Conditions for supersonic bent Marshak waves
Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong
2014-01-01
Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.
The shock waves in decaying supersonic turbulence
Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.
2000-01-01
We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...
Supersonic Propagation of Heat Waves in Low Density Heavy Material
Institute of Scientific and Technical Information of China (English)
Jiang Shaoen; Zhang Wenhai; Yi Rongqing; Cui Yanli; Chen Jiusen; Xu Yan; Ding Yongkun; Lai Dongxian; Zheng Zhijian; Huang Yikiang; Li Jinghong; Sun Kexu; Hu Xin
2005-01-01
The propagation of a supersonic heat-wave through copper-doped foam with a density of 50 mg/cm3 was experimentally investigated. The wave is driven by 140 eV Holhraum radiations generated in a cylindrical gold cavity heated by a 2 k J, 1ns laser pulse (0.35 μm). The delayed breakout time of the radiation waves from the rear side of the foam is measured by a threechromatic streaked x-ray spectrometer (TCS) consisting of a set of three-imaging pinholes and an array of three transmission gratings coupled with an x-ray streak camera (XSC). With one shot,simultaneous measurements of the delays of the drive source and the radiation with two different energies (210 eV, 840 eV) through the foam have been made for the first time. The experimental results indicate that the time delays vary with photon energies. The radiation with an energy of 210 eV propagates at a lower velocity. The radiating heat wave propagates with a velocity that is larger than the sound speed. Using TGS, the transmitting spectrum was measured, and then lower limit of the optical depth which is more than 1, was obtained. The experimental data were in agreement with numerical simulations.
Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid
Directory of Open Access Journals (Sweden)
Minasyan V.
2010-10-01
Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.
Wave-driven Rotation in Supersonically Rotating Mirrors
Energy Technology Data Exchange (ETDEWEB)
A. Fetterman and N.J. Fisch
2010-02-15
Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-03-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Interaction of a swept shock wave and a supersonic wake
He, G.; Zhao, Y. X.; Zhou, J.
2017-09-01
The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.
Supersonic propagation of ionization waves in an under-dense, laser-produced plasma
Energy Technology Data Exchange (ETDEWEB)
Constantin, C; Back, C A; Fournier, K B; Gregori, G; Landen, O L; Glenzer, S H; Dewald, E L; Miller, M C
2004-10-22
We observe a laser-driven supersonic ionization wave heating a mm-scale plasma of sub-critical density up to 2-3 keV electron temperatures. Propagation velocities initially 10 times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a 2D radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat wave propagation.
1978-03-01
since the radiated pressure f luc tuat ions t ravel along inc l ine rays s im i la r to, but somewhat steeper than, Mach waves [see Refer- ence...Supersonic Wind Tunnels," AEDC-TN-61-153 (AD270596), January 1962. 311 A E D C-TR -77-107 157. Tucker, Maurice . "Approximate Calculation of
Characteristic parameters of diffusive supersonic radiation transport in low density materials
Institute of Scientific and Technical Information of China (English)
Jiang Shao-En; Yang Jia-Min; Zheng Zhi-Jian; Ding Yong-Kun
2007-01-01
Diffusive heat waves play an important role in radiation hydrodynamics. In low density material, it may be possible that the radiative energy flux dominates the material energy flux and thus energy flow can be determined. In this paper by means of a simple algebraic method, the expressions characterizing the condition of diffusion approximation and supersonic transport of heat wave are found. In this case, the ratio of the radiative energy flux to the material energy flux is directly proportional to the product of Mach number M multiplied by optical depth τ. And it may also be expressed by radiation temperature heating material. The materiel density and length may be determined in order to aceve above-mentioned conditions when the driven temperature and duration are given.
Radiative forcing from particle emissions by future supersonic aircraft
Directory of Open Access Journals (Sweden)
G. Pitari
2008-07-01
Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NO_{x}, H_{2}O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO_{2} and particles (H_{2}O–H_{2}SO_{4}. Photochemical O_{3} changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NO_{x} emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m^{2}, respectively, with a direct RF of −11.4 and 4.6 mW/m^{2} (net RF=−6.8 mW/m^{2}. This paper discusses the similarities and differences amongst the participating models in terms of changes to O_{3} precursors due to aircraft emissions (NO_{x}, HO_{x},Cl_{x},Br_{x} and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m^{2}. The fraction of this O_{3}-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NO_{x} removal
The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid
Directory of Open Access Journals (Sweden)
Minasyan V.
2010-04-01
Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.
Institute of Scientific and Technical Information of China (English)
Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi
2006-01-01
When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.
Energy Technology Data Exchange (ETDEWEB)
Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T. [Center for High Energy Density Science, Department of Physics, The University of Texas at Austin, C1510, Austin, Texas 78712 (United States)
2013-12-15
Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.
A non-axisymmetric linearized supersonic wave drag analysis: Mathematical theory
Barnhart, Paul J.
1996-01-01
A Mathematical theory is developed to perform the calculations necessary to determine the wave drag for slender bodies of non-circular cross section. The derivations presented in this report are based on extensions to supersonic linearized small perturbation theory. A numerical scheme is presented utilizing Fourier decomposition to compute the pressure coefficient on and about a slender body of arbitrary cross section.
Shock Waves Oscillations in the Interaction of Supersonic Flows with the Head of the Aircraft
Bulat, Pavel V.; Volkov, Konstantin N.
2016-01-01
In this article we reviewed the shock wave oscillation that occurs when supersonic flows interact with conic, blunt or flat nose of aircraft, taking into account the aerospike attached to it. The main attention was paid to the problem of numerical modeling of such oscillation, flow regime classification, and cases where aerospike attachment can…
Extraction of Pectin with Supersonic Wave from Apple Peel%超声波辅助提取苹果皮中果胶的研究
Institute of Scientific and Technical Information of China (English)
岳贤田
2011-01-01
[ Objective ] The aim was to explore the extraction of pectin with supersonic wave from apple peel. [ Method ] Pectin was extracted from apple peel supersonic wave radiation extraction, meanwhile effects of extractant, solvent, radiation time, supersonic wave power, the ratio of water volume to apple peel weight, ethanol concentration and pH value on the extraction efficiency of pectin were studied by single-factor experiment. [ Result ] The optimum technological conditions of pectin with supersonic wave from apple peel were as follows: the pH value of extracting solution was adjusted to 1.8 with hydrochloric acid; water was taken as solvent; the ratio of water volume to apple peel weight was 20:1; supersonic wave power was 600 W; radiation time was 40 min; and the concentration of ethanol was 60％. The output ratio of pectin reached 12.9％ under the conditions. [ Conclusion ] The research provides a feasible way for the comprehensive utilization of resources and the extraction of pectin with supersonic wave from apple peel.%[目的]探讨采用超声波辅助提取苹果皮中果胶的工艺条件.[方法]采用超声波辐射革取法从苹果皮中提取了果胶,并采用单因素试验研究了不同萃取剂、溶剂、超声时间、超声波辐射功率、料液比、乙醇浓度及提取液pH值对果胶提取率的影响.[结果]确立了超声波条件下提取果胶的最佳工艺条件为:用盐酸调pH值为1.8,用水作为溶剂,料液比为1:20,超声波功率为600 W,超声波辐射时间为40min,乙醇浓度为60%.谊工艺条件下,果胶提取率可达12.9%.[结论]为综合利用资源及利用超声波提取苹果皮中果胶提供了一条可行性途径.
Energy Technology Data Exchange (ETDEWEB)
Guymer, T. M., E-mail: Thomas.Guymer@awe.co.uk; Moore, A. S.; Morton, J.; Allan, S.; Bazin, N.; Benstead, J.; Bentley, C.; Comley, A. J.; Garbett, W.; Reed, L.; Stevenson, R. M. [AWE Plc., Aldermaston, Reading RG7 4PR (United Kingdom); Kline, J. L.; Cowan, J.; Flippo, K.; Hamilton, C.; Lanier, N. E.; Mussack, K.; Obrey, K.; Schmidt, D. W.; Taccetti, J. M. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); and others
2015-04-15
A well diagnosed campaign of supersonic, diffusive radiation flow experiments has been fielded on the National Ignition Facility. These experiments have used the accurate measurements of delivered laser energy and foam density to enable an investigation into SESAME's tabulated equation-of-state values and CASSANDRA's predicted opacity values for the low-density C{sub 8}H{sub 7}Cl foam used throughout the campaign. We report that the results from initial simulations under-predicted the arrival time of the radiation wave through the foam by ≈22%. A simulation study was conducted that artificially scaled the equation-of-state and opacity with the intended aim of quantifying the systematic offsets in both CASSANDRA and SESAME. Two separate hypotheses which describe these errors have been tested using the entire ensemble of data, with one being supported by these data.
Measurement of Supersonic Jet Noise with Optical Wave Microphone System
Institute of Scientific and Technical Information of China (English)
Masataka KOSAKA; Kunisato SETO; MD. Tawhidul Islam KHAN; Yoichi NAKAZONO
2005-01-01
An optical wave microphone system is a new technique of sound measurement. This technique has been developed as a new plasma diagnostic technique to measure electron density fluctuations in the nuclear fusion research. Because the sound wave is a pressure or a density fluctuation, it is possible for this technique to measure the sound wave, too. The acoustical characteristics of the optical wave microphone system were examined by using a speaker as a first step. Next, feasibility of this device to measure jet noise was examined. It was found that the optical wave microphone system could measure the jet noise as well as a sound from speaker.Hence the optical wave microphone system can be considered one of the devices equivalent to condenser microphone. Because of these reason, this device is very convenient to scan the acoustic filed through jet flow from the inside to the out side and more preferable for not disturbing the observation field.
Sound radiation from an infinite elastic cylinder with dual-wave propagation-intensity distributions
Fuller, C. R.
1988-01-01
The radiation of sound from an elastic cylindrical shell filled with fluid and supporting multiwave propagation is studied analytically. Combinations of supersonic and subsonic shell waves are considered. The radiated field is mapped by using acoustic intensity vectors evaluated at various locations. Both time averaged and instantaneous intensity are investigated. The acoustic intensity is seen to vary markedly with axial distance down the cylinder. The effect is shown to be associated with cross terms in the intensity relations, and its magnitude and location to depend upon the relative phase and amplitudes of individual waves. Subsonic shell waves are demonstrated to interact strongly with supersonic shell waves to cause a large modification in the radiated intensity distributions near the shell surface.
超声波辅助提取香蕉皮中果胶的研究%Extraction of Pectin from Banana Peel with Supersonic Wave
Institute of Scientific and Technical Information of China (English)
岳贤田
2011-01-01
[Objective]The aim was to explore the extraction of the pectin with supersonic wave from banana peel. [Method] Pectin was extracted from banana peel by supersonic wave radiation extraction,meanwhile effects of extractant,solvent,radiation time,supersonic wave power,the ratio of water volume to banana weight,ethaneol concentration and pH value on the extraction efficiency of pectin were studied by experiment. On the basis,the orthogonal expehmene was conducted. [Result] The optimum technological conditions of pectin with supersonic wave from banana peel were as follows: pH value of extraction of 2.0 with HCl,with the water as solvent,the volume of water to the weight of peel of 15=1, supersonic wave power of 500 W,supersonic time of 50 min, the concentration of ethanol 60% , The output ratio of pectin of 20.5% was obtained on the optimum conditions. And the subsequence of the effect of the extraction rate as follows: ph value ＞ the volume of water to the weight of peel＞supersonic wave power＞supersonic time＞the concentration of ethanol. [ Conclusion ] The research provided a feasible way for the comprehensive utilization of resources and the extraction of pectin with supersonic wave from banana peel.%[目的]研究采用超声波辅助提取香蕉皮中果胶的工艺条件.[方法]采用超声波辐射萃取法从香蕉皮中提取果胶,并研究了不同萃取剂、溶剂、超声时间、超声波辐射功率、料液比、乙醇浓度及提取液pH对果胶提取率的影响.在此基础了进行了正交试验.[结果]确立了超声波条件下提取果胶的最佳工艺条件为:用盐酸调pH为2.0,用水作为溶剂,料液比为1:15,超声功率为500W,作用时间为50min,乙醇浓度为60%,在此条件下提取率可达20.5%.各因素对提取率的影响为:pH>料液比>超声功率>超声时间>乙醇浓度.[结论]为综合利用资源及利用超声波提取香蕉皮中果胶提供了一条可行性途径.
Expansion Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi; Ibragimov, Zokirjon
Two-phase flow nozzles are used in the total flow system of geothermal power plants and in the ejector of the refrigeration cycle, etc. One of the most important functions of the two-phase flow nozzle is converting two-phase flow thermal energy into kinetic energy. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. In the case of non-best fitting expansion conditions, when the operation conditions of the supersonic nozzle are widely chosen, there exist shock waves or expansion waves at the outlet of the nozzle. Those waves affect largely the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate character of the expansion waves at the outlet of the supersonic two-phase flow nozzle. High-pressure hot water blowdown experiments have been carried out. The decompression curves of the expansion waves are measured by changing the flowrate in the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The expansion angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the decompression curves are different from those predicted by the isentropic homogeneous two-phase flow theory. The regions where the expansion waves occur become wide due to the increased outlet speed of the two-phase flow. The qualitative dependency of this expansion character is the same as the isentropic homogeneous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the supersonic two-phase flow. This means that the disturbance in the downstream propagates to the upstream. It is shown by the present experiments that the expansion waves in the supersonic two-phase flow of water have a subsonic feature. The measured expansion angles become
Nonlinear hydrodynamic corrections to supersonic F-KPP wave fronts
Antoine, C.; Dumazer, G.; Nowakowski, B.; Lemarchand, A.
2012-03-01
We study the hydrodynamic corrections to the dynamics and structure of an exothermic chemical wave front of Fisher-Kolmogorov-Petrovskii-Piskunov (F-KPP) type which travels in a one-dimensional gaseous medium. We show in particular that its long time dynamics, cut-off sensitivity and leading edge behavior are almost entirely controlled by the hydrodynamic front speed correction δUh which characterizes the pushed nature of the front. Reducing the problem to an effective comoving heterogeneous F-KPP equation, we determine two analytical expressions for δUh: an accurate one, derived from a variational method, and an approximate one, from which one can assess the δUh sensitivity to the shear viscosity and heat conductivity of the fluid of interest.
From supersonic shear wave imaging to full-field optical coherence shear wave elastography
Nahas, Amir; Tanter, Mickaël; Nguyen, Thu-Mai; Chassot, Jean-Marie; Fink, Mathias; Claude Boccara, A.
2013-12-01
Elasticity maps of tissue have proved to be particularly useful in providing complementary contrast to ultrasonic imaging, e.g., for cancer diagnosis at the millimeter scale. Optical coherence tomography (OCT) offers an endogenous contrast based on singly backscattered optical waves. Adding complementary contrast to OCT images by recording elasticity maps could also be valuable in improving OCT-based diagnosis at the microscopic scale. Static elastography has been successfully coupled with full-field OCT (FF-OCT) in order to realize both micrometer-scale sectioning and elasticity maps. Nevertheless, static elastography presents a number of drawbacks, mainly when stiffness quantification is required. Here, we describe the combination of two methods: transient elastography, based on speed measurements of shear waves induced by ultrasonic radiation forces, and FF-OCT, an en face OCT approach using an incoherent light source. The use of an ultrafast ultrasonic scanner and an ultrafast camera working at 10,000 to 30,000 images/s made it possible to follow shear wave propagation with both modalities. As expected, FF-OCT is found to be much more sensitive than ultrafast ultrasound to tiny shear vibrations (a few nanometers and micrometers, respectively). Stiffness assessed in gel phantoms and an ex vivo rat brain by FF-OCT is found to be in good agreement with ultrasound shear wave elastography.
Rarefaction Waves at the Outlet of the Supersonic Two-Phase Flow Nozzle
Nakagawa, Masafumi; Miyazaki, Hiroki; Harada, Atsushi
Two-phase flow nozzles are used in the total flow system for geothermal power plants and in the ejector of the refrigerant cycle, etc. One of the most important functions of a two-phase flow nozzle is to convert the thermal energy to the kinetic energy of the two-phase flow. The kinetic energy of the two-phase flow exhausted from a nozzle is available for all applications of this type. There exist the shock waves or rarefaction waves at the outlet of a supersonic nozzle in the case of non-best fitting expansion conditions when the operation conditions of the nozzle are widely chosen. Those waves affect largely on the energy conversion efficiency of the two-phase flow nozzle. The purpose of the present study is to elucidate the character of the rarefaction waves at the outlet of the supersonic two-phase flow nozzle. The high pressure hot water blow down experiment has been carried out. The decompression curves by the rarefaction waves are measured by changing the flow rate of the nozzle and inlet temperature of the hot water. The back pressures of the nozzle are also changed in those experiments. The divergent angles of the two-phase flow flushed out from the nozzle are measured by means of the photograph. The experimental results show that the recompression curves are different from those predicted by the isentropic homogenous two-phase flow. The regions where the rarefaction waves occur become wide due to the increased outlet speed of two-phase flow. The qualitative dependency of this expansion character is the same as the isotropic homogenous flow, but the values obtained from the experiments are quite different. When the back pressure of the nozzle is higher, these regions do not become small in spite of the super sonic two-phase flow. This means that the disturbance of the down-stream propagate to the up-stream. It is shown by the present experiments that the rarefaction waves in the supersonic two-phase flow of water have a subsonic feature. The measured
Surface wave chemical detector using optical radiation
Thundat, Thomas G.; Warmack, Robert J.
2007-07-17
A surface wave chemical detector comprising at least one surface wave substrate, each of said substrates having a surface wave and at least one measurable surface wave parameter; means for exposing said surface wave substrate to an unknown sample of at least one chemical to be analyzed, said substrate adsorbing said at least one chemical to be sensed if present in said sample; a source of radiation for radiating said surface wave substrate with different wavelengths of said radiation, said surface wave parameter being changed by said adsorbing; and means for recording signals representative of said surface wave parameter of each of said surface wave substrates responsive to said radiation of said different wavelengths, measurable changes of said parameter due to adsorbing said chemical defining a unique signature of a detected chemical.
Wave analysis of the evolution of a single wave packet in supersonic boundary layer
Yermolaev, Yury G.; Yatskikh, Aleksey A.; Kosinov, Alexander D.; Semionov, Nickolay V.
2016-10-01
The evolution of the artificial wave packet in laminar flat-plate boundary layer was experimentally studied by hot-wire measurements at M=2. The localized disturbances were generated by pulse glow discharge. The wave analysis of evolution of wave packet was provided. It was found, that the most unstable waves are oblique, that consistent with results of linear theory.
Tam, C. K. W.; Burton, D. E.
1984-01-01
An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.
Radiation and propagation of electromagnetic waves
Tyras, George; Declaris, Nicholas
1969-01-01
Radiation and Propagation of Electromagnetic Waves serves as a text in electrical engineering or electrophysics. The book discusses the electromagnetic theory; plane electromagnetic waves in homogenous isotropic and anisotropic media; and plane electromagnetic waves in inhomogenous stratified media. The text also describes the spectral representation of elementary electromagnetic sources; the field of a dipole in a stratified medium; and radiation in anisotropic plasma. The properties and the procedures of Green's function method of solution, axial currents, as well as cylindrical boundaries a
Continuous-Wave Cavity Ring-Down Spectroscopy in a Pulsed Uniform Supersonic Flow
Thawoos, Shameemah; Suas-David, Nicolas; Suits, Arthur
2017-06-01
We introduce a new approach that couples a pulsed uniform supersonic flow with high sensitivity continuous wave cavity ringdown spectroscopy (UF-CRDS) operated in the near infrared (NIR). This combination is related to the CRESU technique developed in France and used for many years to study reaction kinetics at low temperature, and to the microwave based chirped-pulse uniform supersonic flow spectrometer (CPUF) developed in our group which has successfully demonstrated the use of pulsed uniform supersonic flow to probe reaction dynamics at temperatures as low as 22 K. CRDS operated with NIR permits access to the first overtones of C-H and O-H stretching/bending which, in combination with its extraordinary sensitivity opens new experiments complementary to the CPUF technique. The UF-CRDS apparatus (Figure) utilizes the pulsed uniform flow produced by means of a piezo-electric stack valve in combination with a Laval nozzle. At present, two machined aluminum Laval nozzles designed for carrier gases Ar and He generate flows with a temperature of approximately 25 K and pressure around 0.15 mbar. This flow is probed by an external cavity diode laser in the NIR (1280-1380 nm). Laval nozzles designed using a newly developed MATLAB-based program will be used in the future. A detailed illustration of the novel UF-CRDS instrumentation and its performance will be presented along with future directions and applications. I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith, J. Chem. Phys. 100, 4229-4241, (1994). C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims, R. W. Field, A. G. Suits, J. Phys. Chem. Lett. 6, 1599-1604, (2015). N. Suas-David, T. Vanfleteren, T. Foldes, S. Kassi, R. Georges, M. Herman, J. Phys. Chem.A, 119, 10022-10034, (2015). C. Abeysekera, B. Joalland, Y. Shi, A. Kamasah, J. M. Oldham, A. G. Suits, Rev. Sci. Instrum. 85, 116107, (2014).
Quantification of muscle co-contraction using supersonic shear wave imaging.
Raiteri, Brent J; Hug, François; Cresswell, Andrew G; Lichtwark, Glen A
2016-02-01
Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (Pmuscle shear modulus due to active contraction was significantly greater (Pmuscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.
Institute of Scientific and Technical Information of China (English)
袁生学
1999-01-01
Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.
Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS
Balakumar, P.; Owis, Farouk
1999-01-01
Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.
THz radiation by beating Langmuir waves
Son, S; Park, J Y
2013-01-01
An intense terahertz (THz) radiation generated by the beating of two Langmuir waves, which are excited by the forward Raman scattering, is analyzed theoretically. The radiation energy per shot can be as high as 0.1 J, with the duration of 10 pico-second. Appropriate plasma density and the laser characteristics are examined.
Sound Radiation from a Supersonic Jet Passing Through a Partially Open Exhaust Duct
Kandula, Max
2011-01-01
The radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet of 25.4 mm exit diameter flowing through a partially open rigid-walled duct with an upstream i-deflector has been studied experimentally. In the experiments, the nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane (NEP), the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 54 jet diameters above ground with the aid of acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters from the jet axis. Data on the jet acoustic field for the partially open duct were obtained and compared with those with a free jet and with a closed duct. The results suggest that for the partially open duct the overall sound pressure level (OASPL) decreases as the distance between the NEP and the duct inlet plane decreases, while the opposite trend is observed for the closed duct. It is also concluded that the observed peak frequency in the partially open duct increases above the free jet value as the angle from the duct axis is increased, and as the duct inlet plane becomes closer to the NEP.
Simple Waves in Ideal Radiation Hydrodynamics
Johnson, Bryan M
2008-01-01
In the dynamic diffusion limit of radiation hydrodynamics, advection dominates diffusion; the latter primarily affects small scales and has negligible impact on the large scale flow. The radiation can thus be accurately regarded as an ideal fluid, i.e., radiative diffusion can be neglected along with other forms of dissipation. This viewpoint is applied here to an analysis of simple waves in an ideal radiating fluid. It is shown that much of the hydrodynamic analysis carries over by simply replacing the material sound speed, pressure and index with the values appropriate for a radiating fluid. A complete analysis is performed for a centered rarefaction wave, and expressions are provided for the Riemann invariants and characteristic curves of the one-dimensional system of equations. The analytical solution is checked for consistency against a finite difference numerical integration, and the validity of neglecting the diffusion operator is demonstrated. An interesting physical result is that for a material comp...
The radiation of sound by the instability waves of a compressible plane turbulent shear layer
Tam, C. K. W.; Morris, P. J.
1980-01-01
The problem of acoustic radiation generated by instability waves of a compressible plane turbulent shear layer is solved. The solution provided is valid up to the acoustic far-field region. It represents a significant improvement over the solution obtained by classical hydrodynamic-stability theory which is essentially a local solution with the acoustic radiation suppressed. The basic instability-wave solution which is valid in the shear layer and the near-field region is constructed in terms of an asymptotic expansion using the method of multiple scales. This solution accounts for the effects of the slightly divergent mean flow. It is shown that the multiple-scales asymptotic expansion is not uniformly valid far from the shear layer. Continuation of this solution into the entire upper half-plane is described. The extended solution enables the near- and far-field pressure fluctuations associated with the instability wave to be determined. Numerical results show that the directivity pattern of acoustic radiation into the stationary medium peaks at 20 degrees to the axis of the shear layer in the downstream direction for supersonic flows. This agrees qualitatively with the observed noise-directivity patterns of supersonic jets.
Experimental observation of radiation heat waves
Institute of Scientific and Technical Information of China (English)
DingYao－Nan; YaoZhen－Yu; 等
1997-01-01
Radiation heat waves play an important role in high-temperature hydrodrnamic phenomena which is very important for laser fusion.Therefore,the propagation of a radiation heat wave through a thin foil of solid aluminium is observed.The wave is driven by the intense solft-X-ray radiation in a cylindrical cavity heated by the intense laser pulse.Experiments are carried out with two beams of λ=1.05μm light form the Shenguang Nd-glass laser facility.The pulse energy is about 600 J and the pulse duration 0.8ns.Evidence of radiation heat wave is obtained by observing the delayes signal of intense thermal emission from the outside of the foil.The delay is 850ps for 1.5μm thick foil and the mass ablation rate is about 4.8×105g/(cm2.s) under the X-ray flux of about 1×1013W/cm2.Also.the radiation-driven shock waves of (2±1)TPa are observed from different shots in the experiments.
Design and Testing of CO_{2} Compression Using Supersonic Shock Wave Technology
Energy Technology Data Exchange (ETDEWEB)
Koopman, Aaron [Seattle Technology Center, Bellevue, WA (United States)
2015-06-01
This report summarizes work performed by Ramgen and subcontractors in pursuit of the design and construction of a 10 MW supersonic CO2 compressor and supporting facility. The compressor will demonstrate application of Ramgen’s supersonic compression technology at an industrial scale using CO2 in a closed-loop. The report includes details of early feasibility studies, CFD validation and comparison to experimental data, static test experimental results, compressor and facility design and analyses, and development of aerodynamic tools. A summary of Ramgen's ISC Engine program activity is also included. This program will demonstrate the adaptation of Ramgen's supersonic compression and advanced vortex combustion technology to result in a highly efficient and cost effective alternative to traditional gas turbine engines. The build out of a 1.5 MW test facility to support the engine and associated subcomponent test program is summarized.
High Efficiency Low Cost CO2 Compression Using Supersonic Shock Wave Technology
Energy Technology Data Exchange (ETDEWEB)
Williams, J; Aarnio, M; Grosvenor, A; Taylor, D; Bucher, J
2010-12-31
Development and testing results from a supersonic compressor are presented. The compressor achieved record pressure ratio for a fully-supersonic stage and successfully demonstrated the technology potential. Several tasks were performed in compliance with the DOE award objectives. A high-pressure ratio compressor was retrofitted to improve rotordynamics behavior and successfully tested. An outside review panel confirmed test results and design approach. A computational fluid dynamics code used to analyze the Ramgen supersonic flowpath was extensively and successfully modified to improve use on high-performance computing platforms. A comprehensive R&D implementation plan was developed and used to lay the groundwork for a future full-scale compressor demonstration. Conceptual design for a CO2 demonstration compressor was developed and reviewed.
Radiation Heat Waves in Gold Plasma
Institute of Scientific and Technical Information of China (English)
YANG Jia-Min; XU Yan; DING Yao-Nan; LAI Dong-Xian; DING Yong-Kun; JIANG Shao-En; ZHENG Zhi-Jian; MIAO Wen-Yong
2003-01-01
Eight beams 0.35/um laser with pulse duration of about 1.0ns and energy of 260 J per beam was injected into a cylindrical cavity to generate intense x-ray radiation on the "Shengguang I" high power laser facility. Gold foils with a thickness in the range of 0.09-0.52/j,m were attached on the diagnostic hole of the cavity and ablated by the intense x-ray radiation. The propagating radiation heat wave in the high-Z gold plasma was observed clearly. For comparison, we also simulated the experimental results.
Electromagnetic wave collapse in a radiation background.
Marklund, Mattias; Brodin, Gert; Stenflo, Lennart
2003-10-17
The nonlinear interaction, due to quantum electrodynamical (QED) effects between an electromagnetic pulse and a radiation background, is investigated by combining the methods of radiation hydrodynamics with the QED theory for photon-photon scattering. For the case of a single coherent electromagnetic pulse, we obtain a Zakharov-like system, where the radiation pressure of the pulse acts as a driver of acoustic waves in the photon gas. For a sufficiently intense pulse and/or background energy density, there is focusing and the subsequent collapse of the pulse. The relevance of our results for various astrophysical applications are discussed.
Radiation from cosmic string standing waves
Olum; Blanco-Pillado
2000-05-01
We have simulated large-amplitude standing waves on an Abelian-Higgs cosmic string in classical lattice field theory. The radiation rate falls exponentially with wavelength, as one would expect from the field profile around a gauge string. Our results agree with those of Moore and Shellard, but not with those of Vincent, Antunes, and Hindmarsh. The radiation rate falls too rapidly to sustain a scaling solution via direct radiation of particles from string length. There is thus reason to doubt claims of strong constraints on cosmic string theories from cosmic ray observations.
Langmuir wave undulator for terahertz radiation.
Son, Seunghyeon; Moon, Sung Joon; Park, Jaeyoung
2012-12-15
A source of terhertz (THz) radiation based on the free-electron laser, where a plasma wave plays the role of undulator, is theoretically studied. This scheme can generate coherent photons in the range of 0.1-10 THz. The feasible physical parameters in laboratories are estimated.
Local Tensor Radiation Conditions For Elastic Waves
DEFF Research Database (Denmark)
Krenk, S.; Kirkegaard, Poul Henning
2001-01-01
A local boundary condition is formulated, representing radiation of elastic waves from an arbitrary point source. The boundary condition takes the form of a tensor relation between the stress at a point on an arbitrarily oriented section and the velocity and displacement vectors at the point. The...
The rise of the first stars: Supersonic streaming, radiative feedback, and 21-cm cosmology
Barkana, Rennan
2016-07-01
Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising method for observing the epoch of the first stars is to use the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also beginning and promise exciting discoveries. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from the astrophysics of the early galaxies that formed during cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced feedback that radically affected both the intergalactic medium and the character of newly-forming stars. Lyman- α radiation from stars generated a strong 21-cm absorption signal, observation of which is currently the only feasible method of detecting the dominant population of galaxies at redshifts as early as z ∼ 25. Another major player is cosmic heating; if due to soft X-rays, then it occurred fairly early (z ∼ 15) and produced the strongest pre-reionization signal, while if it is due to hard X-rays, as now seems more likely, then it occurred later and may have dramatically affected the 21-cm sky even during reionization. In terms of analysis, much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations, a rich dataset that can be used to reconstruct the astrophysical information of greatest interest. This does not, however, diminish the importance of finding additional probes that are complementary or amenable to a more model-independent analysis. Examples include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. Another striking feature may result from a recently recognized effect of a supersonic relative velocity
Supersonic flow onto solid wedges, multidimensional shock waves and free boundary problems
Chen, Gui-Qiang
2017-08-01
When an upstream steady uniform supersonic flow impinges onto a symmetric straight-sided wedge, governed by the Euler equations, there are two possible steady oblique shock configurations if the wedge angle is less than the detachment angle -- the steady weak shock with supersonic or subsonic downstream flow (determined by the wedge angle that is less or larger than the sonic angle) and the steady strong shock with subsonic downstream flow, both of which satisfy the entropy condition. The fundamental issue -- whether one or both of the steady weak and strong shocks are physically admissible solutions -- has been vigorously debated over the past eight decades. In this paper, we survey some recent developments on the stability analysis of the steady shock solutions in both the steady and dynamic regimes. For the static stability, we first show how the stability problem can be formulated as an initial-boundary value type problem and then reformulate it into a free boundary problem when the perturbation of both the upstream steady supersonic flow and the wedge boundary are suitably regular and small, and we finally present some recent results on the static stability of the steady supersonic and transonic shocks. For the dynamic stability for potential flow, we first show how the stability problem can be formulated as an initial-boundary value problem and then use the self-similarity of the problem to reduce it into a boundary value problem and further reformulate it into a free boundary problem, and we finally survey some recent developments in solving this free boundary problem for the existence of the Prandtl-Meyer configurations that tend to the steady weak supersonic or transonic oblique shock solutions as time goes to infinity. Some further developments and mathematical challenges in this direction are also discussed.
Institute of Scientific and Technical Information of China (English)
JIANG; Shaoen; XU; Yan; DING; Yongkun; LAI; Dongxian; ZHEN
2005-01-01
Eight beams of 0.35 μm laser with pulse duration of 1 ns and total energy of 2 kJ enter into a hohlraum to create intense X-ray radiation of 140 eV on the Shenguang Ⅱ laser facility. Plastic foam (C6H12) and copper-doped foam (C6H12Cu0.394) with a density of 50 mg/cm3 are heated by X-ray radiation emitted from the hohlraum. The breakout time of the radiation wave is measured by a tri-chromatic streaked X-ray spectrometer (TCS) that consists of a set of three imaging pinholes and an array of three transmission gratings coupled with an X-ray streak camera (XSC). At one shot, the simultaneous measurements of the delay of the drive source and the radiation transport at two energies (210 eV, 840 eV) through the foam have been made for the first time. The experimental results indicate that the time delays vary with photon energies. With a transmission grating spectrometer (TGS), the spectra transmitting foams were measured, and the lower limit of the optical depth was measured. The radiation at energy of 210 eV propagates through plastic foam at a faster velocity, compared with the radiation at energy of 840 eV; while the results of copper-doped foam are reverse. The optical depth in the plastic foam is less than 1, and in the doped foam it is more than 1.
Vertical variations of wave-induced radiation stress tensor
Institute of Scientific and Technical Information of China (English)
Zheng Jinhai; Yan Yixin
2001-01-01
The distributions of the wave-induced radiation stress tensor over depth are studied by using the linear wave theory, which are divided into three regions, i.e., above the mean water level, below the wave trough level, and between these two levels. The computational expressions of the wave-induced radiation stress tensor at the arbitrary wave angle are established by means of the Eulerian coordinate transformation, and the asymptotic forms for deep and shallow water are also presented. The vertical variations of a 30° incident wave-induced radiation stress tensor in deep water, intermediate water and shallow water are calculated respectively. The following conclusions are obtained from computations.The wave-induced radiation stress tensor below the wave trough level is induced by the water wave particle velocities only, whereas both the water wave particle velocities and the wave pressure contribute to the tensor above the wave trough level. The vertical variations of the wave-induced radiation stress tensor are influenced substantially by the velocity component in the direction of wave propagation. The distributions of the wave-induced radiation stress tensor over depth are nonuniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water. From the water surface to the seabed, the reversed variations occur for the predominant tensor components.
Radiative Shock Waves In Emerging Shocks
Drake, R. Paul; Doss, F.; Visco, A.
2011-05-01
In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.
Breakdown of Acceleration Waves in Radiative Magneto-fluids
Directory of Open Access Journals (Sweden)
Arisudan Rai
2003-10-01
Full Text Available The problem of propagation of acceleration waves in an optically thick medium of electrically conducting fluid has been dealt with. During propagation of the waves, the effects of radiation pressure, radiation energy density, and heat transfer through thermal radiation and thermal conduction have been taken into account. The growth equation for the variation of amplitude of the wave has been derived and solved. It has been concluded that all the compressive waves with initial amplitudes greater than a critical value will grow and terminate into a shock wave due to nonlinear steepening, while all expansion waves will decay out. Acritical stage, when the compressive wave will either grow or decay, has also been discussed. The effects of radiation pressure and radiative heat transfer on the shock formation have been discussed and analysed.
Energy Technology Data Exchange (ETDEWEB)
Sanna, G.; Tomassetti, G. [L`Aquila Univ. (Italy). Dipt. di Fisica
1998-02-01
The discontinuities in the flow fields (both tangential and shocks) are considered and the equations for the quantities conserved across them are written. The post-shock flow variables are expressed by the Mach number of the incident supersonic flow and its deflection angle operated by rigid wall. Normal and oblique shocks are considered and graphs and polar diagrams are introduced. Then the reflections of a shock wave operated by a rigid wall and by the boundary between a jet and a stagnating gas are analyzed. Finally, the interactions between two distinct shock waves are considered. [Italiano] Vengono considerate le discontinuita` (tangenziali e shocks) nei campi di flusso e sono scritte le equazioni per le quantita` che si conservano attraverso di esse. Le variabili del flusso oltre lo shock sono espresse in funzione del numero di Mach del flusso supersonico incidente e dell`angolo di deflessione di questo operato da una parete rigida. I casi di shock normale, obliquo e distaccato sono considerati e sono introdotti grafici vari e rappresentazioni polari. Sono quindi considerate le riflessioni di un fronte di shock da una parete rigida e dalla frontiera tra un gas in moto ed uno stagnante. Sono infine considerate le diverse interazioni tra due shock distinti.
Research on fast rise time EMP radiating-wave simulator
Fan, Lisi; Liu, Haitao; Wang, Yun
2013-03-01
This paper presents an antenna of High altitude electromagnetic pulse (HEMP) radiating-wave simulator which expands the testing zone larger than the traditional transmission line simulator. The numerical results show that traverse electramagnetic (TEM) antenna can be used to radiate HEMP simulation radiating wave, but in low frequency band the emissive capability is poor. The experiment proves the numerical model is valid. The results of this paper show that TEM antenna can be used to HEMP radiating-wave simulator, and can prove the low frequency radiation capability through resistance loaded method.
Numerical Tests and Properties of Waves in Radiating Fluids
Energy Technology Data Exchange (ETDEWEB)
Johnson, B M; Klein, R I
2009-09-03
We discuss the properties of an analytical solution for waves in radiating fluids, with a view towards its implementation as a quantitative test of radiation hydrodynamics codes. A homogeneous radiating fluid in local thermodynamic equilibrium is periodically driven at the boundary of a one-dimensional domain, and the solution describes the propagation of the waves thus excited. Two modes are excited for a given driving frequency, generally referred to as a radiative acoustic wave and a radiative diffusion wave. While the analytical solution is well known, several features are highlighted here that require care during its numerical implementation. We compare the solution in a wide range of parameter space to a numerical integration with a Lagrangian radiation hydrodynamics code. Our most significant observation is that flux-limited diffusion does not preserve causality for waves on a homogeneous background.
Wiese, Michael R.
1987-01-01
Documented is an aeronautical geometry conversion package which translates wave-drag geometry into the Langley Wireframe Geometry Standard (LaWGS) format and then into a format which is used by the Supersonic Implicit Marching Potential (SIMP) program. The programs described were developed by Computer Sciences Corporation for the Advanced Vehicles Division/Advanced Concepts Branch at NASA Langley Research Center. Included also are the input and output from a benchmark test case.
Investigation of nonlinear effects in the instabilities and noise radiation of supersonic jets
Janjua, S. I.; McLaughlin, D. K.
1985-01-01
The nonlinear interactions of fluctuating components which produce noise in supersonic jet flows were studied experimentally. Attention was given to spectral components interactions and the spectral effects of increasing Re. A jet exhausted in perfectly expanded conditions was monitored by microphones in the maximum noise emission direction. Trials were run at Mach 1.4 and 2.1 and the Re was varied from 5000-20,000 and 9000-25,000, respectively. Hot-wire data were gathered to examine the mode-mode interactions and a point glow discharge was used to excite the jets. The noise was found to exhibit discrete frequency components and a single tone instability at Re below 10,000. Mode interactions were found to weaken after the instabilities reached a crescendo and then decayed, leading to a nonlinear spectral broadening effect.
Radiative amplification of sound waves in the winds of O and B stars
Macgregor, K. B.; Hartmann, L.; Raymond, J. C.
1979-01-01
The velocity perturbation associated with an outwardly propagating sound wave in a radiation-driven stellar wind gives rise to a periodic Doppler shifting of absorption lines formed in the flow. A linearized theory applicable to optically thin waves is used to show that the resulting fluctuation in the absorption-line force can cause the wave amplitude to grow. Detailed calculations of the acceleration due to a large number of lines indicate that significant amplification can occur throughout the high-velocity portion of winds in which the dominant force-producing lines have appreciable optical depths. In the particular case of the wind of Zeta Pup (O4f), it is found that the e-folding distance for wave growth is considerably shorter than the scale lengths over which the physical properties of the flow vary. A qualitative estimate of the rate at which mechanical energy due to nonlinear waves can be dissipated suggests that this mechanism may be important in heating the supersonic portion of winds of early-type stars.
Radiative cooling and broadband phenomenon in low-frequency waves
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
In this paper, we analyze the effects of radiative cooling on the pure baroclinic low-frequency waves under the approximation of equatorial -plane and semi-geostrophic condition. The results show that radiative cooling does not, exclusively, provide the damping effects on the development of low-frequency waves. Under the delicate radiative-convective equilibrium, radiative effects will alter the phase speed and wave period, and bring about the broadband of phase velocity and wave period by adjusting the vertical profiles of diabatic heating. when the intensity of diabatic heating is moderate and appropriate, it is conductive to the development and sustaining of the low-frequency waves and their broadband phenomena, not the larger, the better. The radiative cooling cannot be neglected in order to reach the moderate and appropriate intensity of diabatic heating.
Lemarchand, A.; Nowakowski, B.; Dumazer, G.; Antoine, C.
2011-01-01
We perform microscopic simulations using the direct simulation Monte Carlo approach to an exothermic chemical wave front of Fisher-Kolmogorov, Petrovsky, Piskunov-type in a one-dimensional gaseous medium. The results confirm the existence of a transition from a weak detonation or deflagration to a Chapman-Jouguet detonation wave, that we already investigated at the macroscopic scale [G. Dumazer et al., Phys. Rev. E 78, 016309 (2008)]. In the domain of weak detonation or deflagration, the discrepancy between the propagation speeds deduced from the simulations and the macroscopic balance equations of hydrodynamics is explained by two microscopic effects, the discretization of the variables, known as cutoff effect, and the departure from local equilibrium. Remarkably, the propagation speed of a Chapman-Jouguet detonation wave is not sensitive to these perturbations of microscopic origin.
Wave propagation and radiation in gyrotropic and anisotropic media
Eroglu, Abdullah
2010-01-01
""Wave Propagation and Radiation in Gyrotropic and Anisotropic Media"" fills the gap in the area of applied electromagnetics for the design of microwave and millimeter wave devices using composite structures where gyrotropic, anisotropic materials are used. The book provides engineers with the information on theory and practical skills they need to understand wave propagation and radiation characteristics of materials and the ability to design devices at higher frequencies with optimum device performance.
Nonlinear Whistler Wave Physics in the Radiation Belts
Crabtree, Chris
2016-10-01
Wave particle interactions between electrons and whistler waves are a dominant mechanism for controlling the dynamics of energetic electrons in the radiation belts. They are responsible for loss, via pitch-angle scattering of electrons into the loss cone, and energization to millions of electron volts. It has previously been theorized that large amplitude waves on the whistler branch may scatter their wave-vector nonlinearly via nonlinear Landau damping leading to important consequences for the global distribution of whistler wave energy density and hence the energetic electrons. It can dramatically reduce the lifetime of energetic electrons in the radiation belts by increasing the pitch angle scattering rate. The fundamental building block of this theory has now been confirmed through laboratory experiments. Here we report on in situ observations of wave electro-magnetic fields from the EMFISIS instrument on board NASA's Van Allen Probes that show the signatures of nonlinear scattering of whistler waves in the inner radiation belts. In the outer radiation belts, whistler mode chorus is believed to be responsible for the energization of electrons from 10s of Kev to MeV energies. Chorus is characterized by bursty large amplitude whistler mode waves with frequencies that change as a function of time on timescales corresponding to their growth. Theories explaining the chirping have been developed for decades based on electron trapping dynamics in a coherent wave. New high time resolution wave data from the Van Allen probes and advanced spectral techniques are revealing that the wave dynamics is highly structured, with sub-elements consisting of multiple chirping waves with discrete frequency hops between sub-elements. Laboratory experiments with energetic electron beams are currently reproducing the complex frequency vs time dynamics of whistler waves and in addition revealing signatures of wave-wave and beat-wave nonlinear wave-particle interactions. These new data
Ultrabroadband dispersive radiation by spatiotemporal oscillation of multimode waves
Wright, Logan G; Christodoulides, Demetrios N; Wise, Frank W
2015-01-01
Despite the abundance and importance of three-dimensional systems, relatively little progress has been made on spatiotemporal nonlinear optical waves compared to time-only or space-only systems. Here we study radiation emitted by three-dimensionally evolving nonlinear optical waves in multimode fiber. Spatiotemporal oscillations of solitons in the fiber generate multimode dispersive wave sidebands over an ultrabroadband spectral range. This work suggests routes to multipurpose sources of coherent electromagnetic waves, with unprecedented wavelength coverage.
MONOTONIC DERIVATIVE CORRECTION FOR CALCULATION OF SUPERSONIC FLOWS WITH SHOCK WAVES
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-07-01
Full Text Available Subject of Research. Numerical solution methods of gas dynamics problems based on exact and approximate solution of Riemann problem are considered. We have developed an approach to the solution of Euler equations describing flows of inviscid compressible gas based on finite volume method and finite difference schemes of various order of accuracy. Godunov scheme, Kolgan scheme, Roe scheme, Harten scheme and Chakravarthy-Osher scheme are used in calculations (order of accuracy of finite difference schemes varies from 1st to 3rd. Comparison of accuracy and efficiency of various finite difference schemes is demonstrated on the calculation example of inviscid compressible gas flow in Laval nozzle in the case of continuous acceleration of flow in the nozzle and in the case of nozzle shock wave presence. Conclusions about accuracy of various finite difference schemes and time required for calculations are made. Main Results. Comparative analysis of difference schemes for Euler equations integration has been carried out. These schemes are based on accurate and approximate solution for the problem of an arbitrary discontinuity breakdown. Calculation results show that monotonic derivative correction provides numerical solution uniformity in the breakdown neighbourhood. From the one hand, it prevents formation of new points of extremum, providing the monotonicity property, but from the other hand, causes smoothing of existing minimums and maximums and accuracy loss. Practical Relevance. Developed numerical calculation method gives the possibility to perform high accuracy calculations of flows with strong non-stationary shock and detonation waves. At the same time, there are no non-physical solution oscillations on the shock wave front.
Radiation of Electron in the Field of Plane Light Wave
Energy Technology Data Exchange (ETDEWEB)
Zelinsky, A.; Drebot, I.V.; Grigorev, Yu.N.; Zvonareva, O.D.; /Kharkov, KIPT; Tatchyn, R.; /SLAC
2006-02-24
Results of integration of a Lorentz equation for a relativistic electron moving in the field of running, plane, linear polarized electromagnetic wave are presented in the paper. It is shown that electron velocities in the field of the wave are almost periodic functions of time. For calculations of angular spectrum of electron radiation intensity expansion of the electromagnetic field in a wave zone into generalized Fourier series was used. Expressions for the radiation intensity spectrum are presented in the paper. Derived results are illustrated for electron and laser beam parameters of NSC KIPT X-ray generator NESTOR. It is shown that for low intensity of the interacting electromagnetic wave the results of energy and angular spectrum calculations in the frame of classical electrodynamics completely coincide with calculation results produced using quantum electrodynamics. Simultaneously, derived expressions give possibilities to investigate dependence of energy and angular Compton radiation spectrum on phase of interaction and the interacting wave intensity.
The radiation of surface wave energy: Implications for volcanic tremor
Haney, M. M.; Denolle, M.; Lyons, J. J.; Nakahara, H.
2015-12-01
The seismic energy radiated by active volcanism is one common measurement of eruption size. For example, the magnitudes of individual earthquakes in volcano-tectonic (VT) swarms can be summed and expressed in terms of cumulative magnitude, energy, or moment release. However, discrepancies exist in current practice when treating the radiated energy of volcano seismicity dominated by surface waves. This has implications for volcanic tremor, since eruption tremor typically originates at shallow depth and is made up of surface waves. In the absence of a method to compute surface wave energy, estimates of eruption energy partitioning between acoustic and seismic waves typically assume seismic energy is composed of body waves. Furthermore, without the proper treatment of surface wave energy, it is unclear how much volcanic tremor contributes to the overall seismic energy budget during volcanic unrest. To address this issue, we derive, from first principles, the expression of surface wave radiated energy. In contrast with body waves, the surface wave energy equation is naturally expressed in the frequency domain instead of the time domain. We validate our result by reproducing an analytical solution for the radiated power of a vertical force source acting on a free surface. We further show that the surface wave energy equation leads to an explicit relationship between energy and the imaginary part of the surface wave Green's tensor at the source location, a fundamental property recognized within the field of seismic interferometry. With the new surface wave energy equation, we make clear connections to reduced displacement and propose an improved formula for the calculation of surface wave reduced displacement involving integration over the frequency band of tremor. As an alternative to reduced displacement, we show that reduced particle velocity squared is also a valid physical measure of tremor size, one based on seismic energy rate instead of seismic moment rate. These
The Generation and Radiation of Supersonic Jet Noise. Volume 1. Summary
1976-09-01
will also form the basis of a design tool for new suppressor nozzle concepts. In this phase of the work, there were the major objectives stated in the...to large-scale noise radiating eddies and that this noise is accurately predicted by the large-scale turbulence noise theory devoped during this...these data. As a result of the difficulties in application as a source location tool , this method was not used further. Instead, it was determined that
Unified formulation of radiation conditions for the wave equation
DEFF Research Database (Denmark)
Krenk, Steen
2002-01-01
A family of radiation conditions for the wave equation is derived by truncating a rational function approxiamtion of the corresponding plane wave representation, and it is demonstrated how these boundary conditions can be formulated in terms of fictitious surface densities, governed by second...
Dispersive radiation induced by shock waves in passive resonators.
Malaguti, Stefania; Conforti, Matteo; Trillo, Stefano
2014-10-01
We show that passive Kerr resonators pumped close to zero dispersion wavelengths on the normal dispersion side can develop the resonant generation of linear waves driven by cavity (mixed dispersive-dissipative) shock waves. The resonance mechanism can be successfully described in the framework of the generalized Lugiato-Lefever equation with higher-order dispersive terms. Substantial differences with radiation from cavity solitons and purely dispersive shock waves dispersion are highlighted.
Langmuir-like waves and radiation in planetary foreshocks
Cairns, Iver H.; Robinson, P. A.; Anderson, R. R.; Gurnett, D. A.; Kurth, W. S.
1995-01-01
The basic objectives of this NASA Grant are to develop theoretical understandings (tested with spacecraft data) of the generation and characteristics of electron plasma waves, commonly known as Langmuir-like waves, and associated radiation near f(sub p) and 2f(sub p) in planetary foreshocks. (Here f(sub p) is plasma frequency.) Related waves and radiation in the source regions of interplanetary type III solar radio bursts provide a simpler observational and theoretical context for developing and testing such understandings. Accordingly, applications to type III bursts constitute a significant fraction of the research effort. The testing of the new Stochastic Growth Theory (SGT) for type III bursts, and its extension and testing for foreshock waves and radiation, constitutes a major longterm strategic goal of the research effort.
Electromagnetic radiation accompanying gravitational waves from black hole binaries
Dolgov, A.; Postnov, K.
2017-09-01
The transition of powerful gravitational waves, created by the coalescence of massive black hole binaries, into electromagnetic radiation in external magnetic fields is considered. In contrast to the previous calculations of the similar effect we study the realistic case of the gravitational radiation frequency below the plasma frequency of the surrounding medium. The gravitational waves propagating in the plasma constantly create electromagnetic radiation dragging it with them, despite the low frequency. The plasma heating by the unattenuated electromagnetic wave may be significant in hot rarefied plasma with strong magnetic field and can lead to a noticeable burst of electromagnetic radiation with higher frequency. The graviton-to-photon conversion effect in plasma is discussed in the context of possible electromagnetic counterparts of GW150914 and GW170104.
Plasma shock waves excited by THz radiation
Rudin, S.; Rupper, G.; Shur, M.
2016-10-01
The shock plasma waves in Si MOS, InGaAs and GaN HEMTs are launched at a relatively small THz power that is nearly independent of the THz input frequency for short channel (22 nm) devices and increases with frequency for longer (100 nm to 1 mm devices). Increasing the gate-to-channel separation leads to a gradual transition of the nonlinear waves from the shock waves to solitons. The mathematics of this transition is described by the Korteweg-de Vries equation that has the single propagating soliton solution.
The Rise of the First Stars: Supersonic Streaming, Radiative Feedback, and 21-cm Cosmology
Barkana, Rennan
2016-01-01
Understanding the formation and evolution of the first stars and galaxies represents one of the most exciting frontiers in astronomy. Since the universe was filled with hydrogen atoms at early times, the most promising probe of the epoch of the first stars is the prominent 21-cm spectral line of hydrogen. Current observational efforts are focused on the cosmic reionization era, but observations of the pre-reionization cosmic dawn are also promising. While observationally unexplored, theoretical studies predict a rich variety of observational signatures from cosmic dawn. As the first stars formed, their radiation (plus that from stellar remnants) produced significant cosmic events including Lyman-alpha coupling at z~25, and early X-ray heating. Much focus has gone to studying the angle-averaged power spectrum of 21-cm fluctuations. Additional probes include the global (sky-averaged) 21-cm spectrum, and the line-of-sight anisotropy of the 21-cm power spectrum. A particularly striking signature may result from t...
Ultra low frequency waves impact on radiation belt energetic particles
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere.Ultra low frequency(ULF)wave in the magnetosphere and its impact on energetic particles,such as the wave-particle resonance,modulation,and particle acceleration,are extremely important topics in the Earth’s radiation belt dynamics and solar wind― magnetospheric coupling.In this review,we briefly introduce the recent advances on ULF waves study. Further,we will explore the density structures and ion compositions around the plasmaspheric boundary layer(PBL)and discuss its possible relation to the ULF waves.
Ultra low frequency waves impact on radiation belt energetic particles
Institute of Scientific and Technical Information of China (English)
ZONG QiuGang; HAO YongQiang; WANG YongFu
2009-01-01
One of the most fundamental important issues in the space physics is to understand how solar wind energy transports into the inner magnetosphere.Ultra low frequency(ULF)wave in the magnetosphere and its impact on energetic particles,such as the wave-particle resonance,modulation,and particle acceleration,are extremely important topics in the Earth's radiation belt dynamics and solar windmagnetospheric coupling.In this review,we briefly introduce the recent advances on ULF waves study.Further,we will explore the density structures and ion compositions around the plasmaspheric boundary layer(PBL)and discuss its possible relation to the ULF waves.
Wave-particle interactions in the outer radiation belts
Agapitov, O V; Artemyev, A V; Mourenas, D; Krasnoselskikh, V V
2015-01-01
Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (fraction of a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed. {\\bf Key words:} the radiation belts, wave-particle interaction, plasma waves and instabilities
Johns, H. M.; Kline, J.; Lanier, N.; Perry, T.; Fontes, C.; Fryer, C.; Brown, C.; Morton, J.; Hager, J.
2016-10-01
The propagation of a heat front in an astrophysical or inertial confinement fusion plasma involves both the equation of state and the opacity of the plasma, and is therefore an important and challenging radiation transport problem. Past experiments have used absorption spectroscopy in chlorinated foams to measure the heat front. (D. Hoarty et al. PRL 82, 3070, 1999). Recent development of Ti-doped cylindrical aerogel foam targets (J. Hager et al. submitted to RSI) results in a more suitable platform for higher temperatures on NIF than Cl dopant. Ti K-shell absorption spectra can be modeled with PrismSPECT to obtain spatially resolved temperature profiles between 100-180eV. Sc dopant has been selected to characterize the heat front between 60-100eV. Improved understanding of non-planckian x-ray drives generated by hohlraums will advance characterization of the radiation transport. Prior work demonstrates PrismSPECT with OPLIB is more physically complete for Sc (H. Johns et al. submitted to RSI). We will present the first application of spectroscopic analysis of the Sc-doped aerogels utilizing this method. This work performed under the auspices of the U.S. Department of Energy by LANL under contract DE-AC52-06NA25396.
INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Subsonic radiation waves in neon
Loseva, T. V.; Nemchinov, I. V.
1989-02-01
Numerical methods are used to investigate the propagation of plane subsonic radiation waves in neon from an obstacle in the direction opposite to the incident radiation of Nd and CO2 lasers. An analysis is made of the influence of the power density of the incident radiation (in the range 10-100 MW/cm2) and of the initial density of neon (beginning from the normal valuep ρ0 up to 10ρ0) on the various characteristics of subsonic radiation waves. It is shown that waves traveling in neon can provide an effective source of radiation with a continuous spectrum and an efficiency of ~ 12-27% in the ultraviolet range (with a characteristic photon energy ~ 5-10 eV).
The effects of profiles on supersonic jet noise
Tiwari, S. N.; Bhat, T. R. S.
1994-01-01
The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
Indian Academy of Sciences (India)
K. S. Al-Ghafri
2015-06-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops, namely, thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function, that ensures the temperature evolution of the background plasma due to radiation, coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglecting the magnetic field perturbation and, eventually, reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale, much larger than the oscillation period that subsequently enables using the WKB theory to study the properties of standing wave. The governing equation describing the time-dependent amplitude of waves is obtained and solved analytically. The analytically derived solutions are numerically evaluated to give further insight into the evolution of the standing acoustic waves. We find that the plasma cooling gives rise to a decrease in the amplitude of oscillations. In spite of the reduction in damping rate caused by rising the cooling, the damping scenario of slow standing MHD waves strongly increases in hot coronal loops.
超声幅照蜂蜡皂化反应研究%Study of Beeswax Saponification with Supersonic Wave irradiation
Institute of Scientific and Technical Information of China (English)
王燕平; 高红核; 汪毓海; 吴毅为; 曹居东
1999-01-01
简要阐述了声化学原理并介绍运用超声辐照下的蜂蜡皂化法，制取新型植物促生长剂——三十烷醇的实验研究工作。以皂化值、皂化率为判据，研究了不同条件下的皂化反应。并获得一套较为理想的实验数据。为超声辐照这一新型实验手段的运用和推广作出了有价值的探讨工作。% This paper introduced the fundamentals of sonar-chemistry and presented our experiment, which developed a new type plant growth promoter triacontanolby using beeswax saponification with supersonic wave irradiation. Based on the saponification value and rate, the saponification in different reactionconditions was studied and a set of data by using routine experimental method was collected in this paper. It was believed that as a new way, supersonic waveirradiation would be a valuable practice for the future study.
Rapid energization of radiation belt electrons by nonlinear wave trapping
Directory of Open Access Journals (Sweden)
Y. Katoh
2008-11-01
Full Text Available We show that nonlinear wave trapping plays a significant role in both the generation of whistler-mode chorus emissions and the acceleration of radiation belt electrons to relativistic energies. We have performed particle simulations that successfully reproduce the generation of chorus emissions with rising tones. During this generation process we find that a fraction of resonant electrons are energized very efficiently by special forms of nonlinear wave trapping called relativistic turning acceleration (RTA and ultra-relativistic acceleration (URA. Particle energization by nonlinear wave trapping is a universal acceleration mechanism that can be effective in space and cosmic plasmas that contain a magnetic mirror geometry.
Re-radiation of acoustic waves from the A0 wave on a submerged elastic shell.
Ahyi, A C; Cao, Hui; Raju, P K; Uberall, Herbert
2005-07-01
We consider evacuated thin semi-infinite shells immersed in a fluid, which may be either of cylindrical shape with a hemispherical shell endcap, or formed two-dimensionally by semi-infinite parallel plates joined together by a semi-cylinder. The connected shell portions are joined in a manner to satisfy continuity but with a discontinuous radius of curvature. Acoustic waves are considered incident along the axis of symmetry (say the z axis) onto the curved portion of the shell, where they, at the critical angle of coincidence, generate Lamb and Stoneley-type waves in the shell. Computations were carried out using a code developed by Cao et al. [Chinese J. Acoust. 14, 317 (1995)] and was used in order to computationally visualize the waves in the fluid that have been re-radiated by the shell waves a the critical angle. The frequency range was below that of the lowest Lamb wave, and only the A0 wave (and partly the S0 wave) was observed to re-radiate into the fluid under our assumptions. The results will be compared to experimental results in which the re-radiated waves are optically visualized by the Schardin-Cranz schlieren method.
Direct radiative capture of p-wave neutrons
Mengoni, A; Ishihara, M
1995-01-01
The neutron direct radiative capture (DRC) process is investigated, highlighting the role of incident p-wave neutrons. A set of calculations is shown for the 12-C(n,gamma) process at incoming neutron energies up to 500 keV, a crucial region for astrophysics. The cross section for neutron capture leading to loosely bound s, p and d orbits of 13-C is well reproduced by the DRC model demonstrating the feasibility of using this reaction channel to study the properties of nuclear wave functions on and outside the nuclear surface. A sensitivity analysis of the results on the neutron-nucleus interaction is performed for incident s- as well as p-waves. It turned out that the DRC cross section for p-wave neutrons is insensitive to this interaction, contrary to the case of incident s-wave neutrons. PACS number(s): 25.40Lw,21.10Gv,23.40.Hc
Measurements of radiated elastic wave energy from dynamic tensile cracks
Boler, Frances M.
1990-01-01
The role of fracture-velocity, microstructure, and fracture-energy barriers in elastic wave radiation during a dynamic fracture was investigated in experiments in which dynamic tensile cracks of two fracture cofigurations of double cantilever beam geometry were propagating in glass samples. The first, referred to as primary fracture, consisted of fractures of intact glass specimens; the second configuration, referred to as secondary fracture, consisted of a refracture of primary fracture specimens which were rebonded with an intermittent pattern of adhesive to produce variations in fracture surface energy along the crack path. For primary fracture cases, measurable elastic waves were generated in 31 percent of the 16 fracture events observed; the condition for radiation of measurable waves appears to be a local abrupt change in the fracture path direction, such as occurs when the fracture intersects a surface flaw. For secondary fractures, 100 percent of events showed measurable elastic waves; in these fractures, the ratio of radiated elastic wave energy in the measured component to fracture surface energy was 10 times greater than for primary fracture.
Image reconstruction with acoustic radiation force induced shear waves
McAleavey, Stephen A.; Nightingale, Kathryn R.; Stutz, Deborah L.; Hsu, Stephen J.; Trahey, Gregg E.
2003-05-01
Acoustic radiation force may be used to induce localized displacements within tissue. This phenomenon is used in Acoustic Radiation Force Impulse Imaging (ARFI), where short bursts of ultrasound deliver an impulsive force to a small region. The application of this transient force launches shear waves which propagate normally to the ultrasound beam axis. Measurements of the displacements induced by the propagating shear wave allow reconstruction of the local shear modulus, by wave tracking and inversion techniques. Here we present in vitro, ex vivo and in vivo measurements and images of shear modulus. Data were obtained with a single transducer, a conventional ultrasound scanner and specialized pulse sequences. Young's modulus values of 4 kPa, 13 kPa and 14 kPa were observed for fat, breast fibroadenoma, and skin. Shear modulus anisotropy in beef muscle was observed.
Franchi-Abella, Stéphanie; Corno, Lucie; Gonzales, Emmanuel; Antoni, Guillemette; Fabre, Monique; Ducot, Béatrice; Pariente, Danièle; Gennisson, Jean-Luc; Tanter, Mickael; Corréas, Jean-Michel
2016-02-01
To evaluate the feasibility of using supersonic shear-wave elastography (SSWE) in children and normal values of liver stiffness with the use of control patients of different ages (from neonates to teenagers) and the diagnostic accuracy of supersonic shear wave elastography for assessing liver fibrosis by using the histologic scoring system as the reference method in patients with liver disease, with a special concern for early stages of fibrosis. The institutional review board approved this prospective study. Informed consent was obtained from parents and children older than 7 years. First, 51 healthy children (from neonate to 15 years) were analyzed as the control group, and univariate and multivariate comparisons were performed to study the effect of age, transducer, breathing condition, probe, and position on elasticity values. Next, 45 children (from 1 month to 17.2 years old) who underwent liver biopsy were analyzed. SSWE measurements were obtained in the same region of the liver as the biopsy specimens. Biopsy specimens were reviewed in a blinded manner by a pathologist with the use of METAVIR criteria. The areas under the receiver operating characteristics curve (AUCs) were calculated for patients with fibrosis stage F0 versus those with stage F1-F2, F2 or higher, F3 or higher, and F4 or higher. A successful rate of SSWE measurement was 100% in 96 patients, including neonates. Liver stiffness values were significantly higher when an SC6-1 probe (Aixplorer; SuperSonic Imagine SA, Aix-enProvence, France) was used than when an SL15-4 probe (Aixplorer) was used (mean ± standard deviation, 6.94 kPa ± 1.42 vs 5.96 kPa ± 1.31; P = .006). There was no influence of sex, the location of measurement, or respiratory status on liver elasticity values (P = .41-.93), although the power to detect such a difference was low. According to the degree of liver fibrosis at liver biopsy, 88.5%-96.8% of patients were correctly classified, with AUCs of 0.90-0.98 (95% confidence
Institute of Scientific and Technical Information of China (English)
黄思源; 桂业伟; 白菡尘
2012-01-01
通过对高温超声速流中爆震波性质的研究,评估其在高超声速冲压发动机燃烧室的燃烧组织中应用的可行性,并通过数值模拟对分析结论进行了验证。提出了一种新的爆震波起爆机制,注入高温超声速流中的燃料混气可通过自身缓慢的释热使流动进入局域热壅塞状态,进而借助局域热壅塞产生的激波实现爆震波的起爆。计算结果表明在适宜的温度与马赫数条件下,注入高温超声速流中的燃料可通过新的起爆机制在超声速流中形成一道稳定的驻定爆震波。表明在高超声速冲压发动机燃烧室中存在着通过驻定爆震波实现火焰稳定的可能性。%To evaluate the feasibility for utilizing the detonation wave to stabilize flame in scramjet combustor,the detona- tion wave characteristic in high temperature environment was studied by numerical simulations. A new initiation mechanism of detonation was presented. The premixed gas injected into high temperature supersonic flow can reach local thermal choking state through the heat released by slow reaction of premixed fuel gas and then a detonation wave can be initiated by shock pro- duced in thermal choking state. The numerical results show that the fuel injected into high temperature supersonic flow can form a standing detonation wave by the new mechanism in some special temperature and Mach number flow conditions. The re- search shows that it is possible utilizing the standing detonation wave to stabilize flame in scramjet combustor.
Zischang, Julia; Suhm, Martin A
2013-07-14
N2O/He gas mixtures are expanded through a 10 × 0.5 mm(2) slit nozzle and imaged by direct absorption vibrational spectroscopy, employing a HgCdTe focal plane array detector after interferometric modulation. N2O cluster formation in the free supersonic expansion is visualized. The expansion structure behind the frontal shock is investigated as a function of background pressure. At high pressures, a sequence of stationary density peaks along a narrow directed flow channel is characterized. The potential of the technique for the elucidation of aggregation mechanisms is emphasized.
PENETRATION OF A SHOCK WAVE IN A FULLY SUPERSONIC FLAME FRONT WITH THE FORMATION OF AN EXPANSION FAN
Directory of Open Access Journals (Sweden)
Dan PANTAZOPOL
2011-03-01
Full Text Available In a previous paper [3] was treated the ,,simple penetration” of an incident shock wavethrough a fully supersonic flame front in the space of the hot burnt gases, situated in a supersonictwo-dimensional flow of an ideal homogeneous /combustible gas was treated in a previous paper [3].In the present paper takes into consideration, a configuration, in which an expansion fan is produced,is take into consideration the shock polar and expansion polar are used for the analyze of theinterference phenomena.
Depth-dependent expression of obliquely incident wave induced radiation stress
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
The vertically dependent expressions of obliquely incident waves induced radiation stress are derived by use of the second order Stokes wave theory within three regions of the water column, that is, above the mean water level, below the wave trough level, and between these two levels. Computations indicate that the wave-induced radiation stress below the wave trough level is from the water wave particle velocity only, whereas both the water wave particle velocity and the wave pressure contribute to the tensor above the wave trough level; the vertical variations of the wave-induced radiation stress are influenced substantially by the velocity component in the direction of wave propagation; the distributions of the wave-induced radiation stress tensor over depth are non-uniform and the proportion of the tensor below the wave trough level becomes considerable in the shallow water; from water surface to seabed, the reversed variations occur for the predominant tensor components.
Skin Friction and Pressure Measurements in Supersonic Inlets Project
National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...
Nonlinear evolution of oblique whistler waves in radiation belts
Sharma, R. P.; Nandal, P.; Yadav, N.; Sharma, Swati
2017-02-01
Magnetic power spectrum and formation of coherent structures have been investigated in the present work applicable to Van Allen radiation belt. The nonlinear interaction of high frequency oblique whistler wave and low frequency magnetosonic wave has been investigated. Simulation was performed of the coupled equation of these two waves. The nonlinear interaction of these waves leads to the formation of the localized structures. These resulting localized structures are of complex nature. The associated magnetic power spectrum has also been studied. Dispersive nonlinear processes account for the high frequency part of the spectrum. The resulting magnetic power spectrum shows a scaling of k^{ - 4.5}. The energy transfer process from injection scales to smaller scales is explained by the results.
Directory of Open Access Journals (Sweden)
D. A. Shcherbakova
2014-09-01
Full Text Available Supersonic shear wave imaging (SSI is a noninvasive, ultrasound-based technique to quantify the mechanical properties of bulk tissues by measuring the propagation speed of shear waves (SW induced in the tissue with an ultrasound transducer. The technique has been successfully validated in liver and breast (tumor diagnostics and is potentially useful for the assessment of the stiffness of arteries. However, SW propagation in arteries is subjected to different wave phenomena potentially affecting the measurement accuracy. Therefore, we assessed SSI in a less complex ex vivo setup, that is, a thick-walled and rectangular slab of an excised equine aorta. Dynamic uniaxial mechanical testing was performed during the SSI measurements, to dispose of a reference material assessment. An ultrasound probe was fixed in an angle position controller with respect to the tissue to investigate the effect of arterial anisotropy on SSI results. Results indicated that SSI was able to pick up stretch-induced stiffening of the aorta. SW velocities were significantly higher along the specimen's circumferential direction than in the axial direction, consistent with the circumferential orientation of collagen fibers. Hence, we established a first step in studying SW propagation in anisotropic tissues to gain more insight into the feasibility of SSI-based measurements in arteries.
Nguyen, Thu-Mai; Aubry, Jean-François; Touboul, David; Fink, Mathias; Gennisson, Jean-Luc; Bercoff, Jeremy; Tanter, Mickael
2012-08-31
Keratoconus disease or post-LASIK corneal ectasia are increasingly treated using UV-A/riboflavin-induced corneal collagen cross-linking (CXL). However, this treatment suffers from a lack of techniques to provide an assessment in real-time of the CXL effects. Here, we investigated the potential interest of corneal elasticity as a biomarker of the efficacy of this treatment. For this purpose, supersonic shear wave imaging (SSI) was performed both ex vivo and in vivo on porcine eyes before and after CXL. Based on ultrasonic scanners providing ultrafast frame rates (~30 kHz), the SSI technique generates and tracks the propagation of shear waves in tissues. It provides two- and three-dimensional (2-D and 3-D) quantitative maps of the corneal elasticity. After CXL, quantitative maps of corneal stiffness clearly depicted the cross-linked area with a typical 200-μm lateral resolution. The CXL resulted in a 56% ± 15% increase of the shear wave speed for corneas treated in vivo (n = 4). The in vivo CXL experiments performed on pigs demonstrated that the quantitative estimation of local stiffness and the 2-D elastic maps of the corneal surface provide an efficient way to monitor the local efficacy of corneal cross-linking.
New Radiation Input/Output Systems for Millimeter-Wave Gyrotron Traveling-Wave Tubes
Denisov, G. G.; Bogdashov, A. A.; Gachev, I. G.; Mishakin, S. V.; Samsonov, S. V.
2016-03-01
We consider in detail the method allowing one to input and output the microwave radiation produced by an elecrovacuum amplifier through the same barrier window, which was proposed earlier, in the context of its application in a traveling-wave tube based on a waveguide with a helically corrugated surface. Special attention is given to the splitter of differently polarized radiation, and the results of studying this splitter at wavelengths of about 6 and 1 mm theoretically and experimentally are presented.
Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.
2016-04-12
A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.
Ion Acceleration by the Radiation Pressure of Slow Electromagnetic Wave
Bulanov, S V; Kando, M; Pegoraro, F; Bulanov, S S; Geddes, C G R; Schroeder, C; Esarey, E; Leemans, W
2012-01-01
When the ions are accelerated by the radiation pressure of the laser pulse, their velocity can not exceed the laser group velocity, in the case when it is less than the speed of light in vacuum. This is demonstrated in two cases corresponding to the thin foil target irradiated by a high intensity laser light and to the hole boring by the laser pulse in the extended plasma accompanied by the collisionless shock wave formation. It is found that the beams of accelerated at the collisionless shock wave front ions are unstable against the Buneman-lke and the Weibel-like instabilities which result in the ion energy spectrum broadening.
Decoherence of matter waves by thermal emission of radiation
Hackermüller, L; Brezger, B; Zeilinger, Anton; Arndt, M; Hackermueller, Lucia; Hornberger, Klaus; Brezger, Bjoern; Zeilinger, Anton; Arndt, Markus
2004-01-01
Emergent quantum technologies have led to increasing interest in decoherence - the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum-classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find...
Wave acceleration of electrons in the Van Allen radiation belts.
Horne, Richard B; Thorne, Richard M; Shprits, Yuri Y; Meredith, Nigel P; Glauert, Sarah A; Smith, Andy J; Kanekal, Shrikanth G; Baker, Daniel N; Engebretson, Mark J; Posch, Jennifer L; Spasojevic, Maria; Inan, Umran S; Pickett, Jolene S; Decreau, Pierrette M E
2005-09-08
The Van Allen radiation belts are two regions encircling the Earth in which energetic charged particles are trapped inside the Earth's magnetic field. Their properties vary according to solar activity and they represent a hazard to satellites and humans in space. An important challenge has been to explain how the charged particles within these belts are accelerated to very high energies of several million electron volts. Here we show, on the basis of the analysis of a rare event where the outer radiation belt was depleted and then re-formed closer to the Earth, that the long established theory of acceleration by radial diffusion is inadequate; the electrons are accelerated more effectively by electromagnetic waves at frequencies of a few kilohertz. Wave acceleration can increase the electron flux by more than three orders of magnitude over the observed timescale of one to two days, more than sufficient to explain the new radiation belt. Wave acceleration could also be important for Jupiter, Saturn and other astrophysical objects with magnetic fields.
On-surface radiation condition for multiple scattering of waves
Acosta, Sebastian
2013-01-01
The formulation of the on-surface radiation condition (OSRC) is extended to handle wave scattering problems in the presence of multiple obstacles. The new multiple-OSRC simultaneously accounts for the outgoing behavior of the wave fields, as well as, the multiple wave reflections between the obstacles. Like boundary integral equations (BIE), this method leads to a reduction in dimensionality (from volume to surface) of the discretization region. However, as opposed to BIE, the proposed technique leads to boundary integrals with smooth kernels. In addition, under appropriate conditions, this approach leads to approximate explicit (up to numerical integration) formulas for the solution, avoiding the need to invert any operator or matrix. As a result, the computational effort is significantly reduced. This approach may serve as a fast method to explore parameter-spaces or as an inexpensive pre-conditioner for Krylov iterative solutions of BIE.
Chromospheric heating by acoustic waves compared to radiative cooling
Sobotka, M; Švanda, M; Jurčák, J; del Moro, D; Berrilli, F
2016-01-01
Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of solar atmosphere. A weak chromospheric plage near a large solar pore NOAA 11005 was observed on October 15, 2008 in the lines Fe I 617.3 nm and Ca II 853.2 nm with the Interferometric Bidimemsional Spectrometer (IBIS) attached to the Dunn Solar Telescope. Analyzing the Ca II observations with spatial and temporal resolutions of 0.4" and 52 s, the energy deposited by acoustic waves is compared with that released by radiative losses. The deposited acoustic flux is estimated from power spectra of Doppler oscillations measured in the Ca II line core. The radiative losses are calculated using a grid of seven 1D hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of maps of radiative losses and acoustic flux is 72 %. In quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only of about 15 %. In active areas with photospheric ma...
Diffusion of radiation belt protons by whistler waves
Energy Technology Data Exchange (ETDEWEB)
Villalon, E.; Burke, W.J.
1994-11-01
Whistler waves propagating near the quasi-electrostatic limit can interact with energetic protons (appr. 80 - 500 keV) that are transported into the radiation belts. The waves may be launched from either the ground or generated in the magnetosphere as a result of the resonant interactions with trapped electrons. The wave frequencies are significant fractions of the equatorial electron gyrofrequency, and they propagate obliquely to the geomagnetic field. A finite spectrum of waves compensates for the inhomogeneity of the geomagnetic field allowing the protons to stay in gyroresonance with the waves over long distances along magnetic field lines. The Fokker-Planck equation is integrated along the flux tube considering the contributions of multiple-resonance crossings. The quasi-linear diffusion coefficients in energy, cross energy/pitch angle, and pitch angle are obtalned for second order resonant interactions. They are shown to be proportional to the electric fields amplitudes. Numerical calculations for the second order interactions show that diffusion dominates near the edge of the loss cone. For small pitch angles the largest diffusion coefficient is in energy, although the cross energy/pitch angle term is also important. This may explain the induced proton precipitation observed in active space experiments.
Diffusion of radiation belt protons by whistler waves
Villalon, Elena; Burke, William J.
1994-11-01
Whistler waves propagating near the quasi-electrostatic limit can interact with energetic protons (approximately 80 - 500 keV) that are transported into the radiation belts. The waves may be launched from either the ground or generated in the magnetosphere as a result of the resonant interactions with trapped electrons. The wave frequencies are significant fractions of the equatorial electron gyrofrequency, and they propagate obliquely to the geomagnetic field. A finite spectrum of waves compensates for the inhomogeneity of the geomagnetic field allowing the protons to stay in gyroresonance with the waves over long distances along magnetic field lines. The Fokker-Planck equation is intergrated along the flux tube considering the contributions of multiple-resonance crossings. The quasi-linear diffusion coefficients in energy, cross energy/ pitch angle, and pitch angle are obtained for second-order resonant interactions. They are sown to be proportional to the electric fields amplitudes. Numerical calculations for the second-order interactions show that diffusion dominates near the edge of the loss cone. For small pitch angles the largest diffusion coefficient is in energy, although the cross energy/ pitch angle term is also important. This may explain the induced proton precipitation observed in active space experiments.
Diffusion of radiation belt protons by whistler waves
Energy Technology Data Exchange (ETDEWEB)
Villalon, E. [Northeastern Univ., Boston, MA (United States); Burke, W.J. [Hanscom Air Force Base, MA (United States)
1994-11-01
Whistler waves propagating near the quasi-electrostatic limit can interact with energetic protons ({approximately}80-500 keV) that are transported into the radiation belts. The waves may be launched from either the ground or generated in the magnetosphere as a result of the resonant interactions with trapped electrons. The wave frequencies are significant fractions of the equatorial electron gyrofrequency, and they propagate oliquely to the geomagnetic field. A finite spectrum of waves compensates for the inhomogeneity of the geomagnetic field allowing the protons to stay in gyroresonance with the waves over long distances along magnetic field lines. The Fokker-Planck equation is integrated along the flux tube considering the contributions of multiple-resonance crossings. The quasi-linear diffusion coefficients in energy, cross energy/pitch angle, and pitch angle are obtained for second-order resonant interactions. They are shown to be proportional to the electric fields amplitudes. Numerical calculations for the second-order interactions show that diffusion dominates near the edge of the loss cone. For small pitch angles the largest diffusion coefficient is in energy, although the cross energy/pitch angle term is also important. This may explain the induced proton precipitation observed in active space experiments. 24 refs., 12 figs.
Energy Technology Data Exchange (ETDEWEB)
Almenara, E.; Hidalgo, M.; Saviron, J. M.
1980-07-01
This Report gives preliminary information about a Monte Carlo procedure to simulate supersonic flow past a body of a low density plasma in the transition regime. A computer program has been written for a UNIVAC 1108 machine to account for a plasma composed by neutral molecules and positive and negative ions. Different and rather general body geometries can be analyzed. Special attention is played to tho detached shock waves growth In front of the body. (Author) 30 refs.
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.
2016-06-01
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.
Aeroacoustic properties of supersonic elliptic jets
Kinzie, Kevin W.; McLaughlin, Dennis K.
1999-09-01
The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.
Decoherence of matter waves by thermal emission of radiation.
Hackermüller, Lucia; Hornberger, Klaus; Brezger, Björn; Zeilinger, Anton; Arndt, Markus
2004-02-19
Emergent quantum technologies have led to increasing interest in decoherence--the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external photons or molecules, and by investigations using coherent photon states, trapped ions and electron interferometers. Large molecules are particularly suitable for the investigation of the quantum-classical transition because they can store much energy in numerous internal degrees of freedom; the internal energy can be converted into thermal radiation and thus induce decoherence. Here we report matter wave interferometer experiments in which C70 molecules lose their quantum behaviour by thermal emission of radiation. We find good quantitative agreement between our experimental observations and microscopic decoherence theory. Decoherence by emission of thermal radiation is a general mechanism that should be relevant to all macroscopic bodies.
Murphy, Kyle R; Mann, Ian R; Rae, I Jonathan; Sibeck, David G; Watt, Clare E J
2016-08-01
Wave-particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm-time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm-time wave power.
Vortex flow in the technology of radiation wave cracking (RWC)
Tsoy, L A; Komarov, A G; Tsoy, A N
2012-01-01
This article examines the theory of vortex flows in relation to the processes occurring in the radiation-wave cracking of crude oil, when the crude oil is sprayed into the gas stream in the form of a mist and then is fed into the reactor, where it is treated by the accelerated electrons and the UHF radiation. The output of this process are the products with the specified parameters (high-octane petroleum products). This process operates at the ambient pressure and temperature, which makes the process safer for industrial purposes. Besides the process itself, the authors described the equipment used in this process, as well as the parameters of the optimal process.
Simulate the volcanic radiation features in medium wave infrared channels
Gong, Cailan; Jiang, Shan; Liu, Fengyi; Hu, Yong
2015-10-01
There are different scales and intensities of the volcanic eruption in the world every year. Existing medium wave infrared (MWI) remote sensing channels are often at atmospheric window in 3-5μm, lack of water vapor and carbon dioxide(CO2) absorption channels data, such as 2.2μm, 2.7μm and so on, however the 2.7μm absorption bands can be used as volcanoes, forest fires and other hot target identification. In order to obtain the high-temperature targets (HTT)radiation features, such as volcanic eruptions and forest fires in the water vapor absorption channels, Firstly, the HTT should be identified from the existing bands based on the temperature differences between the objects and the surrounding environment. Then, the HTT radiation features were simulated, and the correlation between the radiations of different bands were established with statistical analysis method. The HTT reorganization from remote sensing data, radiation characteristics simulation in different atmospheric models were described, then the bands transformed models were set up. The volcanic HTT radiation characteristics were simulated in wavelength 2.7μm and 4.433-4.498μm (band 24 of MODIS) based on the known bands of 3.55 -3.93μm (band 3 of FengYun-3 Visible and Infrared Scanning Radiometer (VIRR)). The simulated results were tested by the volcanic HTT radiation characteristics with 4.433-4.498μm by known bands of MODIS image and the simulated 4.433-4.498μm image. The causes of errors generated were analyzed. The study methods were useful to the new remote sensor bands imaging characteristics simulation analysis.
Christhilf, David M.
2014-01-01
It has long been recognized that frequency and phasing of structural modes in the presence of airflow play a fundamental role in the occurrence of flutter. Animation of simulation results for the long, slender Semi-Span Super-Sonic Transport (S4T) wind-tunnel model demonstrates that, for the case of mass-ballasted nacelles, the flutter mode can be described as a traveling wave propagating downstream. Such a characterization provides certain insights, such as (1) describing the means by which energy is transferred from the airflow to the structure, (2) identifying airspeed as an upper limit for speed of wave propagation, (3) providing an interpretation for a companion mode that coalesces in frequency with the flutter mode but becomes very well damped, (4) providing an explanation for bursts of response to uniform turbulence, and (5) providing an explanation for loss of low frequency (lead) phase margin with increases in dynamic pressure (at constant Mach number) for feedback systems that use sensors located upstream from active control surfaces. Results from simulation animation, simplified modeling, and wind-tunnel testing are presented for comparison. The simulation animation was generated using double time-integration in Simulink of vertical accelerometer signals distributed over wing and fuselage, along with time histories for actuated control surfaces. Crossing points for a zero-elevation reference plane were tracked along a network of lines connecting the accelerometer locations. Accelerometer signals were used in preference to modal displacement state variables in anticipation that the technique could be used to animate motion of the actual wind-tunnel model using data acquired during testing. Double integration of wind-tunnel accelerometer signals introduced severe drift even with removal of both position and rate biases such that the technique does not currently work. Using wind-tunnel data to drive a Kalman filter based upon fitting coefficients to
Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.
2012-06-01
A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to
Calculation of Wave Radiation Stress in Combination with Parabolic Mild Slope Equation
Institute of Scientific and Technical Information of China (English)
ZHENG Yonghong; SHEN Yongming; QIU Dahong
2000-01-01
A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved numerically by the finite difference method. Numerical results show that the new method is accurate enough, can be efficiently solved with little programming effort, and can be applied to the calculation of wave radiation stress for large coastal areas.
Horne, Richard B.; Miyoshi, Yoshizumi
2016-10-01
Magnetosonic waves and electromagnetic ion cyclotron (EMIC) waves are important for electron acceleration and loss from the radiation belts. It is generally understood that these waves are generated by unstable ion distributions that form during geomagnetically disturbed times. Here we show that magnetosonic waves could be a source of EMIC waves as a result of propagation and a process of linear mode conversion. The converse is also possible. We present ray tracing to show how magnetosonic (EMIC) waves launched with large (small) wave normal angles can reach a location where the wave normal angle is zero and the wave frequency equals the so-called crossover frequency whereupon energy can be converted from one mode to another without attenuation. While EMIC waves could be a source of magnetosonic waves below the crossover frequency, magnetosonic waves could be a source of hydrogen band waves but not helium band waves.
Extraction of pectin from banana peel by ammonium oxalate under supersonic wave%超声波协同草酸铵法提取香蕉皮中果胶的研究
Institute of Scientific and Technical Information of China (English)
陶艳丽; 高路; 王晓双; 闫圆圆; 孙艺方; 杨旭
2015-01-01
The aimof this paper was to explore the extractionof the pectin with ammoniumoxalate under supersonic wave from banana peel. The effectsof ammoniumoxalateconcentration,the ratioof ammoniumoxalate solution volume to banana peel weight,supersonic wave power,ultrasound time, supersonic temperature and lengthof ethanol extraction timeon the extraction efficiencyof pectin were studied by experiment. Theoptimum technologicalconditions withorthogonal array design were as follows: theconcentrationof ammoniumoxalateof 0.8%,supersonic temperatureof 65℃,the volume of ammoniumoxalate solution to the weightof banana peelof 35︰1,the ultrasound timeof 70 min. Under theseconditions,the extraction rateof pectin from banana peel reached up to 23.27%.%该文研究采用超声波辅助草酸铵法提取香蕉皮中果胶的最佳工艺条件，研究了不同草酸铵浓度、料液比、超声功率、超声时间、超声温度和浸提时间对果胶提取率的影响。通过正交试验确定提取香蕉皮果胶的最优工艺条件为：草酸铵浓度0.8%，超声温度65℃，料液比35︰1，超声时间65 min，此条件下香蕉皮果胶的提取率为23.27%。
Daso, Endwell O. (Inventor); Pritchett, Victor E., II (Inventor); Wang, Ten-See (Inventor); Farr, Rebecca Ann (Inventor); Auslender, Aaron Howard (Inventor); Blankson, Isaiah M. (Inventor); Plotkin, Kenneth J. (Inventor)
2015-01-01
A method and system are provided to weaken shock wave strength at leading edge surfaces of a vehicle in atmospheric flight. One or more flight-related attribute sensed along a vehicle's outer mold line are used to control the injection of a non-heated, non-plasma-producing gas into a local external flowfield of the vehicle from at least one leading-edge surface location along the vehicle's outer mold line. Pressure and/or mass flow rate of the gas so-injected is adjusted in order to cause a Rankine-Hugoniot Jump Condition along the vehicle's outer mold line to be violated.
Supersonic flow imaging via nanoparticles
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.
On the role of lateral waves in the radiation from the dielectric wedge
DEFF Research Database (Denmark)
Balling, Peter
1973-01-01
The field on the dielectric wedge is approximated by a plane-wave expansion as in [1]. Contributions from this solution to both the surface field and the radiation field are examined. Finally, an experimental radiation field is compared with the plane-wave solution and with a geometric-optical di...
The Roles of Transport and Wave-Particle Interactions on Radiation Belt Dynamics
Fok, Mei-Ching; Glocer, Alex; Zheng, Qiuhua
2011-01-01
Particle fluxes in the radiation belts can vary dramatically during geomagnetic active periods. Transport and wave-particle interactions are believed to be the two main types of mechanisms that control the radiation belt dynamics. Major transport processes include substorm dipolarization and injection, radial diffusion, convection, adiabatic acceleration and deceleration, and magnetopause shadowing. Energetic electrons and ions are also subjected to pitch-angle and energy diffusion when interact with plasma waves in the radiation belts. Important wave modes include whistler mode chorus waves, plasmaspheric hiss, electromagnetic ion cyclotron waves, and magnetosonic waves. We investigate the relative roles of transport and wave associated processes in radiation belt variations. Energetic electron fluxes during several storms are simulated using our Radiation Belt Environment (RBE) model. The model includes important transport and wave processes such as substorm dipolarization in global MHD fields, chorus waves, and plasmaspheric hiss. We discuss the effects of these competing processes at different phases of the storms and validate the results by comparison with satellite and ground-based observations. Keywords: Radiation Belts, Space Weather, Wave-Particle Interaction, Storm and Substorm
Controlling Energy Radiations of Electromagnetic Waves via Frequency Coding Metamaterials.
Wu, Haotian; Liu, Shuo; Wan, Xiang; Zhang, Lei; Wang, Dan; Li, Lianlin; Cui, Tie Jun
2017-09-01
Metamaterials are artificial structures composed of subwavelength unit cells to control electromagnetic (EM) waves. The spatial coding representation of metamaterial has the ability to describe the material in a digital way. The spatial coding metamaterials are typically constructed by unit cells that have similar shapes with fixed functionality. Here, the concept of frequency coding metamaterial is proposed, which achieves different controls of EM energy radiations with a fixed spatial coding pattern when the frequency changes. In this case, not only different phase responses of the unit cells are considered, but also different phase sensitivities are also required. Due to different frequency sensitivities of unit cells, two units with the same phase response at the initial frequency may have different phase responses at higher frequency. To describe the frequency coding property of unit cell, digitalized frequency sensitivity is proposed, in which the units are encoded with digits "0" and "1" to represent the low and high phase sensitivities, respectively. By this merit, two degrees of freedom, spatial coding and frequency coding, are obtained to control the EM energy radiations by a new class of frequency-spatial coding metamaterials. The above concepts and physical phenomena are confirmed by numerical simulations and experiments.
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy.
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-05-15
Whistler-mode emissions are important electromagnetic waves pervasive in the Earth's magnetosphere, where they continuously remove or energize electrons trapped by the geomagnetic field, controlling radiation hazards to satellites and astronauts and the upper-atmosphere ionization or chemical composition. Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds to hitherto generally neglected very oblique waves. Such waves, with 10 times smaller magnetic power than parallel waves, typically have similar total energy. Moreover, they carry up to 80% of the wave energy involved in wave-particle resonant interactions. It implies that electron heating and precipitation into the atmosphere may have been significantly under/over-valued in past studies considering only conventional quasi-parallel waves. Very oblique waves may turn out to be a crucial agent of energy redistribution in the Earth's radiation belts, controlled by solar activity.
Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.
Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R
2015-12-22
Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.
Unveiling Magnetic Dipole Radiation in Phase-Reversal Leaky-Wave Antennas
Gupta, Shulabh; Caloz, Christophe
2014-01-01
The radiation principle of travelling-wave type phase-reversal antennas is explained in details, unveiling the presence of magnetic-dipole radiation in addition to well-known electric dipole radiation. It is point out that such magnetic dipole radiation is specific to the case of traveling-wave phase-reversal antennas whereas only electric-dipole radiation exists in resonant-type phase-reversal antennas. It is shown that a phase-reversal travelling-wave antenna alternately operates as an array of magnetic dipoles and an array of electric-dipoles during a time-harmonic period. This radiation mechanism is confirmed through both full-wave and experimental results.
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J.; Tajima, T.
2004-10-01
The plasma particle interaction with a relativistically intense electromagnetic wave under the conditions when the radiation reaction effects are dominant is considered. We analyze the radiation damping effects on the electron motion inside the circularly polarized planar wave and inside a subcycle crossed-field electromagnetic pulse. We consider the ion acceleration due to the radiation pressure action on a thin plasma slab. The results of 2D and 3D PIC simulations are presented.
Propagation of Surface Wave Along a Thin Plasma Column and Its Radiation Pattern
Institute of Scientific and Technical Information of China (English)
WANG Zhijiang; ZHAO Guowei; XU Yuemin; LIANG Zhiwei; XU Jie
2007-01-01
Propagation of the surface waves along a two-dimensional plasma column and the far-field radiation patterns are studied in thin column approximation. Wave phase and attenuation coefficients are calculated for various plasma parameters. The radiation patterns are shown. Results show that the radiation patterns are controllable by flexibly changing the plasma length and other parameters in comparison to the metal monopole antenna. It is meaningful and instructional for the optimization of the plasma antenna design.
Truppe, Stefan; Holland, Darren; Hendricks, Richard James; Hinds, Ed; Tarbutt, Michael
2014-06-01
We aim to slow a supersonic, molecular beam of 11BH using a Zeeman slower and subsequently cool the molecules to sub-millikelvin temperatures in a magneto-optical trap. Most molecules are not suitable for direct laser cooling because the presence of rotational and vibrational degrees of freedom means there is no closed-cycle transition which is necessary to scatter a large number of photons. As was pointed out by Di Rosa, there exists a class of molecules for which the excitation of vibrational modes is suppressed due to highly diagonal Franck-Condon factors. Furthermore, Stuhl et al. showed that angular momentum selection rules can be used to suppress leakage to undesired rotational states. Here we present a measurement of the radiative branching ratios of the A^1Π→ X^1Σ transition in 11BH - a necessary step towards subsequent laser cooling experiments. We also perform high-resolution mm-wave spectroscopy of the J'=1← J=0 rotational transition in the X^1Σ (v=0) state near 708 GHz. From this measurement we derive new, accurate hyper fine constants and compare these to theoretical descriptions. The measured branching ratios suggest that it is possible to laser cool 11BH molecules close to the recoil temperature of 4 μK using three laser frequencies only. M. D. Di Rosa, The European Physical Journal D, 31, 395, 2004 B. K. Stuhl et al., Physical Review Letters, 101, 243002, 2008
Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam
Gupta, D. N.; Kulagin, V. V.; Suk, H.
2017-10-01
We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.
Rimeika, Romualdas; Čiplys, Daumantas; Jonkus, Vytautas; Shur, Michael
2016-01-01
The leaky surface acoustic wave (SAW) propagating along X-axis of Y-cut lithium tantalate crystal strongly radiates energy in the form of an obliquely propagating narrow bulk acoustic wave (BAW) beam. The reflection of this beam from the crystal-liquid interface has been investigated. The test liquids were solutions of potassium nitrate in distilled water and of lithium chloride in isopropyl alcohol with the conductivity varied by changing the solution concentration. The strong dependences of the reflected wave amplitude and phase on the liquid conductivity were observed and explained by the acoustoelectric interaction in the wave reflection region. The novel configuration of an acoustic sensor for liquid media featuring important advantages of separate measuring and sensing surfaces and rigid structure has been proposed. The application of leaky-SAW radiated bulk waves for identification of different brands of mineral water has been demonstrated.
Goyal, R.; Sharma, R. P.; Kumar, S.
2017-01-01
A model is proposed to study the dynamics of high-amplitude quasi-electrostatic whistler waves propagating near resonance cone angle and their interaction with low-frequency kinetic Alfvén waves (KAWs) in Earth's radiation belts. The wave dynamics clearly indicates the whistlers having quasi-electrostatic character when propagating close to resonance cone angle. A high-amplitude whistler wave packet is obtained using the present analysis which has also been observed by S/WAVES (STEREO/WAVES) instrument onboard STEREO (Solar Terrestrial Relations Observatory). A numerical simulation technique has been employed to study the localization of quasi-electrostatic whistler waves in radiation belts. The ponderomotive force of pump quasi-electrostatic whistlers (high frequency) is used to excite low-frequency waves (KAWs). The turbulent spectrum obtained using the analysis suggests the presence of quasi-electrostatic whistlers and density fluctuations associated with KAW in radiation belts plasma. The wave localization and steeper spectra could be responsible for particle energization or heating in radiation belts.
Ultrafast strain gauge: Observation of THz radiation coherently generated by acoustic waves
Energy Technology Data Exchange (ETDEWEB)
Armstrong, M; Reed, E; Kim, K; Glownia, J; Howard, W M; Piner, E; Roberts, J
2008-08-14
The study of nanoscale, terahertz frequency (THz) acoustic waves has great potential for elucidating material and chemical interactions as well as nanostructure characterization. Here we report the first observation of terahertz radiation coherently generated by an acoustic wave. Such emission is directly related to the time-dependence of the stress as the acoustic wave crosses an interface between materials of differing piezoelectric response. This phenomenon enables a new class of strain wave metrology that is fundamentally distinct from optical approaches, providing passive remote sensing of the dynamics of acoustic waves with ultrafast time resolution. The new mechanism presented here enables nanostructure measurements not possible using existing optical or x-ray approaches.
Directory of Open Access Journals (Sweden)
Bin Xu
2015-01-01
Full Text Available Wave propagation along a closely spaced folded cylindrical helix (FCH array is investigated for the purpose of designing compact array for energy transport and antenna radiation. It is found that the height of this surface wave guiding structure can be decreased from 0.24λ0 to 0.06λ0 by replacing the monopole element with the FCH. Both the propagation constant and the mode distribution of the dominant wave mechanism are extracted by ESPRIT algorithm, which indicates that a backward propagating surface wave is supported by the array structure. A compact backfire FCH antenna array is designed and measured based on the identified dominant wave mechanism.
Integrable multi atom matter-radiation models without rotating wave approximation
Kundu, Anjan
2004-01-01
Interacting matter-radiation models close to physical systems are proposed, which without rotating wave approximation and with matter-matter interactions are Bethe ansatz solvable. This integrable system is constructed from the elliptic Gaudin model at high spin limit, where radiative excitation can be included perturbatively.
Sound Radiated by a Wave-Like Structure in a Compressible Jet
Golubev, V. V.; Prieto, A. F.; Mankbadi, R. R.; Dahl, M. D.; Hixon, R.
2003-01-01
This paper extends the analysis of acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. Compared to previous work, a modified approach to the sound source modeling is examined that employs a set of solutions to linearized Euler equations. The sound radiation is then calculated using an integral surface method.
Characteristics of laser supersonic heating method for producing micro metallic particles
Lin, Shih-Lung; Lin, Jehnming
2005-10-01
In this article, the authors analyzed the process characteristics of laser supersonic heating method for producing metallic particles and predicted the in-flight tracks and shapes of micro-particles. A pulse Nd-YAG laser was used to heat the carbon steel target placed within an air nozzle. The high-pressure air with supersonic velocity was used to carry out carbon steel particles in the nozzle. The shock wave structures at the nozzle exit were visualized by the shadowgraph method. The carbon steel particles produced by laser supersonic heating method were grabbed and the spraying angles of the particle tracks were visualized. The velocity of the in-flight particles was measured by a photodiode sensor and compared with the numerical result. The solidification of carbon steel particles with diameters of 1-50 μm in compressible flow fields were investigated. The result shows that there is no significant difference in the dimension of solid carbon steel particles produced at shock wave fields under various entrance pressures (3-7 bar) with a constant laser energy radiation.
Linearly Tapered Slot Antenna Radiation Characteristics at Millimeter-Wave Frequencies
Simons, Rainee N.; Lee, Richard Q.
1998-01-01
An endfire travelling wave antenna, such as, a linearly tapered slot antenna (LTSA) is a viable alternative to a patch antenna at millimeter-wave frequencies because of its simple design and ease of fabrication. This paper presents the radiation characteristics of LTSA at higher millimeter-wave frequencies. The measured radiation patterns are observed to be well behaved and symmetric with the main beam in the endfire direction. The measured gain is about 10 dB. The LTSAs have potential wireless applications at 50 GHz, 77 GHz, and 94 GHz.
The motion of charged particles in strong plane waves including radiation reaction
Leinemann, R.; Herold, H.; Ruder, H.; Kegel, W. H.
The Lorentz-Dirac equation in the Landau approximation is used to study the motion of charged particles in strong plane vacuum waves. It is shown that integration for circularly polarized waves can be used to determine analytically the curves of the particle trajectories. The solution is used to investigate the particle trajectories and energy evolution for various strong waves. The initial conditions for the motion are chosen so that the particles start from a radiation-free path and the growing effect of the radiation reaction on the particle trajectory is highlighted.
Ultrafast imaging of terahertz Cherenkov waves and transition-like radiation in LiNbO₃.
Wang, Zhenyou; Su, FuHai; Hegmann, Frank A
2015-03-23
We use ultrafast phase-contrast imaging to directly observethe cone-like terahertz (THz) Cherenkov wave generated by optical rectification of femtosecond laser pulses focused into bulk lithium niobate (LiNbO₃) single crystals. The transverse imaging geometry allows the Cherenkov angle, THz wave velocity, and optical pump pulse group velocity to be measured. Furthermore, transition-like THz radiation generated by the femtosecond laser pulse at the air-crystal boundary is observed. The effect of optical pump pulse polarization on the generation of THz Cherenkov waves and transition-like radiation in LiNbO₃ is also investigated.
Apostol, Ileana; Teodorescu, G.; Serbanescu-Oasa, Anca; Dragulinescu, Dumitru; Chis, Ioan; Stoian, Razvan
1995-03-01
Laser radiation interaction with materials is a complex process in which creation of acoustic waves or stress waves is a part of it. As a function of the laser radiation energy and intensity incident on steel target surface ultrasound signals were registered and studied. Thermoelastic, ablation and breakdown mechanisms of generation of acoustic waves were analyzed.
Modeling the emission of high power terahertz radiation using Langmuir wave as a wiggler
Panwar, Jyotsna; Sharma, Suresh C.
2017-08-01
The emission of high power terahertz (THz) radiation lying in the range of millimeter to submillimeter wavelengths has been studied analytically using the Langmuir wave as an electrostatic pump wave in the presence of static magnetic field for both finite and infinite geometries. The interaction of two laser beams with the relativistic electron beam leads to velocity modulation of the beam, which then translates into density modulation on traveling through the drift space. The premodulated beam on interacting with the pump wave acquires an oscillatory velocity that couples with the perturbed and modulated beam densities to result in nonlinear current density which helps in evaluating the growth rate and efficiency of the output THz radiation. The beam and plasma wave wiggler parameters are found to influence the growth rate and efficiency of the emitted THz radiation.
Theory of Optical Leaky-Wave Antenna Integrated in a Ring Resonator for Radiation Control
Guclu, Caner; Capolino, Filippo
2015-01-01
The integration of a leaky-wave antenna with a ring resonator is presented using analytical guided wave models. The device consists of a ring resonator fed by a directional coupler, where the ring resonator path includes a leaky-wave antenna segment. The resonator integration provides two main advantages: the high-quality factor ensures effective control of radiation intensity by controlling the resonance conditions and the efficient radiation from a leaky-wave antenna even when its length is much smaller than the propagation length of the leaky wave. We devise an analytical model of the guided wave propagation along a directional coupler and the ring resonator path including the antenna and non-radiating segments. The trade-offs regarding the quality factor of resonance and the antenna efficiency of such a design is reported in terms of the coupler parameters, leaky-wave constant and radiation length. Finally a CMOS-compatible OLWA design suitable for the ring resonator integration is designed where Silicon ...
Wave field synthesis of moving virtual sound sources with complex radiation properties.
Ahrens, Jens; Spors, Sascha
2011-11-01
An approach to the synthesis of moving virtual sound sources with complex radiation properties in wave field synthesis is presented. The approach exploits the fact that any stationary sound source of finite spatial extent radiates spherical waves at sufficient distance. The angular dependency of the radiation properties of the source under consideration is reflected by the amplitude and phase distribution on the spherical wave fronts. The sound field emitted by a uniformly moving monopole source is derived and the far-field radiation properties of the complex virtual source under consideration are incorporated in order to derive a closed-form expression for the loudspeaker driving signal. The results are illustrated via numerical simulations of the synthesis of the sound field of a sample moving complex virtual source.
2016-06-14
Radio frequency radiation of millimeter wave length: An evaluation of potential occupational safety issues. 5a. CONTRACT NUMBER 5b. GRANT NUMBER...Paper------------------------------- RADIO FREQUENCY RADIATION OF MILLIMETER WAVE LENGTH: POTENTIAL OCCUPATIONAL...cancer. Health Phys. 78(2):170-181; 2000 Key words: cancer; radiation , nonionizing; occupational safety; radiofrequency INTRODUCTION THE RADIO
Nonlinear optical detection of terahertz-wave radiation from resonant tunneling diodes.
Takida, Yuma; Nawata, Kouji; Suzuki, Safumi; Asada, Masahiro; Minamide, Hiroaki
2017-03-06
The sensitive detection of terahertz (THz)-wave radiation from compact sources at room temperature is crucial for real-world THz-wave applications. Here, we demonstrate the nonlinear optical detection of THz-wave radiation from continuous-wave (CW) resonant tunneling diodes (RTDs) at 0.58, 0.78, and 1.14 THz. The up-conversion process in a MgO:LiNbO3 crystal under the noncollinear phase-matching condition offers efficient wavelength conversion from a THz wave to a near-infrared (NIR) wave that is detected using a commercial NIR photodetector. The minimum detection limit of CW THz-wave power is as low as 5 nW at 1.14 THz, corresponding to 2-aJ energy and 2.7 × 103 photons within the time window of a 0.31-ns pump pulse. Our results show that the input frequency and power of RTD devices can be calibrated by measuring the output wavelength and energy of up-converted waves, respectively. This optical detection technique for compact electronic THz-wave sources will open up a new opportunity for the realization of real-world THz-wave applications.
Accurately specifying storm-time ULF wave radial diffusion in the radiation belts
Dimitrakoudis, Stavros; Balasis, Georgios; Papadimitriou, Constantinos; Anastasiadis, Anastasios; Daglis, Ioannis A
2015-01-01
Ultra-low frequency (ULF) waves can contribute to the transport, acceleration and loss of electrons in the radiation belts through inward and outward diffusion. However, the most appropriate parameters to use to specify the ULF wave diffusion rates are unknown. Empirical representations of diffusion coefficients often use Kp; however, specifications using ULF wave power offer an improved physics-based approach. We use 11 years of ground-based magnetometer array measurements to statistically parameterise the ULF wave power with Kp, solar wind speed, solar wind dynamic pressure and Dst. We find Kp is the best single parameter to specify the statistical ULF wave power driving radial diffusion. Significantly, remarkable high energy tails exist in the ULF wave power distributions when expressed as a function of Dst. Two parameter ULF wave power specifications using Dst as well as Kp provide a better statistical representation of storm-time radial diffusion than any single variable alone.
Simulating Supersonic Turbulence in Galaxy Outflows
Scannapieco, Evan
2010-01-01
We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...
Bounce resonance scattering of radiation belt electrons by H+ band EMIC waves
Cao, Xing; Ni, Binbin; Summers, Danny; Bortnik, Jacob; Tao, Xin; Shprits, Yuri Y.; Lou, Yuequn; Gu, Xudong; Fu, Song; Shi, Run; Xiang, Zheng; Wang, Qi
2017-02-01
We perform a detailed analysis of bounce-resonant pitch angle scattering of radiation belt electrons due to electromagnetic ion cyclotron (EMIC) waves. It is found that EMIC waves can resonate with near-equatorially mirroring electrons over a wide range of L shells and energies. H+ band EMIC waves efficiently scatter radiation belt electrons of energy >100 keV from near 90° pitch angles to lower pitch angles where the cyclotron resonance mechanism can take over to further diffuse electrons into the loss cone. Bounce-resonant electron pitch angle scattering rates show a strong dependence on L shell, wave normal angle distribution, and wave spectral properties. We find distinct quantitative differences between EMIC wave-induced bounce-resonant and cyclotron-resonant diffusion coefficients. Cyclotron-resonant electron scattering by EMIC waves has been well studied and found to be a potentially crucial electron scattering mechanism. The new investigation here demonstrates that bounce-resonant electron scattering may also be very important. We conclude that bounce resonance scattering by EMIC waves should be incorporated into future modeling efforts of radiation belt electron dynamics.
Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.
2011-01-01
We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.
Standing Slow MHD Waves in Radiatively Cooling Coronal Loops
Al-Ghafri, Khalil Salim
2015-01-01
The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...
A discussion on the double wave theory and its applications to description of radiation atoms
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The double wave theory (DWT), sometimes called the“non_statistical quantum mechanics” by its proposer, describes the state of each single particle in an ensemble with two wave functions which have a parameter corresponding to the particle. However the basic postulates of the DWT show that this theory can hardly describe any quantum rules of the microscopic world. In the double wave descriptions, the wave feature of the behavior of microscopic particles and the discontinuity characteristic of energy almost disappear. The discussions on several problems of the radiation atoms made by the DWT's proposer on the basis of this theory are either mathematically incorrect or inconsistent with experiments and the usual theory.
Survey of ELF-VLF plasma waves in outer radiation belt observed by Cluster STAFF-SA experiment
Directory of Open Access Journals (Sweden)
D. Pokhotelov
2008-10-01
Full Text Available Various types of plasma waves have profound effects on acceleration and scattering of radiation belt particles. For the purposes of radiation belt modeling it is necessary to know statistical distributions of plasma wave parameters. This paper analyzes four years of plasma wave observations in the Earth's outer radiation belt obtained by the STAFF-SA experiment on board Cluster spacecraft. Statistical distributions of spectral density of different plasma waves observed in ELF-VLF range (chorus, plasmaspheric hiss, magnetosonic waves are presented as a function of magnetospheric coordinates and geomagnetic activity indices. Comparison with other spacecraft studies supports some earlier conclusions about the distribution of chorus and hiss waves and helps to remove the long-term controversy regarding the distribution of equatorial magnetosonic waves. This study represents a step towards the development of multi-spacecraft database of plasma wave activity in radiation belts.
Advances in the biological effects of terahertz wave radiation.
Zhao, Li; Hao, Yan-Hui; Peng, Rui-Yun
2014-01-01
The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.
Advances in the biological effects of terahertz wave radiation
Institute of Scientific and Technical Information of China (English)
Li Zhao; Yan-Hui Hao; Rui-Yun Peng
2014-01-01
The terahertz (THz) band lies between microwave and infrared rays in wavelength and consists of non-ionizing radiation. Both domestic and foreign research institutions, including the army, have attached considerable importance to the research and development of THz technology because this radiation exhibits both photon-like and electron-like properties, which grant it considerable application value and potential. With the rapid development of THz technology and related applications, studies of the biological effects of THz radiation have become a major focus in the field of life sciences. Research in this field has only just begun, both at home and abroad. In this paper, research progress with respect to THz radiation, including its biological effects, mechanisms and methods of protection, will be reviewed.
[Hematologic changes in workers exposed to radio wave radiation].
Budinscak, V; Goldoni, J; Sarić, M
1991-12-01
Haematological parameters were measured in 43 radar operators employed in air traffic control occupationally exposed to microwave radiation of low intensity over a period of four years. Exposure to heat, soft X-ray radiation and noise were within maximally allowed limits. The haematological changes included a decreased number of erythrocytes, reticulocytes, platelets, segmented granulocytes and monocytes, and an increased number of leucocytes and lymphocytes. The changes were not pathologically significant and most of them were reversible.
Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.
1978-01-01
Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.
Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials
Energy Technology Data Exchange (ETDEWEB)
Cheng Qiang; Jiang Weixiang; Cui Tiejun, E-mail: tjcui@seu.edu.c [State Key Laboratory of Millimeter Waves, Department of Radio Engineering, Southeast University, Nanjing 210096 (China)
2010-08-25
We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.
Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials
Cheng, Qiang; Jiang, Wei Xiang; Cui, Tie Jun
2010-08-01
We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.
Phase Aberration and Attenuation Effects on Acoustic Radiation Force-Based Shear Wave Generation.
Carrascal, Carolina Amador; Aristizabal, Sara; Greenleaf, James F; Urban, Matthew W
2016-02-01
Elasticity is measured by shear wave elasticity imaging (SWEI) methods using acoustic radiation force to create the shear waves. Phase aberration and tissue attenuation can hamper the generation of shear waves for in vivo applications. In this study, the effects of phase aberration and attenuation in ultrasound focusing for creating shear waves were explored. This includes the effects of phase shifts and amplitude attenuation on shear wave characteristics such as shear wave amplitude, shear wave speed, shear wave center frequency, and bandwidth. Two samples of swine belly tissue were used to create phase aberration and attenuation experimentally. To explore the phase aberration and attenuation effects individually, tissue experiments were complemented with ultrasound beam simulations using fast object-oriented C++ ultrasound simulator (FOCUS) and shear wave simulations using finite-element-model (FEM) analysis. The ultrasound frequency used to generate shear waves was varied from 3.0 to 4.5 MHz. Results: The measured acoustic pressure and resulting shear wave amplitude decreased approximately 40%-90% with the introduction of the tissue samples. Acoustic intensity and shear wave displacement were correlated for both tissue samples, and the resulting Pearson's correlation coefficients were 0.99 and 0.97. Analysis of shear wave generation with tissue samples (phase aberration and attenuation case), measured phase screen, (only phase aberration case), and FOCUS/FEM model (only attenuation case) showed that tissue attenuation affected the shear wave generation more than tissue aberration. Decreasing the ultrasound frequency helped maintain a focused beam for creation of shear waves in the presence of both phase aberration and attenuation.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P O
2013-01-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations -- the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave -- are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. General properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half of the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late ti...
Temperature fluctuations in the primordial background radiation due to gravitational waves
Energy Technology Data Exchange (ETDEWEB)
Doroshkevich, A.G.; Novikov, I.D.; Polnarev, A.G.
1977-09-01
The influence of cosmological gravitational waves on the anisotropy of the primordial microwave radiation is discussed. The calculations allow for the gradual rise in the transparency of the plasma to the primordial radiation as recombination proceeds at a red shift z approx. =1300, for the curvature of three-space if ..cap omega..=rho/rho/sub cr/ <1, and for the distorting effects of real antennas upon the observations. The results are presented in a form convenient for direct interpretation of the observations. Comparison of the theoretical results with the empirical evidence sets an upper limit on the possible energy density of gravitational waves in various parts of their spectrum. The anisotropy expected in the primordial electromagnetic radiation is calculated for various assumptions as to the cosmological gravitational wave spectrum.
Resonance-Radiation Force Exerted by a Circularly Polarized Light on an Atomic Wave Packet
Institute of Scientific and Technical Information of China (English)
YE Yong-Hua; ZENG Gao-Jian; LI Jin-Hui
2006-01-01
We study the behaviour of an atomic wave packet in a circularly polarized light, and especially give the calculation of the radiative force exerted by the circularly polarized light on the atomic wave packet under the resonance condition. A general method of the calculation is presented and the result is interesting. For example, under the condition that the wave packet is very narrow or/and the interaction is very strong, no matter whether the atom is initially in its ground state or excited state, as time approaches to infinity, the resonance-radiation force exerted by the light on the atom approaches to zero. If the atom is initially in its ground state and excited state with the probability 1/2 respectively, and if the momentum density is a even function, then the resonance-radiation force exerted by the light on the atom is equal to zero.
Observation of soliton-induced resonant radiation due to three-wave mixing
Zhou, B; Guo, H R; Zeng, X L; Chen, X F; Chung, H P; Chen, Y H; Bache, M
2016-01-01
We show experimental proof that three-wave mixing can lead to formation of resonant radiation when interacting with a temporal soliton. This constitutes a new class of resonant waves, and due to the parametric nature of the three-wave mixing nonlinearity, the resonant radiation frequencies are widely tunable over broad ranges in the visible and mid-IR. The experiment is conducted in a periodically poled lithium niobate crystal, where a femtosecond self-defocusing soliton is excited in the near-IR, and resonant radiation due to the sum- and difference-frequency generation quadratic nonlinear terms are observed in the near- and mid-IR, respectively. Their spectral positions are widely tunable by changing the poling pitch and are in perfect agreement with theoretical calculations.
Institute of Scientific and Technical Information of China (English)
XIAO Fu-Liang; HE Zhao-Guo; ZHANG Sai; SU Zhen-Peng; CHEN Liang-Xu
2011-01-01
Temporal evolution of outer radiation belt electron dynamics resulting from superluminous L-O mode waves is simulated at L＝6.5. Diffusion rates are evaluated and then used as inputs to solve a 2D momentum-pitch-angle diffusion equation, particularly with and without cross diffusion terms. Simulated results demonstrate that phase space density(PSD) of energetic electrons due to L-O mode waves can enhance significantly within 24 h, covering a broader pitch-angle range in the absence of cross terms than that in the presence of cross terms. PSD evolution is also determined by the peak wave frequency, particularly at high kinetic energies. This result indicates that superluminous waves can be a potential candidate responsible for outer radiation belt electron dynamics.
Dynamic evolution of outer radiation belt electrons driven by superluminous R-X mode waves
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
We present initial results on the temporal evolution of the phase space density (PSD) of the outer radiation belt energetic electrons driven by the superluminous R-X mode waves. We calculate diffusion rates in pitch angle and momentum assuming the standard Gaussian distributions in both wave frequency and wave normal angle at the location L=6.5. We solve a 2D momentum-pitch-angle Fokker-Planck equation using those diffusion rates as inputs. Numerical results show that R-X mode can produce significant acceleration of relativistic electrons around geostationary orbit,supporting previous findings that superluminous waves potentially contribute to dramatic variation in the outer radiation belt electron dynamics.
Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I
2016-01-01
Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)
Frontal instability and the radiation of inertia gravity waves
Flór, J.-B.; Scolan, H.
2009-04-01
In this experimental study we consider the instability of a density front in a differentially rotating two-layer fluid. Within the rotating frame the upper layer is accelerated by the differential rotation of a lid at the surface. In contrast to former comparable experiments of this type, we consider miscible fluids in a relatively wide annular tank. Velocity and dye measurements (PIV and LIF) allow for the measurements of the velocity and density fields. In the parameter space set by rotational Froude number and dissipation (i.e. ratio of spin-down time to disk rotation time), different flow regimes are observed, ranging from axisymmetric to irregular baroclinic instable flows. The different regimes more or less adjoin those found for immiscible fluids by Williams et al. (J. Fluid Mech. 2005). In the present experiments, we find a new type of instability that is due to the resonant interaction between Kelvin and Rossby waves (first studied Sakai, J. Fluid Mech 1989) and compare our experimental results with the analytical results obtained on an annular domain by Gula, Zeitlin and Plougonven (2009). Further, observations in the unstable flow regimes suggest 'spontaneous emission' of inertia gravity waves. The origin of these waves is discussed in the light of Kelvin-Helmholtz instability Hölmböe instability, and geostrophic adjustment waves.
An Analytic Solution to the Propagation of Cylindrical Blast Waves in a Radiative Gas
Directory of Open Access Journals (Sweden)
B.G Verma
1977-01-01
Full Text Available In this paper, we have obtained a set of non-similarity in closed forms for the propagation of a cylindrical blast wave in a radiative gas. An explosion in a gas of constant density and pressure has been considered by assuming the existence of an initial uniform magnetic field in the axial direction. The disturbance is supposed to be headed by a shock surface of variable strength and the total energy of the wave varies with time.
Generation of High-Frequency P and S Wave Radiation from Underground Explosions
2011-12-30
continental areas. Pn are compression waves critically refracted at the moho. The Lg train is S wave energy trapped in the “granitic” upper crust . It can be...physical processes such as cavity rebound, spall, near source scattering, and interactions between pP and P, … that may be responsible for important...spectral features of regional phases”. To this list of physical processes we propose to add secondary radiation generated during rock fracture in the
On gravitational wave-Cherenkov radiation from photons when passing through diffused dark matters
Yi, Shu-Xu
2017-03-01
Analogous to Cherenkov radiation, when a particle moves faster than the propagation velocity of gravitational wave in matter (v > cg), we expect gravitational wave-Cherenkov radiation (GWCR). In the situation that a photon travels across diffuse dark matters, the GWCR condition is always satisfied, photon will thence lose its energy all along the path. This effect has long been ignored in the practice of astrophysics and cosmology without justification with serious calculation. We study this effect for the first time, and shows that this energy loss time of the photon is far longer than the Hubble time and therefore justify the practice of ignoring this effect in the context of astrophysics.
Radiation dose to patient and personnel during extracorporeal shock wave lithotripsy
Energy Technology Data Exchange (ETDEWEB)
Bush, W.H.; Jones, D.; Gibbons, R.P.
1987-10-01
Radiation dose to the patient and personnel was determined during extracorporeal shock wave lithotripsy treatment of 60 patients. Surface radiation dose to the patient's back from the fluoroscopy unit on the side with the kidney stone averaged 10 rem (100 mSv.) per case, although the range was wide (1 to 30 rem). The surface dose from the opposing biplane x-ray unit was less, averaging 5.5 rem (55 mSv.) per case but again with a wide range (0.1 to 21 rem). Exit dose at the lower abdomen averaged 13 mrem. (0.13 mSv.) per case and estimated female gonad dose averaged 100 mrem. (1.2 mSv.). Radiation dose to personnel working in the extracorporeal shock wave lithotripsy suite averaged less than 2 mrem. (0.02 mSv.) per case, making it a procedure that is safe in regard to radiation exposure.
Risks of exposure to ionizing and millimeter-wave radiation from airport whole-body scanners.
Moulder, John E
2012-06-01
Considerable public concern has been expressed around the world about the radiation risks posed by the backscatter (ionizing radiation) and millimeter-wave (nonionizing radiation) whole-body scanners that have been deployed at many airports. The backscatter and millimeter-wave scanners currently deployed in the U.S. almost certainly pose negligible radiation risks if used as intended, but their safety is difficult-to-impossible to prove using publicly accessible data. The scanners are widely disliked and often feared, which is a problem made worse by what appears to be a veil of secrecy that covers their specifications and dosimetry. Therefore, for these and future similar technologies to gain wide acceptance, more openness is needed, as is independent review and regulation. Publicly accessible, and preferably peer-reviewed evidence is needed that the deployed units (not just the prototypes) meet widely-accepted safety standards. It is also critical that risk-perception issues be handled more competently.
Analysis of Radiation Beam of a Leaky Lamb Wave in Ultrasonic Waveguide Sensor
Energy Technology Data Exchange (ETDEWEB)
Joo, Y. S.; Bae, J. H.; Park, C. G.; Lee, J. H.
2010-02-15
The theoretical and experimental study of the propagation and radiation of leaky Lamb wave in a plate waveguide sensor has been carried out. In the plate waveguide sensor, the A{sub 0} leaky Lamb wave is utilized for the single mode generation and the effective radiation capability in a fluid. The plate waveguide sensor which consists of a plate waveguide, a teflon wedge and an ultrasonic sensor has been designed and manufactured. The tone-burst excitation of high power long pulse should be applied to minimize the dispersion effect in 10 m long distance propagation of the A{sub 0} Lamb wave. A novel technique which is capable of steering a radiation beam of a waveguide sensor without a mechanical movement can be achieved by a frequency tuning method of the excitation pulse in the dispersive low frequency range of the A{sub 0} Lamb wave. The characteristics of radiation beam of ultrasonic waveguide sensors has been investigated by the beam profile measurements according to the plate thickness, the radiation aperture length, the pulse cycles and the excitation frequency. The design parameters of the plate waveguide sensor has been optimized. The C-scanning experiments in water have been carried out for the performance of the optimized ultrasonic waveguide sensor. The poulsbility of C-scan visualization using the plate waveguide sensor has been verified
Brito, T.; Hudson, M. K.; Kress, B.; Paral, J.; Halford, A.; Millan, R.; Usanova, M.
2015-05-01
Balloon-borne instruments detecting radiation belt precipitation frequently observe oscillations in the millihertz frequency range. Balloons measuring electron precipitation near the poles in the 100 keV to 2.5 MeV energy range, including the MAXIS, MINIS, and most recently the Balloon Array for Relativistic Radiation belt Electron Losses balloon experiments, have observed this modulation at ULF wave frequencies. Although ULF waves in the magnetosphere are seldom directly linked to increases in electron precipitation since their oscillation periods are much larger than the gyroperiod and the bounce period of radiation belt electrons, test particle simulations show that this interaction is possible. Three-dimensional simulations of radiation belt electrons were performed to investigate the effect of ULF waves on precipitation. The simulations track the behavior of energetic electrons near the loss cone, using guiding center techniques, coupled with an MHD simulation of the magnetosphere, using the Lyon-Fedder-Mobarry code, during a coronal mass ejection (CME)-shock event on 17 March 2013. Results indicate that ULF modulation of precipitation occurs even without the presence of electromagnetic ion cyclotron waves, which are not resolved in the MHD simulation. The arrival of a strong CME-shock, such as the one simulated, disrupts the electric and magnetic fields in the magnetosphere and causes significant changes in both components of momentum, pitch angle, and L shell of radiation belt electrons, which may cause them to precipitate into the loss cone.
Quasi-linear wave-particle interactions in the Earth's radiation belts
Energy Technology Data Exchange (ETDEWEB)
Villalon, E. (Center for Electromagnetics Research, Northeastern University, Boston, Massachusetts (USA)); Burke, W.J.; Rothwell, P.L. (Air Force Geophysics Laboratory, Hanscom Air Force Base, Massachusetts (USA)); Silevitch, M.B. (Center for Electromagnetic Research, Northeastern University, Boston, Massachusetts (USA))
1989-11-01
This paper studies the theory of gyroresonant interactions of energetic trapped electrons and protons in the Earth's radiation zones with ducted electromagnetic cyclotron waves. Substorm injected electrons in the mid-latitude regions interact with coherent VLF signals, such as whistler mode waves. Energetic protons may interact with narrow-band hydromagnetic (Alfven) waves. A set of equations is derived based on the Fokker-Planck theory of pitch angle diffusion. They describe the evolution in time of the number of particles in the flux tube and the energy density of waves, for the interaction of Alfven waves with protons and of whistler waves with electrons. The coupling coefficients are obtained based on a quasi-linear analysis after averaging over the particle bounce motion. It is found that the equilibrium solutions for particle fluxes and wave amplitudes are stable under small local perturbations. The reflection of the waves in the ionosphere is discussed. To efficiently dump the energetic particles from the radiation belts, the reflection coefficient must be very close to unity so waves amplitudes can grow to high values. Then, the precipitating particle fluxes may act as a positive feedback to raise the height integrated conductivity of the ionosphere which in turn, enhances the reflection of the waves. In addition, by heating the foot of the flux tube with high intensity, RF energy the mirroring properties of the ionosphere are also enhanced. The stability analysis around the equilibrium solutions for precipitating particle fluxes and wave intensity show that an actively excited ionosphere can cause the development of explosive instabilities. {copyright} American Geophysical Union 1989
Effects of Ultraviolet (UV) Radiations at Different Wave Lengths on ...
African Journals Online (AJOL)
Prof. Ogunji
The effects of UV-radiation on the bacterial load and yeast viability of palm wine were investigated. ... Lactic acid bacteria have been implicated to contribute to the characteristic flavor of ... placed under X40 objective lens of a light microscope.
Radiation-pressure-driven dust waves inside bursting interstellar bubbles
Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.
2014-01-01
Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even tho
Pulsed 5 MeV standing wave electron linac for radiation processing
Auditore, L.; Barnà, R. C.; de Pasquale, D.; Italiano, A.; Trifirò, A.; Trimarchi, M.
2004-03-01
Several modern applications of radiation processing require compact and self-contained electron accelerators. To match these requirements, a 5MeV, 1kW electron linac has been developed at the Dipartimento di Fisica (Università di Messina) and will be described in this paper. This standing wave accelerator, driven by a 3GHz, 2.5MW magnetron generator, has an autofocusing structure and will be used to study several applications of radiation processing.
Liu, N.-S.; Shamroth, S. J.; Mcdonald, H.
1984-01-01
An existing method which solves the multi-dimensional ensemble-averaged compressible time-dependent Navier-Stokes equations in conjunction with mixing length turbulence model and shock capturing technique has been extended to include the shock-tracking adaptive grid systems. The numerical scheme for solving the governing equations is based on a linearized block implicit approach. The effects of grid-motion and grid-distribution on the calculated flow solutions have been studied in relative detail and this is carried out in the context of physically steady, shocked flows computed with non-stationary grids. Subsequently, the unsteady dynamics of the flows occurring in a supercritically operated transonic diffuser and a mixed compression supersonic inlet have been investigated with the adaptive grid systems by solving the Navier-Stokes equations.
Institute of Scientific and Technical Information of China (English)
吴伟; 许厚谦; 王亮; 薛锐; 蔡峰峰
2015-01-01
为研究锥角对超声速弹丸诱导爆轰波形态的影响,发展了耦合有限速率化学反应模型的最小二乘显式无网格算法,其流体动力学采用含化学反应源项的多组分Euler方程建模,对流项和时间项分别采用多组分HLLC(Harten-Lax-van Leer-Contact)格式和四阶Runge-Kutta法计算.对尖劈诱导斜爆轰以及激波诱导燃烧流场进行了模拟,验证了算法的有效性.最后对等当量比甲烷/空气预混气体中,不同锥角弹丸诱导爆轰波流场进行了模拟,云图同实验阴影照片吻合较好,结果表明当锥角处于70°~100°时,易形成驻定斜爆轰波;锥角较小不利于可燃混合气体的点燃,仅能形成驻定斜激波;过大的锥角将导致爆轰波的脱体.%The gridless method coupled with finite rate chemical model was developed to study the effects of conical angle on the structure of denotation shock induced by supersonic projectile. The fluid dynamics was modeled by multi-component Euler equations with chemical sources. The numerical flux was calculated by the multi-component HLLC(Harten-Lax-van Leer-Contact)scheme. A four-stage Runge-Kutta algorithm was employed to advance the equations in time. The flows of wedge-induced oblique denotation and shock-induced combustion were simulated to validate in respect of accuracy firstly. The denotation wave phenomena induced by supersonic projectile with different conical angles in the stoichiometric methane/air mixture were simulated subsequently. The contours agree well with the experimental shadowgraphs,and the results show that the oblique detonation wave is prone to be standing with conical angle at the range of 70°~100° ,when the conical angle is not large enough ,it does not avail to ignite combustible mixture,only oblique shock is found in the flow field,contrarily, the denotation wave would be detached.
Decoherence of matter waves by thermal emission of radiation
2004-01-01
Emergent quantum technologies have led to increasing interest in decoherence - the processes that limit the appearance of quantum effects and turn them into classical phenomena. One important cause of decoherence is the interaction of a quantum system with its environment, which 'entangles' the two and distributes the quantum coherence over so many degrees of freedom as to render it unobservable. Decoherence theory has been complemented by experiments using matter waves coupled to external ph...
Emission of radiation induced by pervading Alfven waves
Energy Technology Data Exchange (ETDEWEB)
Zhao, G. Q. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Wu, C. S. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Institute of Space Science, National Central University, Zhongli, Taiwan (China)
2013-03-15
It is shown that under certain conditions, propagating Alfven waves can energize electrons so that consequently a new cyclotron maser instability is born. The necessary condition is that the plasma frequency is lower than electron gyrofrequency. This condition implies high Alfven speed, which can pitch-angle scatter electrons effectively and therefore the electrons are able to acquire free energy which are needed for the instability.
Precipitation of radiation belt electrons by EMIC waves, observed from ground and space
Energy Technology Data Exchange (ETDEWEB)
Jordanova, Vania K [Los Alamos National Laboratory; Miyoski, Y [NAGOYA UNIV; Sakaguchi, K [NAGOYA UNIV; Shiokawa, K [NAGOYA UNIV; Evans, D S [NOAA, BOULDER; Albert, Jay [AFRL; Connors, M [UNIV OF ATHABASCA
2008-01-01
We show evidence that left-hand polarised electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere. Our unique set of ground and satellite observations shows coincident precipitation of ions with energies of tens of keY and of relativistic electrons into an isolated proton aurora. The coincident precipitation was produced by wave-particle interactions with EMIC waves near the plasmapause. The estimation of pitch angle diffusion coefficients supports that the observed EMIC waves caused coincident precipitation ofboth ions and relativistic electrons. This study clarifies that ions with energies of tens of ke V affect the evolution of relativistic electrons in the radiation belts via cyclotron resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's.
Imhof, W. L.; Robinson, R. M.; Collin, H. L.; Wygant, J. R.; Anderson, R. R.
1992-01-01
Simultaneous wave and precipitating electron measurements near the equator in the outer radiation belt have been made from the CRRES satellite. The electron data of principal concern here were acquired in and about the loss cone with narrow angular resolution spectrometers covering the energy range 340 eV to 5 MeV. The wave data included electric field measurements spanning frequencies from 5 Hz to 400 kHz and magnetic field measurements from 5 Hz to 10 kHz. This paper presents examples in which the variations in electron fluxes in the loss cone and the wave intensities were correlated. These variations in electron flux were confined to pitch angles less than about 30 deg. The association between the flux enhancements and the waves is consistent with wave-induced pitch angle diffusion processes.
Gravitational-wave energy and radiation reaction on quasi-spherical black holes
Hayward, S A
2000-01-01
Gravitational waves are given a local definition in a quasi-spherical approximation, describing roughly spherical but otherwise dynamical astrophysical objects, such as a black hole forming by binary black-hole coalescence. A local effective energy tensor is defined for the gravitational waves, satisfying standard energy conditions. Radiation reaction, such as the back-reaction of the gravitational waves on the black hole, may then be described by including the gravitational-wave energy tensor as a source in the truncated Einstein equations. This can be formulated as a second quasi-spherical approximation, which retains non-linear terms in the fields encoding the gravitational waves. The energy-momentum in a canonical frame is covariantly conserved. The strain to be measured by a distant detector is simply defined.
Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation
Baydoun, Ibrahim; Pierrat, Romain; Derode, Arnaud
2016-01-01
Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed $c$ depending on position $\\mathbf{r}$. In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path $\\ell^*$, scattering phase functi...
Reed, Evan J.; Armstrong, Michael R.
2010-09-07
Strain waves of THz frequencies can coherently generate radiation when they propagate past an interface between materials with different piezoelectric coefficients. Such radiation is of detectable amplitude and contains sufficient information to determine the time-dependence of the strain wave with unprecedented subpicosecond, nearly atomic time and space resolution.
Supersonic Injection of Aerated Liquid Jet
Choudhari, Abhijit; Sallam, Khaled
2016-11-01
A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.
Simulations of Propagation and Radiation of A0-mode Lamb Wave in Ultrasonic Waveguide Sensor
Energy Technology Data Exchange (ETDEWEB)
Bae, Jin Ho; Joo, Young Sang; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Rhee, Hui Nam [Sunchon National University, Sunchon (Korea, Republic of)
2010-10-15
As the sodium coolant of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection cannot be used for carrying out an in-service inspection of the internal structures under a sodium level. An ultrasonic wave should be applied for an under-sodium viewing of the internal structures in a reactor vessel. Recently, a new plate type ultrasonic waveguide sensor has been developed for the versatile applications in the under-sodium viewing application. In the plate type ultrasonic waveguide sensor, the A0 mode Lamb wave is utilized for the long distance propagation and the effective radiation capability in a fluid. And a radiation beam steering technique is presented which is capable of steering an ultrasonic radiation beam of a waveguide sensor without a mechanical movement of the sensor module. In this paper, the numerical simulation of the propagation and radiation of A0-mode Lamb wave in ultrasonic leaky wave generation from waveguide sensor is performed by using the finite element method (FEM). The objective of this research is to compare the previous theoretical and experimental results with its numerical simulation
Daalen, van Edwin F.G.; Broeze, Jan; Groesen, van Embrecht
1992-01-01
Radiation boundary conditions are derived for partial differential equations which describe wave phenomena. Assuming the evolution of the system to be governed by a Lagrangian variational principle, boundary conditions are obtained with Noether's theorem from the requirement that they transmit some
Dynamics of spontaneous radiation of atoms scattered by a resonance standing light wave
Fedorov, MV; Efremov, MA; Yakovlev, VP; Schleich, WP
2003-01-01
The scattering of atoms by a resonance standing light wave is considered under conditions when the lower of two resonance levels is metastable, while the upper level rapidly decays due to mainly spontaneous radiative transitions to the nonresonance levels of an atom. The diffraction scattering regim
Scattering of gravitational radiation - Second order moments of the wave amplitude
Macquart, JP
2004-01-01
Gravitational radiation that propagates through an inhomogeneous mass distribution is subject to random gravitational tensing, or scattering, causing variations in the wave amplitude and temporal smearing of the signal. A statistical theory is constructed to treat these effects. The statistical prop
Patient exposure and radiation environment of an extracorporeal shock wave lithotriptor system
Energy Technology Data Exchange (ETDEWEB)
Lin, P.J.; Hrejsa, A.F.
1987-10-01
Radiation exposures to the patient undergoing extracorporeal shock wave lithotripsy were assessed along with the scattered radiation levels around the lithotriptor systems. The data gathered from 2 Dornier lithotriptor systems suggest that the lead shieldings required for this particular make and model are minimal. Owing to the physical size of the lithotriptor system, the treatment room housing it may not require additional lead shielding when the walls are constructed with appropriate materials. Typical radiation exposures to the patient have been assessed from the experimental data. The total amount of radiation exposures a patient is likely to receive has been estimated to be approximately 26 roentgens, for example 21 roentgens from 3 to 4 minutes of fluoroscopic exposure and 5 roentgens from 8 frames of video spot filming. The scattered radiation has been found to be approximately 0.5 mR. per hour at 3 feet or 91 cm. from the center of the lithotriptor water tank.
Radiation of a Plane Shear Wave from an Elastic Waveguide to a Composite Elastic Space
Directory of Open Access Journals (Sweden)
Grigoryan E.Kh.
2007-09-01
Full Text Available The radiation of a plane shear wave from an elastic strip (waveguide to an elastic space is investigated in this paper. The strip is embedded into a space and is partially bonded with it. A given plane shear wave propagates from the free part of the strip and radiates into the composite space. The problem’s solution is led to a system of two uncoupled functional Wiener-Hopf type equations which are solved via the method of factorization. Closed form expressions are obtained which determine the wavefield in all the parts of the strip and space. Asymptotic expressions are provided which represent the wavefield in the far field and in the neighborhood of the contact zones. From these formulas it follows that: a in the cases of several values of the ratio of the wave numbers of the strip and space the order of vanishing of the volume wave in the strip becomes less and equal to the one in the case of a homogeneous material, b the radiated volume wave in the strip has a velocity of propagation equal to the volume wave’s velocity in the space.
Rossby wave radiation by an eddy on the polar beta-plane
Zhang, Yang
2015-01-01
Results from the laboratory experiments on the evolution of vortices (eddies) generated in a rotating tank with topographic beta-effect are presented. The surface elevation and velocity fields are measured by the Altimetric Imaging Velocimetry. The experiments are supplemented by shallow water numerical simulations as well as a linear theory which describes the Rossby wave radiation by travelling vortices. The cyclonic vortices observed in the experiments travel to the northwest and continuously radiate Rossby waves. Measurements show that initially axisymmetric vortices develop a dipolar component which enables them to perform translational motion. A pattern of alternating zonal jets to the west of the vortex is created by Rossby waves with approximately zonal crests. Energy spectra of the flows in the wavenumber space indicate that a wavenumber similar to that introduced by Rhines for turbulent flows on the beta-plane can be introduced here. The wavenumber is based on the translational speed of a vortex rat...
Generation of continuous-wave THz radiation by use of quantum interference
Korsunsky, E A
1999-01-01
We propose a scheme for generation of continuous-wave THz radiation. The scheme requires a medium where three discrete states in a $\\Lambda $ configuration can be selected, with the THz-frequency transition between the two lower metastable states. We consider the propagation of three-frequency continuous-wave electromagnetic (e.m.) radiation through a $\\Lambda $ medium. Under resonant excitation, the medium absorption can be strongly reduced due to quantum interference of transitions, while the nonlinear susceptibility is enhanced. This leads to very efficient energy transfer between the e.m. waves providing a possibility for THz generation. We demonstrate that the photon conversion efficiency is approaching unity in this technique.
Kim, Jaehwan; Jung, Eunmi; Choi, Seung-Bok
2002-07-01
This paper presents a numerical modeling technique of piezoelectric transducers by taking into account wave radiation and scattering. It is based on the finite element modeling. Coupling problems between piezoelectric and elastic materials as well as fluid and structure systems associated with the modeling of piezoelectric underwater acoustic sensors are formulated. In the finite element modeling of unbounded acoustic fluid, IWEE (Infinite Wave Envelop Element) is adopted to take into account the infinite domain. The IWEE code is added to an in-house finite element program, and commercial pre and post-processor are used for mesh generation and to see the output. The validation of the numerical modeling is proved through an example, and scattering and radiation analysis of Tonpilz transducer is performed. The scattered wave on the sensor is calculated, and the sensor response, so called RVS (Receiving Voltage Sensitivity) is predicted.
INFLUENCE OF OCEAN INTERNAL WAVE ON PROPAGATION OF UNDERWATER RADIATION NOISE
Institute of Scientific and Technical Information of China (English)
YE Chun-sheng; SHEN Guo-guang
2004-01-01
The underwater acoustic field influenced by a selected ocean internal wave was computed using the Parabolic Equation (PE) method and split-step difference algorithm in this paper. Acoustic field is formed by sound source with different frequency covering the range of radiation noise of ships and submarines. Owing to the adoption of complex variables, sparse matrix, Gaussian source and analysis on the grid size, numerical results are achieved smoothly. The results show that internal wave's influence on underwater sound can't be neglected, especially for higher sound frequency. So it's necessary to take internal wave into account in identifying radiation noise of ships and submarines, namely for sound intensity, transmission loss and spectra shape.
Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi
2016-07-01
An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.
2016-01-01
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050
Magnetogasdynamic Cylindrical Shock Waves in a Rotating Nonideal Gas with Radiation Heat Flux
Vishwakarma, J. P.; Patel, Nanhey
2015-03-01
A similarity solution is presented for a cylindrical magnetogasdynamic shock wave in a rotating nonideal gas in the presence of a variable axial magnetic field in the case where the radiation heat flux is of importance. The initial angular velocity of the medium is assumed to vary as some power of the distance from the symmetry axis. The radiation heat flux is evaluated from the equation of motion without explicit use of the radiation transfer equations. It is shown that the gas nonidealness increases the shock strength but decreases the shock velocity. On the other hand, the presence of a magnetic field decreases the shock strength but increases the shock velocity. Moreover, the shock velocity increases with the ratio of specific heats. The total energy of the shock wave increases with time.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.
Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A
2016-09-28
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.
2016-09-01
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.
Institute of Scientific and Technical Information of China (English)
LU Ming-Zhu; LIU Xue-Jin; SHI Yu; KANG Yan-Ni; GUAN Yu-Bo; WAN Ming-Xi
2012-01-01
We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue.The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method.A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated.It is noted that unlike the dissipative effect,the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis,compresses or stretches the focus area.The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100％ peak positive displacement and 64％ peak negative displacement.This action is useful in discerning the water-like lesion.%We concentrate on the nondissipative mechanism induced shear wave in inhomogenous tissue. The shear wave equation of radiation force in inhomogeneous media is solved numerically with a finite-difference time-domain method. A rarely studied nondissipative mechanism of shear displacement due to a smooth medium inhomogeneity is evaluated. It is noted that unlike the dissipative effect, the nondissipative action on a localized inhomogeneity with its hardness parameter changing smoothly along the beam axis, compresses or stretches the focus area. The shear waves in nondissipative inhomogeneous media remain the property of sharp turn with 100% peak positive displacement and 64% peak negative displacement. This action is useful in discerning the water-like lesion.
Supersonic flows over cavities
Institute of Scientific and Technical Information of China (English)
Tianwen FANG; Meng DING; Jin ZHOU
2008-01-01
The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.
Acoustic radiation force of high-order Bessel beam standing wave tweezers on a rigid sphere.
Mitri, F G
2009-12-01
Particle manipulation using the acoustic radiation force of Bessel beams is an active field of research. In a previous investigation, [F.G. Mitri, Acoustic radiation force on a sphere in standing and quasi-standing zero-order Bessel beam tweezers, Annals of Physics 323 (2008) 1604-1620] an expression for the radiation force of a zero-order Bessel beam standing wave experienced by a sphere was derived. The present work extends the analysis of the radiation force to the case of a high-order Bessel beam (HOBB) of positive order m having an angular dependence on the phase phi. The derivation for the general expression of the force is based on the formulation for the total acoustic scattering field of a HOBB by a sphere [F.G. Mitri, Acoustic scattering of a high-order Bessel beam by an elastic sphere, Annals of Physics 323 (2008) 2840-2850; F.G. Mitri, Equivalence of expressions for the acoustic scattering of a progressive high order Bessel beam by an elastic sphere, IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control 56 (2009) 1100-1103] to derive the general expression for the radiation force function YJm,st(ka,beta,m)Bessel beam standing wave incident upon a rigid sphere immersed in non-viscous water are computed. The rigid sphere calculations for YJm,st(ka,beta,m)Bessel beam standing wave (m=0). The proposed theory is of particular interest essentially due to its inherent value as a canonical problem in particle manipulation using the acoustic radiation force of a HOBB standing wave on a sphere. It may also serve as the benchmark for comparison to other solutions obtained by strictly numerical or asymptotic approaches.
Entropy Minimization Design Approach of Supersonic Internal Passages
Directory of Open Access Journals (Sweden)
Jorge Sousa
2015-08-01
Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.
Hawking Radiation and Classical Tunneling
Tracy, Eugene R
2015-01-01
Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for `Hawking radiation.' Here we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a $2\\times 2$ normal form governing the wave evolution in the vicinity of the `event horizon.' This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the `incoming wave'). Given the normal form, the Hawking `thermal spectrum' can be derived by invok...
Energy Technology Data Exchange (ETDEWEB)
Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)
2015-10-28
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of
The role of finite-difference methods in design and analysis for supersonic cruise
Townsend, J. C.
1976-01-01
Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.
Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio
2010-07-01
Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.
Infinitesimal Conical Supersonic Flow
Busemann, Adolf
1947-01-01
The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.
Back Radiation Suppression through a Semitransparent Ground Plane for a mm-Wave Patch Antenna
Klionovski, Kirill
2017-06-21
Omnidirectional radiation pattern with minimum backward radiation is highly desirable for base station antennas to minimize the multipath effects. Semitransparent ground planes have been used to reduce the backward radiation, but mostly with complicated non-uniform impedance distribution. In this work, we propose, for the first time, a round semitransparent ground plane of radius 0.8 λ with uniform impedance distribution that can improve the front-to-back ratio of a wideband patch antenna by 11.6 dB as compared to a similar sized metallic ground plane. The value of uniform impedance is obtained through analytical optimization by using asymptotic expressions in the Kirchhoff approximation of the radiation pattern of a toroidal wave scattered by a round semitransparent ground plane. The semitransparent ground plane has been realized using a low-cost carbon paste on a Kapton film. Experimental results match closely with those of simulations and validate the overall concept.
Acoustic radiation force on a rigid elliptical cylinder in plane (quasi)standing waves
Energy Technology Data Exchange (ETDEWEB)
Mitri, F. G., E-mail: F.G.Mitri@ieee.org [Chevron, Area 52 Technology–ETC, Santa Fe, New Mexico 87508 (United States)
2015-12-07
The acoustic radiation force on a 2D elliptical (non-circular) cylinder centered on the axis of wave propagation of plane quasi-standing and standing waves is derived, based on the partial-wave series expansion (PWSE) method in cylindrical coordinates. A non-dimensional acoustic radiation force function, which is the radiation force per unit length, per characteristic energy density and per unit cross-sectional surface of the ellipse, is defined in terms of the scattering coefficients that are determined by applying the Neumann boundary condition for an immovable surface. A system of linear equations involving a single numerical integration procedure is solved by matrix inversion. Numerical simulations showing the transition from the quasi-standing to the (equi-amplitude) standing wave behaviour are performed with particular emphasis on the aspect ratio a/b, where a and b are the ellipse semi-axes, as well as the dimensionless size parameter kb (where k is the wavenumber), without the restriction to a particular range of frequencies. It is found that at high kb values > 1, the radiation force per length with broadside incidence is larger, whereas the opposite situation occurs in the long-wavelength limit (i.e., kb < 1). The results are particularly relevant in acoustic levitation of elliptical cylinders, the acoustic stabilization of liquid columns in a host medium, acousto-fluidics devices, and other particle dynamics applications to name a few. Moreover, the formalism presented here may be effectively applied to compute the acoustic radiation force on other 2D surfaces of arbitrary shape such as super-ellipses, Chebyshev cylindrical particles, or other non-circular geometries.
Nonlinear wave-particle interactions in the outer radiation belts: Van Allen Probes results
Agapitov, Oleksiy; Mozer, Forrest; Artemyev, Anton; Drake, James; Vasko, Ivan
2016-10-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. Observations of electron velocity distributions and chorus waves by the Van Allen Probe B provided long-lasting signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. The feedback from trapped particles provides steepening of parallel electric field and development of TDS seeded from initial whistler structure (well explained in terms of Particle-In-Cell model). The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system and are observed by the Van Allen Probes in the radiation belts.
Kobayashi, Manabu; Takemura, Shunsuke; Yoshimoto, Kazuo
2015-09-01
Frequency and distance changes in the apparent P-wave radiation pattern (0.75-12 Hz) are investigated using velocity seismograms of shallow strike-slip earthquakes occurring in Chugoku region, southwestern Japan. Data from a dense seismic monitoring network revealed that the four-lobe apparent P-wave radiation pattern was gradually distorted with increasing frequency and propagation distance. Observed features suggest that seismic wave scattering due to small-scale velocity heterogeneity in the crust may be a major cause of this distortion. The effects of seismic wave scattering on apparent P-wave radiation pattern were investigated via 3-D finite difference simulation of seismic wave propagation. Our simulations demonstrated that the scattering of seismic waves modified the apparent P-wave radiation pattern from the original four-lobe shape, and that the small-scale velocity heterogeneity, characterized by the von Kármán-type power spectral density function with correlation distance of 1 km, root-mean-square value of 0.03 and decay rate parameter of 0.5, might be adequate for modelling crustal heterogeneity in the target region. It was also found that the scattering attenuation of P wave expected from this heterogeneity is significantly smaller than the apparent P-wave attenuation and S-wave scattering attenuation reported by Multiple Lapse Time Window Analysis of previous studies in Japan. These results might imply that scattering attenuation is not the dominant mechanism of P-wave attenuation in the crust of Chugoku region.
Characteristics of Off-Chip Millimeter-Wave Radiation from Serial Josephson Junction Arrays
Institute of Scientific and Technical Information of China (English)
WANG Zheng; FAN Bin; ZHAO Xin-Jie; YUE Hong-Wei; HE Ming; JI Lu; YAN Shao-Lin; FANG Lan; Klushin A. M.
2011-01-01
@@ We investigate the self-emissions from serial high-temperature superconductor bicrystal Josephson junction ar- rays embedded in a quasi-optical resonator.A bicrystal substrate is used as a dielectric resonator antenna, which increases the coupling strength between the junction array and the electromagnetic (EM) wave.Both three-dimension (3D) electromagnetic simulations and experiments are performed.Strong ofT-chip radiations axe measured from the junction array at 78 GHz and 78 K.The proposed method and the experimental results are important for millimeter wave applications in junction arrays.
Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun
Energy Technology Data Exchange (ETDEWEB)
Pokrovsky, Yu. E., E-mail: Pokrovskiy-YE@nrcki.ru [National Research Center Kurchatov Institute (Russian Federation)
2015-12-15
The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory “Dulkyn” which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.
Compact dark matter objects, asteroseismology, and gravitational waves radiated by sun
Pokrovsky, Yu. E.
2015-12-01
The solar surface oscillations observed by Crimean Astrophysical Observatory and Solar Helioseismic Observatory are considered to be excited by a small fraction of Dark Matter in form of Compact Dark Matter Objects (CDMO) in the solar structure. Gravitational Waves (GW) radiated by these CDMO are predicted to be the strongest at the Earth and are easily detectable by European Laser Interferometer Space Antenna or by Gravitational-Wave Observatory "Dulkyn" which can solve two the most challenging tasks in the modern physics: direct detection of GW and DM.
Turbulent Shear Layers in Supersonic Flow
Smits, Alexander J
2006-01-01
A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.
Energy Technology Data Exchange (ETDEWEB)
Grossman, A.S.; Kinnison, D.E.; Penner, J.E.; Grant, K.E.; Tamaresis, J.; Connell, P.S. [Lawrence Livermore National Lab., CA (United States). Atmospheric Science Research Div.
1996-01-01
The tropospheric radiative forcing has been calculated for ozone and water vapor perturbations caused by a realistic High Speed Civil Transport (HSCT) aircraft emission scenario. Atmospheric profiles of water vapor and ozone were obtained using the LLNL 2-D chemical-radiative-transport model (CRT) of the global troposphere and stratosphere. IR radiative forcing calculations were made with the LLNL correlated k-distribution radiative transfer model. UV-Visible-Near IR radiative forcing calculations were made with the LLNL two stream solar radiation model. For the case of water vapor the IR and Near IR radiative forcing was determined at five different latitudes and then averaged using an appropriate latitudinal average to obtain the global average value. Global average values of radiative forcing were approximately 1.2--2.6 10{sup {minus}3} W/m{sup 2}, depending on the background atmospheric water vapor profile. This result is consistent with prior published values for a similar aircraft scenario and supports the conclusion that the water vapor climate forcing effect is very small. The radiative forcing in the IR and UV-Visible spectral ranges, due to the ozone perturbation, was calculated for the globally averaged atmosphere. Global average values of the radiative forcing were 0.034 W/m{sup 2} for the UV-Visible spectral range and 0.006 W/m{sup 2} for the IR spectral range (0.04 W/m{sup 2} total). This result is also consistent with the range of published values obtained for a similar HSCT scenario. As was the case for water vapor, the ozone forcing is too small to be of major consequence.
Wave-induced precipitation as a loss process for radiation belt particles
Inan, U. S.; Chang, H. C.; Helliwell, R. A.; Katsufrakis, J. P.; Imhof, W. L.
Precipitation of radiation belt electrons by VLF waves injected from ground based transmitters was achieved during the Stimulated Emission of Energetic Particles (SEEP) experiments (Imhof et al., 1983), the first direct satellite based observation of modulated precipitation of electrons in the bounce loss cone. This paper considers the temporal and spectral shape as well as the absolute flux level of the observed precipitation pulses. In order to model these results, both the pitch angle dependence of the particle distribution near the edge of the loss cone and atmospheric backscatter which leads to multiple interactions of the particles with the wave are considered. Based on a comparison of theory with observations, the leverage of the precipitation process is estimated. Crude estimates of the percentage depletion of the radiation belt population due to the observed transmitter induced precipitation are also made.
Mann, Ian R.; Rae, I. Jonathan; Sibeck, David G.; Watt, Clare E. J.
2016-01-01
Abstract Wave‐particle interactions play a crucial role in energetic particle dynamics in the Earth's radiation belts. However, the relative importance of different wave modes in these dynamics is poorly understood. Typically, this is assessed during geomagnetic storms using statistically averaged empirical wave models as a function of geomagnetic activity in advanced radiation belt simulations. However, statistical averages poorly characterize extreme events such as geomagnetic storms in that storm‐time ultralow frequency wave power is typically larger than that derived over a solar cycle and Kp is a poor proxy for storm‐time wave power. PMID:27867798
Institute of Scientific and Technical Information of China (English)
Jing-Xin ZHANG; Hua LIU
2009-01-01
This paper extends the conventional concept of radiation stress (Longuet-Higgins and Stewart, 1964)in progressive water waves to standing waves, so that its vertical profile could be defined and calculated in a new technical way. The hydrodynamic numerical model being coupled with the vertically varying radiation stress in standing waves is used to simulate the currents being induced by standing waves in the vertical section. Numerical modeling of suspended sediment transport is then carried out to simulate the evolution of the bed composed of fine sediments by the currents. The scour and deposition patterns simulated are in qualitative agreement with prior laboratory and field observations.
2006-01-01
Coherent radiation emitted from a Photonic crystal of a cylindrical tube of Teflon with periodic grooves is observed in the millimeter wave region. The observed spectra show a sharp peak at frequency of 4.625cm^. The inter-bunch coherence of the radiation is confirmed with an interferometer.
Kinetic theory for radiation interacting with sound waves in ultrarelativistic pair plasmas
Marklund, M; Stenflo, L
2006-01-01
A kinetic theory for radiation interacting with sound waves in an ultrarelativistic electron-positron plasma is developed. It is shown that the effect of a spatial spectral broadening of the electromagnetic pulse is to introduce a reduction of the growth rates for the decay and modulational instabilities. Such spectral broadening could be due to a finite pulse coherence length, or through the use of random phase filters, and would stabilize the propagation of electromagnetic pulses.
A simple formula for the net long-wave radiation flux in the southern Baltic Sea
Directory of Open Access Journals (Sweden)
Tomasz Zapadka
2001-09-01
Full Text Available This paper discusses problems of estimating the net long-wave radiation flux at the sea surface on the basis of easily measurable meteorological quantities (air and sea surface temperatures, near-surface water vapour pressure, cloudiness. Empirical data and existing formulae are compared. Additionally, an improved formula for the southern Baltic region is introduced, with a systematic error of less than 1 W -2 and a statistical error of less than 20 W -2.
Chubar, O.
2006-09-01
The paper describes methods of efficient calculation of spontaneous synchrotron radiation (SR) by relativistic electrons in storage rings, and propagation of this radiation through optical elements and drift spaces of beamlines, using the principles of wave optics. In addition to the SR from one electron, incoherent and coherent synchrotron radiation (CSR) emitted by electron bunches is treated. CPU-efficient CSR calculation method taking into account 6D phase space distribution of electrons in a bunch is proposed. The properties of CSR emitted by electron bunches with small longitudinal and large transverse size are studied numerically (such situation can be realized in storage rings e.g. by transverse deflection of the electron bunches in special RF cavities). It is shown that if the transverse size of a bunch is much larger than the diffraction limit for single-electron SR at a given wavelength - it affects the angular distribution of the CSR at this wavelength and reduces the coherent flux. Nevertheless, for transverse bunch dimensions up to several millimeters and the longitudinal bunch size smaller than hundred micrometers, the resulting CSR flux in the far infrared spectral range is still many orders of magnitude higher than the flux of incoherent SR.
The structure of radiative shock waves. III. The model grid for partially ionized hydrogen gas
Fadeyev, Y A; Fadeyev, Yu. A.
2001-01-01
The grid of the models of radiative shock waves propagating through partially ionized hydrogen gas with temperature 3000K <= T_1 <= 8000K and density 10^{-12} gm/cm^3 <= \\rho_1 <= 10^{-9}gm/cm^3 is computed for shock velocities 20 km/s <= U_1 <= 90 km/s. The fraction of the total energy of the shock wave irreversibly lost due to radiation flux ranges from 0.3 to 0.8 for 20 km/s <= U_1 <= 70 km/s. The postshock gas is compressed mostly due to radiative cooling in the hydrogen recombination zone and final compression ratios are within 1 <\\rho_N/\\rho_1 \\lesssim 10^2, depending mostly on the shock velocity U_1. The preshock gas temperature affects the shock wave structure due to the equilibrium ionization of the unperturbed hydrogen gas, since the rates of postshock relaxation processes are very sensitive to the number density of hydrogen ions ahead the discontinuous jump. Both the increase of the preshock gas temperature and the decrease of the preshock gas density lead to lower postsh...
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Kazinski, P. O.
2013-12-01
The late time asymptotics of the physical solutions to the Lorentz-Dirac equation in the electromagnetic external fields of simple configurations-the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave-are found. The solutions to the Landau-Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime.
Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise
Cabot, M. A.
The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.
Coupling dynamic of twin supersonic jets
Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo
2015-11-01
In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.
Huang, Chia-Lin; Spence, Harlan E.; Singer, Howard J.; Hughes, W. Jeffrey
2010-06-01
To provide critical ULF wave field information for radial diffusion studies in the radiation belts, we quantify ULF wave power (f = 0.5-8.3 mHz) in GOES observations and magnetic field predictions from a global magnetospheric model. A statistical study of 9 years of GOES data reveals the wave local time distribution and power at geosynchronous orbit in field-aligned coordinates as functions of wave frequency, solar wind conditions (Vx, ΔPd and IMF Bz) and geomagnetic activity levels (Kp, Dst and AE). ULF wave power grows monotonically with increasing solar wind Vx, dynamic pressure variations ΔPd and geomagnetic indices in a highly correlated way. During intervals of northward and southward IMF Bz, wave activity concentrates on the dayside and nightside sectors, respectively, due to different wave generation mechanisms in primarily open and closed magnetospheric configurations. Since global magnetospheric models have recently been used to trace particles in radiation belt studies, it is important to quantify the wave predictions of these models at frequencies relevant to electron dynamics (mHz range). Using 27 days of real interplanetary conditions as model inputs, we examine the ULF wave predictions modeled by the Lyon-Fedder-Mobarry magnetohydrodynamic code. The LFM code does well at reproducing, in a statistical sense, the ULF waves observed by GOES. This suggests that the LFM code is capable of modeling variability in the magnetosphere on ULF time scales during typical conditions. The code provides a long-missing wave field model needed to quantify the interaction of radiation belt electrons with realistic, global ULF waves throughout the inner magnetosphere.
Directory of Open Access Journals (Sweden)
Chen Jian
2015-01-01
Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.
Quantum Larmor radiation from a moving charge in an electromagnetic plane wave background
Nakamura, Gen; 10.1142/S0217751X12501424
2012-01-01
We extend our previous work [Phys. Rev. D83 045030 (2011)], which investigated the first-order quantum effect in the Larmor radiation from a moving charge in a spatially homogeneous time-dependent electric field. Specifically, we investigate the quantum Larmor radiation from a moving charge in a monochromatic electromagnetic plane wave background based on the scalar quantum electrodynamics at the lowest order of the perturbation theory. Using the in-in formalism, we derive the theoretical formula of the total radiation energy from a charged particle in the initial states being at rest and being in a relativistic motion. Expanding the theoretical formula in terms of the Planck constant \\hbar, we obtain the first-order quantum effect on the Larmor radiation. The quantum effect generally suppresses the total radiation energy compared with the prediction of the classical Larmor formula, which is a contrast to the previous work. The reason is explained by the fact that the radiation from a moving charge in a monoc...
Kim, Dong-Hoon
2016-01-01
Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an effect apparently overlooked as yet. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this pol...
Compact representations of partially coherent undulator radiation suitable for wave propagation
Directory of Open Access Journals (Sweden)
Ryan R. Lindberg
2015-09-01
Full Text Available Undulator radiation is partially coherent in the transverse plane, with the degree of coherence depending on the ratio of the electron beam phase space area (emittance to the characteristic radiation wavelength λ. On the other hand, numerical codes used to predict x-ray beam line performance can typically only propagate coherent fields from the source to the image plane. We investigate methods for representing partially coherent undulator radiation using a suitably chosen set of coherent fields that can be used in standard wave propagation codes, and discuss such “coherent mode expansions” for arbitrary degrees of coherence. In the limit when the electron beam emittance along at least one direction is much larger than λ the coherent modes are orthogonal and therefore compact; when the emittance approaches λ in both planes we discuss an economical method of defining the relevant coherent fields that samples the electron beam phase space using low-discrepancy sequences.
Institute of Scientific and Technical Information of China (English)
NI Xian-zhi; LI Ke-jian; WANG Li
2004-01-01
Three kinds of lower rank bituminous coals from Yanzhou mine and Tengxian mine from Shandong Province were treated and hydrogenated in the study. The test results show that the performance of hydrogenation liquefaction of the pretreated coals is improved markedly. Under the test condition of H2 initial pressure 8.2 MPa, addition of the oil yield of pretreated YZ1 coal is 69.76% compared with 62.53% of oil yield of untreated YZ1. Seminally the oil yield of pretreated YZ2 coal is 55.43% compared with20.88% of untreated YZ2 coal. The results of tests also prove that the improving degree of hydrogenation liquefaction of the pretreated coals is related with radiation duration when the radiation frequency and radiation power of ultrasonic wave are fixed.
Effects of Millimeter-Wave Electromagnetic Radiation on the Experimental Model of Migraine.
Sivachenko, I B; Medvedev, D S; Molodtsova, I D; Panteleev, S S; Sokolov, A Yu; Lyubashina, O A
2016-02-01
Effects of millimeter-wave electromagnetic radiation (40 GHz frequency, 0.01 mW power) on the spontaneous fi ring of convergent neurons of the spinal trigeminal nucleus and their responses to electrical stimulation of the dura mater were studied in neurophysiological experiments on rats. Irradiation of the area of cutaneous receptive fields of spinal trigeminal nucleus reversibly inhibited both spontaneous discharges and activity induced by electrical stimulation of the dura mater. The second and third exposures to electromagnetic radiation with an interval of 10 min were ineffective. These results suggest that suppression of neuronal excitability in the spinal trigeminal ganglion can be a mechanism of the anti-migraine effects of electromagnetic radiation observed in clinical practice.
Kocharyan, L A; Bornazyan, H S
1986-01-01
The time dependence of X radiation diffracted in a quartz single crystal is experimentally investigated when surface acoustic waves modulated by low frequency oscillations of different frequencies and forms are excited in the crystal.
Radiation of de-excited electrons at large times in a strong electromagnetic plane wave
Energy Technology Data Exchange (ETDEWEB)
Kazinski, P.O., E-mail: kpo@phys.tsu.ru
2013-12-15
The late time asymptotics of the physical solutions to the Lorentz–Dirac equation in the electromagnetic external fields of simple configurations–the constant homogeneous field, the linearly polarized plane wave (in particular, the constant uniform crossed field), and the circularly polarized plane wave–are found. The solutions to the Landau–Lifshitz equation for the external electromagnetic fields admitting a two-parametric symmetry group, which include as a particular case the above mentioned field configurations, are obtained. Some general properties of the total radiation power of a charged particle are established. In particular, for a circularly polarized wave and constant uniform crossed fields, the total radiation power in the asymptotic regime is independent of the charge and the external field strength, when expressed in terms of the proper-time, and equals a half the rest energy of a charged particle divided by its proper-time. The spectral densities of the radiation power formed on the late time asymptotics are derived for a charged particle moving in the external electromagnetic fields of the simple configurations pointed above. This provides a simple method to verify experimentally that the charged particle has reached the asymptotic regime. -- Highlights: •Late time asymptotics of the solutions to the Lorentz–Dirac equation are studied. •General properties of the total radiation power of electrons are established. •The total radiation power equals a half the rest energy divided by the proper-time. •Spectral densities of radiation formed on the late time asymptotics are derived. •Possible experimental verification of the results is proposed.
Institute of Scientific and Technical Information of China (English)
薛淑艳; 张会强; 王兵; 王希麟
2011-01-01
可压缩混合层的大尺度涡结构及其演化过程与来流扰动密切相关。该文首先对来流扰动为白噪声扰动的二维空间发展超音速平面混合层进行了数值模拟,并对流动初始失稳区域的瞬时y方向速度信号进行Fourier分析,来获得流动最不稳定波频率,以该频率来构造入口扰动。结果表明：与白噪声扰动相比,应用相同均方根的最不稳定波扰动能更有效激发混合层的发展,使流场起涡位置明显提前,使脉动时均统计量更快达到自相似。要达到相同的起涡位置,白噪声扰动均方根是最不稳定波扰动均方根的13倍左右,这与不可压流的350～500倍相比,要小得多。%Reasonable predictions of large scale vortex structures and their evolution in a compressible mixing layer are mainly dependent on the inlet disturbance.Numerical results for the instantaneous transverse velocity predicted for a white noise inlet condition were used to calculate the most unstable wave frequency used to form the inlet disturbance by Fourier analysis.The results show that the most unstable wave disturbance can more effectively excite the supersonic mixing layer compared with the white noise disturbance for the same root mean square（RMS） noise level.Also,the position of the vortex roll up significantly moved upstream and the time-averaged properties became self-similar earlier.For the same vortex roll up position,the RMS level of the white noise disturbance was about thirteen times greater than that of the most unstable wave disturbance.For incompressible flows,the ratio was 350～500 times since the noise level for the most unstable disturbance was much smaller.
ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS
Directory of Open Access Journals (Sweden)
P. V. Bulat
2015-11-01
Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.
Retrieving capillary-gravity wave spectrum from polarimetric microwave radiation of ocean surface
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A new simple two-scale model on the polarimetric microwave emission of ocean surface is derived at first, which can be ex-pressed as an integral of weighting functions (M0 and M2) and ocean surface curvature spectrum coefficients (C0 and C2). This provides a simple way to investigate the effect of curvature spectrum on ocean emission. It is found that ocean waves with wavelengths both comparable to and much greater than the electromagnetic wavelength can contribute to the harmonics of ocean surface microwave emission, depending on the magnitude of the ocean surface spectrum in these length scales. Bright-ness temperature predictions differ significantly due to present diverse spectrum models, and thus a study on wave spectrum obtained inversely from brightness temperature measurements is necessary. From the ocean surface radiation data measured by polarimetric microwave radiometer, we derived an ocean wave spectrum with a wider wave number range, using the proposed two-scale model and constrained linear least-squares method. The derived ocean wave spectrum is useful for comparing with present diverse models.
Supersonic and subsonic measurements of mesospheric ionization.
Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.
1972-01-01
An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.
Ruan, Ping; Yong, Junguang; Shen, Hongtao; Zheng, Xianrong
2012-12-01
Multiple state-of-the-art techniques, such as multi-dimensional micro-imaging, fast multi-channel micro-spetrophotometry, and dynamic micro-imaging analysis, were used to dynamically investigate various effects of cell under the 900 MHz electromagnetic radiation. Cell changes in shape, size, and parameters of Hb absorption spectrum under different power density electromagnetic waves radiation were presented in this article. Experimental results indicated that the isolated human red blood cells (RBCs) do not have obviously real-time responses to the ultra-low density (15 μW/cm(2), 31 μW/cm(2)) electromagnetic wave radiation when the radiation time is not more than 30 min; however, the cells do have significant reactions in shape, size, and the like, to the electromagnetic waves radiation with power densities of 1 mW/cm(2) and 5 mW/cm(2). The data also reveal the possible influences and statistical relationships among living human cell functions, radiation amount, and exposure time with high-frequency electromagnetic waves. The results of this study may be significant on protection of human being and other living organisms against possible radiation affections of the high-frequency electromagnetic waves.
Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation
Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud
2016-11-01
Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed c depending on position r . In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path ℓ*, scattering phase function f , and anisotropy factor g . Discarding the operator term in the wave equation is shown to have a significant impact on f and g , yet limited to the low-frequency regime, i.e., when the correlation length of the disorder ℓc is smaller than or comparable to the wavelength λ . More surprisingly, discarding the operator part has a significant impact on the transport mean-free path ℓ* whatever the frequency regime. When the scalar and operator terms have identical amplitudes, the discrepancy on the transport mean-free path is around 300 % in the low-frequency regime, and still above 30 % for ℓc/λ =103 no matter how weak fluctuations of the disorder are. Analytical results are supported by numerical simulations of the wave equation and Monte Carlo simulations.
Radiative transfer of acoustic waves in continuous complex media: Beyond the Helmholtz equation.
Baydoun, Ibrahim; Baresch, Diego; Pierrat, Romain; Derode, Arnaud
2016-11-01
Heterogeneity can be accounted for by a random potential in the wave equation. For acoustic waves in a fluid with fluctuations of both density and compressibility (as well as for electromagnetic waves in a medium with fluctuation of both permittivity and permeability) the random potential entails a scalar and an operator contribution. For simplicity, the latter is usually overlooked in multiple scattering theory: whatever the type of waves, this simplification amounts to considering the Helmholtz equation with a sound speed c depending on position r. In this work, a radiative transfer equation is derived from the wave equation, in order to study energy transport through a multiple scattering medium. In particular, the influence of the operator term on various transport parameters is studied, based on the diagrammatic approach of multiple scattering. Analytical results are obtained for fundamental quantities of transport theory such as the transport mean-free path ℓ^{*}, scattering phase function f, and anisotropy factor g. Discarding the operator term in the wave equation is shown to have a significant impact on f and g, yet limited to the low-frequency regime, i.e., when the correlation length of the disorder ℓ_{c} is smaller than or comparable to the wavelength λ. More surprisingly, discarding the operator part has a significant impact on the transport mean-free path ℓ^{*} whatever the frequency regime. When the scalar and operator terms have identical amplitudes, the discrepancy on the transport mean-free path is around 300% in the low-frequency regime, and still above 30% for ℓ_{c}/λ=10^{3} no matter how weak fluctuations of the disorder are. Analytical results are supported by numerical simulations of the wave equation and Monte Carlo simulations.
Linear models for sound from supersonic reacting mixing layers
Chary, P. Shivakanth; Samanta, Arnab
2016-12-01
We perform a linearized reduced-order modeling of the aeroacoustic sound sources in supersonic reacting mixing layers to explore their sensitivities to some of the flow parameters in radiating sound. Specifically, we investigate the role of outer modes as the effective flow compressibility is raised, when some of these are expected to dominate over the traditional Kelvin-Helmholtz (K-H) -type central mode. Although the outer modes are known to be of lesser importance in the near-field mixing, how these radiate to the far-field is uncertain, on which we focus. On keeping the flow compressibility fixed, the outer modes are realized via biasing the respective mean densities of the fast (oxidizer) or slow (fuel) side. Here the mean flows are laminar solutions of two-dimensional compressible boundary layers with an imposed composite (turbulent) spreading rate, which we show to significantly alter the growth of instability waves by saturating them earlier, similar to in nonlinear calculations, achieved here via solving the linear parabolized stability equations. As the flow parameters are varied, instability of the slow modes is shown to be more sensitive to heat release, potentially exceeding equivalent central modes, as these modes yield relatively compact sound sources with lesser spreading of the mixing layer, when compared to the corresponding fast modes. In contrast, the radiated sound seems to be relatively unaffected when the mixture equivalence ratio is varied, except for a lean mixture which is shown to yield a pronounced effect on the slow mode radiation by reducing its modal growth.
Supersonic Jet Excitation using Flapping Injection
Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik
2013-01-01
Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...
Linear stability analysis of supersonic axisymmetric jets
Directory of Open Access Journals (Sweden)
Zhenhua Wan
2014-01-01
Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.
Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier; Krasnoselskikh, Vladimir; Shastun, Vitalii; Mozer, Forrest
2016-04-01
In this paper we review recent spacecraft observations of oblique whistler-mode waves in the Earth's inner magnetosphere as well as the various consequences of the presence of such waves for electron scattering and acceleration. In particular, we survey the statistics of occurrences and intensity of oblique chorus waves in the region of the outer radiation belt, comprised between the plasmapause and geostationary orbit, and discuss how their actual distribution may be explained by a combination of linear and non-linear generation, propagation, and damping processes. We further examine how such oblique wave populations can be included into both quasi-linear diffusion models and fully nonlinear models of wave-particle interaction. On this basis, we demonstrate that varying amounts of oblique waves can significantly change the rates of particle scattering, acceleration, and precipitation into the atmosphere during quiet times as well as in the course of a storm. Finally, we discuss possible generation mechanisms for such oblique waves in the radiation belts. We demonstrate that oblique whistler-mode chorus waves can be considered as an important ingredient of the radiation belt system and can play a key role in many aspects of wave-particle resonant interactions.
Time-domain simulation for water wave radiation by floating structures (Part A)
Institute of Scientific and Technical Information of China (English)
XU Gang; DUAN Wen-yang
2008-01-01
Direct time-domain simulation of floating structures has advantages: it can calculate wave pressure fields and forces directly;and it is useful for coupled analysis of floating structures with a mooring system. A time-domain boundary integral equation method is presented to simulate three-dimensional water wave radiation problems. A stable form of the integration free-surface boundary condition (IFBC) is used to update velocity potentials on the free surface. A multi-transmitting formula (MTF) method with an artificial speed is introduced to the artificial radiation boundary (ARB). The method was applied to simulate a semi-spherical liquefied natural gas (LNG) carrier and a semi-submersible undergoing specified harmonic motion. Numerical parameters such as the form of the ARB,and the time and space discretization related to this method are discussed. It was found that a good agreement can be obtained when artificial speed is between 0.6 and 1.6 times the phase velocity of water waves in the MTF method. A simulation can be done for a long period of time by this method without problems of instability,and the method is also accurate and computationally efficient.
Plasma scattering measurement using a submillimeter wave gyrotron as a radiation source
Energy Technology Data Exchange (ETDEWEB)
Ogawa, I.; Idehara, T.; Itakura, Y.; Myodo, M. [Fukui Univ., Research Center for Development of Far-Infrared Region (Japan); Hori, T. [National Institute of Information and Communications Technology, Basic and Advanced Research Division, Nukui-Kita, Koganei (Japan); Hatae, T. [Japan Atomic Energy Research Institute, Mukoyama, Naka (Japan)
2004-07-01
Plasma scattering measurement is an effective technique to observe low frequency density fluctuations excited in plasma. The spatial and wave number resolutions and the S/N ratio of measurement depend on the wavelength range, the size and the intensity of a probe beam. A well-collimated, submillimeter wave beam is suitable for improving the spatial and wave number resolutions. Application of high frequency gyrotron is effective in improving the S/N ratio of the measurement because of its capacity to deliver high power. Unlike the molecular vapor lasers, the gyrotrons generate diverging beam of radiation with TE{sub mn} mode structure. It is therefore necessary to convert the output radiation into a Gaussian beam. A quasi-optical antenna is a suitable element for the conversion system under consideration since it is applicable to several TE{sub 0n} and TE{sub 1n} modes. In order to apply the gyrotron to plasma scattering measurement, we have stabilized the output (P = 110 W, f = 354 GHz) of gyrotron up to the level ({delta}P/P < 1 %, {delta}f< 10 kHz). The gyrotron output can be stabilized by decreasing the fluctuation of the cathode potential. (authors)
Ultrasonic Beam Radiation of an A0 Leaky Lamb Wave in a Plate Waveguide Sensor
Energy Technology Data Exchange (ETDEWEB)
Bae, Jin Ho; Joo, Young Sang; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Rhee, Hui Nam [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2010-05-15
As the sodium coolant of a sodium-cooled fast reactor (SFR) is opaque to light, a conventional visual inspection cannot be used for carrying out an in-service inspection of the internal structures under a sodium level. An ultrasonic wave should be applied for an under-sodium viewing of the internal structures in a reactor vessel. Immersion sensors and waveguide sensors have been applied to the under-sodium visualization. The immersion sensor has a precise imaging capability, but may have high temperature restrictions and an uncertain life. The waveguide sensor has the advantages of a long lifetime and stable application. Recently, a new plate waveguide sensor has been developed for the versatile applications in the under-sodium viewing application. In the plate waveguide sensor, the A0 leaky Lamb wave is utilized for the long distance propagation and the effective radiation capability in a fluid. And a new technique is presented which is capable of steering an ultrasonic beam of a waveguide sensor without a mechanical movement of the sensor assembly. In this paper, the experimental study of the radiation beam profile of the A0 leaky Lamb wave in a plate waveguide sensor is carried out
Advanced ceramics sintering using high-power millimeter-wave radiation
Energy Technology Data Exchange (ETDEWEB)
Setsuhara, Y.; Kamai, M.; Kinoshita, S.; Abe, N.; Miyake, S. [Osaka Univ. (Japan). Welding Research Inst.; Saji, T. [Fujidempa Kogyo Co., Ltd., Ibaraki (Japan)
1996-12-31
The results of ceramics sintering experiments using high-power millimeter-wave radiation are reported. Sintering of silicon nitride with 5% Al{sub 2}O{sub 3} and 5% Y{sub 2}O{sub 3} was performed in a multi-mode applicator using a 10-kW 28-GHz gyrotron in CW operation. It was found that the silicon nitride samples sintered with 28 GHz radiation at 1,650 C for 30 min reached to as high as theoretical density (TD), while the conventionally sintered samples at 1700 C for 60 min resulted in the density as low as 90% TD. Focusing experiments of millimeter-wave radiation from the high-power pulsed 60-GHz gyrotron have been performed using a quasi-optical antenna system (two-dimensional ellipso-parabolic focusing antenna system) to demonstrate the feasibility of the power density of as high as 100 kW/cm{sup 2}. Typical heating characteristics using the focused beam were made clear for this system. It was found that the densification of yttria-stabilized zirconia (ZrO{sub 2}-8mol%Y{sub 2}O{sub 3}) samples to as high as 97% TD was obtained from the sintering with focused 60 GHz beam in pulse operation with a 10-ms pulse duration at a 0.5Hz repetition. The densification temperature for the zirconia could be lowered by 200 C than that expected conventionally.
GLASS Daytime All-Wave Net Radiation Product: Algorithm Development and Preliminary Validation
Directory of Open Access Journals (Sweden)
Bo Jiang
2016-03-01
Full Text Available Mapping surface all-wave net radiation (Rn is critically needed for various applications. Several existing Rn products from numerical models and satellite observations have coarse spatial resolutions and their accuracies may not meet the requirements of land applications. In this study, we develop the Global LAnd Surface Satellite (GLASS daytime Rn product at a 5 km spatial resolution. Its algorithm for converting shortwave radiation to all-wave net radiation using the Multivariate Adaptive Regression Splines (MARS model is determined after comparison with three other algorithms. The validation of the GLASS Rn product based on high-quality in situ measurements in the United States shows a coefficient of determination value of 0.879, an average root mean square error value of 31.61 Wm−2, and an average bias of −17.59 Wm−2. We also compare our product/algorithm with another satellite product (CERES-SYN and two reanalysis products (MERRA and JRA55, and find that the accuracy of the much higher spatial resolution GLASS Rn product is satisfactory. The GLASS Rn product from 2000 to the present is operational and freely available to the public.
Experimental determination of radiated internal wave power without pressure field data
Lee, Frank M; Swinney, Harry L; Morrison, P J
2014-01-01
We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife ed...
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
Based on coastal high-resolution (2′×2′) coupled wave-tide-surge interaction numerical model, the effects of radiation stress on wave heights and sea level in the coastal area of Huanghe Delta were studied. By comparisons of simulated and measured wave heights and sea level for two mediately strong weather cases, it is demonstrated that the results simulated by coupled wave-tide-surge model are closer to the measured and particularly in excellent agreement in the extreme values of the wave heights and set-up. This study shows that the radiation stress can increase the wave heights maximally to 67cm and sea level to 40cm. It is also found that there are areas of over 50cm wave height increase and an area of over 20cm sea level increase in the Huanghe Delta coastal area, and this find may be very important in engineering. For this reason, it is suggested that in the practical engineering application, the coupled wave-tide-surge interaction numerical model should be prefered.
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1968-01-01
The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...
Continuous supersonic plasma wind tunnel
DEFF Research Database (Denmark)
Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.
1969-01-01
The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...
Chang, Shanshan; Zhu, Zhengping; Ni, Binbin; Cao, Xing; Luo, Weihua
2016-10-01
Several extremely low-frequency (ELF)/very low-frequency (VLF) wave generation experiments have been performed successfully at High-Frequency Active Auroral Research Program (HAARP) heating facility and the artificial ELF/VLF signals can leak into the outer radiation belt and contribute to resonant interactions with energetic electrons. Based on the artificial wave properties revealed by many of in situ observations, we implement test particle simulations to evaluate the effects of energetic electron resonant scattering driven by the HAARP-induced ELF/VLF waves. The results indicate that for both single-frequency/monotonic wave and multi-frequency/broadband waves, the behavior of each electron is stochastic while the averaged diffusion effect exhibits temporal linearity in the wave-particle interaction process. The computed local diffusion coefficients show that, the local pitch-angle scattering due to HARRP-induced single-frequency ELF/VLF whistlers with an amplitude of ∼10 pT can be intense near the loss cone with a rate of ∼10-2 rad2 s-1, suggesting the feasibility of HAARP-induced ELF/VLF waves for removal of outer radiation belt energetic electrons. In contrast, the energy diffusion of energetic electrons is relatively weak, which confirms that pitch-angle scattering by artificial ELF/VLF waves can dominantly lead to the precipitation of energetic electrons. Moreover, diffusion rates of the discrete, broadband waves, with the same amplitude of each discrete frequency as the monotonic waves, can be much larger, which suggests that it is feasible to trigger a reasonable broadband wave instead of the monotonic wave to achieve better performance of controlled precipitation of energetic electrons. Moreover, our test particle scattering simulation show good agreement with the predictions of the quasi-linear theory, confirming that both methods are applied to evaluate the effects of resonant interactions between radiation belt electrons and artificially generated
Supersonic stall flutter of high-speed fans
Adamczyk, J. J.; Stevans, W.; Jutras, R.
1981-01-01
An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.
Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian
1992-01-01
As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).
Radial transport of radiation belt electrons due to stormtime Pc5 waves
Directory of Open Access Journals (Sweden)
A. Y. Ukhorskiy
2009-05-01
Full Text Available During geomagnetic storms relativistic electron fluxes in the outer radiation belt exhibit dynamic variability over multiple orders of magnitude. This requires radial transport of electrons across their drift shells and implies violation of their third adiabatic invariant. Radial transport is induced by the interaction of the electron drift motion with electric and magnetic field fluctuations in the ULF frequency range. It was previously shown that solar-wind driven ULF waves have long azimuthal wave lengths and thus can violate the third invariant of trapped electrons in the process of resonant interaction with their gradient-curvature motion. However, the amplitude of solar-wind driven ULF waves rapidly decreases with decreasing L. It is therefore not clear what mechanisms are responsible for fast transport rates observed inside the geosynchronous orbit. In this paper we investigate wether stormtime Pc5 waves can contribute to this process. Stormtime Pc5s have short azimuthal wave lengths and therefore cannot exhibit resonance with the the electron drift motion. However we show that stormtime Pc5s can cause localized random scattering of electron drift motion that violates the third invariant. According to our results electron interaction with stormtime Pc5s can produce rapid radial transport even as low as L≃4. Numerical simulations show that electron transport can exhibit large deviations from radial diffusion. The diffusion approximation is not valid for individual storms but only applies to the statistically averaged response of the outer belt to stormtime Pc5 waves.
Directory of Open Access Journals (Sweden)
A. V. Artemyev
2013-04-01
Full Text Available The lifetimes of electrons trapped in Earth's radiation belts can be calculated from quasi-linear pitch-angle diffusion by whistler-mode waves, provided that their frequency spectrum is broad enough and/or their average amplitude is not too large. Extensive comparisons between improved analytical lifetime estimates and full numerical calculations have been performed in a broad parameter range representative of a large part of the magnetosphere from L ~ 2 to 6. The effects of observed very oblique whistler waves are taken into account in both numerical and analytical calculations. Analytical lifetimes (and pitch-angle diffusion coefficients are found to be in good agreement with full numerical calculations based on CRRES and Cluster hiss and lightning-generated wave measurements inside the plasmasphere and Cluster lower-band chorus waves measurements in the outer belt for electron energies ranging from 100 keV to 5 MeV. Comparisons with lifetimes recently obtained from electron flux measurements on SAMPEX, SCATHA, SAC-C and DEMETER also show reasonable agreement.
Intrinsic wave properties of Saturn Kilometric Radiation and evolution with propagation
Lamy, L.; Cecconi, B.; Zarka, P. M.; Cassini/Rpws, Mag; Caps Teams
2010-12-01
Investigating the crossing of the southern source region of Saturn Kilometric Radiation (SKR) by the Cassini spacecraft in late 2008, we review the intrinsic properties of SKR waves and their evolution with propagation through the kronian high-latitude plasma. In particular, we identify SKR magneto-ionic modes and estimate the electron/wave energy conversion efficiency thanks to in situ and remote observations. Then, we focus on the unusual locus of radio sources, illustrating an enhanced auroral activity. The beaming pattern is derived from different techniques for local and distant radio sources, and shows that kilometric waves are generally emitted at large angles with respect to the local magnetic field vector. Finally, we show that the SKR polarization is elliptical at the source, but becomes gradually circular along the ray path. The SKR polarization transfer is satisfactorily described in the frame of wave propagation in a cold plasma and conditions of weak mode coupling. SKR characteristics are analyzed comparatively to other equivalent auroral planetary radio emissions.
Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam
2010-11-01
Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.
Burko, L M; Beetle, C; Burko, Lior M.; Baumgarte, Thomas W.; Beetle, Christopher
2006-01-01
Beetle and Burko recently introduced a background--independent scalar curvature invariant for general relativity that carries information only about the gravitational radiation in generic spacetimes, in cases where such radiation is incontrovertibly defined. In this paper we adopt a formalism that only uses spatial data as they are used in numerical relativity and compute the Beetle--Burko radiation scalar for a number of analytical examples, specifically linearized Einstein--Rosen cylindrical waves, linearized quadrupole waves, the Kerr spacetime, Bowen--York initial data, and the Kasner spacetime. These examples illustrate how the Beetle--Burko radiation scalar can be used to examine the gravitational wave content of numerically generated spacetimes, and how it may provide a useful diagnostic for initial data sets.
On energy balance and the structure of radiated waves in kinetics of crystalline defects
Sharma, Basant Lal
2016-11-01
Traveling waves, with well-known closed form expressions, in the context of the defects kinetics in crystals are excavated further with respect to their inherent structure of oscillatory components. These are associated with, so called, Frenkel-Kontorova model with a piecewise quadratic substrate potential, corresponding to the symmetric as well as asymmetric energy wells of the substrate, displacive phase transitions in bistable chains, and brittle fracture in triangular lattice strips under mode III conditions. The paper demonstrates that the power expended theorem holds so that the sum of rate of working and the rate of total energy flux into a control strip moving steadily with the defect equals the rate of energy sinking into the defect, in the sense of N.F. Mott. In the conservative case of the Frenkel-Kontorova model with asymmetric energy wells, this leads to an alternative expression for the mobility in terms of the energy flux through radiated lattice waves. An application of the same to the case of martensitic phase boundary and a crack, propagating uniformly in bistable chains and triangular lattice strips, respectively, is also provided and the energy release is expressed in terms of the radiated energy flux directly. The equivalence between the well-known expressions and their alternative is established via an elementary identity, which is stated and proved in the paper as the zero lemma. An intimate connection between the three distinct types of defects is, thus, revealed in the framework of energy balance, via a structural similarity between the corresponding variants of the 'zero' lemma containing the information about radiated energy flux. An extension to the dissipative models, in the presence of linear viscous damping, is detailed and analog of the zero lemma is proved. The analysis is relevant to the dynamics of dislocations, brittle cracks, and martensitic phase boundaries, besides possible applications to analogous physical contexts which are
On highly focused supersonic microjets
Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef
2011-01-01
By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.
Institute of Scientific and Technical Information of China (English)
刘立; 孟卫华; 潘国庆
2011-01-01
在超音速飞行中,红外光学头罩由于空气摩擦而加热,产生红外辐射从而形成热背景,挤占探测器动态范围,降低探测信噪比,严重时会使探测器饱和,丧失探测能力.文中对此进行了分析,并建立了光学头罩热辐射及其影响分析模型,包括光学头罩辐射、辐射传输和探测器响应等部分,可分别计算光学头罩辐射亮度,光线追迹和探测器响应.最后,利用所建立的模型分析了探测器接收的热背景辐射与头罩温度的变化关系以及高速飞行过程中辐射随时间的变化趋势.研究结果可以用于评估高速飞行环境下头罩热辐射对系统性能的影响.%In supersonic flight, the infrared dome is heated by friction with the air, and it will create an infrared flux that can degrade signal-clutter ratio, even drive the detector into saturation. In this paper, an analytic model of the infrared radiation from heated dome was built based on ray tracing method. The model was organized into three modules, such as the radiation module, the optics module and the detector module, which were used for computing the radiation luminance of infrared dome, calculating the ray trace and getting the output of detector. Finally, an example was given to analyze the radiant power received by the detector, and the radiant power profiles were plotted as a function of dome temperature and flight time. The results can be used for assessing the performance degradation as a result of aerodynamic heating of the dome flying at high speed.
Radiation reaction dynamics in an electromagnetic wave and constant electric field
Atlee Jackson, E.
1984-05-01
The relativistic motion of a charged particle is studied when it is acted on simultaneously by a constant electric field and a plane electromagnetic wave, propagating in the direction of the electric field (x axis). The dynamics includes the radiation reaction (self-force) on the particle through a standard approximation of the Lorentz-Dirac equation. The interest is to determine the result of the competition between the average acceleration due to the electromagnetic wave (``radiation pressure'') and the acceleration due to the constant force of the static field. Each of these actions alone of course produce an unbounded particle energy asymptotically in time. However, it is proved first that, when the ``forces'' are in opposite directions, the particle can never accelerate (on the average) indefinitely in the x direction, regardless how weak the electric field (E0) is compared to the amplitude of the wave (A). It is then proved that all solutions converge to a region of zero area in a suitable velocity phase space and, if there exists a periodic solution [in the phase ξ=ω (t-x/c)] in a specified region of this phase space, then all solutions must converge to this solution asymptotically (ξ→+∞). In the case when (E0A2/ω2) has a specified bound (ω: wave frequency), an iterative method is developed which explicitly yields such a periodic solution, showing that the energy remains bounded. The direction of the average drift is determined in terms of (A,E0,ω). When the parameter (E0A2/ω2) is above this bound, a combination of numerical and analytic results are obtained which indicate that this periodic solution persists. These results indicate that all motions tend to states with bounded energy, regardless of the field strengths.
Paulish, A. G.; Kuznetsov, S. A.
2016-11-01
The results of experimental investigations of spectral and amplitude-frequency characteristics for a discrete wavelength-selective pyroelectric detector operating in the millimetric band are presented. The high spectral selectivity is attained due to integrating the detector with a resonant meta-absorber designed for a close-to-unity absorptivity at 140 GHz. It is demonstrated that the use of this meta-absorber provides an opportunity to construct small-sized and inexpensive multispectral polarization-sensitive systems for radiation detection in the range of millimeter and submillimeter waves.
Radiation from a D-dimensional collision of shock waves: numerical methods
Sampaio, Marco O P
2013-01-01
We present a pedagogical introduction to the problem of evolving a head on collision of two Aichelburg-Sexl gravitational shock waves in D-dimensions, using perturbative techniques. We follow a constructive approach with examples, going in some detail through: the set up of the exact initial conditions and their properties; perturbative methods in flat space-time with Green function solutions; and numerical strategies to evaluate the integral solutions. We also discuss, briefly, radiation extraction methods adapted to this problem, together with some of the results for this system.
Grimani, C.; Boatella, C.; Chmeissani, M.; Fabi, M.; Finetti, N.; Lobo, A.; Mateos, I.
2012-06-01
Cosmic rays and energetic solar particles constitute one of the most important sources of noise for future gravitational wave detectors in space. Radiation monitors were designed for the LISA Pathfinder (LISA-PF) mission. Similar devices were proposed to be placed on board LISA and ASTROD. These detectors are needed to monitor the flux of energetic particles penetrating mission spacecraft and inertial sensors. However, in addition to this primary use, radiation monitors on board space interferometers will carry out the first multipoint observation of solar energetic particles (SEPs) at small and large heliolongitude intervals and at very different distances from Earth with minor normalization errors. We illustrate the scientific goals that can be achieved in solar physics and space weather studies with these detectors. A comparison with present and future missions devoted to solar physics is presented.
Near-to-far field transformations for radiative and guided waves
Yang, Jianji; Lalanne, Philippe
2015-01-01
Light emitters or scatterers embedded in stratified media may couple energy to both free space and guided modes of the stratified structure. For a thorough analysis of such structures, it is important to evaluate the angular intensity distribution of both the free-space-propagative and guided waves. In this work, we propose an original method based on Lorentz-reciprocity theorem and on the computation of the near-field around the emitters or scatterers, to efficiently calculate the free-space and guided radiation diagrams with a high accuracy. We also provide an open-source code that may be used with virtually any Maxwells solver. The numerical tool may help to engineer various devices, such as light-emitting diodes or nanoantennas to achieve directional and efficient radiative spontaneous decays in free space and guided optics.
Blood-brain barrier disruption by continuous-wave radio frequency radiation.
Sirav, Bahriye; Seyhan, Nesrin
2009-01-01
The increasing use of cellular phones and the increasing number of associated base stations are becoming a widespread source of non ionizing electromagnetic radiation. Some biological effects are likely to occur even at low-level EM fields. This study was designed to investigate the effects of 900 and 1,800 MHz Continuous Wave Radio Frequency Radiation (CW RFR) on the permeability of Blood Brain Barrier (BBB) of rats. Results have shown that 20 min RFR exposure of 900 and 1,800 MHz induces an effect and increases the permeability of BBB of male rats. There was no change in female rats. The scientific evidence on RFR safety or harm remains inconclusive. More studies are needed to demonstrate the effects of RFR on the permeability of BBB and the mechanisms of that breakdown.
Radiation characteristics of input power from surface wave sustained plasma antenna
Naito, T.; Yamaura, S.; Fukuma, Y.; Sakai, O.
2016-09-01
This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.
Radiation characteristics of input power from surface wave sustained plasma antenna
Energy Technology Data Exchange (ETDEWEB)
Naito, T., E-mail: Naito.Teruki@bc.MitsubishiElectric.co.jp [Advanced Technology R& D Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Yamaura, S. [Information Technology R& D Center, Mitsubishi Electric Corporation, Kamakura, Kanagawa 247-8501 (Japan); Fukuma, Y. [Communication System Center, Mitsubishi Electric Corporation, Amagasaki, Hyogo 661-8661 (Japan); Sakai, O. [Department of Electronic System Engineering, The University of Shiga Prefecture, Hikone, Shiga 522-8533 (Japan)
2016-09-15
This paper reports radiation characteristics of input power from a surface wave sustained plasma antenna investigated theoretically and experimentally, especially focusing on the power consumption balance between the plasma generation and the radiation. The plasma antenna is a dielectric tube filled with argon and small amount of mercury, and the structure is a basic quarter wavelength monopole antenna at 2.45 GHz. Microwave power at 2.45 GHz is supplied to the plasma antenna. The input power is partially consumed to sustain the plasma, and the remaining part is radiated as a signal. The relationship between the antenna gain and the input power is obtained by an analytical derivation and numerical simulations. As a result, the antenna gain is kept at low values, and most of the input power is consumed to increase the plasma volume until the tube is filled with the plasma whose electron density is higher than the critical electron density required for sustaining the surface wave. On the other hand, the input power is consumed to increase the electron density after the tube is fully filled with the plasma, and the antenna gain increases with increasing the electron density. The dependence of the antenna gain on the electron density is the same as that of a plasma antenna sustained by a DC glow discharge. These results are confirmed by experimental results of the antenna gain and radiation patterns. The antenna gain of the plasma is a few dB smaller than that of the identical metal antenna. The antenna gain of the plasma antenna is sufficient for the wireless communication, although it is difficult to substitute the plasma antenna for metal antennas completely. The plasma antenna is suitable for applications having high affinity with the plasma characteristics such as low interference and dynamic controllability.
Possible standoff detection of ionizing radiation using high-power THz electromagnetic waves
Nusinovich, Gregory S.; Sprangle, Phillip; Romero-Talamas, Carlos A.; Rodgers, John; Pu, Ruifeng; Kashyn, Dmytro G.; Antonsen, Thomas M., Jr.; Granatstein, Victor L.
2012-06-01
Recently, a new method of remote detection of concealed radioactive materials was proposed. This method is based on focusing high-power short wavelength electromagnetic radiation in a small volume where the wave electric field exceeds the breakdown threshold. In the presence of free electrons caused by ionizing radiation, in this volume an avalanche discharge can then be initiated. When the wavelength is short enough, the probability of having even one free electron in this small volume in the absence of additional sources of ionization is low. Hence, a high breakdown rate will indicate that in the vicinity of this volume there are some materials causing ionization of air. To prove this concept a 0.67 THz gyrotron delivering 200-300 kW power in 10 microsecond pulses is under development. This method of standoff detection of concealed sources of ionizing radiation requires a wide range of studies, viz., evaluation of possible range, THz power and pulse duration, production of free electrons in air by gamma rays penetrating through container walls, statistical delay time in initiation of the breakdown in the case of low electron density, temporal evolution of plasma structure in the breakdown and scattering of THz radiation from small plasma objects. Most of these issues are discussed in the paper.
Park, KwangHo
2012-01-01
In this paper, the third of a series, we study the growth rate and luminosity of black holes (BHs) in motion with respect to their surrounding medium by running a large set of 2D axis-symmetric radiation-hydrodynamic simulations. Contrary to the case without radiation feedback, we find that the accretion rate increases with increasing BH velocity v reaching a maximum value at v = 2c_s ~ 50 km/s, where c_s is the sound speed inside the "cometary-shaped" HII region around the BH, before decreasing as v^{-3}. The increase of the accretion rate with v is produced by the formation of a D-type (density) ionization front (I-front) preceded by a standing bow-shock that reduces the downstream gas velocity to transonic values. Since the I-front is beyond the classical Bondi radius for the hot ionized gas, the accretion flow in the BH frame of reference is similar to the stationary case. Interestingly, there is a range of densities and velocities in which the dense shell downstream of the bow-shock is unstable; its cent...
Mixing in Supersonic Turbulence
Pan, Liubin
2010-01-01
In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...
Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique
Directory of Open Access Journals (Sweden)
H. Breuillard
2012-08-01
Full Text Available Discrete ELF/VLF (Extremely Low Frequency/Very Low Frequency chorus emissions are one of the most intense electromagnetic plasma waves observed in radiation belts and in the outer terrestrial magnetosphere. These waves play a crucial role in the dynamics of radiation belts, and are responsible for the loss and the acceleration of energetic electrons. The objective of our study is to reconstruct the realistic distribution of chorus wave-normals in radiation belts for all magnetic latitudes. To achieve this aim, the data from the electric and magnetic field measurements onboard Cluster satellite are used to determine the wave-vector distribution of the chorus signal around the equator region. Then the propagation of such a wave packet is modeled using three-dimensional ray tracing technique, which employs K. Rönnmark's WHAMP to solve hot plasma dispersion relation along the wave packet trajectory. The observed chorus wave distributions close to waves source are first fitted to form the initial conditions which then propagate numerically through the inner magnetosphere in the frame of the WKB approximation. Ray tracing technique allows one to reconstruct wave packet properties (electric and magnetic fields, width of the wave packet in k-space, etc. along the propagation path. The calculations show the spatial spreading of the signal energy due to propagation in the inhomogeneous and anisotropic magnetized plasma. Comparison of wave-normal distribution obtained from ray tracing technique with Cluster observations up to 40° latitude demonstrates the reliability of our approach and applied numerical schemes.
DEFF Research Database (Denmark)
Jensen, Mads Jakob Herring; Bruus, Henrik
2013-01-01
The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions of this ......The recent development in the field of microparticle acoutophoresis in microsystems has led to an increased need for more accurate theoretical predections for the acoustic radiation force on a single microparticle in an ultrasonic standing wave. Increasingly detailed analytical solutions...... of this specific problem can be found in the literature [Settnes ans Bruus, Phys. Rev. E 85, 016327 (2012), and references therein], but none have included the complete contribution from thermoviscous effects. Here, we solve this problem numerically by applying a finite-element method to solve directly the mass...... (continuity), momentum (Navier-Stokes), and energy conservation equations using perturbation theory to second order in the imposed time-harmonic ultrasound field. In a two-stage calculation, we first solve the first-order equations resolving the thermoviscous boundary layer surrounding the microparticle...
Research on the mechanics of underwater supersonic gas jets
Shi, Honghui; Wang, Boyi; Dai, Zhenqing
2010-03-01
An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.
Research on the mechanics of underwater supersonic gas jets
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.
Directory of Open Access Journals (Sweden)
Yu Liu
Full Text Available Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm, as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable.
Ceyhan Bilgici, Meltem; Sağlam, Dilek; Delibalta, Semra; Yücel, Serap; Tomak, Leman; Elmalı, Muzaffer
2017-04-19
Acoustic radiation force impulse imaging is a kind of shear wave elastography that can be used in children for differentiating thyroid pathologies. Possible changes in the healthy thyroid gland in children may create difficulties in the use of shear wave velocities (SWV) in thyroid pathologies. The aim of this study was to define the normal values of SWV for the healthy thyroid gland in children, elucidate the correlation of the SWV values with potential influencing factors, and evaluate intra-operator reproducibility of the SWV. Between January 2015 and December 2015, a total of 145 healthy children (81 girls, 64 boys; mean age, 10.5 ± 3.14 years; range 6-17 years) were enrolled in the study. The SWV and volume of the thyroid gland were determined. The mean shear wave velocity of the thyroid gland was 1.22 ± 0.20 m/s. There was no correlation between age and the mean SWV of the thyroid gland (Spearman Rho = 0.049, p = 0.556). There was also no correlation between the thyroid gland volume or BSA and the mean SWV. The only correlation detected was between BSA and total thyroid gland volume (p thyroid gland in children was determined. There was no correlation between the SWV of the thyroid gland and age, BSA, or thyroid gland volume.
Medvedev, Alexander S; Yiğit, Erdal; Feofilov, Artem G; Forget, François; Hartogh, Paul
2015-01-01
Observations show that the lower thermosphere of Mars ($\\sim$100--140 km) is up to 40 K colder than the current general circulation models (GCMs) can reproduce. Possible candidates for physical processes missing in the models are larger abundances of atomic oxygen facilitating stronger CO$_2$ radiative cooling, and thermal effects of gravity waves. Using two state-of-the-art Martian GCMs, the Laboratoire de M\\'et\\'eorologie Dynamique and Max Planck Institute models that self-consistently cover the atmosphere from the surface to the thermosphere, these physical mechanisms are investigated. Simulations demonstrate that the CO$_2$ radiative cooling with a sufficiently large atomic oxygen abundance, and the gravity wave-induced cooling can alone result in up to 40 K colder temperature in the lower thermosphere. Accounting for both mechanisms produce stronger cooling at high latitudes. However, radiative cooling effects peak above the mesopause, while gravity wave cooling rates continuously increase with height. A...
Kim, Dong-Hoon; Trippe, Sascha
2016-10-01
Understanding the interaction of primordial gravitational waves (GWs) with the Cosmic Microwave Background (CMB) plasma is important for observational cosmology. In this article, we provide an analysis of an apparently as-yet-overlooked effect. We consider a single free electric charge and suppose that it can be agitated by primordial GWs propagating through the CMB plasma, resulting in periodic, regular motion along particular directions. Light reflected by the charge will be partially polarized, and this will imprint a characteristic pattern on the CMB. We study this effect by considering a simple model in which anisotropic incident electromagnetic (EM) radiation is rescattered by a charge sitting in spacetime perturbed by GWs, and becomes polarized. As the charge is driven to move along particular directions, we calculate its dipole moment to determine the leading-order rescattered EM radiation. The Stokes parameters of the rescattered radiation exhibit a net linear polarization. We investigate how this polarization effect can be schematically represented out of the Stokes parameters. We work out the representations of gradient modes (E-modes) and curl modes (B-modes) to produce polarization maps. Although the polarization effect results from GWs, we find that its representations, the E- and B-modes, do not practically reflect the GW properties such as strain amplitude, frequency, and polarization states.
Radiation from a $D$-dimensional collision of gravitational shock waves
Coelho, Flávio S
2015-01-01
Classically, if two highly boosted particles collide head-on, a black hole is expected to form whose mass may be inferred from the gravitational radiation emitted during the collision. If this occurs at trans-Planckian energies, it should be well described by general relativity. Furthermore, if there exist hidden extra dimensions, the fundamental Planck mass may well be of the order of the TeV and thus achievable with current or future particle accelerators. By modeling the colliding particles as Aichelburg-Sexl shock waves on a flat, $D$-dimensional background, we devise a perturbative framework to compute the space-time metric in the future of the collision. Then, a generalisation of Bondi's formalism is employed to extract the gravitational radiation and compute the inelasticity of the collision: the percentage of the initial centre-of-mass energy that is radiated away. Using the axial symmetry of the problem, we show that this information is encoded in a single function of the transverse metric components...
Kriegsmann, Gregory A.; Taflove, Allen; Umashankar, Koradar R.
1987-01-01
A new formulation of electromagnetic wave scattering by convex, two-dimensional conducting bodies is reported. This formulation, called the on-surface radiation condition (OSRC) approach, is based upon an expansion of the radiation condition applied directly on the surface of a scatterer. It is now shown that application of a suitable radiation condition directly on the surface of a convex conducting scatterer can lead to substantial simplification of the frequency-domain integral equation for the scattered field, which is reduced to just a line integral. For the transverse magnetic case, the integrand is known explicitly. For the transverse electric case, the integrand can be easily constructed by solving an ordinary differential equation around the scatterer surface contour. Examples are provided which show that OSRC yields computed near and far fields which approach the exact results for canonical shapes such as the circular cylinder, square cylinder, and strip. Electrical sizes for the examples are ka = 5 and ka = 10. The new OSRC formulation of scattering may present a useful alternative to present integral equation and uniform high-frequency approaches for convex cylinders larger than ka = 1. Structures with edges or corners can also be analyzed, although more work is needed to incorporate the physics of singular currents at these discontinuities. Convex dielectric structures can also be treated using OSRC.
Research of low boom and low drag supersonic aircraft design
Institute of Scientific and Technical Information of China (English)
Feng Xiaoqiang; Li Zhanke; Song Bifeng
2014-01-01
Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.
Research of low boom and low drag supersonic aircraft design
Directory of Open Access Journals (Sweden)
Feng Xiaoqiang
2014-06-01
Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.
Energy Technology Data Exchange (ETDEWEB)
Park, KwangHo [McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Ricotti, Massimo, E-mail: kpark@astro.umd.edu, E-mail: ricotti@astro.umd.edu [Joint Space-Science Institute (JSI), College Park, MD 20742 (United States)
2013-04-20
In this third paper of a series, we study the growth and luminosity of black holes (BHs) in motion with respect to their surrounding medium. We run a large set of two-dimensional axis-symmetric simulations to explore a large parameter space of initial conditions and formulate an analytical model for the accretion. Contrary to the case without radiation feedback, the accretion rate increases with increasing BH velocity v{sub bh} reaching a maximum value at v{sub bh} = 2c{sub s,in} {approx} 50 km s{sup -1}, where c{sub s,in} is the sound speed inside the ''cometary-shaped'' H II region around the BH, before decreasing as v{sub bh}{sup -3} when the ionization front (I-front) becomes R-type (rarefied) and the accretion rate approaches the classical Bondi-Hoyle-Lyttleton solution. The increase of the accretion rate with v{sub bh} is produced by the formation of a D-type (dense) I-front preceded by a standing bow shock that reduces the downstream gas velocity to transonic values. There is a range of densities and velocities where the dense shell is unstable producing periodic accretion rate peaks which can significantly increase the detectability of intermediate-mass BHs. We find that the mean accretion rate for a moving BH is larger than that of a stationary BH of the same mass if the medium temperature is T{sub {infinity}} < 10{sup 4} K. This result could be important for the growth of seed BHs in the multi-phase medium of the first galaxies and for building an early X-ray background that may affect the formation of the first galaxies and the reionization process.
Cattell, Cynthia; Breneman, A.; Goetz, K.; Kellogg, P.; Kersten, K.; Wygant, J.; Wilson, L. B., III; Looper, Mark D.; Blake, J. Bernard; Roth, I.
2012-01-01
One of the critical problems for understanding the dynamics of Earth's radiation belts is determining the physical processes that energize and scatter relativistic electrons. We review measurements from the Wind/Waves and STEREO S/Waves waveform capture instruments of large amplitude whistler-mode waves. These observations have provided strong evidence that large amplitude (100s mV/m) whistler-mode waves are common during magnetically active periods. The large amplitude whistlers have characteristics that are different from typical chorus. They are usually nondispersive and obliquely propagating, with a large longitudinal electric field and significant parallel electric field. We will also review comparisons of STEREO and Wind wave observations with SAMPEX observations of electron microbursts. Simulations show that the waves can result in energization by many MeV and/or scattering by large angles during a single wave packet encounter due to coherent, nonlinear processes including trapping. The experimental observations combined with simulations suggest that quasilinear theoretical models of electron energization and scattering via small-amplitude waves, with timescales of hours to days, may be inadequate for understanding radiation belt dynamics.
Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator
Directory of Open Access Journals (Sweden)
Silong Zhang
2014-02-01
Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.
Numerical simulation of carbon dioxide removal from natural gas using supersonic nozzles
Sun, Wenjuan; Cao, Xuewen; Yang, Wen; Jin, Xuetang
2017-03-01
Supersonic separation is a technology potentially applicable to natural gas decarbonation process. Preliminary research on the performance of supersonic nozzle in the removal of carbon dioxide from natural gas is presented in this study. Computational Fluid Dynamics (CFD) technique is used to simulate the flow behavior inside the supersonic nozzle. The CFD model is validated successfully by comparing its results to the data borrowed from the literature. The results indicate that the liquefaction of carbon dioxide can be achieved in the properly designed nozzle. Shock wave occurs in the divergent section of the nozzle with the increase of the back pressure, destroying the liquefaction process. In the supersonic separator, the shock wave should be kept outside of the nozzle.
Effect of Nonequilibrium Homogenous COndensation on Flow Fields in a Supersonic Nozzle
Institute of Scientific and Technical Information of China (English)
ToshiakiSetoguchi; ShenYu; 等
1997-01-01
When condensation occurs in a supersonic flow field,the flow is affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in a supersonic circular nozzle,and,by inserting a wedge-type shock generator placed in the supersonic part of the nozzle,the experimental investigations were carried out to clarify the effect of condensation on the normal shock wave and the boundary layer.As a result,the position of the shock wave relative to the condensation zone was discussed,together with the effect of condensation on pressure fluctuations.Furthermore,a compressible viscous two-phase flow of moist air in a supersonic half nozzle was calculated to investigate the effect of condensation on boundary layer.
Soliton radiation beat analysis of optical pulses generated from two continuous-wave lasers
Energy Technology Data Exchange (ETDEWEB)
Zajnulina, M.; Giannone, D.; Haynes, R.; Roth, M. M. [innoFSPEC-VKS, Leibniz Institute for Astrophysics, An der Sternwarte 16, 14482 Potsdam (Germany); Böhm, M. [innoFSPEC-InFaSe, University of Potsdam, Am Mühlenberg 3, 14476 Golm (Germany); Blow, K. [Aston Institute of Photonic Technologies, Aston Triangle, Birmingham B4 7ET (United Kingdom); Rieznik, A. A. [Instituto Tecnologico de Buenos Aires and CONICET, Buenos Aires (Argentina)
2015-10-15
We propose a fibre-based approach for generation of optical frequency combs (OFCs) with the aim of calibration of astronomical spectrographs in the low and medium-resolution range. This approach includes two steps: in the first step, an appropriate state of optical pulses is generated and subsequently moulded in the second step delivering the desired OFC. More precisely, the first step is realised by injection of two continuous-wave (CW) lasers into a conventional single-mode fibre, whereas the second step generates a broad OFC by using the optical solitons generated in step one as initial condition. We investigate the conversion of a bichromatic input wave produced by two initial CW lasers into a train of optical solitons, which happens in the fibre used as step one. Especially, we are interested in the soliton content of the pulses created in this fibre. For that, we study different initial conditions (a single cosine-hump, an Akhmediev breather, and a deeply modulated bichromatic wave) by means of soliton radiation beat analysis and compare the results to draw conclusion about the soliton content of the state generated in the first step. In case of a deeply modulated bichromatic wave, we observed the formation of a collective soliton crystal for low input powers and the appearance of separated solitons for high input powers. An intermediate state showing the features of both, the soliton crystal and the separated solitons, turned out to be most suitable for the generation of OFC for the purpose of calibration of astronomical spectrographs.
Directory of Open Access Journals (Sweden)
K. Sauer
2010-06-01
Full Text Available Isotropic electron beams are considered to explain the excitation of whistler waves which have been observed by the STEREO satellite in the Earth's radiation belt. Aside from their large amplitudes (~240 mV/m, another main signature is the strongly inclined propagation direction relative to the ambient magnetic field. Electron temperature anisotropy with T_{e⊥}>T_{e||}, which preferentially generates parallel propagating whistler waves, can be excluded as a free energy source. The instability arises due to the interaction of the Doppler-shifted cyclotron mode ω=−Ω_{e}+kV_{b}cosθ with the whistler mode in the wave number range of kc/ω_{e}≤1 (θ is the propagation angle with respect to the background magnetic field direction, ω_{e} is the electron plasma frequency and Ω_{e} the electron cyclotron frequency. Fluid and kinetic dispersion analysis have been used to calculate the growth rate of the beam-excited whistlers including the most important parameter dependencies. One is the beam velocity (V_{b} which, for instability, has to be larger than about 2V_{Ae}, where V_{Ae} is the electron Alfvén speed. With increasing V_{Ae} the propagation angle (θ of the fastest growing whistler waves shifts from θ~20° for V_{b}=2V_{Ae} to θ~80° for V_{b}=5V_{Ae}. The growth rate is reduced by finite electron temperatures and disappears if the electron plasma beta (β_{e} exceeds β_{e}~0.2. In addition, Gendrin modes (kc/ω_{e}≈1 are analyzed to determine the conditions under which stationary nonlinear waves (whistler oscillitons can exist. The corresponding spatial wave profiles are calculated using the full nonlinear fluid approach. The results are compared with the STEREO satellite observations.
Ni, D. C.; Plant, D. V.; Fetterman, H. R.; Matloubian, M.
1991-03-01
Millimeter-wave radiation has been generated from FETs and high electron mobility transistors (HEMTs), integrated with printed circuit antennas and illuminated with picosecond optical pulses. Modulation of the millimeter waves was achieved by applying a swept RF signal to the transistor gate. Using this technique, tunable electrical sidebands were added to the optically generated carrier providing a method of transmitting information. The technique also provides increased resolution for use in spectroscopic applications. Heterodyne detection demonstrated that the system continuously generated tunable radiation, constrained by the high-gain antenna, from 45 to 75 GHz.
Tornquist, Mattias
The research presented in this thesis covers wave-particle interactions for relativistic (0.5-10 MeV) electrons in Earth's outer radiation belt (r = 3-7 RE, or L-shells: L = 3-7) interacting with magnetospheric Pc-5 (ULF) waves. This dissertation focuses on ideal models for short and long term electron energy and radial position scattering caused by interactions with ULF waves. We use test particle simulations to investigate these wave-particle interactions with ideal wave and magnetic dipole fields. We demonstrate that the wave-particle phase can cause various patterns in phase space trajectories, i.e. local acceleration, and that for a global electron population, for all initial conditions accounted for, has a negligible net energy scattering. Working with GSM polar coordinates, the relevant wave field components are EL, Ephi and Bz, where we find that the maximum energy scattering is 3-10 times more effective for Ephi compared to EL in a magnetic dipole field with a realistic dayside compression amplitude. We also evaluate electron interactions with two coexisting waves for a set of small frequency separations and phases, where it is confirmed that multi-resonant transport is possible for overlapping resonances in phase space when the Chirikov criterion is met (stochasticity parameter K = 1). The electron energy scattering enhances with decreasing frequency separation, i.e. increasing K, and is also dependent on the phases of the waves. The global acceleration is non-zero, can be onset in about 1 hour and last for > 4 hours. The adiabatic wave-particle interaction discussed up to this point can be regarded as short-term scattering ( tau ˜ hours ). When the physical problem extends to longer time scales (tau ˜ days ) the process ceases to be adiabatic due to the introduction of stochastic element in the system and becomes a diffusive process. We show that any mode in a broadband spectrum can contribute to the total diffusion rate for a particular drift
Supersonic induction plasma jet modeling
Energy Technology Data Exchange (ETDEWEB)
Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I
2001-06-01
Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.
Monitoring millimeter wave stray radiation during ECRH operation at ASDEX Upgrade
Directory of Open Access Journals (Sweden)
Wagner D.
2012-09-01
Full Text Available Due to imperfection of the single path absorption, ECRH at ASDEX Upgrade (AUG is always accompanied by stray radiation in the vacuum vessel. New ECRH scenarios with O2 and X3 heating schemes extend the operational space, but they have also the potential to increase the level of stray radiation. There are hazards for invessel components. Damage on electric cables has already been encountered. It is therefore necessary to monitor and control the ECRH with respect to the stray radiation level. At AUG a system of Sniffer antennas equipped with microwave detection diodes is installed. The system is part of the ECRH interlock circuit. We notice, however, that during plasma operation the variations of the Sniffer antenna signal are very large. In laboratory measurements we see variations of up to 20 dB in the directional sensitivity and we conclude that an interference pattern is formed inside the copper sphere of the antenna. When ECRH is in plasma operation at AUG, the plasma is acting as a phase and mode mixer for the millimeter waves and thus the interference pattern inside the sphere changes with the characteristic time of the plasma dynamics. In order to overcome the difficulty of a calibrated measurement of the average stray radiation level, we installed bolometer and pyroelectric detectors, which intrinsically average over interference structures due to their large active area. The bolometer provides a robust calibration but with moderate temporal resolution. The pyroelectric detector provides high sensitivity and a good temporal resolution, but it raises issues of possible signal drifts in long pulses.
Heat transfer with thermal radiation on MHD particle-fluid suspension induced by metachronal wave
Bhatti, M. M.; Zeeshan, A.; Ellahi, R.
2017-09-01
In this article, effects of heat transfer on particle-fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm's law and Roseland's approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.
Observation of intense terahertz-wave coherent synchrotron radiation at LEBRA
Sei, Norihiro; Ogawa, Hiroshi; Hayakawa, Ken; Tanaka, Toshinari; Hayakawa, Yasushi; Nakao, Keisuke; Sakai, Takeshi; Nogami, Kyoko; Inagaki, Manabu
2013-01-01
We observed intense coherent synchrotron radiation (CSR) in the terahertz region using an S-band linac at the Laboratory for Electron Beam Research and Application at Nihon University. The evolution of the CSR power was measured, and the CSR reflected in the vacuum chamber of the bending magnet could be extracted through the quartz window for a few tens of picoseconds. The long wave packet of the delayed CSR in the autocorrelation suggests that the delayed CSR was the non-resonant ring-down of the vacuum chamber of the bending magnet. To design a high-energy accelerator, it is necessary to decrease high-energy photons resulting from Compton backscattering with intense CSR.
Heat transfer with thermal radiation on MHD particle–fluid suspension induced by metachronal wave
Indian Academy of Sciences (India)
M M BHATTI; A ZEESHAN; R ELLAHI
2017-09-01
In this article, effects of heat transfer on particle–fluid suspension induced by metachronal wave have been examined. The influence of magnetohydrodynamics (MHD) and thermal radiation are also taken into account with the help of Ohm’s law and Roseland’s approximation. The governing flow problem for Casson fluid model is based on continuity, momentum and thermal energy equation for fluid phase and particle phase. Taking the approximation of long wavelength and zero Reynolds number, the governing equations are simplified. Exact solutions are obtained for the coupled partial differential equations. The impact of all the embedding parameters is discussed with the help of graphs. In particular, velocity profile, pressure rise, temperature profile and trapping phenomena are discussed for all the emerging parameters. It is observed that while fluid parameter enhances the velocity profile, Hartmann number and particle volume fraction oppose the flow.
State-Space Realization of the Wave-Radiation Force within FAST: Preprint
Energy Technology Data Exchange (ETDEWEB)
Duarte, T.; Sarmento, A.; Alves, M.; Jonkman, J.
2013-06-01
Several methods have been proposed in the literature to find a state-space model for the wave-radiation forces. In this paper, four methods were compared, two in the frequency domain and two in the time domain. The frequency-response function and the impulse response of the resulting state-space models were compared against the ones derived by the numerical code WAMIT. The implementation of the state-space module within the FAST offshore wind turbine computer-aided engineering (CAE) tool was verified, comparing the results against the previously implemented numerical convolution method. The results agreed between the two methods, with a significant reduction in required computational time when using the state-space module.
Cavity mode waves during terahertz radiation from rectangular Bi(2)Sr(2)CaCu(2)O(8 + δ) mesas.
Klemm, Richard A; Laberge, Erica R; Morley, Dustin R; Kashiwagi, Takanari; Tsujimoto, Manabu; Kadowaki, Kazuo
2011-01-19
We re-examined the angular dependence of the radiation from the intrinsic Josephson junctions in rectangular mesas of Bi(2)Sr(2)CaCu(2)O(8 + δ), in order to determine if the cavity mode part of the radiation arises from waves across the width w or along the length l of the mesas, associated with 'hot spots' (Wang et al 2010 Phys. Rev. Lett. 105 057002). We derived analytical forms for the angular dependence expected in both cases for a general cavity mode in which the width of the mesa corresponds to an integer multiple of one-half the wavelength of the radiation. Assuming the coherent radiation from the ac Josephson current source and the cavity magnetic surface current density source combine incoherently, fits to the data of Kadowaki et al (2010 J. Phys. Soc. Japan 79 023703) on a mesa with mean l/ω = 5.17 for both wave directions using two models for the incoherent combination were made, which correspond to standing and traveling waves, respectively. The results suggest that the combined output from the uniform ac Josephson current source plus a cavity wave forming along the rectangle length is equally probable as that of the combined output from the uniform ac Josephson current plus a cavity wave across the width. However, for mesas in which nl/2ω is integral, where n is the index of the rectangular TM(z)(n, 0) mode, it is shown that standing cavity mode waves along the length of the mesa do not radiate in the xz plane perpendicular to the length of the mesa, suggesting experiments on such mesas could help to resolve the question.
Cavity mode waves during terahertz radiation from rectangular Bi2Sr2CaCu2O8 + δ mesas
Klemm, Richard A.; LaBerge, Erica R.; Morley, Dustin R.; Kashiwagi, Takanari; Tsujimoto, Manabu; Kadowaki, Kazuo
2011-01-01
We re-examined the angular dependence of the radiation from the intrinsic Josephson junctions in rectangular mesas of Bi2Sr2CaCu2O8 + δ, in order to determine if the cavity mode part of the radiation arises from waves across the width w or along the length \\ell of the mesas, associated with 'hot spots' (Wang et al 2010 Phys. Rev. Lett. 105 057002). We derived analytical forms for the angular dependence expected in both cases for a general cavity mode in which the width of the mesa corresponds to an integer multiple of one-half the wavelength of the radiation. Assuming the coherent radiation from the ac Josephson current source and the cavity magnetic surface current density source combine incoherently, fits to the data of Kadowaki et al (2010 J. Phys. Soc. Japan 79 023703) on a mesa with mean \\ell /w=5.17 for both wave directions using two models for the incoherent combination were made, which correspond to standing and traveling waves, respectively. The results suggest that the combined output from the uniform ac Josephson current source plus a cavity wave forming along the rectangle length is equally probable as that of the combined output from the uniform ac Josephson current plus a cavity wave across the width. However, for mesas in which n\\ell /2w is integral, where n is the index of the rectangular TMzn, 0 mode, it is shown that standing cavity mode waves along the length of the mesa do not radiate in the xz plane perpendicular to the length of the mesa, suggesting experiments on such mesas could help to resolve the question.
Shklyar, D. R.
2017-01-01
We study the problem of energy exchange between waves and particles, which leads to energization of the latter, in an unstable plasma typical of the radiation belts. The ongoing Van Allen Probes space mission brought this problem among the most discussed in space physics. A free energy which is present in an unstable plasma provides the indispensable condition for energy transfer from lower energy particles to higher-energy particles via resonant wave-particle interaction. This process is studied in detail by the example of electron interactions with whistler mode wave packets originated from lightning-induced emission. We emphasize that in an unstable plasma, the energy source for electron energization is the energy of other particles, rather than the wave energy as is often assumed. The way by which the energy is transferred from lower energy to higher-energy particles includes two processes that operate concurrently, in the same space-time domain, or sequentially, in different space-time domains, in which a given wave packet is located. In the first process, one group of resonant particles gives the energy to the wave. The second process consists in wave absorption by another group of resonant particles, whose energy therefore increases. We argue that this mechanism represents an efficient means of electron energization in the radiation belts.
Directory of Open Access Journals (Sweden)
Mahinder Singh
2016-10-01
Full Text Available The generation mechanism of the electromagnetic radiation in case of inhomogeneous plasma on the basis of plasma-maser interaction in presence of drift wave turbulence is studied. The drift wave turbulence is taken as the low-frequency mode field and is found to be strongly in phase relation with thermal particles and may transfer its wave energy nonlinearly through a modulated field of high-frequency extraordinary mode (X-mode wave. It has been found that amplification of X-mode wave is possible at the expense of drift wave turbulent energy. This type of high-frequency instability can leads to auroral kilometric radiation (AKR. The growth rate of the X-mode wave, in the form of AKR, has been calculated with the involvement of spatial density gradient parameter. This result may be particularly important for stability of various drift modes in magnetically confined plasma as well as for transport of momentum and energy in such inhomogeneous plasma
Gravitational-wave radiation from double compact objects with eLISA in the Galaxy
Liu, Jinzhong
2014-01-01
The phase of in-spiral of double compact objects (DCOs: NS+WD, NS+NS, BH+NS, and BH+BH binaries) in the disk field population of the Galaxy provides a potential source in the frequency range from $10^{-4}$ to 0.1 Hz, which can be detected by the European New Gravitational Observatory (NGO: eLISA is derived from the previous LISA proposal) project. In this frequency range, much stronger gravitational wave (GW) radiation can be obtained from DCO sources because they possess more mass than other compact binaries (e.g., close double white dwarfs). In this study, we aim to calculate the gravitational wave signals from the resolvable DCO sources in the Galaxy using a binary population synthesis approach, and to carry out physical properties of these binaries using Monte Carlo simulations. Combining the sensitivity curve of the eLISA detector and a confusion-limited noise floor of close double white dwarfs, we find that only a handful of DCO sources can be detected by the eLISA detector. The detectable number of DCO...
Fu, Tao; Yang, Zi-Qiang; Ouyang, Zheng-Biao
2016-11-01
This paper presents a kind of Cherenkov radiation source based on metallic photonic crystal (MPC) slow-wave structure (SWS) cavity. The Cherenkov source designed by linear theory works at 34.7 GHz when the cathode voltage is 550 kV. The three-dimensional particle-in-cell (PIC) simulation of the SWS shows the operating frequency of 35.56 GHz with a single TM01 mode is basically consistent with the theoretically one under the same parameters. An experiment was implemented to testify the results of theory and PIC simulation. The experimental system includes a cathode emitting unit, the SWS, a magnetic system, an output antenna, and detectors. Experimental results show that the operating frequency through detecting the retarded time of wave propagation in waveguides is around 35.5 GHz with a single TM01 mode and an output power reaching 54 MW. It indicates that the MPC structure can reduce mode competition. The purpose of the paper is to show in theory and in preliminary experiment that a SWS with PBG can produce microwaves in TM01 mode. But it still provides a good experimental and theoretical foundation for designing high-power microwave devices.
CRRES (Combined Release and Radiation Effects Satellite) SPACERAD plasma wave experiment
Anderson, Roger R.; Gurnett, Donald A.
1988-10-01
This document discusses the Main Electronics Package, two Electric Field Preamps and Search Coil Magnetometer for the AFGL 701 SPACERAD instrumentation on the CRRES (Combined Release and Radiation Effects Satellite) project. This document discusses the scientific objectives and the importance of the Plasma Wave Experiment in the CRRES SPACERAD mission and describes the instrument design rational and the instrument development philosophy. This document also discusses the testing and operations of the experiment and contains a schematic drawing of the instrumentation electronics and lists of the schematics, drawings, and wiring diagrams that describe the as-built configuration of the Plasma Wave Experiment instrumentation. Problems encountered during the construction and testing of the instrument and their resolutions are discussed. Test results from already completed environmental and EMC/RFI tests have already been submitted to AFGL and to the Air Force Headquarters Space Division Space Test Program. The recertification of the calibration of the instrument is recommended in the near future under a new contract covering the re-delivery (necessitated due to the removal during the launch-delay storage period), pre-launch, and launch operations.
Matula, Thomas John
Electromagnetic acoustic wave transducers (EMATs) are described for generating low-frequency tone bursts on metalized membranes in air and elastic plates in water. Bursts on the membrane have phase velocities much less than the speed of sound in the surrounding air and are accompanied by plane evanescent waves. The frequency and time-domain responses of the EMAT and the dependence on gap spacing between the coupling coil and the membrane were studied. Wave -number selective optical and capacitive probes were used to measure the wave properties. Versions of these transducers are insensitive to long wavelength motion of the membrane. Diffraction of the burst by a sharp edge in air was observed as a function of the gap between the membrane and a razor edge. The scattered pressure decreases exponentially with increasing gap as expected from an approximate analysis of edge diffraction of evanescent waves. In related work an EMAT is used to generate 28 kHz tone bursts of bending waves on an aluminum plate. The bursts propagate down into water where the surrounding wavefield is probed. Observations described indicate that there occurs a branching of energy as the wave crosses the air-water interface. Radiation from subsonic flexural plate waves due to the discontinuity in fluid -loading is observed. It is partially analogous to the transition radiation of fast charged particles crossing a dielectric interface. The angular radiation pattern resembles that of a line quadrupole. Near the interface there exists an interference between the two energy branches in water that produces a series of pressure nulls. The pressure nulls are associated with a pi phase change in the wavefield and are indicators of wavefront dislocations. A computation of the wavefield in an unbounded fluid due to a line-moment excitation of a plate is comparable with the null pattern observed but differs in certain details.
Baryon scattering at high energies: wave function, impact factor, and gluon radiation
Bartels, J
2007-01-01
The scattering of a baryon consisting of three massive quarks is investigated in the high energy limit of perturbative QCD. A model of a relativistic proton-like wave function, dependent on valence quark longitudinal and transverse momenta and on quark helicities, is proposed, and we derive the baryon impact factors for two, three and four t-channel gluons. We find that the baryonic impact factor can be written as a sum of three pieces: in the first one a subsystem consisting of two of the three quarks behaves very much like the quark-antiquark pair in gamma* scattering, whereas the third quark acts as a spectator. The second term belongs to the odderon, whereas in the third (C-even) piece all three quarks participate in the scattering. This term is new and has no analogue in gamma* scattering. We also study the small x evolution of gluon radiation for each of these three terms. The first term follows the same pattern of gluon radiation as the gamma*-initiated quark-antiquark dipole, and, in particular, it co...
VANSMAALEN, S; DEBOER, JL; COPPENS, P
1993-01-01
Synchrotron radiation X-ray diffraction has been performed on niobium triselenide at 20K. The modulation parameters belonging to both Charge-Density-Waves (CDW's) have been determined. The high-temperature CDW is found to comprise of displacements on all atoms of column III, as well as on Se atoms o
Tesseract supersonic business transport
Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary
1992-01-01
This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.
Tesseract: Supersonic business transport
Reshotko, Eli; Garbinski, Gary
1992-01-01
This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.
Sakakibara, Yusuke; Kimura, Nobuhiro; Suzuki, Toshikazu; Yamamoto, Kazuhiro; Tokoku, Chihiro; Uchiyama, Takashi; Kuroda, Kazuaki
2015-07-01
In cryogenic gravitational-wave detectors, one of the most important issues is the fast cooling of their mirrors and keeping them cool during operation to reduce thermal noise. For this purpose, the correct estimation of thermal-radiation heat transfer through the pipe-shaped radiation shield is vital to reduce the heat load on the mirrors. However, the amount of radiation heat transfer strongly depends on whether the surfaces reflect radiation rays diffusely or specularly. Here, we propose an original experiment to distinguish between diffusive and specular surfaces. This experiment has clearly shown that the examined diamond-like carbon-coated surface is specular. This result emphasizes the importance of suppressing the specular reflection of radiation in the pipe-shaped shield.
Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes
1959-12-01
Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston
... radiation. There are two basic types of radiation: ionizing and nonionizing. Nonionizing radiation comes in the form of light, radio waves, microwaves and radar. This kind of radiation usually ...
Guclu, Caner; Boyraz, Ozdal; Capolino, Filippo
2013-01-01
We provide for the first time the detailed study of the radiation performance of an optical leaky wave antenna (OLWA) integrated into a Fabry-P\\'erot resonator. We show that the radiation pattern can be expressed as the one generated by the interference of two leaky waves counter-propagating in the resonator leading to a design procedure for achieving optimized broadside radiation, i.e., normal to the waveguide axis. We thus report a realizable implementation of the OLWA made of semiconductor and dielectric regions. The theoretical modeling is supported by full-wave simulation results, which are found to be in good agreement. We aim to control the radiation intensity in the broadside direction via excess carrier generation in the semiconductor regions. We show that the presence of the resonator can provide an effective way of enhancing the radiation level modulation, which reaches values as high as 13.5 dB, paving the way for novel promising control capabilities that might allow the generation of very fast op...
Goossens, Marcel; Hollweg, Joseph V.
1993-01-01
Resonant absorption of MHD waves on a nonuniform flux tube is investigated as a driven problem for a 1D cylindrical equilibrium. The variation of the fractional absorption is studied as a function of the frequency and its relation to the eigenvalue problem of the MHD radiating eigenmodes of the nonuniform flux tube is established. The optimal frequencies producing maximal fractional absorption are determined and the condition for total absorption is obtained. This condition defines an impedance matching and is fulfilled for an equilibrium that is fine tuned with respect to the incoming wave. The variation of the spatial wave solutions with respect to the frequency is explained as due to the variation of the real and imaginary parts of the dispersion relation of the MHD radiating eigenmodes with respect to the real driving frequency.
Energy Technology Data Exchange (ETDEWEB)
Kudrin, Alexander V.; Shkokova, Natalya M. [Department of Radiophysics, University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation); Ferencz, Orsolya E. [MTA Research Centre for Astronomy and Earth Sciences, Csatkai E. u. 6–8, Sopron H-9400 (Hungary); Zaboronkova, Tatyana M. [Department of Radiophysics, University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950 (Russian Federation); Department of Nuclear Physics, R. E. Alekseev State Technical University of Nizhny Novgorod, 24 Minin St., Nizhny Novgorod 603950 (Russian Federation)
2014-11-15
Pulsed radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is studied. The radiated energy and its distribution over the spatial and frequency spectra of the excited waves are derived and analyzed as functions of the antenna and duct parameters. Numerical results referring to the case where the frequency spectrum of the antenna current is concentrated in the whistler range are reported. It is shown that under ionospheric conditions, the presence of an artificial duct with enhanced density can lead to a significant increase in the energy radiated from a pulsed loop antenna compared with the case where the same source is immersed in the surrounding uniform magnetoplasma. The results obtained can be useful in planning active ionospheric experiments with pulsed electromagnetic sources operated in the presence of artificial field-aligned plasma density irregularities that are capable of guiding whistler waves.
Sahu, P. K.
2017-08-01
The propagation of a cylindrical shock wave in a rotational axisymmetric non-ideal dusty gas under the action of monochromatic radiation with increasing energy, which has variable azimuthal and axial components of fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. Similarity solutions are obtained as well as the effects of the variation of the radiation parameters, the parameter of non-idealness of the gas, the mass concentration of solid particles in the mixture, the ratio of the density of solid particles to the initial density of the gas, and the piston velocity index are worked out in detail. The total energy of the shock wave is varying and increases with time. It is observed that the radiation parameter and the piston velocity index have opposite behaviour on the flow variables as well as the shock strength.
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn
2010-01-01
A method of estimating the sound field radiated by a source under non-anechoic conditions has been examined. The method uses near field acoustic holography based on a combination of pressure and particle velocity measurements in a plane near the source for separating outgoing and ingoing wave...... components. The outgoing part of the sound field is composed of both radiated and scattered waves. The method compensates for the scattered components of the outgoing field on the basis of the boundary condition of the problem, exploiting the fact that the sound field is reconstructed very close...... to the source. Thus the radiated free-field component is estimated simultaneously with solving the inverse problem of reconstructing the sound field near the source. The method is particularly suited to cases in which the overall contribution of reflected sound in the measurement plane is significant....
Yang, Chang; Su, Zhenpeng; Xiao, Fuliang; Zheng, Huinan; Wang, Yuming; Wang, Shui; Spence, H. E.; Reeves, G. D.; Baker, D. N.; Blake, J. B.; Funsten, H. O.
2017-05-01
Energetic (hundreds of keV) electrons in the radiation belt slot region have been found to exhibit the butterfly pitch angle distributions. Resonant interactions with magnetosonic and whistler-mode waves are two potential mechanisms for the formation of these peculiar distributions. Here we perform a statistical study of energetic electron pitch angle distribution characteristics measured by Van Allen Probes in the slot region during a 3 year period from May 2013 to May 2016. Our results show that electron butterfly distributions are closely related to magnetosonic waves rather than to whistler-mode waves. Both electron butterfly distributions and magnetosonic waves occur more frequently at the geomagnetically active times than at the quiet times. In a statistical sense, more distinct butterfly distributions usually correspond to magnetosonic waves with larger amplitudes and vice versa. The averaged magnetosonic wave amplitude is less than 5 pT in the case of normal and flat-top distributions with a butterfly index BI =1 but reaches ˜50-95 pT in the case of distinct butterfly distributions with BI >1.3. For magnetosonic waves with amplitudes >50 pT, the occurrence rate of butterfly distribution is above 80%. Our study suggests that energetic electron butterfly distributions in the slot region are primarily caused by magnetosonic waves.
Properties of Supersonic Evershed Downflows
Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.
2016-12-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.
Unsteady flow in a supersonic cascade with strong in-passage shocks
Goldstein, M. E.; Braun, W.; Adamczyk, J. J.
1977-01-01
Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.
Institute of Scientific and Technical Information of China (English)
Yoshiaki Miyazato; Yong-Hun Kweon; Toshiyuki Aoki; Mitsuharu Masuda; Kwon-Hee Lee; Heuy-Dong Kim; Toshiaki Setoguchi; Kazuyasu Matsuo
2003-01-01
The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were conducted in a carefully designed anechoic room providing a free-field environment. A new approach for screech noise suppression by a cross-wire is proposed. Schlieren photographs were taken to visualize the shock wave patterns in the supersonic jet with and without the cross-wire. The effects of the baffle and the cross-wire on acoustic properties are discussed. It is shown that the baffle has little effect on the screech frequency for the underexpanded supersonic jet without the cross-wire. Also, the cross-wire introduced in supersonic jets is found to lead to a significant reduction in overall sound pressure level.
Georgiou, Marina; Daglis, Ioannis; Zesta, Eftyhia; Sibeck, David; Fok, Mei-ching; Balasis, Georgios; Mann, Ian; Tsinganos, Kanaris
2017-04-01
Periodic oscillations in the Earth's magnetic field with frequencies in the range of a few mHz (ULF waves) can influence radiation belt dynamics due to their potential for strong interactions with charged particles and in particular, relativistic electrons. We have explored possible relationships between the spatial and temporal profile of ULF wave power with relativistic electron fluxes as well as different solar wind parameters. We used data from multiple ground magnetometer arrays contributing to the worldwide SuperMAG collaboration to calculate the ULF wave power in the Pc5 frequency band (2 - 7 mHz) from for a total of 40 moderate and intense magnetic storms over the last solar cycle 23. During the main phase of both sets of storms, there is a marked penetration of Pc5 wave power to L-shells as low as 2-3. The penetration of ULF waves is deeper into the inner magnetosphere during intense magnetic storms characterised by enhanced post-storm electron fluxes. Furthermore, later in the recovery phase, enhanced Pc5 wave activity was found to persist longer for storms marked by electron-enhanced storms flux enhancement than for those that do not produce such electron flux enhancements. Growth and decay characteristics of Pc5 waves were explored in association with the plasmapause location, determined from IMAGE EUV observations. Pc5 wave power enhancements and relativistic electron acceleration were not only intimately linked, but also restricted beyond the plasmapause. These observations provided the basis for a superposed epoch analysis, the results of which are compared to predictions from the Comprehensive Inner Magnetosphere-Ionosphere (CIMI) model. These simulations are critical for understanding the extent to which ULF wave electric fields are responsible for the observed electron acceleration and for examining the nature of mechanisms responsible for driving such large-amplitude ULF waves in the magnetosphere. This work has been supported by the NOA
Energy Technology Data Exchange (ETDEWEB)
Bae, Jin Ho; Joo, Young Sang; Ham, Ji Woong; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)
2012-05-15
In-vessel structures of a sodium-cooled fast reactor (SFR) are submerged in opaque liquid sodium in the reactor vessel. The ultrasonic inspection techniques should be applied for observing the in-vessel structures under hot liquid sodium. Ultrasonic sensors such as immersion sensors and rod-type waveguide sensors have developed in order to apply under-sodium viewing of the in-vessel structures of SFR. Recently the novel plate-type ultrasonic waveguide sensor has been developed for the versatile application of under-sodium viewing in SFR. In previous studies, to improve the performance of the ultrasonic waveguide sensor module in the under-sodium application, the dispersion effect due to the 10 m long distance propagation of the A0-mode Lamb wave should be minimized and the longitudinal leaky wave in liquid sodium should be generated within the range of the effective radiation angle. A new concept of ultrasonic waveguide sensors with a layered-structured plate is suggested for the non-dispersive propagation of A0-mode Lamb wave in an ultrasonic waveguide sensor and the effective generation of a leaky wave in liquid sodium. In this work, the propagation and radiation of the leaky Lamb wave in the waveguide sensor coated with Beryllium has been performed by FEM simulations
Wang, Geng; Su, Zhenpeng; Zheng, Huinan; Wang, Yuming; Zhang, Min; Wang, Shui
2017-02-01
Cyclotron resonant scattering by electromagnetic ion cyclotron (EMIC) waves has been considered to be responsible for the rapid loss of radiation belt high-energy electrons. For parallel-propagating EMIC waves, the nonlinear character of cyclotron resonance has been revealed in recent studies. Here we present the first study on the nonlinear fundamental and harmonic cyclotron resonant scattering of radiation belt ultrarelativistic electrons by oblique EMIC waves on the basis of test particle simulations. Higher wave obliquity produces stronger nonlinearity of harmonic resonances but weaker nonlinearity of fundamental resonance. Compared to the quasi-linear prediction, these nonlinear resonances yield a more rapid loss of electrons over a wider pitch angle range. In the quasi-linear regime, the ultrarelativistic electrons are lost in the equatorial pitch angle range αeq87.5° at ψ = 20° and 40°. At the resonant pitch angles αeq<75°, the difference between quasi-linear and nonlinear loss timescales tends to decrease with the wave normal angle increasing. At ψ = 0° and 20°, the nonlinear electron loss timescale is 10% shorter than the quasi-linear prediction; at ψ = 40°, the difference in loss timescales is reduced to <5%.
Zhu, Jiang; Qu, Yueqiao; Ma, Teng; Li, Rui; Du, Yongzhao; Huang, Shenghai; Shung, K Kirk; Zhou, Qifa; Chen, Zhongping
2015-05-01
We report on a novel acoustic radiation force orthogonal excitation optical coherence elastography (ARFOE-OCE) technique for imaging shear wave and quantifying shear modulus under orthogonal acoustic radiation force (ARF) excitation using the optical coherence tomography (OCT) Doppler variance method. The ARF perpendicular to the OCT beam is produced by a remote ultrasonic transducer. A shear wave induced by ARF excitation propagates parallel to the OCT beam. The OCT Doppler variance method, which is sensitive to the transverse vibration, is used to measure the ARF-induced vibration. For analysis of the shear modulus, the Doppler variance method is utilized to visualize shear wave propagation instead of Doppler OCT method, and the propagation velocity of the shear wave is measured at different depths of one location with the M scan. In order to quantify shear modulus beyond the OCT imaging depth, we move ARF to a deeper layer at a known step and measure the time delay of the shear wave propagating to the same OCT imaging depth. We also quantitatively map the shear modulus of a cross-section in a tissue-equivalent phantom after employing the B scan.
Directory of Open Access Journals (Sweden)
L. Gulstad
2007-05-01
Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but
Modeling short wave solar radiation using the JGrass-NewAge System
Directory of Open Access Journals (Sweden)
G. Formetta
2012-12-01
Full Text Available This paper presents two new modelling components based on the Object Modelling System v3 for the calculation of the shortwave incident radiation (R^_{sw}↓ on complex topography settings, and the implementation of several ancillary tools. The first component, NewAGE-SwRB, accounts for slope, aspect, shadow and the topographical information of the sites, and use suitable parametrisation for obtaining the cloudless irradiance. A second component, NewAGE-DEC-MOD's is implemented to estimate the irradiance reduction due to the presence of clouds, according to three parameterisations. To obtain a working modelling composition, suitable to be compared with ground data at measurement stations, the two components are connected to a Kriging component, and, with the use of a further component NewAGE-V (verification package, the performance of modeled (R^_{sw}↓ is quantitatively evaluated. The two components (and the various parametrisations they contain are tested using the data from three basins catchments, and some simple verification test is made to assess the goodness of the methods used. The components are part of a larger system, JGrass-NewAGE, their input and outputs are given as geometrical objects immediately visualisable in a GIS (for instance the companion uDig, and can be used seamlessly with the various modelling solutions available in JGrass-NewAGE for the estimation of long wave radiation, evapotranspiration, and snow melting, as well as stand-alone components to just estimate shortwave radiation for various uses. The modularity of the approach is shown to be extensible to more accurate physical-statistical studies aimed to assess in deep the components performances and extends spatially their results, without the necessity of recoding any part of the component but just
On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets
Kanudula, Max
2009-01-01
A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.
Zhao, Jianxun; Lu, Hongmin; Deng, Jun
2015-02-01
The planar-scanning technique was applied to the experimental measurement of the electric field and power flux density (PFD) in the exposure area close to the millimeter-wave (MMW) radiator. In the near-field region, the field and PFD were calculated from the plane-wave spectrum of the field sampled on a scan plane far from the radiator. The measurement resolution was improved by reducing the spatial interval between the field samples to a fraction of half the wavelength and implementing multiple iterations of the fast Fourier transform. With the reference to the results from the numerical calculation, an experimental evaluation of the planar-scanning measurement was made for a 50 GHz radiator. Placing the probe 1 to 3 wavelengths from the aperture of the radiator, the direct measurement gave the near-field data with significant differences from the numerical results. The planar-scanning measurement placed the probe 9 wavelengths away from the aperture and effectively reduced the maximum and averaged differences in the near-field data by 70.6% and 65.5%, respectively. Applied to the dosimetry of an open-ended waveguide and a choke ring antenna for 60 GHz exposure, the technique proved useful to the measurement of the PFD in the near-field exposure area of MMW radiators.
Lamb Wave-Based Acoustic Radiation Force-Driven Particle Ring Formation Inside a Sessile Droplet.
Destgeer, Ghulam; Ha, Byunghang; Park, Jinsoo; Sung, Hyung Jin
2016-04-05
We demonstrate an acoustofluidic device using Lamb waves (LWs) to manipulate polystyrene (PS) microparticles suspended in a sessile droplet of water. The LW-based acoustofluidic platform used in this study is advantageous in that the device is actuated over a range of frequencies without changing the device structure or electrode pattern. In addition, the device is simple to operate and cheap to fabricate. The LWs, produced on a piezoelectric substrate, attenuate inside the fluid and create acoustic streaming flow (ASF) in the form of a poloidal flow with toroidal vortices. The PS particles experience direct acoustic radiation force (ARF) in addition to being influenced by the ASF, which drive the concentration of particles to form a ring. This phenomenon was previously attributed to the ASF alone, but the present experimental results confirm that the ARF plays an important role in forming the particle ring, which would not be possible in the presence of only the ASF. We used a range of actuation frequencies (45-280 MHz), PS particle diameters (1-10 μm), and droplet volumes (5, 7.5, and 10 μL) to experimentally demonstrate this phenomenon.
Calculation of coherent synchrotron radiation in toroidal waveguides by paraxial wave equation
Directory of Open Access Journals (Sweden)
D. R. Gillingham
2007-05-01
Full Text Available A new technique for the simulation of coherent synchrotron radiation (CSR and space-charge fields from a single electron bunch in straight or toroidal rectangular waveguide sections has been developed. It is based on the integration of the paraxial approximation to the wave equations, using the perturbation technique where the bending radius is large compared to the dimension of the waveguide. We have implemented an unconditionally stable integration method in the time domain with transparent boundary conditions that allows the use of a minimally sized computational domain about the bunch. This technique explicitly enforces the causality condition so that no portion of the fields can propagate faster than the speed of light, can be used with arbitrary three-dimensional charge distributions, and contains corrections for finite energy. We have also developed a method for the calculation of the transverse forces within the bunch including space-charge. This method has been developed for incorporation with a particle-in-cell code so that we may self-consistently model CSR and space-charge in combinations of bending sections with a fully dynamic electron bunch in an efficient manner. In this paper we describe the model and methods for calculation of the fields in detail and compare results to theory wherever possible.
Properties of Supersonic Evershed Downflows
Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz
2016-01-01
We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...
Gestrin, S. G.; Shchukina, E. V.
2016-07-01
It is demonstrated that propagation of the soliton described by the Boussinesq equation along a linear defect of the crystal structure leads to radiation of sound waves (analog of the Vavilov-Cherenkov effect). Radiation that has a continuous spectrum diverges conically from the dislocation line, and the apex angle of the cone is determined by the ratio of the sound speed in the crystal to the soliton speed. With increasing soliton speed, the maximum of the spectral flux density of sound energy is displaced toward higher frequencies. An analytical expression for energy losses is derived.
Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong
2015-03-01
Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.
Study of density field measurement based on NPLS technique in supersonic flow
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Due to the influence of shock wave and turbulence, supersonic density field exhibits strongly inhomogeneous and unsteady characteristics. Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution, limitation of measuring 3D density field, and low signal to noise ratio (SNR). A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field. This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles, which would display the density fluctuation due to the influence of shock waves and vortexes. The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper, and the results reveal shock wave, turbulent boundary layer in the flow with the spatial resolution of 93.2 μm/pixel. By analyzing the results at interval of 5 μs, temporal evolution of density field can be observed.
Study of density field measurement based on NPLS technique in supersonic flow
Institute of Scientific and Technical Information of China (English)
TIAN LiFeng; YI ShiHe; ZHAO YuXin; HE Lin; CHENG ZhongYu
2009-01-01
Due to the influence of shock wave and turbulence,supersonic density field exhibits strongly inho-mogeneous and unsteady characteristics.Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution,limitation of measuring 3D density field,and low signal to noise ratio (SNR).A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field.This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles,which would display the density fluctuation due to the influence of shock waves and vortexes.The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper,and the results reveal shock wave,turbulent boundary layer in the flow with the spatial resolution of 93.2 pm/pixel.By analyzing the results at interval of 5 μs,temporal evolution of density field can be observed.
Direct formulation of the supersonic acoustic intensity in space domain
DEFF Research Database (Denmark)
Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin
2012-01-01
This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...
Supersonic flow past a flat lattice of cylindrical rods
Guvernyuk, S. V.; Maksimov, F. A.
2016-06-01
Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.
Passive Acoustic Radar for Detecting Supersonic Cruise Missile
Institute of Scientific and Technical Information of China (English)
XIAO Feng; XIAO Hui
2005-01-01
A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.
Ambroziński, Łukasz; Pelivanov, Ivan; Song, Shaozhen; Yoon, Soon Joon; Li, David; Gao, Liang; Shen, Tueng T.; Wang, Ruikang K.; O'Donnell, Matthew
2016-07-01
A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.
Energy Technology Data Exchange (ETDEWEB)
Ambroziński, Łukasz [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); AGH University of Science and Technology, Krakow 30059 (Poland); Pelivanov, Ivan, E-mail: ivanp3@uw.edu [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Faculty of Physics, Moscow State University, Moscow 119991 (Russian Federation); Song, Shaozhen; Yoon, Soon Joon; Gao, Liang; O' Donnell, Matthew [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Li, David [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Chemical Engineering, University of Washington Seattle, Washington 98195 (United States); Shen, Tueng T.; Wang, Ruikang K. [Department of Bioengineering, University of Washington, Seattle, Washington 98195 (United States); Department of Ophthalmology, University of Washington, Seattle, Washington 98104 (United States)
2016-07-25
A non-contact method for efficient, non-invasive excitation of mechanical waves in soft media is proposed, in which we focus an ultrasound (US) signal through air onto the surface of a medium under study. The US wave reflected from the air/medium interface provides radiation force to the medium surface that launches a transient mechanical wave in the transverse (lateral) direction. The type of mechanical wave is determined by boundary conditions. To prove this concept, a home-made 1 MHz piezo-ceramic transducer with a matching layer to air sends a chirped US signal centered at 1 MHz to a 1.6 mm thick gelatin phantom mimicking soft biological tissue. A phase-sensitive (PhS)-optical coherence tomography system is used to track/image the mechanical wave. The reconstructed transient displacement of the mechanical wave in space and time demonstrates highly efficient generation, thus offering great promise for non-contact, non-invasive characterization of soft media, in general, and for elasticity measurements in delicate soft tissues and organs in bio-medicine, in particular.
Institute of Scientific and Technical Information of China (English)
Li Shiyu; Tang Linbo; He Xuesong; Su Fang; Sun Wei; Liu Jianxin
2005-01-01
Experiments on sonic transmission show that a slabstone can directly transmit part of the energy of a wave excited by knocking or by a transducer into the air. The other part of the wave energy can generate the normal mode of vibration on the slabstone and excite measurable acoustic signals in the air. The dominant frequency is related to the size of the slabstone. These results indicate that the acoustic emission (AE) in rock also displays similar behavior if the source is shallow. It is demonstrated that with the nucleation and propagation of cracks, the dominant frequency of the radiated wave will be lower. When the frequency becomes very low,the wave can be transmitted through the rock into the air and be received by a microphone.According to the theory of similarity of size, there will be low-frequency waves before strong earthquakes because of nucleation of cracks, which can be received by special low-frequency transducers or infrasonic detectors. Before earthquakes, the mechanism of precursors could be very complicated. They might be produced by plastic creep or attributed to liquids but not brittle fracture in most cases. So the periods of the produced waves will be longer. This perhaps accounts for the lack of foreshocks before many strong earthquakes.
Indian Academy of Sciences (India)
N P Pathak; A Basu; S K Koul
2008-07-01
This paper reports the determination of electrical equivalent circuit of ON/OFF modulator in non-radiative dielectric (NRD) guide configurations at Ka-band. Schottky barrier mixer diode is used to realize this modulator and its characteristics are determined experimentally using vector network analyzer. Full wave FEM simulator HFSS is used to determine an equivalent circuit for the mounted diode and modulator in ON and OFF states. This equivalent circuit is used to qualitatively explain the experimental characteristics of modulator.
Pokhotelov, D.; Rae, I. J.; Murphy, K. R.; Mann, I. R.
2016-12-01
Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth's outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8-9 October 2012 and compare with the dynamics of relativistic electron fluxes on board the twin Van Allen Probes spacecraft. The analysis shows that the relativistic electron fluxes reduce from their prestorm levels during the first phase of the storm and rapidly increase during the second phase of the storm. We demonstrate that the behavior of ULF wave power changes throughout the storm, from ULF oscillations being a mixture of compressional and shear magnetic components during the first phase of the storm to ULF oscillations being dominated by transverse (shear) components during the second phase. We analyze the parameters of ULF-driven radial diffusion throughout the storm and compare the observed diffusion coefficients with their statistical averages. We demonstrate that the observed diffusion coefficients are strong enough to impact the redistribution of relativistic electron fluxes from and to the outer boundary of radiation belts and the diffusion might influence the effects of any local electron acceleration by transporting fluxes inward or outward according to phase space density gradients.
Dai, Jin; Bozhevolnyi, Sergey I; Yan, Min
2016-01-01
Metamaterials possess artificial bulk and surface electromagnetic states. Tamed dispersion properties of surface waves allow one to achieve controllable super-Planckian radiative heat transfer (RHT) process between two closely spaced objects. We numerically demonstrate enhanced RHT between two 2D grooved metal plates by a full-wave scattering approach. The enhancement originates from both transverse magnetic spoof surface plasmon polaritons and a series of transverse electric bonding- and anti-bonding waveguide modes at surfaces. The RHT spectrum is frequency-selective, and highly geometrically tailorable. Our simulation also reveals thermally excited non-resonant surface waves in constituent materials can play a prevailing role for RHT at an extremely small separation between two plates, rendering metamaterial modes insignificant for the energy transfer process.
Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria
2013-01-01
ascent phase of the mission as well as from the extreme heat fluxes produced during the supersonic test phase by the main motor plume and aeroheating. The passive thermal design approach for the SFDT vehicle relies upon careful and complex bounding analysis of all three modes of heat transfer - conduction, convection, and radiation - coupled with a tightly managed transient power dissipation timeline for onboard electronics components throughout all mission phases.
Radiation losses and dark mode for spin-wave propagation through a discrete magnetic micro-waveguide
Barabanenkov, Yuri; Osokin, Sergey; Kalyabin, Dmitry; Nikitov, Sergey
2016-11-01
This paper presents the quantum mechanical type T -scattering operator approach to studying the forward volume magnetostatic spin-wave multiple scattering by a finite ensemble of cylindrical magnetic inclusions in a ferromagnetic thin film. The approach is applied to the problem of spin-wave excitation transfer along a linear chain of inclusions. The substantial results are deriving the optical theorem for the T -scattering operator and, as a consequence, deriving a formula for collective extinction cross section of inclusion ensemble, where only the first inclusion of the chain is irradiated by an incident narrow spin-wave beam. From this formula it can be shown that only irradiated inclusion makes a direct contribution in the collective extinction cross section of the total number of inclusions. In this case the direct summarized contribution of all the other inclusions from the chain into the spin-wave scattering is invisible; we call such phenomenon the dark mode. Applying a one-multipole and closest neighbor coupling approximation, we reveal a regime of distant resonant transfer for spin-wave excitation along the linear chain of an essentially big but finite number of particles with the dark mode. Because we also found a resonant mechanism of filtering this mode from radiation losses, the revealed regime shows that at resonant conditions the linear chain of magnetic inclusions can play the role of a spin-wave micro-waveguide, which transfers a signal over a big distance in a form of the dark mode, where the controllable level of radiation losses can tend to reach nearly zero values.
Vagula, Mary; Harkless, Ryan
2013-05-01
Radio wave frequency (RF) radiation emitted from cellular telephones has become increasingly ubiquitous as a result of the popularity of these phones. With the increasing and unavoidable exposure to RF radiation a reality, it is imperative that the effects of such radiation on living tissue be well understood. In particular, it is critical to understand any effects that RF radiation may have as a carcinogen and on embryonic development, as pregnant women are not exempt from such exposure. As a model organism, zebrafish (Danio rerio) have been studied extensively, and their value in studies of gene expression cannot be overstated. This study observed the effects of RF radiation on the embryonic development of zebrafish. The expression of two genes, shha and hoxb9a, that are key to the early development of the fish was examined. Both genes have homologs in humans as well as in other model organisms. Preliminary results suggest that exposure to cell phone radiation might have an effect on the expression of shha in zebrafish embryos, causing under expression. More trials are necessary to validate these results.
Pogliotti, P.; Cremonese, E.; Dallamico, M.; Gruber, S.; Migliavacca, M.; Morra di Cella, U.
2009-12-01
Permafrost distribution in high-mountain areas is influenced by topography (micro-climate) and high variability of ground covers conditions. Its monitoring is very difficult due to logistical problems like accessibility, costs, weather conditions and reliability of instrumentation. For these reasons physically-based modeling of surface rock/ground temperatures (GST) is fundamental for the study of mountain permafrost dynamics. With this awareness a 1D version of GEOtop model (www.geotop.org) is tested in several high-mountain sites and its accuracy to reproduce GST and incoming short wave radiation (SWin) is evaluated using independent field measurements. In order to describe the influence of topography, both flat and near-vertical sites with different aspects are considered. Since the validation of SWin is difficult on steep rock faces (due to the lack of direct measures) and validation of GST is difficult on flat sites (due to the presence of snow) the two parameters are validated as independent experiments: SWin only on flat morphologies, GST only on the steep ones. The main purpose is to investigate the effect of: (i) distance between driving meteo station location and simulation point location, (ii) cloudiness, (iii) simulation point aspect, (iv) winter/summer period. The temporal duration of model runs is variable from 3 years for the SWin experiment to 8 years for the validation of GST. The model parameterization is constant and tuned for a common massive bedrock of crystalline rock like granite. Ground temperature profile is not initialized because rock temperature is measured at only 10cm depth. A set of 9 performance measures is used for comparing model predictions and observations (including: fractional mean bias (FB), coefficient of residual mass (CMR), mean absolute error (MAE), modelling efficiency (ME), coefficient of determination (R2)). Results are very encouraging. For both experiments the distance (Km) between location of the driving meteo
Modelled radiative effects of sea spray aerosol using a source function encapsulating wave state
Partanen, Antti-Ilari; Dunne, Eimear M.; Bergman, Tommi; Laakso, Anton; Kokkola, Harri; Ovadnevaite, Jurgita; Sogacheva, Larisa; Baisnée, Dominique; Sciare, Jean; Manders, Astrid; O'Dowd, Colin; de Leeuw, Gerrit; Korhonen, Hannele
2014-05-01
Sea spray aerosol particles have significant effects on global climate by scattering solar radiation (direct effect) and modifying cloud properties (indirect effect). Sea spray consists mainly of sea salt, but in biologically active regions, major fraction of sea spray may come in the form of primary marine organic matter (PMOM). Traditionally, sea spray flux has been parameterized in global models in terms of wind speed, and organic fraction of sea spray in terms of chlorophyll-a concentration. In this study, we have incorporated recently developed parameterizations for the sea spray aerosol source flux into the global aerosol-climate model ECHAM-HAMMOZ. The parameterizations encapsulate the wave state via Reynolds number, and predict the organic fraction of the sea spray aerosol source flux. The model was then used to investigate the direct and indirect effects of sea spray aerosol particles. We compared simulated sea spray concentrations with in-situ measurements from Mace Head (North Atlantic), Point Reyes (North Pacific), and Amsterdam Island (Southern Indian Ocean). Aerosol optical depth (AOD) was compared with satellite measurements from PARASOL. Modelled annual mean global emissions of sea salt and PMOM were 805 Tg yr-1 (uncertainty range of 378-1233 Tg yr-1) and 1.1 Tg yr-1 (0.5-1.8 Tg yr-1), respectively. Sea salt emissions were considerably lower than the majority of previous estimates, but PMOM was in the range of previous studies. The model captured sea salt concentrations fairly well in the smaller size ranges at Mace Head (annual normalized mean bias of -13% for particles with vacuum aerodynamic diameter Dva
Aeroacoustic Properties of Moderate Reynolds Number Elliptic and Rectangular Supersonic Jets.
Kinzie, Kevin Wayne
1995-01-01
The aerodynamic and acoustic properties of supersonic elliptic, rectangular, and circular jets are experimentally investigated. All three jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25,000 to 50,000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high velocity and low density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve high enough convective velocity to radiate noise through the Mach wave emission process. Experiments in the present work focus on comparisons between the cold and simulated heated jet conditions and on the beneficial aeroacoustic properties of non-circular jets. Comparisons are also made between the elliptic and rectangular jets. When helium is added to the jets, the instability wave phase velocity is found to approach or exceed the ambient sound speed. The radiated noise is also louder and directed at a higher angle from the jet axis. In addition, near field hot-wire spectra are found to match the far-field acoustic spectra only for the helium/air mixture case. These results demonstrate that there are significant differences between unheated and heated asymmetric jets in the Mach 1.5 speed range, many of which have been found previously for circular jets. The asymmetric jets were also found to radiate less noise than the round jet at comparable operating conditions. Strong similarities were also found between the aerodynamic and acoustic properties of the elliptic and rectangular jets.
A Method and an Apparatus for Generating a Phase-Modulated Wave Front of Electromagnetic Radiation
DEFF Research Database (Denmark)
2002-01-01
The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase-modulation of the......The present invention provides a method and a system for generating a phase-modulated wave front. According to the present invention, the spatial phase-modulation is not performed on the different parts of the wave front individually as in known POSLMs. Rather, the spatial phase......-modulation of the present invention is performed by generating an amplitude modulation in the wave front, Fourier or Fresnel transforming the amplitude modulated wave front, filtering Fourier or Fresnel components of the Fourier or Fresnel distribution with a spatial filter such as a phase contrast filter, and regenerating...... the wave front whereby the initial amplitude modulation has transformed into a phase-modulation....
Liu, Chuan; Liu, Haitao; Zhong, Ying
2014-10-20
The radiation of a dipole emitter close to a metallic nanowire optical antenna is investigated theoretically. By considering the excitation and multiple scattering of surface plasmon polaritons (SPPs) on the antenna and neglecting all other surface waves, we build up an intuitive pure-SPP model to comprehensively describe the radiation of the antenna. The model shows that for antennas with short lengths that support lower orders of resonance, waves other than SPPs contribute considerably to the antenna radiation, while SPPs play a dominant role for other cases. The enhancement of the antenna radiation is shown arising from two contributions, the field directly radiated by the emitter and the field resonantly excited by the surface waves on the antenna.
Agapitov, Oleksiy; Artemyev, Anton; Mourenas, Didier; Mozer, Forrest; Krasnoselskikh, Vladimir
2016-04-01
Simultaneous observations of electron velocity distributions and chorus waves by the Van Allen Probe B are analyzed to identify long-lasting (more than 6 h) signatures of electron Landau resonant interactions with oblique chorus waves in the outer radiation belt. Such Landau resonant interactions result in the trapping of ˜1-10 keV electrons and their acceleration up to 100-300 keV. This kind of process becomes important for oblique whistler mode waves having a significant electric field component along the background magnetic field. In the inhomogeneous geomagnetic field, such resonant interactions then lead to the formation of a plateau in the parallel (with respect to the geomagnetic field) velocity distribution due to trapping of electrons into the wave effective potential. We demonstrate that the electron energy corresponding to the observed plateau remains in very good agreement with the energy required for Landau resonant interaction with the simultaneously measured oblique chorus waves over 6 h and a wide range of L shells (from 4 to 6) in the outer belt. The efficient parallel acceleration modifies electron pitch angle distributions at energies ˜50-200 keV, allowing us to distinguish the energized population. The observed energy range and the density of accelerated electrons are in reasonable agreement with test particle numerical simulations.
Takemura, Shunsuke; Kobayashi, Manabu; Yoshimoto, Kazuo
2016-10-01
Frequency-dependent model of the apparent radiation pattern has been extensively incorporated into engineering and scientific applications for high-frequency seismic waves, but distance-dependent properties have not yet been fully taken into account. We investigated the unified characteristics of frequency and distance dependences in both apparent P- and S-wave radiation patterns during local crustal earthquakes. Observed distortions of the apparent P- and S-wave radiation patterns could be simply modeled by using a function of the normalized hypocentral distance, which is a product of the wave number and hypocentral distance. This behavior suggests that major cause of distortion of the apparent radiation pattern is seismic wave scattering and diffraction within the heterogeneous crust. On the basis of observed normalized hypocentral distance dependency, we proposed a method for prediction of spatial distributions of maximum P- and S-wave amplitudes. Our method incorporating normalized hypocentral distance dependence of the apparent radiation pattern reproduced the observed spatial distributions of maximum P- and S-wave amplitudes over a wide frequency and distance ranges successfully.[Figure not available: see fulltext.
Supersonic Plasma Flow Control Experiments
2005-12-01
to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing
Supersonic Chordwise Bending Flutter in Cascades
1975-05-31
such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD
Shear wave elastography with a new reliability indicator
Directory of Open Access Journals (Sweden)
Christoph F. Dietrich
2016-09-01
Full Text Available Non-invasive methods for liver stiffness assessment have been introduced over recent years. Of these, two main methods for estimating liver fibrosis using ultrasound elastography have become established in clinical practice: shear wave elastography and quasi-static or strain elastography. Shear waves are waves with a motion perpendicular (lateral to the direction of the generating force. Shear waves travel relatively slowly (between 1 and 10 m/s. The stiffness of the liver tissue can be assessed based on shear wave velocity (the stiffness increases with the speed. The European Federation of Societies for Ultrasound in Medicine and Biology has published Guidelines and Recommendations that describe these technologies and provide recommendations for their clinical use. Most of the data available to date has been published using the Fibroscan (Echosens, France, point shear wave speed measurement using an acoustic radiation force impulse (Siemens, Germany and 2D shear wave elastography using the Aixplorer (SuperSonic Imagine, France. More recently, also other manufacturers have introduced shear wave elastography technology into the market. A comparison of data obtained using different techniques for shear wave propagation and velocity measurement is of key interest for future studies, recommendations and guidelines. Here, we present a recently introduced shear wave elastography technology from Hitachi and discuss its reproducibility and comparability to the already established technologies.
Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi
2015-07-01
A loudspeaker for an auditory guiding system is proposed. This loudspeaker utilizes inclined sound transformed from a flexural wave in a honeycomb sandwich panel. We focused on the fact that the inclined sound propagates extensively with uniform level and direction. Furthermore, sound can be generated without group delay dispersion because the phase velocity of the flexural wave in the sandwich panel becomes constant with increasing frequency. These characteristics can be useful for an auditory guiding system in public spaces since voice-guiding navigation indicates the right direction regardless of position on a pathway. To design the proposed loudspeaker, the behavior of the sandwich panel is predicted using a theoretical equation in which the honeycomb core is assumed as an orthotropic continuum. We calculated the phase velocity dispersion of the flexural wave in the sandwich panel and compared the results obtained using the equation with those of a simulation based on the finite element method and an experiment in order to confirm the applicability of the theoretical equation. It was confirmed that the phase velocities obtained using the theoretical equation and by the simulation were in good agreement with that obtained experimentally. The obtained results suggest that the behavior of the sandwich panel can be predicted using the parameters of the panel. In addition, we designed an optimized honeycomb sandwich panel for radiating inclined sound by calculating the phase velocity characteristics of various panels that have different parameters of core height and cell size using the theoretical equation. Sound radiation from the optimized panel was simulated and compared with that of a homogeneous plate. It was clear that the variance of the radiation angle with varying frequency of the optimized panel was smaller than that of the homogeneous plate. This characteristic of sound radiation with a uniform angle is useful for indicating the destination direction. On
The experimental study of interaction between shock wave and turbulence
Institute of Scientific and Technical Information of China (English)
ZHAO YuXin; YI ShiHe; HE Lin; CHENG ZhongYu; TIAN LiFeng
2007-01-01
The interaction between shock wave and turbulence has been studied in supersonic turbulent mix layer wind tunnel. The interaction between oblique shock wave and turbulent boundary layer and the influence of large vortex in mix layer on oblique shock wave have been observed by NPLS technique. From NPLS image, not only complex flow structure is observed but also time-dependent supersonic flow visualization is realized. The mechanism of interaction between shock wave and turbulence is discussed based on high quality NPLS image.
Micro Ramps in Supersonic Turbulent Boundary Layers: An experimental and numerical study
Sun, Z.
2014-01-01
The micro vortex generator (MVG) is used extensively in low speed aerodynamic problems and is now extended into the supersonic flow regime to solve undesired flow features that are associated with shock wave boundary layer interactions (SWBLI) such as flow separation and associated unsteadiness of t
Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge
Institute of Scientific and Technical Information of China (English)
Hui Cheng YIN
2006-01-01
This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.
Li, Zheng; Wang, Junhong; Duan, Jianjie; Zhang, Zhan; Chen, Meie
2016-03-18
In this paper the radiation property of the one-dimensional periodic leaky-wave structure is analysed using a new hybrid method, which involves the mode expansion method for expanding the periodic aperture field in terms of spatial harmonics and the method of effective radiation sections for transforming the expanded fields into far fields. Using this method, the radiation of each spatial harmonic can be achieved, and the contributions of the harmonics (especially the bounded modes) to the total radiation of the periodic leaky-wave structure can be calculated. The main findings in this paper demonstrate that the bounded modes in a finite length structure have obvious contribution to the far-field radiation, which was considered to be non-radiative and always ignored in the conventional researches.
Barnard, Andrew R.
A new measurement technique, Supersonic Intensity in Reverberant Environments (SIRE), has been developed analytically, and validated numerically and experimentally. The SIRE technique permits the measurement of narrowband radiated sound power and directivity in an environment with unknown field conditions. This type of measurement has previously been limited to environments with exact field conditions, such as the free field. Due to long acoustic wavelengths, underwater anechoic tanks are not cost-effective for low frequency measurements, nor are at-sea measurements time- or cost-effective. Unlike SIRE, techniques like nearfield acoustic holography (NAH) rely on knowledge of exact field conditions, which are usually unknown in a realistic measurement environment. SIRE is a cost effective, repeatable laboratory technique for narrowband evaluation of complex structural acoustic sources submerged in water. The technique leverages underwater acoustic intensity vector sensors in the near field of a source and allows the outgoing acoustic waves to be separated from unwanted incoming acoustic waves. Supersonic wavenumber filtering rejects the evanescent potions of the acoustic pressure and particle velocity from the separated, outward-propagating sound pressure and particle velocity. The SIRE technique was applied to a monopole source, dipole source, and point-driven, thin-walled cylinder with massive end caps. All sources were placed in an underwater reverberant tank and measured using custom underwater vector sensors specifically designed and built to reduce electromagnetic interference (EMI). The results are compared with theory, the ANSI S12.51 standard one-third-octave reverberation room method, and free field NAH. SIRE is shown to accurately measure radiated sound power to within the limits of ANSI S12.51. SIRE is also shown to accurately measure the directivity indices of simple sources to within +/-3 dB. Finally, a coupled finite element/boundary element (FE
Vadyak, J.; Hoffman, J. D.; Bishop, A. R.
1978-01-01
The calculation procedure is based on the method of characteristics for steady three-dimensional flow. The bow shock wave and the internal shock wave system were computed using a discrete shock wave fitting procedure. The general structure of the computer program is discussed, and a brief description of each subroutine is given. All program input parameters are defined, and a brief discussion on interpretation of the output is provided. A number of sample cases, complete with data deck listings, are presented.
Destler, W. W.; Weiler, R. L.; Striffler, C. D.
1981-11-01
During this period this effort has explored the scaling of the negative mass instability to regimes associated with smaller plasmas and short wavelengths for the plasma-produced radiation. An experimental apparatus for these studies is near completion. The nonlinear electromagnetic interaction between the collective/bunches of electrons and the radiation field has been formulated in an attempt to derive the efficiency of the production of radiation. In addition, the Dragon electron beam source is currently being improved for future radiation production experiments based on the negative mass instability. Experimental efforts at high powers have resulted in the enhancement of radiation at a single frequency. This last effort has utilized a "double-magnetron cavity' to enhance the radiation power in Ka band at 26 and 41GHz.
Quasi-linear wave-particle interactions in the earth's radiation belts
Villalon, Elena; Silevitch, Michel B.; Rothwell, Paul L.; Burke, William J.
1989-11-01
A self-consistent theory on the interaction of magnetospheric particles with ducted electromagnetic cyclotron waves is presented. The main contribution is to calculate the coupling coefficients for the ray equations describing the temporal evolution of the cyclotron instability. These are obtained within the framework of quasi-linear interaction of waves and particles. A set of equations is derived based on the Fokker-Planck theory of pitch angle diffusion, describing the evolution time of the number of particles in the flux tube and the energy density of waves for the interaction of Alfven waves with protons and of whistler waves with electrons. The coupling coefficients are obtained, based on a quasi-linear analysis after averaging over the particle bounce motion. It is found that the equilibrium solutions for particle fluxes and wave amplitudes are stable under small local perturbations. The reflection of the waves in the ionosphere is discussed. A stability analysis around the equilibrium solutions for precipitating particle fluxes and wave intensity indicates that an actively excited ionosphere can cause the development of explosive instabilities.
The Application of Mutual Energy Theorem in Expansion of Radiation Field in Spherical Waves
Zhao, Shuang-Ren
2016-01-01
In recent years the shperical wave expansion method has been widely applied to the theory and calculation of electromagnetic fields. But the inner product exist in reference[1] is defined on the Banach space[2]. Through redefining the inner product this article limits the wave expansion method to Hibert space[3]. For this reason the mutual energy theorem is introduced.
Bulanov, S. S.; Esirkepov, T. Zh; Kando, M.; Koga, J. K.; Bulanov, S. V.
2013-02-01
When the effects of radiation reaction dominate the interaction of electrons with intense laser pulses, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possess unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency.
Energy Technology Data Exchange (ETDEWEB)
He, W.; Zhang, L.; Bowes, D.; Yin, H.; Ronald, K.; Phelps, A. D. R.; Cross, A. W. [Department of Physics, SUPA, University of Strathclyde, Glasgow, G4 0NG Scotland (United Kingdom)
2015-09-28
This paper presents for the generation of a small size high current density pseudospark (PS) electron beam for a high frequency (0.2 THz) Backward Wave Oscillator (BWO) through a Doppler up-shift of the plasma frequency. An electron beam ∼1 mm diameter carrying a current of up to 10 A and current density of 10{sup 8} A m{sup −2}, with a sweeping voltage of 42 to 25 kV and pulse duration of 25 ns, was generated from the PS discharge. This beam propagated through the rippled-wall slow wave structure of a BWO beam-wave interaction region in a plasma environment without the need for a guiding magnetic field. Plasma wave assisted beam-wave interaction resulted in broadband output over a frequency range of 186–202 GHz with a maximum power of 20 W.
Brondi, P.; Picozzi, M.; Emolo, A.; Zollo, A.; Mucciarelli, M.
2015-10-01
Earthquake Early Warning Systems (EEWS) are potentially effective tools for risk mitigation in active seismic regions. The present study explores the possibility of predicting the macroseismic intensity within EEW timeframes using the squared velocity integral (IV2) measured on the early P wave signals, a proxy for the P wave radiated energy of earthquakes. This study shows that IV2 correlates better than the peak displacement measured on P waves with both the peak ground velocity and the Housner Intensity, with the latter being recognized by engineers as a reliable proxy for damage assessment. Therefore, using the strong motion recordings of the Italian Accelerometric Archive, a novel relationship between the parameter IV2 and the macroseismic intensity (IM) has been derived. The validity of this relationship has been assessed using the strong motion recordings of the Istituto Nazionale di Geofisica e Vulcanologia Strong Motion Data and Osservatorio Sismico delle Strutture databases, as well as, in the case of the MW 6, 29 May 2012 Emilia earthquake (Italy), comparing the predicted intensities with the ones observed after a macroseismic survey. Our results indicate that P wave IV2 can become a key parameter for the design of on-site EEWS, capable of proving real-time predictions of the IM at target sites.
Finite element analysis of second order wave radiation by a group of cylinders in the time domain
Institute of Scientific and Technical Information of China (English)
WANG Chi-zhong; MITRA Santanu; HUANG Hao-cai; KHOO Boo-cheong
2013-01-01
A finite element based numerical method is employed to analyze the wave radiation by multiple or a group of cylinders in the time domain.The nonlinear free surface and body surface boundary conditions are satisfied based on the perturbation method up to the second order.The first-and second-order velocity potential problems at each time step are solved through a Finite Element Method (FEM).The matrix equation of the FEM is solved through iteration and the initial solution is obtained from the result at the previous time step.The three-dimensional (3-D) mesh required is generated based on a two-dimensional (2-D) hybrid mesh on a horizontal plane and its extension in the vertical direction.The hybrid mesh is generated by combining an unstructured grid away from cylinders and two structured grids near the cylinder and the artificial boundary.The fluid velocity on the free surface and the cylinder surface are calculated by using a differential method.Results for various configurations including the cases of two cylinders and four cylinders and a group of eighteen cylinders are obtained to show the joint influences of cylinders on the first-and secondorder waves and forces,including the effects of spacing ratios and wave frequency on the second order waves and the mean force,in particular.
Nath, G.; Vishwakarma, J. P.
2016-11-01
Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.
Slovinsky, William Stanley
A "millimeter wave" (MMW) is an electromagnetic oscillation with a wavelength between 1 and 10 mm, and a corresponding frequency of 30 to 300 GHz. In the spectrum of electromagnetic radiation, this band falls above the frequencies of radio waves and microwaves, and below that of infrared radiation. Since the 1950s, frequencies in this regime have been used for short range communications and beginning in the 1970s, a form of therapy known as "millimeter wave therapy" (MWT) , or microwave resonance therapy, in some publications. This form of therapy has been widely used in the republics of the former Soviet Union (FSU). As of 1995, it is estimated that more than one thousand medical centers in the FSU have performed MWT and more than three million patients have received this method of treatment. Despite the abundant use of this form of medicine, very little is known about the mechanisms by which it works. Early accounts of use are limited to Soviet government documents, largely unavailable to the scientific public, and limited translations and oral accounts from FSU scientists and literature reviews . This anecdotal body of evidence lacks the scrutiny of peer-reviewed journal publications. In order to gain more widespread acceptance in Western medicine, the pathway through which this regime of the electromagnetic radiation spectrum affects the human body must be rigorously mapped and quantified. Despite the anecdotal nature of a large portion of the existing research on biological MMW effects, a common link is the idea of an interaction occurring at the skin level, which is transduced into a signal used at a remote location in the body. This study explores a possible mechanism for the generation of this signal. The effects of therapeutic frequency MMW on the ionic currents through two different types of ion transport channels were studied, and the results are discussed with emphasis on how they relate to possible changes in nerve signals used by the body for
Elastic waves at periodically-structured surfaces and interfaces of solids
Directory of Open Access Journals (Sweden)
A. G. Every
2014-12-01
Full Text Available This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW and interfacial (IW waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.
Elastic waves at periodically-structured surfaces and interfaces of solids
Energy Technology Data Exchange (ETDEWEB)
Every, A. G., E-mail: arthur.every@wits.ac.za [School of Physics, University of the Witwatersrand, PO Wits 2050 (South Africa); Maznev, A. A., E-mail: alexei.maznev@gmail.com [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)
2014-12-15
This paper presents a simple treatment of elastic wave scattering at periodically structured surfaces and interfaces of solids, and the existence and nature of surface acoustic waves (SAW) and interfacial (IW) waves at such structures. Our treatment is embodied in phenomenological models in which the periodicity resides in the boundary conditions. These yield zone folding and band gaps at the boundary of, and within the Brillouin zone. Above the transverse bulk wave threshold, there occur leaky or pseudo-SAW and pseudo-IW, which are attenuated via radiation into the bulk wave continuum. These have a pronounced effect on the transmission and reflection of bulk waves. We provide examples of pseudo-SAW and pseudo-IW for which the coupling to the bulk wave continuum vanishes at isloated points in the dispersion relation. These supersonic guided waves correspond to embedded discrete eigenvalues within a radiation continuum. We stress the generality of the phenomena that are exhibited at widely different scales of length and frequency, and their relevance to situations as diverse as the guiding of seismic waves in mine stopes, the metrology of periodic metal interconnect structures in the semiconductor industry, and elastic wave scattering by an array of coplanar cracks in a solid.
Elkhatib, Tamer A.
2010-02-01
We report on enhanced room-temperature detection of terahertz radiation by several connected field-effect transistors. For this enhanced nonresonant detection, we have designed, fabricated, and tested plasmonic structures consisting of multiple InGaAs/GaAs pseudomorphic high electron-mobility transistors connected in series. Results show a 1.63-THz response that is directly proportional to the number of detecting transistors biased by a direct drain current at the same gate-to-source bias voltages. The responsivity in the saturation regime was found to be 170 V/W with the noise equivalent power in the range of 10-7 W/Hz0.5. The experimental data are in agreement with the detection mechanism based on the rectification of overdamped plasma waves excited by terahertz radiation in the transistor channel. © 2010 IEEE.
Vieira, H. S.; Bezerra, V. B.
2016-10-01
We apply the confluent Heun functions to study the resonant frequencies (quasispectrum), the Hawking radiation and the scattering process of scalar waves, in a class of spacetimes, namely, the ones generated by a Kerr-Newman-Kasuya spacetime (dyon black hole) and a Reissner-Nordström black hole surrounded by a magnetic field (Ernst spacetime). In both spacetimes, the solutions for the angular and radial parts of the corresponding Klein-Gordon equations are obtained exactly, for massive and massless fields, respectively. The special cases of Kerr and Schwarzschild black holes are analyzed and the solutions obtained, as well as in the case of a Schwarzschild black hole surrounded by a magnetic field. In all these special situations, the resonant frequencies, Hawking radiation and scattering are studied.
Statistical study of undulator radiated power by a classical detection system in the mm-wave regime
Directory of Open Access Journals (Sweden)
A. Eliran
2009-05-01
Full Text Available The statistics of FEL spontaneous emission power detected with a detector integration time much larger than the slippage time has been measured in many previous works at high frequencies. In such cases the quantum (shot noise generated in the detection process is dominant. We have measured spontaneous emission in the Israeli electrostatic accelerator FEL (EA-FEL operating in the mm-wave lengths. In this regime the detector is based on a diode rectifier for which the detector quantum noise is negligible. The measurements were repeated numerous times in order to create a sample space with sufficient data enabling evaluation of the statistical features of the radiated power. The probability density function of the radiated power was found and its moments were calculated. The results of analytical and numerical models are compared to those obtained in experimental measurements.
What Do s- and p-Wave Neutron Average Radiative Widths Reveal
Energy Technology Data Exchange (ETDEWEB)
Mughabghab, S.F.
2010-04-30
A first observation of two resonance-like structures at mass numbers 92 and 112 in the average capture widths of the p-wave neutron resonances relative to the s-wave component is interpreted in terms of a spin-orbit splitting of the 3p single-particle state into P{sub 3/2} and P{sub 1/2} components at the neutron separation energy. A third structure at about A = 124, which is not correlated with the 3p-wave neutron strength function, is possibly due to the Pygmy Dipole Resonance. Five significant results emerge from this investigation: (i) The strength of the spin-orbit potential of the optical-model is determined as 5.7 {+-} 0.5 MeV, (ii) Non-statistical effects dominate the p-wave neutron-capture in the mass region A = 85 - 130, (iii) The background magnitude of the p-wave average capture-width relative to that of the s-wave is determined as 0.50 {+-} 0.05, which is accounted for quantitatively in tenns of the generalized Fermi liquid model of Mughabghab and Dunford, (iv) The p-wave resonances arc partially decoupled from the giant-dipole resonance (GDR), and (v) Gamma-ray transitions, enhanced over the predictions of the GDR, are observed in the {sup 90}Zr - {sup 98}Mo and Sn-Ba regions.
Analysis of supersonic stall bending flutter in axial-flow compressor by actuator disk theory
Adamczyk, J. J.
1978-01-01
An analytical model was developed for predicting the onset of supersonic stall bending flutter in axial-flow compressors. The analysis is based on two-dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils. The effects of shock waves and flow separation are included in the model. Calculations show that the model predicts the onset, in an unshrouded rotor, of a bending flutter mode that exhibits many of the characteristics of supersonic stall bending flutter. The validity of the analysis for predicting this flutter mode is demonstrated.
Shock Train and Pseudo-shock Phenomena in Supersonic Internal Flows
Institute of Scientific and Technical Information of China (English)
Kazuyasu Matsuo
2003-01-01
When a normal shock wave interacts with a boundary layer along a wall surface in supersonic internal flows and the shock is strong enough to separate the boundary layer, the shock is bifurcated and a series of shocks called "shock train" is formed. The flow is decelerated from supersonic to subsonic through the whole interaction region that is referred to as "pseudo-shock". In the present paper some characteristics of the shock train and pseudo-shock and some examples of the pseudo-shocks in some flow devices are described.
Observation of Single-Mode, Kelvin-Helmholtz Instability in a Supersonic Flow.
Wan, W C; Malamud, G; Shimony, A; Di Stefano, C A; Trantham, M R; Klein, S R; Shvarts, D; Kuranz, C C; Drake, R P
2015-10-02
We report the first observation, in a supersonic flow, of the evolution of the Kelvin-Helmholtz instability from a single-mode initial condition. To obtain these data, we used a novel experimental system to produce a steady shock wave of unprecedented duration in a laser-driven experiment. The shocked, flowing material creates a shear layer between two plasmas at high energy density. We measured the resulting interface structure using radiography. Hydrodynamic simulations reproduce the large-scale structures very well and the medium-scale structures fairly well, and imply that we observed the expected reduction in growth rate for supersonic shear flow.
DEFF Research Database (Denmark)
Ibsen, Lars Bo
2008-01-01
Estimates for the amount of potential wave energy in the world range from 1-10 TW. The World Energy Council estimates that a potential 2TW of energy is available from the world’s oceans, which is the equivalent of twice the world’s electricity production. Whilst the recoverable resource is many t...
Ma, Po-Lun; Zhang, Kai; Shi, Jainn Jong; Matsui, Toshihisa; Arking, Albert
2012-01-01
Episodic events of both Saharan dust outbreaks and African Easterly Waves (AEWs) are observed to move westward over the eastern tropical Atlantic Ocean. The relationship between the warm, dry, and dusty Saharan Air Layer (SAL) on the nearby storms has been the subject of considerable debate. In this study, the Weather Research and Forecasting (WRF) model is used to investigate the radiative effect of dust on the development of AEWs during August and September, the months of maximum tropical cyclone activity, in years 2003-2007. The simulations show that dust radiative forcing enhances the convective instability of the environment. As a result, most AEWs intensify in the presence of a dust layer. The Lorenz energy cycle analysis reveals that the dust radiative forcing enhances the condensational heating, which elevates the zonal and eddy available potential energy. In turn, available potential energy is effectively converted to eddy kinetic energy, in which local convective overturning plays the primary role. The magnitude of the intensification effect depends on the initial environmental conditions, including moisture, baroclinity, and the depth of the boundary layer. We conclude that dust radiative forcing, albeit small, serves as a catalyst to promote local convection that facilitates AEW development.
Energy Technology Data Exchange (ETDEWEB)
Zhukovsii, K.; Nourani, Y.; Monte, L. [ENEA, Centro Ricerche Casaccia, S. Maria di Galeria, RM (Italy). Dipt. Energia
1999-07-01
In the present paper, the net long-wave radiation balance of the water-air environmental systems is analysed on the base of several semi-empirical approaches. Various theoretical models of infrared atmospheric radiation are reviewed. Factors, affecting their behavior are considered. Special attention is paid to physical conditions under which those models are applicable. Atmospheric and net infrared radiation fluxes are computed and compared under clear and cloudy sky. Results are presented in graphical form. Conclusions are made on the applicability of models considered for evaluating infrared radiation fluxes in environmental conditions of Central Italy. On the base of present analysis Anderson's model is chosen for future calculations of heat budget of lakes in Central Italy. [Italian] Nel presente rapporto viene analizzato il bilancio della radiazione infrarossa per i sistemi acquatici sulla base di alcune formule semi-empiriche. Vengono esaminati vari modelli della radiazione infrarossa atmosferica e i fattori che la influenzano. I flussi di radiazione infrarossa dall'atmosfera in condizioni di cielo sereno e nuvoloso vengono calcolati e confrontati. L'analisi dell'applicabilita' dei modelli considerati per il calcolo dei flussi di radiazione infrarossa in corrispondenza delle condizioni ambientali dell'Italia centrale suggerisce di scegliere il modello di Anderson per la valutazione del bilancio calorico die laghi vulcanici.
Detonation in supersonic radial outflow
Kasimov, Aslan R.
2014-11-07
We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.
Wave energy budget analysis in the Earth's radiation belts uncovers a missing energy
National Research Council Canada - National Science Library
Artemyev, A V; Agapitov, O V; Mourenas, D; Krasnoselskikh, V V; Mozer, F S
2015-01-01
.... Here, we report an analysis of 10-year Cluster data, statistically evaluating the full wave energy budget in the Earth's magnetosphere, revealing that a significant fraction of the energy corresponds...
High-power terahertz radiation from surface-emitted THz-wave parametric oscillator
Institute of Scientific and Technical Information of China (English)
Li Zhong-Yang; Yao Jian-Quan; Xu De-Gang; Zhong Kai; Wang Jing-Li; Bing Pi-Bin
2011-01-01
We report a pulsed surface-emitted THz-wave parametric oscillator based on two MgO:LiNbC>3 crystals pumped by a multi-longitudinal mode Q-switched Nd:YAG laser. Through varying the phase matching angle, the tunable THz wave output from 0.79 THz to 2.84 THz is realized. The maximum THz-wave output was 193.2 nJ/pulse at 1.84 THz as the pump power density was 212.5 MW/cm2, corresponding to the energy conversion efficiency of 2.42 ×10-6 and the photon conversion efficiency of about 0.037%. When the pump power density changed from 123 MW/cm2 to 148 MW/cm2 and 164 MW/cm2, the maximum output of the THz-wave moved to the high frequency band. We give a reasonable explanation for this phenomenon.
Super-Sonic Turbulence in the Perseus Molecular Cloud
Padoan, P; Billawala, Y N; Juvela, M; Nordlund, A A; Padoan, Paolo; Bally, John; Billawala, Youssef; Juvela, Mika; Nordlund, AAke
1999-01-01
We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra, computed solving the non-LTE radiative transfer problem for a model cloud obtained as solutions of the three dimensional magneto-hydrodynamic (MHD) equations. The model cloud is a randomly forced super-Alfvenic and highly super-sonic turbulent isothermal flow. The purpose of the present work is to test if idealized turbulent flows, without self-gravity, stellar radiation, stellar outflows, or any other effect of star formation, are inconsistent or not with statistical properties of star forming molecular clouds. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. Statistical properties of molecular clouds like Perseus are appropriately described by random super-sonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single prot...
2014-05-26
parametric subharmonic instability. 15. SUBJECT TERMS Stratified turbulent wakes, high Reynolds numbers, internal waves, nonlinear effects, harmonics, mean...beam and the potential for parametric subharmonic instability. In all these efforts, a uniform linear stratification was considered. A subset of our...found for all simulated waves. c) For sufficiently high-amplitude beams, a parametric subharmonic instability is observed after a long enough time
Particle Streak Velocimetry of Supersonic Nozzle Flows
Willits, J. D.; Pourpoint, T. L.
2016-01-01
A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.
Energy Technology Data Exchange (ETDEWEB)
Shukla, K. K.; Phanikumar, D. V.; Kumar, K. Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.
2015-10-01
In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.
Gravitational wave production by Hawking radiation from rotating primordial black holes
Dong, Ruifeng; Kinney, William H.; Stojkovic, Dejan
2016-10-01
In this paper we analyze in detail a rarely discussed question of gravity wave production from evaporating primordial black holes. These black holes emit gravitons which are, at classical level, registered as gravity waves. We use the latest constraints on their abundance, and calculate the power emitted in gravitons at the time of their evaporation. We then solve the coupled system of equations that gives us the evolution of the frequency and amplitude of gravity waves during the expansion of the universe. The spectrum of gravitational waves that can be detected today depends on multiple factors: fraction of the total energy density which was occupied by primordial black holes, the epoch in which they were formed, and quantities like their mass and angular momentum. We conclude that very small primordial black holes which evaporate before the big-bang nucleosynthesis emit gravitons whose spectral energy fraction today can be as large as 10-7.5. On the other hand, those which are massive enough so that they still exist now can yield a signal as high as 10-6.5. However, typical frequencies of the gravity waves from primordial black holes are still too high to be observed with the current and near future gravity wave observations.
Kitaoka, T.; Sumi, T.
1994-01-01
The sensitiveness of white coated thermistor sensors and non-sensitiveness of the gold coated over white thermistor sensors (which have been manufactured by a vacuum evaporation process) to long wave radiation were ascertained by some simple experiments in-room and also by analyses of some results of experimental soundings. From results of analyses on the temperature discrepancies caused by long wave radiation, the possibility to sound the atmospheric ozone partial pressure by a radiosonde equipped with two kinds of sensors, sensitive and non-sensitive to the long wave radiation was suggested, and the test results of the newly developed software for the deduction of ozone partial pressure in upper layers was also shown. However, it was found that the following is the necessary condition to realize the purpose. The sounding should be made by a radiosonde equipped with three sensors, instead of two, one being non-sensitive to the long wave radiation perfectly, and the other two also non-sensitive partially to the downward one, with two different angles of exposure upward. It is essential for the realization of the purpose to get two different values of temperature discrepancies simultaneously observed by the three sensors mentioned above and to avoid the troublesome effects of the upward long wave radiation.
Navier—Stokes Computations of the Supersonic Ejector—Diffuser System with a Second Throat
Institute of Scientific and Technical Information of China (English)
Heuy－DongKim; ToshiakiSetoguchi; 等
1999-01-01
The supersonic ejector-diffuser system with a second throat was simulated using CFD.An explicit finite volume scheme was applied to solve two-dimensional Navier-Stokes equations with standard κ-εturbulence model.The vacuum performance of the supersonic ejector-diffuser system was investigated by changing the ejector throat area ration and the operating pressure ratio.Two convergent-divergent nozzles with design Mach number of 2.11 and 3.41 were selected to give the supersonic operation of the ejector-diffuser system.The presence of a second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle.There were optimum values of the operating pressure ratio and ejector throat area ratio for the vacuum performance of the system to maximize.
Energy Technology Data Exchange (ETDEWEB)
Gan, Li, E-mail: ligan0001@gmail.com; Mousen, Cheng; Xiaokang, Li [College of Aerospace Science and Engineering, National University of Defense Technology, Changsha (China)
2014-03-15
In the laser intensity range that the laser supported detonation (LSD) wave can be maintained, dissociation, ionization and radiation take a substantial part of the incidence laser energy. There is little treatment on the phenomenon in the existing models, which brings obvious discrepancies between their predictions and the experiment results. Taking into account the impact of dissociation, ionization and radiation in the conservations of mass, momentum and energy, a modified LSD wave model is developed which fits the experimental data more effectively rather than the existing models. Taking into consideration the pressure decay of the normal and the radial rarefaction, the laser induced impulse that is delivered to the target surface is calculated in the air; and the dependencies of impulse performance on laser intensity, pulse width, ambient pressure and spot size are indicated. The results confirm that the dissociation is the pivotal factor of the appearance of the momentum coupling coefficient extremum. This study focuses on a more thorough understanding of LSD and the interaction between laser and matter.
Alvan, Lucie; Decressin, Thibaut
2013-01-01
Internal gravity waves (hereafter IGWs) are known as one of the candidates for explaining the angular velocity profile in the Sun and in solar-type main-sequence and evolved stars, due to their role in the transport of angular momentum. Our bringing concerns critical layers, a process poorly explored in stellar physics, defined as the location where the local relative frequency of a given wave to the rotational frequency of the fluid tends to zero (i.e that corresponds to co-rotation resonances). IGW propagate through stably-stratified radiative regions, where they extract or deposit angular momentum through two processes: radiative and viscous dampings and critical layers. Our goal is to obtain a complete picture of the effects of this latters. First, we expose a mathematical resolution of the equation of propagation for IGWs in adiabatic and non-adiabatic cases near critical layers. Then, the use of a dynamical stellar evolution code, which treats the secular transport of angular momentum, allows us to appl...
Li, Rui; Elson, Daniel S; Dunsby, Chris; Eckersley, Robert; Tang, Meng-Xing
2011-04-11
Ultrasound-modulated optical tomography (UOT) combines optical contrast with ultrasound spatial resolution and has great potential for soft tissue functional imaging. One current problem with this technique is the weak optical modulation signal, primarily due to strong optical scattering in diffuse media and minimal acoustically induced modulation. The acoustic radiation force (ARF) can create large particle displacements in tissue and has been shown to be able to improve optical modulation signals. However, shear wave propagation induced by the ARF can be a significant source of nonlocal optical modulation which may reduce UOT spatial resolution and contrast. In this paper, the time evolution of shear waves was examined on tissue mimicking-phantoms exposed to 5 MHz ultrasound and 532 nm optical radiation and measured with a CCD camera. It has been demonstrated that by generating an ARF with an acoustic burst and adjusting both the timing and the exposure time of the CCD measurement, optical contrast and spatial resolution can be improved by ~110% and ~40% respectively when using the ARF rather than 5 MHz ultrasound alone. Furthermore, it has been demonstrated that this technique simultaneously detects both optical and mechanical contrast in the medium and the optical and mechanical contrast can be distinguished by adjusting the CCD exposure time.
Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts
Yuri Shprits; A. Y. Drozdov; M. Spasojevic; A. C. Kellerman; M. E. Usanova; M. J. Engebretson; O. V. Agapitov; K. G. Orlova; I. S. Zhelavskaya; T. Raita; H. E. Spence; D. N. Baker; H. Zhu
2016-01-01
The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) di...
Radiation hazards of radio frequency waves on the early embryonic development of Zebrafish
Harkless, Ryan; Al-Quraishi, Muntather; Vagula, Mary C.
2014-06-01
With the growing use of wireless devices in almost all day-to-day activities, exposure to radio-frequency radiation has become an immediate health concern. It is imperative that the effects of such radiation not only on humans, but also on other organisms be well understood. In particular, it is critical to understand if RF radiation has any bearing on the gene expression during embryonic development, as this is a crucial and delicate phase for any organism. Owing to possible effects that RF radiation may have on gene expression, it is essential to explore the carcinogenic or teratogenic properties that it may show. This study observed the effects of RF radiation emitted from a cellular telephone on the embryonic development of zebra fish. The expression of the gene shha plays a key role in the early development of the fish. This gene has homologs in humans as well as in other model organisms. Additionally, several biomarkers indicative of cell stress were examined: including lactate dehydrogenase (LDH), superoxide dismutase (SOD), and lipid peroxidation (LPO). Results show a significant decrease in the expression of shha, a significant decrease in LDH activity. There was no significant increase in SOD and LPO activity. No morphological abnormalities were observed in the developing embryos. At present, these results indicate that exposure to cell phone radiation may have a suppressive effect on expression of shha in D. rerio, though such exposure does not appear to cause morphological detriments. More trials are underway to corroborate these results.
Towards the observation of Hawking radiation in Bose--Einstein condensates
Barcelo, C; Visser, M; Barcelo, Carlos; Liberati, Stefano; Visser, Matt
2001-01-01
Acoustic analogues of black holes (dumb holes) are generated when a supersonic fluid flow entrains sound waves and forms a trapped region from which sound cannot escape. The surface of no return, the acoustic horizon, is qualitatively very similar to the event horizon of a general relativity black hole. In particular Hawking radiation (a thermal bath of phonons with temperature proportional to the ``surface gravity'') is expected to occur. In this note we consider quasi-one-dimensional supersonic flow of a Bose--Einstein condensate (BEC) in a Laval nozzle (converging-diverging nozzle), with a view to finding which experimental settings could magnify this effect and provide an observable signal. We identify an experimentally plausible configuration with a Hawking temperature of order 70 n K; to be contrasted with a condensation temperature of the order of 90 n K.
30th International Symposium on Shock Waves
Sadot, Oren; Igra, Ozer
2017-01-01
These proceedings collect the papers presented at the 30th International Symposium on Shock Waves (ISSW30), which was held in Tel-Aviv Israel from July 19 to July 24, 2015. The Symposium was organized by Ortra Ltd. The ISSW30 focused on the state of knowledge of the following areas: Nozzle Flow, Supersonic and Hypersonic Flows with Shocks, Supersonic Jets, Chemical Kinetics, Chemical Reacting Flows, Detonation, Combustion, Ignition, Shock Wave Reflection and Interaction, Shock Wave Interaction with Obstacles, Shock Wave Interaction with Porous Media, Shock Wave Interaction with Granular Media, Shock Wave Interaction with Dusty Media, Plasma, Magnetohyrdrodynamics, Re-entry to Earth Atmosphere, Shock Waves in Rarefied Gases, Shock Waves in Condensed Matter (Solids and Liquids), Shock Waves in Dense Gases, Shock Wave Focusing, Richtmyer-Meshkov Instability, Shock Boundary Layer Interaction, Multiphase Flow, Blast Waves, Facilities, Flow Visualization, and Numerical Methods. The two volumes serve as a reference ...
Inan, U. S.; Chang, H. C.; Helliwell, R. A.; Imhof, W. L.; Reagan, J. B.; Walt, M.
1985-01-01
The temporal and spectral shape and the absolute flux level of particle pulses precipitated by a VLF transmitter are examined from a theoretical point of view. A test-particle model of the gyroresonant wave-particle interaction is applied to the parameters of the observed cases for calculating the precipitation characteristics. The temporal shapes of the precipitation pulses are found to be controlled (1) by the pitch angle dependence of the particle distribution near the edge of the loss cone and (2) by the multiple interaction of the particles with the waves due to significant atmospheric backscatter.
Observation of supersonic turbulent wakes by laser Fourier densitometry (LFD)
Gresillon, D.; Cabrit, B.; Bonnet, J. P.; Gemaux, G.
Laser Fourier Densitometry (LFD) is an optical method appropriate for turbulent flow observations. It uses the collective scattering of coherent light, by optical index inhomogeneities. The principle of this method is described. It provides a signal proportional to the space Fourier transform amplitude of index distribution for a wavevector k defined by the optical arrangement. For a fluctuating flow, this amplitude is a function of time, and its frequency spectrum can be observed. The spectrum shape provides elementary parameters of the flow, such as: direction, modulus of mean velocity, and local temperature. It also provides means to distinguish different kinds of density fluctuations, such as convected inhomogeneities, or acoustic waves. The respective level of these different fluctuations types can be measured, as well as their power scale-law and absolute level. A compact optical bench has been set on a nozzle flow. The results of measurements performed in two supersonic wake configurations are presented, for Mach numbers of 1.6 and 4.2. These include density fluctuation spectra in supersonic flows, acoustic waves, variations with position, and comparison with hot wire anemometry.
Directory of Open Access Journals (Sweden)
M. Hata
2001-01-01
Full Text Available A large 10 cm per day diastrophism of the crust was experienced between Kozu and Niijima Islands during the Izu-Miyake volcanic eruptions in Japan on 3–4 August 2000. The diastrophism was detected through GPS observation. The seismometer also complied a swarm of earth-quakes at this time. Our electromagnetic wave data, observed at 223 Hz at the Omaezaki site, about 110 km and 150 km northwest of the Kozu and Miyake Islands, respectively, detected a clear, anomalous magnetic flux radiation that corresponded well with the seismographic and GPS data. Similar radiation was received for about one week preceding the big volcanic eruption that occurred on 18 August 2000. These observations indicate that the electromagnetic wave monitoring system has the potential to monitor and/or warn of volcanic activity, and the facts disclose one of the mysterious radiation mechanisms of electromagnetic waves emitted from the Earth.
Black carbon fractal morphology and short-wave radiative impact: a modelling study
Directory of Open Access Journals (Sweden)
M. Kahnert
2011-11-01
Full Text Available We investigate the impact of the morphological properties of freshly emitted black carbon aerosols on optical properties and on radiative forcing. To this end, we model the optical properties of fractal black carbon aggregates by use of numerically exact solutions to Maxwell's equations within a spectral range from the UVC to the mid-IR. The results are coupled to radiative transfer computations, in which we consider six realistic case studies representing different atmospheric pollution conditions and surface albedos. The spectrally integrated radiative impacts of black carbon are compared for two different fractal morphologies, which brace the range of recently reported experimental observations of black carbon fractal structures. We also gauge our results by performing corresponding calculations based on the homogeneous sphere approximation, which is commonly employed in climate models. We find that at top of atmosphere the aggregate models yield radiative impacts that can be as much as 2 times higher than those based on the homogeneous sphere approximation. An aggregate model with a low fractal dimension can predict a radiative impact that is higher than that obtained with a high fractal dimension by a factor ranging between 1.1–1.6. Although the lower end of this scale seems like a rather small effect, a closer analysis reveals that the single scattering optical properties of more compact and more lacy aggregates differ considerably. In radiative flux computations there can be a partial cancellation due to the opposing effects of different error sources. However, this cancellation effect can strongly depend on atmospheric conditions and is therefore quite unpredictable. We conclude that the fractal morphology of black carbon aerosols and their fractal parameters can have a profound impact on their radiative forcing effect, and that the use of the homogeneous sphere model introduces unacceptably high biases in radiative impact studies. We
Pashchina, A. S.; Efimov, A. V.; Chinnov, V. F.; Ageev, A. G.
2017-07-01
Results are presented from spectroscopic studies of the initial segment of a supersonic plasma jet generated by a pulsed capillary discharge with an ablative carbon-containing polymer wall. Specific features of the spatial distributions of the electron density and intensities of spectral components caused, in particular, by the high electron temperature in the central zone, much exceeding the normal temperature, as well as by the high nonisobaricity of the initial segment of the supersonic jet, are revealed. Measurements of the radiative properties of the hot jet core (the intensity and profile of the Hα and Hβ Balmer lines and the relative intensities of C II lines) with high temporal (1-50 μs) and spatial (30-50 μm) resolutions made it possible to determine general features of the pressure and temperature distributions near the central shock. The presence of molecular components exhibiting their emission properties at the periphery of the plasma jet allowed the authors to estimate the parameters of the plasma in the jet region where "detached" shock waves form.
Pdf prediction of supersonic hydrogen flames
Eifler, P.; Kollmann, W.
1993-01-01
A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.
Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo; Bernal, Miguel; Chen, Shigao; Greenleaf, James F
2015-10-01
Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.
Nonlinear Acoustics in a Dispersive Continuum: Random Waves, Radiation Pressure, and Quantum Noise.
1983-03-01
Karpman , Nonlinear Waves in Dispersive Media, Pergamon Press, New York, 1975, p. 76. 26. R. Beyers, Nonlinear Acoustics, U.S. Government Printing...20301 U. S. Army Research nffice 2 copies Box 12211 Research Triangle Park tlorth Carolina 27709 Defense Technical Information Center 12 copies Cameron
Black carbon fractal morphology and short-wave radiative impact: a modelling study
Directory of Open Access Journals (Sweden)
M. Kahnert
2011-08-01
Full Text Available We investigate the impact of the morphological properties of freshly emitted black carbon aerosols on optical properties and on radiative forcing. To this end, we model the optical properties of fractal black carbon aggregates by use of numerically exact solutions to Maxwell's equations within a spectral range from the UVC to the mid-IR. The results are coupled to radiative transfer computations, in which we consider six realistic case studies representing different atmospheric pollution conditions and surface albedos. The spectrally integrated radiative impacts of black carbon are compared for two different fractal morphologies, which brace the range of recently reported experimental observations of black carbon fractal structures. We also gauge our results by performing corresponding calculations based on the homogeneous sphere approximation, which is commonly employed in climate models. We find that at top of atmosphere the aggregate models yield radiative impacts that can be as much as 2 times higher than those based on the homogeneous sphere approximation. An aggregate model with a low fractal dimension can predict a radiative impact that is higher than that obtained with a high fractal dimension by a factor ranging between 1.1–1.6. Although the lower end of this scale seems like a rather small effect, a closer analysis reveals that the single scattering optical properties of more compact and more lacy aggregates differ considerably. In radiative flux computations there can be a partial cancellation due to the opposing effects of differences in the optical cross sections and asymmetry parameters. However, this cancellation effect can strongly depend on atmospheric conditions and is therefore quite unpredictable. We conclude that the fractal morphology of black carbon aerosols and their fractal parameters can have a profound impact on their radiative forcing effect, and that the use of the homogeneous sphere model introduces unacceptably
Aranha, Rafael Fernandes; Soares, Ivano Damião; Tonini, Eduardo Valentino
2016-09-01
We show that gravitational wave radiative patterns from a point test particle falling radially into a Schwarzschild black hole, as derived by Davis, Ruffini, Press and Price [M. Davis et al., Phys. Rev. Lett. 27, 1466 (1971).], are present in the nonlinear regime of head-on mergers of black holes. We use the Bondi-Sachs characteristic formulation and express the gravitational wave luminosity and the net momentum flux in terms of the news functions. We then evaluate the (-2 )-spin-weighted ℓ-multipole decomposition of these quantities via exact expressions valid in the nonlinear regime and defined at future null infinity. Our treatment is made in the realm of Robinson-Trautman dynamics, with characteristic initial data corresponding to the head-on merger of two black holes. We consider mass ratios in the range 0.01 ≤α ≤1 . We obtain the exponential decay with ℓ of the total energy contributed by each multipole ℓ, with an accurate linear correlation in the log-linear plot of the points up to α ≃0.7 . Above this mass ratio the contribution of the odd modes to the energy decreases faster than that of the even modes, leading to the breaking of the linear correlation; for α =1 the energy in all odd modes is zero. The dominant contribution to the total radiated energy comes from the quadrupole mode ℓ=2 corresponding, for instance, to about ≃84 % for small mass ratios up to ≃99.8 % for the limit case α =1 . The total rescaled radiated energy EWtotal/m0α2 decreases linearly with decreasing α , yielding for the point particle limit α →0 the value ≃0.0484 , about 5 times larger than the result of Davis et al. [1]. The mode decomposition of the net momentum flux and of the associated gravitational wave impulses results in an adjacent-even-odd mode-mixing pattern. We obtain that the impulses contributed by each (ℓ,ℓ+1 ) mixed mode also accurately satisfy the exponential decay with ℓ, for the whole mass ratio domain considered, 0.01 ≤α 0
Energy Technology Data Exchange (ETDEWEB)
Sugimoto, Norihiko, E-mail: nori@phys-h.keio.ac.jp [Department of Physics, Research and Education Center for Natural Sciences, Keio University, 4-1-1 Hiyoshi, Kouhoku-ku, Yokohama, Kanagawa 223-8521 (Japan)
2015-12-15
Inertia-gravity wave radiation from the merging of two co-rotating vortices is investigated numerically in a rotating shallow water system in order to focus on cyclone–anticyclone asymmetry at different values of the Rossby number (Ro). A numerical study is conducted on a model using a spectral method in an unbounded domain to estimate the gravity wave flux with high accuracy. Continuous gravity wave radiation is observed in three stages of vortical flows: co-rotating of the vortices, merging of the vortices, and unsteady motion of the merged vortex. A cyclone–anticyclone asymmetry appears at all stages at smaller Ro (≤20). Gravity waves from anticyclones are always larger than those from cyclones and have a local maximum at smaller Ro (∼2) compared with that for an idealized case of a co-rotating vortex pair with a constant rotation rate. The source originating in the Coriolis acceleration has a key role in cyclone–anticyclone asymmetry in gravity waves. An additional important factor is that at later stages, the merged axisymmetric anticyclone rotates faster than the elliptical cyclone due to the effect of the Rossby deformation radius, since a rotation rate higher than the inertial cutoff frequency is required to radiate gravity waves.
Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.
2013-04-01
A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.
Impact of errors in short wave radiation and its attenuation on modeled upper ocean heat content
2017-04-12
PAR)] and infrared (IR) wavelengths (700 to 2500 nm). The IR is usually absorbed in the upper few meters of water. However, PAR can penetrate below 50 m...shortwave calculation con- siders absorption by water vapor and ozone . Two types of clouds are considered in the radiative transfer calculation
On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems
Sallam, Mai O.
2016-12-19
In this paper, we present a micromachined dipole antenna with parasitic radiator. The antenna is designed for operation at 60 GHz. It consists of two I
Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.
2007-10-01
The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at
Directory of Open Access Journals (Sweden)
Yan Yang
Full Text Available A supersonic separator has been introduced to remove water vapour from natural gas. The mechanisms of the upstream and downstream influences are not well understood for various flow conditions from the wellhead and the back pipelines. We used a computational model to investigate the effect of the inlet and outlet flow conditions on the supersonic separation process. We found that the shock wave was sensitive to the inlet or back pressure compared to the inlet temperature. The shock position shifted forward with a higher inlet or back pressure. It indicated that an increasing inlet pressure declined the pressure recovery capacity. Furthermore, the shock wave moved out of the diffuser when the ratio of the back pressure to the inlet one was greater than 0.75, in which the state of the low pressure and temperature was destroyed, resulting in the re-evaporation of the condensed liquids. Natural gas would be the subsonic flows in the whole supersonic separator, if the mass flow rate was less than the design value, and it could not reach the low pressure and temperature for the condensation and separation of the water vapor. These results suggested a guidance mechanism for natural gas supersonic separation in various flow conditions.
Effects of sonication radiation on oil recovery by ultrasonic waves stimulated water-flooding.
Mohammadian, Erfan; Junin, Radzuan; Rahmani, Omeid; Idris, Ahmad Kamal
2013-02-01
Due to partial understanding of mechanisms involved in application of ultrasonic waves as enhanced oil recovery method, series of straight (normal), and ultrasonic stimulated water-flooding experiments were conducted on a long unconsolidated sand pack using ultrasonic transducers. Kerosene, vaseline, and SAE-10 (engine oil) were used as non-wet phase in the system. In addition, a series of fluid flow and temperature rise experiments were conducted using ultrasonic bath in order to enhance the understanding about contributing mechanisms. 3-16% increase in the recovery of water-flooding was observed. Emulsification, viscosity reduction, and cavitation were identified as contributing mechanisms. The findings of this study are expected to increase the insight to involving mechanisms which lead to improving the recovery of oil as a result of application of ultrasound waves.
Wave scattering and radiation by a dual porous-wall attached floating body system
Qiao, Weiliang; Duan, Wenqi; Ma, Laihao
2017-05-01
In the present study, an analytical solution of a sinusoidal wave propagating through a dual porous-wall attached floating body system is presented with application of the two-dimensional linear potential theory. Two sets of orthogonal Eigen functions are utilized to determine the velocity potential and associated unknown coefficients in each subdomain. The reflection coefficients and transmission coefficients as well as the net hydrodynamic force along surge, heave and pitch are also formulated. The results show that the wave reflection and transmission effects are depended heavily on the relative water depth and the porous properties. Also, it can be found that the porous properties play an important role for the pitch forces acting on this system, however, the influences on the surge and heave forces are less important.
2014-05-26
primary beam and the potential for parametric subharmonic instability. In all these efforts, a uniform linear stratification was considered. A subset of...243) is found for all simulated waves. c) For sufficiently high-amplitude beams, a parametric subharmonic instability is observed after a long... subharmonic instability (PSI) manifests itself in the form of more horizontal like isophase lines at //7>50. (b) jcz-contour plot of horizontal velocity
Analysis of teleseismic body waves radiated from the Loma Prieta Earthquake
Langston, C. A.; Furlong, K. P.; Vogfjord, K. S.; Clouser, R. H.; Ammon, C. J.
Broad-band data from IRIS and ORFEUS data centers, the ARCESS array and SCP station are analyzed to infer fault plane geometry and the character of rupture during the October 17, 1989, Loma Prieta earthquake. Interference of P and sP seen in the P wave forms is consistent with the 18 km source depth inferred from local observations. A minimum source depth of 14 km is inferred from interpretation of the S wave arrival time, relative to instrument trigger, using horizontal strong motion accelerations observed at Corralitos, California. P, sP, S and sS polarities and relative amplitudes are used in a comprehensive grid search to infer that oblique right-lateral faulting occurred on a steeply dipping (56°-60°) section of the San Andreas fault with an equal amount of thrust component consistent with aftershock locations. A suite of point moment tensor inversions for source depths spanning the observed depth of aftershock hypocenters yields similar mechanisms. The best moment tensor in terms of wave form fit and minimum non-double couple component occurs for a source depth of 8 km, substantially shallower than the locally inferred hypocenter. Seismic moment for this model is 2.3 × 1026 dyn-cm. The slow growth of the P displacement pulse with time and impulsive sP suggests a working model for fault rapture where rupture initiates at 18 km and propagates upwards and outwards along the fault. The P wave forms show the effects of variations in rupture along the plane through observation of a cascade of successively larger subevents.
Shchurova, L Yu; Namiot, V A; Sarkisyan, D R
2015-01-01
Coherent sources of electromagnetic waves in the terahertz frequency range are very promising for various applications, including biology and medicine. In this paper we propose a scheme of a compact terahertz source, in which terahertz radiation is generated due to effective interaction of electrons in a quantum well with an electromagnetic wave of a corrugated waveguide. We have shown that the generation of electromagnetic waves with a frequency of 1012 sec(-1) and an output power of up to 25. mW is possible in the proposed scheme.
Resonance oscillation of radiative shock waves in accretion disks around compact objects
Molteni, D; Chakrabarti, S K; Molteni, Diego M; Chakrabarti, Sandip K
1995-01-01
We extend our previous numerical simulation of accretion disks with shock waves when cooling effects are also included. We consider bremsstrahlung and other power law processes: \\Lambda \\propto T^{\\alpha} \\rho^2 to mimic cooling in our simulation. We employ {\\it Smoothed Particle Hydrodynamics} technique as in the past. We observe that for a given angular momentum of the flow, the shock wave undergoes a steady, radial oscillation with the period is roughly equal to the cooling time. Oscillations seem to take place when the disk and cooling parameters (i.e., accretion rate, cooling process) are such that the infall time from shock is of the same order as the post-shock cooling time. The amplitude of oscillation could be up to ten percent of the distance of the shock wave from the black hole when the black hole is accreting. When the accretion is impossible due to the centrifugal barrier, the amplitude variation could be much larger. Due to the oscillation, the energy output from the disk is also seen to vary q...
Directory of Open Access Journals (Sweden)
N. S. Ginzburg
2015-12-01
Full Text Available A coaxial Ka-band backward wave oscillator with a two-dimensional Bragg structure located at the output of the interaction space has been studied. This structure has a double-period corrugation and provides azimuthal electromagnetic energy fluxes, which act on the synchronized radiation of an oversized tubular electron beam. Proof-of-principle experiments were conducted based on the Saturn thermionic accelerator (300 keV/200 A/2 μs. In accordance with simulations, narrow-band generation was obtained at a frequency of 30 GHz and a power level of 1.5–2 MW. As a result, the possibility of using a two-dimensional distributed feedback mechanism in oscillators of the Cherenkov type has been demonstrated.
Ag-Ag2S/reduced graphene oxide hybrids used as long-wave UV radiation emitting nanocomposites
Li, Wenyao; Xu, Ruoyu; Ling, Min; He, Guanjie
2017-10-01
We report a facile thermal decomposition approach to synthesize Ag-Ag2S/reduced graphene oxide (Ag-Ag2S/rGO), the Ag-Ag2S nanoparticles uniformly dispersed on reduced graphene oxide with diameters of 10-20 nm. The photoluminescence spectra of Ag-Ag2S/rGO showed two obvious emission peaks at 327 and 339 nm with the excitation wavelength at 287 nm. Compared with Ag-Ag2S heterostructured clusters with two peaks at 407 and 430 nm, it showed a big blue shift and higher intensity, which makes it a novel candidate for long-wave UV radiation emitting nanocomposite.
Pritchett, P. L.; Schriver, D.; Ashour-Abdalla, M.
1991-01-01
A one-dimensional electromagnetic particle simulation model is constructed to study the excitation of whistler waves in the presence of a cold plasma cloud for conditions representative of those after the release of lithium in the inner plasma sheet during the Combined Release and Radiation Effect Satellite mission. The results indicate that a standing-wave pattern with discrete wave frequencies is formed within the cloud. The magnetic wave amplitude inside the cloud, which is limited by quasi-linear diffusion, is of the order of several nanoteslas. Assuming a magnetospheric loss cone of 5 deg, the observed pitch angle diffusion produced by the whistler waves is sufficient to put the electrons on strong diffusion.
Experiments on free and impinging supersonic microjets
Energy Technology Data Exchange (ETDEWEB)
Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)
2008-05-15
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)
Experiments on free and impinging supersonic microjets
Phalnikar, K. A.; Kumar, R.; Alvi, F. S.
2008-05-01
The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.
Controlled Studies of Whistler Wave Interactions with Energetic Particles in Radiation Belts
2009-07-01
unprecedented. During experiments conducted with the S-81 satellite, Imhof et al [1983] observed the controlled precipitation of energetic electrons...precipitating electrons with E > 45 keV were detected in conjunction with VLF radiation bursts from the Siple station in Antarctica [ Imhof et al...accelerated by HF excited instabilities, J. Atmos. Terr. Phys., 44, 1089, 1982. Imhof , W. L., J. B. Reagan, H. D. Voss, E. E. Gaines, D. W. Datlowe, J
Axis retrieval of a supersonic source in a reverberant space using time reversal
Mahenc, Guillaume; Éric Bavu; Hamery, Pascal; Hengy, Sébastien; Melon, Manuel
2017-08-01
Localizing the axis of the Mach cone created by the supersonic displacement of a bullet in a reverberant environment is a challenging task, not only because of the high velocity of the moving source, but also because of the multiple wave reflections off of the walls. Although time reversal (TR) techniques allow static acoustic source localization in a reverberant space, they have not been explored yet on non stationary waves caused by supersonic displacements in urban canyons. The acoustic wave produced by a supersonic projectile has a conical wavefront and a N-shaped acoustic pressure signature. In this paper, this acoustic wave is reproduced using a line array of point-like sources (simulations) and loudspeakers (experiments). During the propagation of this conical wave in an urban canyon, the resulting pressure signals are measured using a time reversal array flush mounted into the ground. These acoustic signals allow to automatically retrieve with a high accuracy the location of the Mach cone axis using time reversal techniques. This inverse problem is solved using the maximization of a fourth-order statistical criterion of the backpropagated pressures. This criterion allows to estimate the intersections between the Mach cone axis and several vertical planes in the urban canyon. These estimations are then fitted to a 3D trajectory with a robust three dimensional interpolation technique based on the Random Sample Consensus (RANSAC) algorithm. This method allows to automatically retrieve the axis of the supersonic source with an angular accuracy of less than 0.5° and a misdistance of 0.5 cm for both numerical simulations and experimental measurements.
Directory of Open Access Journals (Sweden)
Shilei Liu
2017-07-01
Full Text Available Acoustic standing waves have been widely used in trapping, patterning, and manipulating particles, whereas one barrier remains: the lack of understanding of force conditions on particles which mainly include acoustic radiation force (ARF and acoustic streaming (AS. In this paper, force conditions on micrometer size polystyrene microspheres in acoustic standing wave fields were investigated. The COMSOL® Mutiphysics particle tracing module was used to numerically simulate force conditions on various particles as a function of time. The velocity of particle movement was experimentally measured using particle imaging velocimetry (PIV. Through experimental and numerical simulation, the functions of ARF and AS in trapping and patterning were analyzed. It is shown that ARF is dominant in trapping and patterning large particles while the impact of AS increases rapidly with decreasing particle size. The combination of using both ARF and AS for medium size particles can obtain different patterns with only using ARF. Findings of the present study will aid the design of acoustic-driven microfluidic devices to increase the diversity of particle patterning.
Agapitov, Oleksiy; Drake, James; Mozer, Forrest
2016-04-01
Huge numbers of different nonlinear structures (double layers, electron holes, non-linear whistlers, etc. referred to as Time Domain Structures - TDS) have been observed by the electric field experiment on board the Van Allen Probes. A large part of the observed non-linear structures are associated with whistler waves and some of them can be directly driven by whistlers. The parameters favorable for the generation of TDS were studied experimentally as well as making use of 2-D particle-in-cell (PIC) simulations for the system with inhomogeneous magnetic field. It is shown that an outward propagating front of whistlers and hot electrons amplifies oblique whistlers which collapse into regions of intense parallel electric field with properties consistent with recent observations of TDS from the Van Allen Probe satellites. Oblique whistlers seed the parallel electric fields that are driven by the beams. The resulting parallel electric fields trap and heat the precipitating electrons. These electrons drive spikes of intense parallel electric field with characteristics similar to the TDSs seen in the VAP data. The decoupling of the whistler wave and the nonlinear electrostatic component is shown in PIC simulation in the inhomogeneous magnetic field system. These effects are observed by the Van Allen Probes in the radiation belts. The precipitating hot electrons propagate away from the source region in intense bunches rather than as a smooth flux.
Mitri, F G
2017-02-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure standing waves cases, the aspect ratio (i.e., the ratio of the major axis over the minor axis of the spheroid), the half-cone angle and order of the Bessel vortex beam, as well as the dimensionless size parameter. A generalized expression for the radiation force function is derived for cases encompassing the progressive, standing and quasi-standing waves of Bessel vortex beams. This expression can be reduced to other types of beams/waves such as the zeroth-order Bessel non-vortex beam or the infinite plane wave case by appropriate selection of the beam parameters. The results for progressive waves reveal a tractor beam behavior, characterized by the emergence of an attractive pulling force acting in opposite direction of wave propagation. Moreover, the transition to the quasi-standing and pure standing wave cases shows the acoustical tweezers behavior in dual-beam Bessel vortex beams. Applications in acoustic levitation, particle manipulation and acousto
Jakubczyk, Tomasz; Delmonte, Valentin; Koperski, Maciej; Nogajewski, Karol; Faugeras, Clément; Langbein, Wolfgang; Potemski, Marek; Kasprzak, Jacek
2016-09-14
By implementing four-wave mixing (FWM) microspectroscopy, we measure coherence and population dynamics of the exciton transitions in monolayers of MoSe2. We reveal their dephasing times T2 and radiative lifetime T1 in a subpicosecond (ps) range, approaching T2 = 2T1 and thus indicating radiatively limited dephasing at a temperature of 6 K. We elucidate the dephasing mechanisms by varying the temperature and by probing various locations on the flake exhibiting a different local disorder. At the nanosecond range, we observe the residual FWM produced by the incoherent excitons, which initially disperse toward the dark states but then relax back to the optically active states within the light cone. By introducing polarization-resolved excitation, we infer intervalley exciton dynamics, revealing an initial polarization degree of around 30%, constant during the initial subpicosecond decay, followed by the depolarization on a picosecond time scale. The FWM hyperspectral imaging reveals the doped and undoped areas of the sample, allowing us to investigate the neutral exciton, the charged one, or both transitions at the same time. In the latter, we observe the exciton-trion beating in the coherence evolution indicating their coherent coupling.
Vishwakarma, J. P.; Nath, G.
2012-01-01
The propagation of shock waves in a rotational axisymmetric dusty gas with heat conduction and radiation heat flux, which has a variable azimuthally fluid velocity together with a variable axial fluid velocity, is investigated. The dusty gas is assumed to be a mixture of non-ideal (or perfect) gas and small solid particles, in which solid particles are continuously distributed. It is assumed that the equilibrium flow-condition is maintained and variable energy input is continuously supplied by the piston (or inner expanding surface). The fluid velocities in the ambient medium are assume to be vary and obey power laws. The density of the ambient medium is assumed to be constant, the heat conduction is express in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. In order to obtain the similarity solutions the angular velocity of the ambient medium is assume to be decreasing as the distance from the axis increases. The effects of the variation of the heat transfer parameter and non-idealness of the gas in the mixture are investigated. The effects of an increase in (i) the mass concentration of solid particles in the mixture and (ii) the ratio of the density of solid particles to the initial density of the gas on the flow variables are also investigated.
Vishwakarma, J. P.; Nath, G.
2010-04-01
A self-similar solution for the propagation of a cylindrical shock wave in a dusty gas with heat conduction and radiation heat flux, which is rotating about the axis of symmetry, is investigated. The shock is assumed to be driven out by a piston (an inner expanding surface) and the dusty gas is assumed to be a mixture of non-ideal gas and small solid particles. The density of the ambient medium is assumed to be constant. The heat conduction is expressed in terms of Fourier's law and radiation is considered to be of diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. Similarity solutions are obtained, and the effects of variation of the parameter of non-idealness of the gas in the mixture, the mass concentration of solid particles and the ratio of density of solid particles to the initial density of the gas are investigated.
Ryder, N. C.; Hamilton, P.; Huffman, B. T.; Teng, P. K.; Weidberg, A. R.; Issever, C.
2011-10-01
High Luminosity LHC (HL-LHC) Inner Tracker designs may include the sharing of Timing, Trigger and Control (TTC) signals between several tracker modules. This is possible because the highest frequency signals are common to all modules. Such designs are an attractive option because they reduce the number of optical links required and hence the cost. These designs will require optical signal splitters that are radiation hard up to high doses and capable of operating in cold temperatures. Optical splitters are available as either fused-fibre splitters or Planar Light-wave Circuit (PLC) splitters. PLC splitters are preferable because they are smaller than fused-fibre splitters. A selection of PLC splitters from different manufacturers and of two different technologies (silica and glass based) have been tested for radiation hardness up to a dose of 500 kGy(Si) and for temperature stability. All the tested splitters displayed small increases in insertion losses ( technology would require further testing at a lower, more realistic, dose to also be considered as a potential component for HL-LHC upgrade designs.
Ma, Ding; Kuang, Zhiming
2011-11-01
The vertical distribution of radiative heating affects the moist static energy budget and potentially the maintenance and propagation of the Madden-Julian Oscillation (MJO). This paper uses CloudSat data to examine the radiative heating climatology in the tropics and the vertical structure of its modulation by the MJO and convectively coupled Kelvin Waves (KWs). Composites of active regions of the MJO and KW both show positive radiative heating anomaly in the middle and lower troposphere and slightly negative radiative heating anomaly in upper troposphere. Such bottom-heavy profiles can help to strengthen the MJO while weaken the KWs. Another finding is that cloud condensate anomalies associated with the MJO are significantly more bottom-heavy than those of the KWs, while the radiative heating anomalies associated with the MJO are only very slightly more bottom-heavy.
Nonlinear vibration and radiation from a panel with transition to chaos induced by acoustic waves
Maestrello, Lucio; Frendi, Abdelkader; Brown, Donald E.
1992-01-01
The dynamic response of an aircraft panel forced at resonance and off-resonance by plane acoustic waves at normal incidence is investigated experimentally and numerically. Linear, nonlinear (period doubling) and chaotic responses are obtained by increasing the sound pressure level of the excitation. The response time history is sensitive to the input level and to the frequency of excitation. The change in response behavior is due to a change in input conditions, triggered either naturally or by modulation of the bandwidth of the incident waves. Off-resonance, bifurcation is diffused and difficult to maintain, thus the panel response drifts into a linear behavior. The acoustic pressure emanated by the panel is either linear or nonlinear as is the vibration response. The nonlinear effects accumulate during the propagation with distance. Results are also obtained on the control of the panel response using damping tape on aluminum panel and using a graphite epoxy panel having the same size and weight. Good agreement is obtained between the experimental and numerical results.
Asymmetric radiation of seismic waves from an atoll: nuclear tests in French Polynesia
Weber, Michael; Wicks, Charles W.; Krüger, Frank; Jahnke, Gunnar; Schlittenhardt, Jörg
1998-01-01
Seismic records of nuclear tests detonated in the Mururoa Atoll in French Polynesia show large unpredicted arrivals 2.2 and 4.5 seconds (X1 and X2) after the P-wave at the Australian Warramunga Array. These arrivals are not observed at the Canadian Yellowknife Array. X1 and X2 are also absent on Warramunga Array recordings of tests carried out at the Fangataufa Atoll situated 40 km SSE of Mururoa. Array analysis shows that X1 and X2 are produced within the source area. The layered crustal structure of the atoll, significant local inhomogeneities, and focusing effects due to the elongated shape and the steep flanks of the Mururoa Atoll are most likely responsible for X1 and X2. The form of Mururoa (28 × 10 km) and its East-West orientation is due to its location on the Austral Fracture Zone (AFZ). The Fangataufa Atoll on the other hand is almost circular (10 km diameter) and is unaffected by the dynamics along the AFZ. Our observations demonstrate that complicated structures in the source area can significantly alter the wave field at teleseismic distances and produce a large magnitude (mb) bias. A better understanding of the exact cause of these unusual seismic observations will only become possible, if the coordinates of the tests and information on the detailed 3-D structure of the atolls are released.
Guided wave radiation from a point source in the proximity of a pipe bend
Brath, A. J.; Simonetti, F.; Nagy, P. B.; Instanes, G.
2014-02-01
Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-D elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8" diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.
Density convection near radiating ICRF antennas and its effect on the coupling of lower hybrid waves
Energy Technology Data Exchange (ETDEWEB)
Ekedahl, A.; Colas, L.; Beaumont, B.; Bibet, Ph.; Bremond, S.; Kazarian, F. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Mayoral, M.L.; Mailloux, J. [Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, OX (United Kingdom); Noterdaeme, J.M. [Max-Planck-Institut fuer Plasmaphysik, Euratom Association, Garching (Germany)]|[Gent University, EESA Dept. (Belgium); Tuccillo, A.A. [Associazione Euratom-ENEA sulla Fusione, CR Frascati, Rome (Italy)
2003-07-01
Combined operation of lower hybrid (LH) and Ion Cyclotron Resonance Frequency (ICRF) waves can result in a degradation of the LH wave coupling, as observed both in the Tore-Supra and Jet tokamaks. The reflection coefficient on the part of the LH launcher magnetically connected to the powered ICRF antenna increases, suggesting a local decrease in the electron density in the connecting flux tubes. This has been confirmed by Langmuir probe measurements on the LH launchers in the latest Tore-Supra experiments. Moreover, recent experiments in Jet indicate that the LH coupling degradation depends on the ICRF power and its launched k{sub /} spectrum. The 2D density distribution around the Tore-Supra ICRF antennas has been modelled with the CELLS-code, balancing parallel losses with diffusive transport and sheath induced ExB convection, obtained from RF field mapping using the ICANT-code. The calculations are in qualitative agreement with the experimental observations, i.e. density depletion is obtained, localised mainly in the antenna shadow, and dependent on ICRF power and antenna spectrum. (authors)
Barausse, Enrico; Yunes, Nicolás; Chamberlain, Katie
2016-06-17
The aLIGO detection of the black-hole binary GW150914 opens a new era for probing extreme gravity. Many gravity theories predict the emission of dipole gravitational radiation by binaries. This is excluded to high accuracy in binary pulsars, but entire classes of theories predict this effect predominantly (or only) in binaries involving black holes. Joint observations of GW150914-like systems by aLIGO and eLISA will improve bounds on dipole emission from black-hole binaries by 6 orders of magnitude relative to current constraints, provided that eLISA is not dramatically descoped.
A COMBINED FULL-WAVE BCG-FFT METHOD FOR RADIATION OF MICROSTRIP ANTENNA ARRAYS
Institute of Scientific and Technical Information of China (English)
Zhang Hou; Peng Hongli; Liu Qizhong; Yin Yingzeng; Gong Shuxi
2001-01-01
A method of combining BiConjugate Gradient(BCG) with Fast Fourier Transform(FFT) to analyze the radiation of microstrip antenna arrays is presented, where the spatially discrete BCG-FFT for analyzing microstrip structure is used and the del operators on Green's functions are transferred from the singular kernel to the expansion and testing functions. The resultant equations are solved by using BCG method in which the matrix-vector product is evaluated efficiently with FFT. The calculated patterns are in good agreement with the measured data.
Energy Technology Data Exchange (ETDEWEB)
Choi, C.-R., E-mail: crchoi@kaist.ac.kr; Dokgo, K.; Min, K.-W. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Woo, M.-H. [National Fusion Research Institute, Daejeon 305-333 (Korea, Republic of); Choi, E.-J. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); NASA Goddard Space Flight Center, Code 674, Greenbelt, Maryland 20770 (United States); Hwang, J.; Park, Y.-D. [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Lee, D.-Y. [Department of Astronomy and Space Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)
2015-06-15
The diffusion of electrons via a linearly polarized, growing electromagnetic (EM) wave propagating along a uniform magnetic field is investigated. The diffusion of electrons that interact with the growing EM wave is investigated through the autocorrelation function of the parallel electron acceleration in several tens of electron gyration timescales, which is a relatively short time compared with the bounce time of electrons between two mirror points in Earth's radiation belts. Furthermore, the pitch-angle diffusion coefficient is derived for the resonant and non-resonant electrons, and the effect of the wave growth on the electron diffusion is discussed. The results can be applied to other problems related to local acceleration or the heating of electrons in space plasmas, such as in the radiation belts.
Cherenkov radiation in a surface wave accelerator based on silicon carbide
Wang, Tianhong; Khudik, Vladimir; Shvets, Gennady
2016-10-01
We report on our theoretical investigations of Cherenkov-type emission of surface phonon polaritons (SPPs) by relativistic electron bunches. The polaritons are confined by a planar waveguide comprised of two SiC slabs separated by an air gap. The SPPs are generated in the spectral range known as the reststrahlen band, where the dielectric permittivity of SiC is negative. Two surface modes of the radiation are analyzed: the longitudinal (accelerating) and the transverse (deflecting) ones. Both form Cherenkov cones that are different in the magnitude of the cone angle and the central frequency. However, both exhibits rapid spatial oscillations and beats behind the moving charge. Moreover, the longitudinal mode forms a reversed Cherenkov radiation cone due the negative group velocity for sufficiently small air gaps, but the transverse mode does not. The wakefield acceleration of electron beam inside the structure is also studied. Transverse instabilities and BBU effects can be suppressed by flat driver beam, meanwhile the longitudinal mode can support accelerating fields >1 GeV.
Mitri, F G
2016-01-01
Analytical expressions for the axial and transverse acoustic radiation forces as well as the radiation torque per length are derived for a rigid elliptical cylinder placed arbitrarily in the field of in plane progressive, quasi-standing or standing waves. The rigid elliptical cylinder case is important to be considered as a first-order approximation of the behavior of a fluid particle suspended in air, because of the significant acoustic impedance mismatch at the particle's boundary. Based on the partial-wave series expansion method in cylindrical coordinates, non-dimensional acoustic radiation force and torque functions are derived and defined in terms of the scattering coefficients of the elliptic cylinder. A coupled system of linear equations is obtained after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. Computational results for the non-dimensional force compone...
Bulanov, Sergei V.; Esirkepov, Timur Zh.; Kando, Masaki; Koga, James K.; Bulanov, Stepan S.
2011-11-01
When the parameters of electron-extreme power laser interaction enter the regime of dominated radiation reaction, the electron dynamics changes qualitatively. The adequate theoretical description of this regime becomes crucially important with the use of the radiation friction force either in the Lorentz-Abraham-Dirac form, which possesses unphysical runaway solutions, or in the Landau-Lifshitz form, which is a perturbation valid for relatively low electromagnetic wave amplitude. The goal of the present paper is to find the limits of the Landau-Lifshitz radiation force applicability in terms of the electromagnetic wave amplitude and frequency. For this, a class of the exact solutions to the nonlinear problems of charged particle motion in the time-varying electromagnetic field is used.
Instability of a supersonic shock free elliptic jet
Energy Technology Data Exchange (ETDEWEB)
Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)
1990-01-01
This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.
Experiments on supersonic turbulent flow development in a square duct
Gessner, F. B.; Ferguson, S. D.; Lo, C. H.
1986-01-01
The nature of supersonic, turbulent, adiabatic-wall flow in a square duct is investigated experimentally over a development length of x/D between 0 and 20 for a uniform flow, Mach 3.9 condition at the duct inlet. Initial discussion centers on the duct configuration itself, which was designed specifically to minimize wave effects and nozzle-induced distortion in the flow. Total pressure contours and local skin friction coefficient distributions are presented which show that the flow develops in a manner similar to that observed for the incompressible case. In particular, undulations exist in total pressure contours within the cross plane and in transverse skin friction coefficient distributions, which are indicative of the presence of a well-defined secondary flow superimposed upon the primary flow. The results are analyzed to show that local law-of-the-wall behavior extends well into the corner region, which implies that wall functions conventionally applied in two-equation type turbulence models, when suitably defined for compressible flow, may also be applied to supersonic streamwise corner flows.
Lu, Tie-Lin; Yuan, Hui; Kong, Ling-Qin; Zhao, Yue-Jin; Zhang, Liang-Liang; Zhang, Cun-Lin
2016-08-01
A system for measuring terahertz spectrum is proposed based on optical interferometer theory, and is experimentally demonstrated by using a backward-wave oscillator as the terahertz source. A high-resolution, high-precision interferometer is constructed by using a pyroelectric detector and a chopper. The results show that the spectral resolution is better than 1 GHz and the relative error of frequency is less than 3%. The terahertz energy density distribution is calculated by an inverse Fourier transform and tested to verify the feasibility of the interferometric approach. Two kinds of carbon-fiber composites are imaged. The results confirm that the interferometer is useful for transmission imaging of materials with different thickness values. Project supported by the National Natural Science Foundation of China (Grant Nos. 61377109 and 11374007).
Study of radiative blast waves generated on the Z-beamlet laser.
Energy Technology Data Exchange (ETDEWEB)
Edens, Aaron D.; Schwarz, Jens
2012-02-01
This document describes the original goals of the project to study the Vishniac Overstability on blast waves produced using the Z-Beamlet laser facility as well as the actual results. The proposed work was to build on earlier work on the facility and result in the best characterized set of data for such phenomena in the laboratory. To accomplish the goals it was necessary to modify the existing probe laser at the facility so that it could take multiple images over the course of 1-2 microseconds. Troubles with modifying the probe laser are detailed as well as the work that went into said modifications. The probe laser modification ended up taking the entire length of the project and were the major accomplishment of the research.
Effects of Millimeter Waves Radiation on Cell Membrane - A Brief Review
Ramundo-Orlando, Alfonsina
2010-12-01
The millimeter waves (MMW) region of the electromagnetic spectrum, extending from 30 to 300 GHz in terms of frequency (corresponding to wavelengths from 10 mm to 1 mm), is officially used in non-invasive complementary medicine in many Eastern European countries against a variety of diseases such gastro duodenal ulcers, cardiovascular disorders, traumatism and tumor. On the other hand, besides technological applications in traffic and military systems, in the near future MMW will also find applications in high resolution and high-speed wireless communication technology. This has led to restoring interest in research on MMW induced biological effects. In this review emphasis has been given to the MMW-induced effects on cell membranes that are considered the major target for the interaction between MMW and biological systems.
Mizuno, M.; Hirata, A.; Kawase, K.; Otani, C.; Nagatsuma, T.
2004-08-01
Non-thermal effects of millimeter wave (MMW) on Pheochromocytoma (PC12) were studied by potential measurement with a voltage sensitive dye (DiBAC4(3)). Cells were irradiated at fixed frequencies of 30, 40, 60, 76GHz as well as sweeping frequency between 10 and 100 GHz by an MMW generator based on a uni-traveling-carrier photodiode (UTC-PD), the most widely tunable MMW source. However there were no significant changes in membrane potential between MMW-irradiated and control cells. The results suggest that MMW irradiation in the range from 10 to 100GHz appears to be safe for ordinary PC12 cells under non-thermal conditions.
Absorption of Visible and Long-wave Radiation by Primary and Secondary Biogenic Aerosols.
Gaffney, J. S.; Marley, N. A.
2008-12-01
Field results for the 14C content of carbonaceous aerosols are presented that indicate significant biogenic sources of both primary and secondary aerosols in urban and regional environments. Samples collected in Mexico City and downwind of the urban area during the MILAGRO field study are compared with results reported previously in the literature indicating a significant amount of biogenic aerosols from both biomass burning and secondary photochemical production (e.g. terpene oxidations) are contributing to the overall carbonaceous aerosols in the optically active region of 0.1 to 1.0 micron. Samples in this size range collected on quartz fiber filters were also examined using an integrating sphere and FTIR diffuse reflectance techniques to obtain absorption spectra from 280 to the mid-IR. These data clearly indicate that the biogenic derived primary aerosols from agricultural and trash-burning, as well as secondary organic aerosols from isoprene and terpene oxidations will produce both UV-Visible (short-wave) absorbing substances as well as IR (long-wave) absorbing compounds including humic-like-substances (HULIS). With the anticipated increases in growing seasons (i.e. earlier springs and longer summers) the likely hood of increased fires (forest and grassland) as well as the continuing growth in agricultural burning activities, these primary sources are expected to increase and may play a role in heating of the atmosphere. The compound effects of these primary and secondary biogenic sources of absorbing aerosols to the total aerosol loading and regional climate will be discussed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 as part of the Atmospheric Science Program.
Hawking radiation and classical tunneling: A ray phase space approach
Tracy, E. R.; Zhigunov, D.
2016-01-01
Acoustic waves in fluids undergoing the transition from sub- to supersonic flow satisfy governing equations similar to those for light waves in the immediate vicinity of a black hole event horizon. This acoustic analogy has been used by Unruh and others as a conceptual model for "Hawking radiation." Here, we use variational methods, originally introduced by Brizard for the study of linearized MHD, and ray phase space methods, to analyze linearized acoustics in the presence of background flows. The variational formulation endows the evolution equations with natural Hermitian and symplectic structures that prove useful for later analysis. We derive a 2 × 2 normal form governing the wave evolution in the vicinity of the "event horizon." This shows that the acoustic model can be reduced locally (in ray phase space) to a standard (scalar) tunneling process weakly coupled to a unidirectional non-dispersive wave (the "incoming wave"). Given the normal form, the Hawking "thermal spectrum" can be derived by invoking standard tunneling theory, but only by ignoring the coupling to the incoming wave. Deriving the normal form requires a novel extension of the modular ray-based theory used previously to study tunneling and mode conversion in plasmas. We also discuss how ray phase space methods can be used to change representation, which brings the problem into a form where the wave functions are less singular than in the usual formulation, a fact that might prove useful in numerical studies.
Design project: LONGBOW supersonic interceptor
Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark
1993-01-01
A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.
Anathpindika, S
2009-01-01
In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...
Zhang, Xiaohan; Acharya, Amit; Walkington, Noel J.; Bielak, Jacobo
2015-11-01
We describe a model based on continuum mechanics that reduces the study of a significant class of problems of discrete dislocation dynamics to questions of the modern theory of continuum plasticity. As applications, we explore the questions of the existence of a Peierls stress in a continuum theory, dislocation annihilation, dislocation dissociation, finite-speed-of-propagation effects of elastic waves vis-a-vis dynamic dislocation fields, supersonic dislocation motion, and short-slip duration in rupture dynamics.
Nonlinear effects of energy sources and the jet at supersonic flow in the channel
Zamuraev, V. P.; Kalinina, A. P.
2016-10-01
The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.
High-speed imaging of dynamic shock wave reflection phenomena
CSIR Research Space (South Africa)
Naidoo, K
2010-09-01
Full Text Available Dynamic shock wave reflection generated by a rapidly pitching wedge in a steady supersonic free stream has been studied with numerical simulation previously. An experimental facility was developed for the investigation of these dynamic phenomena...
Silent and Efficient Supersonic Bi-Directional Flying Wing Project
National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...
Unsteady transonic aerodynamics and aeroelastic calculations at low-supersonic freestreams
Guruswamy, Guru P.; Goorjian, Peter M.
1988-01-01
A computational procedure is presented to simulate transonic unsteady flows and corresponding aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic small-perturbation theory. The structural equations of motions are modeled using modal equations of motion directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled aeroelastic equations of motion are solved by an integration procedure based on the time-accurate, linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings. Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams. The extension of the transonic dip into the upper transonic regime is illustrated.
Study on Turbulent Behavior of Water Jet in Supersonic Steam Injector
Fukuichi, Akira; Abe, Yutaka; Fujiwara, Akiko; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi
One of the most interesting devices for light water reactor systems aimed at simplified system, improvement of safety and reliability is a supersonic steam injector. Supersonic steam injector is a passive jet pump without rotating machine and high efficient heat exchanger because of direct contact condensation between supersonic steam and a subcooled water jet. It is considered that flow behavior in the supersonic steam injector is related to complicated turbulent flow with large shear stress induced by velocity difference between steam and water and direct contact condensation. However, studies about turbulent flow under large shear stress with direct contact condensation are not enough. Especially, mechanisms of momentum and heat transfer are not clarified in detail. Objective of the present study is to investigate turbulent behaviors of a water jet and interface that play an important role in heat transfer and momentum transfer. Radial distribution of streamwise velocity and fluctuation of total pressure are measured by a pitot measurement. Visual measurement of the turbulent water jet is conducted by a high speed camera in order to identify location of unstable interface and its behavior. It is found that streamwise velocity increases as it approaches downstream of the mixing nozzle. Fluctuation of total pressure is large at water-steam mixture region. It is confirmed that waves propagated on the interface. And its velocity is obtained.
Kong, Fanshi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong
2013-10-01
The supersonic nozzle is the most important device of an ejector-diffuser system. The best operation condition and optimal structure of supersonic nozzle are hardly known due to the complicated turbulent mixing, compressibility effects and even flow unsteadiness which are generated around the nozzle extent. In the present study, the primary stream nozzle was redesigned using convergent nozzle to activate the shear actions between the primary and secondary streams, by means of longitudinal vortices generated between the Chevron lobes. Exactly same geometrical model of ejector-diffuser system was created to validate the results of experimental data. The operation characteristics of the ejector system were compared between Chevron nozzle and conventional convergent nozzle for the primary stream. A CFD method has been applied to simulate the supersonic flows and shock waves inside the ejector. It is observed that the flow structure and shock system were changed and primary numerical analysis results show that the Chevron nozzle achieve a positive effect on the supersonic ejector-diffuser system performance. The ejector with Chevron nozzle can entrain more secondary stream with less primary stream mass flow rate.
Numerical modelling of Mars supersonic disk-gap-band parachute inflation
Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang
2016-06-01
The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.
Jiang, Yi; Li, Guo-Yang; Qian, Lin-Xue; Hu, Xiang-Dong; Liu, Dong; Liang, Si; Cao, Yanping
2015-02-01
Dynamic elastography has become a new clinical tool in recent years to characterize the elastic properties of soft tissues in vivo, which are important for the disease diagnosis, e.g., the detection of breast and thyroid cancer and liver fibrosis. This paper investigates the supersonic shear imaging (SSI) method commercialized in recent years with the purpose to determine the nonlinear elastic properties based on this promising technique. Particularly, we explore the propagation of the shear wave induced by the acoustic radiation force in a stressed hyperelastic soft tissue described via the Demiray-Fung model. Based on the elastodynamics theory, an analytical solution correlating the wave speed with the hyperelastic parameters of soft tissues is first derived. Then an inverse approach is established to determine the hyperelastic parameters of biological soft tissues based on the measured wave speeds at different stretch ratios. The property of the inverse method, e.g., the existence, uniqueness and stability of the solution, has been investigated. Numerical experiments based on finite element simulations and the experiments conducted on the phantom and pig livers have been employed to validate the new method. Experiments performed on the human breast tissue and human heel fat pads have demonstrated the capability of the proposed method for measuring the in vivo nonlinear elastic properties of soft tissues. Generalization of the inverse analysis to other material models and the implication of the results reported here for clinical diagnosis have been discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
Mitri, F G
2016-01-01
The analysis using the partial-wave series expansion (PWSE) method in spherical coordinates is extended to evaluate the acoustic radiation force experienced by rigid oblate and prolate spheroids centered on the axis of wave propagation of high-order Bessel vortex beams composed of progressive, standing and quasi-standing waves, respectively. A coupled system of linear equations is derived after applying the Neumann boundary condition for an immovable surface in a non-viscous fluid, and solved numerically by matrix inversion after performing a single numerical integration procedure. The system of linear equations depends on the partial-wave index n and the order of the Bessel vortex beam m using truncated but converging PWSEs in the least-squares sense. Numerical results for the radiation force function, which is the radiation force per unit energy density and unit cross-sectional surface, are computed with particular emphasis on the amplitude ratio describing the transition from the progressive to the pure st...
Second harmonic generation of near millimeter wave radiation by nonlinear bulk material
Ahn, B. H.
1980-06-01
Bulk crystals have been used frequently to obtain second harmonic generation (SHG) and third harmonic generation (THG) of radiation from the fundamental input frequency, particularly in the optical region. For example ammonium dihydrogen phosphate, potassium dihydrogen phosphate, semiconductor materials, and ferroelectric materials were used for the SHG of input laser beams. SHG and THG have also been realized in the microwave region. Boyd, et. al., reported on the nonlinear coefficients and other important parameters at 55 GHz. Later, Boyd and Pollack published a comprehensive paper on the nonlinear coefficients of LiTaO3 and LiNbO3 in the microwave region. DiDomenico, Jrl, et. al., obtained a 9 GHz TH output with an efficiency of 8.5% from a 2200 watt 3 GHz source by use of a 73% BaTiO3 - 27% SrTiO3 ceramic in a coaxial cavity configuration. Impetus for bulk harmonic generation in the microwave region was given by the discovery that some ferroelectric crystals have very large nonlinear coefficients, large enough to compensate for the lower frequencies of the microwave region in comparison to those of the optical region.
Shields, Nora; O'Hare, Neil; Gormley, John
2004-07-01
Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.
Energy Technology Data Exchange (ETDEWEB)
Shields, Nora [School of Physiotherapy, La Trobe University, Victoria 3086 (Australia); O' Hare, Neil [Department of Medical Physics and Bioengineering, St James' s Hospital, Dublin 8 (Ireland); Gormley, John [School of Physiotherapy, Trinity College Dublin, Trinity Centre for Health Sciences, St James' s Hospital, Dublin 8 (Ireland)
2004-07-07
Short-wave diathermy (SWD), a form of radiofrequency radiation used therapeutically by physiotherapists, may be applied in continuous (CSWD) or pulsed (PSWD) mode using either capacitive or inductive methods. Stray radiation emitted by these units may exceed exposure guidelines close to the equipment. Discrepant guidelines exist on a safe distance from an operating unit for operators and other personnel. Stray electric (E-field) and magnetic (H-field) field strengths from 10 SWD units in six departments were examined using a PMM 8053 meter and two isotropic probes (EP-330, HP-032). A 5 l saline phantom completed the patient circuit. Measurements were recorded in eight directions between 0.5 m and 2 m at hip and eye levels while the units operated at maximum output and data compared to current guidelines. Results found stray fields from capacitive CSWD fell below operator limits at 2 m (E-field 4.8-39.8 V/m; H-field 0.015-0.072 A/m) and at 1 m for inductive CSWD (E-field 0-36 V/m; H-field 0.01-0.065 A/m). Capacitive PSWD fields fell below the limits at 1.5 m (E-field 1.2-19.9 V/m; H-field 0.002-0.045 A/m) and at 1m for inductive PSWD (E-field 0.7-4.0 V/m; H-field 0.009-0.03 A/m). An extra 0.5 m was required before fields fell below the guidelines for other personnel. These results demonstrate, under a worst case scenario, emissions from SWD exceed the guidelines for operators at distances currently recommended as safe. Future guidelines should include recommendations for personnel other than physiotherapists.
Energy Technology Data Exchange (ETDEWEB)
Fochs, S.N.; Le Sage, G.P.; Feng, L. [Univ. of California, Davis, CA (United States)] [and others
1995-12-31
A 5 MeV, high repetition rate (2.142 GHz in burst mode), high brightness, tabletop photoinjector is currently under construction at the UC Davis Department of Applied Science, on the LLNL site. Ultrashort pulses of coherent synchrotron radiation can be generated by transversally accelerating the electron beam with a wiggler in either metallic or dielectric-loaded waveguide FEL structures. This interaction is investigated theoretically and experimentally. Subpicosecond photoelectron bunches will be produced in the photoinjector by irradiating a high quantum efficiency Cs{sub 2}Te (Cesium Telluride) photocathode with a train of 100 UV (210 nm), ultra-short (250 fs) laser pulses. These bunches will be accelerated in a 1-1/2 cell {pi}-mode X-band RF gun e energized by a 20 MW, 8,568 GHz SLAC klystron. The peak current is 0.25 kA (0.25 nC, 1 ps), with a normalized beam emittance {epsilon}{sub n}<2.5 {pi} mm-mrad. This prebunched electron beam is then transversally accelerated in a cylindrical waveguide by a 30-mm period, 10 period long helical wiggler. The peak wiggler field is adjusted to 8.5 kG, so that the group velocity of the radiated electromagnetic waves matches the axial velocity of the electron bunch (grazing condition, zero slippage). Chirped output pulses in excess of 2 MW power are predicted, with an instantaneous bandwidth extending from 125 GHz to 225 GHz and a pulse duration of 15 ps (HWHM). To produce even shorter pulses, a dielectric-loaded waveguide can be used. The dispersion relation of this waveguide structure has an inflection point (zero group velocity dispersion). If the grazing condition is satisfied at this point, the final output pulse duration is no longer determined by slippage, or by group velocity dispersion and bandwidth, but by higher-order dispersive effects yielding transform-limited pulses.
Performance of Several High Order Numerical Methods for Supersonic Combustion
Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)
2001-01-01
The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.
Overexpanded viscous supersonic jet interacting with a unilateral barrier
Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.
1986-07-01
The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.
Supersonic combustion engine testbed, heat lightning
Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.
1990-01-01
The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.
Nath, G.; Vishwakarma, J. P.
2014-05-01
The propagation of a spherical (or cylindrical) shock wave in a non-ideal gas with heat conduction and radiation heat-flux, in the presence of a spacially decreasing azimuthal magnetic field, driven out by a moving piston is investigated. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be of the diffusion type for an optically thick grey gas model. The thermal conductivity K and the absorption coefficient αR are assumed to vary with temperature and density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. The shock wave moves with variable velocity and the total energy of the wave is non-constant. Similarity solutions are obtained for the flow-field behind the shock and the effects of variation of the heat transfer parameters, the parameter of the non-idealness of the gas, both, decreases the compressibility of the gas and hence there is a decrease in the shock strength. Further, it is investigated that with an increase in the parameters of radiative and conductive heat transfer the tendency of formation of maxima in the distributions of heat flux, density and isothermal speed of sound decreases. The pressure and density vanish at the inner surface (piston) and hence a vacuum is form at the center of symmetry. The shock waves in conducting non-ideal gas with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of central part of star burst galaxies, nuclear explosion, chemical detonation, rupture of a pressurized vessels, in the analysis of data from exploding wire experiments, and cylindrically symmetric hypersonic flow problems associated with meteors or reentry vehicles, etc. The findings of the present works provided a clear picture of whether and how the non-idealness parameter, conductive and radiative heat transfer parameters and the magnetic field affect the flow behind the shock
Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves
Descoteaux, Maxime; Bernier, Michaël; Garyfallidis, Eleftherios; Whittingstall, Kevin
2016-01-01
At rest, healthy human brain activity is characterized by large electroencephalography (EEG) fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN) and its efferent fibres (optic radiation, OR) play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI), functional magnetic resonance imaging (fMRI) and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05). Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI. PMID:27383146
Semi-Automatic Segmentation of Optic Radiations and LGN, and Their Relationship to EEG Alpha Waves.
Directory of Open Access Journals (Sweden)
Emmanuelle Renauld
Full Text Available At rest, healthy human brain activity is characterized by large electroencephalography (EEG fluctuations in the 8-13 Hz range, commonly referred to as the alpha band. Although it is well known that EEG alpha activity varies across individuals, few studies have investigated how this may be related to underlying morphological variations in brain structure. Specifically, it is generally believed that the lateral geniculate nucleus (LGN and its efferent fibres (optic radiation, OR play a key role in alpha activity, yet it is unclear whether their shape or size variations contribute to its inter-subject variability. Given the widespread use of EEG alpha in basic and clinical research, addressing this is important, though difficult given the problems associated with reliably segmenting the LGN and OR. For this, we employed a multi-modal approach and combined diffusion magnetic resonance imaging (dMRI, functional magnetic resonance imaging (fMRI and EEG in 20 healthy subjects to measure structure and function, respectively. For the former, we developed a new, semi-automated approach for segmenting the OR and LGN, from which we extracted several structural metrics such as volume, position and diffusivity. Although these measures corresponded well with known morphology based on previous post-mortem studies, we nonetheless found that their inter-subject variability was not significantly correlated to alpha power or peak frequency (p >0.05. Our results therefore suggest that alpha variability may be mediated by an alternative structural source and our proposed methodology may in general help in better understanding the influence of anatomy on function such as measured by EEG or fMRI.
Experimental study on atomization phenomena of kerosene in supersonic cold flow
Institute of Scientific and Technical Information of China (English)
FEI LiSen; XU ShengLi; WANG ChangJian; LI Qiang; HUANG ShengHong
2008-01-01
Experiments were conducted to study the atomization phenomena of kerosene jet in supersonic flow. The kerosene jet was driven by compressed nitrogen. Meanwhile, the shadowgraph and planar laser-induced fluorescence (PLIF) were used to visualize the flow field in the case of different total pressure and jet pressure. The results imply the followings: The combination of shadowgraph and PLIF is a reasonable method to study the atomization phenomena in supersonic flow. PLIF can detect the distribution of kerosene droplets accurately. Shadowgraph can visualize the wave structure. Higher jet-to-freestream dynamic pressure initiates higher penetration height and the jet column will be easier to breakup and atomize, but it also induces stronger shock waves and aggravate total pressure lost. Three-dimensional, unsteady surface wave plays an important role in making the jet break up and atomize. Higher jet-to-freestream dynamic pressure will accelerate the development of surface wave and enlarge the amplitude of surface wave, while lower jet-to-freestream ratio will inhibit the development of surface wave.
Supersonic Flutter of Laminated Curved Panels
Directory of Open Access Journals (Sweden)
M. Ganapathi
1995-04-01
Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.
Supersonic gas shell for puff pinch experiments
Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.
1982-09-01
An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.
Energy Technology Data Exchange (ETDEWEB)
Louchev, Oleg A.; Saito, Norihito; Wada, Satoshi [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Bakule, Pavel [STFC, ISIS Facility, Rutherford Appleton Laboratory, Chilton, Oxfordshire OX11 0QX (United Kingdom); Yokoyama, Koji [Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198 (Japan); Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Ishida, Katsuhiko; Iwasaki, Masahiko [Advanced Meson Science Laboratory, RIKEN Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)
2011-09-15
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-{alpha} (Ly-{alpha}) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-{alpha} generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-{alpha} radiation generation can achieve a value of {approx}5x10{sup -4} which is restricted by the total combined absorption of the fundamental and generated radiation.
Louchev, Oleg A.; Bakule, Pavel; Saito, Norihito; Wada, Satoshi; Yokoyama, Koji; Ishida, Katsuhiko; Iwasaki, Masahiko
2011-09-01
We present a theoretical model combined with a computational study of a laser four-wave mixing process under optical discharge in which the non-steady-state four-wave amplitude equations are integrated with the kinetic equations of initial optical discharge and electron avalanche ionization in Kr-Ar gas. The model is validated by earlier experimental data showing strong inhibition of the generation of pulsed, tunable Lyman-α (Ly-α) radiation when using sum-difference frequency mixing of 212.6 nm and tunable infrared radiation (820-850 nm). The rigorous computational approach to the problem reveals the possibility and mechanism of strong auto-oscillations in sum-difference resonant Ly-α generation due to the combined effect of (i) 212.6-nm (2+1)-photon ionization producing initial electrons, followed by (ii) the electron avalanche dominated by 843-nm radiation, and (iii) the final breakdown of the phase matching condition. The model shows that the final efficiency of Ly-α radiation generation can achieve a value of ˜5×10-4 which is restricted by the total combined absorption of the fundamental and generated radiation.
Bustillo, Juan Calderón; Sintes, Alicia M; Püerrer, Michael
2015-01-01
Current template-based gravitational wave searches for compact binary coalescences (CBC) use waveform models that neglect the higher order modes content of the gravitational radiation emitted, considering only the quadrupolar $(\\ell,|m|)=(2,2)$ modes. We study the effect of such a neglection for the case of aligned-spin CBC searches for equal-spin (and non-spinning) binary black holes in the context of two versions of Advanced LIGO: the upcoming 2015 version, known as early Advanced LIGO (eaLIGO) and its Zero-Detuned High Energy Power version, that we will refer to as Advanced LIGO (AdvLIGO). In addition, we study the case of a non-spinning search for initial LIGO (iLIGO). We do this via computing the effectualness of the aligned-spin SEOBNRv1 ROM waveform family, which only considers quadrupolar modes, towards hybrid post-Newtonian/Numerical Relativity waveforms which contain higher order modes. We find that for all LIGO versions, losses of more than $10\\%$ of events occur for mass ratio $q\\geq6$ and $M \\geq...
Directory of Open Access Journals (Sweden)
Teresa Cañas
2015-01-01
Full Text Available Background. Liver disease associated with cystic fibrosis (CFLD is the second cause of mortality in these patients. The diagnosis is difficult because none of the available tests are specific enough. Noninvasive elastographic techniques have been proven to be useful to diagnose hepatic fibrosis. Acoustic radiation force impulse (ARFI imaging is an elastography imaging system. The purpose of the work was to study the utility of liver and spleen ARFI Imaging in the detection of CFLD. Method. 72 patients with cystic fibrosis (CF were studied and received ARFI imaging in the liver and in the spleen. SWV values were compared with the values of 60 healthy controls. Results. Comparing the SWV values of CFLD with the control healthy group, values in the right lobe were higher in patients with CFLD. We found a SWV RHL cut-off value to detect CFLD of 1.27 m/s with a sensitivity of 56.5% and a specificity of 90.5%. CF patients were found to have higher SWC spleen values than the control group. Conclusions. ARFI shear wave elastography in the right hepatic lobe is a noninvasive technique useful to detect CFLD in our sample of patients. Splenic SWV values are higher in CF patients, without any clinical consequence.
Prepulse-induced shock waves in the gas jet target of a laser plasma EUV radiation source
Garbaruk, A. V.; Gritskevich, M. S.; Kalmykov, S. G.; Mozharov, A. M.; Sasin, M. E.
2017-01-01
In experiments with a laser-plasma EUV-radiation source, the main IR Nd:YAG laser pulse was preceded by that of a UV KrF excimer laser. Dramatic modulations of EUV plasma emissivity have been observed at long interpulse times, from hundreds of nanoseconds up to microseconds. To discover the nature of these prepulse-produced long-living perturbations of the target, a fluid dynamics numerical simulation of the Xe gas jet has been carried out. The prepulse has been found to generate a quasi-spherical shock wave with a thin dense front layer and a vast rarefied inside area. In the course of time, the front expands and simultaneously drifts downstream along with the gas. Depending on the interpulse time, the IR laser beam either intersects the dense layer or propagates within the rarefied gas cavity whereby the above-mentioned variations in the plasma emission can be explained. The possibilities of making use of the discovered phenomena to enhance the observed EUV plasma brightness are discussed.