseract supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  4. Tesseract: Supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  5. Expanding venue and persistence of planetary mobile robotic exploration: new technology concepts for Mars and beyond

    Science.gov (United States)

    Schenker, Paul S.; Elfes, Albert; Hall, Jeffrey L.; Huntsberger, Terrance L.; Jones, Jack A.; Wilcox, Brian H.; Zimmerman, Wayne F.

    2003-10-01

    The domain and technology of mobile robotic space exploration are fast moving from brief visits to benign Mars surface regions to more challenging terrain and sustained exploration. Further, the overall venue and concept of space robotic exploration are expanding—"from flatland to 3D"—from the surface, to sub-surface and aerial theatres on disparate large and small planetary bodies, including Mars, Venus, Titan, Europa, and small asteroids. These new space robotic system developments are being facilitated by concurrent, synergistic advances in software and hardware technologies for robotic mobility, particularly as regard on-board system autonomy and novel thermo-mechanical design. We outline these directions of emerging mobile science mission interest and technology enablement, including illustrative work at JPL on terrain-adaptive and multi-robot cooperative rover systems, aerobotic mobility, and subsurface ice explorers.

  6. System concepts and enabling technologies for an ESA low-cost mission to Jupiter / Europa

    Science.gov (United States)

    Renard, P.; Koeck, C.; Kemble, Steve; Atzei, Alessandro; Falkner, Peter

    2004-11-01

    The European Space Agency is currently studying the Jovian Minisat Explorer (JME), as part of its Technology Reference Studies (TRS), used for its development plan of technologies enabling future scientific missions. The JME focuses on the exploration of the Jovian system and particularly of Europa. The Jupiter Minisat Orbiter (JMO) study concerns the first mission phase of JME that counts up to three missions using pairs of minisats. The scientific objectives are the investigation of Europa's global topography, the composition of its (sub)surface and the demonstration of existence of a subsurface ocean below its icy crust. The present paper describes the candidate JMO system concept, based on a Europa Orbiter (JEO) supported by a communications relay satellite (JRS), and its associated technology development plan. It summarizes an analysis performed in 2004 jointly by ESA and the EADS-Astrium Company in the frame of an industrial technical assistance to ESA.

  7. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  8. Proof of concept demonstration of novel technologies for lunar spacesuit dust mitigation

    Science.gov (United States)

    Manyapu, Kavya K.; De Leon, Pablo; Peltz, Leora; Gaier, James R.; Waters, Deborah

    2017-08-01

    A recent report by NASA identified dust/particulate mitigation techniques as a highly relevant study for future long-term planetary exploration missions (NASA, 2015). The deleterious effects of lunar dust on spacesuits discovered during the Apollo missions has compelled NASA to identify dust mitigation as a critical path for potential future lunar, asteroid and Mars missions. The complexity of spacesuit design has however constrained integrating existing dust cleaning technologies, formerly demonstrated on rigid surfaces, into the spacesuit system. Accordingly, this research is investigating novel methods to integrate dust mitigation technologies for use on spacesuits. We examine utilizing a novel combination of active and passive technologies integrated into the spacesuit outerlayer to alleviate dust contamination. Leveraging two specific technologies, the Electrodynamics Dust Shield (EDS) active technology and Work Function Matching Coating (WFM) passive technology, developed by NASA for rigid surfaces, we apply new high performance materials such as the Carbon Nanotube (CNT) flexible fibers to develop a spacesuit-integrated dust cleaning system. Through experiments conducted using JSC-1A lunar dust simulant on coupons made of spacesuit outerlayer material, feasibility of integrating the proposed dust cleaning system and its performance were assessed. Results from these preliminary experiments show that the integrated dust cleaning system is capable of removing 80-95% of dust from the spacesuit material demonstrating proof of concept. This paper describes the techniques and results from the experiments. Future challenges of implementing the proposed approach into fight suits are identified.

  9. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  10. Properties of Supersonic Evershed Downflows

    Science.gov (United States)

    Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  11. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore;

    2016-01-01

    The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades is ...... the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....

  12. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    Science.gov (United States)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  13. 超声速燃烧地面试验的蓄热式加热器及其关键技术%Thermal energy storage heater and its key technologies for supersonic combustion ground test facilities

    Institute of Scientific and Technical Information of China (English)

    李龙飞; 王延涛; 杨伟东; 洪流

    2012-01-01

    为了模拟飞行状态下进入超燃冲压发动机燃烧室的高焓空气,在地面模拟试验中需要对空气加热,可再生蓄热式加热器是一种能提供相对纯净高焓空气的试验设备。介绍了蓄热式加热器的工作原理与特点,分析了关键技术。结果表明,蓄热式加热器具有加热空气总温高、流量大和相对纯净的优点,是我国超燃冲压发动机地面试验的发展趋势,但蓄热阵材料、加热器结构、超高温阀和大范围调节预热燃烧器等是关键技术,有待进一步研究和攻关。%In order to simulate the air temperature in the combustion chamber of scramjet,the air used by the ground simulation test should be heated.This paper presents the design specification of a cored brick storage heater,which can supply high temperature clean air to meet the demands of supersonic combustion experiments.Key technologies of developing thermal energy storage heater are analyzed.The results show that with proper material and structural design,it is possible to use a thermal energy storage heater to obtain clean air flow of Mach 6.However,real performance of materials,the heater structure,the ultra high-temperature valve and gas generator still need to be studied to solve the remaining issues in the thermal energy storage heater.

  14. The occurrence of technological triad: descriptive concept of today’s totality of reality

    Directory of Open Access Journals (Sweden)

    Milijana Mičunović

    2016-07-01

    Full Text Available Scientific discourse refers to triads as conceptual structures whose purpose is to emphasize the connection between concepts included in the description of a certain phenomenon. The famous Popper’s triad is comprised of the world of physical objects and processes (World 1, the world of mental objects, i.e. subjective human experience (World 2 and the world of objective knowledge (World 3, which can be thought of as all the products of thought – the world of information, knowledge, scientific theories, literature, etc. During the past half-century, Information and Communication Technology (ICT and new media began to change our reality on all three levels. Using a comparative analysis, this paper will examine the impact ICT and new media have on the Popper’s World 1, 2 and 3.As it will be shown, the modern age offers a new conceptual triad the aim of which is not to stand against the Popper’s triad but to introduce new integral elements that intersect and interact with it. In this new triad the world of physical objects is being replaced by the world of virtual reality (i.e. the Virtual World, the world of mental objects is replaced by transmental objects (i.e. the Transmental World and the world of objective knowledge is being replaced by the world of digitized data/information/ knowledge in the context of developing AI (i.e. the Digital World. These new architectonic elements build new conceptual structure the aim of which is to define, describe and represent new interrelated concepts essential for better understanding of today’s totality of reality. They form new ontology of the world which describes reality as inseparable from the concepts of information and technology.Keywords: Popper’s triad, ICT, totality of reality, virtual realities, human-technology interaction, artificial intelligence

  15. AVID - A design system for technology studies of advanced transportation concepts. [Aerospace Vehicle Interactive Design

    Science.gov (United States)

    Wilhite, A. W.; Rehder, J. J.

    1979-01-01

    The basic AVID (Aerospace Vehicle Interactive Design) is a general system for conceptual and preliminary design currently being applied to a broad range of future space transportation and spacecraft vehicle concepts. AVID hardware includes a minicomputer allowing rapid designer interaction. AVID software includes (1) an executive program and communication data base which provide the automated capability to couple individual programs, either individually in an interactive mode or chained together in an automatic sequence mode; and (2) the individual technology and utility programs which provide analysis capability in areas such as graphics, aerodynamics, propulsion, flight performance, weights, sizing, and costs.

  16. Materials technology for an advanced space power nuclear reactor concept: Program summary

    Science.gov (United States)

    Gluyas, R. E.; Watson, G. K.

    1975-01-01

    The results of a materials technology program for a long-life (50,000 hr), high-temperature (950 C coolant outlet), lithium-cooled, nuclear space power reactor concept are reviewed and discussed. Fabrication methods and compatibility and property data were developed for candidate materials for fuel pins and, to a lesser extent, for potential control systems, reflectors, reactor vessel and piping, and other reactor structural materials. The effects of selected materials variables on fuel pin irradiation performance were determined. The most promising materials for fuel pins were found to be 85 percent dense uranium mononitride (UN) fuel clad with tungsten-lined T-111 (Ta-8W-2Hf).

  17. Properties of Supersonic Evershed Downflows

    CERN Document Server

    Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz

    2016-01-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...

  18. 基于向量空间的中文概念检索技术研究%Research on the Vector Space- based Chinese Concept Retrieval Technology

    Institute of Scientific and Technical Information of China (English)

    罗威

    2003-01-01

    Concept retrieval can achieve better results as it deals with the user's request on the concept level. This article introduces the vector space-based concept retrieval technology. Firstly, it explains why this technology is adopted. Then, it describes how to implement this technology. Finally, the article puts forward some measures to improve retrieval performance.

  19. Double Stimulation in Strategic Concept Formation: An Activity-Theoretical Analysis of Business Planning in a Small Technology Firm

    Science.gov (United States)

    Virkkunen, Jaakko; Ristimaki, Paivi

    2012-01-01

    In this article, we study the relationships between culturally existing general strategy concepts and a small information and communication technology firm's specific strategic challenge in its management team's search for a new strategy concept. We apply three theoretical ideas of cultural historical activity theory: (a) the idea of double…

  20. When Are Powerful Learning Environments Effective? The Role of Learner Activities and of Students' Conceptions of Educational Technology

    Science.gov (United States)

    Gerjets, Peter H.; Hesse, Friedrich W.

    2004-01-01

    The goal of this chapter is to outline a theoretical and empirical perspective on how learners' conceptions of educational technology might influence their learning activities and thereby determine the power of computer-based learning environments. Starting with an introduction to the concept of powerful learning environments we outline how recent…

  1. Double Stimulation in Strategic Concept Formation: An Activity-Theoretical Analysis of Business Planning in a Small Technology Firm

    Science.gov (United States)

    Virkkunen, Jaakko; Ristimaki, Paivi

    2012-01-01

    In this article, we study the relationships between culturally existing general strategy concepts and a small information and communication technology firm's specific strategic challenge in its management team's search for a new strategy concept. We apply three theoretical ideas of cultural historical activity theory: (a) the idea of double…

  2. The addiction concept and technology: diagnosis, metaphor, or something else? a psychodynamic point of view.

    Science.gov (United States)

    Essig, Todd

    2012-11-01

    Many today suffer from an imbalance between life and life on the screen. When extreme, such as excessive gaming, clinicians retreat to familiar explanations, such as "Internet addiction." But the addiction concept is of limited value, limiting both research and treatment options. This article discusses an alternative. Pathological overuse is seen as a failed solution in which people become entrapped by technology's promise of delivering that which only life can offer, such as the grand adventure simulated in World of Warcraft. A two-part treatment approach of such "simulation entrapment" is described in which both the original problem and the entrapment are treated, the former by traditional psychodynamic psychotherapy and the later by highlighting differences between the technologically mediated experience and traditional experiences of being bodies together. The case of a college student suffering from pathological shame with excessive gaming as the failed solution is offered as an illustration. © 2012 Wiley Periodicals, Inc.

  3. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    Energy Technology Data Exchange (ETDEWEB)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  4. Technology Options and Integration Concepts for Implementing CO2 Capture in Oil-Sands Operations

    Energy Technology Data Exchange (ETDEWEB)

    Ordorica-Garcia, G.; Nikoo, M. [Alberta Innovates Technology Futures, Edmonton, Alberta (Canada); Carbo, M. [Energy Research Centre of the Netherlands ECN, Petten (Netherlands); Bolea, I. [Universidad de Zaragoza, Zaragoza (Spain)

    2012-09-15

    The majority of the technology development for CO2 capture and storage (CCS) is driven by the electric-utility industry, in which the emphasis is on large centralized units for electric-power generation with coal as the primary fuel. The implementation of CCS in oil-sands operations has significant potential to provide meaningful carbon-emissions reductions. This paper presents various concepts for integrating leading CO2-capture techniques to bitumen-extraction and -upgrading processes. The main carbon-capture technologies are reviewed, and their relative advantages and disadvantages for implementation in bitumen mining, thermal bitumen extraction, and bitumen upgrading are discussed, leading to a qualitative assessment of their suitability for each oil-sands process.

  5. A new concept for medical imaging centered on cellular phone technology.

    Directory of Open Access Journals (Sweden)

    Yair Granot

    Full Text Available According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a a data acquisition device (DAD at a remote patient site that is simple, with limited controls and no image display capability and b an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site. The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode.

  6. A Study of Future Communications Concepts and Technologies for the National Airspace System-Part III

    Science.gov (United States)

    Ponchak, Denise S.; Apaza, Rafael D.; Wichgersm Joel M.; Haynes, Brian; Roy, Aloke

    2014-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is investigating current and anticipated wireless communications concepts and technologies that the National Airspace System (NAS) may need in the next 50 years. NASA has awarded three NASA Research Announcements (NAR) studies with the objective to determine the most promising candidate technologies for air-to-air and air-to-ground data exchange and analyze their suitability in a post-NextGen NAS environment. This paper will present progress made in the studies and describe the communications challenges and opportunities that have been identified as part of the study. NASA's NextGen Concepts and Technology Development (CTD) Project integrates solutions for a safe, efficient and high-capacity airspace system through joint research efforts and partnerships with other government agencies. The CTD Project is one of two within NASA's Airspace Systems Program and is managed by the NASA Ames Research Center. Research within the CTD Project is in support the 2011 NASA Strategic Plan Sub-Goal 4.1: Develop innovative solutions and advanced technologies, through a balanced research portfolio, to improve current and future air transportation. The focus of CTD is on developing capabilities in traffic flow management, dynamic airspace configuration, separation assurance, super density operations and airport surface operations. Important to its research is the development of human/automation information requirements and decisionmaking guidelines for human-human and human-machine airportal decision-making. Airborne separation, oceanic intrail climb/descent and interval management applications depend on location and intent information of surrounding aircraft. ADS-B has been proposed to provide the information exchange, but other candidates such as satellite-based receivers, broadband or airborne internet, and cellular communications are possible candidate's.

  7. A new concept for medical imaging centered on cellular phone technology.

    Science.gov (United States)

    Granot, Yair; Ivorra, Antoni; Rubinsky, Boris

    2008-04-30

    According to World Health Organization reports, some three quarters of the world population does not have access to medical imaging. In addition, in developing countries over 50% of medical equipment that is available is not being used because it is too sophisticated or in disrepair or because the health personnel are not trained to use it. The goal of this study is to introduce and demonstrate the feasibility of a new concept in medical imaging that is centered on cellular phone technology and which may provide a solution to medical imaging in underserved areas. The new system replaces the conventional stand-alone medical imaging device with a new medical imaging system made of two independent components connected through cellular phone technology. The independent units are: a) a data acquisition device (DAD) at a remote patient site that is simple, with limited controls and no image display capability and b) an advanced image reconstruction and hardware control multiserver unit at a central site. The cellular phone technology transmits unprocessed raw data from the patient site DAD and receives and displays the processed image from the central site. (This is different from conventional telemedicine where the image reconstruction and control is at the patient site and telecommunication is used to transmit processed images from the patient site). The primary goal of this study is to demonstrate that the cellular phone technology can function in the proposed mode. The feasibility of the concept is demonstrated using a new frequency division multiplexing electrical impedance tomography system, which we have developed for dynamic medical imaging, as the medical imaging modality. The system is used to image through a cellular phone a simulation of breast cancer tumors in a medical imaging diagnostic mode and to image minimally invasive tissue ablation with irreversible electroporation in a medical imaging interventional mode.

  8. Architectures, Concepts and Technologies for Service Oriented Computing : proceedings of ACT4SOC 2010, 4th International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing in cnjunction with ICSOFT 2010, Athens, Greece, July 2010

    NARCIS (Netherlands)

    Sinderen, van Marten; Sapkota, Brahmananda

    2010-01-01

    This volume contains the proceedings of the Fourth International Workshop on Architectures, Concepts and Technologies for Service Oriented Computing (ACT4SOC 2010), held on July 23 in Athens, Greece, in conjunction with the Fourth International Conference on Software and Data Technologies (ICSOFT 20

  9. Advanced Concepts, Technologies and Flight Experiments for NASA's Earth Science Enterprise

    Science.gov (United States)

    Meredith, Barry D.

    2000-01-01

    Over the last 25 years, NASA Langley Research Center (LaRC) has established a tradition of excellence in scientific research and leading-edge system developments, which have contributed to improved scientific understanding of our Earth system. Specifically, LaRC advances knowledge of atmospheric processes to enable proactive climate prediction and, in that role, develops first-of-a-kind atmospheric sensing capabilities that permit a variety of new measurements to be made within a constrained enterprise budget. These advances are enabled by the timely development and infusion of new, state-of-the-art (SOA), active and passive instrument and sensor technologies. In addition, LaRC's center-of-excellence in structures and materials is being applied to the technological challenges of reducing measurement system size, mass, and cost through the development and use of space-durable materials; lightweight, multi-functional structures; and large deployable/inflatable structures. NASA Langley is engaged in advancing these technologies across the full range of readiness levels from concept, to components, to prototypes, to flight experiments, and on to actual science mission infusion. The purpose of this paper is to describe current activities and capabilities, recent achievements, and future plans of the integrated science, engineering, and technology team at Langley Research Center who are working to enable the future of NASA's Earth Science Enterprise.

  10. The preliminary conceptions, the traditional resources and digital technologies in teaching of astronomy

    Science.gov (United States)

    de Macedo, J. A.; Voelzke, M. R.

    2014-07-01

    Despite being part of the official documents astronomy is rarely taught adequately in basic education. Digital technologies are commonly used by youth, but neglected by the majority of teachers. In this sense, a survey with the aim of pointing out the potential use of digital technologies in teaching astronomy was developed. An advanced course in astronomy was offered for participants with the goal to make them understand astronomical phenomena. The following steps were to be taken: i) analysis of the pedagogical projects (PPC) of the licenciates at the Federal Institution of the North of Minas Gerais (IFNMG); ii) analysis of students' preconceptions about astronomy and digital technologies; iii) preparation of the course; iv) application of the education proposal. The test consisted of thirty-two students of physics, mathematics and biology and was conducted with the qualitative and quantitative methodology, combined with a content analysis. The results indicated that in the IFNMG only the licenciate-course in physics includes astronomy content diluted in various subjects of the curriculum; the rates of students' prior knowledge in relation to astronomy was low; an evidence of meaningfull earning of the concepts related to astronomy, and of viability of resource use involving digital technologies in the Teaching of astronomy.

  11. NASA F-16XL supersonic laminar flow control program overview

    Science.gov (United States)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  12. Testing communication strategies to convey genomic concepts using virtual reality technology.

    Science.gov (United States)

    Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Beall, Andrew C; Blascovich, Jim

    2009-06-01

    Health professionals need to be able to communicate information about genomic susceptibility in understandable and usable ways, but substantial challenges are involved. We developed four learning modules that varied along two factors: (1) learning mode (active learning vs. didactic learning) and (2) metaphor (risk elevator vs. bridge) and tested them using a 2 x 2 between-subjects, repeated measures design. The study used an innovative virtual reality technology experimental platform; four virtual worlds were designed to convey the concept that genetic and behavioral factors interact to affect common disease risk. The primary outcome was comprehension (recall, transfer). Study participants were 42 undergraduates aged 19-23. The results indicated that the elevator metaphor better supported learning of the concept than the bridge metaphor. Mean transfer score was significantly higher for the elevator metaphor (p learning than active learning (p learning (e.g., motivation), however, were generally higher for the active learning worlds. The results suggested that active learning might not always be more effective than didactic learning in increasing comprehension of health information. The findings also indicated that less complex metaphors might convey abstract concepts more effectively.

  13. Do Science and Technology Teachers and Pre-Service Primary Teachers Have Different Thoughts about Concept Maps in Science and Technology Lessons?

    Science.gov (United States)

    Karakuyu, Yunus

    2011-01-01

    The purpose of this study is to determine the thoughts of primary science and technology teachers, primary class teachers, pre-service primary class teachers and pre-service primary science and technology teachers' about concept maps. This scale applied the use of basic and random method on the chosen 125 4th and 5th grade primary class teachers…

  14. Concepts and Technologies for a Comprehensive Information System for Historical Research and Heritage Documentation

    Science.gov (United States)

    Henze, F.; Magdalinski, N.; Schwarzbach, F.; Schulze, A.; Gerth, Ph.; Schäfer, F.

    2013-07-01

    Information systems play an important role in historical research as well as in heritage documentation. As part of a joint research project of the German Archaeological Institute, the Brandenburg University of Technology Cottbus and the Dresden University of Applied Sciences a web-based documentation system is currently being developed, which can easily be adapted to the needs of different projects with individual scientific concepts, methods and questions. Based on open source and standardized technologies it will focus on open and well-documented interfaces to ease the dissemination and re-use of its content via web-services and to communicate with desktop applications for further evaluation and analysis. Core of the system is a generic data model that represents a wide range of topics and methods of archaeological work. By the provision of a concerted amount of initial themes and attributes a cross project analysis of research data will be possible. The development of enhanced search and retrieval functionalities will simplify the processing and handling of large heterogeneous data sets. To achieve a high degree of interoperability with existing external data, systems and applications, standardized interfaces will be integrated. The analysis of spatial data shall be possible through the integration of web-based GIS functions. As an extension to this, customized functions for storage, processing and provision of 3D geo data are being developed. As part of the contribution system requirements and concepts will be presented and discussed. A particular focus will be on introducing the generic data model and the derived database schema. The research work on enhanced search and retrieval capabilities will be illustrated by prototypical developments, as well as concepts and first implementations for an integrated 2D/3D Web-GIS.

  15. Changing Conceptions and Uses of Computer Technologies in the Everyday: Literacy Practices of Sixth and Seventh Graders

    Science.gov (United States)

    Agee, Jane; Altarriba, Jeanette

    2009-01-01

    This study focused on 189 sixth and seventh graders in two large suburban schools and their use of computer technologies as part of their everyday literacy practices. The authors were especially interested in the students' conceptions of computer technologies and how computer use varied across grade and reading levels. The study included a survey…

  16. Molecular medicine and concepts of disease: the ethical value of a conceptual analysis of merging biomedical technologies.

    NARCIS (Netherlands)

    Boenink, Marianne

    2009-01-01

    Although it is now generally acknowledged that new biomedical technologies often produce new definitions and sometimes even new concepts of disease, this observation is rarely used in research that anticipates potential ethical issues in emerging technologies. This article argues that it is useful

  17. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 3.0

    Science.gov (United States)

    Baxley, Brian T.; Johnson, William C.; Scardina, John; Shay, Richard F.

    2016-01-01

    This document describes the goals, benefits, technologies, and procedures of the Concept of Operations (ConOps) for the Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1), and provides an update to the previous versions of the document [ref 1 and ref 2].

  18. Entropy and gravity concepts as new methodological indexes to investigate technological convergence: patent network-based approach.

    Directory of Open Access Journals (Sweden)

    Yongrae Cho

    Full Text Available The volatility and uncertainty in the process of technological developments are growing faster than ever due to rapid technological innovations. Such phenomena result in integration among disparate technology fields. At this point, it is a critical research issue to understand the different roles and the propensity of each element technology for technological convergence. In particular, the network-based approach provides a holistic view in terms of technological linkage structures. Furthermore, the development of new indicators based on network visualization can reveal the dynamic patterns among disparate technologies in the process of technological convergence and provide insights for future technological developments. This research attempts to analyze and discover the patterns of the international patent classification codes of the United States Patent and Trademark Office's patent data in printed electronics, which is a representative technology in the technological convergence process. To this end, we apply the physical idea as a new methodological approach to interpret technological convergence. More specifically, the concepts of entropy and gravity are applied to measure the activities among patent citations and the binding forces among heterogeneous technologies during technological convergence. By applying the entropy and gravity indexes, we could distinguish the characteristic role of each technology in printed electronics. At the technological convergence stage, each technology exhibits idiosyncratic dynamics which tend to decrease technological differences and heterogeneity. Furthermore, through nonlinear regression analysis, we have found the decreasing patterns of disparity over a given total period in the evolution of technological convergence. This research has discovered the specific role of each element technology field and has consequently identified the co-evolutionary patterns of technological convergence. These new findings

  19. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet – results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    L. Gulstad

    2007-05-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but

  20. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  1. Leading edge embedded fan airfoil concept -- A new powered high lift technology

    Science.gov (United States)

    Phan, Nhan Huu

    A new powered-lift airfoil concept called Leading Edge Embedded Fan (LEEF) is proposed for Extremely Short Take-Off and Landing (ESTOL) and Vertical Take-Off and Landing (VTOL) applications. The LEEF airfoil concept is a powered-lift airfoil concept capable of generating thrust and very high lift-coefficient at extreme angles-of attack (AoA). It is designed to activate only at the take-off and landing phases, similar to conventional flaps or slats, allowing the aircraft to operate efficiently at cruise in its conventional configuration. The LEEF concept consists of placing a crossflow fan (CFF) along the leading-edge (LE) of the wing, and the housing is designed to alter the airfoil shape between take-off/landing and cruise configurations with ease. The unique rectangular cross section of the crossflow fan allows for its ease of integration into a conventional subsonic wing. This technology is developed for ESTOL aircraft applications and is most effectively applied to General Aviation (GA) aircraft. Another potential area of application for LEEF is tiltrotor aircraft. Unlike existing powered high-lift systems, the LEEF airfoil uses a local high-pressure air source from cross-flow fans, does not require ducting, and is able to be deployed using distributed electric power systems throughout the wing. In addition to distributed lift augmentation, the LEEF system can provide additional thrust during takeoff and landing operation to supplement the primary cruise propulsion system. Two-dimensional (2D) and three-dimensional (3D) Computational Fluid Dynamics (CFD) simulations of a conventional airfoil/wing using the NACA 63-3-418 section, commonly used in GA, and a LEEF airfoil/wing embedded into the same airfoil section were carried out to evaluate the advantages of and the costs associated with implementing the LEEF concept. Computational results show that significant lift and augmented thrust are available during LEEF operation while requiring only moderate fan power

  2. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  3. Proof of Concept of Automated Collision Detection Technology in Rugby Sevens.

    Science.gov (United States)

    Clarke, Anthea C; Anson, Judith M; Pyne, David B

    2017-04-01

    Clarke, AC, Anson, JM, and Pyne, DB. Proof of concept of automated collision detection technology in rugby sevens. J Strength Cond Res 31(4): 1116-1120, 2017-Developments in microsensor technology allow for automated detection of collisions in various codes of football, removing the need for time-consuming postprocessing of video footage. However, little research is available on the ability of microsensor technology to be used across various sports or genders. Game video footage was matched with microsensor-detected collisions (GPSports) in one men's (n = 12 players) and one women's (n = 12) rugby sevens match. True-positive, false-positive, and false-negative events between video and microsensor-detected collisions were used to calculate recall (ability to detect a collision) and precision (accurately identify a collision). The precision was similar between the men's and women's rugby sevens game (∼0.72; scale 0.00-1.00); however, the recall in the women's game (0.45) was less than that for the men's game (0.69). This resulted in 45% of collisions for men and 62% of collisions for women being incorrectly labeled. Currently, the automated collision detection system in GPSports microtechnology units has only modest utility in rugby sevens, and it seems that a rugby sevens-specific algorithm is needed. Differences in measures between the men's and women's game may be a result of physical size, and strength, and physicality, as well as technical and tactical factors.

  4. Numerical simulation of carbon dioxide removal from natural gas using supersonic nozzles

    Science.gov (United States)

    Sun, Wenjuan; Cao, Xuewen; Yang, Wen; Jin, Xuetang

    2017-03-01

    Supersonic separation is a technology potentially applicable to natural gas decarbonation process. Preliminary research on the performance of supersonic nozzle in the removal of carbon dioxide from natural gas is presented in this study. Computational Fluid Dynamics (CFD) technique is used to simulate the flow behavior inside the supersonic nozzle. The CFD model is validated successfully by comparing its results to the data borrowed from the literature. The results indicate that the liquefaction of carbon dioxide can be achieved in the properly designed nozzle. Shock wave occurs in the divergent section of the nozzle with the increase of the back pressure, destroying the liquefaction process. In the supersonic separator, the shock wave should be kept outside of the nozzle.

  5. Essential Concepts of Nanoscale Science and Technology for High School Students Based on a Delphi Study by the Expert Community

    Science.gov (United States)

    Sakhnini, Sohair; Blonder, Ron

    2015-07-01

    Nanoscale science and technology (NST) is an important new field in modern science. In the current study, we seek to answer the question: 'What are the essential concepts of NST that should be taught in high school'? A 3-round Delphi study methodology was applied based on 2 communities of experts in nanotechnology research and science education. Eight essential concepts in NST were identified. Each concept is accompanied by its explanation, definition, importance and includes subcategories that compose it. Three concepts emerged in the Delphi study, which were not identified before: functionality, classification of nanomaterials, and the making of nanotechnology. Differences between the concepts suggested by the 2 communities of experts were found. The results of this study serve as a tool to examine different nanotechnology programs that were reported thus far and to make recommendations for designing a NST program for high school students that includes the essential concepts.

  6. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  7. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  8. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  9. How Can Technology Transfer Concepts Lead to a Successful ERP Implementation?

    Directory of Open Access Journals (Sweden)

    Javad Soltanzadeh

    2012-12-01

    Full Text Available This study aims to identify Critical Success Factors (CSFs in implementation of Enterprise Resource Planning (ERP systems that are effective on organization success. While scholars have tried to apply concepts such as Change Management (CM, Knowledge Management (KM and Innovation Management (IM to offer solutions to overcome challenges in implementing ERP systems, the Transfer aspect of ERP implementation has been lessdeveloped; transfer from a developer company (vendor to a receiver company. Hence, we have summarized our identified effective measures in ERP implementation and Technology Transfer (TT into a questionnaire that was distributed among managers and experts of four Iranian large companies and their ERP vendors. Results from Exploratory Factor Analysis (EFA shows that following five main factors are effective on ERP implementation success: Culture, Organizational Structure, Project Management, Support Activities and Training Issues and the Interaction between Transferor and Transferee. Furthermore, effect of each main factor on organization success has been calculated by Pearson method.

  10. Sunsynchronous low Earth orbit spacecraft concepts and technology requirements for global change monitoring

    Science.gov (United States)

    Garrett, L. Bernard; Butterfield, Ansel J.; Taback, Israel; Garn, Paul A.; Burrowbridge, Donald R., Jr.

    1991-01-01

    The Global Change Technology Initiative listing of instruments for operation in low Earth, sunsynchronous orbits contain 21 entries, of which 20 are carried aboard multi-instrument spacecraft. This list identifies the temporal requirements for repetition of measurements and also includes groups of instruments that make complementing measurements. Definitions for individual spacecraft follows the temporal and grouping requirements to establish constellations which will provide the measurement data. The definitions of constellations for multi-instrument spacecraft show two alternatives: a constellation of 10 spacecraft, each compatible with launch by a Delta booster; a constellation of 4 spacecraft, each requiring a Titan booster. Operating subsystems for the individual spacecraft can use modular concepts that are adaptations based upon current plans for improving the performance of the NASA-Goddard Multimission Modular units. The descriptions of the spacecraft and constellations begins with a compilation of instrument related requirements that define the principal system performance parameters and operating capabilities.

  11. Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology

    Science.gov (United States)

    Yount, Bryan C.; Arnold, James O.; Gage, Peter J.; Mockelman, Jeffrey; Venkatapathy, Ethiraj

    2012-01-01

    System studies have shown that large deployable aerodynamic decelerators such as the Adaptive Deployable Entry and Placement Technology (ADEPT) concept can revolutionize future robotic and human exploration missions involving atmospheric entry, descent and landing by significantly reducing the maximum heating rate, total heat load, and deceleration loads experienced by the spacecraft during entry [1-3]. ADEPT and the Hypersonic Inflatable Aerodynamic Decelerator (HIAD) [4] share the approach of stowing the entry system in the shroud of the launch vehicle and deploying it to a much larger diameter prior to entry. The ADEPT concept provides a low ballistic coefficient for planetary entry by employing an umbrella-like deployable structure consisting of ribs, struts and a fabric cover that form an aerodynamic decelerator capable of undergoing hypersonic flight. The ADEPT "skin" is a 3-D woven carbon cloth that serves as a thermal protection system (TPS) and as a structural surface that transfers aerodynamic forces to the underlying ribs [5]. This paper focuses on design activities associated with integrating ADEPT components (cloth, ribs, struts and mechanisms) into a system that can function across all configurations and environments of a typical mission concept: stowed during launch, in-space deployment, entry, descent, parachute deployment and separation from the landing payload. The baseline structures and mechanisms were selected via trade studies conducted during the summer and fall of 2012. They are now being incorporated into the design of a ground test article (GTA) that will be fabricated in 2013. It will be used to evaluate retention of the stowed configuration in a launch environment, mechanism operation for release, deployment and locking, and static strength of the deployed decelerator. Of particular interest are the carbon cloth interfaces, underlying hot structure, (Advanced Carbon- Carbon ribs) and other structural components (nose cap, struts, and

  12. An upgraded Monju core concept for demonstration of future FBR technologies

    Energy Technology Data Exchange (ETDEWEB)

    Kinjo, Hidehito; Nishi, Hiroshi [Japan Nuclear Cycle Development Inst., Tsuruga Head Office, Tsuruga, Fukui (Japan); Kageyama, Takeshi [Nuclear Energy System Inc., Tokyo (Japan)

    2002-03-01

    Upgrading of the Monju core is planned for increased fuel burn-up and longer operating cycles. It is also proposed that this upgraded core be utilized as an irradiation test bed to demonstrate the performance of the advanced fuel subassembly concepts proposed by the 'Feasibility Study on Commercialized Fast Reactor Cycle Systems (FS)'. A conceptual design study has been performed at the International Cooperation and Technology Development Center to investigate the feasibility of demonstrating the commercial FBR fuel subassembly concept proposed in the first phase of the above study. The specification of the subassembly with an increased fuel pin diameter irradiated in Monju will have fewer pins than the full-scale commercial subassembly due to the smaller wrapper diameter. The effects of loading different numbers of commercial-type subassemblies in different patterns on the major core characteristics have been evaluated along with the reactivity parameters related to core safety. The results show that in a core loading scheme with up to 30 subassemblies around the core center, the target discharge burn-up of 150 GWd/t could be achieved in 5 years, without causing significant drawbacks on the core neutronics and safety aspects, such as the maximum linear power, burnup reactivity, control-rod worth and Doppler reactivity. Thus the feasibility of demonstrating the performance of the commercial FBR fuel designs of this type in the upgraded core has been confirmed. (author)

  13. Failure analysis concepts for microelectronics technologies and manufacturing of the future

    Science.gov (United States)

    Boit, Christian; Weiland, Rainer; Olbrich, A.; Muehle, U.; Simmnacher, B.

    2001-04-01

    The answer of Failure Analysis (F/A) to the technological innovations in microelectronics in the past was: with a slight evolution (i.e. optical microscope -- SEM -- TEM) we can do it. The innovations around the corner today enforce a paradigm shift in F/A to match the challenges by increasing wafer sizes, decreasing feature sizes and new package concepts. This presentation highlights various aspects of the small feature size time bomb (how TEM becomes mandatory and obsolete synchronously), the completely new inline F/A approach on productive wafers inevitable from 300 nm wafer size on, and the reinvention of electrical fail site localization techniques, now from the backside of the die due to new package concepts and innumerable metal layers. Even if F/A manages to overcome all these challenges from a technical point of view, the according revolution in terms of methods, skills and tools implies a cost explosion unless F/A becomes an active part in the business process and the projects of development and manufacturing. This holds even under the assumption that a rising number of today's F/A problems will be solved by modern testing techniques. Only this way F/A can deliver custom-tailored solutions that are optimized in productivity and time to result, and that fulfill the cost reduction requirements of semiconductor products.

  14. Metallic Thermal Protection System Technology Development: Concepts, Requirements and Assessment Overview

    Science.gov (United States)

    Dorsey, John T.; Poteet, Carl C.; Chen, Roger R.; Wurster, Kathryn E.

    2002-01-01

    A technology development program was conducted to evolve an earlier metallic thermal protection system (TPS) panel design, with the goals of: improving operations features, increasing adaptability (ease of attaching to a variety of tank shapes and structural concepts), and reducing weight. The resulting Adaptable Robust Metallic Operable Reusable (ARMOR) TPS system incorporates a high degree of design flexibility (allowing weight and operability to be traded and balanced) and can also be easily integrated with a large variety of tank shapes, airframe structural arrangements and airframe structure/material concepts. An initial attempt has been made to establish a set of performance based TPS design requirements. A set of general (FARtype) requirements have been proposed, focusing on defining categories that must be included for a comprehensive design. Load cases required for TPS design must reflect the full flight envelope, including a comprehensive set of limit loads, However, including additional loads. such as ascent abort trajectories, as ultimate load cases, and on-orbit debris/micro-meteoroid hypervelocity impact, as one of the discrete -source -damage load cases, will have a significant impact on system design and resulting performance, reliability and operability. Although these load cases have not been established, they are of paramount importance for reusable vehicles, and until properly included, all sizing results and assessments of reliability and operability must be considered optimistic at a minimum.

  15. The Concept of Appropriation as a Heuristic for Conceptualising the Relationship between Technology, People and Organisations

    CERN Document Server

    Baillette, Pamela

    2008-01-01

    The stated aim of this conference is to debate the continuing evolution of IS in businesses and other organisations. This paper seeks to contribute to this debate by exploring the concept of appropriation from a number of different epistemological, cultural and linguistic viewpoints to allow us to explore 'the black box' of appropriation and to gain a fuller understanding of the term. At the conceptual level, it will examine some of the different ways in which people have attempted to explain the relationship between the objective and concrete features of technology and the subjective and shifting nature of the people and organisation within which that technology is deployed. At the cultural and linguistic level the paper will examine the notion as it is found in the Francophone literature, where the term has a long and rich history, and the Anglophone literature where appropriation is seen as a rather more specialist term. The paper will conclude with some observations on the ongoing nature of the debate, th...

  16. Challenges and trends in manufacturing measurement technology – the “Industrie 4.0” concept

    OpenAIRE

    Imkamp, Dietrich; Berthold, Jürgen; Heizmann, Michael; Kniel, Karin; Manske, Eberhard; Peterek, Martin; Schmitt, Robert; Seidler, Jochen; Sommer, Klaus-Dieter

    2016-01-01

    Strategic considerations and publications dealing with the future of industrial production are significantly influenced these days by the concept of “Industrie 4.0”. For this reason the field of measurement technology for industrial production must also tackle this concept when thinking about future trends and challenges in metrology. To this end, the Manufacturing Metrology Roadmap 2020 of the VDI/VDE Society for Measurement and Automatic Control (GMA) was published in 2011 (VDI/VDE-GMA, 201...

  17. Challenges and trends in manufacturing measurement technology – the “Industrie 4.0” concept

    OpenAIRE

    Imkamp, D.; Berthold, J.; Heizmann, M.; K. Kniel; Manske, E.; Peterek, M.; Schmitt, R.; Seidler, J; K.-D. Sommer

    2016-01-01

    Strategic considerations and publications dealing with the future of industrial production are significantly influenced these days by the concept of “Industrie 4.0”. For this reason the field of measurement technology for industrial production must also tackle this concept when thinking about future trends and challenges in metrology. To this end, the Manufacturing Metrology Roadmap 2020 of the VDI/VDE Society for Measurement and Automatic Control (GMA) was published in 2011...

  18. Systematically reviewing the potential of concept mapping technologies to promote self-regulated learning in primary and secondary science education

    DEFF Research Database (Denmark)

    Stevenson, Matthew Peter; Hartmeyer, Rikke; Bentsen, Peter

    2017-01-01

    analysis assessing how each technology affects self-regulated learning through cognitive, metacognitive, and motivation strategies, according to Schraw et al. (2006)'s model. We suggest concept mapping technologies may affect self-regulated learning through enhancing these strategies to varying degrees....... Computer software was particularly useful for developing cognitive strategies through ease of use. Teaching agents were particularly useful for developing metacognitive strategies by coupling visualisation of knowledge patterns with performance monitoring, aided by a teaching metaphor. Finally, mobile......We systematically searched five databases to assess the potential of concept mapping-based technologies to promote self-regulated learning in science education. Our search uncovered 17 relevant studies that investigated seven different types of learning technologies. We performed a narrative...

  19. Feasibility and usability of a home monitoring concept based on mobile phones and near field communication (NFC) technology.

    Science.gov (United States)

    Morak, Jürgen; Kollmann, Alexander; Schreier, Günter

    2007-01-01

    Utilization of mobile information and communication technologies in home monitoring applications is becoming more and more common. The mobile phone, acting as a patient terminal for patients suffering from chronic diseases, provides an active link to the caregiver to transmit health status information and receive feedback. In such a concept the usability is still limited by the necessity of entering the values via the mobile phone's small keypad. The near field communication technology (NFC), a touch-based wireless interface that became available recently, may improve the usability level of such applications significantly. The focus of this paper is to describe the development of a prototype application based on this technology embedded in a home monitoring system. The feasibility and usability of this approach are evaluated and compared with concepts used in previous approaches. The high quantifier with respect to overall usability indicates that NFC may be the technology of choice for some tasks in home monitoring applications.

  20. Testing of the small sample (new concept) calorimeter received from EG&G Mound Applied Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cech, R.; Craft, M.; Fultz, R. [and others

    1998-12-31

    The Small Sample calorimeter, also known as the New Concepts calorimeter, has undergone testing in the transfer of the calorimeter operations to Los Alamos National Laboratory from EG&G Mound Applied Technology (Mound), Miamisburg, Ohio, in September 1996. The design of the calorimeter incorporated several new concepts, thus the name New Concepts. The normal water bath was replaced with a small self-contained bath and control that used a thermal electric cooling/heating device to supply the control for the bath temperature. This change replaces the large refrigeration unit that has been used in the past, thus reducing the weight and the power required to operate the system. The design was done to allow the complete calorimeter system to be contained in a single electronics rack. With the new electronics package, this change would allow the unit to use a short electronics rack with a laptop computer and make the complete system transportable. By reducing the amount of water in the bath, the control and size of the bath could also be reduced. By making the bath self-contained and sealed, there would be no need to replace water or supply de-ionized water for the system. This change would remove some of the concerns about using a water bath in certain situations. The water would be about 5 gal. or less depending on the size of the calorimeter. The present system is a 5 in. diameter sample chamber system which can accept most older material now in storage. It will not handle the new 3013 size container as built but could be easily designed for that size. There is also a new sensor design that takes less wire and can eliminate the constant current source used in past Mound calorimeter designs. With the new digital voltmeters, the complete system could be run from a single meter with the ability to monitor bath and room as well as the calorimeter operating voltages for electrical heater runs. A few problems, though minor, need to be corrected to make the system available.

  1. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  2. Incorporating Sustainability and Green Design Concepts into Engineering and Technology Curricula

    Directory of Open Access Journals (Sweden)

    Radian G. Belu

    2016-05-01

    Full Text Available Human society is facing an uncertain future due to the present day unsustainable use of natural resources and the growing imbalance with our natural environment. Sustainability is an endeavour with uncertain outcomes requiring collaboration, teamwork, and abilities to work with respect and learn from other disciplines and professions, as well as with governments, local communities, political and civic organizations. The creation of a sustainable society is a complex and multi-stage endeavour that will dominate twenty first century.  Sustainability has four basic aspects: environment, technology, economy, and societal organization. Schools with undergraduate engineering or engineering technology programs are working to include sustainability and green design concepts into their curricula. Teaching sustainability and green design has increasingly become an essential feature of the present day engineering education. It applies to all of engineering, as all engineered systems interact with the environment in complex and important ways. Our project main goals are to provide the students with multiple and comprehensive exposures, to what it mean to have a sustainable mindset and to facilitate the development of the passion and the skills to integrate sustainable practices into engineering tools and methods. In this study we are describing our approaches to incorporating sustainability and green design into our undergraduate curricula and to list a variety of existing resources that can easily be adopted or adapted by our faculty for this purpose. Our approaches are: (1 redesigning existing courses through development of new curricular materials that still meet the objectives of the original course and (2 developing upper division elective courses that address specific topics related to sustainability, green design, green manufacturing and life-cycle assessment. 

  3. Self-Concept, Computer Anxiety, Gender and Attitude towards Interactive Computer Technologies: A Predictive Study among Nigerian Teachers

    Science.gov (United States)

    Agbatogun, Alaba Olaoluwakotansibe

    2010-01-01

    Interactive Computer Technologies (ICTs) have crept into education industry, thus dramatically causing transformation in instructional process. This study examined the relative and combined contributions of computer anxiety, self-concept and gender to teachers' attitude towards the use of ICT(s). 454 Nigerian teachers constituted the sample. Three…

  4. European Lifelong Guidance Policy Network Representatives' Conceptions of the Role of Information and Communication Technologies Related to National Guidance Policies

    Science.gov (United States)

    Kettunen, Jaana; Vuorinen, Raimo; Ruusuvirta, Outi

    2016-01-01

    This article reports findings from a phenomenographic investigation into European Lifelong Guidance Policy Network representatives' conceptions of the role of information and communication technologies (ICT) related to national lifelong guidance policies. The role of ICT in relation to national lifelong guidance policies was conceived as (1)…

  5. Mentoring Entrepreneurial Networks: mapping conceptions of participants in technological-based business incubators in Brazil.

    Directory of Open Access Journals (Sweden)

    Pontes Regis, Helder

    2007-12-01

    Full Text Available The recent entrepreneurship research agenda includes the analysis of cognitive structures of successful entrepreneurs, revealing an important tool for the examination of an entrepreneurial career. Using techniques of cognitive maps, this study explores the concepts of a successful career and the network itself, as a whole, for career development. Fifty-three entrepreneurs were studied, in seven technological incubators in the city of Recife, Pernambuco, Brazil. Specifically, this study aimed to map the shared meanings of the incubated entrepreneurs regarding informal support networks. Such networks support the entrepreneurial career and the present study explores the characteristics and the conceptual model that underlies the networks. The data collection was achieved through interviews through a free evocation technique. The shared meanings indicate the existence of inherent thought categories that support network context in the incubator environment, mainly the mentoring networks. The results endorse the interpretation of an informal mentoring model emerging from the dominant evocations concerning a successful career and of the network itself as promoter of career development.

  6. Conceptions of the Nature of Science and Technology: a Study with Children and Youths in a Non-Formal Science and Technology Education Setting

    Science.gov (United States)

    Rocha Fernandes, Geraldo W.; Rodrigues, António M.; Ferreira, Carlos Alberto

    2017-05-01

    This study investigated some of the aspects that characterise the understanding of the Nature of Science (NOS) and Nature of Technology (NOT) of 20 children and youths from different countries who perform scientific and technological activities in a non-formal teaching and learning setting. Data were collected using a questionnaire and semistructured interviews. A categorical instrument was developed to analyse the participants' conceptions of the following subjects: (1) the role of the scientist, (2) NOS and (3) NOT. The results suggest that the participants had naïve conceptions of NOS that are marked by empirical and technical-instrumental views. They characterised NOT primarily as an instrumental apparatus, an application of knowledge and something important that is part of their lives. They exhibited a stereotypical understanding of the role of the scientist (development of methods, demonstration of facts, relationship with technological devices, etc.).

  7. Development of air to air ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2014-03-01

    Full Text Available The contribution deals with the development of design of new conception of ejector with twelve primary annular nozzles arranged around the inlet part of the mixing chamber. The ejector is proposed to be used for propulsion of supersonic experimental wind tunnel with variable test section, which is now in development. The ejector is considered to be placed on outlet of this wind tunnel. The original design of the ejector has been modified to ensure its manufacturability. Software Ansys Fluent 14.0 was used for numerical verification of earlier work. The new design and dissimilarities of numerical results are presented in this work.

  8. Manufacturing of A micro probe using supersonic aided electrolysis process

    CERN Document Server

    Shyu, R F; Ho, Chi-Ting

    2008-01-01

    In this paper, a practical micromachining technology was applied for the fabrication of a micro probe using a complex nontraditional machining process. A series process was combined to machine tungsten carbide rods from original dimension. The original dimension of tungsten carbide rods was 3mm ; the rods were ground to a fixed-dimension of 50 micrometers using precision grinding machine in first step. And then, the rod could be machined to a middle-dimension of 20 micrometers by electrolysis. A final desired micro dimension can be achieved using supersonic aided electrolysis. High-aspect-ratio of micro tungsten carbide rod was easily obtained by this process. Surface roughness of the sample with supersonic aided agitation was compared with that with no agitation in electrolysis. The machined surface of the sample is very smooth due to ionized particles of anode could be removed by supersonic aided agitation during electrolysis. Deep micro holes can also be achieved by the machined high-aspect-rati tungsten c...

  9. Technology Alignment and Portfolio Prioritization (TAPP): Advanced Methods in Strategic Analysis, Technology Forecasting and Long Term Planning for Human Exploration and Operations, Advanced Exploration Systems and Advanced Concepts

    Science.gov (United States)

    Funaro, Gregory V.; Alexander, Reginald A.

    2015-01-01

    The Advanced Concepts Office (ACO) at NASA, Marshall Space Flight Center is expanding its current technology assessment methodologies. ACO is developing a framework called TAPP that uses a variety of methods, such as association mining and rule learning from data mining, structure development using a Technological Innovation System (TIS), and social network modeling to measure structural relationships. The role of ACO is to 1) produce a broad spectrum of ideas and alternatives for a variety of NASA's missions, 2) determine mission architecture feasibility and appropriateness to NASA's strategic plans, and 3) define a project in enough detail to establish an initial baseline capable of meeting mission objectives ACO's role supports the decision­-making process associated with the maturation of concepts for traveling through, living in, and understanding space. ACO performs concept studies and technology assessments to determine the degree of alignment between mission objectives and new technologies. The first step in technology assessment is to identify the current technology maturity in terms of a technology readiness level (TRL). The second step is to determine the difficulty associated with advancing a technology from one state to the next state. NASA has used TRLs since 1970 and ACO formalized them in 1995. The DoD, ESA, Oil & Gas, and DoE have adopted TRLs as a means to assess technology maturity. However, "with the emergence of more complex systems and system of systems, it has been increasingly recognized that TRL assessments have limitations, especially when considering [the] integration of complex systems." When performing the second step in a technology assessment, NASA requires that an Advancement Degree of Difficulty (AD2) method be utilized. NASA has used and developed or used a variety of methods to perform this step: Expert Opinion or Delphi Approach, Value Engineering or Value Stream, Analytical Hierarchy Process (AHP), Technique for the Order of

  10. Summary of innovative concepts for industrial process improvement: An experimental technology exchange

    Energy Technology Data Exchange (ETDEWEB)

    Conger, R.L. [Pacific Northwest Lab., Richland, WA (United States); Lee, V.E.; Buel, L.M. [eds.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-08-01

    This document is a compilation of one-page technical briefs that summarize the highlights of thirty-eight innovations that were presented at the seventh Innovative Concepts Fair, held in Denver, Colorado on April 20--21, 1995. Sixteen of the innovations were funded through the Innovative Concepts Program, and twenty-two innovations represent other state or federally funded programs. The concepts in this year`s fair addressed innovations that can substantially improve industrial processes. Each tech brief describes the need for the proposed concept; the concept being proposed; and the concept`s economics and market potential, key experimental results, and future development needs. A contact block is also included with each flier.

  11. 超-超引射器多目标优化设计%Multi-objective optimization of supersonic-supersonic ejector

    Institute of Scientific and Technical Information of China (English)

    陈钦; 陈吉明; 蔡光明; 任泽斌

    2012-01-01

    推导出了超-超引射器性能计算和优化设计模型,借助Pareto优胜、Pareto最优解和Pareto前端等概念,采用基于多目标进化/分解算法(MOEA/D)的多目标优化方法,计算得到超-超引射器多目标优化问题的Pareto前端,解决了超-超引射器多目标优化设计问题,并与常规参数分析方法进行了比较.结果表明:超超引射器性能影响参数相互关系复杂,增压比和引射系数作为引射器主要性能参数相互冲突,通过常规分析难以得到较清晰的设计准则,利用多目标优化设计方法可有效地辅助多属性决策和系统优化设计.%For supersonic-supersonic ejector, the design model and corresponding analysis were presented, and the relation of design parameters and the performance was partly revealed. The results revealed the confliction of two performance objectives and the complexity of the design problem. To clarify the entangled relation of design parameters and objectives and to afford facilities for the design process, the Pareto front(PF) concept was introduced and an MOEA/D algorithm was programmed to calculate the PFs of specific supersonic-supersonic ejector multi-objective optimization problems. The methodology adopted here proved to be effective and efficient for the supersonic-supersonic ejector design problem.

  12. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  13. Photovoltaic technology for sustainability: An investigation of the distributed utility concept as a policy framework

    Science.gov (United States)

    Letendre, Steven Emery

    The U.S. electric utility sector in its current configuration is unsustainable. The majority of electricity in the United States is produced using finite fossil fuels. In addition, significant potential exists to improve the nation's efficient use of energy. A sustainable electric utility sector will be characterized by increased use of renewable energy sources and high levels of end-use efficiency. This dissertation analyzes two alternative policy approaches designed to move the U.S. electric utility sector toward sustainability. One approach is labeled incremental which involves maintaining the centralized structure of the electric utility sector but facilitating the introduction of renewable energy and efficiency into the electrical system through the pricing mechanism. A second policy approach was described in which structural changes are encouraged based on the emerging distributed utility (DU) concept. A structural policy orientation attempts to capture the unique localized benefits that distributed renewable resources and energy efficiency offer to electric utility companies and their customers. A market penetration analysis of PV in centralized energy supply and distributed peak-shaving applications is conducted for a case-study electric utility company. Sensitivity analysis was performed based on incremental and structural policy orientations. The analysis provides compelling evidence which suggests that policies designed to bring about structural change in the electric utility sector are needed to move the industry toward sustainability. Specifically, the analysis demonstrates that PV technology, a key renewable energy option likely to play an important role in a renewable energy future, will begin to penetrate the electrical system in distributed peak-shaving applications long before the technology is introduced as a centralized energy supply option. Most policies to date, which I term incremental, attempt to encourage energy efficiency and renewables

  14. The level of correlation of concepts that primary students seen topics in science and technology class with daily life

    Directory of Open Access Journals (Sweden)

    Adem Taşdemir

    2010-01-01

    Full Text Available At what level knowledge addresses a person’s demand, learning is expected to become at that high level. At that sense, a person will be more interested to learning in which level s/he correlates school topics with daily life. This study was made in order to determine at what level 6. and 7. th grade students use the concepts seen in science and technology class. In this research, it was taken advantage of individual survey model from the general survey model and the universe was made of 6. and 7.th grade secondary school students in central Kırşehir. The sample group was selected from 6. and 7.th grade students by using  “easily reachable state sample”. In order to collect data fort his research, “questionnaire form”, developed by researchers, was used and its validity studies were made by researchers. The concepts which 6. and 7.th grade primary school students have seen in science and technology class’ topics were defined and students were wanted to sample these concepts with daily life. By using SPSS 13.0 programme on computer to analyze research data; t-test analysis, percentage (%, frequencies (f, mean (X and Standard deviation (ss values were evaluated. From the research findings, while the unit students have most difficulty and misconceptions was the concepts of the unit related to matter, it was seen that they have the most correct answers at the concepts of light and sound unit. Also, according to students’ demographic properties, a meaningful relation was not seen between concepts students seen at science and technology class with their sampling of daily life situations.

  15. Measuring real-time streamflow using emerging technologies: Radar, hydroacoustics, and the probability concept

    Science.gov (United States)

    Fulton, J.; Ostrowski, J.

    2008-01-01

    Forecasting streamflow during extreme hydrologic events such as floods can be problematic. This is particularly true when flow is unsteady, and river forecasts rely on models that require uniform-flow rating curves to route water from one forecast point to another. As a result, alternative methods for measuring streamflow are needed to properly route flood waves and account for inertial and pressure forces in natural channels dominated by nonuniform-flow conditions such as mild water surface slopes, backwater, tributary inflows, and reservoir operations. The objective of the demonstration was to use emerging technologies to measure instantaneous streamflow in open channels at two existing US Geological Survey streamflow-gaging stations in Pennsylvania. Surface-water and instream-point velocities were measured using hand-held radar and hydroacoustics. Streamflow was computed using the probability concept, which requires velocity data from a single vertical containing the maximum instream velocity. The percent difference in streamflow at the Susquehanna River at Bloomsburg, PA ranged from 0% to 8% with an average difference of 4% and standard deviation of 8.81 m3/s. The percent difference in streamflow at Chartiers Creek at Carnegie, PA ranged from 0% to 11% with an average difference of 5% and standard deviation of 0.28 m3/s. New generation equipment is being tested and developed to advance the use of radar-derived surface-water velocity and instantaneous streamflow to facilitate the collection and transmission of real-time streamflow that can be used to parameterize hydraulic routing models.

  16. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  17. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  18. ANALYSIS AND CONCEPTION DEVELOPMENT OF INFORMATION DEFENSE CID AND CLOUD PLATFORM ON THE BASE OF INTELLIGENCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. A. Vishniakov

    2014-01-01

    Full Text Available Two problems the use of intelligence technologies in information defense (ITID – creating specialized knowledge bases with threats simulation and high the security level in corporative nets and cloud computing are presented. The analysis of t wo directions of the second ITID problem: the intelligence decision support systems and the malt y-agent system use are given. As trends and conception development of intelligence technologies are the perfection of methods. models, architectures, and hard-sot ware tools for ITID in corporative systems and cloud computing.

  19. Concept and Prospect of Augmented Reality Technology%增强现实技术概念及分析

    Institute of Scientific and Technical Information of China (English)

    郭栋

    2014-01-01

    介绍增强现实( AR)技术的概念和产生背景,分析增强现实系统的主要技术特点和其在国内外的部分应用现状,并对增强现实技术的发展进行展望。%This paper introduces the concept, background of augmented reality ( AR ) technology, analyses its main technical characteristics and application at home and abroad. The development of augmented reality technology is also mentioned.

  20. Advanced Melting Technologies: Energy Saving Concepts and Opportunities for the Metal Casting Industry

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2005-11-01

    The study examines current and emerging melting technologies and discusses their technical barriers to scale-up issues and research needed to advance these technologies, improving melting efficiency, lowering metal transfer heat loss, and reducing scrap.

  1. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  2. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  3. Intelligent Surfaces in Biotechnology Scientific and Engineering Concepts, Enabling Technologies, and Translation to Bio-Oriented Applications

    CERN Document Server

    Grandin, H Michelle; Whitesides, George M

    2012-01-01

    A comprehensive overview of smart and responsive surfaces in biotechnology and their applications A wave of recent advances in cell biology, biophysics, chemistry, and materials science has enabled the development of a new generation of smart biomaterials. Intelligent Surfaces in Biotechnology: Scientific and Engineering Concepts, Enabling Technologies, and Translation to Bio-Oriented Applications provides readers with a comprehensive overview of surface modifications and their applications, including coverage of the physico-chemical properties, characterization methods, smart coating techno

  4. Conception d'un outil d'aide a la decision de technologies de fabrication additive en milieu aeronautique

    Science.gov (United States)

    Buvat, Gael

    La fabrication additive offre une opportunite d'amelioration des methodes de productions de pieces. Cependant, les technologies de fabrication additive sont diverses, les fournisseurs de services sont multiples et peu de personnel est forme pour operer sur ces technologies. L'objectif de cette etude est d'emettre une suggestion de concepts d'outils d'aide a la decision de technologies, de materiaux et de post-traitements de fabrication additive en milieu aeronautique. Trois sous-objectifs sont employes. Premierement, la definition des criteres de decision de technologies, de materiaux et de post-traitements de fabrication additive. Ensuite, l'elaboration d'un cahier des charges de l'outil d'aide a la decision en accord avec les besoins industriels du secteur aeronautique. Et enfin, la suggestion de trois concepts d'outils d'aide a la decision et leur evaluation par comparaison au cahier des charges etabli. Les criteres captures aupres de 11 industriels concernent des criteres de couts, de qualite, de conception et de delai d'obtention. Ensuite, nous avons elabore un cahier des charges permettant de reunir les besoins des industriels du secteur aeronautique selon trois axes qui constituent la colonne vertebrale des outils d'aide a la decision : une suggestion d'interface utilisateur, une suggestion de bases de donnees et un moteur de selection des technologies, des materiaux et des post-traitements de fabrication additive. La convivialite de l'interface utilisateur, l'evaluation de la qualite souhaitee par l'utilisateur et la prise en compte des etudes de cas realisees par le moteur de selection sont exemples de besoins que nous avons identifie au sein de cette etude. Nous avons ensuite transcrit ces besoins en specifications techniques pour permettre une evaluation du niveau de satisfaction des industriels au travers d'un pointage des trois concepts suggeres. Ces trois concepts d'outils d'aide a la decision ont ete realises respectivement grâce a Microsoft Excel

  5. RNA interference technology to control pest sea lampreys--a proof-of-concept.

    Directory of Open Access Journals (Sweden)

    George Heath

    Full Text Available The parasitic sea lamprey (Petromyzon marinus has caused extensive losses to commercial fish stocks of the upper Great Lakes of North America. Methods of controlling the sea lamprey include trapping, barriers to prevent migration, and use of a chemical lampricide (3-trifluoromethyl-4-nitrophenol to kill the filter-feeding larvae. Concerns about the non-specificity of these methods have prompted continued development of species-specific methods to control lampreys outside their native range. In this study, we considered the utility of RNA interference to develop a sea lamprey-specific lampricide. Injection of six different short interfering, double-stranded RNAs (siRNAs into lamprey embryos first confirmed that the siRNAs could reduce the targeted transcript levels by more than 50%. Two size classes of lamprey larvae were then fed the siRNAs complexed with liposomes, and three of the siRNAs (targeting elongation factor 1α, calmodulin, and α-actinin reduced transcript levels 2.5, 3.6, and 5.0-fold, respectively, within the lamprey midsections. This is not only the first demonstration of RNAi in lampreys, but it is also the first example of delivery of siRNAs to a non-mammalian vertebrate through feeding formulations. One of the siRNA treatments also caused increased mortality of the larvae following a single feeding of siRNAs, which suggests that prolonged or multiple feedings of siRNAs could be used to kill filter-feeding larvae within streams, following development of a slow-release formulation. The genes targeted in this study are highly conserved across many species, and only serve as a proof-of-concept demonstration that siRNAs can be used in lampreys. Given that RNA interference is a sequence-specific phenomenon, it should be possible to design siRNAs that selectively target gene sequences that are unique to sea lampreys, and thus develop a technology to control these pests without adversely affecting non-target species.

  6. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  7. Risks of nuclear energy technology safety concepts of light water reactors

    CERN Document Server

    Kessler, Günter; Schlüter, Franz-Hermann

    2014-01-01

    The book analyses the risks of nuclear power stations. The security concept of reactors is explained. Measures against the spread of radioactivity after a severe accident, accidents of core melting and a possible crash of an air plane on?reactor containment are discussed. The book covers three scientific subjects of the safety concepts of Light Water Reactors: ? A first part describes the basic safety design concepts of operating German Pressurized Water Reactors and Boiling Water Reactors including accident management measures introduced after the reactor accidents of Three Mile Island and Ch

  8. Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars

    Science.gov (United States)

    Fagin, Maxwell H.

    Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.

  9. Initial technology assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) mission concept study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-07-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  10. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  11. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    Science.gov (United States)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  12. Computer-Based Concept Mapping: Enhancing Literacy with Tools for Visual Thinking (Technology Tidbits).

    Science.gov (United States)

    Anderson-Inman, Lynne; Horney, Mark

    1997-01-01

    Shares details about two prewriting strategies (brainstorming and synthesizing information), and discusses some practical issues related to the use of computer-based concept mapping in the classroom. (SR)

  13. Accelerating the commercialization of university technologies for military healthcare applications: the role of the proof of concept process

    Science.gov (United States)

    Ochoa, Rosibel; DeLong, Hal; Kenyon, Jessica; Wilson, Eli

    2011-06-01

    The von Liebig Center for Entrepreneurism and Technology Advancement at UC San Diego (vonliebig.ucsd.edu) is focused on accelerating technology transfer and commercialization through programs and education on entrepreneurism. Technology Acceleration Projects (TAPs) that offer pre-venture grants and extensive mentoring on technology commercialization are a key component of its model which has been developed over the past ten years with the support of a grant from the von Liebig Foundation. In 2010, the von Liebig Entrepreneurism Center partnered with the U.S. Army Telemedicine and Advanced Technology Research Center (TATRC), to develop a regional model of Technology Acceleration Program initially focused on military research to be deployed across the nation to increase awareness of military medical needs and to accelerate the commercialization of novel technologies to treat the patient. Participants to these challenges are multi-disciplinary teams of graduate students and faculty in engineering, medicine and business representing universities and research institutes in a region, selected via a competitive process, who receive commercialization assistance and funding grants to support translation of their research discoveries into products or services. To validate this model, a pilot program focused on commercialization of wireless healthcare technologies targeting campuses in Southern California has been conducted with the additional support of Qualcomm, Inc. Three projects representing three different universities in Southern California were selected out of forty five applications from ten different universities and research institutes. Over the next twelve months, these teams will conduct proof of concept studies, technology development and preliminary market research to determine the commercial feasibility of their technologies. This first regional program will help build the needed tools and processes to adapt and replicate this model across other regions in the

  14. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at

  15. ICT diffusion in developing countries towards a new concept of technological takeoff

    CERN Document Server

    Lechman, Ewa

    2015-01-01

    This book provides an extensive overview of the diffusion of Information and Communication Technologies (ICTs) in developing countries between 2000 and 2012. It covers issues such as country-specific ICT diffusion patterns, technological substitution and technological convergence. By identifying social, economic and institutional prerequisites and analyzing critical country-specific conditions, the author develops a new approach to explaining the emergence of their technological takeoff. Readers will discover how developing countries are now adopting ICTs, rapidly catching up with the developed world in terms of ICT access and use.

  16. On highly focused supersonic microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.

  17. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  18. An Inquiry into Educational Technologists' Conceptions of Their Philosophies of Teaching and Technology

    Science.gov (United States)

    Kanuka, Heather; Smith, Erika E.; Kelland, Jennifer H.

    2013-01-01

    It has been suggested that when we know our philosophy of teaching and technology we then have the ability to articulate not only what we are doing as educational technologists, but what we want to achieve with the technologies, and why. And while most educational technologists would agree that knowing our philosophical orientations is important,…

  19. New and innovative exhibition concepts at science centres using communication technologies

    DEFF Research Database (Denmark)

    Quistgaard, Nana; Kahr-Højland, Anne

    2010-01-01

    direction, e.g., regarding the emphasised importance of facilitating scientific literacy and critical reflection. We argue that new communication technologies hold potential to accommodate new trends and that science centres have shown to be enterprising in their use of such technologies, e.g., mobile...

  20. U.S. EPA Environmental Technology Verification Program, the Founder of the ETV Concept

    Science.gov (United States)

    The U.S. EPA Environmental Technology Verification (ETV) Program develops test protocols and verifies the performance of innovative technologies that have the potential to improve protection of human health and the environment. The program was created in 1995 to help accelerate t...

  1. Testing the effects of educational strategies on comprehension of a genomic concept using virtual reality technology.

    Science.gov (United States)

    Kaphingst, Kimberly A; Persky, Susan; McCall, Cade; Lachance, Christina; Loewenstein, Johanna; Beall, Andrew C; Blascovich, Jim

    2009-11-01

    Applying genetic susceptibility information to improve health will likely require educating patients about abstract concepts, for which there is little existing research. This experimental study examined the effect of learning mode on comprehension of a genomic concept. 156 individuals aged 18-40 without specialized knowledge were randomly assigned to either a virtual reality active learning or didactic learning condition. The outcome was comprehension (recall, transfer, mental models). Change in recall was greater for didactic learning than for active learning (pconcepts. Didactic, interpersonal health education approaches may be more effective than interactive games in educating patients about abstract, unfamiliar concepts. These findings indicate the importance of traditional health education approaches in emerging areas like genomics.

  2. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... challenges in the future. At the same time their policies on renewable energy, tools and action plans supporting renewables are weak. Thus, to support a local dissemination of renewable energy we suggest applying the sustainable energy planning concept to speed up the utilization of renewables in developing...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  3. Designing an energy planning concept for enhancing the dissemination of renewable energy technologies in developing countries

    DEFF Research Database (Denmark)

    Lybæk, Rikke; Andersen, Jan; Lund, Søren;

    2014-01-01

    This paper stresses the need for adapting a sustainable energy planning concept, which can support the implementation of renewable energy in developing countries; exemplified by a Vietnamese case. Many developing countries heavily rely on fossil fuel resources and will face energy supply security...... challenges in the future. At the same time their policies on renewable energy, tools and action plans supporting renewables are weak. Thus, to support a local dissemination of renewable energy we suggest applying the sustainable energy planning concept to speed up the utilization of renewables in developing...... countries, while relevant policies, tools and plans etc. simultaneously are being deployed, enhancing the framework conditions for renewable energy implementation...

  4. Developing Physics Concepts through Hands-On Problem Solving: A Perspective on a Technological Project Design

    Science.gov (United States)

    Hong, Jon-Chao; Chen, Mei-Yung; Wong, Ashley; Hsu, Tsui-Fang; Peng, Chih-Chi

    2012-01-01

    In a contest featuring hands-on projects, college students were required to design a simple crawling worm using planning, self-monitoring and self-evaluation processes to solve contradictive problems. To enhance the efficiency of problem solving, one needs to practice meta-cognition based on an application of related scientific concepts. The…

  5. Teaching the "Diagonalization Concept" in Linear Algebra with Technology: A Case Study at Galatasaray University

    Science.gov (United States)

    Yildiz Ulus, Aysegul

    2013-01-01

    This paper examines experimental and algorithmic contributions of advanced calculators (graphing and computer algebra system, CAS) in teaching the concept of "diagonalization," one of the key topics in Linear Algebra courses taught at the undergraduate level. Specifically, the proposed hypothesis of this study is to assess the effective…

  6. Density and Flow-Velocity Measurement Technology for Dredging Applications - Proof of Concept Study

    Energy Technology Data Exchange (ETDEWEB)

    Greenwood, Margaret S.; Tucker, Brian J.; Diaz, Aaron A.

    2004-10-01

    This technical letter report provides the results of all PNNL managed activities on this project, and contains a description of the data acquisition configuration and testing protocols, results and conclusions from this work. This technical letter report constitutes the final deliverable to be submitted to the client for this proof-of-concept study.

  7. Implementation of the concept of home hospitalisation for heart patients by means of telehomecare technology: integration of clinical tasks

    Directory of Open Access Journals (Sweden)

    Birthe Dinesen

    2007-05-01

    Full Text Available Purpose: To explore how the implementation of the concept ‘Home hospitalisation of heart patients’ by means of telehomecare technology influences the integration of clinical tasks across healthcare sectors. Theory: Inter-organisational theory. Methods: The case study approach was applied. Triangulations of data collection techniques were used: documentary materials, participant observation, qualitative and focus group interviews. Results: The clinical decision-making and task solving became multidisciplinary and integrated with the implementation of telehomecare and, therefore, complex in terms of the prescription and adjustment of patient medicine. Workflows between healthcare professionals across sectors changed from sequential to collective client flows. Pre-existing procedures for patient care, treatment, and responsibility were challenged. In addition, the number of tasks for the district nurses increased. Integration in the clinical task-solving area increases fragmentation in the knowledge technologies in a network perspective. Conclusions: Implementing the concept of ‘Home hospitalisation of heart patients’ by means of telehomecare technology will result in a more integrated clinical task-solving process that involves healthcare professionals from various sectors. Overall, the integration of clinical tasks between hospital and district nursing will result in a direct benefit for the heart patients.

  8. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps), Version 2.0

    Science.gov (United States)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry N.; Robinson, John E.; Prevot, Tom; Callantine, Todd J.; Scardina, John; Greene, Michael

    2013-01-01

    This document is an update to the operations and procedures envisioned for NASA s Air Traffic Management (ATM) Technology Demonstration #1 (ATD-1). The ATD-1 Concept of Operations (ConOps) integrates three NASA technologies to achieve high throughput, fuel-efficient arrival operations into busy terminal airspace. They are Traffic Management Advisor with Terminal Metering (TMA-TM) for precise time-based schedules to the runway and points within the terminal area, Controller-Managed Spacing (CMS) decision support tools for terminal controllers to better manage aircraft delay using speed control, and Flight deck Interval Management (FIM) avionics and flight crew procedures to conduct airborne spacing operations. The ATD-1 concept provides de-conflicted and efficient operations of multiple arrival streams of aircraft, passing through multiple merge points, from top-of-descent (TOD) to the Final Approach Fix. These arrival streams are Optimized Profile Descents (OPDs) from en route altitude to the runway, using primarily speed control to maintain separation and schedule. The ATD-1 project is currently addressing the challenges of integrating the three technologies, and their implantation into an operational environment. The ATD-1 goals include increasing the throughput of high-density airports, reducing controller workload, increasing efficiency of arrival operations and the frequency of trajectory-based operations, and promoting aircraft ADS-B equipage.

  9. Implementation of the concept of home hospitalisation for heart patients by means of telehomecare technology: integration of clinical tasks

    Directory of Open Access Journals (Sweden)

    Birthe Dinesen

    2007-05-01

    Full Text Available Purpose: To explore how the implementation of the concept ‘Home hospitalisation of heart patients’ by means of telehomecare technology influences the integration of clinical tasks across healthcare sectors. Theory: Inter-organisational theory. Methods: The case study approach was applied. Triangulations of data collection techniques were used: documentary materials, participant observation, qualitative and focus group interviews. Results: The clinical decision-making and task solving became multidisciplinary and integrated with the implementation of telehomecare and, therefore, complex in terms of the prescription and adjustment of patient medicine. Workflows between healthcare professionals across sectors changed from sequential to collective client flows. Pre-existing procedures for patient care, treatment, and responsibility were challenged. In addition, the number of tasks for the district nurses increased. Integration in the clinical task-solving area increases fragmentation in the knowledge technologies in a network perspective. Conclusions: Implementing the concept of ‘Home hospitalisation of heart patients’ by means of telehomecare technology will result in a more integrated clinical task-solving process that involves healthcare professionals from various sectors. Overall, the integration of clinical tasks between hospital and district nursing will result in a direct benefit for the heart patients.

  10. STEMing the tide: using ingroup experts to inoculate women's self-concept in science, technology, engineering, and mathematics (STEM).

    Science.gov (United States)

    Stout, Jane G; Dasgupta, Nilanjana; Hunsinger, Matthew; McManus, Melissa A

    2011-02-01

    Three studies tested a stereotype inoculation model, which proposed that contact with same-sex experts (advanced peers, professionals, professors) in academic environments involving science, technology, engineering, and mathematics (STEM) enhances women's self-concept in STEM, attitudes toward STEM, and motivation to pursue STEM careers. Two cross-sectional controlled experiments and 1 longitudinal naturalistic study in a calculus class revealed that exposure to female STEM experts promoted positive implicit attitudes and stronger implicit identification with STEM (Studies 1-3), greater self-efficacy in STEM (Study 3), and more effort on STEM tests (Study 1). Studies 2 and 3 suggested that the benefit of seeing same-sex experts is driven by greater subjective identification and connectedness with these individuals, which in turn predicts enhanced self-efficacy, domain identification, and commitment to pursue STEM careers. Importantly, women's own self-concept benefited from contact with female experts even though negative stereotypes about their gender and STEM remained active.

  11. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  12. Gossamer-1: Mission concept and technology for a controlled deployment of gossamer spacecraft

    Science.gov (United States)

    Seefeldt, Patric; Spietz, Peter; Sproewitz, Tom; Grundmann, Jan Thimo; Hillebrandt, Martin; Hobbie, Catherin; Ruffer, Michael; Straubel, Marco; Tóth, Norbert; Zander, Martin

    2017-01-01

    Gossamer structures for innovative space applications, such as solar sails, require technology that allows their controlled and thereby safe deployment. Before employing such technology for a dedicated science mission, it is desirable, if not necessary, to demonstrate its reliability with a Technology Readiness Level (TRL) of six or higher. The aim of the work presented here is to provide reliable technology that enables the controlled deployment and verification of its functionality with various laboratory tests, thereby qualifying the hardware for a first demonstration in low Earth orbit (LEO). The development was made in the Gossamer-1 project of the German Aerospace Center (DLR). This paper provides an overview of the Gossamer-1 mission and hardware development. The system is designed based on the requirements of a technology demonstration mission. The design rests on a crossed boom configuration with triangular sail segments. Employing engineering models, all aspects of the deployment were tested under ambient environment. Several components were also subjected to environmental qualification testing. An innovative stowing and deployment strategy for a controlled deployment, as well as the designs of the bus system, mechanisms and electronics are described. The tests conducted provide insights into the deployment process and allow a mechanical characterization of that deployment process, in particular the measurement of the deployment forces. Deployment on system level could be successfully demonstrated to be robust and controllable. The deployment technology is on TRL four approaching level five, with a qualification model for environmental testing currently being built.

  13. Simulating Supersonic Turbulence in Galaxy Outflows

    CERN Document Server

    Scannapieco, Evan

    2010-01-01

    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...

  14. Technology Assessment for Proof-of-Concept UF6 Cylinder Unique Identification Task 3.1.2 Report – Survey and Assessment of Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Wylie, Joann; Hockert, John

    2014-04-24

    The National Nuclear Security Administration (NNSA) Office of Nonproliferation and International Security’s (NA-24) Next Generation Safeguards Initiative (NGSI) and the nuclear industry have begun to develop approaches to identify and monitor uranium hexafluoride (UF6) cylinders. The NA-24 interest in a global monitoring system for UF6 cylinders relates to its interest in supporting the International Atomic Energy Agency (IAEA) in deterring and detecting diversion of UF6 (e.g., loss of cylinder in transit) and undeclared excess production at conversion and enrichment facilities. The industry interest in a global monitoring system for UF6 cylinders relates to the improvements in operational efficiencies that such a system would provide. This task is part of an effort to survey and assess technologies for a UF6 cylinder to identify candidate technologies for a proof-of-concept demonstration and evaluation for the Cylinder Identification System (CIS).

  15. The working out of architectural concept for a new type public building — multi-information and education center by using information technologies and mathematical models

    Directory of Open Access Journals (Sweden)

    Михаил Владимирович Боровиков

    2012-12-01

    Full Text Available Architectural concept of multifunctional information and educational center and its implementation is given in the author's project. Advanced information technology and mathematical models used in the development of the author project.

  16. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  17. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  18. Learning from Teachers' Conceptions of Technology Integration: What Do Blogs, Instant Messages, and 3D Chat Rooms Have to Do with It?

    Science.gov (United States)

    Boling, Erica C.

    2008-01-01

    This study was designed to investigate 19 preservice and practicing teachers' conceptions of the role of new technologies in literacy education. The study documented how these conceptions, as well as my own, evolved over time and impacted the content and curriculum of a university course. Using a design-based research model, I documented students'…

  19. [Current audiovisual technologies are a constituent of the continuing professional development concept].

    Science.gov (United States)

    Bezrukova, E Iu; Zatsepa, S A

    2009-01-01

    The paper is devoted to the topical problems of using innovation, information and communication technologies (ICT) in the higher medical education system, including in postgraduate professional education. The paper shows the key principles for organizing an audiovisual technology-based educational process and gives numerous practical examples of the real use of ICT in the education of not only medical, but also other specialists and the results of studies of applying the current technical aids of innovation professional education. Since each area of manpower training has its specificity and unique goals, the authors propose the highly effective decisions to organize an educational process, which fully take into consideration of the specific features of professional education. These technologies substantially expand access to educational resources, which is of great importance for a strategy of continuing professional development.

  20. Airspace Systems Program: Next Generation Air Transportation System Concepts and Technology Development FY2010 Project Plan Version 3.0

    Science.gov (United States)

    Kopardekar, Parimal H.

    2010-01-01

    This document describes the FY2010 plan for the management and execution of the Next Generation Air Transportation System (NextGen) Concepts and Technology Development (CTD) Project. The document was developed in response to guidance from the Airspace Systems Program (ASP), as approved by the Associate Administrator of the Aeronautics Research Mission Directorate (ARMD), and from guidelines in the Airspace Systems Program Plan. Congress established the multi-agency Joint Planning and Development Office (JPDO) in 2003 to develop a vision for the 2025 Next Generation Air Transportation System (NextGen) and to define the research required to enable it. NASA is one of seven agency partners contributing to the effort. Accordingly, NASA's ARMD realigned the Airspace Systems Program in 2007 to "directly address the fundamental research needs of the Next Generation Air Transportation System...in partnership with the member agencies of the JPDO." The Program subsequently established two new projects to meet this objective: the NextGen-Airspace Project and the NextGen-Airportal Project. Together, the projects will also focus NASA s technical expertise and world-class facilities to address the question of where, when, how and the extent to which automation can be applied to moving aircraft safely and efficiently through the NAS and technologies that address optimal allocation of ground and air technologies necessary for NextGen. Additionally, the roles and responsibilities of humans and automation influence in the NAS will be addressed by both projects. Foundational concept and technology research and development begun under the NextGen-Airspace and NextGen-Airportal projects will continue. There will be no change in NASA Research Announcement (NRA) strategy, nor will there be any change to NASA interfaces with the JPDO, Federal Aviation Administration (FAA), Research Transition Teams (RTTs), or other stakeholders

  1. From single gene to integrative molecular concept MAPS: pitfalls and potentials of microarray technology.

    Science.gov (United States)

    Chiorino, G; Mello Grand, M; Scatolini, M; Ostano, P

    2008-01-01

    Microarray experiments have a large variety of applications and several important achievements have been obtained by means of this technology, especially within the field of whole genome expression profiling, which undoubtedly is the most diffused world-wide. Nevertheless, care must be taken in unconditionally applying such high-throughput techniques and in extracting/interpreting their results. Both the validity and the reproducibility of microarray-based clinical research have recently been challenged. Pitfalls and potentials of the microarray technology for gene expression profiling are critically reviewed in this paper.

  2. A multimedia adult literacy program: Combining NASA technology, instructional design theory, and authentic literacy concepts

    Science.gov (United States)

    Willis, Jerry W.

    1993-01-01

    For a number of years, the Software Technology Branch of the Information Systems Directorate has been involved in the application of cutting edge hardware and software technologies to instructional tasks related to NASA projects. The branch has developed intelligent computer aided training shells, instructional applications of virtual reality and multimedia, and computer-based instructional packages that use fuzzy logic for both instructional and diagnostic decision making. One outcome of the work on space-related technology-supported instruction has been the creation of a significant pool of human talent in the branch with current expertise on the cutting edges of instructional technologies. When the human talent is combined with advanced technologies for graphics, sound, video, CD-ROM, and high speed computing, the result is a powerful research and development group that both contributes to the applied foundations of instructional technology and creates effective instructional packages that take advantage of a range of advanced technologies. Several branch projects are currently underway that combine NASA-developed expertise to significant instructional problems in public education. The branch, for example, has developed intelligent computer aided software to help high school students learn physics and staff are currently working on a project to produce educational software for young children with language deficits. This report deals with another project, the adult literacy tutor. Unfortunately, while there are a number of computer-based instructional packages available for adult literacy instruction, most of them are based on the same instructional models that failed these students when they were in school. The teacher-centered, discrete skill and drill-oriented, instructional strategies, even when they are supported by color computer graphics and animation, that form the foundation for most of the computer-based literacy packages currently on the market may not

  3. Financial Aspects of Technological Concept for Energy Efficiency Enhancement during Stripper Wells Development in Tomsk Region

    Science.gov (United States)

    Sharf, I.; Sundetov, M.; Shenderova, I.; Grinkevich, L.

    2016-09-01

    The issue of operating costs cutting in terms of falling oil prices on the world market actualizes the challenge to find technological solutions to reduce electricity consumption during well operation. This is especially important for stripped-wells of small deposits in Tomsk region. The correlation analysis between the cost of oil production, electricity, heat and fuel consumption during the extraction of one ton of oil allowed the authors to focus on the financial aspect of such technological solutions like periodic well operation in the Shinginskoye field as well as to recommend the application of this method at the other fields in Tomsk region.

  4. A Methodology for Assessing Technology Trade-Offs of Space-Based Radar Concepts.

    Science.gov (United States)

    1985-12-01

    objective reality and intuition as reflected in a decision maker’s judgments. Especially in the case of future space sys- teams , decisions must be based...data base based on their perceptions of the technology issues from their own field of expertise. Networking can provide a means for intradisciplinary

  5. Taking care of the symbolic order. How converging technologies challenge our concepts

    NARCIS (Netherlands)

    Swierstra, Tjalling; Est, van Rinie; Boenink, Marianne

    2009-01-01

    In this article we briefly summarize how converging technologies challenge elements of the existing symbolic order, as shown in the contributions to this special issue. We then identify the vision of ‘life as a do it yourself kit’ as a common denominator in the various forms of convergence and proce

  6. Mapping Engineering Concepts for Secondary Level Education. Final Report. Research in Engineering and Technology Education

    Science.gov (United States)

    Daugherty, Jenny L.

    2011-01-01

    Much of the national attention on science, technology, engineering, and mathematics (STEM) education tends to concentrate on science and mathematics, with its emphasis on standardized test scores. However as the National Academy of Engineering Committee on K-12 Engineering Education stressed, engineering can contribute to the development of an…

  7. Evaluation of Two Different Teaching Concepts in Dentistry Using Computer Technology

    Science.gov (United States)

    Reich, Sven; Simon, James F.; Ruedinger, Dirk; Shortall, Adrian; Wichmann, Manfred; Frankenberger, Roland

    2007-01-01

    The common teaching goal of two different phantom head courses was to enable the students to provide an all-ceramic restoration by the means of computer technology. The aim of this study was to compare these two courses with regard to the different educational methods using identical computer software. Undergraduate dental students from a single…

  8. Urban Elementary Students' Conceptions of Learning Goals for Agricultural Science and Technology

    Science.gov (United States)

    Trexler, Cary J.; Hess, Alexander J.; Hayes, Kathryn N.

    2013-01-01

    Nationally, both science and agricultural education professional organizations have identified agriculture as a fundamental technology to be studied by students, with the goal of achieving an understanding of the agri-food system necessary for democratic participation. Benchmarks representing the content that K-12 children need to understand about…

  9. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 1, Industrial solid waste processing municipal waste reduction/recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarizes the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  10. A mature industrial solution for ITER divertor plasma facing components: hypervapotron cooling concept adapted to Tore Supra flat tile technology

    Energy Technology Data Exchange (ETDEWEB)

    Escourbiac, F.; Missirlian, M.; Schlosser, J. [Association EURATOM-CEA Cadarache, Departement de Recherches sur la Fusion Controlee, 13 - Saint Paul lez Durance (France); Bobin-Vastra, I. [AREVA Centre Technique de Framatome, 71 - Le Creusot (France); Kuznetsov, V. [Efremov Institute, Doroga na Metallostroy, St. Petersburg (Russian Federation); Schedler, B. [Plansee AG, Reutte (Austria)

    2004-07-01

    The use of flat tile technology to handle heat fluxes in the range of 20 MW/m{sup 2} with components relevant for fusion experiment applications is technically possible with the hypervapotron cooling concept. This paper deals with recent high heat flux performances operated with success on 2 identical mock-ups, based on this concept, that were tested in 2 different electron gun facilities. Each mock-up consisted of a CuCrZr heat sink armored with 25 flat tiles of the 3D carbon fibre composite material SEPcarb NS31 assembled with pure copper by active metal casting (AMC). The AMC tiles were electron beam welded on the CuCrZr bar, fins and slots on the neutral beam JET design were machined into the bar, then the bar was closed with a thick CuCrZr rear plug including hydraulic connections then the bar was electron beam welded onto the sidewalls. The testing results show that full ITER design specifications were achieved with margins, the critical heat flux limit was even higher than 30 MW/m{sup 2}. These results highlight the high potential of this technology for ITER divertor application.

  11. Summary of Structural Concept Development and High Temperature Structural Integrity Evaluation Technology for a Gen-IV SFR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Han; Joo, Young Sang; Lee, Hyeong Yeon (and others)

    2008-04-15

    The economic improvement is a hot issue as one of Gen IV nuclear plant goals. It requires many researches and development works to meet the goal by securing the same level of plant safety. One of the key research items is the increase of the plant capacity with the minimum number of components and loops. Through the successful conceptual design experience for the KALIMER-600, the structural design study for a 1200MWe large capacity of sodium-cooled fast reactor has been performed to achieve the above plant size effects. The component number and reactor structural sizing were determined based on the core and fluid system design information. Several researches were performed to reduce the construction cost of NSSS in structural point of view, for example, a simplified component arrangement, concept proposals of integrated components, a high temperature LBB application technology, and an innovative in-service inspection (ISI) tool, and a computer program development of the ASME-NH design procedure of the class 1 structure and component under high temperature over 500 .deg. C. The IHTS piping arrangement was also proposed to minimize the length through the properly locating the SG and pump by 126m. Further studies of these concepts are required to confirm on the fabricability and the structural integrity for the operating and design loads. The proposed concepts will be optimized to a unified conceptual design through several trade-off studies.

  12. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  13. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  14. Taking Care of the Symbolic Order. How Converging Technologies Challenge our Concepts.

    Science.gov (United States)

    Swierstra, Tsjalling; van Est, Rinie; Boenink, Marianne

    2009-12-01

    In this article we briefly summarize how converging technologies challenge elements of the existing symbolic order, as shown in the contributions to this special issue. We then identify the vision of 'life as a do it yourself kit' as a common denominator in the various forms of convergence and proceed to show how this vision provokes unrest and debate about existing moral frameworks and taboos. We conclude that, just as the problems of the industrial revolution sparked off the now broadly established ideal of sustainability the converging technologies should be governed by the ideal of 'human sustainability'. The essence of this ideal is formed by the ongoing discussion about the extent to which we may, or should want to, 'make' our environment and ourselves, and when it is better to simply accept what is given and what happens to us.

  15. [Designing Genopole, a new concept and actor for science, technology and innovation policy in France].

    Science.gov (United States)

    Branciard, Anne

    2009-05-01

    At the dawn of the 20th century, the economic dynamics of modern biotechnology in the USA was coming from scientific and industrial centres. These bio parks combined the development of academic knowledge with innovating industrial and biomedical activities using public and private fundings. In France, the goal of competitiveness within a knowledge-based economy focusing on life sciences, led the government to change its institutional schemes supporting innovation. The creation of Genopole in Evry in 1998 institutionalizes a bifurcation in Science and Technology public policy to diffusion-oriented instruments. This centre of excellence connected together heterogeneous partners and resources around large scale facilities and the implementation of a technological and logistic support to stimulate start up companies. Although the dynamics created by Genopole for both the knowledge base and commercialisation in genomics is a unique outcome of a public/private combination and national/local process, this experimental intermediary institution generated new bridges between science and society.

  16. Research on Key Technology of New Concept Tyre Building Production Line

    Directory of Open Access Journals (Sweden)

    Menglong Cao

    2012-07-01

    Full Text Available Tyre building production line gradually transits from stand-alone production to combined production mode. The transformation of work mode from traditional serial intermittent to the parallel continuous has been the key technology research of tire production enterprise. And intelligent robots and other automated equipment have been the first choice of the tyre enterprise’s production line. Considering the combination of the equipment between upper and lower processes in tyre production line, the manual operations in some processes replaced by intelligent robots will improve production efficiency of tyre production enterprise, and will make outstanding contribution in reduce process losses and reduce production costs. This article studies on the key technology of combined application in production line, and makes simulation comparison for the same technical process that using different scheme, to prove the priorities and superiorities of combined production line relatives to the traditional production mode.

  17. Application of the Strategic Alignment Model and Information Technology Governance Concepts to Support Network Centric Warfare

    Science.gov (United States)

    2006-03-01

    and IT infrastructure. Fundamentally, the SAM suggests that business success depends on the harmony of business strategy, information technology...Annual Hawaii International Conference on, 2003: p. 9 pp. 39. Phan, D.D. and N.M. Stata, E- business Success at Intel: An Organization Ecology and...an electronic environment that creates value to both the organization and its customers. This is evident throughout IBM who contends “E- Business

  18. Sensors Technology and Advanced Signal Processing Concepts for Layered Warfare/Layered Sensing

    Science.gov (United States)

    2010-04-01

    between points. Earth Model: A more accurate model of the earth is a geoid defined as the shape of the gravitational equipotential of the...earth’s surface. However, geoid models are often complex, computationally intensive to implement, and are constantly being refined as technology...accurate model of the earth is a geoid defined as the shape of the gravitational equipotential of the earth’s surface. However, geoid models are often

  19. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  20. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  1. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  2. Numerical and experimental investigations on supersonic ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS

    2005-02-01

    Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)

  3. Developing Technologies for Space Resource Utilization: Concept for a Planetary Engineering Research Institute

    Science.gov (United States)

    Blacic, J. D.; Dreesen, D.; Mockler, T.

    2000-01-01

    There are two principal factors that control the economics and ultimate utilization of space resources: 1) space transportation, and 2) space resource utilization technologies. Development of space transportation technology is driven by major government (military and civilian) programs and, to a lesser degree, private industry-funded research. Communication within the propulsion and spacecraft engineering community is aided by an effective independent professional organization, the American Institute of Aeronautics and Astronautics (AIAA). The many aerospace engineering programs in major university engineering schools sustain professional-level education in these fields. NASA does an excellent job of public education in space science and engineering at all levels. Planetary science, a precursor and supporting discipline for space resource utilization, has benefited from the establishment of the Lunar and Planetary Institute (LPI) which has served, since the early post-Apollo days, as a focus for both professional and educational development in the geosciences of the Moon and other planets. The closest thing the nonaerospace engineering disciplines have had to this kind of professional nexus is the sponsorship by the American Society of Civil Engineers of a series of space engineering conferences that have had a predominantly space resource orientation. However, many of us with long-standing interests in space resource development have felt that an LPI-like, independent institute was needed to focus and facilitate both research and education on the specific engineering disciplines needed to develop space resource utilization technologies on an on-going basis.

  4. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 1: Executive summary

    Science.gov (United States)

    1986-01-01

    Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.

  5. The home-range concept: are traditional estimators still relevant with modern telemetry technology?

    Science.gov (United States)

    Kie, John G; Matthiopoulos, Jason; Fieberg, John; Powell, Roger A; Cagnacci, Francesca; Mitchell, Michael S; Gaillard, Jean-Michel; Moorcroft, Paul R

    2010-07-27

    Recent advances in animal tracking and telemetry technology have allowed the collection of location data at an ever-increasing rate and accuracy, and these advances have been accompanied by the development of new methods of data analysis for portraying space use, home ranges and utilization distributions. New statistical approaches include data-intensive techniques such as kriging and nonlinear generalized regression models for habitat use. In addition, mechanistic home-range models, derived from models of animal movement behaviour, promise to offer new insights into how home ranges emerge as the result of specific patterns of movements by individuals in response to their environment. Traditional methods such as kernel density estimators are likely to remain popular because of their ease of use. Large datasets make it possible to apply these methods over relatively short periods of time such as weeks or months, and these estimates may be analysed using mixed effects models, offering another approach to studying temporal variation in space-use patterns. Although new technologies open new avenues in ecological research, our knowledge of why animals use space in the ways we observe will only advance by researchers using these new technologies and asking new and innovative questions about the empirical patterns they observe.

  6. Process analytical technology (PAT) for biopharmaceutical products: Part II. Concepts and applications.

    Science.gov (United States)

    Read, E K; Shah, R B; Riley, B S; Park, J T; Brorson, K A; Rathore, A S

    2010-02-01

    Implementing real-time product quality control meets one or both of the key goals outlined in FDA's PAT guidance: "variability is managed by the process" and "product quality attributes can be accurately and reliably predicted over the design space established for materials used, process parameters, manufacturing, environmental, and other conditions." The first part of the paper presented an overview of PAT concepts and applications in the areas of upstream and downstream processing. In this second part, we present principles and case studies to illustrate implementation of PAT for drug product manufacturing, rapid microbiology, and chemometrics. We further present our thoughts on how PAT will be applied to biotech processes going forward. The role of PAT as an enabling component of the Quality by Design framework is highlighted. Integration of PAT with the principles stated in the ICH Q8, Q9, and Q10 guidance documents is also discussed.

  7. Disposal Of Spent Fuel In Salt Using Borehole Technology: BSK 3 Concept

    Energy Technology Data Exchange (ETDEWEB)

    Fopp, Stefan; Graf, Reinhold [GNS Gesellschaft fuer Nuklear-Service mbH, Hollestrasse 7A, D-45127 Essen (Germany); Filbert, Wolfgang [DBE TECHNOLOGY GmbH, Eschenstrasse 55, D-31224 Peine (Germany)

    2008-07-01

    The BSK 3 concept was developed for the direct disposal of spent fuel in rock salt. It is based on the conditioning of fuel assemblies and inserting fuel rods into a steel canister which can be placed in vertical boreholes. The BSK 3 canister is suitable for spent fuel rods from 3 PWR or 9 BWR fuel assemblies. The emplacement system developed for the handling and disposal of BSK 3 canisters comprises a transfer cask which provides appropriate shielding during the transport and emplacement process, a transport cart, and an emplacement device. Using the emplacement device the transfer cask will be positioned onto the top of the borehole lock. The presentation describes the development and the design of the transfer cask and the borehole lock. A technically feasible and safe design for the transfer cask and the borehole lock was found regarding the existing safety requirements for radiation shielding, heat dissipation and handling procedure. (authors)

  8. Architectural concepts of Martian bases built: of domes, around greenhouses and into slopes -the human aspect and the technology

    Science.gov (United States)

    Kozicki, Janek; Kozicka, Joanna

    Human missions to Mars are a special kind of space missions due to their long duration. The human aspect of such missions becomes as important as the technological one. The need for a human friendly and comfortable habitat arises. Studies of human behavior in ICEs have shown that larger groups of people mean a lower occurrence of conflicts. However, for a larger crew a larger habitat has to be designed -a Martian base. The research deals with psychological, sociological and technological aspects influencing the architectural design of a Martian Base. Extreme conditions present on Mars demand a partic-ular approach to technological and architectural design. To reduce the cost of building a bigger habitat, low cost solutions have been inquired into. A series of analyses has been performed to identify the best architectural solutions for a Martian base. A review of existing technologies and extreme condition habitats (both terrestrial and extraterrestrial) has revealed solutions that are the most reliable and efficient ones. Additionally, innovative technologies have been analyzed in search of the best candidates for actual base construction. Low cost solutions have been prioritized in the process. An in-depth study of architectural problems inherent in the design of a Martian base has resulted in a number of guidelines for the architect. The main ones are introduced in this review. Based on them, several concepts have been drafted as examples of user-friendly and aesthetically pleasing habitats. They are discussed in the following order: habitats made of domes, those built around greenhouses and those situated in sloping terrain. One of them is presented in detail, including interior design.

  9. Supersonic Virtual Valve Design for Numerical Simulation of a Large-Bore Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.-H.; Kirkpatrick, A.; Mitchell, C.

    2007-10-01

    In many applications of supersonic injection devices, three-dimensional computation that can model a complex supersonic jet has become critical. However, in spite of its increasing necessity, it is computationally costly to capture the details of supersonic structures in intricate three-dimensional geometries with moving boundaries. In large-bore stationary natural gas fueled engine research, one of the most promising mixing enhancement technologies currently used for natural gas engines is high-pressure fuel injection. Consequently, this creates considerable interest in three-dimensional computational simulations that can examine the entire injection and mixing process in engines using high-pressure injection and can determine the impact of injector design on engine performance. However, the cost of three-dimensional engine simulations-including a moving piston and the kinetics of combustion and pollutant production quickly becomes considerable in terms of simulation time requirements. One limiting factor is the modeling of the small length scales of the poppet valve flow. Such length scales can be three orders of magnitude smaller than cylinder length scales. The objective of this paper is to describe the development of a methodology for the design of a simple geometry supersonic virtual valve that can be substituted in three-dimensional numerical models for the complex shrouded poppet valve injection system actually installed in the engine to be simulated.

  10. Innovation Management in Emerging Technology Ventures – The Concept of an Integrated Idea Management

    DEFF Research Database (Denmark)

    Brem, Alexander; Voigt, K.-I.

    2007-01-01

    management, which is examined with an explorative analysis. The results confirm the relevance of an integrated idea management, particularly the clear tendency towards an integration of external groups. Basically, this integration occurs directly through individual functional divisions such as purchasing......, development and sales. Here especially, differentiating potentials are offered for emerging technology ventures. But it is important that idea and innovation management are integrated during the building-up stage while internal and external network structures are still manageable and often consist...... of the managers' and founders' personal contacts. Hence, the earlier an integrated idea management is implemented, the greater is the probability of high numbers of successful innovations....

  11. Innovation Management in Emerging Technology Ventures – The Concept of an Integrated Idea Management

    DEFF Research Database (Denmark)

    Brem, Alexander; Voigt, K.-I.

    2007-01-01

    , development and sales. Here especially, differentiating potentials are offered for emerging technology ventures. But it is important that idea and innovation management are integrated during the building-up stage while internal and external network structures are still manageable and often consist...... management, which is examined with an explorative analysis. The results confirm the relevance of an integrated idea management, particularly the clear tendency towards an integration of external groups. Basically, this integration occurs directly through individual functional divisions such as purchasing...... of the managers' and founders' personal contacts. Hence, the earlier an integrated idea management is implemented, the greater is the probability of high numbers of successful innovations....

  12. FACTORS AFFECTING TEACHING THE CONCEPT of RENEWABLE ENERGY in TECHNOLOGY ASSISTED ENVIRONMENTS AND DESIGNING PROCESSES in THE DISTANCE EDUCATION MODEL

    Directory of Open Access Journals (Sweden)

    A. Seda YUCEL

    2007-01-01

    Full Text Available The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out what to take into account in creating renewable energy awareness. In this study, certain factors thought to affect the development of renewable energy awareness were investigated. The awareness was created through a technology-assisted renewable energy module and assessed using a renewable energy assessment tool. The effects of the students’ self-directed learning readiness with Guglielmino (1977, inner-individual orientation, and anxiety orientation on the awareness were examined. These three factors were found to have significant effects on renewable energy, which was developed through technology utilization. In addition, based on the finding that delivering the subject of renewable energy in technology assisted environments is more effective, the criteria that should be taken into consideration in transforming this subject into a design model that is more suitable for distance education were identified.

  13. Survey and analysis of the domestic technology level for the concept development of high level waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chang Sun; Kim, Byung Su; Song, Jae Hyok [Seoul National University, Seoul (Korea); Park, Kwang Hon; Hwang, Ju Ho; Park, Sung Hyun; Lee, Jae Min [Kyunghee University, Seoul (Korea); Han, Joung Sang; Kim, Ku Young [Yonsei University, Seoul (Korea); Lee, Jae Ki; Chang, Jae Kwon [Hangyang University, Seoul (Korea)

    1998-09-01

    The objectives of this study are the analysis of the status of HLW disposal technology and the investigation of the domestic technology level. The study has taken two years to complete with the participation of forty five researchers. The study was mainly carried out through means of literature surveys, collection of related data, visits to research institutes, and meetings with experts in the specific fields. During the first year of this project, the International Symposium on the Concept Development of the High Level Waste Disposal System was held in Taejon, Korea in October, 1997. Eight highly professed foreign experts whose fields of expertise projected to the area of high level waste disposal were invited to the symposium. This study is composed of four major areas; disposal system design/construction, engineered barrier characterization, geologic environment evaluation and performance assessment and total safety. A technical tree scheme of HLW disposal has been illustrated according to the investigation and an analysis for each technical area. For each detailed technology, research projects, performing organization/method and techniques that are to be secured in the order of priority are proposed, but the suggestions are merely at a superfluous level of propositional idea due to the reduction of the budget in the second year. The detailed programs on HLW disposal are greatly affected by governmental HLW disposal policy and in this study, the primary decisions to be made in each level of HLW disposal enterprise and a rough scheme are proposed. (author). 20 refs., 97 figs., 33 tabs.

  14. Definition of 1992 Technology Aircraft Noise Levels and the Methodology for Assessing Airplane Noise Impact of Component Noise Reduction Concepts

    Science.gov (United States)

    Kumasaka, Henry A.; Martinez, Michael M.; Weir, Donald S.

    1996-01-01

    This report describes the methodology for assessing the impact of component noise reduction on total airplane system noise. The methodology is intended to be applied to the results of individual study elements of the NASA-Advanced Subsonic Technology (AST) Noise Reduction Program, which will address the development of noise reduction concepts for specific components. Program progress will be assessed in terms of noise reduction achieved, relative to baseline levels representative of 1992 technology airplane/engine design and performance. In this report, the 1992 technology reference levels are defined for assessment models based on four airplane sizes - an average business jet and three commercial transports: a small twin, a medium sized twin, and a large quad. Study results indicate that component changes defined as program final goals for nacelle treatment and engine/airframe source noise reduction would achieve from 6-7 EPNdB reduction of total airplane noise at FAR 36 Stage 3 noise certification conditions for all of the airplane noise assessment models.

  15. Findings from the Supersonic Qualification Program of the Mars Science Laboratory Parachute System

    Science.gov (United States)

    Sengupta, Anita; Steltzner, Adam; Witkowski, Allen; Candler, Graham; Pantano, Carlos

    2009-01-01

    In 2012, the Mars Science Laboratory Mission (MSL) will deploy NASA's largest extra-terrestrial parachute, a technology integral to the safe landing of its advanced robotic explorer on the surface. The supersonic parachute system is a mortar deployed 21.5 m disk-gap-band (DGB) parachute, identical in geometric scaling to the Viking era DGB parachutes of the 1970's. The MSL parachute deployment conditions are Mach 2.3 at a dynamic pressure of 750 Pa. The Viking Balloon Launched Decelerator Test (BLDT) successfully demonstrated a maximum of 700 Pa at Mach 2.2 for a 16.1 m DGB parachute in its AV4 flight. All previous Mars deployments have derived their supersonic qualification from the Viking BLDT test series, preventing the need for full scale high altitude supersonic testing. The qualification programs for Mars Pathfinder, Mars Exploration Rover, and Phoenix Scout Missions were all limited to subsonic structural qualification, with supersonic performance and survivability bounded by the BLDT qualification. The MSL parachute, at the edge of the supersonic heritage deployment space and 33% larger than the Viking parachute, accepts a certain degree of risk without addressing the supersonic environment in which it will deploy. In addition, MSL will spend up to 10 seconds above Mach 1.5, an aerodynamic regime that is associated with a known parachute instability characterized by significant canopy projected area fluctuation and dynamic drag variation. This aerodynamic instability, referred to as "area oscillations" by the parachute community has drag performance, inflation stability, and structural implications, introducing risk to mission success if not quantified for the MSL parachute system. To minimize this risk and as an alternative to a prohibitively expensive high altitude test program, a multi-phase qualification program using computation simulation validated by subscale test was developed and implemented for MSL. The first phase consisted of 2% of fullscale

  16. Air Traffic Management Technology Demonstration-1 Concept of Operations (ATD-1 ConOps)

    Science.gov (United States)

    Baxley, Brian T.; Johnson, William C.; Swenson, Harry; Robinson, John E.; Prevot, Thomas; Callantine, Todd; Scardina, John; Greene, Michael

    2012-01-01

    The operational goal of the ATD-1 ConOps is to enable aircraft, using their onboard FMS capabilities, to fly Optimized Profile Descents (OPDs) from cruise to the runway threshold at a high-density airport, at a high throughput rate, using primarily speed control to maintain in-trail separation and the arrival schedule. The three technologies in the ATD-1 ConOps achieve this by calculating a precise arrival schedule, using controller decision support tools to provide terminal controllers with speeds for aircraft to fly to meet times at a particular meter points, and onboard software providing flight crews with speeds for the aircraft to fly to achieve a particular spacing behind preceding aircraft.

  17. ECUT: Energy Conversion and Utilization Technologies program. Heterogeneous catalysis modeling program concept

    Science.gov (United States)

    Voecks, G. E.

    1983-01-01

    Insufficient theoretical definition of heterogeneous catalysts is the major difficulty confronting industrial suppliers who seek catalyst systems which are more active, selective, and stable than those currently available. In contrast, progress was made in tailoring homogeneous catalysts to specific reactions because more is known about the reaction intermediates promoted and/or stabilized by these catalysts during the course of reaction. However, modeling heterogeneous catalysts on a microscopic scale requires compiling and verifying complex information on reaction intermediates and pathways. This can be achieved by adapting homogeneous catalyzed reaction intermediate species, applying theoretical quantum chemistry and computer technology, and developing a better understanding of heterogeneous catalyst system environments. Research in microscopic reaction modeling is now at a stage where computer modeling, supported by physical experimental verification, could provide information about the dynamics of the reactions that will lead to designing supported catalysts with improved selectivity and stability.

  18. Making sense of geoscientific concepts using active pedagogy techniques, a technology aided experience

    Science.gov (United States)

    Huguet, C.; Noè, L. F.; Pearse, J.; Gómez Pérez, M.; Valencia Lopez, D.; Jimenez Heredia, A.; Patiño Avedaño, M.

    2016-12-01

    This work is the result of a teaching innovation project funded by the Conecta-TE unit at Universidad de los Andes, Bogotá, Colombia and results from the collaborative work of a team of geoscience professors and pedagogic and technical support experts. The need for this innovation stems from the constraints of teaching an applied science subject to a large cohort of approximately 500 students per semester in five sections which makes it impossible to include laboratories or scientific outings. These factors are compounded by the fact this is an introductory core course for Geoscience but also a service course that can be taken by any student on campus whether they have a scientific background or not. Therefore our aim was double: making the basic concepts more understandable for a broad audience, while at the same time maintaining a sufficiently high level to challenge and form a sound basis for students from the Geosciences program. Additionally we wanted to incorporate more active and practical aspects to the subject in order to enhance student learning. This in itself was challenging with groups of over 90 students. Data on student understanding and satisfaction were collected both in classes where the innovation was implemented and others in which it was not. Generally our innovation was positively rated, however the students perceived that it involved more work than the traditional lecture-based classes, but they preferred the continual assessment to traditional homework. The methodology was improved and implemented fully for the second round of teaching by introducing the methodology and objectives more clearly. In the future we expect to reduce the number of activities per class (the ´less-is-more' approach) whilst at the same time increasing the amount of classes which include active learning techniques. The ultimate goal is to extend the experience from the two current sections to all five sections of the course.

  19. Empirical evidence of the effectiveness of concept mapping as a learning intervention for nuclear medicine technology students in a distance learning radiation protection and biology course.

    Science.gov (United States)

    Passmore, Gregory G; Owen, Mary Anne; Prabakaran, Krishnan

    2011-12-01

    Metacognitive learning strategies are based on instructional learning theory, which promotes deep, meaningful learning. Educators in a baccalaureate-level nuclear medicine technology program demonstrated that students enrolled in an online, distance learning section of an introductory radiation protection and radiobiology course performed better when traditional instruction was supplemented with nontraditional metacognitive learning strategies. The metacognitive learning strategy that was used is best known as concept mapping. The concept map, in addition to the standard homework problem assignment and opportunity for question-answer sessions, became the template for misconception identification and remediation interactions between the instructor and the student. The control group relied on traditional homework problems and question-answer sessions alone. Because students in both the "treatment" groups (i.e., students who used concept mapping) and the control group were distance learning students, all personal communications were conducted via e-mail or telephone. The final examination of the course was used to facilitate a quantitative comparison of the performance of students who used concept mapping and the performance of students who did not use concept mapping. The results demonstrated a significantly higher median final examination score for the concept mapping group than for the non-concept mapping group (z = -2.0381, P = 0.0415), with an appropriately large effect size (2.65). Concept mapping is a cognitive learning intervention that effectively enables meaningful learning and is suitable for use in the independent learner-oriented distance learning environments used by some nuclear medicine technology programs.

  20. Linking the space shuttle and space stations early docking technologies from concept to implementation

    CERN Document Server

    Shayler, David J

    2017-01-01

    How could the newly authorized space shuttle help in the U.S. quest to build a large research station in Earth orbit? As a means of transporting goods, the shuttle could help supply the parts to the station. But how would the two entitles be physically linked? Docking technologies had to constantly evolve as the designs of the early space stations changed. It was hoped the shuttle would make missions to the Russian Salyut and American Skylab stations, but these were postponed until the Mir station became available, while plans for getting a new U. S. space station underway were stalled. In Linking the Space Shuttle and Space Stations, the author delves into the rich history of the Space Shuttle and its connection to these early space stations, culminating in the nine missions to dock the shuttle to Mir. By 1998, after nearly three decades of planning and operations, shuttle missions to Mir had resulted in: • A proven system to link up the space shuttle to a space station • Equipment and hands-on experienc...

  1. Psychological stress and adjustment in pregnancy following assisted reproductive technology and spontaneous conception: A systematic review.

    Science.gov (United States)

    Gourounti, Kleanthi

    2016-01-01

    The aim of this review was to examine studies describing the psychological stress and adjustment in pregnancy after an assisted reproductive technology (ART) treatment. A systematic search of the electronic databases was performed. This review considered only quantitative, primary studies in the English language, published during the period 2000-2014 and relevant to the objective. The population of interest was previously infertile pregnant women. Outcome variables were general anxiety, depressive symptoms, pregnancy-specific anxiety, quality of life, self-esteem, pregnancy attitudes and adjustment, and maternal-fetal attachment. Twenty studies met the inclusion and methodological criteria and were included in the review. The review revealed that compared to women who conceive naturally or to general norms, women who conceive after an in vitro fertilization treatment had greater pregnancy-specific anxiety, poorer quality of life, either the same or less depressive symptomatology, the same level of self-esteem, more positive attitudes toward pregnancy demands, and higher levels of maternal-fetal attachment. However, the evidence regarding the general anxiety levels in pregnancy after an ART treatment was inconclusive. Methodological limitations and differences across studies may explain the inconsistencies in their findings regarding the impact of ART. This review provides an insight into psychological reactions and adjustment in pregnancy after an ART treatment.

  2. Overview of flowline bundle technology from concept selection to offshore installation

    Institute of Scientific and Technical Information of China (English)

    Song Ruxin; Xia Qiuling

    2013-01-01

    Flowline bundle system consisting of carrier pipe,sleeve pipe and internal flowlines offers innovative solution for the infield transportation of oil and gas.Due to its features,flowline bundle offers a couple of advantages over conventional flowline in particular for cases where multi-flowlines and high thermal performance is of great interest.The main benefits and advantages of such system include excellent thermal performance to prevent wax formation and hydrates,multiple bundled flowlines,mechanical and corrosion protection,potential reuse,etc.With the developments of offshore oil and gas industries,more and more hydrocarbon resources are being explored and discovered from shallow to deep water.Pipeline bundle system can be a smart solution for certain applications,which can be safe and cost effective solution.The objective of this paper is to overview pipeline bundle technology,outline detailed engineering design issue and procedure.Focus is given to its potential application in offshore for infield transportation.Engineering design principles and procedures for pipeline bundle system are highlighted.Construction methods of flowline bundle onshore are reviewed.Offshore towing and installation of pipeline bundle procedure is outlined.

  3. Proof-of-Concept of the Phytoimmobilization Technology for TNX Outfall Delta: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Kaplan, D.I.

    2001-06-04

    A series of proof-of-principle studies was initiated to evaluate the soil remediation technology, phytoimmobilization, for application at the TNX Outfall Delta (TNX OD) operable unit. Phytoimmobilization involves two steps. The first step is entitled phytoextraction, and it takes place mostly during the spring and summer. During this step the plants extract contaminants from the sediment into the roots and then translocate the contaminants to the aboveground plant parts. The second step is referred to as sequestration and it takes place largely during the autumn and winter when annual plants senesce or deciduous trees drop their leaves. This step involves the immobilization of the contaminant once it leaches form the fallen leaves into a ''geomat,'' a geotextile embedded with mineral sequestering agents. This final report describes the results to date, including those reported in the status report (Kaplan et al. 2000a), those completed since the report was issued, and the preliminary calculations of the phytoimmobilization effectiveness.

  4. An Automated DAKOTA and VULCAN-CFD Framework with Application to Supersonic Facility Nozzle Flowpath Optimization

    Science.gov (United States)

    Axdahl, Erik L.

    2015-01-01

    Removing human interaction from design processes by using automation may lead to gains in both productivity and design precision. This memorandum describes efforts to incorporate high fidelity numerical analysis tools into an automated framework and applying that framework to applications of practical interest. The purpose of this effort was to integrate VULCAN-CFD into an automated, DAKOTA-enabled framework with a proof-of-concept application being the optimization of supersonic test facility nozzles. It was shown that the optimization framework could be deployed on a high performance computing cluster with the flow of information handled effectively to guide the optimization process. Furthermore, the application of the framework to supersonic test facility nozzle flowpath design and optimization was demonstrated using multiple optimization algorithms.

  5. Share the Sky: Concepts and Technologies That Will Shape Future Airspace Use

    Science.gov (United States)

    Ballin, Mark G.; Cotton, William; Kopardekar, Parimal

    2011-01-01

    The airspace challenge for the United States is to protect national sovereignty and ensure the safety and security of those on the ground and in the air, while at the same time ensuring the efficiency of flight, reducing the costs involved, protecting the environment, and protecting the freedom of access to the airspace. Many visions of the future NAS hold a relatively near-term perspective, focusing on existing uses of the airspace and assuming that new uses will make up a small fraction of total use. In the longer term, the skies will be filled with diverse and amazing new air vehicles filling our societal needs. Anticipated new vehicles include autonomous air vehicles acting both independently and in coordinated groups, unpiloted cargo carriers, and large numbers of personal air vehicles and small-scale point-to-point transports. These vehicles will enable new capabilities that have the potential to increase societal mobility, transport freight at lower cost and with lower environmental impact, improve the study of the Earth s atmosphere and ecosystem, and increase societal safety and security by improving or drastically lowering the cost of critical services such as firefighting, emergency medical evacuation, search and rescue, border and neighborhood surveillance, and the inspection of our infrastructure. To ensure that uses of the airspace can continue to grow for the benefit of all, a new paradigm for operations is needed: equitably and safely sharing the airspace. This paper is an examination of such a vision, concentrating on the operations of all types of air vehicles and future uses of the National Airspace. Attributes of a long-term future airspace system are provided, emerging operations technologies are described, and initial steps in research and development are recommended.

  6. Inhibiting avian influenza virus shedding using a novel RNAi antiviral vector technology: proof of concept in an avian cell model.

    Science.gov (United States)

    Linke, Lyndsey M; Wilusz, Jeffrey; Pabilonia, Kristy L; Fruehauf, Johannes; Magnuson, Roberta; Olea-Popelka, Francisco; Triantis, Joni; Landolt, Gabriele; Salman, Mo

    2016-03-01

    Influenza A viruses pose significant health and economic threats to humans and animals. Outbreaks of avian influenza virus (AIV) are a liability to the poultry industry and increase the risk for transmission to humans. There are limitations to using the AIV vaccine in poultry, creating barriers to controlling outbreaks and a need for alternative effective control measures. Application of RNA interference (RNAi) techniques hold potential; however, the delivery of RNAi-mediating agents is a well-known obstacle to harnessing its clinical application. We introduce a novel antiviral approach using bacterial vectors that target avian mucosal epithelial cells and deliver (small interfering RNA) siRNAs against two AIV genes, nucleoprotein (NP) and polymerase acidic protein (PA). Using a red fluorescent reporter, we first demonstrated vector delivery and intracellular expression in avian epithelial cells. Subsequently, we demonstrated significant reductions in AIV shedding when applying these anti-AIV vectors prophylactically. These antiviral vectors provided up to a 10,000-fold reduction in viral titers shed, demonstrating in vitro proof-of-concept for using these novel anti-AIV vectors to inhibit AIV shedding. Our results indicate this siRNA vector technology could represent a scalable and clinically applicable antiviral technology for avian and human influenza and a prototype for RNAi-based vectors against other viruses.

  7. A label-free detector for liquid chromatography systems using mm-wave technology: First proof of concept.

    Science.gov (United States)

    Zhang, Y; Declerck, S; Mangelings, D; He, G; Matvejev, V; Vander Heyden, Y; Stiens, J

    2017-08-08

    The development of millimeter-wave (mm-wave) technology has enabled the study of bio-molecular interactions by means of electromagnetic waves with frequencies between 30 and 300GHz. In this study, an attempt has been made to exploit the possibility of mm-wave technology as alternative detection technique for liquid chromatographic (LC) systems. The goal is to design and fabricate a label-free mm-wave detector that is compatible with LC systems. As proof-of-concept experiments, the UV absorbing compounds praziquantel and trans-stilbene-oxide as well as a non-UV absorbing compound sorbitol are injected in an open capillary as well as a capillary with stationary phase and measured by both mm-wave and UV detectors. The in-house developed mm-wave detector is capable of detecting all compounds without the need for labelling. Although the detection limit of such detector still needs to be verified and occasionally improved in the future, it already shows great potential as an additional detection technique for LC systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. A module concept for the upgrades of the ATLAS pixel system using the novel SLID-ICV vertical integration technology

    CERN Document Server

    Beimforde, M; Macchiolo, A; Moser, H G; Nisius, R; Richter, R H; Weigell, P; 10.1088/1748-0221/5/12/C12025

    2010-01-01

    The presented R&D activity is focused on the development of a new pixel module concept for the foreseen upgrades of the ATLAS detector towards the Super LHC employing thin n-in-p silicon sensors together with a novel vertical integration technology. A first set of pixel sensors with active thicknesses of 75 μm and 150 μm has been produced using a thinning technique developed at the Max-Planck-Institut für Physik (MPP) and the MPI Semiconductor Laboratory (HLL). Charge Collection Efficiency (CCE) measurements of these sensors irradiated with 26 MeV protons up to a particle fluence of 1016neqcm−2 have been performed, yielding higher values than expected from the present radiation damage models. The novel integration technology, developed by the Fraunhofer Institut EMFT, consists of the Solid-Liquid InterDiffusion (SLID) interconnection, being an alternative to the standard solder bump-bonding, and Inter-Chip Vias (ICVs) for routing signals vertically through electronics. This allows for extracting the ...

  9. An advanced concept that promises ecological and economic viability

    Science.gov (United States)

    Wright, B. R.; Sedgwick, T. A.; Urie, D. M.

    1976-01-01

    The actuality of supersonic commercial service being provided by Concorde is demonstrating to the world the advantages offered by supersonic travel for both business and recreation. Public acceptance will gradually and persistently stimulate interest to proceed with a second generation design that meets updated economic and ecological standards. It is estimated that this concept could operate profitably on world-wide routes with a revenue structure based upon economy fares. Airplanes will meet all present day ecological requirements regarding noise and emissions.

  10. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  11. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  12. Study of active cooling for supersonic transports

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  13. Supersonic Motions of Galaxies in Clusters

    CERN Document Server

    Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan

    2004-01-01

    We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...

  14. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  15. High Temperature Shape Memory Alloy Technology for Inlet Flow Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Recent advances in propulsion, aerodynamic, and noise technologies have led to a revived interest in supersonic cruise aircraft; however, achieving economic...

  16. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  17. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  18. Research of low boom and low drag supersonic aircraft design

    OpenAIRE

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...

  19. Developing a concept of social-ecological-technological systems to characterize resilience of urban areas and infrastructure to extreme events

    Science.gov (United States)

    Chester, M.; Grimm, N. B.; Redman, C.; Miller, T.; McPherson, T.; Munoz-Erickson, T.; Chandler, D. G.

    2015-12-01

    Climate change is widely considered one of the greatest challenges to global sustainability, with extreme events being the most immediate way that people experience this phenomenon. Urban areas are particularly vulnerable to these events given their location, concentration of people, and increasingly complex and interdependent infrastructure. We are developing a conceptual framework for urban social-ecological-technological systems (SETS) that will allow researchers and practitioners to assess how infrastructure can be resilient, provide ecosystem services, improve social well being, and exploit new technologies in ways that benefit urban populations. The framework integrates the three domains of social and equity issues, environmental quality and protection, and technical/engineering aspects, to form a concept of infrastructure that occurs at the intersection of the domains. Examples show how the more common socioecological systems and socially sensitive engineering approaches that fail to incorporate the third dimension may elevate vulnerability to climate-related disaster. The SETS conceptual framework bridges currently siloed social science, environmental science, and engineering approaches to significantly advance research into the structure, function, and emergent properties of SETS. Extreme events like heat waves in Phoenix; coastal and urban flooding in the wake of superstorm Sandy and following hurricanes in Miami, FL; drought in Mexico; and urban flooding in Baltimore, Portland, San Juan PR, Syracuse, and Valdivia, Chile provide examples of the impacts of and vulnerability to extreme events that demand a new approach. The infrastructure of the future must be resilient, leverage ecosystem services, improve social well being, and exploit new technologies in ways that benefit all segments of urban populations and are appropriate to the particular urban contexts. These contexts are defined not only by the biophysical environment but also by culture and

  20. Supersonic and subsonic measurements of mesospheric ionization.

    Science.gov (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.

    1972-01-01

    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  1. Supersonic Jet Excitation using Flapping Injection

    CERN Document Server

    Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

    2013-01-01

    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

  2. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  3. New circular polarization selective surface concepts based on the Pierrot cell using printed circuit technology

    Science.gov (United States)

    Lopez, Humberto Israel

    This M.A.Sc. thesis focuses on finding an alternative method of constructing a circular polarization selective surface (CPSS) based on the Pierrot cell using the standard printed circuit technology. This technique uses a folded flexible substrate, which enables the implementation of the 3D Pierrot cells on a single metal layer defined with precision printed circuit board techniques, without the need for metalized via holes. Different topologies of the CPSS are analyzed in order to make the CPSS more efficient in terms of bandwidth and independence on the direction of propagation of the incident wave. A left-hand CPSS is designed to illustrate the benefits of the proposed approach. The first approach is a simple Pierrot unit cell CPSS which is optimized to have good reflection and transmission coefficients. A prototype is built and then characterized in a test bench operating in the K-band. For the fabricated prototype, the transmission coefficients of plane waves at normal incidence in the right-hand and the left-hand circular polarizations are --0.48 dB and --24 dB respectively. The bandwidth for which the transmission coefficient of the incident left-handed incident wave is greater than --3 dB was of 17.6%. These results are in good agreement with simulations results obtained with HFSS. A second variant considered is a Pierrot cell with a series load in the middle segment. With this cell it is possible to equalize the frequencies giving a better operation in the right- and left-handed circular polarized waves. There is an improvement for the co-pol to cross-pol ratio for the RHCP waves of 10 dB at 20 GHz. The added load does not affect the performance for the left-hand circular polarization, as expected. The third modification is a Pierrot cell at 90 degrees. This cell is designed to allow the combination of two Pierrot cells working at different frequencies on the same substrate in order to increase the frequency bandwidth of the CPSS. Unfortunately, the axial

  4. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  5. 浅析科技创业环境及其构成要素%Analysis of Technological Entrepreneurial Environment Concept and its Elements

    Institute of Scientific and Technical Information of China (English)

    鲁兴启; 任向超

    2014-01-01

    An accurate understanding of the concept of technological entrepreneurial environment and the scientific analysis of elements are prerequisites for its construction.The article makes a brief analysis of the connotation of technological entre-preneurial environment and its impact on technological entrepreneurial activities,analyzes the concept of technological en-trepreneurial environment in macroscopic and microcosmic perspective,briefly introduces its types and characteristics,and puts forward the structure model of the elements .%简要分析科技创业环境的含义及其对科技创业活动的影响,从宏观和微观两种视角去解读科技创业环境的概念,探讨科技创业环境的类型和特征,提出科技创业环境构成要素的结构模型。

  6. An Experimental Study of Turbulent Skin Friction Reduction in Supersonic Flow Using a Microblowing Technique

    Science.gov (United States)

    Hwang, Danny P.

    1999-01-01

    A new turbulent skin friction reduction technology, called the microblowing technique has been tested in supersonic flow (Mach number of 1.9) on specially designed porous plates with microholes. The skin friction was measured directly by a force balance and the boundary layer development was measured by a total pressure rake at the tailing edge of a test plate. The free stream Reynolds number was 1.0(10 exp 6) per meter. The turbulent skin friction coefficient ratios (C(sub f)/C(sub f0)) of seven porous plates are given in this report. Test results showed that the microblowing technique could reduce the turbulent skin friction in supersonic flow (up to 90 percent below a solid flat plate value, which was even greater than in subsonic flow).

  7. Concept - or no concept

    DEFF Research Database (Denmark)

    Thorsteinsson, Uffe

    1999-01-01

    Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown......Discussion about concept in industrial companies. A method for mapping of managerial concept in specific area is shown...

  8. Utilizing a scale model solar system project to visualize important planetary science concepts and develop technology and spatial reasoning skills

    Science.gov (United States)

    Kortenkamp, Stephen J.; Brock, Laci

    2016-10-01

    Scale model solar systems have been used for centuries to help educate young students and the public about the vastness of space and the relative sizes of objects. We have adapted the classic scale model solar system activity into a student-driven project for an undergraduate general education astronomy course at the University of Arizona. Students are challenged to construct and use their three dimensional models to demonstrate an understanding of numerous concepts in planetary science, including: 1) planetary obliquities, eccentricities, inclinations; 2) phases and eclipses; 3) planetary transits; 4) asteroid sizes, numbers, and distributions; 5) giant planet satellite and ring systems; 6) the Pluto system and Kuiper belt; 7) the extent of space travel by humans and robotic spacecraft; 8) the diversity of extrasolar planetary systems. Secondary objectives of the project allow students to develop better spatial reasoning skills and gain familiarity with technology such as Excel formulas, smart-phone photography, and audio/video editing.During our presentation we will distribute a formal description of the project and discuss our expectations of the students as well as present selected highlights from preliminary submissions.

  9. CASTER - a concept for a Black Hole Finder Probe based on the use of new scintillator technologies

    CERN Document Server

    McConnell, M L; Case, G; Cherry, M; Cravens, J; Guzik, T G; Hurley, K; Kippen, R M; Macri, J R; Miller, R S; Paciesas, W S; Ryan, J M; Schaefer, B; Stacy, J G; Vestrand, W T; Wefel, J P; Connell, Mark L. Mc; Bloser, Peter F.; Case, Gary; Cherry, Michael; Cravens, James; Hurley, Kevin; Macri, John; Miller, Richard S.; Paciesas, William; Ryan, James M.; Schaefer, Bradley; Wefel, John P.

    2005-01-01

    The primary scientific mission of the Black Hole Finder Probe (BHFP), part of the NASA Beyond Einstein program, is to survey the local Universe for black holes over a wide range of mass and accretion rate. One approach to such a survey is a hard X-ray coded-aperture imaging mission operating in the 10--600 keV energy band, a spectral range that is considered to be especially useful in the detection of black hole sources. The development of new inorganic scintillator materials provides improved performance (for example, with regards to energy resolution and timing) that is well suited to the BHFP science requirements. Detection planes formed with these materials coupled with a new generation of readout devices represent a major advancement in the performance capabilities of scintillator-based gamma cameras. Here, we discuss the Coded Aperture Survey Telescope for Energetic Radiation (CASTER), a concept that represents a BHFP based on the use of the latest scintillator technology.

  10. Changes over nature concepts attitudinal nature of science and technology in primary school students after didactic intervention

    Directory of Open Access Journals (Sweden)

    Ricardo Pereira Sepini

    2014-06-01

    Full Text Available This investigation involved quality teaching of issues the Nature of Science and Technology (NS&T related to the validation of knowledge and how it works in today's world. The goal was to show the possibility to teach and assess issues and innovative ways of understanding the NS&T from a didactic intervention performed in the classroom with the help of a Teaching Learning Sequence (TLS. The study design was a experimental intervention, which gathers pretest - didactic intervention - posttest steps, with an experimental group and a control group. Research subjects were students of High-School in a city located in the southern state of Minas Gerais. Among the results there is a significant improvement from pretest to posttest in the experimental group, and a modest improvement in the control group. The contributions of this research also includes the TLS itself and the assessment instruments, and its functionality that makes them transferable to teaching science. We conclude that through the activity designed, conducted and evaluated in the classroom students achieved an improvement in attitudinal conceptions of NS&T

  11. A blended learning concept for an engineering course in the field of color representation and display technologies

    Science.gov (United States)

    Vauderwange, Oliver; Wozniak, Peter; Javahiraly, Nicolas; Curticapean, Dan

    2016-09-01

    The Paper presents the design and development of a blended learning concept for an engineering course in the field of color representation and display technologies. A suitable learning environment is crucial for the success of the teaching scenario. A mixture of theoretical lectures and hands-on activities with practical applications and experiments, combined with the advantages of modern digital media is the main topic of the paper. Blended learning describes the didactical change of attendance periods and online periods. The e-learning environment for the online period is designed toward an easy access and interaction. Present digital media extends the established teaching scenarios and enables the presentation of videos, animations and augmented reality (AR). Visualizations are effective tools to impart learning contents with lasting effect. The preparation and evaluation of the theoretical lectures and the hands-on activities are stimulated and affects positively the attendance periods. The tasks and experiments require the students to work independently and to develop individual solution strategies. This engages and motivates the students, deepens the knowledge. The authors will present their experience with the implemented blended learning scenario in this field of optics and photonics. All aspects of the learning environment will be introduced.

  12. Investigation on the pressure matching performance of the constant area supersonic-supersonic ejector

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.

  13. Unstructured Grid Euler Method Assessment for Aerodynamics Performance Prediction of the Complete TCA Configuration at Supersonic Cruise Speed

    Science.gov (United States)

    Ghaffari, Farhad

    1999-01-01

    Unstructured grid Euler computations, performed at supersonic cruise speed, are presented for a proposed high speed civil transport configuration, designated as the Technology Concept Airplane (TCA) within the High Speed Research (HSR) Program. The numerical results are obtained for the complete TCA cruise configuration which includes the wing, fuselage, empennage, diverters, and flow through nacelles at Mach 2.4 for a range of angles-of-attack and sideslip. The computed surface and off-surface flow characteristics are analyzed and the pressure coefficient contours on the wing lower surface are shown to correlate reasonably well with the available pressure sensitive paint results, particularly, for the complex shock wave structures around the nacelles. The predicted longitudinal and lateral/directional performance characteristics are shown to correlate very well with the measured data across the examined range of angles-of-attack and sideslip. The results from the present effort have been documented into a NASA Controlled-Distribution report which is being presently reviewed for publication.

  14. Incorporation of SemiSpan SuperSonic Transport (S4T) Aeroservoelastic Models into SAREC-ASV Simulation

    Science.gov (United States)

    Christhilf, David M.; Pototzky, Anthony S.; Stevens, William L.

    2010-01-01

    The Simulink-based Simulation Architecture for Evaluating Controls for Aerospace Vehicles (SAREC-ASV) was modified to incorporate linear models representing aeroservoelastic characteristics of the SemiSpan SuperSonic Transport (S4T) wind-tunnel model. The S4T planform is for a Technology Concept Aircraft (TCA) design from the 1990s. The model has three control surfaces and is instrumented with accelerometers and strain gauges. Control laws developed for wind-tunnel testing for Ride Quality Enhancement, Gust Load Alleviation, and Flutter Suppression System functions were implemented in the simulation. The simulation models open- and closed-loop response to turbulence and to control excitation. It provides time histories for closed-loop stable conditions above the open-loop flutter boundary. The simulation is useful for assessing the potential impact of closed-loop control rate and position saturation. It also provides a means to assess fidelity of system identification procedures by providing time histories for a known plant model, with and without unmeasured turbulence as a disturbance. Sets of linear models representing different Mach number and dynamic pressure conditions were implemented as MATLAB Linear Time Invariant (LTI) objects. Configuration changes were implemented by selecting which LTI object to use in a Simulink template block. A limited comparison of simulation versus wind-tunnel results is shown.

  15. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  16. 绿色刀具设计的概念及关键技术%Concept & Key Technologies of Green Cutting Tool Design

    Institute of Scientific and Technical Information of China (English)

    王跃进

    2001-01-01

    介绍了绿色刀具设计的概念及绿色材料选择技术、面向可拆卸设计技术、面向可回收设计技术、绿色刀具评价方法等关键技术,指出绿色刀具设计与制造技术的应用将引起刀具产业的深刻变革。%The concept of green cutting tool design and its key technologies, including selection technology for green mate- rials, design technology for disassembly, design technology for recovering and evaluation methods for green cutting tools are introduced. It is pointed out that a profound change will be created in the cutting tool industry with increasing applications of the green cutting tool design and manufacturing technologies.

  17. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  18. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  19. Numerical simulation of supersonic gap flow.

    Science.gov (United States)

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  20. Numerical simulation of supersonic gap flow.

    Directory of Open Access Journals (Sweden)

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  1. Coupling dynamic of twin supersonic jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2015-11-01

    In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.

  2. Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview

    Science.gov (United States)

    Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.

    2017-01-01

    Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.

  3. Swingbed Amine Carbon Dioxide Removal Flight Experiment - Feasibility Study and Concept Development for Cost-Effective Exploration Technology Maturation on The International Space Station

    Science.gov (United States)

    Hodgson, Edward; Papale, William; Nalette, Timothy; Graf, John; Sweterlitsch, Jeffery; Hayley, Elizabeth; Williams, Antony; Button, Amy

    2011-01-01

    The completion of International Space Station Assembly and transition to a full six person crew has created the opportunity to create and implement flight experiments that will drive down the ultimate risks and cost for human space exploration by maturing exploration technologies in realistic space environments that are impossible or incredibly costly to duplicate in terrestrial laboratories. An early opportunity for such a technology maturation experiment was recognized in the amine swingbed technology baselined for carbon dioxide and humidity control on the Orion spacecraft and Constellation Spacesuit System. An experiment concept using an existing high fidelity laboratory swing bed prototype has been evaluated in a feasibility and concept definition study leading to the conclusion that the envisioned flight experiment can be both feasible and of significant value for NASA s space exploration technology development efforts. Based on the results of that study NASA has proceeded with detailed design and implementation for the flight experiment. The study effort included the evaluation of technology risks, the extent to which ISS provided unique opportunities to understand them, and the implications of the resulting targeted risks for the experiment design and operational parameters. Based on those objectives and characteristics, ISS safety and integration requirements were examined, experiment concepts developed to address them and their feasibility assessed. This paper will describe the analysis effort and conclusions and present the resulting flight experiment concept. The flight experiment, implemented by NASA and launched in two packages in January and August 2011, integrates the swing bed with supporting elements including electrical power and controls, sensors, cooling, heating, fans, air- and water-conserving functionality, and mechanical packaging structure. It is now on board the ISS awaiting installation and activation.

  4. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  5. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  6. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  7. Responsibility: The First Virtue of Innovation? A discussion of some ethical and meta-ethical issues concerning the concept of ‘responsibility’ in technological innovation

    Directory of Open Access Journals (Sweden)

    Espen D. Stabell

    2014-11-01

    Full Text Available In this paper I investigate the concept of responsibility in the context of technological innovation, with reference to two types of responsibility: ex post and ex ante responsibility. Exposing the shortcomings of ex post responsibility in the context of innovation, I examine different ways of conceiving of a form of ex ante responsibility suitable for our current technological situation. Here I identify two positions with very different approaches to the question of the ethical status of responsibility: Hans Jonas’s concept of responsibility as an ethical principle structuring moral behavior, and René von Schomberg’s idea of responsibility as “responsiveness” linked to procedures of communication and collaboration. Rejecting von Schomberg’s concept on ethico-philosophical grounds, I argue in favor of a critical rehabilitation of some basic thoughts in the philosophy of Jonas. Finally, I suggest taking the step from the Jonasian ethics of responsibility towards the Hegelian concept of Sittlichkeit – a concrete social morality that disentangles responsibility from the dilemmas of subjectivist morality.

  8. Key concepts in energy

    CERN Document Server

    Madureira, Nuno Luis

    2014-01-01

    Highlights how key energy concepts surfaced, tracing their evolution throughout history to encompasses four economic concepts and four technological-engineering concepts developed through their history to conclude with current economic and environmental sciences Considers the process of energy-substitutions through complementary usages, hybridization and technological mixes Combines a conceptual approach with key theoretical concepts from engineering, geological and economic sciences providing cross disciplinary overview of energy fundamentals in a short and focused reading

  9. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  10. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  11. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  12. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  13. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  14. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  15. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  16. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  17. Performance characterization of Ni60-WC coating on steel processed with supersonic laser deposition

    Directory of Open Access Journals (Sweden)

    Fang Luo

    2015-03-01

    Full Text Available Ni60-WC particles are used to improve the wear resistance of hard-facing steel due to their high hardness. An emerging technology that combines laser with cold spraying to deposit the hard-facing coatings is known as supersonic laser deposition. In this study, Ni60-WC is deposited on low-carbon steel using SLD. The microstructure and performance of the coatings are investigated through SEM, optical microscopy, EDS, XRD, microhardness and pin-on-disc wear tests. The experimental results of the coating processed with the optimal parameters are compared to those of the coating deposited using laser cladding.

  18. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    Science.gov (United States)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  19. Passive Thermal Control for the Low Density Supersonic Decelerator (LDSD) Test Vehicle Spin Motors Sub-System

    Science.gov (United States)

    Redmond, Matthew; Mastropietro, A. J.; Pauken, Michael; Mobley, Brandon

    2014-01-01

    Future missions to Mars will require improved entry, descent, and landing (EDL) technology over the Viking-heritage systems which recently landed the largest payload to date, the 900 kg Mars Science Laboratory. As a result, NASA's Low Density Supersonic Decelerator (LDSD) project is working to advance the state of the art in Mars EDL systems by developing and testing three key technologies which will enable heavier payloads and higher altitude landing sites on the red planet. These technologies consist of a large 33.5 m diameter Supersonic Disk Sail (SSDS) parachute and two different Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class that inflates to a 6 m diameter torus (SIAD-R), and an exploration class that inflates to an 8 m diameter isotensoid (SIADE). All three technologies will be demonstrated on test vehicles at high earth altitudes in order to simulate the Mars EDL environment. Each vehicle will be carried to altitude by a large helium balloon, released, spun up using spin motors to stabilize the vehicle's trajectory, and accelerated to supersonic speeds using a large solid rocket motor. The vehicle will then be spun down using another set of spin motors, and will deploy either the SIAD-R or SIAD-E, followed by the SSDS parachute until the vehicle lands in the ocean. Component level testing and bounding analysis are used to ensure the survival of system components in extreme thermal environments and predict temperatures throughout the flight. This paper presents a general description of the thermal testing, model correlation, and analysis of the spin motor passive thermal control sub-system to maintain spin motor performance, prescribed vehicle trajectory, and structural integrity of the test vehicle. The spin motor subsystem is predicted to meet its requirements with margin.

  20. Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet

    Science.gov (United States)

    Sato, Koma; Kumano, Takayasu; Yonezawa, Masahito; Yamashita, Hiroshi; Jeong, Shinkyu; Obayashi, Shigeru

    Multi-Objective Optimization has been applied to a design problem of the twin engine concept for Silent Supersonic Business Jet (SSBJ). This problem aims to find main wing, body, tail wing and engine nacelle configurations, which can minimize both sonic boom and drag in a supersonic cruising flight. The multi-objective genetic algorithm (MOGA) coupled with the Kriging model has been used to globally and effectively search for optimal design candidates in the multi-objective problem. The drag and the sonic boom have been evaluated by the computational fluid dynamics (CFD) simulation and the waveform parameter method. As a result, the present optimization has successfully obtained low-boom and low-drag design candidates, which are better than the baseline design by more than 40% regarding each performance. Moreover, the structure of design space has been visualized by the self-organizing map (SOM).

  1. Science and Technology Text Mining: Hypersonic and Supersonic Flow

    Science.gov (United States)

    2006-05-31

    Technical Intelligence. Competitive Intelligence Review. 4:1. Kostoff, R. N. (1993b) Co-Word Analysis. in Assessing R&D Impacts: Method and...Management. 24:3. Kostoff, R.N. (1994b). Database Tomography: Origins and Applications. Competitive Intelligence Review 5:1. Spring. Kostoff, R. N

  2. Mechanically-Deployed Hypersonic Decelerator and Conformal Ablator Technologies for Mars Missions

    Science.gov (United States)

    Venkatapathy, Ethiraj; Wercinski, Paul F.; Beck, Robin A. S.; Hamm, Kenneth R.; Yount, Bryan C.; Makino, A.; Smith, B.; Gage, P.; Prabhu, D.

    2012-01-01

    The concept of a mechanically deployable hypersonic decelerator, developed initially for high mass (40 MT) human Mars missions, is currently funded by OCT for technology maturation. The ADEPT (Adaptive, Deployable Entry and Placement Technology) project has broad, game-changing applicability to in situ science missions to Venus, Mars, and the Outer Planets. Combined with maturation of conformal ablator technology (another current OCT investment), the two technologies provide unique low mass mission enabling capabilities otherwise not achievable by current rigid aeroshell or by inflatables. If this abstract is accepted, we will present results that illustrate the mission enabling capabilities of the mechanically deployable architecture for: (1) robotic Mars (Discovery or New Frontiers class) in the near term; (2) alternate approaches to landing MSL-class payloads, without the need for supersonic parachute or lifting entry, in the mid-term; and (3) Heavy mass and human missions to Mars in the long term.

  3. Effects of interactive technology, teacher scaffolding and feedback on university students' conceptual development in motion and force concepts

    Science.gov (United States)

    Stecklein, Jason Jeffrey

    The utilization of interactive technologies will affect learning in science classrooms of the future. And although these technologies have improved in form and function, their effective employment in university science classrooms has lagged behind the rapid development of new constructivist pedagogies and means of instruction. This dissertation examines the enlistment of instructional technologies, in particular tablet PCs and DyKnow Interactive Software, in a technologically enhanced, university-level, introductory physics course. Results of this qualitative case study of three university students indicate that (1) the use of interactive technology positively affects both student learning within force and motion and self-reported beliefs about physics, (2) ad hoc use of instructional technologies may not sufficient for effective learning in introductory physics, (3) student learners dictate the leveraging of technology in any classroom, and (4) that purposeful teacher structuring of classroom activities with technologies are essential for student construction of knowledge. This includes designing activities to elicit attention and make knowledge visible for low-level content, while augmenting student interactions and modelling procedural steps for higher-level content.

  4. Using Early Concept Narratives to Collect Valid Customer Input about Breakthrough Technologies: The Effect of Application Visualization on Transportation

    NARCIS (Netherlands)

    Van den Hende, E.A.; Schoormans, J.P.L.; Morel, K.P.N.; Lashina, T.; Van Loenen, E.; De Boevere, E.I.

    2007-01-01

    The value of early customer input has long been recognized by companies. However, especially when breakthrough technologies are involved, more insight in valuable methods for collecting early customer input is needed. In this paper, we propose a method to evaluate a breakthrough technology with cust

  5. Acquiring Knowledge in Learning Concepts from Electrical Circuits: The Use of Multiple Representations in Technology-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Abdeljalil Métioui

    2012-04-01

    Full Text Available The constructivists approach on the conception of relative software of modelling to training and teaching of the concepts of current and voltage requires appraisal of several disciplinary fields in order to provide to the learners a training adapted to their representations. Thus, this approach requires the researchers to have adequate knowledge or skills in data processing, didactics and science content. In this regard, several researches underline that the acquisition of basic concepts that span a field of a given knowledge, must take into account the student and the scientific representations. The present research appears in this perspective, and aims to present the interactive computer environments that take into account the students (secondary and college and scientific representations related to simple electric circuits. These computer environments will help the students to analyze the functions of the electric circuits adequately.

  6. Acquiring Knowledge in Learning Concepts from Electrical Circuits: The Use of Multiple Representations in Technology-Based Learning Environments

    Directory of Open Access Journals (Sweden)

    Abdeljalil Métioui

    2012-04-01

    Full Text Available The constructivists approach on the conception of relative software of modelling to training and teaching of the concepts of current and voltage requires appraisal of several disciplinary fields in order to provide to the learners a training adapted to their representations. Thus, this approach requires the researchers to have adequate knowledge or skills in data processing, didactics and science content. In this regard, several researches underline that the acquisition of basic concepts that span a field of a given knowledge, must take into account the student and the scientific representations. The present research appears in this perspective, and aims to present the interactive computer environments that take into account the students (secondary and college and scientific representations related to simple electric circuits. These computer environments will help the students to analyze the functions of the electric circuits adequately.

  7. Analysis of the conceptions and expectations of students in the courses of pedagogy, administration and human resources about the discipline of science, technology and society

    Science.gov (United States)

    de Souza, Alexandre; de Oliveira Neves, Jobert; Ferreira, Orlando Rodrigues; Lúcia Costa Amaral, Carmem; Delourdes Maciel, Maria; Voelzke, Marcos Rincon; Nascimento, Rômulo Pereira

    2012-10-01

    Provided for the education curricula since 1960, the focus on Science, Technology and Society (STS) has been poorly implemented even until today. Set as a goal to be achieved at all levels of education by 2014, in Brazil it is necessary to undertake specific actions in pursuit of putting into practice what has been stalled over the years in Education. As a result of joint efforts of teachers and students of the Masters in Teaching Science and Mathematics at the Universidade Cruzeiro do Sul comes the challenge of providing a specific discipline dealing with the concepts of STS, offered as a optional special, initially for students of Pedagogy and later, due to the interest of some students, for the course of Administration and Human Resources of this institution. The survey of previous conceptions of students enrolled in the Special Discipline Elective Science, Technology and Society (CTS DOP) on the triad of STS showed a great ignorance on the same theme. The reports reveal conceptions of students who approach the linear model of development. As to the generated expectations in terms of discipline, there stand out the desires of expansion of knowledge for possible applications in personal and professional life. This research aims to evaluate the current course, while identifying ways to improve and strengthen the STS movement in education.

  8. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  9. Factors Affecting Teaching the Concept of Renewable Energy in Technology Assisted Environments and Designing Processes in the Distance Education Model

    Science.gov (United States)

    Yucel, A. Seda

    2007-01-01

    The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating…

  10. Technology-assisted training of arm-hand skills in stroke: concepts on reacquisition of motor control and therapist guidelines for rehabilitation technology design

    Directory of Open Access Journals (Sweden)

    Willmann Richard D

    2009-01-01

    Full Text Available Abstract Background It is the purpose of this article to identify and review criteria that rehabilitation technology should meet in order to offer arm-hand training to stroke patients, based on recent principles of motor learning. Methods A literature search was conducted in PubMed, MEDLINE, CINAHL, and EMBASE (1997–2007. Results One hundred and eighty seven scientific papers/book references were identified as being relevant. Rehabilitation approaches for upper limb training after stroke show to have shifted in the last decade from being analytical towards being focussed on environmentally contextual skill training (task-oriented training. Training programmes for enhancing motor skills use patient and goal-tailored exercise schedules and individual feedback on exercise performance. Therapist criteria for upper limb rehabilitation technology are suggested which are used to evaluate the strengths and weaknesses of a number of current technological systems. Conclusion This review shows that technology for supporting upper limb training after stroke needs to align with the evolution in rehabilitation training approaches of the last decade. A major challenge for related technological developments is to provide engaging patient-tailored task oriented arm-hand training in natural environments with patient-tailored feedback to support (re learning of motor skills.

  11. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  12. Supersonic Jet Noise Reduction Using Microjets

    Science.gov (United States)

    Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra

    2013-11-01

    Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.

  13. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  14. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  15. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  16. Supersonic collisions between two gas streams

    CERN Document Server

    Lee, H M; Ryu, D; Lee, Hyung Mok; Kang, Hyesung; Ryu, Dongsu

    1995-01-01

    A star around a massive black hole can be disrupted tidally by the gravity of the black hole. Then, its debris may form a precessing stream which may even collide with itself. In order to understand the dynamical effects of the stream-stream collision on the eventual accretion of the stellar debris onto the black hole, we have studied how gas flow behaves when the outgoing stream collides supersonically with the incoming stream. We have investigated the problem analytically with one-dimensional plane-parallel streams and numerically with more realistic three-dimensional streams. A shock formed around the contact surface converts the bulk of the orbital streaming kinetic energy into thermal energy. In three-dimensional simulations, the accumulated hot post-shock gas then expands adiabatically and drives another shock into the low density ambient region. Through this expansion, thermal energy is converted back to the kinetic energy associated with the expanding motion. Thus, in the end, only a small fraction of...

  17. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  18. Supersonic Magnetic Flows in the Quiet Sun

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A

    2012-01-01

    In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.

  19. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  20. Evaluating the Force Concept Inventory for different student groups at the Norwegian University of Science and Technology

    CERN Document Server

    Persson, J R

    2015-01-01

    The Force Concept Inventory (FCI) was developed by Hestenes, Wells and Swackhamer, in order to assess student understanding of the concept of force. FCI has been used for over 20 years and in different countries. When applying the inventory in a new context it is important to evaluate the reliability and discrimination power of this assessment tool. In this study the reliability and discrimination power are evaluated in the context of Engineering education at a Norwegian university, using statistical tests, focusing on both item analysis and on the entire test. The results indicate that FCI is a reliable and discriminating tool in most cases. As there are exceptions, statistical tests should always be done when FCI is administered in a new context.

  1. Joint Command Decision Support for the 21st Century (JCDS 21) Technology Demonstration (TD) Project: Concept of Operations (CONOPs)

    Science.gov (United States)

    2008-04-08

    to this CONOPs ( Greenley , Baker, & Cochran, 2006). The Gap Analysis included consideration of complexity and risk dimensions. The results of the...initiale, nous avons d’abord examiné les lacunes, ce qui est tout particulièrement pertinent dans le cas du présent concept d’opération ( Greenley , Baker...ability to discharge their responsibilities. A Gap Analysis was conducted as part of Front End Analysis ( Greenley , Baker, & Cochran, 2006) and is

  2. Factors Affecting Teaching the Concept of Renewable Energy In Technology Assisted Environments and Designing Processes In The Distance Education Model

    OpenAIRE

    YUCEL, A. Seda

    2007-01-01

    The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out w...

  3. Factors Affecting Teaching the Concept of Renewable Energy In Technology Assisted Environments and Designing Processes In The Distance Education Model

    OpenAIRE

    YUCEL, A. Seda

    2015-01-01

    The energy policies of today focus mainly on sustainable energy systems and renewable energy resources. Chemistry is closely related to energy recycling, energy types, renewable energy, and nature-energy interaction; therefore, it is now an obligation to enrich chemistry classes with renewable energy concepts and related awareness. Before creating renewable energy awareness, the factors thought to affect such awareness should be determined. Knowing these factors would facilitate finding out w...

  4. Stirling engine technology. Fundamentals, concepts, developments, applications. 2. tot. new rev. ed.; Stirling-Maschinen-Technik. Grundlagen, Konzepte, Entwicklungen, Anwendungen

    Energy Technology Data Exchange (ETDEWEB)

    Steimle, F.; Lamprichs, J.; Beck, P.

    2007-07-01

    The book presents the technology of Stirling engines, their history, types, new trends and current and future applications. Commercially successful Stirling engines are presented. The second edition of this book focuses on decentral combined heat and power generation, utilisation of biomass and solar energy, heat pumps and refrigerators. Thermodynamic fundamentals of various types of Stirling engines are described, as well as requirements on engine components, and the ecological and economic advantages of the Stirling technology. A revised list of international suppliers, research institutions and individuals working in this field is contained in the appendix. (orig.)

  5. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  6. Motor (re) learning concepts used in technology assisted training of arm hand function in stroke: a review article.

    NARCIS (Netherlands)

    Timmermans, A.; Seelen, H.A.M.; Willmann, R.; Kingma, H.

    2007-01-01

    Background and purpose: It is the purpose of this article to review, which are possible criteria that rehabilitation technology should meet in order to offer upper limb training after stroke that is based on principles of motor learning. Methods: A computerised literature search was conducted in P

  7. Developing Computer Programming Concepts and Skills via Technology-Enriched Language-Art Projects: A Case Study

    Science.gov (United States)

    Lee, Young-Jin

    2010-01-01

    Teaching computer programming to young children has been considered difficult because of its abstract and complex nature. The objectives of this study are (1) to investigate whether an innovative educational technology tool called Scratch could enable young children to learn abstract knowledge of computer programming while creating multimedia…

  8. Teaching Image-Processing Concepts in Junior High School: Boys' and Girls' Achievements and Attitudes towards Technology

    Science.gov (United States)

    Barak, Moshe; Asad, Khaled

    2012-01-01

    Background: This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose: The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these…

  9. Linking climate change mitigation and coastal eutrophication management through biogas technology: Evidence from a new Danish bioenergy concept.

    Science.gov (United States)

    Kaspersen, Bjarke Stoltze; Christensen, Thomas Budde; Fredenslund, Anders Michael; Møller, Henrik Bjarne; Butts, Michael Brian; Jensen, Niels H; Kjaer, Tyge

    2016-01-15

    The interest in sustainable bioenergy solutions has gained great importance in Europe due to the need to reduce GHG emissions and to meet environmental policy targets, not least for the protection of groundwater and surface water quality. In the Municipality of Solrød in Denmark, a novel bioenergy concept for anaerobic co-digestion of food industry residues, manure and beach-cast seaweed has been developed and tested in order to quantify the potential for synergies between climate change mitigation and coastal eutrophication management in the Køge Bay catchment. The biogas plant, currently under construction, was designed to handle an annual input of up to 200,000 t of biomass based on four main fractions: pectin wastes, carrageenan wastes, manure and beach-cast seaweed. This paper describes how this bioenergy concept can contribute to strengthening the linkages between climate change mitigation strategies and Water Framework Directive (WFD) action planning. Our assessments of the projected biogas plant indicate an annual reduction of GHG emissions of approx. 40,000 t CO2 equivalents, corresponding to approx. 1/3 of current total GHG emissions in the Municipality of Solrød. In addition, nitrogen and phosphorous loads to Køge Bay are estimated to be reduced by approx. 63 t yr.(-1) and 9 tyr.(-1), respectively, contributing to the achievement of more than 70% of the nutrient reduction target set for Køge Bay in the first WFD river basin management plan. This study shows that anaerobic co-digestion of the specific food industry residues, pig manure and beach-cast seaweed is feasible and that there is a very significant, cost-effective GHG and nutrient loading mitigation potential for this bioenergy concept. Our research demonstrates how an integrated planning process where considerations about the total environment are integrated into the design and decision processes can support the development of this kind of holistic bioenergy solutions.

  10. Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.

  11. Revaluation of the concept of the human condition and the common heritage of mankind: Keys to the social benefits of space technology

    Science.gov (United States)

    Cocca, Aldo Armando

    Men may do many things, but they must never forget the human condition in any act or relation with a fellow human being. Space Law has vindicated the supreme value of man as a legal subject par excellence. The dignity of the human being is a value that rates above any scientific or technological advance. A benefit, by definition and derivation, is anything contributing to an improvement in a condition. Social benefits pertain only to human beings, who are their sole beneficiaries. Developing countries are young nations that through their international relations may, and indeed must, realize the benefits of space technology. The principle of the "common heritage of Mankind" was created to satisfy the aspirations of all peoples and to meet the needs of both industrialized and developing countries. Only a groundless fear and lack of vision of the future can induce governments to delay its implementation. We must not forget that the concept was transformed into a principle of international positive law by the unanimous decision of the international community, which enshrined it in the Moon Agreement. The social and individual responsibility of the scientist is becoming even more clearly defined, and scientists play an important role in the conduct of nations. Through education, including education in the humanities and a graduation pledge, the scientist has embarked on the road leading to an active presence in society, facing his responsibility. Inter-generational equity contributes to strengthening the concept of the human condition and the legal principle of the common heritage of mankind.

  12. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  13. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  14. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas

    CERN Document Server

    Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G

    2014-01-01

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...

  15. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  16. New concepts of science and medicine in science and technology studies and their relevance to science education.

    Science.gov (United States)

    Wang, Hsiu-Yun; Stocker, Joel F; Fu, Daiwie

    2012-02-01

    Science education often adopts a narrow view of science that assumes the lay public is ignorant, which seemingly justifies a science education limited to a promotional narrative of progress in the form of scientific knowledge void of meaningful social context. We propose that to prepare students as future concerned citizens of a technoscientific society, science education should be informed by science, technology, and society (STS) perspectives. An STS-informed science education, in our view, will include the following curricular elements: science controversy education, gender issues, historical perspective, and a move away from a Eurocentric view by looking into the distinctive patterns of other regional (in this case of Taiwan, East Asian) approaches to science, technology, and medicine. This article outlines the significance of some major STS studies as a means of illustrating the ways in which STS perspectives can, if incorporated into science education, enhance our understanding of science and technology and their relationships with society. Copyright © 2011. Published by Elsevier B.V.

  17. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  18. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  19. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  20. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    Science.gov (United States)

    Thurmond, Brandi

    2011-01-01

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…

  1. Promoting Students' Problem Solving Skills and Knowledge of STEM Concepts in a Data-Rich Learning Environment: Using Online Data as a Tool for Teaching about Renewable Energy Technologies

    Science.gov (United States)

    Thurmond, Brandi

    2011-01-01

    This study sought to compare a data-rich learning (DRL) environment that utilized online data as a tool for teaching about renewable energy technologies (RET) to a lecture-based learning environment to determine the impact of the learning environment on students' knowledge of Science, Technology, Engineering, and Math (STEM) concepts related…

  2. Description of an aeronautical geometry conversion package: Wave-drag to Langley Wireframe Geometry Standard (LaWGS) to Supersonic Implicit Marching Potential (SIMP)

    Science.gov (United States)

    Wiese, Michael R.

    1987-01-01

    Documented is an aeronautical geometry conversion package which translates wave-drag geometry into the Langley Wireframe Geometry Standard (LaWGS) format and then into a format which is used by the Supersonic Implicit Marching Potential (SIMP) program. The programs described were developed by Computer Sciences Corporation for the Advanced Vehicles Division/Advanced Concepts Branch at NASA Langley Research Center. Included also are the input and output from a benchmark test case.

  3. Discussion on Modern Agricultural Science and Technology Demonstration Garden with the Guiding of Agricultural Ecotourism-analyzing Conception Planning for Modern Agricultural Science and Technology Demonstration Field of Ten Thousands’ Mu Coffee and Nuts of Huaqiaoba

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2013-03-01

    Full Text Available Modern agricultural science and technology demonstration fields emerge and flourish with the increasing of the adjustment of agricultural industrial structure and the rising of characteristic ecotourism. The study tried to discuss the modern agricultural science and technology demonstration garden with the guiding of agricultural ecotourism by analyzing conception planning for modern agricultural science and technology demonstration field of ten thousands’ Mu coffee and nuts in Huaqiaoba, Mangshi, Dehong, Yunnan. The planning respected current situation of natural ecology, established a tourism theme image of “planting coffee trees and also drawing golden phoenixes” in view of SWOT analyzing of ecotourism, put forward a planning idea of “nature and ecology, culture and human, science and technology and modern” and especially expounded the structure of total planning layout of “one axis, one circle, one nucleus, sixteen areas and twenty four points” and the contents of specific functional areas around three key functions: coffee planting demonstration, agricultural ecotourism, industrial leisure vacation.

  4. Teaching image-processing concepts in junior high school: boys' and girls' achievements and attitudes towards technology

    Science.gov (United States)

    Barak, Moshe; Asad, Khaled

    2012-04-01

    Background : This research focused on the development, implementation and evaluation of a course on image-processing principles aimed at middle-school students. Purpose : The overarching purpose of the study was that of integrating the learning of subjects in science, technology, engineering and mathematics (STEM), and linking the learning of these subjects to the children's world and to the digital culture characterizing society today. Sample : The participants were 60 junior high-school students (9th grade). Design and method : Data collection included observations in the classes, administering an attitude questionnaire before and after the course, giving an achievement exam and analyzing the students' final projects. Results and conclusions : The findings indicated that boys' and girls' achievements were similar throughout the course, and all managed to handle the mathematical knowledge without any particular difficulties. Learners' motivation to engage in the subject was high in the project-based learning part of the course in which they dealt, for instance, with editing their own pictures and experimenting with a facial recognition method. However, the students were less interested in learning the theory at the beginning of the course. The course increased the girls', more than the boys', interest in learning scientific-technological subjects in school, and the gender gap in this regard was bridged.

  5. Innovation Program and Conception of Science and Technology Insurance Kind%科技保险险种创新方案与构想

    Institute of Scientific and Technical Information of China (English)

    赵湜; 谢科范

    2011-01-01

    Along with the development of science and technology insurance, demands for new science and technology insurance kinds are becoming sharper and sharper. To meet the new demands of science and technology insurance, on the basis of current insurance kind innovative approach, this paper designs a specific program of science and technology insurance innovation. Under the direction of innovation program, according to the current situation of high professional risks for technology researchers, the paper proposes the conception of professional liability insurance for technology researchers. Based on the current premium ratetnaking method, it builds a new insurance kind rate model. Finally, the paper takes PICC Property and Casualty and D company as research objects, collects data, and makes an empirical analysis on premium ratemaking model of professional liability insurance for technology researchers by using priori theories distribution.%随着我国科技保险的发展,市场对于科技保险新险种的需求逐渐凸显,为了适应科技保险的新需求,以现有的险种创新方法为基础,针对科技保险的险种创新设计了具体的方案.在创新方案的指导下,针对研发技术人员职业风险极高的现状,提出了设计研发技术人员职业责任保险的构想,并在现有保险费率厘定方法的基础上构建了该种新险种的费率模型,最后以人保财险和某D公司为调研对象,收集具体数据,利用先验理论分布对研发技术人员职业责任保险费率厘定模型进行模拟实证分析.

  6. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  7. Euler Technology Assessment - SPLITFLOW Code Applications for Stability and Control Analysis on an Advanced Fighter Model Employing Innovative Control Concepts

    Science.gov (United States)

    Jordan, Keith J.

    1998-01-01

    This report documents results from the NASA-Langley sponsored Euler Technology Assessment Study conducted by Lockheed-Martin Tactical Aircraft Systems (LMTAS). The purpose of the study was to evaluate the ability of the SPLITFLOW code using viscous and inviscid flow models to predict aerodynamic stability and control of an advanced fighter model. The inviscid flow model was found to perform well at incidence angles below approximately 15 deg, but not as well at higher angles of attack. The results using a turbulent, viscous flow model matched the trends of the wind tunnel data, but did not show significant improvement over the Euler solutions. Overall, the predictions were found to be useful for stability and control design purposes.

  8. The ASPEC teeter: price/performance improvement of existing wind turbine technology by using a revolutionary concept

    Energy Technology Data Exchange (ETDEWEB)

    Doorenspleet, F. [Aerpac Special Products B.V., Amelo (Netherlands); Prats, J. [Ecotecnia S. Coop, Barcelona (Spain); Hagg, F. [Stork Product Engineering B.V. Amsterdam (Netherlands)

    1996-12-31

    Improvement of the price/performance ratio of wind turbines is essential if wind energy is to be taken seriously in the world energy market in the coming century. The key to improvement of the price/performance ratio lies in the minimisation of loads by inexpensive means, at a simultaneous increase in annual production of the wind turbine. On basis of the NOVEM/CEC Flexhat project, this design project is a first step towards commercialisation of flexible rotor technology. The goal of the project was to redesign an existing stall-regulated wind turbine to improve the original price/performance ratio by 20%. This goal has been reached by the use of a larger, two-bladed rotor with elastomeric tester, variable speed drivetrain and fast active tip pitch control with an advanced peakshaving function. The project has been sponsored by the European Commission under contract nr. Jou2CT93-0281. (author)

  9. Fabricating Optical Fiber Imaging Sensors Using Inkjet Printing Technology: a pH Sensor Proof-of-Concept

    Energy Technology Data Exchange (ETDEWEB)

    Carter, J C; Alvis, R M; Brown, S B; Langry, K C; Wilson, T S; McBride, M T; Myrick, M L; Cox, W R; Grove, M E; Colston, B W

    2005-03-01

    We demonstrate the feasibility of using Drop-on-Demand microjet printing technology for fabricating imaging sensors by reproducibly printing an array of photopolymerizable sensing elements, containing a pH sensitive indicator, on the surface of an optical fiber image guide. The reproducibility of the microjet printing process is excellent for microdot (i.e. micron-sized polymer) sensor diameter (92.2 {+-} 2.2 microns), height (35.0 {+-} 1.0 microns), and roundness (0.00072 {+-} 0.00023). pH sensors were evaluated in terms of pH sensing ability ({le}2% sensor variation), response time, and hysteresis using a custom fluorescence imaging system. In addition, the microjet technique has distinct advantages over other fabrication methods, which are discussed in detail.

  10. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  11. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  12. SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW

    Directory of Open Access Journals (Sweden)

    Tropina, A. A.

    2013-06-01

    Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.

  13. Experimental study of mixing enhancement using pylon in supersonic flow

    Science.gov (United States)

    Vishwakarma, Manmohan; Vaidyanathan, Aravind

    2016-01-01

    The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.

  14. Multiresolution analysis of density fluctuation in supersonic mixing layer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.

  15. A flamelet model for turbulent diffusion combustion in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.

  16. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-02-15

    applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close

  17. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  18. Advances in developing the air-lift drilling technology. Concept of a portal drilling rig - trial of a steerable shaft drilling bit

    Energy Technology Data Exchange (ETDEWEB)

    Weber, W.

    1988-12-01

    The Federal Minister of Research and Technology is supporting a project of Wirth GmbH to develop a new drilling rig suitable for drilling deep shafts from the surface through ground of almost any condition, from unstable formations to solid rock. The development of such drilling rig is based on the blind drilling method with air-assisted reverse circulation. - Various concepts of drilling rigs have been developed in accordance with different planning stages of a combined RD-project. Based on the experience of an extensive R and D program a steerable vertical drilling bit has been developed by which deviations from the vertical can be positively corrected. The prototype of this steerable bit with a diameter of 2.1 m has been tested successfully while drilling a well with a depth of more than 200 m in an open pit coal mine.

  19. Concept development of a Mach 4 high-speed civil transport

    Science.gov (United States)

    Domack, Christopher S.; Dollyhigh, Samuel M.; Beissner, Fred L., Jr.; Geiselhart, Karl A.; Mcgraw, Marvin E., Jr.; Shields, Elwood W.; Swanson, Edward E.

    1990-01-01

    A study was conducted to configure and analyze a 250 passenger, Mach 4 High Speed Civil Transport with a design range of 6500 n.mi. The design mission assumed an all-supersonic cruise segment and no community noise or sonic boom constraints. The study airplane was developed in order to examine the technology requirements for such a vehicle and to provide an unconstrained baseline from which to assess changes in technology levels, sonic boom limits, or community noise constraints in future studies. The propulsion, structure, and materials technologies utilized in the sizing of the study aircraft were assumed to represent a technology availability date of 2015. The study airplane was a derivative of a previously developed Mach 3 concept and utilized advanced afterburning turbojet engines and passive airframe thermal protection. Details of the configuration development, aerodynamic design, propulsion system, mass properties, and mission performance are presented. The study airplane was estimated to weigh approx. 866,000 lbs. Although an aircraft of this size is a marginally acceptable candidate to fit into the world airport infrastructure, it was concluded that the inclusion of community noise or sonic boom constraints would quickly cause the aircraft to grow beyond acceptable limits using the assumed technology levels.

  20. Plant-centered biosystems in space environments: technological concepts for developing a plant genetic assessment and control system.

    Science.gov (United States)

    Lomax, Terri L; Findlay, Kirk A; White, T J; Winner, William E

    2003-06-01

    Plants will play an essential role in providing life support for any long-term space exploration or habitation. We are evaluating the feasibility of an adaptable system for measuring the response of plants to any unique space condition and optimizing plant performance under those conditions. The proposed system is based on a unique combination of systems including the rapid advances in the field of plant genomics, microarray technology for measuring gene expression, bioinformatics, gene pathways and networks, physiological measurements in controlled environments, and advances in automation and robotics. The resulting flexible module for monitoring and optimizing plant responses will be able to be inserted as a cassette into a variety of platforms and missions for either experimental or life support purposes. The results from future plant functional genomics projects have great potential to be applied to those plant species most likely to be used in space environments. Eventually, it will be possible to use the plant genetic assessment and control system to optimize the performance of any plant in any space environment. In addition to allowing the effective control of environmental parameters for enhanced plant productivity and other life support functions, the proposed module will also allow the selection or engineering of plants to thrive in specific space environments. The proposed project will advance human exploration of space in the near- and mid-term future on the International Space Station and free-flying satellites and in the far-term for longer duration missions and eventual space habitation.

  1. A process concept for the production of benzene-ethylene-SNG from coal using flash hydropyrolysis technology

    Science.gov (United States)

    Greene, M. I.; Ladelfa, C. J.; Bivacca, S. J.

    1980-05-01

    Flash hydropyrolysis (FHP) of coal is an emerging technology for the direct production of methane, ethane and BTX in a single-stage, high throughput reactor. The FHP technique involves the short residence time (1-2 seconds), rapid heatup of coal in a dilute-phase, transport reactor. When integrated into an overall, grass-roots conversion complex, the FHP technique can be utilized to generate a product consisting of SNG, ethylene/propylene, benzene and Fischer-Tropsch-based alcohols. This paper summarizes the process engineering and economics of conceptualized facility based on an FHP reactor operation with a lignitic coal. The plant is hypothetically sited near the extensive lignite fields located in the Texas region of the United States. Utilizing utility-financing methods for the costing of SNG, and selling the chemicals cogenerated at petrochemical market prices, the 20-year average SNG cost has been computed to vary between $3-4/MM Btu, depending upon the coal costs, interest rates, debt/equity ratio, coproduct chemicals prices, etc.

  2. AAPM/RSNA physics tutorial for residents. Topics in US: B-mode US: basic concepts and new technology.

    Science.gov (United States)

    Hangiandreou, Nicholas J

    2003-01-01

    Ultrasonography (US) has been used in medical imaging for over half a century. Current US scanners are based largely on the same basic principles used in the initial devices for human imaging. Modern equipment uses a pulse-echo approach with a brightness-mode (B-mode) display. Fundamental aspects of the B-mode imaging process include basic ultrasound physics, interactions of ultrasound with tissue, ultrasound pulse formation, scanning the ultrasound beam, and echo detection and signal processing. Recent technical innovations that have been developed to improve the performance of modern US equipment include the following: tissue harmonic imaging, spatial compound imaging, extended field of view imaging, coded pulse excitation, electronic section focusing, three-dimensional and four-dimensional imaging, and the general trend toward equipment miniaturization. US is a relatively inexpensive, portable, safe, and real-time modality, all of which make it one of the most widely used imaging modalities in medicine. Although B-mode US is sometimes referred to as a mature technology, this modality continues to experience a significant evolution in capability with even more exciting developments on the horizon.

  3. Novas tecnologias reprodutivas conceptivas: bioética e controvérsias New reproductive conception technologies: bioethics and controversies

    Directory of Open Access Journals (Sweden)

    Marlene Tamanini

    2004-04-01

    Full Text Available Este artigo trata de alguns dos múltiplos aspectos éticos/bioéticos e de gênero no campo das novas tecnologias reprodutivas conceptivas (NTRc. A literatura nele apresentada aponta para a pluralidade de situações e abordagens possíveis em um campo multidimensional e controvertido. Explicita alguns princípios éticos/bioéticos do agir biomédico encontrados durante pesquisa com casais heterossexuais que fizeram reprodução assistida e com médic@s especialistas em reprodução humana no Sul do Brasil.1 Apresenta os pressupostos éticos/bioéticos sancionadores do agir médico e da continuidade dos chamados tratamentos para engravidar, e analisa os mecanismos utilizados para reerguer as expectativas dos casais em situação de desconfiança ou de insucesso.This article concerns some of the multiple ethical-bioethical and gender issues in the field of new reproductive and contraceptive technologies. The literature presented points to the plurality of possible situations and approaches in a multidimensional and controversial field. It presents some ethical-bioethical principals of biomedical action found in the study of heterosexual couples who use assisted reproduction. and of medical specialists in human reproduction in southern Brazil. It presents the ethical-bioethical presumptions that sanction medical behavior and the continuity of the so-called impregnation treatments, and analyzes the mechanisms used to raise the expectations of couples who lack confidence or success.

  4. The current status of fluoride salt cooled high temperature reactor (FHR) technology and its overlap with HIF target chamber concepts

    Science.gov (United States)

    Scarlat, Raluca O.; Peterson, Per F.

    2014-01-01

    The fluoride salt cooled high temperature reactor (FHR) is a class of fission reactor designs that use liquid fluoride salt coolant, TRISO coated particle fuel, and graphite moderator. Heavy ion fusion (HIF) can likewise make use of liquid fluoride salts, to create thick or thin liquid layers to protect structures in the target chamber from ablation by target X-rays and damage from fusion neutron irradiation. This presentation summarizes ongoing work in support of design development and safety analysis of FHR systems. Development work for fluoride salt systems with application to both FHR and HIF includes thermal-hydraulic modeling and experimentation, salt chemistry control, tritium management, salt corrosion of metallic alloys, and development of major components (e.g., pumps, heat exchangers) and gas-Brayton cycle power conversion systems. In support of FHR development, a thermal-hydraulic experimental test bay for separate effects (SETs) and integral effect tests (IETs) was built at UC Berkeley, and a second IET facility is under design. The experiments investigate heat transfer and fluid dynamics and they make use of oils as simulant fluids at reduced scale, temperature, and power of the prototypical salt-cooled system. With direct application to HIF, vortex tube flow was investigated in scaled experiments with mineral oil. Liquid jets response to impulse loading was likewise studied using water as a simulant fluid. A set of four workshops engaging industry and national laboratory experts were completed in 2012, with the goal of developing a technology pathway to the design and licensing of a commercial FHR. The pathway will include experimental and modeling efforts at universities and national laboratories, requirements for a component test facility for reliability testing of fluoride salt equipment at prototypical conditions, requirements for an FHR test reactor, and development of a pre-conceptual design for a commercial reactor.

  5. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept.

    Directory of Open Access Journals (Sweden)

    Elena Ceseracciu

    Full Text Available During the last decade markerless motion capture techniques have gained an increasing interest in the biomechanics community. In the clinical field, however, the application of markerless techniques is still debated. This is mainly due to a limited number of papers dedicated to the comparison with the state of the art of marker based motion capture, in term of repeatability of the three dimensional joints' kinematics. In the present work the application of markerless technique to data acquired with a marker-based system was investigated. All videos and external data were recorded with the same motion capture system and included the possibility to use markerless and marker-based methods simultaneously. Three dimensional markerless joint kinematics was estimated and compared with the one determined with traditional marker based systems, through the evaluation of root mean square distance between joint rotations. In order to compare the performance of markerless and marker-based systems in terms of clinically relevant joint angles estimation, the same anatomical frames of reference were defined for both systems. Differences in calibration and synchronization of the cameras were excluded by applying the same wand calibration and lens distortion correction to both techniques. Best results were achieved for knee flexion-extension angle, with an average root mean square distance of 11.75 deg, corresponding to 18.35% of the range of motion. Sagittal plane kinematics was estimated better than on the other planes also for hip and ankle (root mean square distance of 17.62 deg e.g. 44.66%, and 7.17 deg e.g. 33.12%, meanwhile estimates for hip joint were the most incorrect. This technique enables users of markerless technology to compare differences with marker-based in order to define the degree of applicability of markerless technique.

  6. iPad technology for home rehabilitation after stroke (iHOME): a proof-of-concept randomized trial.

    Science.gov (United States)

    Saposnik, Gustavo; Chow, Chi-Ming; Gladstone, David; Cheung, Donna; Brawer, Edward; Thorpe, Kevin E; Saldanha, Avon; Dang, Alice; Bayley, Mark; Schweizer, Tom A

    2014-10-01

    Tablets are a novel line of computers controlled by a multitouch screen. Fine motor movements are captured on the tablet computer through electrical fields and can be qualitatively and quantitatively assessed. Evidence is limited on tablet use for stroke rehabilitation. iHOME is an investigator-initiated randomized controlled pilot trial with a single-blinded outcome assessment. The intervention consists of iPad use (investigational group) vs. usual care (control group) among patients receiving conventional outpatient rehabilitation. Eligibility includes aged 18-85 years who experienced a mild ischemic or hemorrhagic stroke (as diagnosed on neuroimaging and determined by the Chedoke-McMaster score ≥3. The STROKE REHAB® software for the iPad was specifically designed for patients with fine motor weakness and/or neglect. Of the total 30 patients, 20 will be in iHOME Acute (enrolled within three-months of stroke onset) and 10 patients in iHOME Chronic (enrolled more than six-months from onset). The primary feasibility outcome is the proportion of the scheduled iPad time used (more than 70% (≥140 mins) of the total 'dose' of intervention intended will be considered successful). Efficacy in fine motor movements will be assessed using the nine-hole peg test; time to magnify and pop the balloons in the iPad software application, and improvement in Wolf Motor Function Test. iHOME is a randomized controlled trial assessing the feasibility, safety, and efficacy of tablet technology for home use in stroke rehabilitation. The results of this study will serve as the basis for a larger multicenter trial. © 2014 World Stroke Organization.

  7. SIGUEME: Technology-based intervention for low-functioning autism to train skills to work with visual signifiers and concepts.

    Science.gov (United States)

    Vélez-Coto, María; Rodríguez-Fórtiz, María José; Rodriguez-Almendros, María Luisa; Cabrera-Cuevas, Marcelino; Rodríguez-Domínguez, Carlos; Ruiz-López, Tomás; Burgos-Pulido, Ángeles; Garrido-Jiménez, Inmaculada; Martos-Pérez, Juan

    2017-05-01

    People with low-functioning ASD and other disabilities often find it difficult to understand the symbols traditionally used in educational materials during the learning process. Technology-based interventions are becoming increasingly common, helping children with cognitive disabilities to perform academic tasks and improve their abilities and knowledge. Such children often find it difficult to perform certain tasks contained in educational materials since they lack necessary skills such as abstract reasoning. In order to help these children, the authors designed and created SIGUEME to train attention and the perceptual and visual cognitive skills required to work with and understand graphic materials and objects. A pre-test/post-test design was implemented to test SIGUEME. Seventy-four children with low-functioning ASD (age=13.47, SD=8.74) were trained with SIGUEME over twenty-five sessions and compared with twenty-eight children (age=12.61, SD=2.85) who had not received any intervention. There was a statistically significant improvement in the experimental group in Attention (W=-5.497, p<0.001). There was also a significant change in Association and Categorization (W=2.721, p=0.007) and Interaction (W=-3.287, p=0.001). SIGUEME is an effective tool for improving attention, categorization and interaction in low-functioning children with ASD. It is also a useful and powerful instrument for teachers, parents and educators by increasing the child's motivation and autonomy. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Cloud robotics:concept,architectures and key technologies%云机器人:概念、架构与关键技术研究综述

    Institute of Scientific and Technical Information of China (English)

    田国会; 许亚雄

    2014-01-01

    The technology of cloud robotics is the combination of cloud computing and robotics.It can bring great ad-vantages in task execution and resource sharing for robots,and has become a hot topic in intelligent robot research field. In this paper,the developments of cloud robotics,key technologies,main platforms,main architectures and application prospects were comprehensively analyzed.Firstly,the concept arose of cloud robotics and its developments were intro-duced,and also the key technologies were given.Secondly,three main cloud service platforms were horizontally con-trasted,and the main architectures of cloud robotics were analyzed.Finally,the application prospects for cloud robotics were comprehensively presented.%云机器人是云计算技术和机器人学的结合,在机器人任务执行和资源共享等方面有很大优势,现已成为智能机器人领域的研究热点。主要从云机器人的发展、关键技术、主要平台、架构和应用前景等几个方面对云机器人的研究进行综述。介绍了云机器人的提出和发展状况及其相关技术基础,并对3种主流的云机器人服务平台进行了横向对比,分析了云机器人的主要系统架构。最后对云机器人的应用前景进行了展望。

  9. Integral Fast Reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Till, C.E.; Chang, Y.I.

    1986-01-01

    The Integral Fast Reactor (IFR) is an innovative LMR concept, being developed at Argonne National Laboratory, that fully exploits the inherent properties of liquid metal cooling and metallic fuel to achieve breakthroughs in economics and inherent safety. This paper describes key features and potential advantages of the IFR concept, technology development status, fuel cycle economics potential, and future development path.

  10. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni

    2016-03-01

    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  11. Concept Maps

    OpenAIRE

    Schwendimann, Beat Adrian

    2014-01-01

    A concept map is a node-link diagram showing the semantic relationships among concepts. The technique for constructing concept maps is called "concept mapping". A concept map consists of nodes, arrows as linking lines, and linking phrases that describe the relationship between nodes. Two nodes connected with a labeled arrow are called a proposition. Concept maps are versatile graphic organizers that can represent many different forms of relationships between concepts. The relationship between...

  12. Lighting innovations in concept cars

    Science.gov (United States)

    Berlitz, Stephan; Huhn, Wolfgang

    2005-02-01

    Concept cars have their own styling process. Because of the big media interest they give a big opportunity to bring newest technology with styling ideas to different fairgrounds. The LED technology in the concept cars Audi Pikes Peak, Nuvolari and Le Mans will be explained. Further outlook for the Audi LED strategy starting with LED Daytime Running Lamp will be given. The close work between styling and technical engineers results in those concept cars and further technical innovations based on LED technologies.

  13. Technology.

    Science.gov (United States)

    Online-Offline, 1998

    1998-01-01

    Focuses on technology, on advances in such areas as aeronautics, electronics, physics, the space sciences, as well as computers and the attendant progress in medicine, robotics, and artificial intelligence. Describes educational resources for elementary and middle school students, including Web sites, CD-ROMs and software, videotapes, books,…

  14. Combining Experimental Data, Computational Fluid Dynamics, and Six-Degree of Freedom Simulation to Develop a Guidance Actuator for a Supersonic Projectile

    Science.gov (United States)

    2009-01-01

    To Develop A Guidance Actuator For A Supersonic Projectile 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d... MLM ) tomatch the theoretical tra- jectory to the experimentallymeasured trajectory. The MLM is an iterative procedure that adjusts the aerody- namic...flow conditions After completion of the range tests, two new sets of CFD calculations were completed under contract by Metacomp Technologies using the

  15. Supersonic flow past a flat lattice of cylindrical rods

    Science.gov (United States)

    Guvernyuk, S. V.; Maksimov, F. A.

    2016-06-01

    Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.

  16. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  17. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  18. Features of Ignition and Stable Combustion in Supersonic Combustor

    Science.gov (United States)

    Goldfeld, M.; Starov, A.; Timofeev, K.

    2009-01-01

    Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.

  19. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  20. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    CERN Document Server

    Thun, Daniel; Schmidt, Franziska; Kley, Wilhelm

    2016-01-01

    The supersonic motion of gravitating objects through a gaseous medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planets up to galaxies. Especially the dynamical friction, caused by the forming wake behind the object, plays an important role for the dynamics of the system. To calculate the dynamical friction, standard formulae, based on linear theory are often used. It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem. We perform sequences of high resolution numerical studies of rigid bodies moving supersonically through a homogeneous medium, and calculate the total drag acting on the object, which is the sum of gravitational and hydro drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. From the final equilibrium state of the sim...

  1. The effects of profiles on supersonic jet noise

    Science.gov (United States)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  2. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  3. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  4. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    Science.gov (United States)

    1959-12-01

    Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston

  5. Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation

    Science.gov (United States)

    Winterberg, F.

    1988-02-01

    Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.

  6. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  7. Dynamical separation of spherical bodies in supersonic flow

    OpenAIRE

    Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf

    2012-01-01

    An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...

  8. Aeroelastic coupling in sonic boom optimization of a supersonic aircraft

    OpenAIRE

    Vázquez, Mariano; Dervieux, Alain; Koobus, Bruno

    2003-01-01

    In this paper, we consider a multi-disciplinary optimization problem where the initial shape of a wing is sought in order to cope, after elastic deformation by the flow, with some optimality conditions. We propose a medium-strong coupling which allows to consider different softwares communicating a small number of times. Applications to the optimization of the AGARD Wing 445.6 and a flexible supersonic aircraft wing are presented.

  9. Study on the Characteristics of Supersonic Coanda Jet

    Institute of Scientific and Technical Information of China (English)

    ShigeruMatsuo; ShenYu; 等

    1998-01-01

    Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.

  10. Research on the mechanics of underwater supersonic gas jets

    Science.gov (United States)

    Shi, Honghui; Wang, Boyi; Dai, Zhenqing

    2010-03-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

  11. Technical and environmental challenges for the next generation supersonic transport

    Energy Technology Data Exchange (ETDEWEB)

    Pacull, M. [Aerospatiale (France); Hume, Ch. [British Aerospace (United Kingdom)

    1994-12-31

    The next century will be marked by the entry into service of new supersonic transport. The real question concerning the next generation supersonic transport is not will it happen, but when, and how. There is a general agreement that such an airplane will result from a worldwide venture. Who will participate, to what extend and how we will put the vehicle and partners together, are an interesting concern that will need some time to resolve. The other challenges will be to design, build and market an aircraft that will be a viable product: for the passenger, who wants the service of a fast airliner with a reasonable surcharge; for the airline which wants competitive operating cost so that it will make sense to introduce such an airplane in its fleet; for the manufacturer, which not only does not want to go bankruptcy, but seeks to make a profit in the long term within the environmental constraints: no adverse impact on high atmosphere ozone; compliance with noise requirements, operations compatible with sonic boom. This paper does not try to answer all these question, but rather highlight major technical and environmental issues for the next generation supersonic transport. The topics discussed are: general specification, noise, atmospheric emissions, sonic boom, aerodynamics, structures, engine integration, systems. (authors)

  12. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-03-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  13. Research on the mechanics of underwater supersonic gas jets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.

  14. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-09-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  15. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  16. Mixed exhaust flow supersonic jet engine and method

    Energy Technology Data Exchange (ETDEWEB)

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  17. Mass flow and its pulsation measurements in supersonic wing wake

    Science.gov (United States)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  18. Study of the flow characteristics of supersonic coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)

    2001-12-01

    Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.

  19. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  20. A Novel Automated Slide-Based Technology for Visualization, Counting, and Characterization of the Formed Elements of Blood: A Proof of Concept Study.

    Science.gov (United States)

    Winkelman, James W; Tanasijevic, Milenko J; Zahniser, David J

    2017-08-01

    - A novel automated slide-based approach to the complete blood count and white blood cell differential count is introduced. - To present proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique. A preliminary data comparison with the current flow-based technology is shown. - A prototype instrument uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5000 red blood cells and a variable number of platelets, that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1857 specimens on both the new instrument and a flow-based hematology analyzer. - Excellent correlations were obtained between the prototype instrument and a flow-based system. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63). - Quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood.

  1. Experimental investigation of the structure of supersonic two-dimensional air microjets

    Science.gov (United States)

    Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey

    2016-10-01

    We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.

  2. An experimental study of the structure of supersonic flat underexpanded microjets

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.

    2015-05-01

    We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.

  3. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  4. Air classifier technology (ACT) in dry powder inhalation. Part 1 : Introduction of a novel force distribution concept (FDC) explaining the performance of a basic air classifier on adhesive mixtures

    NARCIS (Netherlands)

    de Boer, A H; Hagedoorn, P; Gjaltema, D; Goede, J; Frijlink, H W

    2003-01-01

    Air classifier technology (ACT) is introduced as part of formulation integrated dry powder inhaler development (FIDPI) to optimise the de-agglomeration of inhalation powders. Carrier retention and de-agglomeration results obtained with a basic classifier concept are discussed. The theoretical cut-of

  5. Technology

    Directory of Open Access Journals (Sweden)

    Xu Jing

    2016-01-01

    Full Text Available The traditional answer card reading method using OMR (Optical Mark Reader, most commonly, OMR special card special use, less versatile, high cost, aiming at the existing problems proposed a method based on pattern recognition of the answer card identification method. Using the method based on Line Segment Detector to detect the tilt of the image, the existence of tilt image rotation correction, and eventually achieve positioning and detection of answers to the answer sheet .Pattern recognition technology for automatic reading, high accuracy, detect faster

  6. Cloud Computing Security:Concept, Status and Key Technologies%云计算安全:概念、现状与关键技术

    Institute of Scientific and Technical Information of China (English)

    段翼真; 王晓程; 刘忠

    2012-01-01

      With the extensive application of cloud computing, its security issues are increasingly prominent. Firstly the paper explains the relevant concepts of cloud computing security, and cloud computing security issues and cloud computing security features are analyzed. And then, cloud computing security status and the typical cloud computing security architecture are introduced, and the key technologies of computing security are analyzed. Finally it gives the conclusion.%  随着云计算的广泛应用,云计算安全问题逐渐凸显出来。文章首先阐述了云计算安全相关概念,并对云计算的安全问题和云计算安全特征进行分析,然后对云计算安全的现状和典型的云计算安全体系架构进行了介绍,并对云计算安全的关键技术进行分析,最后给出了结论。

  7. Virtual reality concepts and technologies

    CERN Document Server

    Fuchs, Philippe

    2011-01-01

    A manual for both designers and users, comprehensively presenting the current state of experts' knowledge on virtual reality (VR) in computer science, mechanics, optics, acoustics, physiology, psychology, ergonomics, ethics, and related area. Designed as a reference book and design guide to help the reader develop a VR project, it presents the reader with the importance of the user's needs and various aspects of the human computer interface (HCI). It further treats technical aspects of VR, hardware and software implementations, and details on the sensory and psycho-sensory interfaces. Providin

  8. Nutrikinetics: concept, technologies, applications, perspectives

    NARCIS (Netherlands)

    J.P.M. van Duynhoven; E.J.J. van Velzen; J.A. Westerhuis; M. Foltz; D.M. Jacobs; A.K. Smilde

    2012-01-01

    Exposure studies are the first step in predicting bioactivity of phytochemicals in humans. Due to the interaction between phytochemicals, their food matrix, the gut microbiome and the host, the resulting exogenous metabolites in systemic circulation vary largely between individuals. Nutrikinetics is

  9. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  10. A Grid Sourcing and Adaptation Study Using Unstructured Grids for Supersonic Boom Prediction

    Science.gov (United States)

    Carter, Melissa B.; Deere, Karen A.

    2008-01-01

    NASA created the Supersonics Project as part of the NASA Fundamental Aeronautics Program to advance technology that will make a supersonic flight over land viable. Computational flow solvers have lacked the ability to accurately predict sonic boom from the near to far field. The focus of this investigation was to establish gridding and adaptation techniques to predict near-to-mid-field (sources along the body the aircraft, far field sourcing and far field boundaries. The study then examined several techniques for grid adaptation. During the course of the study, volume sourcing was introduced as a new way to source grids using the grid generation code VGRID. Two different methods of using the volume sources were examined. The first method, based on manual insertion of the numerous volume sources, made great improvements in the prediction capability of USM3D for boom signatures. The second method (SSGRID), which uses an a priori adaptation approach to stretch and shear the original unstructured grid to align the grid and pressure waves, showed similar results with a more automated approach. Due to SSGRID s results and ease of use, the rest of the study focused on developing a best practice using SSGRID. The best practice created by this study for boom predictions using the CFD code USM3D involved: 1) creating a small cylindrical outer boundary either 1 or 2 body lengths in diameter (depending on how far below the aircraft the boom prediction is required), 2) using a single volume source under the aircraft, and 3) using SSGRID to stretch and shear the grid to the desired length.

  11. Aerodynamic Shape Optimization of Supersonic Aircraft Configurations via an Adjoint Formulation on Parallel Computers

    Science.gov (United States)

    Reuther, James; Alonso, Juan Jose; Rimlinger, Mark J.; Jameson, Antony

    1996-01-01

    This work describes the application of a control theory-based aerodynamic shape optimization method to the problem of supersonic aircraft design. The design process is greatly accelerated through the use of both control theory and a parallel implementation on distributed memory computers. Control theory is employed to derive the adjoint differential equations whose solution allows for the evaluation of design gradient information at a fraction of the computational cost required by previous design methods (13, 12, 44, 38). The resulting problem is then implemented on parallel distributed memory architectures using a domain decomposition approach, an optimized communication schedule, and the MPI (Message Passing Interface) Standard for portability and efficiency. The final result achieves very rapid aerodynamic design based on higher order computational fluid dynamics methods (CFD). In our earlier studies, the serial implementation of this design method (19, 20, 21, 23, 39, 25, 40, 41, 42, 43, 9) was shown to be effective for the optimization of airfoils, wings, wing-bodies, and complex aircraft configurations using both the potential equation and the Euler equations (39, 25). In our most recent paper, the Euler method was extended to treat complete aircraft configurations via a new multiblock implementation. Furthermore, during the same conference, we also presented preliminary results demonstrating that the basic methodology could be ported to distributed memory parallel computing architectures [241. In this paper, our concem will be to demonstrate that the combined power of these new technologies can be used routinely in an industrial design environment by applying it to the case study of the design of typical supersonic transport configurations. A particular difficulty of this test case is posed by the propulsion/airframe integration.

  12. Proceedings of waste stream minimization and utilization innovative concepts: An experimental technology exchange. Volume 2, Industrial liquid waste processing, industrial gaseous waste processing

    Energy Technology Data Exchange (ETDEWEB)

    Lee, V.E. [ed.; Watts, R.L.

    1993-04-01

    This two-volume proceedings summarize the results of fifteen innovations that were funded through the US Department of Energy`s Innovative Concept Program. The fifteen innovations were presented at the sixth Innovative Concepts Fair, held in Austin, Texas, on April 22--23, 1993. The concepts in this year`s fair address innovations that can substantially reduce or use waste streams. Each paper describes the need for the proposed concept, the concept being proposed, and the concept`s economics and market potential, key experimental results, and future development needs. The papers are divided into two volumes: Volume 1 addresses innovations for industrial solid waste processing and municipal waste reduction/recycling, and Volume 2 addresses industrial liquid waste processing and industrial gaseous waste processing. Individual reports are indexed separately.

  13. Concepts of formal concept analysis

    Science.gov (United States)

    Žáček, Martin; Homola, Dan; Miarka, Rostislav

    2017-07-01

    The aim of this article is apply of Formal Concept Analysis on concept of world. Formal concept analysis (FCA) as a methodology of data analysis, information management and knowledge representation has potential to be applied to a verity of linguistic problems. FCA is mathematical theory for concepts and concept hierarchies that reflects an understanding of concept. Formal concept analysis explicitly formalizes extension and intension of a concept, their mutual relationships. A distinguishing feature of FCA is an inherent integration of three components of conceptual processing of data and knowledge, namely, the discovery and reasoning with concepts in data, discovery and reasoning with dependencies in data, and visualization of data, concepts, and dependencies with folding/unfolding capabilities.

  14. Avatar-assisted therapy: a proof-of-concept pilot study of a novel technology-based intervention to treat substance use disorders.

    Science.gov (United States)

    Gordon, Michael S; Carswell, Steven B; Schadegg, Mary; Mangen, Kayla; Merkel, Kelly; Tangires, Susan; Vocci, Frank J

    2017-09-01

    Avatar-assisted therapy (AAT) is a novel and emerging technology that uses the Internet to enable clinicians and clients in substance abuse treatment to participate in group counseling sessions from separate and remote locations in real time through the use of avatars and virtual environments. The current study is a pilot proof-of-concept feasibility study involving individuals in outpatient substance abuse treatment. This report addresses two questions: (1) are individuals who present for substance abuse treatment interested in receiving AAT and (2) what factors are associated with better treatment success. Individuals who presented at the treatment clinic who met study eligibility criteria, and provided their written informed consent to participate, were included in the current study (N = 59; 78% male). Twenty-eight (47.5%) participants completed 16 weeks of treatment and attended more sessions compared to non-completers (M = 14.3 vs. 7.5 p < .05). Those individuals who completed treatment were less likely to have a positive urine drug screen at baseline (21.5 vs. 78.6%; p < .05). Furthermore, those individuals who successfully completed treatment were less likely to have positive urine drug screens during treatment compared to those who did not complete (29.7% vs. 70.3%, p < .05). There were no arrests during treatment for completers and non-completers. Poor retention in substance use disorder treatment has long been a major problem for public health. AAT is a feasible approach that has the potential to expand treatment to individuals who might have difficulty accessing treatment. Moreover, AAT may be appealing to clients who are concerned about anonymity and confidentiality.

  15. The role of finite-difference methods in design and analysis for supersonic cruise

    Science.gov (United States)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  16. 3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO

    Science.gov (United States)

    1956-01-01

    3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL

  17. 超声波辅助提取香蕉皮中果胶的研究%Extraction of Pectin from Banana Peel with Supersonic Wave

    Institute of Scientific and Technical Information of China (English)

    岳贤田

    2011-01-01

    [Objective]The aim was to explore the extraction of the pectin with supersonic wave from banana peel. [Method] Pectin was extracted from banana peel by supersonic wave radiation extraction,meanwhile effects of extractant,solvent,radiation time,supersonic wave power,the ratio of water volume to banana weight,ethaneol concentration and pH value on the extraction efficiency of pectin were studied by experiment. On the basis,the orthogonal expehmene was conducted. [Result] The optimum technological conditions of pectin with supersonic wave from banana peel were as follows: pH value of extraction of 2.0 with HCl,with the water as solvent,the volume of water to the weight of peel of 15=1, supersonic wave power of 500 W,supersonic time of 50 min, the concentration of ethanol 60% , The output ratio of pectin of 20.5% was obtained on the optimum conditions. And the subsequence of the effect of the extraction rate as follows: ph value > the volume of water to the weight of peel>supersonic wave power>supersonic time>the concentration of ethanol. [ Conclusion ] The research provided a feasible way for the comprehensive utilization of resources and the extraction of pectin with supersonic wave from banana peel.%[目的]研究采用超声波辅助提取香蕉皮中果胶的工艺条件.[方法]采用超声波辐射萃取法从香蕉皮中提取果胶,并研究了不同萃取剂、溶剂、超声时间、超声波辐射功率、料液比、乙醇浓度及提取液pH对果胶提取率的影响.在此基础了进行了正交试验.[结果]确立了超声波条件下提取果胶的最佳工艺条件为:用盐酸调pH为2.0,用水作为溶剂,料液比为1:15,超声功率为500W,作用时间为50min,乙醇浓度为60%,在此条件下提取率可达20.5%.各因素对提取率的影响为:pH>料液比>超声功率>超声时间>乙醇浓度.[结论]为综合利用资源及利用超声波提取香蕉皮中果胶提供了一条可行性途径.

  18. Flying qualities design criteria applicable to supersonic cruise aircraft

    Science.gov (United States)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  19. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  20. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    Science.gov (United States)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.