WorldWideScience

Sample records for supersonic load velocities

  1. Supersonic Relative Velocity Effect on the Baryonic Acoustic Oscillation Measurements

    CERN Document Server

    Yoo, Jaiyul; Seljak, Uros

    2011-01-01

    We investigate the effect of supersonic relative velocities between baryons and dark matter, recently shown to arise generically at high redshift, on baryonic acoustic oscillation (BAO) measurements at low redshift. The amplitude of the relative velocity effect at low redshift is model-dependent, but can be parameterized by using an unknown bias. We find that if unaccounted, the relative velocity effect can shift the BAO peak position and bias estimates of the dark energy equation-of-state due to its non-smooth, out-of-phase oscillation structure around the BAO scale. Fortunately, the relative velocity effect can be easily modeled in constraining cosmological parameters without substantially inflating the error budget. We also demonstrate that the presence of the relative velocity effect gives rise to a unique signature in the galaxy bispectrum, which can be utilized to isolate this effect. Future dark energy surveys can accurately measure the relative velocity effect and subtract it from the power spectrum a...

  2. Supersonic unstalled flutter. [aerodynamic loading of thin airfoils induced by cascade motion

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Flutter analyses were developed to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. These analyses are utilized in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results are correlated against experimental qualitative observation to validate the models.

  3. Investigation on in-flight particle velocity in supersonic plasma spraying

    Institute of Scientific and Technical Information of China (English)

    Li Changqing; Ma Shining; Ye Xionglin

    2005-01-01

    In-flight particle velocity and flux distribution were measured using CCD thermal spray monitor system during supersonic plasma spray processing with nano-structured Al203-TiO2 feed stocks. According to the results of particle flux measurement, the largest radian of the divergent particle stream is about 0. 2. Within the measuring range, top speed of inflight particles reached 800 m/s. Particle acceleration was accomplished within 4 cm down stream of the nozzle. Average particle velocity ( about 450 m/s) exceeded local sound speed (340 m/s) even at a mean standoff distance of 17 cm. With increasing mean standoff distance, average velocity of in-flight particle decreased according to a parabolic rule approximately.Image diagnosis showed that the result of in-flight particle velocity measurement is credible.

  4. Unresolved wind-driven shells and the supersonic velocity dispersion in giant HII regions

    CERN Document Server

    Tenorio-Tagle, G; Fernandes, R C; Fernandes, R Cid

    1995-01-01

    The presence of giant shells or loops in giant HII regions are clear witness of the mechanical energy input from massive stars. Here we evaluate the impact that winds may have on the structure of giant nebulae and on their supersonic velocity dispersion. We follow the suggestion from Chu \\& Kennicutt (1994) to see if a combination of a large number of unresolved wind-driven shells caused by massive stars could produce the integrated broad Gaussian profiles typical of giant HII regions. The results, accounting for a wide range of energies, densities and velocity or age of the expanding shells, show that supersonic Gaussian profiles may arise only from a collection of unresolved wind-driven shells if the shells present a peculiar velocity distribution which implies a strongly peaked age distribution leading to an awkward star formation history. On the other hand, a uniform distribution of ages originates profiles with a flat-topped core defined by the terminal shell velocity and a steep decay as v^{-6} up t...

  5. Loads Analysis of Flanges of a Transonic and Supersonic Wind Tunnel Wide Angle Diffuser

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian-bing; WANG Rui; CAI Qing-qing; GAO Xin-yu

    2012-01-01

    Compared with general circular flanges, flanges on conical shells have different configurations. In the Chinese national code GBISO, however, there are no related contents about flange design of this kind of type. So, it needs to study loads of flanges of this kind of type. This paper takes the flange connection of a wide angle diffuser in a transonic and supersonic wind tunnel as the background, according to the principles of flange design in Chinese national code GB150, combining the characteristics of flanges of a wide angle diffuser, the loads of flanges have been analyzed, and the equations of loads and their locations have been presented.

  6. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  7. Multiwavelength Observations of Supersonic Plasma Blob Triggered by Reconnection Generated Velocity Pulse in AR10808

    CERN Document Server

    Srivastava, A K; Murawski, K; Kumar, Pankaj

    2012-01-01

    Using multi-wavelength observations of Solar and Heliospheric Observatory (SoHO)/Michelson Doppler Imager (MDI), Transition Region and Coronal Explorer (TRACE) 171 \\AA, and H$\\alpha$ from Culgoora Solar Observatory at Narrabri, Australia, we present a unique observational signature of a propagating supersonic plasma blob before an M6.2 class solar flare in AR10808 on 9th September 2005. The blob was observed between 05:27 UT to 05:32 UT with almost a constant shape for the first 2-3 minutes, and thereafter it quickly vanished in the corona. The observed lower bound speed of the blob is estimated as $\\sim$215 km s$^{-1}$ in its dynamical phase. The evidence of the blob with almost similar shape and velocity concurrent in H$\\alpha$ and TRACE 171 \\AA\\ supports its formation by multi-temperature plasma. The energy release by a recurrent 3-D reconnection process via the separator dome below the magnetic null point, between the emerging flux and pre-existing field lines in the lower solar atmosphere, is found to be...

  8. The impact of the supersonic baryon-dark matter velocity difference on the z~20 21cm background

    CERN Document Server

    McQuinn, Matthew

    2012-01-01

    Recently, Tseliakhovich and Hirata (2010) showed that during the cosmic Dark Ages the baryons were typically moving supersonically with respect to the dark matter with a spatially variable Mach number. Such supersonic motion may source shocks that heat the Universe. This motion may also suppress star formation in the first halos. Even a small amount of coupling of the 21cm signal to this motion has the potential to vastly enhance the 21cm brightness temperature fluctuations at 15velocity, v_bc (in contrast to prior simulations). We find that the supersonic velocity difference dramatically suppresses structure formation at 10-100 comoving kpc scales, it sources shocks throug...

  9. Beam loading compensation with variable group velocity

    Energy Technology Data Exchange (ETDEWEB)

    Farkas, Z.D.

    1992-08-01

    Consider a section with linearly variable group velocity and a beam pulse shorter than the section fill time. Choose the current amplitude so that the gradient of the last bunch equals the gradient of the first bunch. For beam pulses less than about 15% of fill time, the voltage deviation during the beam pulse is small, but as the pulse width increases the voltage deviation also increases. We show that by decreasing the output to input group velocity ratio, we can reduce the first order voltage deviation, and that we can remove the remaining second-order voltage deviation by linearly decreasing the section input power by a small amount starting at beam injection time. This way we can increase the beam pulse width to more than half the fill time, and thereby increase the RF to beam energy transfer efficiency and the luminosity without increasing the voltage deviation.

  10. Surface Wave Velocity-Stress Relationship in Uniaxially Loaded Concrete

    DEFF Research Database (Denmark)

    Shokouhi, Parisa; Zoëga, Andreas; Wiggenhauser, Herbert

    2012-01-01

    loading cycles revealed that the velocities show a stress-memory effect in good agreement with the Kaiser effect. Comparing the velocities measured during loading and unloading, the effects of stress and damage on the measured velocities could be differentiated. Moreover, the stress dependency of surface......The sonic surface wave (or Rayleigh wave) velocity measured on prismatic concrete specimens under uniaxial compression was found to be highly stress-dependent. At low stress levels, the acoustoelastic effect and the closure of existing microcracks results in a gradual increase in surface wave...... velocities. At higher stress levels, concrete suffers irrecoverable damage: the existing microcracks widen and coalesce and new microcracks form. This progressive damage process leads first to the flattening and eventually the drop in the velocity-stress curves. Measurements on specimens undergoing several...

  11. LOW-MASS SUPPRESSION OF THE SATELLITE LUMINOSITY FUNCTION DUE TO THE SUPERSONIC BARYON-COLD-DARK-MATTER RELATIVE VELOCITY

    Energy Technology Data Exchange (ETDEWEB)

    Bovy, Jo; Dvorkin, Cora [Institute for Advanced Study, Einstein Drive, Princeton, NJ 08540 (United States)

    2013-05-01

    We study the effect of the supersonic baryon-cold-dark-matter (CDM) flow, which has recently been shown to have a large effect on structure formation during the dark ages 10 {approx}< z {approx}< 1000, on the abundance of luminous, low-mass satellite galaxies around galaxies like the Milky Way. As the supersonic baryon-CDM flow significantly suppresses both the number of halos formed and the amount of baryons accreted onto such halos of masses 10{sup 6} < M{sub halo}/M{sub Sun} < 10{sup 8} at z {approx}> 10, a large effect results on the stellar luminosity function before reionization. As halos of these masses are believed to have very little star formation after reionization due to the effects of photoheating by the ultraviolet background, this effect persists to the present day. We calculate that the number of low-mass 10{sup 6} < M{sub halo}/M{sub Sun} < 5 Multiplication-Sign 10{sup 7} halos that host luminous satellite galaxies today is typically suppressed by 50%, with values ranging up to 90% in regions where the initial supersonic velocity is high. We show that this previously ignored cosmological effect resolves some of the tension between the observed and predicted number of low-mass satellites in the Milky Way, reducing the need for other mass-dependent star-formation suppression before reionization.

  12. Velocity Slip and Interfacial Momentum Transfer in the Transient Section of Supersonic Gas-Droplet Two-Phase Flows

    Institute of Scientific and Technical Information of China (English)

    魏文韫; 朱家骅; 夏素兰; 戴光清; 高旭东

    2002-01-01

    Modelling and simulations are conducted on velocity slip and interfacial momentum transfer for super-sonic two-phase (gas-droplet) flow in the transient section inside and outside a Laval jet(L J). The initial velocity slipbetween gas and droplets causes an interfacial momentum transfer flux as high as (2.0-5.0) × 104 Pa. The relaxationtime corresponding to this transient process is in the range of 0.015-0.090 ms for the two-phase flow formed insidethe LJ and less than 0.5 ms outside the LJ. It demonstrates the unique performance of this system for application tofast chemical reactions using electrically active media with a lifetime in the order of 1 ms. Through the simulationsof the transient processes with initial Mach number Mg from 2.783 to 4.194 at different axial positions inside theLJ. it is found that Mg has the strongest effect on the process. The momentum flux increases as the Mach numberdecreases. Due to compression by the shock wave at the end of the L J, the flow pattern becomes two dimensionaland viscous outside the LJ. Laser Doppler velocimeter (LDV) measurements of droplet velocities outside the LJ arein reasonably good agreement with the results of the simulation.

  13. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  14. Numerical Simulation on Supersonic Flow in High-Velocity Oxy-Fuel Thermal Spray Gun

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Hideki YAMAMOTO; Kazuyasu MATSUO

    2006-01-01

    This paper analyzes the behaviour of coating particles as well as the gas flow both inside and outside of the High-Velocity Oxy-Fuel (HVOF) thermal spray gun by using a quasi-one-dimensional analysis and a numerical simulation. The HVOF gun in the present analysis is an axially symmetric convergent-divergent nozzle with the design Mach number of 2.0. From the present analysis, the distributions of velocity and temperature of the coating particles flying inside and outside of the HVOF gun are predicted. The velocity and temperature of the coating particles at the exit of the gun calculated by the present method agree well with the previous experimental results. Therefore, the present method of calculation is considered to be useful for predicting the HVOF gas and particle flows.

  15. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    Science.gov (United States)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  16. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  17. Signatures of First Stars in Galaxy Surveys: Multi-Tracer Analysis of the Supersonic Relative Velocity Effect and the Constraints from the BOSS Power Spectrum Measurements

    CERN Document Server

    Yoo, Jaiyul

    2013-01-01

    We study the effect of the supersonic relative velocity between dark matter and baryons on large-scale galaxy clustering and derive the constraint on the relative velocity bias parameter from the Baryonic Oscillation Spectroscopic Survey (BOSS) power spectrum measurements. Recent work has shown that the relative velocity effect may have a dramatic impact on the star formation at high redshifts, if first stars are formed in minihalos around z~20, or if the effect propagates through secondary effects to stars formed at later redshifts. The relative velocity effect has particularly strong signatures in the large scale clustering of these sources, including the BAO position. Assuming that a small fraction of stars in low-redshift massive galaxies retain the memory of the primordial relative velocity effect, galaxy clustering measurements can be used to constrain the signatures of the first stars. Luminous red galaxies contain some of the oldest stars in the Universe and are ideally suited to search for this effec...

  18. Design of pilot-assisted load control valve with load velocity control ability and fast opening feature

    Directory of Open Access Journals (Sweden)

    Haibo Xie

    2015-11-01

    Full Text Available This article presents a design of pilot-assisted load control valve with load velocity control ability and fast opening feature based on static and dynamic modeling. Traditional load control valves do not have the load velocity control ability and its opening feature is very poor because the high spring stiffness comes along with the pressure–spring balance–based principle. Some improvement has been done by employing a two-stage pressure–pressure balance principle to make a load control valve to achieve load velocity control ability while the opening feature was not improved much. In this design, another pressure–pressure balance principle is proposed to make the load control valve achieve load velocity control ability and fast opening closing feature at the same time. Static modeling method based on force balance and Bernoulli orifice pressure-flow equation is used to design the load velocity control ability of the valve. Dynamic modeling method based on Newton’s second law and fluid continuity equation is used to optimize the parameters to give the proposed load control valve a fast opening feature. An actual load control valve was developed according to the above methods and the test results show both good load velocity control ability and fast opening feature of the design, which validates the potentiality of the proposed design in many applications.

  19. Fault strength evolution during high velocity friction experiments with slip-pulse and constant-velocity loading

    Science.gov (United States)

    Liao, Z.; Chang, J. C.; Reches, Z.

    2014-12-01

    Seismic analyses show that slip during large earthquakes evolves in a slip-pulse mode that is characterized by abrupt, intense acceleration followed by moderate deceleration. We experimentally analyze the friction evolution under slip-pulse proxy of a large earthquake, and compare it with the evolution at loading modes of constant-velocity and changing-velocity. We present a series of 42 experiments conducted on granite samples sheared in a high-velocity rotary apparatus. The experiments were conducted on room-dry, solid granite samples at slip-velocities of 0.0006-1 m/s, and normal stress of 1-11.5 MPa. The constitutive relations are presented with respect to mechanical power-density: PD= [shear stress * slip velocity], with units of power per area (MW/m^2). The experimental constitutive relations strongly depend on the loading mode. Constant velocity mode displays initial weakening with increasing PD that is followed by strengthening for PD = 0.02-0.5 MW/m^2, and abrupt weakening at PD > 0.5 MW/m^2. Changing-velocity modes display gentle strengthening for PD < 0.2 MW/m^2 that is followed by abrupt weakening as PD reaches 0.7-0.8 MW/m^2. Beyond this level of power-density, the two loading modes diverge: in changing-velocity of quake-mode the experimental fault continues to weaken with friction coefficient approaching 0.2, whereas in changing-velocity of ramp-mode the fault strengthens with friction coefficient approaching 1.0. The analysis demonstrates that (1) the strength evolution and constitutive parameters of the granite fault strongly depend on the loading mode, and (2) the slip-pulse mode is energy efficient relatively to the constant-velocity mode as manifested by faster, more intense weakening and 50-90% lower energy dissipation. The results suggest that the frictional strength determined in slip-pulse experiments, is more relevant to simulations of earthquake rupture than frictional strength determined in constant-velocity experiments.Figure 1. Friction

  20. Load, Force and Power-Velocity Relationships in the Prone Pull-Up Exercise.

    Science.gov (United States)

    Muñoz-López, Mario; Marchante, David; Cano-Ruiz, Miguel A; Chicharro, José López; Balsalobre-Fernández, Carlos

    2017-03-02

    To analyze the load, force and power-velocity relationships, as well as to determine the load that optimizes power output on the pull-up exercise. Eighty-two resistance trained males (Age = 26.8 ± 5.0 yrs.; Pull-up 1RM - normalized per kg of body mass- = 1.5 ± 0.34) performed two repetitions with 4 incremental loads (ranging 70-100%1-RM) in the pull-up exercise while mean propulsive velocity (MPV), force (MPF) and power (MPP) were measured using a linear transducer. Relationships between variables were studied using first and second order least-squares regression, and subjects were divided into three groups depending on their 1-RM for comparison purposes. Almost perfect individual load-velocity (R(2) = 0.975 ± 0.02), force-velocity (R(2) = 0.954 ± 0.04) and power-velocity (R(2) = 0.966 ± 0.04) relationships, which allowed to determine the velocity at each %1-RM as well as the maximal theoretical force (F0), velocity (V0) and power (Pmax) for each subject were observed. Statistically significant differences between groups were observed for F0 (p0.05). Also, high correlations between F0 and 1-RM (r = 0.811) and V0 and Pmax (r = 0.865) were observed. Finally, we observed that the load that maximized MPP was 71.0 ± 6.6 %1-RM. The very high load-velocity, force-velocity and power-velocity relationships allows to estimate 1-RM by measuring movement velocity, as well as to determine maximal force, velocity and power capabilities. This information could be of great interest for strength and conditioning coaches who wish to monitor pull-up performance.

  1. Experimental research on acoustic wave velocity of frozen soils during the uniaxial loading process

    Institute of Scientific and Technical Information of China (English)

    DongQing Li; Xing Huang; Feng Ming; Yu Zhang; Hui Bing

    2015-01-01

    Ultrasonic P-wave tests of frozen silt and frozen sand were conducted during uniaxial loading by using an RSM®-SY5(T) nonmetal ultrasonic test meter to study the velocity characteristics of P-waves. The experimental results indicate that the P-wave velocity is affected by soil materials, temperature, and external loads, so the P-wave velocity is different in frozen silt and frozen sand, but all decrease with an increase of temperature and increase at first and then decrease with strain during the loading process. There is an exponential relationship between uniaxial compressive strength and P-wave ve-locity, and the correlation between them is very good. The characteristic parameters of acoustic waves can, to some extent, reflect the development of internal cracks in frozen soils during loading.

  2. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  3. The rotational velocities evaluation for the engine mounts gyroscopic loads

    Directory of Open Access Journals (Sweden)

    Stefan BOGOS

    2013-06-01

    Full Text Available The default values for the maximum pitch and yaw speeds from CS 23.371, seem to be too conservative that would result in overstressing of the structure.A simplified dynamic simulation is proposed to evaluate more confident velocities for a specific aircraft. The yawing condition is related to the “sudden rudder deflection” and a maneuver with “lateral gust”. The pitching conditions are a result of a “sudden elevator deflection”. The model takes into account the nonlinear effects of the aerodynamic coefficients and controls efficiencies.

  4. Loading of a fountain clock with an enhanced Low-Velocity Intense Source of atoms

    CERN Document Server

    Dobrev, Georgi; Weyers, Stefan

    2016-01-01

    We present experimental work for improved atom loading in the optical molasses of a caesium fountain clock, employing a low-velocity intense source of atoms (LVIS) [Lu et al., Phys. Rev. Lett. 77, 3331 (1996)], which we modified by adding a "dark" state pump laser. With this modification the atom source has a mean flux of $4 \\times 10^{8}$ atoms/s at a mean atom velocity of $8.6$ m/s. Compared to fountain operation using background gas loading, we achieved a significant increase of the loaded and detected atom number by a factor of 40. Operating the fountain clock with a total number of detected atoms $N_{\\mathrm{at}}=2.9 \\times 10^6$ in the quantum projection noise-limited regime, a frequency instability $\\sigma_y\\left(1\\text{s}\\right)=2.7 \\times 10^{-14}$ was demonstrated.

  5. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  6. High chronic training loads and exposure to bouts of maximal velocity running reduce injury risk in elite Gaelic football.

    Science.gov (United States)

    Malone, Shane; Roe, Mark; Doran, Dominic A; Gabbett, Tim J; Collins, Kieran

    2017-03-01

    To examine the relationship between chronic training loads, number of exposures to maximal velocity, the distance covered at maximal velocity, percentage of maximal velocity in training and match-play and subsequent injury risk in elite Gaelic footballers. Prospective cohort design. Thirty-seven elite Gaelic footballers from one elite squad were involved in a one-season study. Training and game loads (session-RPE multiplied by duration in min) were recorded in conjunction with external match and training loads (using global positioning system technology) to measure the distance covered at maximal velocity, relative maximal velocity and the number of player exposures to maximal velocity across weekly periods during the season. Lower limb injuries were also recorded. Training load and GPS data were modelled against injury data using logistic regression. Odds ratios (OR) were calculated based on chronic training load status, relative maximal velocity and number of exposures to maximal velocity with these reported against the lowest reference group for these variables. Players who produced over 95% maximal velocity on at least one occasion within training environments had lower risk of injury compared to the reference group of 85% maximal velocity on at least one occasion (OR: 0.12, p=0.001). Higher chronic training loads (≥4750AU) allowed players to tolerate increased distances (between 90 to 120m) and exposures to maximal velocity (between 10 to 15 exposures), with these exposures having a protective effect compared to lower exposures (OR: 0.22 p=0.026) and distance (OR=0.23, p=0.055). Players who had higher chronic training loads (≥4750AU) tolerated increased distances and exposures to maximal velocity when compared to players exposed to low chronic training loads (≤4750AU). Under- and over-exposure of players to maximal velocity events (represented by a U-shaped curve) increased the risk of injury. Copyright © 2016 Sports Medicine Australia. Published by

  7. The effects of varying resistance-training loads on intermediate- and high-velocity-specific adaptations.

    Science.gov (United States)

    Jones, K; Bishop, P; Hunter, G; Fleisig, G

    2001-08-01

    The purpose of this study was to compare changes in velocity-specific adaptations in moderately resistance-trained athletes who trained with either low or high resistances. The study used tests of sport-specific skills across an intermediate- to high-velocity spectrum. Thirty NCAA Division I baseball players were randomly assigned to either a low-resistance (40-60% 1 repetition maximum [1RM]) training group or a high-resistance (70-90% 1RM) training group. Both of the training groups intended to maximallv accelerate each repetition during the concentric phase (IMCA). The 10 weeks of training consisted of 4 training sessions a week using basic core exercises. Peak force, velocity, and power were evaluated during set angle and depth jumps as well as weighted jumps using 30 and 50% 1RM. Squat 1RMs were also tested. Although no interactions for any of the jump tests were found, trends supported the hypothesis of velocity-specific training. Percentage gains suggest that the combined use of heavier training loads (70-90% 1RM) and IMCA tend to increase peak force in the lower-body leg and hip extensors. Trends also show that the combined use of lighter training loads (40-60% 1RM) and IMCA tend to increase peak power and peak velocity in the lower-body leg and hip extensors. The high-resistance group improved squats more than the low-resistance group (p IMCA to increase 1RM strength in the lower bodies of resistance-trained athletes.

  8. Experimental and numerical investigations of textile hybrid composites subjected to low velocity impact loadings.

    Science.gov (United States)

    Chandekar, Gautam S; Kelkar, Ajit D

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio.

  9. Experimental and Numerical Investigations of Textile Hybrid Composites Subjected to Low Velocity Impact Loadings

    Directory of Open Access Journals (Sweden)

    Gautam S. Chandekar

    2014-01-01

    Full Text Available In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM© technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio.

  10. Experimental and Numerical Investigations of Textile Hybrid Composites Subjected to Low Velocity Impact Loadings

    Science.gov (United States)

    Chandekar, Gautam S.; Kelkar, Ajit D.

    2014-01-01

    In the present study experimental and numerical investigations were carried out to predict the low velocity impact response of four symmetric configurations: 10 ply E Glass, 10 ply AS4 Carbon, and two Hybrid combinations with 1 and 2 outer plies of E Glass and 8 and 6 inner plies of Carbon. All numerical investigations were performed using commercial finite element software, LS-DYNA. The test coupons were manufactured using the low cost Heated Vacuum Assisted Resin Transfer Molding (H-VARTM©) technique. Low velocity impact testing was carried out using an Instron Dynatup 8250 impact testing machine. Standard 6 × 6 Boeing fixture was used for all impact experiments. Impact experiments were performed over progressive damage, that is, from incipient damage till complete failure of the laminate in six successive impact energy levels for each configuration. The simulation results for the impact loading were compared with the experimental results. For both nonhybrid configurations, it was observed that the simulated results were in good agreement with the experimental results, whereas, for hybrid configurations, the simulated impact response was softer than the experimental response. Maximum impact load carrying capacity was also compared for all four configurations based on their areal density. It was observed that Hybrid262 configuration has superior impact load to areal density ratio. PMID:24719573

  11. Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    Science.gov (United States)

    Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.

    1998-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.

  12. Minimum and Complete Fluidization Velocity for Sand-Palm Shell Mixtures, Part II: Characteristic Velocity Profiles, Critical Loading and Binary Correlations

    Directory of Open Access Journals (Sweden)

    V. S. Chok

    2010-01-01

    Full Text Available Problem statement: In Part I of this research, the main features of the fluidization behavior and characteristic velocities had been reported. Approach: In the present research, the mixtures characteristic velocity profiles for various sand sizes, palm shell sizes and weight percents were presented. It was recognized that there are instances where the characteristic values remain nearly unchanged from its pure sand values. This regime of constant values can be observed in both compartments and can be established depending on the bed properties. The term "Critical loading" is then selected to define the maximum palm shell content (size and weight percent that can be present in the mixtures where the characteristic velocities remain absolutely of pure sand values. Results: The critical loading increases with the increase of sand size but decreases with the increase of palm shell size. Moreover, it can be observed that the critical loading generally decreases with the increase in particle size ratio, although exception is sighted in the combustor for the mixture with the largest sand size. Overall, the largest sand size has the highest critical loading. Meanwhile, the selected correlations are able to describe the qualitative variation in the characteristic velocities. However, quantitatively, these correlations are unsatisfactory as they are either over-estimate or under-estimate. Conclusion/Recommendations: It is desirable to establish the regime of critical loading since the mixture characteristic velocities can be pre-determined using bed material properties made up from pure sand (inert values. Within this regime, a single operational velocity can be set for respective compartment that is independent from variation of palm shell size and weight percent in the mixtures (especially during combustion or gasification. Ultimately, the state of fluidization (e.g., bubbling or vigorously fluidized and mixing/segregation condition that depend on

  13. High-Velocity Impact Behaviour of Prestressed Composite Plates under Bird Strike Loading

    Directory of Open Access Journals (Sweden)

    Sebastian Heimbs

    2012-01-01

    Full Text Available An experimental and numerical analysis of the response of laminated composite plates under high-velocity impact loads of soft body gelatine projectiles (artificial birds is presented. The plates are exposed to tensile and compressive preloads before impact in order to cover realistic loading conditions of representative aeronautic structures under foreign object impact. The modelling methodology for the composite material, delamination interfaces, impact projectile, and preload using the commercial finite element code Abaqus are presented in detail. Finally, the influence of prestress and of different delamination modelling approaches on the impact response is discussed and a comparison to experimental test data is given. Tensile and compressive preloading was found to have an influence on the damage pattern. Although this general behaviour could be predicted well by the simulations, further numerical challenges for improved bird strike simulation accuracy are highlighted.

  14. Short-term effects of a standardized glucose load on region-specific aortic pulse wave velocity assessed by MRI

    NARCIS (Netherlands)

    Jonker, J.T.; Tjeerdema, N.; Hensen, L.C.; Lamb, H.J.; Romijn, J.A.; Smit, J.W.; Westenberg, J.J.; Roos, A. de

    2014-01-01

    PURPOSE: To assess the short-term effects of a standardized oral glucose load on regional aortic pulse wave velocity (PWV) using two-directional in-plane velocity encoded MRI. MATERIALS AND METHODS: A randomized, controlled intervention was performed in 16 male subjects (mean +/- standard deviation:

  15. Morphological analysis of force/velocity relationship in dynamic exercise at varying loads.

    Science.gov (United States)

    Limonta, Eloisa; Sacchi, Massimiliano

    2010-08-01

    This study examined the force/velocity (F/V) curve morphology among the entire concentric phase of the countermovement squat (CMS). The hypothesis is that F/V curve shape of the lower limb muscles complex is different from F/V isolated muscle curve and that these analyses could be useful in characterizing athletes' muscular capacity and training programs. Squat exercise was performed by 29 subjects (15 men and 14 women, divided into resistance and endurance athletes). The protocol was 6 x 1 CMS at maximal speed with increasing loads: 20, 35, 50, 65, 80, 90% of 1 repetition maximum (1RM). Displacement, speed, and acceleration of the weight bar, joint knee angles, knee angular speed, and total and normalized forces were collected. F/V relation was obtained by force and velocity values of each 10 degrees angular interval of the concentric phase for any load. Results show that the F/V relationship does not follow a linear shape and an equivalent criterion for all loads. We observed a "second peak force" statistically higher (p men showed a "second peak" higher and larger than that shown by endurance trained men. This indicated a higher ability to produce and maintain greater force at higher relative speed. These results may be helpful to identify the muscle characteristics of the athletes at various speeds and joint positions. With a phase division of the specific move, it will be possible to determine an individualized program to monitor the specific phases of technical moves and to evaluate the training effect in long run.

  16. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  17. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  18. Experimental investigation of fibre reinforced plastics with hybrid layups under high-velocity impact loads

    Directory of Open Access Journals (Sweden)

    Marco Romano

    2014-07-01

    Full Text Available This paper deals with experimental investigations concerning energy dissipation capacity of different kinds of reinforcement fibres in monolithic and hybrid layups under high-velocity impact loads. The investigated kinds of fibres are carbon, glass and basalt fibres. Therefore test panels, using the same thermoset resin, were built up and cured by autoclave processing. The fibre volume content of the test panels has been determined. Furthermore the influence of a separating layer at selected positions in the hybrid stacked panels was investigated. The results show the influence and the energy dissipation capacity of each single kind of fibre and the enhanced properties for the hybrid layups by hybrid stacking sequences and the use of a separating core material.

  19. Effects of load magnitude, muscle length and velocity during eccentric chronic loading on the longitudinal growth of the vastus lateralis muscle.

    Science.gov (United States)

    Sharifnezhad, Ali; Marzilger, Robert; Arampatzis, Adamantios

    2014-08-01

    The present study investigated the longitudinal growth of the vastus lateralis muscle using four eccentric exercise protocols with different mechanical stimuli by modifying the load magnitude, lengthening velocity and muscle length at which the load was applied. Thirty-one participants voluntarily participated in this study in two experimental and one control group. The first experimental group (N=10) exercised the knee extensors of one leg at 65% (low load magnitude) of the maximum isometric voluntary contraction (MVC) and the second leg at 100% MVC (high load magnitude) with 90 deg s(-1) angular velocity, from 25 to 100 deg knee angle. The second experimental group (N=10) exercised one leg at 100% MVC, 90 deg s(-1), from 25 to 65 deg knee angle (short muscle length). The other leg was exercised at 100% MVC, 240 deg s(-1) angular velocity (high muscle lengthening velocity) from 25 to 100 deg. In the pre- and post-intervention measurements, we examined the fascicle length of the vastus lateralis at rest and the moment-angle relationship of the knee extensors. After 10 weeks of intervention, we found a significant increase (~14%) of vastus lateralis fascicle length compared with the control group, yet only in the leg that was exercised with high lengthening velocity. The findings provide evidence that not every eccentric loading causes an increase in fascicle length and that the lengthening velocity of the fascicles during the eccentric loading, particularly in the phase where the knee joint moment decreases (i.e. deactivation of the muscle), seems to be an important factor for longitudinal muscle growth. © 2014. Published by The Company of Biologists Ltd.

  20. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  1. On the Behavior of Fiberglass Epoxy Composites under Low Velocity Impact Loading

    Directory of Open Access Journals (Sweden)

    Gautam S. Chandekar

    2010-01-01

    Full Text Available Response of fiberglass epoxy composite laminates under low velocity impact loading is investigated using LS-DYNA®, and the results are compared with experimental analysis performed using an instrumented impact test setup (Instron dynatup 8250. The composite laminates are manufactured using H-VARTM© process with basket weave E-Glass fabrics. Epon 862 is used as a resin system and Epicure-W as a hardening agent. Composite laminates, with 10 layers of fiberglass fabrics, are modeled using 3D solid elements in a mosaic fashion to represent basket weave pattern. Mechanical properties are calculated by using classical micromechanical theory and assigned to the elements using ORTHOTROPIC ELASTIC material model. The damage occurred since increasing impact energy is incorporated using ADVANCED COMPOSITE DAMAGE material model in LS-DYNA®. Good agreements are obtained with the failure damage results in LS-DYNA® and experimental results. Main considerations for comparison are given to the impact load carrying capacity and the amount of impact energy absorbed by the laminates.

  2. Velocity fields of a bed-load layer under a turbulent liquid flow

    CERN Document Server

    Penteado, Marcos Roberto Mendes

    2016-01-01

    The transport of sediments by a fluid flow is commonly found in nature and in industry. In nature, it is found in rivers, oceans, deserts, and other environments. In industry, it is found in petroleum pipelines conveying grains, in sewer systems, and in dredging lines, for example. This study investigates experimentally the transport of the grains of a granular bed sheared by a turbulent liquid flow. In our experiments, fully developed turbulent water flows were imposed over a flat granular bed of known granulometry. Under the tested conditions, the grains were transported as bed load, i.e., they became entrained by rolling and sliding over each other, forming a moving granular layer. The present experiments were performed close to incipient bed load, a case for which experimental data on grains velocities are scarce. Distinct from previous experiments, an entrance length assured that the water stream over the loose bed was fully developed. At different water flow rates, the moving layer was filmed using a hi...

  3. Influence of Rigid Body Motions on Rotor Induced Velocities and Aerodynamic Loads of a Floating Horizontal Axis Wind Turbine

    DEFF Research Database (Denmark)

    de Vaal, Jacobus B.; Hansen, Martin Otto Laver; Moan, Torgeir

    2014-01-01

    This paper discusses the influence of rigid body motions on rotor induced velocities and aerodynamic loads of a floating horizontal axis wind turbine. Analyses are performed with a simplified free wake vortex model specifically aimed at capturing the unsteady and non-uniform inflow typically...... experienced by a floating wind turbine. After discussing the simplified model in detail, comparisons are made to a state of the art free wake vortex code, using test cases with prescribed platform motion. It is found that the simplified model compares favourably with a more advanced numerical model......, and captures the essential influences of rigid body motions on the rotor loads, induced velocities and wake influence....

  4. Evaluation of ADCP apparent bed load velocity in a large sand-bed river: Moving versus stationary boat conditions

    Science.gov (United States)

    Jamieson, E.C.; Rennie, C.D.; Jacobson, R.B.; Townsend, R.D.

    2011-01-01

    Detailed mapping of bathymetry and apparent bed load velocity using a boat-mounted acoustic Doppler current profiler (ADCP) was carried out along a 388-m section of the lower Missouri River near Columbia, Missouri. Sampling transects (moving boat) were completed at 5- and 20-m spacing along the study section. Stationary (fixed-boat) measurements were made by maintaining constant boat position over a target point where the position of the boat did not deviate more than 3 m in any direction. For each transect and stationary measurement, apparent bed load velocity (vb) was estimated using ADCP bottom tracking data and high precision real-time kinematic (RTK) global positioning system (GPS). The principal objectives of this research are to (1) determine whether boat motion introduces a bias in apparent bed load velocity measurements; and (2) evaluate the reliability of ADCP bed velocity measurements for a range of sediment transport environments. Results indicate that both high transport (vb>0.6 m/s) and moving-boat conditions (for both high and low transport environments) increase the relative variability in estimates of mean bed velocity. Despite this, the spatially dense single-transect measurements were capable of producing detailed bed velocity maps that correspond closely with the expected pattern of sediment transport over large dunes. ?? 2011 American Society of Civil Engineers.

  5. Properties of Supersonic Evershed Downflows

    Science.gov (United States)

    Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  6. Difference in kinematics and kinetics between high- and low-velocity resistance loading equated by volume: implications for hypertrophy training.

    Science.gov (United States)

    Mohamad, Nur Ikhwan; Cronin, John B; Nosaka, Ken K

    2012-01-01

    Although it is generally accepted that a high load is necessary for muscle hypertrophy, it is possible that a low load with a high velocity results in greater kinematics and kinetics than does a high load with a slow velocity. The purpose of this study was to determine if 2 training loads (35 and 70% 1 repetition maximum [1RM]) equated by volume, differed in terms of their session kinematic and kinetic characteristics. Twelve subjects were recruited in this acute randomized within-subject crossover design study. Two bouts of a half-squat exercise were performed 1 week apart, one with high load-low velocity (HLLV = 3 sets of 12 reps at 70% 1RM) and the other with low-load high-velocity (LLHV = 6 sets of 12 reps at 35% 1RM). Time under tension (TUT), average force, peak force (PF), average power (AP), peak power (PP), work (TW), and total impulse (TI) were calculated and compared between loads for the eccentric and concentric phases. For average eccentric and concentric single repetition values, significantly (p eccentric and concentric TUT, PF, AP, PP, and TW. The only variable that was significantly greater for the HLLV protocol than for the LLHV protocol was TI (∼20-24%). From these results, it seems that the LLHV protocol may offer an equal if not better training stimulus for muscular adaptation than the HLLV protocol, because of the greater time under tension, power, force, and work output when the total volume of the exercise is equated.

  7. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  8. Spanwise loading distribution and wake velocity surveys of a semi-span wing

    Science.gov (United States)

    Felker, F. F., III; Piziali, R. A.; Gall, J. K.

    1982-01-01

    The spanwise distribution of bound circulation on a semi-span wing and the flow velocities in its wake were measured in a wind tunnel. Particular attention was given to documenting the flow velocities in and around the development tip vortex. A two-component laser velocimeter was used to make the velocity measurements. The spanwise distribution of bound circulation, three components of the time-averaged velocities throughout the near wake their standard deviations, and the integrated forces and moments on a metric tip as measured by an internal strain gage balance are presented without discussion.

  9. High-Tip-Speed, Low-Loading Transonic Fan Stage. Part 1: Aerodynamic and Mechanical Design

    Science.gov (United States)

    Wright, L. C.; Vitale, N. G.; Ware, T. C.; Erwin, J. R.

    1973-01-01

    A high-tip-speed, low-loading transonic fan stage was designed to deliver an overall pressure ratio of 1.5 with an adiabatic efficiency of 86 percent. The design flow per unit annulus area is 42.0 pounds per square foot. The fan features a hub/tip ratio of 0.46, a tip diameter of 28.74 in. and operates at a design tip speed of 1600 fps. For these design conditions, the rotor blade tip region operates with supersonic inlet and supersonic discharge relative velocities. A sophisticated quasi-three-dimensional characteristic section design procedure was used for the all-supersonic sections and the inlet of the midspan transonic sections. For regions where the relative outlet velocities are supersonic, the blade operates with weak oblique shocks only.

  10. Properties of Supersonic Evershed Downflows

    CERN Document Server

    Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz

    2016-01-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...

  11. Experimental Determination of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    Science.gov (United States)

    Shogrin, Bradley A.; Jones, William R., Jr.; Kingsbury, Edward P.; Prahl, Joseph M.

    1999-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls of a unique tribometer while subjecting the ball-ball contact to highly stressed, zero entrainment velocity (ZEV) conditions. All tests were performed under a N2 purge (R.H. carrying capacity at these zero entrainment velocity conditions, relevant to the ball-ball contact application in retainerless ball bearings.

  12. Investigating velocity spectra at the Hugoniot state of shock loaded heterogenous materials

    Science.gov (United States)

    LaJeunesse, Jeff; Stewart, Sarah T.; Kennedy, Greg; Thadhani, Naresh; Borg, John P.

    2017-01-01

    Particle velocity and stress profiles measured in planar impact experiments on heterogeneous materials have shown significant deviations about the idealized final shock state plateau in both experimental and simulated tests. These deviations arise from the scattering of the transmitted shock wave due to the presence of internal interfaces within heterogeneous materials. The goal of this work is to determine if the spectra of oscillatory behavior can be associated to characteristic length scales of the corresponding un-shocked heterogeneous material. Similarities between experimental and simulated particle velocity profiles from planar impacts on dry sand are compared.

  13. Light-load maximal lifting velocity full squat training program improves important physical and skill characteristics in futsal players.

    Science.gov (United States)

    Torres-Torrelo, Julio; Rodríguez-Rosell, David; González-Badillo, Juan José

    2017-05-01

    This study aimed to compare the effect of 6 weeks of resistance training or combined resistance training and change of direction exercises on physical performance and motor skills in futsal players. Thirty-four futsal players were divided into full squat group (SG, n = 12), combined full squat and change of direction exercises group (S+CDG, n = 12) and control group (CG, n = 10). The resistance training for SG consisted of full squat with low load (~45-58% 1RM) and low volume (4-6 repetitions), whereas the S+CDG performed the same resistance training program combined with loaded change of direction. Sprint time in 10 and 20 m, change of direction test, countermovement vertical jump (CMJ) height, maximal strength and force-velocity relationship in full squat exercise, kicking speed ball (BSmean) and repeated sprint ability (RSAmean) were selected as testing variables. Both experimental groups showed significant improvements for CMJ, BSmean and all strength parameters. Only SG resulted in significant sprint gains, whereas S+CDG also achieved significant improvements in RSAmean. The CG remained unchanged after training period. No significant differences were found between both experimental groups. These findings suggest that only 12 sessions of either lightweight resistance training alone, lifting the load at maximal intended velocity or combined with change of direction exercises is enough to improve several physical and skills capacities critical to futsal performance in adult players.

  14. Simulating Supersonic Turbulence in Galaxy Outflows

    CERN Document Server

    Scannapieco, Evan

    2010-01-01

    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...

  15. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  16. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  17. CHARACTERIZATION OF 6061 T651 ALUMINUM PLATES SUBJECTED TO HIGH-VELOCITY IMPACT LOADS

    Directory of Open Access Journals (Sweden)

    Evren ÖZŞAHİN

    2011-06-01

    Full Text Available Ballistic response of single or multi-layered metal armor systems subjected to kinetic energy pro-jectiles was investigated in many experimental, theoretical and numerical studies.In this study, 6061 T651 aluminum plates impacted by 9 mm bullets were investigated. Microstructural investigations have been carried out using optical microscopy. Microhardness values were used to determine the strength behavior of the plates. Influence of the plate thickness and impact velocity on the microstructure has been evaluated. It was concluded from the study that thinner plates are more prone to deformation hardening with high penetration depth values even at low impact velocities while thick plates are more susceptible to thermal softening with less penetration depths. Maximum hardness values were obtained just below the impact zone in both plate thicknesses.

  18. Probability distributions of bed load particle velocities, accelerations, hop distances, and travel times informed by Jaynes's principle of maximum entropy

    Science.gov (United States)

    Furbish, David J.; Schmeeckle, Mark; Schumer, Rina; Fathel, Siobhan L.

    2016-01-01

    We describe the most likely forms of the probability distributions of bed load particle velocities, accelerations, hop distances, and travel times, in a manner that formally appeals to inferential statistics while honoring mechanical and kinematic constraints imposed by equilibrium transport conditions. The analysis is based on E. Jaynes's elaboration of the implications of the similarity between the Gibbs entropy in statistical mechanics and the Shannon entropy in information theory. By maximizing the information entropy of a distribution subject to known constraints on its moments, our choice of the form of the distribution is unbiased. The analysis suggests that particle velocities and travel times are exponentially distributed and that particle accelerations follow a Laplace distribution with zero mean. Particle hop distances, viewed alone, ought to be distributed exponentially. However, the covariance between hop distances and travel times precludes this result. Instead, the covariance structure suggests that hop distances follow a Weibull distribution. These distributions are consistent with high-resolution measurements obtained from high-speed imaging of bed load particle motions. The analysis brings us closer to choosing distributions based on our mechanical insight.

  19. Effect of concentric and eccentric velocity during heavy-load non-ballistic elbow flexion resistance exercise.

    Science.gov (United States)

    Sampson, John A; Donohoe, Alison; Groeller, Herbert

    2014-05-01

    Mechanical and neuromuscular benefits arise during ballistic stretch-shortening cycle muscle activation, yet resistance training regimens are typically non-ballistic, and in contrast to ballistic movement, require a concentric deceleration phase. Twelve healthy males performed a unilateral, six repetition maximum non-ballistic elbow flexion-extension task during; (i) rapid shortening (RS), (ii) stretch-shortening cycle (SSC) and (iii) a 2-s eccentric and 2-s concentric control (C). A load cell and shaft encoder recorded respectively force and velocity. Surface electromyographic root mean square amplitude (EMGRMS) was recorded in the biceps and triceps brachii, and is reported as the relative (%) difference, normalised to control (C). The average lengthening and shortening velocity of SSC (0.57 ± 0.03 ms(-1); 0.43 ± 0.02 ms(-1)) was significantly greater than RS (0.22 ± 0.01 ms(-1); 0.35 ± 0.01 ms(-1)), and C (0.17 ± 0.00 ms(-1), 0.20 ± 0.00 ms(-1)). Peak eccentric force was increased (PEccentric EMGRMS in the biceps brachii was significantly increased during the first three and final repetitions of SSC (31.9 ± 10.9%, 46.7 ± 12.4, 69.3 ± 13.6%, 92.0 ± 16.4%), and the third and last repetitions of RS (35.9 ± 7.4%, 50.3 ± 10.9%), compared to C (0.00%, 15.8 ± 4.0%, 23.7 ± 4.1%, 39.2 ± 8.6%). In the current study, eccentric limb velocity potentiated eccentric and concentric force, concentric velocity, and eccentric EMG amplitude during non-ballistic exercise. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  20. Evaluation of the influence of velocity on dynamic passenger loads during a frontal minibus impact against an obstacle

    Science.gov (United States)

    Prochowski, L.; Dębowski, A.; Żuchowski, A.; Zielonka, K.

    2016-09-01

    The safety of people travelling by minibus is a very complex issue, in which the decisive role is played by load-bearing vehicle structure, passenger seats, and personal protection means. In order to maximize the number of people transported, the seats are spaced very closely to each other and this may pose a hazard to the passengers. Based on an analysis of experimental test results, a computer model representing a system composed of a minibus floor segment, seats, and dummies was built. For the analysis, seats integrated with seat belts were adopted. A seat of this type was based on a high-rigidity frame necessary to bear, inter alia, the strong force exerted (during a collision) by passenger's torso on the shoulder seat belt and transmitted to the upper seat belt anchorage point on the seat backrest. Within this work, the frontal minibus impact against an obstacle with velocities ranging from 20 km/h to 70 km/h was considered. The analysis covered the motion of, and dynamic loads on, a test dummy representing a 50th percentile adult male (Hybrid III dummy). Within the analysis, realizations of dynamic loads caused by inertial forces and reactions exerted by a three-point seat belt were taken into account. Special attention was paid to the extreme values of the loads that acted on dummy's head, neck, and torso when the head hit the backrest of the preceding seat in the culminating phase of the vehicle impact against an obstacle. The values of biomechanical indicators HIC, ThAC, Nij , and FAC and of the joint injury risk indicator were calculated.

  1. Effects of 4-Week Training Intervention with Unknown Loads on Power Output Performance and Throwing Velocity in Junior Team Handball Players.

    Directory of Open Access Journals (Sweden)

    Rafael Sabido

    Full Text Available To compare the effect of 4-week unknown vs known loads strength training intervention on power output performance and throwing velocity in junior team handball players.Twenty-eight junior team-handball players (17.2 ± 0.6 years, 1.79 ± 0.07 m, 75.6 ± 9.4 kgwere divided into two groups (unknown loads: UL; known loads: KL. Both groups performed two sessions weekly consisting of four sets of six repetitions of the bench press throw exercise, using the 30%, 50% and 70% of subjects' individual 1 repetition maximum (1RM. In each set, two repetitions with each load were performed, but the order of the loads was randomised. In the KL group, researchers told the subjects the load to mobilise prior each repetition, while in the UL group, researchers did not provide any information. Maximal dynamic strength (1RM bench press, power output (with 30, 50 and 70% of 1RM and throwing velocity (7 m standing throw and 9 m jumping throw were assessed pre- and post-training intervention.Both UL and KL group improved similarly their 1RM bench press as well as mean and peak power with all loads. There were significant improvements in power developed in all the early time intervals measured (150 ms with the three loads (30, 50, 70% 1RM in the UL group, while KL only improved with 30% 1RM (all the time intervals and with 70% 1RM (at certain time intervals. Only the UL group improved throwing velocity in both standing (4.7% and jumping (5.3% throw (p > 0.05.The use of unknown loads has led to greater gains in power output in the early time intervals as well as to increases in throwing velocity compared with known loads. Therefore unknown loads are of significant practical use to increase both strength and in-field performance in a short period of training.

  2. Failure characteristics of a thin metallic sandwich plate with metallic sheared dimple cores under low-velocity impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Dong Gyu; Jeong, Woo Chul [Chosun University, Gwangju (Korea, Republic of)

    2013-10-15

    The functionality and the performance of a lightweight sandwich plate with periodic cellular metal (PCM) cores are influenced by failure characteristics of the lightweight sandwich plate. The goal of this paper is to investigate the failure characteristics of a thin metallic sandwich plate with metallic sheared dimple cores under low-velocity impact loading through nonlinear finite element analysis. The influence of the imperfection mode of the cores on the impact response of a thin sandwich plate is examined to obtain a proper simulation model. Repeated finite element analyses are performed to examine the failure modes of the sandwich plate for different impact conditions. Normalized impact parameters are defined in order to generalize a dynamic failure map (DFM). DFMs of the thin metallic sandwich plate have been estimated via the regression analysis of critical impact conditions for each failure mode. In addition, the influence of the normalized impact parameters on the failure mode has been investigated using the DFM.

  3. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  4. The role of loading rate, backwashing, water and air velocities in an up-flow nitrifying tertiary filter.

    Science.gov (United States)

    Vigne, Emmanuelle; Choubert, Jean-Marc; Canler, Jean-Pierre; Heduit, Alain; Sørensen, Kim Helleshøj; Lessard, Paul

    2011-01-01

    The vertical distribution of nitrification performances in an up-flow biological aerated filter operated at tertiary nitrification stage is evaluated in this paper. Experimental data were collected from a semi-industrial pilot-plant under various operating conditions. The actual and the maximum nitrification rates were measured at different levels inside the up-flow biofilter. A nitrogen loading rate higher than 1.0 kg NH4-Nm(-3)_mediad(-1) is necessary to obtain nitrification activity over all the height of the biofilter. The increase in water and air velocities from 6 to 10 m h(-1) and 10 to 20 m h(-1) has increased the nitrification rate by 80% and 20% respectively. Backwashing decreases the maximum nitrification rate in the media by only 3-14%. The nitrification rate measured at a level of 0.5 m above the bottom of the filter is four times higher than the applied daily average volumetric nitrogen loading rate up to 1.5 kg NH4-N m(-3)_mediad(-1). Finally, it is shown that 58% of the available nitrification activity is mobilized in steady-state conditions while up to 100% is used under inflow-rate increase.

  5. SIMULATION OF THE LASER DISCHARGE IN A SUPERSONIC GAS FLOW

    Directory of Open Access Journals (Sweden)

    Tropina, A. A.

    2013-06-01

    Full Text Available A heat model of the laser discharge in a supersonic turbulent gas flow has been developed. A numerical investigation of the error of the method of velocity measurements, which is based on the nitrogen molecules excitation, has been carried out. It is shown that fast gas heating by the discharge causes the velocity profiles deformation.

  6. The use of ultrasonic pulse velocity tests for the diagnosis of ancient masonries: the influence of the applied load

    Science.gov (United States)

    Leucci, Giovanni; Vasanelli, Emilia; Calia, Angela; Micelli, Francesco; Aiello, Maria Antonietta

    2014-05-01

    Sophisticated non destructive techniques for the diagnosis of existing masonry structures have been developed and improved throughout the years, such as ground penetrating radar, thermography, sonic and ultrasonic tomography, laser scanner survey, etc.: by using an integrated approach it is possible to reconstruct the morphology of the masonry walls, to detect the presence of cracks and voids, achieving an accurate and reliable diagnosis of the construction, which is the basis for the restoration design. The ultrasonic pulse velocity (UPV) method can be conveniently used to check the quality of stones, but it can be used also for material characterization. Both the intrinsic characteristic of the stone (porosity, grain size, anisotropy, etc.) and the external factors (humidity, stress, temperature, presence of cracks) may affect the elastic wave propagation, thus in order to correctly estimate the ultrasonic behaviour of the material investigated it is important to know in what manner and how much the variation of the experimental conditions may modify the characteristics of the waves being measured. This aspect is of crucial importance when in situ measurements are made. In this work the influence of the applied load on UPV results has been investigated. In particular, the research has been carried out on ashlars and on sample masonry panels made of lime mortar joints and Lecce stone, a soft calcarenitic stone traditionally used in the Lecce district, South of Italy. The presence of load strongly influenced the UPV measures, due to the particular microstructural characteristic of the stone. The work aim at quantify this influence in order to correctly interpret in situ measurements.

  7. Supersonic Motions of Galaxies in Clusters

    CERN Document Server

    Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan

    2004-01-01

    We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...

  8. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  9. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  10. The role of finite-difference methods in design and analysis for supersonic cruise

    Science.gov (United States)

    Townsend, J. C.

    1976-01-01

    Finite-difference methods for analysis of steady, inviscid supersonic flows are described, and their present state of development is assessed with particular attention to their applicability to vehicles designed for efficient cruise flight. Current work is described which will allow greater geometric latitude, improve treatment of embedded shock waves, and relax the requirement that the axial velocity must be supersonic.

  11. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  12. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  13. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  14. Infinitesimal Conical Supersonic Flow

    Science.gov (United States)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  15. Spall measurements in shock-loaded hemispherical shells from free-surface velocity histories. [Dynamic fracture of hemishells of copper and tantalum

    Energy Technology Data Exchange (ETDEWEB)

    Cagliostro, D.J.; Warnes, R.H.; Johnson, N.L.; Fujita, R.K.

    1987-01-01

    Copper and tantalum hemishells are externally loaded by a hemishell of PBX 9501 detonated at its pole. Free-surface velocity histories of the metal hemishells are measured at the pole and at 50 from the pole with a Fabry-Perot interferometer. These histories are used to determine spall strengths and depths by simple wave-interaction analyses and are compared with hydro-code (CAVEAT) predictions using simple and void-growth spall models. 8 refs., 4 figs., 1 tab.

  16. Study of active cooling for supersonic transports

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  17. On highly focused supersonic microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.

  18. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  19. Estimates of Vertical Velocity Errors for IGS ITRF2014 Stations by Applying the Improved Singular Spectrum Analysis Method and Environmental Loading Models

    Science.gov (United States)

    Klos, Anna; Gruszczynska, Marta; Bos, Machiel Simon; Boy, Jean-Paul; Bogusz, Janusz

    2017-02-01

    A reliable subtraction of seasonal signals from the Global Positioning System (GPS) position time series is beneficial for the accuracy of derived velocities. In this research, we propose a two-stage solution of the problem of a proper determination of seasonal changes. We employ environmental loading models (atmospheric, hydrological and ocean non-tidal) with a dominant annual signal of amplitudes in their superposition of up to 12 mm and study the seasonal signal (annual and semi-annual) estimates that change over time using improved singular spectrum analysis (ISSA). Then, this deterministic model is subtracted from GPS position time series. We studied data from 376 permanent International GNSS Service (IGS) stations, derived as the official contribution to International Terrestrial Reference Frame (ITRF2014) to measure the influence of applying environmental loading models on the estimated vertical velocity. Having removed the environmental loadings directly from the position time series, we noticed the evident change in the power spectrum for frequencies between 4 and 80 cpy. Therefore, we modelled the seasonal signal in environmental models using the ISSA approach and subtracted it from GPS vertical time series to leave the noise character of the time series intact. We estimated the velocity dilution of precision (DP) as a ratio between classical Weighted Least Squares and ISSA approach. For a total number of 298 out of the 376 stations analysed, the DP was lower than 1. This indicates that when the ISSA-derived curve was removed from the GPS data, the error of velocity becomes lower than it was before.

  20. The effects of profiles on supersonic jet noise

    Science.gov (United States)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  1. Supersonic and subsonic measurements of mesospheric ionization.

    Science.gov (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.

    1972-01-01

    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  2. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  3. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  4. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    Science.gov (United States)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2017-06-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters ( b) and the state-evolution distances (L_{{c}}), keeping the direct effect parameter ( a) constant. We then identified the confident range of b and L_{{c}} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{{c}} increase as the cumulative slip displacement increases, and b increases and L_{{c}} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  5. Apparent Dependence of Rate- and State-Dependent Friction Parameters on Loading Velocity and Cumulative Displacement Inferred from Large-Scale Biaxial Friction Experiments

    Science.gov (United States)

    Urata, Yumi; Yamashita, Futoshi; Fukuyama, Eiichi; Noda, Hiroyuki; Mizoguchi, Kazuo

    2016-11-01

    We investigated the constitutive parameters in the rate- and state-dependent friction (RSF) law by conducting numerical simulations, using the friction data from large-scale biaxial rock friction experiments for Indian metagabbro. The sliding surface area was 1.5 m long and 0.5 m wide, slid for 400 s under a normal stress of 1.33 MPa at a loading velocity of either 0.1 or 1.0 mm/s. During the experiments, many stick-slips were observed and those features were as follows. (1) The friction drop and recurrence time of the stick-slip events increased with cumulative slip displacement in an experiment before which the gouges on the surface were removed, but they became almost constant throughout an experiment conducted after several experiments without gouge removal. (2) The friction drop was larger and the recurrence time was shorter in the experiments with faster loading velocity. We applied a one-degree-of-freedom spring-slider model with mass to estimate the RSF parameters by fitting the stick-slip intervals and slip-weakening curves measured based on spring force and acceleration of the specimens. We developed an efficient algorithm for the numerical time integration, and we conducted forward modeling for evolution parameters (b) and the state-evolution distances (L_{c} ), keeping the direct effect parameter (a) constant. We then identified the confident range of b and L_{c} values. Comparison between the results of the experiments and our simulations suggests that both b and L_{c} increase as the cumulative slip displacement increases, and b increases and L_{c} decreases as the loading velocity increases. Conventional RSF laws could not explain the large-scale friction data, and more complex state evolution laws are needed.

  6. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  7. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  8. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  9. Supersonic stall flutter of high-speed fans

    Science.gov (United States)

    Adamczyk, J. J.; Stevans, W.; Jutras, R.

    1981-01-01

    An analytical model is proposed for predicting the onset of supersonic stall bending flutter in high-speed rotors. The analysis is based on a modified two-dimensional, compressible, unsteady actuator disk theory. The stability boundary predicted by the analysis is shown to be in good agreement with the measured boundary of a high speed fan. The prediction that the flutter mode would be a forward traveling wave sensitive to wheel speed and aerodynamic loading is confirmed by experimental measurements. In addition, the analysis shows that reduced frequency and dynamic head also play a significant role in establishing the supersonic stall bending flutter boundary of an unshrouded fan.

  10. Statistics of Centroids of Velocity

    CERN Document Server

    Esquivel, A

    2009-01-01

    We review the use of velocity centroids statistics to recover information of interstellar turbulence from observations. Velocity centroids have been used for a long time now to retrieve information about the scaling properties of the turbulent velocity field in the interstellar medium. We show that, while they are useful to study subsonic turbulence, they do not trace the statistics of velocity in supersonic turbulence, because they are highly influenced by fluctuations of density. We show also that for sub-Alfv\\'enic turbulence (both supersonic and subsonic) two-point statistics (e.g. correlation functions or power-spectra) are anisotropic. This anisotropy can be used to determine the direction of the mean magnetic field projected in the plane of the sky.

  11. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  12. The use of microsensors to study the role of the loading rate and surface velocity on the growth and the composition of nitrifying biofilms.

    Science.gov (United States)

    Gonzalez, B C; Spinola, A L G; Lamon, A W; Araujo, J C; Campos, J R

    2011-01-01

    The good composition and activity of biofilms are very important for successful operation and control of fixed-film biological reactors employed in liquid effluents treatment. During the last decade, microsensors have been applied to study microbial ecology. These sensors could provide information regarding the microbial activity concerning nitrification and denitrification that occur inside biofilms. Other techniques of molecular biology, such as fluorescence in situ hybridization (FISH), have also contributed to this matter because their application aids in the identification of the bacterial populations that compose the biofilms. The focus of this paper was to study the loading rate and surface velocity to promote the development of nitrifying biofilms in three distinct flow cells that were employed in the post treatment of a synthetic wastewater simulating the effluent from a UASB (Upflow Anaerobic Sludge Blanket) reactor. Using the FISH technique, it was found that the population of ammonia-oxidizing-bacteria was greater than that of nitrite-oxidizing-bacteria; this was also supported by the lower production of nitrate determined by physicochemical and microsensor analyses. It was verified that the loading rate and surface velocity that promoted the greatest nitrogen removal were 0.25 g N-amon m(-2)biofilm day(-1) and 1 m h(-1), respectively.

  13. Trunk coordination in healthy and chronic nonspecific low back pain subjects during repetitive flexion-extension tasks: Effects of movement asymmetry, velocity and load.

    Science.gov (United States)

    Mokhtarinia, Hamid Reza; Sanjari, Mohammad Ali; Chehrehrazi, Mahshid; Kahrizi, Sedigheh; Parnianpour, Mohamad

    2016-02-01

    Multiple joint interactions are critical to produce stable coordinated movements and can be influenced by low back pain and task conditions. Inter-segmental coordination pattern and variability were assessed in subjects with and without chronic nonspecific low back pain (CNSLBP). Kinematic data were collected from 22 CNSLBP and 22 healthy volunteers during repeated trunk flexion-extension in various conditions of symmetry, velocity, and loading; each at two levels. Sagittal plane angular data were time normalized and used to calculate continuous relative phase for each data point. Mean absolute relative phase (MARP) and deviation phase (DP) were derived to quantify lumbar-pelvis and pelvis-thigh coordination patterns and variability. Statistical analysis revealed more in-phase coordination pattern in CNSLBP (p=0.005). There was less adaptation in the DP for the CNSLBP group, as shown by interactions of Group by Load (p=.008) and Group by Symmetry by Velocity (p=.03) for the DP of pelvis-thigh and lumbar-pelvis couplings, respectively. Asymmetric (pvelocity conditions (p<0.001). In conclusion, coordination pattern and variability could be influenced by trunk flexion-extension conditions. CNSLBP subjects demonstrated less adaptability of movement pattern to the demands of the flexion-extension task.

  14. Influence of the Metal Volume Fraction on the maximum deflection and impact load of GLARE plates subjected to low velocity impact

    Science.gov (United States)

    Bikakis, GSE; Savaidis, A.; Zalimidis, P.; Tsitos, S.

    2016-11-01

    Fiber-metal laminates are hybrid composite materials, consisting of alternating metal layers bonded to fiber-reinforced prepreg layers. GLARE (GLAss REinforced) belongs to this new family of materials. GLARE is the most successful fiber-metal laminate up to now and is currently being used for the construction of primary aerospace structures, such as the fuselage of the Airbus A380 air plane. Impact properties are very important in aerospace structures, since impact damage is caused by various sources, such as maintenance damage from dropped tools, collision between service cars or cargo and the structure, bird strikes and hail. The principal objective of this article is to evaluate the influence of the Metal Volume Fraction (MVF) on the low velocity impact response of GLARE fiber-metal laminates. Previously published differential equations of motion are employed for this purpose. The low velocity impact behavior of various circular GLARE plates is predicted and characteristic values of impact variables, which represent the impact phenomenon, are evaluated versus the corresponding MVF of the examined GLARE material grades. The considered GLARE plates are subjected to low velocity impact under identical impact conditions. A strong effect of the MVF on the maximum impact load and a significant effect on the maximum plate deflection of GLARE plates has been found.

  15. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  16. Air Flow Measurements During Medium-Voltage Load Current Interruptions

    OpenAIRE

    Aanensen, Nina Sasaki; Runde, Magne

    2015-01-01

    Air has been considered a good alternative to SF6 as arc quenching medium for load break switchgear at medium voltage ratings. In this work, the air flow characteristics and influence from the electric arc have been studied for typical currents and over-pressures. The cooling air velocity is typically in the range 150 - 200 m/s and thus well below supersonic speed. The arc and the surrounding hot air severely affect the air flow pattern by causing clogging in the contact and nozzle region.

  17. Turbulent Velocity Structure in Molecular Clouds

    CERN Document Server

    Ossenkopf, V; Ossenkopf, Volker; Low, Mordecai-Mark Mac

    2002-01-01

    We compare velocity structure observed in the Polaris Flare molecular cloud at scales ranging from 0.015 pc to 20 pc to the velocity structure of a suite of simulations of supersonic hydrodynamic and MHD turbulence computed with the ZEUS MHD code. We examine different methods of characterising the structure, including a scanning-beam size-linewidth relation, structure functions, velocity and velocity difference probability distribution functions (PDFs), and the Delta-variance wavelet transform, and use them to compare models and observations. The Delta-variance is most sensitive in detecting characteristic scales and varying scaling laws, but is limited in the observational application by its lack of intensity weighting. We compare the true velocity PDF in our models to simulated observations of velocity centroids and average line profiles in optically thin lines, and find that the line profiles reflect the true PDF better. The observed velocity structure is consistent with supersonic turbulence showing a com...

  18. Optimal locations of piezoelectric patches for supersonic flutter control of honeycomb sandwich panels, using the NSGA-II method

    Science.gov (United States)

    Nezami, M.; Gholami, B.

    2016-03-01

    The active flutter control of supersonic sandwich panels with regular honeycomb interlayers under impact load excitation is studied using piezoelectric patches. A non-dominated sorting-based multi-objective evolutionary algorithm, called non-dominated sorting genetic algorithm II (NSGA-II) is suggested to find the optimal locations for different numbers of piezoelectric actuator/sensor pairs. Quasi-steady first order supersonic piston theory is employed to define aerodynamic loading and the p-method is applied to find the flutter bounds. Hamilton’s principle in conjunction with the generalized Fourier expansions and Galerkin method are used to develop the dynamical model of the structural systems in the state-space domain. The classical Runge-Kutta time integration algorithm is then used to calculate the open-loop aeroelastic response of the system. The maximum flutter velocity and minimum voltage applied to actuators are calculated according to the optimal locations of piezoelectric patches obtained using the NSGA-II and then the proportional feedback is used to actively suppress the closed loop system response. Finally the control effects, using the two different controllers, are compared.

  19. The Intensity of the Light Diffraction by Supersonic Longitudinal Waves in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-04-01

    Full Text Available First, we predict existence of transverse electromagnetic field created by supersonic longitudinal waves in solid. This electromagnetic wave with frequency of ultrasonic field is moved by velocity of supersonic field toward of direction propagation of one. The average Poynting vector of superposition field is calculated by presence of the transverse electromagnetic and the optical fields which in turn provides appearance the diffraction of light.

  20. Particle In-Flight Velocity and Dispersion Measurements at Increasing Particle Feed Rates in Cold Spray

    Science.gov (United States)

    Meyer, M.; Yin, S.; Lupoi, R.

    2017-01-01

    Cold spray (CS) is attracting interest of research and industry due to its rapid, solid-state particle deposition process and respective advantages over conventional deposition technologies. The acceleration of the particles is critical to the efficiency of CS, and previous investigations rarely consider the particle feed rate. However, because higher particle loadings are typically used in the process, the effect of this cannot be assumed negligible. This study therefore investigates the particle velocities in the supersonic jet of an advanced CS system at low- and high pressure levels and varying particle feed rates using particle image velocimetry. The particle dispersion and velocity evolution along the jet axis were investigated for several feedstock materials. It was found that the average particle velocity noticeably decreases with increasing particulate loading in all cases. The velocity distribution and particle dispersion were also observed to be influenced by the feed rate. Effects are driven by both mass loading and volume fraction, depending on the feedstock's particle velocity parameter. Increased particle feed rates hence affect the magnitude and distribution of impact velocity and consequently the efficiency of CS. In particular, numerical models neglecting this interconnection are required to be further improved, based on these experimental studies.

  1. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  2. Velocity centroids as tracers of the turbulent velocity statistics

    CERN Document Server

    Lazarian, A E A

    2004-01-01

    We use the results of magnetohydrodynamic (MHD) simulations to emulate spectroscopic observations, and produce maps of variations of velocity centroids to study their scaling properties. We compare them with those of the underlying velocity field, and analytic predictions presented in a previous paper (Lazarian & Esquivel 2003). We tested, with success, a criteria for recovering velocity statistics from velocity centroids derived in our previous work. That is, if >> (where S is a 2D map of ``unnormalized'', v velocity, and I integrated intensity map -column density-), then the structure function of the centroids is dominated by the structure function of velocity. We show that it is possible to extract the velocity statistics using centroids for subsonic and mildly supersonic turbulence (e.g. Mach numbers ~2.5). While, towards higher Mach numbers other effects could affect significantly the statistics of centroids.

  3. Fluid velocity measurement of supersonic wind tunnel with tunable diode laser absorption spectroscopy%可调谐二极管激光吸收光谱技术测量风洞流速

    Institute of Scientific and Technical Information of China (English)

    谷俊青; 徐胜利

    2014-01-01

    Tunable diode laser absorption spectroscopic (TDLAS)technology applies the wavelength tunable character-istics of diode lasers to the absorption spectroscopy of the selected absorption line.Based on the absorption line of wa-ter vapor,combined with HITRAN database,the frequency is chosen which fits the current environment (71 81.1 558cm-1 ),experiment equipments are set up,the according frequency shift of the chosen frequency is meas-ured and the fluid velocity is calculated.Experiments results show that velocity measurement is 563.06m/s,with the linear error of 5.09%,which builds good foundation for the next series of experiments under transient environments of high velocity such as shock tube.%基于对水蒸气的吸收谱线在超音速流场的多普勒效应,结合HITRAN数据库,选取适合当前环境的吸收谱线7181.1558 cm-1,结合超音速风洞装置建立起一套基于可调谐二极管激光吸收光谱(TDLAS )技术的实验装置,测量对应频移,分析反演出流场速度,实验结果表明,在高速环境下,系统测量流速为563.06 m/s,线性误差为5.09%,效果良好,从而为对激波管等高速脉冲设备的进一步测量实验打下了良好基础。

  4. Novel tribological stability of the superlubricity poly (vinylphosphonic acid) (PVPA) coatings on Ti6Al4V: Velocity and load independence

    Science.gov (United States)

    Zhang, Caixia; Liu, Zhifeng; Liu, Yuhong; Ren, Jing; Cheng, Qiang; Yang, Congbin; Cai, Ligang

    2017-01-01

    High stability and movement compatibility under friction is vital to guarantee long-term use of implants in the human body. In this study, the negligible wear of the poly (vinylphosphonic acid) (PVPA)-modified Ti6Al4V/polytetrafluoroethylene (PTFE) interface in phosphate-buffered saline (PBS, PH = 7.2) were confirmed. The depth of scratches on the PVPA-modified Ti6Al4V was no more than 20 nm, while there was slight wear on the PTFE ball, as indicated by the radius of curvature being almost the same as the initial value after sliding for 2 h. In addition, it should be noted that the novel velocity and load-independent tribological behaviors are exciting. The superlubricity of the PVPA-modified Ti6Al4V can be maintained over a wide velocity range, from 0.3 mm/s to 48 mm/s, even under a high pressure of 63.49 MPa, confirming its potential application in implants. The sufficient thickness of the firm PVPA coatings with specific lubricating state and the compatibility of the two tribo-pairs in this tribological system primarily account for the novel tribological stability. This study provides insights into the tribological mechanisms of the high-stability polymer coatings.

  5. Effect of Sampling Rates on the Quantification of Forces, Durations, and Rates of Loading of Simulated Side Posture High-Velocity, Low-Amplitude Lumbar Spine Manipulation☆

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-01-01

    Objective Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Methods Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. Results The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. Conclusions The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. PMID:23790603

  6. Effect of sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture high-velocity, low-amplitude lumbar spine manipulation.

    Science.gov (United States)

    Gudavalli, Maruti Ram; DeVocht, James; Tayh, Ali; Xia, Ting

    2013-06-01

    Quantification of chiropractic high-velocity, low-amplitude spinal manipulation (HVLA-SM) may require biomechanical equipment capable of sampling data at high rates. However, there are few studies reported in the literature regarding the minimal sampling rate required to record the HVLA-SM force-time profile data accurately and precisely. The purpose of this study was to investigate the effect of different sampling rates on the quantification of forces, durations, and rates of loading of simulated side posture lumbar spine HVLA-SM delivered by doctors of chiropractic. Five doctors of chiropractic (DCs) and 5 asymptomatic participants were recruited for this study. Force-time profiles were recorded during (i) 52 simulated HVLA-SM thrusts to a force transducer placed on a force plate by 2 DCs and (ii) 12 lumbar side posture HVLA-SM on 5 participants by 3 DCs. Data sampling rate of the force plate remained the same at 1000 Hz, whereas the sampling rate of the force transducer varied at 50, 100, 200, and 500 Hz. The data were reduced using custom-written MATLAB (Mathworks, Inc, Natick, MA) and MathCad (version 15; Parametric Technologies, Natick, MA) programs and analyzed descriptively. The average differences in the computed durations and rates of loading are smaller than 5% between 50 and 1000 Hz sampling rates. The differences in the computed preloads and peak loads are smaller than 3%. The small differences observed in the characteristics of force-time profiles of simulated manual HVLA-SM thrusts measured using various sampling rates suggest that a sampling rate as low as 50 to 100 Hz may be sufficient. The results are applicable to the manipulation performed in this study: manual side posture lumbar spine HVLA-SM. Copyright © 2013 The Authors. Published by Mosby, Inc. All rights reserved.

  7. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    Science.gov (United States)

    1959-12-01

    Supersonic Aerodynamics. The continued encouragement received from Dr. G. N. Patterson is sincerely acknowledged. Thanks are due to E. 0. Gadamer , K...the focal point. However, it is assumed that it is smoothed out very quickly (Ref. 1). This type of wave is difficult to generate in practice , as it...since in practice they quickly turn into a shock front. 2a1The piston velocity u 1--1 - (N - 1), and following the method of Eq. (6), the piston

  8. Dynamical separation of spherical bodies in supersonic flow

    OpenAIRE

    Laurence, Stuart; Parziale, N. J.; Deiterding, Ralf

    2012-01-01

    An experimental and computational investigation of the unsteady separation behaviour of two spheres in a highly supersonic flow is carried out. The spherical bodies, initially touching, are released with negligible relative velocity, an arrangement representing the idealized binary fragmentation of a meteoritic body in the atmosphere. In experiments performed in a Mach-4 Ludwieg tube, nylon spheres are initially suspended in the test section by weak threads and, following detachment of ...

  9. Particle Streak Velocimetry of Supersonic Nozzle Flows

    Science.gov (United States)

    Willits, J. D.; Pourpoint, T. L.

    2016-01-01

    A novel velocimetry technique to probe the exhaust flow of a laboratory scale combustor is being developed. The technique combines the advantages of standard particle velocimetry techniques and the ultra-fast imaging capabilities of a streak camera to probe high speed flows near continuously with improved spatial and velocity resolution. This "Particle Streak Velocimetry" technique tracks laser illuminated seed particles at up to 236 picosecond temporal resolution allowing time-resolved measurement of one-dimensional flows exceeding 2000 m/s as are found in rocket nozzles and many other applications. Developmental tests with cold nitrogen have been performed to validate and troubleshoot the technique with supersonic flows of much lower velocity and without background noise due to combusting flow. Flow velocities on the order of 500 m/s have been probed with titanium dioxide particles and a continuous-wave laser diode. Single frame images containing multiple streaks are analyzed to find the average slope of all incident particles corresponding to the centerline axial flow velocity. Long term objectives for these tests are correlation of specific impulse to theoretical combustion predictions and direct comparisons between candidate green fuels and the industry standard, monomethylhydrazine, each tested under identical conditions.

  10. Drag Force Anemometer Used in Supersonic Flow

    Science.gov (United States)

    Fralick, Gustave C.

    1998-01-01

    To measure the drag on a flat cantilever beam exposed transversely to a flow field, the drag force anemometer (beam probe) uses strain gauges attached on opposite sides of the base of the beam. This is in contrast to the hot wire anemometer, which depends for its operation on the variation of the convective heat transfer coefficient with velocity. The beam probe retains the high-frequency response (up to 100 kHz) of the hot wire anemometer, but it is more rugged, uses simpler electronics, is relatively easy to calibrate, is inherently temperature compensated, and can be used in supersonic flow. The output of the probe is proportional to the velocity head of the flow, 1/2 rho u(exp 2) (where rho is the fluid density and u is the fluid velocity). By adding a static pressure tap and a thermocouple to measure total temperature, one can determine the Mach number, static temperature, density, and velocity of the flow.

  11. Tesseract supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  12. Tesseract: Supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  13. InSAR velocity field across the North Anatolian Fault (eastern Turkey): Implications for the loading and release of interseismic strain accumulation

    KAUST Repository

    Cakir, Ziyadin

    2014-10-01

    We use the Persistent Scatterer Interferometric Synthetic Aperture Radar (PS-InSAR) technique with the European Space Agency\\'s Envisat and ERS SAR data acquired on three neighboring descending tracks (T350, T078, and T307) to map the interseismic strain accumulation along a ~225 km long, NW-SE trending section of the North Anatolian Fault that ruptured during the 1939, 1942, and 1943 earthquakes in eastern Turkey. We derive a line-of-sight velocity map of the region with a high spatial resolution and accuracy which, together with the maps of earthquake surface ruptures, shed light on the style of continental deformation and the relationships between the loading and release of interseismic strain along segmented continental strike-slip faults. In contrast with the geometric complexities at the ground surface that appear to control rupture propagation of the 1939 event, modeling of the high-resolution PS-InSAR velocity field reveals a fairly linear and narrow throughgoing shear zone with an overall 20 ± 3 mm/yr slip rate above an unexpectedly shallow 7 ± 2 km locking depth. Such a shallow locking depth may result from the postseismic effects following recent earthquakes or from a simplified model that assumes a uniform degree of locking with depth on the fault. A narrow throughgoing shear zone supports the thick lithosphere model in which continental strike-slip faults are thought to extend as discrete shear zones through the entire crust. Fault segmentation previously reported from coseismic surface ruptures is thus likely inherited from heterogeneities in the upper crust that either preexist and/or develop during coseismic rupture propagation. The geometrical complexities that apparently persist for long periods may guide the dynamic rupture propagation surviving thousands of earthquake cycles.

  14. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  15. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  16. Unsteady flow in a supersonic cascade with strong in-passage shocks

    Science.gov (United States)

    Goldstein, M. E.; Braun, W.; Adamczyk, J. J.

    1977-01-01

    Linearized theory is used to study the unsteady flow in a supersonic cascade with in-passage shock waves. We use the Wiener-Hopf technique to obtain a closed-form analytical solution for the supersonic region. To obtain a solution for the rotational flow in the subsonic region we must solve an infinite set of linear algebraic equations. The analysis shows that it is possible to correlate quantitatively the oscillatory shock motion with the Kutta condition at the trailing edges of the blades. This feature allows us to account for the effect of shock motion on the stability of the cascade. Unlike the theory for a completely supersonic flow, the present study predicts the occurrence of supersonic bending flutter. It therefore provides a possible explanation for the bending flutter that has recently been detected in aircraft-engine compressors at higher blade loadings.

  17. Mixed exhaust flow supersonic jet engine and method

    Energy Technology Data Exchange (ETDEWEB)

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  18. Supersonic flow past a flat lattice of cylindrical rods

    Science.gov (United States)

    Guvernyuk, S. V.; Maksimov, F. A.

    2016-06-01

    Two-dimensional supersonic laminar ideal gas flows past a regular flat lattice of identical circular cylinders lying in a plane perpendicular to the free-stream velocity are numerically simulated. The flows are computed by applying a multiblock numerical technique with local boundary-fitted curvilinear grids that have finite regions overlapping the global rectangular grid covering the entire computational domain. Viscous boundary layers are resolved on the local grids by applying the Navier-Stokes equations, while the aerodynamic interference of shock wave structures occurring between the lattice elements is described by the Euler equations. In the overlapping grid regions, the functions are interpolated to the grid interfaces. The regimes of supersonic lattice flow are classified. The parameter ranges in which the steady flow around the lattice is not unique are detected, and the mechanisms of hysteresis phenomena are examined.

  19. Passive Acoustic Radar for Detecting Supersonic Cruise Missile

    Institute of Scientific and Technical Information of China (English)

    XIAO Feng; XIAO Hui

    2005-01-01

    A Passive Acoustic Radar is presented as a necessary complement to electromagnetic wave radar, which will be expected to be an effective means for detecting cruise missiles. Acoustic characteristics of supersonic flying projectiles with diverse shapes are expounded via experiment. It is pointed out that simulation experiment could be implemented using bullet or shell instead of cruise missile. Based on theoretical analysis and experiment, the "acoustic fingerprint" character of cruise missile is illustrated to identify it in a strong noise environment. After establishing a locating mathematical model,the technique of acoustic embattling is utilized to resolve a problem of confirming the time of early-warning, considering the fact that velocity of sound is much slower than that of light. Thereby, a whole system of passive acoustic radar for detecting supersonic cruise missile is formed.

  20. Features of Ignition and Stable Combustion in Supersonic Combustor

    Science.gov (United States)

    Goldfeld, M.; Starov, A.; Timofeev, K.

    2009-01-01

    Present paper describes the results of experimental investigations of the supersonic combustor with entrance Mach numbers from 2 to 4 at static pressure from 0.8 to 2.5 bars, total temperature from 2000K to 3000K. Hydrogen and kerosene were used as fuel. The conditions, under which the self-ignition and intensive combustion of the fuel realized were found. Position of ignition area in the channel was determined and features of flame propagation in the channel presented. A possibility to ensure an efficient combustion of hydrogen and kerosene at a high supersonic flow velocity at the combustor entrance without special throttling and/or pseudo-shock introduction was shown. Analysis of applicability of existing methods of criterion descriptions of conditions of self-ignition and extinction of combustion is executed for generalization of experimental results on the basis of results obtained.

  1. ANALYTICAL SYNTHESIS OF THE METHOD OF TARGETING A SUPERSONIC UNMANNED AERIAL VECHICLE BASED ON MULTI-DIMENSIONAL NONLINEAR DYNAMIC MODEL

    Directory of Open Access Journals (Sweden)

    V. E. Markevich

    2017-01-01

    Full Text Available A method of analytical synthesis of an optimal controller for the terminal control task of supersonic unmanned aerial vehicles based on synergetic approach to the design of control systems for nonlinear multidimensional dynamic objects is considered.The article provides analytical expressions describing the algorithm for control the velocity vector position of a supersonic UAV, the simulation results and the comparative analysis of the proposed control algorithm with the modified method of proportional navigation.

  2. Supersonic Magnetic Flows in the Quiet Sun

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Schmidt, W; Berkefeld, T; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Domingo, V; Barthol, P; Gandorfer, A

    2012-01-01

    In this contribution we describe some recent observations of high-speed magnetized flows in the quiet Sun granulation. These observations were carried out with the Imaging Magnetograph eXperiment (IMaX) onboard the stratospheric balloon {\\sc Sunrise}, and possess an unprecedented spatial resolution and temporal cadence. These flows were identified as highly shifted circular polarization (Stokes $V$) signals. We estimate the LOS velocity responsible for these shifts to be larger than 6 km s$^{-1}$, and therefore we refer to them as {\\it supersonic magnetic flows}. The average lifetime of the detected events is 81.3 s and they occupy an average area of about 23\\,000 km$^2$. Most of the events occur within granular cells and correspond therefore to upflows. However some others occur in intergranular lanes or bear no clear relation to the convective velocity pattern. We analyze a number of representative examples and discuss them in terms of magnetic loops, reconnection events, and convective collapse.

  3. Friction in Pipes at Supersonic and Subsonic Velocities

    Science.gov (United States)

    1945-01-01

    small fractions of an atmosphere. They were measured with an absolute mercury manometer . With the aid of a sliding marker on the manometer scalos...HAOA TV 4fe. 963 Fig. 1 AIR AIR HEATER COOLER RECEIVER COMPRESSOR ABSOLUTE PRESSURE MERCURY MANOMETER DIFFERENTIAL WATER MANOMETER...DIFFERENTIAL MERCURY MANOMETER Figure 1.- Schematic diagram of test apparatus. HAOA TU No. 963 Figs. 3,3 Figure 2.- Entrance nozzle A. \\W^ SMOOTH CURVE

  4. Ignition Process Evolution at High Supersonic Velocities in Channel

    Institute of Scientific and Technical Information of China (English)

    M.A. Goldfeld; A.V. Starov; K.Yu. Timofeev; V.A. Vinogradov

    2009-01-01

    The results of experimental research of multi-injector combustors in the regime of the attached pipe are presented.As a source of high-enthalpy working gas (air), hot shot wind tunnel IT-302M of ITAM, the Siberian Branch of the Russian Academy of Sciences was used. Tests have been carried out at Mach numbers 3, 4 and 5, in a range of change of total temperature from 2000K up to 3000K and static pressure from 0.08MPa up to 0.23MPa. Injector section has been manufactured in two versions with a various relative height of wedge-shaped injectors with par-allel fuel injection. Influence of conditions on the entrance of the combustion chamber on ignition and a stable combustion of hydrogen was investigated. Intensive combustion of hydrogen has been received only at Mach numbers 3 and 4. Advantage of injector section with the greater relative height of injectors is revealed. The mechanism of fuel ignition in the combustion chamber of the given configuration was investigated: two-step igni-tion process including "kindling" and intensive combustion over all channel volume.

  5. Characterization of the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, A.-M.; Stephan, S.; Radespiel, R.

    2017-03-01

    The wake flow of a generic axisymmetric space-launcher model is investigated experimentally for flow cases with and without propulsive jet to gain insight into the wake-flow phenomena at a supersonic stage of the flight trajectory which is especially critical with respect to dynamic loads on the structure. Measurements are performed at Mach 2.9 and a Reynolds number Re D = 1.3 × 106 based on model diameter D. The nozzle exit velocity of the jet is at Mach 2.5, and the flow is moderately underexpanded ( p e/ p ∞ = 5.7). The flow topology is described based on velocity measurements in the wake by means of particle image velocimetry and schlieren visualizations. Mean and fluctuating mass-flux profiles are obtained from hot-wire measurements, and unsteady wall-pressure measurements on the main-body base are performed simultaneously. This way, the evolution of the wake flow and its spectral content can be observed along with the footprint of this highly dynamic flow on the launcher main-body base. For the case without propulsive jet, a large separated zone is forming downstream of the main body shoulder, and the flow is reattaching further downstream on the afterbody. The afterexpanding propulsive jet (air) causes a displacement of the shear layer away from the wall, preventing the reattachment of the flow. In the spectral analysis of the baseline case, a dominant frequency around St D = 0.25 is found in the pressure-fluctuation signal at the main-body base of the launcher. This frequency is related to the shedding of the separation bubble and is less pronounced in the presence of the propulsive jet. In the shear layer itself, the spectra obtained from the hot-wire signal have a more broadband low-frequency content, which also reflects the characteristic frequency of turbulent structures convected in the shear layer, a swinging motion ( St D = 0.6), as well as the radial flapping motion of the shear layer ( St D = 0.85), respectively. Moving downstream along the

  6. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  7. Three-dimensional vortex organization in a high-Reynolds-number supersonic turbulent boundary layer

    NARCIS (Netherlands)

    Elsinga, G.E.; Adrian, R.J.; Van Oudheusden, B.W.; Scarano, F.

    2010-01-01

    Tomographic particle image velocimetry was used to quantitatively visualize the three-dimensional coherent structures in a supersonic (Mach 2) turbulent boundary layer in the region between y/δ = 0.15 and 0.89. The Reynolds number based on momentum thickness Reθ = 34000. The instantaneous velocity f

  8. Study on Turbulent Behavior of Water Jet in Supersonic Steam Injector

    Science.gov (United States)

    Fukuichi, Akira; Abe, Yutaka; Fujiwara, Akiko; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    One of the most interesting devices for light water reactor systems aimed at simplified system, improvement of safety and reliability is a supersonic steam injector. Supersonic steam injector is a passive jet pump without rotating machine and high efficient heat exchanger because of direct contact condensation between supersonic steam and a subcooled water jet. It is considered that flow behavior in the supersonic steam injector is related to complicated turbulent flow with large shear stress induced by velocity difference between steam and water and direct contact condensation. However, studies about turbulent flow under large shear stress with direct contact condensation are not enough. Especially, mechanisms of momentum and heat transfer are not clarified in detail. Objective of the present study is to investigate turbulent behaviors of a water jet and interface that play an important role in heat transfer and momentum transfer. Radial distribution of streamwise velocity and fluctuation of total pressure are measured by a pitot measurement. Visual measurement of the turbulent water jet is conducted by a high speed camera in order to identify location of unstable interface and its behavior. It is found that streamwise velocity increases as it approaches downstream of the mixing nozzle. Fluctuation of total pressure is large at water-steam mixture region. It is confirmed that waves propagated on the interface. And its velocity is obtained.

  9. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Institute of Scientific and Technical Information of China (English)

    Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing

    2015-01-01

    The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  10. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Jin Di

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  11. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  12. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  13. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  14. Study of the flow characteristics of supersonic coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)

    2001-12-01

    Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.

  15. Instability of a supersonic shock free elliptic jet

    Energy Technology Data Exchange (ETDEWEB)

    Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.

  16. Pulsed supersonic helium beams for plasma edge diagnosis

    Science.gov (United States)

    Diez-Rojo, T.; Herrero, V. J.; Tanarro, I.; Tabarés, F. L.; Tafalla, D.

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported.

  17. Pulsed supersonic helium beams for plasma edge diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Diez-Rojo, T.; Herrero, V.J.; Tanarro, I. [Instituto de Estructura de la Materia (CSIC), Serrano 123, 28006 Madrid (Spain); Tabares, F.L.; Tafalla, D. [Asociacion EURATOM-CIEMAT para Fusion, Avenue Complutense 22, 28040 Madrid (Spain)

    1997-03-01

    An experimental setup for the production of pulsed supersonic He beams to be used for plasma edge diagnosis in fusion devices is described. A compromise between compact design, low cost, and good quality of the probe beams has been met. The main characteristics of the generated beams, such as pulse shape, absolute flux intensity, and velocity distribution, differ in general from those expected for ideal beam performance and have been determined and optimized experimentally. A first test of this He beam source at the TJ-I UP Torsatron in Madrid is also reported. {copyright} {ital 1997 American Institute of Physics.}

  18. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  19. Preliminary Experimental Investigation on MHD Power Generation Using Seeded Supersonic Argon Flow as Working Fluid

    Institute of Scientific and Technical Information of China (English)

    LI Yiwen; LI Yinghong; LU Haoyu; ZHU Tao; ZHANG Bailing; CHEN Feng; ZHAO Xiaohu

    2011-01-01

    This paper presents a preliminary experimental investigation on magnetohydrodynamic (MHD) power generation using seeded supersonic argon flow as working fluid.Helium and argon are used as driver and driven gas respectively in a shock tunnel.Equilibrium contact surface operating mode is used to obtain high temperature gas,and the conductivity is obtained by adding seed K2CO3 powder into the driven section.Under the conditions of nozzle inlet total pressure being 0.32 MPa,total temperature 6 504 K,magnetic field density about 0.5 T and nozzle outlet velocity 1 959 m/s,induction voltage and short-circuit current of the segmentation MHD power generation channel are measured,and the experimental results agree with theoretical calculations; the average conductivity is about 20 S/m calculated from characteristics of voltage and current.When load factor is 0.5,the maximum power density of the MHD power generation channel reaches 4.797 1 MW/m3,and the maximum enthalpy extraction rate is 0.34%.Finally,the principle and method of indirect testing for gas state parameters are derived and analyzed.

  20. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  1. Energy velocity and group velocity

    Institute of Scientific and Technical Information of China (English)

    陈宇

    1995-01-01

    A new Lagrangian method for studying the relationship between the energy velocity and the group velocity is described. It is proved that under the usual quasistatic electric field, the energy velocity is identical to the group velocity for acoustic waves in anisotropic piezoelectric (or non-piezoelectric) media.

  2. Noise Trends of a 0.5 M (20 In.) Diameter Supersonic Throughflow Fan as Measured in an Unmodified Compressor Aerodynamic Test Facility

    Science.gov (United States)

    Dittmar, James H.; Hall, David G.; Moore, Royce D.

    1993-01-01

    The tone noise levels of a supersonic throughflow fan were measured at subsonic and supersonic axial duct Mach numbers. The noise in the inlet plenum showed no blade passing and harmonic tones at subsonic or supersonic axial flow conditions. At subsonic axial flow conditions, the supersonic throughflow fan showed no inlet plenum tones at fan operating conditions where tone noise had been previously measured for a subsonic fan design. This lower inlet-quadrant noise level for the supersonic throughflow fan was the result of high subsonic inlet velocities acting to reduce the noise propagating out the inlet. The fan noise, which was prevented from propagating upstream by the high subsonic inlet velocities, appeared to increase the noise in the exhaust duct at subsonic throughflow conditions. The exhaust duct noise decreased at supersonic axial throughflow Mach numbers, with the lowest blade passing and harmonic tones levels being observed at the design axial Mach number of 2.0. Multiple pure tone noise was observed in the inlet duct at subsonic axial flow Mach numbers but was seen only in the exhaust duct at supersonic axial flow conditions.

  3. Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.

    Science.gov (United States)

    Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C

    2008-03-01

    The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.

  4. Methods of Measurement of High Air Velocities by the Hot-wire Method

    Science.gov (United States)

    Weske, John R.

    1943-01-01

    Investigations of strengths of hot wires at high velocities were conducted with platinum, nickel, and tungsten at approximately 200 Degrees Celcius hot-wire temperature. The results appear to disqualify platinum for velocities approaching the sonic range; whereas nickel withstands sound velocity, and tungsten may be used for supersonic velocities under standard atmospheric conditions. Hot wires must be supported by rigid prolongs at high velocities to avoid wire breakage. Resting current measurements for constant temperature show agreement with King's relation.

  5. Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    Science.gov (United States)

    Wood, Jerry R.; Schmidt, James F.; Steinke, Ronald J.; Chima, Rodrick V.; Kunik, William G.

    1987-01-01

    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes.

  6. Unsteady Flow in a Supersonic Turbine with Variable Specific Heats

    Science.gov (United States)

    Dorney, Daniel J.; Griffin, Lisa W.; Huber, Frank; Sondak, Douglas L.; Turner, James (Technical Monitor)

    2001-01-01

    Modern high-work turbines can be compact, transonic, supersonic, counter-rotating, or use a dense drive gas. The vast majority of modern rocket turbine designs fall into these Categories. These turbines usually have large temperature variations across a given stage, and are characterized by large amounts of flow unsteadiness. The flow unsteadiness can have a major impact on the turbine performance and durability. For example, the Space Transportation Main Engine (STME) fuel turbine, a high work, transonic design, was found to have an unsteady inter-row shock which reduced efficiency by 2 points and increased dynamic loading by 24 percent. The Revolutionary Reusable Technology Turbopump (RRTT), which uses full flow oxygen for its drive gas, was found to shed vortices with such energy as to raise serious blade durability concerns. In both cases, the sources of the problems were uncovered (before turbopump testing) with the application of validated, unsteady computational fluid dynamics (CFD) to the designs. In the case of the RRTT and the Alternate Turbopump Development (ATD) turbines, the unsteady CFD codes have been used not just to identify problems, but to guide designs which mitigate problems due to unsteadiness. Using unsteady flow analyses as a part of the design process has led to turbine designs with higher performance (which affects temperature and mass flow rate) and fewer dynamics problems. One of the many assumptions made during the design and analysis of supersonic turbine stages is that the values of the specific heats are constant. In some analyses the value is based on an average of the expected upstream and downstream temperatures. In stages where the temperature can vary by 300 to 500 K, however, the assumption of constant fluid properties may lead to erroneous performance and durability predictions. In this study the suitability of assuming constant specific heats has been investigated by performing three-dimensional unsteady Navier

  7. Buffer-gas loaded magneto-optical traps for Yb, Tm, Er and Ho

    CERN Document Server

    Hemmerling, Boerge; Chae, Eunmi; Ravi, Aakash; Doyle, John M

    2013-01-01

    Direct loading of magneto-optical traps from a very slow cryogenic buffer-gas beam of lanthanides is achieved and studied, without the need for laser slowing. A collisionally cooled cryogenic atomic source with average forward velocity of 60-70 m/s and a width of ~70 m/s allows for loading without additional dissipation, unlike oven or supersonic sources. The lanthanides Yb, Tm, Er, and Ho are trapped. Despite the He buffer-gas background, we observe a maximum lifetime of about 80 ms (with Yb). We further show that the addition of a single-frequency slowing laser increases the number of trapped Yb atoms by an order of magnitude, yielding a total of 4.0(2) x 10^8. We study decay to metastable states in all species and report decay rates. Extension of this approach to MOTs of molecules is discussed.

  8. Nonlinear effects of energy sources and the jet at supersonic flow in the channel

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2016-10-01

    The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.

  9. ON THE ASYMPTOTIC BEHAVIOUR OF THE STEADY SUPERSONIC FLOWS AT INFINITY

    Institute of Scientific and Technical Information of China (English)

    ZHANG YONGQIAN

    2005-01-01

    This paper studies the asymptotic behaviour of steady supersonic flow past a piecewise smooth corner or bend. Under the hypothese that both vertex angle and the total variation of tangent along the boundary are small, it is shown that the solution can be obtained by a modified Glimm scheme, and that the asymptotic behaviour of the solution is determined by the velocity of incoming flow and the limit of the tangent of the boundary at infinity.

  10. Thermonuclear dynamo inside ultracentrifuge with supersonic plasma flow stabilization

    Energy Technology Data Exchange (ETDEWEB)

    Winterberg, F. [University of Nevada, Reno, Reno, Nevada (United States)

    2016-01-15

    Einstein's general theory of relativity implies the existence of virtual negative masses in the rotational reference frame of an ultracentrifuge with the negative mass density of the same order of magnitude as the positive mass density of a neutron star. In an ultracentrifuge, the repulsive gravitational field of this negative mass can simulate the attractive positive mass of a mini-neutron star, and for this reason can radially confine a dense thermonuclear plasma placed inside the centrifuge, very much as the positive mass of a star confines its plasma by its own attractive gravitational field. If the centrifuge is placed in an externally magnetic field to act as the seed field of a magnetohydrodynamic generator, the configuration resembles a magnetar driven by the release of energy through nuclear fusion, accelerating the plasma to supersonic velocities, with the magnetic field produced by the thermomagnetic Nernst effect insulating the hot plasma from the cold wall of the centrifuge. Because of the supersonic flow and the high plasma density the configuration is stable.

  11. Observation of supersonic turbulent wakes by laser Fourier densitometry (LFD)

    Science.gov (United States)

    Gresillon, D.; Cabrit, B.; Bonnet, J. P.; Gemaux, G.

    Laser Fourier Densitometry (LFD) is an optical method appropriate for turbulent flow observations. It uses the collective scattering of coherent light, by optical index inhomogeneities. The principle of this method is described. It provides a signal proportional to the space Fourier transform amplitude of index distribution for a wavevector k defined by the optical arrangement. For a fluctuating flow, this amplitude is a function of time, and its frequency spectrum can be observed. The spectrum shape provides elementary parameters of the flow, such as: direction, modulus of mean velocity, and local temperature. It also provides means to distinguish different kinds of density fluctuations, such as convected inhomogeneities, or acoustic waves. The respective level of these different fluctuations types can be measured, as well as their power scale-law and absolute level. A compact optical bench has been set on a nozzle flow. The results of measurements performed in two supersonic wake configurations are presented, for Mach numbers of 1.6 and 4.2. These include density fluctuation spectra in supersonic flows, acoustic waves, variations with position, and comparison with hot wire anemometry.

  12. Design project: LONGBOW supersonic interceptor

    Science.gov (United States)

    Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark

    1993-01-01

    A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.

  13. 高气速间歇式生物过滤去除高负荷H2S%A biofilter treating hydrogen sulfide with high load and gas velocity in intermittent mode

    Institute of Scientific and Technical Information of China (English)

    吴丹; 朱琳; 王俭; 刘强; 唐音; 桂居铎

    2013-01-01

    采用生物过滤法,以鸡粪堆肥和PE混合物为填料,在高气速条件下间歇式处理高负荷H2S废气.空床停留时间为20、15、10、6.7和5 s时,入口浓度3 000 mg/m3下的平均去除率分别为100%、100%、96.5%、89.2%和90.5%.高气速EBRT为5 s时,高入口负荷2 147 g/(m3·h)时的去除负荷为2023 g/(m3·h),去除率达94%.采用Michaelis-Ment-en模型进行生物降解宏观动力学研究,其中Ks为550 mg/m3,Vm为6.8 ×104 g/(m3·d).结果表明,在实验温度17~24℃,湿度30% ~ 50%下,生物过滤法间歇式处理高气速高负荷H2S的去除性能好.%Biological removal of hydrogen sulfide with high load and high gas velocity in intermittent mode in a biofilter, packed with the mixtures of chicken manure and polyethylene (PE) was investigated. With H2S inlet concentration of 3 000 mg/m3 and empty bed residence time (EBRT) of 20, 15, 10, 6. 7 and 5 s, the average removal efficiencies were 100% , 100% , 96. 5% , 89. 2% and 90. 5% , respectively. At the high gas velocity corresponding to EBRT of 5 s, the elimination capacity was 2 023 g/( m3 · h) with high inlet load of 2 147 g/(m · h) , and H2S removal efficiencies could reach 94% . The removal kinetics was researched based on the Michaelis-Menten model. Two kinetic parameters were Kt with a value of 550 mg/m3, and Vm with a value of 6. 8 ×104 g/(m · d). The results showed that a good performance of the biofilter is obtained with high load and gas velocity under conditions of temperature from 17 to 24℃ and the moisture content ranges from 30% to 50% .

  14. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  15. Dissipation and Heating in Supersonic Hydrodynamic and MHD Turbulence

    CERN Document Server

    Lemaster, M Nicole

    2008-01-01

    We study energy dissipation and heating by supersonic MHD turbulence in molecular clouds using Athena, a new higher-order Godunov code. We analyze the dependence of the saturation amplitude, energy dissipation characteristics, power spectra, sonic scaling, and indicators of intermittency in the turbulence on factors such as the magnetic field strength, driving scale, energy injection rate, and numerical resolution. While convergence in the energies is reached at moderate resolutions, we find that the power spectra require much higher resolutions that are difficult to obtain. In a 1024^3 hydro run, we find a power law relationship between the velocity dispersion and the spatial scale on which it is measured, while for an MHD run at the same resolution we find no such power law. The time-variability and temperature intermittency in the turbulence both show a dependence on the driving scale, indicating that numerically driving turbulence by an arbitrary mechanism may not allow a realistic representation of these...

  16. Gas dynamics of a supersonic radial jet. Part II

    Science.gov (United States)

    Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.

    2016-05-01

    The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.

  17. Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence

    CERN Document Server

    Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph

    2015-01-01

    Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...

  18. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    CERN Document Server

    Kritsuk, Alexei G; Collins, David; Padoan, Paolo; Norman, Michael L; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Mueller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D; Vogel, Christian; Xu, Hao

    2011-01-01

    We employ simulations of supersonic super-Alfv\\'enic turbulence decay as a benchmark test problem to assess and compare the performance of nine astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss convergence of various characteristics for the turbulence decay test and impacts of various components of numerical schemes on the accuracy of solutions. We show that the best performing codes employ a consistently high...

  19. Flight assessment of a large supersonic drone aircraft for research use

    Science.gov (United States)

    Eckstrom, C. V.; Peele, E. L.

    1974-01-01

    An assessment is made of the capabilities of the BQM-34E supersonic drone aircraft as a test bed research vehicle. This assessment is made based on a flight conducted for the purpose of obtaining flight test measurements of wing loads at various maneuver flight conditions. Flight plan preparation, flight simulation, and conduct of the flight test are discussed along with a presentation of the test data obtained and an evaluation of how closely the flight test followed the test plan.

  20. CFD-based Analysis of Aeroelastic behavior of Supersonic Fins

    Directory of Open Access Journals (Sweden)

    Tianxing Cai

    2011-02-01

    Full Text Available The main goal of this paper is to analyze the flutter boundary, transient loads of a supersonic fin, and the flutter with perturbation. Reduced order mode (ROM based on Volterra Series is presented to calculate the flutter boundary, and CFD/CSD coupling is used to compute the transient aerodynamic load. The Volterra-based ROM is obtained using the derivative of unsteady aerodynamic step-response, and the infinite plate spline is used to perform interpolation of physical quantities between the fluid and the structural grids. The results show that inertia force plays a significant role in the transient loads, the moment cause by inertia force is lager than the aerodynamic force, because of the huge transient loads, structure may be broken by aeroelasticity below the flutter dynamic pressure. Perturbations of aircraft affect the aeroelastic response evident, the reduction of flutter dynamic pressure by rolling perturbation form 15.4% to 18.6% when Mach from 2.0 to 3.0. It is necessary to analyze the aeroelasticity behaviors under the compositive force environment.

  1. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  2. Numerical modelling of Mars supersonic disk-gap-band parachute inflation

    Science.gov (United States)

    Gao, Xinglong; Zhang, Qingbin; Tang, Qiangang

    2016-06-01

    The transient dynamic behaviour of supersonic disk-gap-band parachutes in a Mars entry environment involving fluid structure interactions is studied. Based on the multi-material Arbitrary Lagrange-Euler method, the coupling dynamic model between a viscous compressible fluid and a flexible large deformation structure of the parachute is solved. The inflation performance of a parachute with a fixed forebody under different flow conditions is analysed. The decelerating parameters of the parachute, including drag area, opening loads, and coefficients, are obtained from the supersonic wind tunnel test data from NASA. Meanwhile, the evolution of the three-dimensional shape of the disk-gap-band parachute during supersonic inflation is presented, and the structural dynamic behaviour of the parachute is predicted. Then, the influence of the presence of the capsule on the flow field of the parachute is investigated, and the wake of unsteady fluid and the distribution of shock wave around the supersonic parachute are presented. Finally, the structural dynamic response of the canopy fabric under high-pressure conditions is comparatively analysed. The results show that the disk-gap-band parachute is well inflated without serious collapse. As the Mach numbers increase from 2.0 to 2.5, the drag coefficients gradually decrease, along with a small decrease in inflation time, which corresponds with test results, and proves the validity of the method proposed in this paper.

  3. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  4. Interstellar cloud structure: The statistics of centroid velocities

    CERN Document Server

    Ossenkopf, V; Lazarian, A; Stutzki, J

    2006-01-01

    The investigation of the statistical properties of maps of line centroids has been used for almost 50 years, but there is still no general agreement on their interpretation. We try to quantify which properties of underlying turbulent velocity fields can be derived from centroid velocity maps, and we test conditions under which the scaling behaviour of the centroid velocities matches the scaling of the three-dimensional velocity field. Using fractal cloud models we study systematically the relation between three-dimensional density and velocity fields and the statistical properties of the produced line centroid maps. We put special attention to cases with large density fluctuations resembling supersonic interstellar turbulence. Starting from the Delta-variance analysis we derive a new tool to compute the scaling behaviour of the three-dimensional velocity field from observed intensity and centroid velocity maps. We provide two criteria to decide whether the information from the centroid velocities directly ref...

  5. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  6. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  7. Steady-State Response of a Micropolar Generalized Thermoelastic Half-Space to the Moving Mechanical/Thermal Loads

    Indian Academy of Sciences (India)

    Rajneesh Kumar; Sunita Deswal

    2000-11-01

    Microrotation effect of a load applied normal to the boundary and moving at a constant velocity along one of the co-ordinate axis in a generalized thermoelastic half-space is studied. The analytical expressions of the displacement component, force stress, couple stress and temperature field for two different theories i.e. Lord-Shulman (L-S) and Green-Lindsay (G-L) for supersonic, subsonic and transonic velocities in case of mechanical and thermal sources applied, are obtained by the use of Fourier transform technique. The integral transforms have been inverted by using a numerical technique and the numerical results are illustrated graphically for magnesium crystal-like material.

  8. Flow characteristic of in-flight particles in supersonic plasma spraying process

    Science.gov (United States)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2016-09-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  9. Characteristics of laser supersonic heating method for producing micro metallic particles

    Science.gov (United States)

    Lin, Shih-Lung; Lin, Jehnming

    2005-10-01

    In this article, the authors analyzed the process characteristics of laser supersonic heating method for producing metallic particles and predicted the in-flight tracks and shapes of micro-particles. A pulse Nd-YAG laser was used to heat the carbon steel target placed within an air nozzle. The high-pressure air with supersonic velocity was used to carry out carbon steel particles in the nozzle. The shock wave structures at the nozzle exit were visualized by the shadowgraph method. The carbon steel particles produced by laser supersonic heating method were grabbed and the spraying angles of the particle tracks were visualized. The velocity of the in-flight particles was measured by a photodiode sensor and compared with the numerical result. The solidification of carbon steel particles with diameters of 1-50 μm in compressible flow fields were investigated. The result shows that there is no significant difference in the dimension of solid carbon steel particles produced at shock wave fields under various entrance pressures (3-7 bar) with a constant laser energy radiation.

  10. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    Science.gov (United States)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical

  11. Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow

    Science.gov (United States)

    Sabri, Farhad

    Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled

  12. Imaging of the Space-time Structure of a Vortex Generator in Supersonic Flow

    Institute of Scientific and Technical Information of China (English)

    WANG Dengpan; XIA Zhixun; ZHAO Yuxin; WANG Bo; ZHAO Yanhui

    2012-01-01

    The fine space-time structure of a vortex generator (VG) in supersonic flow is studied with the nanoparticle-based planar laser scattering (NPLS) method in a quiet supersonic wind tunnel.The fine coherent structure at the symmetrical plane of the flow field around the VG is imaged with NPLS.The spatial structure and temporal evolution characteristics of the vortical structure are analyzed,which demonstrate periodic evolution and similar geometry,and the characteristics of rapid movement and slow change.Because the NPLS system yields the flow images at high temporal and spatial resolutions,from these images the position of a large scale structure can be extracted precisely.The position and velocity of the large scale structures can be evaluated with edge detection and correlation algorithms.The shocklet structures induced by vortices are imaged,from which the generation and development of shocklets are discussed in this paper.

  13. Supersonic Magnetic Upflows in Granular Cells Observed with Sunrise/IMaX

    CERN Document Server

    Borrero, J M; Schlichenmaier, R; Solanki, S K; Bonet, J A; Iniesta, J C del Toro; Schmidt, W; Barthol, P; Gandorfer, A; Domingo, V; Knoelker, M

    2010-01-01

    Using the IMaX instrument on-board the Sunrise stratospheric balloon-telescope we have detected extremely shifted polarization signals around the Fe I 5250.217 {\\AA} spectral line within granules in the solar photosphere. We interpret the velocities associated with these events as corresponding to supersonic and magnetic upflows. In addition, they are also related to the appearance of opposite polarities and highly inclined magnetic fields. This suggests that they are produced by the reconnection of emerging magnetic loops through granular upflows. The events occupy an average area of 0.046 arcsec$^2$ and last for about 80 seconds, with larger events having longer lifetimes. These supersonic events occur at a rate of $1.3\\times10^{-5}$ occurrences per second per arcsec$^{2}$.

  14. The Density Variance--Mach Number Relation in Supersonic Turbulence: I. Isothermal, magnetised gas

    CERN Document Server

    Molina, F Z; Federrath, C; Klessen, R S

    2012-01-01

    It is widely accepted that supersonic, magnetised turbulence plays a fundamental role for star formation in molecular clouds. It produces the initial dense gas seeds out of which new stars can form. However, the exact relation between gas compression, turbulent Mach number, and magnetic field strength is still poorly understood. Here, we introduce and test an analytical prediction for the relation between the density variance and the root-mean-square Mach number in supersonic, isothermal, magnetised turbulent flows. We approximate the density and velocity structure of the interstellar medium as a superposition of shock waves. We obtain the density contrast considering the momentum continuity equation for a single magnetised shock and extrapolate this result to the entire cloud. Depending on the field geometry, we then make three different assumptions based on observational and theoretical constraints: B independent of density, B proportional to the root square of the density and B proportional to the density....

  15. Initiation of Explosives From the Bow Shock of a Supersonic Penetrator

    Science.gov (United States)

    Ferm, Eric

    2009-06-01

    An analytic and computational study of supersonic penetration of an explosive is presented. The goal is the development of an initiation criterion relating projectile diameter and threshold projectile velocity determined by fundamental material and explosive parameters. The basis of the initiation criterion is an examination of the steady flow structure around a supersonic penetrator in the unreacted materials, yielding the states along the bow shock and the size and sonic character of the flow structure. The state is used to determine the time scale of the reacting explosive using initiation experiment results (Pop Plot). The size of the subsonic region is compared to the failure diameter to examine the viability of the initiation. The results are compared with experimental initiation criterion.

  16. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  17. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  18. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  19. Numerical and experimental investigations on supersonic ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS

    2005-02-01

    Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)

  20. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    Science.gov (United States)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  1. Robust Mechanical Properties of Electrically Insulative Alumina Films by Supersonic Aerosol Deposition

    Science.gov (United States)

    Lee, Jong-Gun; Cha, You-Hong; Kim, Do-Yeon; Lee, Jong-Hyuk; Lee, Tae-Kyu; Kim, Woo-Young; Park, Jieun; Lee, Dongyun; James, Scott C.; Al-Deyab, Salem S.; Yoon, Sam S.

    2015-08-01

    Electrically insulating alumina films were fabricated on steel substrates using supersonic aerosol deposition and their hardness and scratchability were measured. Alumina particles (0.4-μm diameter) were supersonically sprayed inside a low-pressure chamber using between 1 and 20 nozzle passes. These alumina particles were annealed between 300 and 800 K to determine the temperature's effect on film crystal size (37-41 nm). Smoother surface morphology and increased electrical resistance of the thin films were observed as their thicknesses grew by increasing the number of passes. Resistances of up to 10,000 MΩ demonstrate robust electrical insulation. Significant hardness was measured (1232 hv or 13.33 GPa), but the alumina films could be peeled off with normal loads of 36 and 47 N for films deposited on stainless steel and SKD11 substrates, respectively. High insulation and hardness confirm that these alumina films would make excellent electrical insulators.

  2. Field Ionization detection of supersonic helium atom beams

    Science.gov (United States)

    Doak, R. B.

    2003-10-01

    Field ionization detectors (FID) may offer near-unity detection efficiency and nanoscale spatial resolution. To date, FID detection of molecular beams has been limited to effusive beams of broad Maxwellian velocity distributions. We report FID measurements on monoenergetic helium beams, including intensity measurements and time-of-flight measurements. The FID tips were carefully prepared and characterized in a field ionization microscope prior to use. With the supersonic helium beam we find a much smaller effective detection area ( 50 sq. nm) than was reported in the effusive helium beam experiments ( 200,000 sq. nm). This suggests that the FID ionization yield depends strongly on energy loss by the impinging atom during its initial collision with the FID surface: Our thermal energy, monoenergetic helium beam atoms likely lose little or no energy upon scattering from the clean tungsten FID surface, allowing the scattered atoms to escape the FID polarization field and therby reducing the ionization yield. To improve signal levels, inelastic scattering might be enhanced by use of lower beam velocities (present in the tails of a Maxwellian) or by adsorbing an overlayer on the FID tip (present at cryogenic tip temperatures). These factors likely explain the higher detection yields measured in the effusive beam experiments.

  3. Supersonic Propagation of Heat Waves in Low Density Heavy Material

    Institute of Scientific and Technical Information of China (English)

    Jiang Shaoen; Zhang Wenhai; Yi Rongqing; Cui Yanli; Chen Jiusen; Xu Yan; Ding Yongkun; Lai Dongxian; Zheng Zhijian; Huang Yikiang; Li Jinghong; Sun Kexu; Hu Xin

    2005-01-01

    The propagation of a supersonic heat-wave through copper-doped foam with a density of 50 mg/cm3 was experimentally investigated. The wave is driven by 140 eV Holhraum radiations generated in a cylindrical gold cavity heated by a 2 k J, 1ns laser pulse (0.35 μm). The delayed breakout time of the radiation waves from the rear side of the foam is measured by a threechromatic streaked x-ray spectrometer (TCS) consisting of a set of three-imaging pinholes and an array of three transmission gratings coupled with an x-ray streak camera (XSC). With one shot,simultaneous measurements of the delays of the drive source and the radiation with two different energies (210 eV, 840 eV) through the foam have been made for the first time. The experimental results indicate that the time delays vary with photon energies. The radiation with an energy of 210 eV propagates at a lower velocity. The radiating heat wave propagates with a velocity that is larger than the sound speed. Using TGS, the transmitting spectrum was measured, and then lower limit of the optical depth which is more than 1, was obtained. The experimental data were in agreement with numerical simulations.

  4. Supersonic Stall Flutter of High Speed Fans. [in turbofan engines

    Science.gov (United States)

    Adamczyk, J. J.; Stevens, W.; Jutras, R.

    1981-01-01

    An analytical model is developed for predicting the onset of supersonic stall bending flutter in axial flow compressors. The analysis is based on a modified two dimensional, compressible, unsteady actuator disk theory. It is applied to a rotor blade row by considering a cascade of airfoils whose geometry and dynamic response coincide with those of a rotor blade element at 85 percent of the span height (measured from the hub). The rotor blades are assumed to be unshrouded (i.e., free standing) and to vibrate in their first flexural mode. The effects of shock waves and flow separation are included in the model through quasi-steady, empirical, rotor total-pressure-loss and deviation-angle correlations. The actuator disk model predicts the unsteady aerodynamic force acting on the cascade blading as a function of the steady flow field entering the cascade and the geometry and dynamic response of the cascade. Calculations show that the present model predicts the existence of a bending flutter mode at supersonic inlet Mach numbers. This flutter mode is suppressed by increasing the reduced frequency of the system or by reducing the steady state aerodynamic loading on the cascade. The validity of the model for predicting flutter is demonstrated by correlating the measured flutter boundary of a high speed fan stage with its predicted boundary. This correlation uses a level of damping for the blade row (i.e., the log decrement of the rotor system) that is estimated from the experimental flutter data. The predicted flutter boundary is shown to be in good agreement with the measured boundary.

  5. Laser transit anemometer measurements of a JANNAF nozzle base velocity flow field

    Science.gov (United States)

    Hunter, William W., Jr.; Russ, C. E., Jr.; Clemmons, J. I., Jr.

    1990-01-01

    Velocity flow fields of a nozzle jet exhausting into a supersonic flow were surveyed. The measurements were obtained with a laser transit anemometer (LTA) system in the time domain with a correlation instrument. The LTA data is transformed into the velocity domain to remove the error that occurs when the data is analyzed in the time domain. The final data is shown in velocity vector plots for positions upstream, downstream, and in the exhaust plane of the jet nozzle.

  6. The Effect of the Recombination Shock behind a Backward Step on the Mixing Characteristics of an Inclined Sonic Methane Jet in a Supersonic Crossflow

    Science.gov (United States)

    Wen, A. C. Y.; Chang, B. Y. C.; Su, C. Y. H.; Yuan, D. H. F.

    The scramjet engines have been extensively studied for use in aircraft and future space transportation systems operating at speeds of about Mach 5 and above. At these high flight velocities, the incoming air is slowed down and maintained supersonic speed within the combustor

  7. Effects of Apparent Supersonic Ruptures for Strike-slip Rupture: Should We Consider it in the Seismic Hazard Analysis?

    Science.gov (United States)

    Barrows, M. B.; Shao, G.; Ji, C.

    2009-12-01

    Recent numerical studies indicated that the supersonic rupture could produce larger off-fault damage at distant sites than the sub-shear rupture, due to the famous "mach cone" effect (Dunham and Archuleta, 2005; Bhat et al, 2007). These results were obtained using the steady-state rupture simulations in a half-space earth. For more realistic layered or 3D earth models, we should also consider the effects of apparent supersonic rupture, i.e., the deep rupture is still in a speed slower than the local shear velocity, but faster than the near surface S or even the P wave velocity. The apparent super-shear rupture could excite the mach effect, but how large it is has not yet been quantitatively addressed. In this study, we explore this possibility by performing numerical simulations for pure strike-slip ruptures on a vertical fault inside various layered earth models.

  8. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  9. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  10. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  11. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  12. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  13. Research of low boom and low drag supersonic aircraft design

    OpenAIRE

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...

  14. A study of the motion and aerodynamic heating of ballistic missiles entering the earth's atmosphere at high supersonic speeds

    Science.gov (United States)

    Allen, H Julian; Eggers, A J , Jr

    1958-01-01

    A simplified analysis of the velocity and deceleration history of ballistic missiles entering the earth's atmosphere at high supersonic speeds is presented. The results of this motion analysis are employed to indicate means available to the designer for minimizing aerodynamic heating. The heating problem considered involves not only the total heat transferred to a missile by convection, but also the maximum average and local time rates of convective heat transfer.

  15. Supersonic Jet Excitation using Flapping Injection

    CERN Document Server

    Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

    2013-01-01

    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

  16. Fast, high temperature and thermolabile GC--MS in supersonic molecular beams

    Science.gov (United States)

    Dagan, Shai; Amirav, Aviv

    1994-05-01

    This work describes and evaluates the coupling of a fast gas chromatograph (GC) based on a short column and high carrier gas flow rate to a supersonic molecular beam mass spectrometer (MS). A 50 cm long megabore column serves for fast GC separation and connects the injector to the supersonic nozzle source. Sampling is achieved with a conventional syringe based splitless sample injection. The injector contains no septum and is open to the atmosphere. The linear velocity of the carrier gas is controlled by a by-pass (make-up) gas flow introduced after the column and prior to the supersonic nozzle. The supersonic expansion serves as a jet separator and the skimmed supersonic molecular beam (SMB) is highly enriched with the heavier organic molecules. The supersonic molecular beam constituents are ionized either by electron impact (EI) or hyperthermal surface ionization (HSI) and mass analyzed. A 1 s fast GC--MS of four aromatic molecules in methanol is demonstrated and some fundamental aspects of fast GC--MS with time limit constraints are outlined. The flow control (programming) of the speed of analysis is shown and the analysis of thermolabile and relatively non-volatile molecules is demonstrated and discussed. The tail-free, fast GC--MS of several mixtures is shown and peak tailing of caffeine is compared with that of conventional GC--MS. The improvement of the peak shapes with the SMB--MS is analyzed with the respect to the elimination of thermal vacuum chamber background. The extrapolated minimum detected amount was about 400 ag of anthracence-d10, with an elution time which was shorter than 2s. Repetitive injections could be performed within less than 10 s. The fast GC--MS in SMB seems to be ideal for fast target compound analysis even in real world, complex mixtures. The few seconds GC--MS separation and quantification of lead (as tetraethyllead) in gasoline, caffeine in coffee, and codeine in a drug is demonstrated. Controlled HSI selectivity is demonstrated in

  17. Aerodynamic Design and Numerical Analysis of Supersonic Turbine for Turbo Pump

    Science.gov (United States)

    Fu, Chao; Zou, Zhengping; Kong, Qingguo; Cheng, Honggui; Zhang, Weihao

    2016-09-01

    Supersonic turbine is widely used in the turbo pump of modern rocket. A preliminary design method for supersonic turbine has been developed considering the coupling effects of turbine and nozzle. Numerical simulation has been proceeded to validate the feasibility of the design method. As the strong shockwave reflected on the mixing plane, additional numerical simulated error would be produced by the mixing plane model in the steady CFD. So unsteady CFD is employed to investigate the aerodynamic performance of the turbine and flow field in passage. Results showed that the preliminary design method developed in this paper is suitable for designing supersonic turbine. This periodical variation of complex shockwave system influences the development of secondary flow, wake and shock-boundary layer interaction, which obviously affect the secondary loss in vane passage. The periodical variation also influences the strength of reflecting shockwave, which affects the profile loss in vane passage. Besides, high circumferential velocity at vane outlet and short blade lead to high radial pressure gradient, which makes the low kinetic energy fluid moves towards hub region and produces additional loss.

  18. Experimental Study of Ignition over Impact-Driven Supersonic Liquid Fuel Jet

    Directory of Open Access Journals (Sweden)

    Anirut Matthujak

    2013-01-01

    Full Text Available This study experimentally investigates the mechanism of the ignition of the supersonic liquid fuel jet by the visualization. N-Hexadecane having the cetane number of 100 was used as a liquid for the jet in order to enhance the ignition potential of the liquid fuel jet. Moreover, the heat column and the high intensity CO2 laser were applied to initiate the ignition. The ignition over the liquid fuel jet was visualized by a high-speed digital video camera with a shadowgraph system. From the shadowgraph images, the autoignition or ignition of the supersonic liquid fuel jet, at the velocity of 1,186 m/s which is a Mach number relative to the air of 3.41, did not take place. The ignition still did not occur, even though the heat column or the high intensity CO2 laser was alone applied. The attempt to initiate the ignition over the liquid fuel jet was achieved by applying both the heat column and the high intensity CO2 laser. Observing the signs of luminous spots or flames in the shadowgraph would readily indicate the presence of ignitions. The mechanism of the ignition and combustion over the liquid fuel jet was clearly clarified. Moreover, it was found that the ignition over the supersonic liquid fuel jet in this study was rather the force ignition than being the auto-ignition induced by shock wave heating.

  19. Advancing Supersonic Retropropulsion Using Mars-Relevant Flight Data: An Overview

    Science.gov (United States)

    Braun, Robert D.; Sforzo, Brandon; Campbell, Charles H.

    2017-01-01

    Advanced robotic and human missions to Mars require landed masses well in excess of current capabilities. One approach to safely land these large payloads on the Martian surface is to extend the propulsive capability currently required during subsonic descent to supersonic initiation velocities. However, until recently, no rocket engine had ever been fired into an opposing supersonic freestream. In September 2013, SpaceX performed the first supersonic retropropulsion (SRP) maneuver to decelerate the entry of the first stage of their Falcon 9 rocket. Since that flight, SpaceX has continued to perform SRP for the reentry of their vehicle first stage, having completed multiple SRP events in Mars-relevant conditions in July 2017. In FY 2014, NASA and SpaceX formed a three-year public-private partnership centered upon SRP data analysis. These activities focused on flight reconstruction, CFD analysis, a visual and infrared imagery campaign, and Mars EDL design analysis. This paper provides an overview of these activities undertaken to advance the technology readiness of Mars SRP.

  20. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  1. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  2. Is magnetic reconnection the cause of supersonic upflows in granular cells ?

    CERN Document Server

    Borrero, J M; Schmidt, W; Noda, C Quintero; Bonet, J A; Iniesta, J C del Toro; Rubio, L R Bellot

    2013-01-01

    In a previous work, we reported on the discovery of supersonic magnetic upflows on granular cells in data from the {\\sc Sunrise}/IMaX instrument. In the present work we investigate the physical origin of these events employing data of the same instrument but with higher spectral sampling. By means of the inversion of Stokes profiles we are able to recover the physical parameters (temperature, magnetic field, line-of-sight velocity, etc) present in the solar photosphere at the time of these events. The inversion is performed in a Monte-Carlo-like fashion, that is, repeating it many times with different initializations and retaining only the best result. We find that many of the events are characterized by a reversal in the polarity of the magnetic field along the vertical direction in the photosphere, accompanied by an enhancement in the temperature and by supersonic line-of-sight velocities. In about half of the studied events, large blue-shifted and red-shifted line-of-sight velocities coexist above/below ea...

  3. Unsteady flow in a supersonic cascade with subsonic leading-edge locus

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.

    1978-01-01

    Linearized theory is used to predict the unsteady flow in a supersonic cascade with subsonic axial flow velocity. A closed-form analytical solution is obtained by using a double application of the Wiener-Hopf technique. Although numerical and semianalytical solutions of this problem have already appeared in the literature, this paper contains the first completely analytical solution. It has been stated in the literature that the blade source should vanish at the infinite duct resonance condition. The present analysis shows that this does not occur. This apparent discrepancy is explained in the paper.

  4. NUMERICAL INVESTIGATION OF EVOLUTION OF DISTURBANCES IN SUPERSONIC SHARP CONE BOUNDARY LAYERS

    Institute of Scientific and Technical Information of China (English)

    DONG Ming; LUO Ji-sheng; CAO Wei

    2006-01-01

    The spatial evolution of 2-D disturbances in supersonic sharp cone boundary layers was investigated by direct numerical simulation (DNS) in high order compact difference scheme. The results suggested that, although the normal velocity in the sharp cone boundary layer was not small, the evolution of amplitude and phase for small amplitude disturbances would be well in accordance with the results obtained by the linear stability theory (LST) which supposes the flow was parallel. The evolution of some finite amplitude disturbances was also investigated, and the characteristic of the evolution was shown. Shocklets were also found when the amplitude of disturbances increased over some value.

  5. Supersonic propagation of ionization waves in an under-dense, laser-produced plasma

    Energy Technology Data Exchange (ETDEWEB)

    Constantin, C; Back, C A; Fournier, K B; Gregori, G; Landen, O L; Glenzer, S H; Dewald, E L; Miller, M C

    2004-10-22

    We observe a laser-driven supersonic ionization wave heating a mm-scale plasma of sub-critical density up to 2-3 keV electron temperatures. Propagation velocities initially 10 times the sound speed were measured by means of time-resolved x-ray imaging diagnostics. The measured ionization wave trajectory is modeled analytically and by a 2D radiation-hydrodynamics code. The comparison to the modeling suggests that nonlocal heat transport effects may contribute to the attenuation of the heat wave propagation.

  6. Computations of the Magnus effect for slender bodies in supersonic flow

    Science.gov (United States)

    Sturek, W. B.; Schiff, L. B.

    1980-01-01

    A recently reported Parabolized Navier-Stokes code has been employed to compute the supersonic flow field about spinning cone, ogive-cylinder, and boattailed bodies of revolution at moderate incidence. The computations were performed for flow conditions where extensive measurements for wall pressure, boundary layer velocity profiles and Magnus force had been obtained. Comparisons between the computational results and experiment indicate excellent agreement for angles of attack up to six degrees. The comparisons for Magnus effects show that the code accurately predicts the effects of body shape and Mach number for the selected models for Mach numbers in the range of 2-4.

  7. Near-field acoustic holography with sound pressure and particle velocity measurements

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren

    of particle velocity measurements and combined pressure-velocity measurements in NAH, the relation between the near-field and the far-field radiation from sound sources via the supersonic acoustic intensity, and finally, the reconstruction of sound fields using rigid spherical microphone arrays. Measurement...... of the particle velocity has notable potential in NAH, and furthermore, combined measurement of sound pressure and particle velocity opens a new range of possibilities that are examined in this study. On this basis, sound field separation methods have been studied, and a new measurement principle based on double...... layer measurements of the particle velocity has been proposed. Also, the relation between near-field and far-field radiation from sound sources has been examined using the concept of the supersonic intensity. The calculation of this quantity has been extended to other holographic methods, and studied...

  8. Axis retrieval of a supersonic source in a reverberant space using time reversal

    Science.gov (United States)

    Mahenc, Guillaume; Éric Bavu; Hamery, Pascal; Hengy, Sébastien; Melon, Manuel

    2017-08-01

    Localizing the axis of the Mach cone created by the supersonic displacement of a bullet in a reverberant environment is a challenging task, not only because of the high velocity of the moving source, but also because of the multiple wave reflections off of the walls. Although time reversal (TR) techniques allow static acoustic source localization in a reverberant space, they have not been explored yet on non stationary waves caused by supersonic displacements in urban canyons. The acoustic wave produced by a supersonic projectile has a conical wavefront and a N-shaped acoustic pressure signature. In this paper, this acoustic wave is reproduced using a line array of point-like sources (simulations) and loudspeakers (experiments). During the propagation of this conical wave in an urban canyon, the resulting pressure signals are measured using a time reversal array flush mounted into the ground. These acoustic signals allow to automatically retrieve with a high accuracy the location of the Mach cone axis using time reversal techniques. This inverse problem is solved using the maximization of a fourth-order statistical criterion of the backpropagated pressures. This criterion allows to estimate the intersections between the Mach cone axis and several vertical planes in the urban canyon. These estimations are then fitted to a 3D trajectory with a robust three dimensional interpolation technique based on the Random Sample Consensus (RANSAC) algorithm. This method allows to automatically retrieve the axis of the supersonic source with an angular accuracy of less than 0.5° and a misdistance of 0.5 cm for both numerical simulations and experimental measurements.

  9. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  10. Investigation on the pressure matching performance of the constant area supersonic-supersonic ejector

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.

  11. Existence of shocklets in a two-dimensional supersonic mixing layer and its influence on the flow structure

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The spatial evolution of a T-S wave and its subharmonic wave, introduced at the inlet in a 2-D supersonic mixing layer, was investigated by using DNS. The relationship between the amplitude of the disturbance wave and the strength of the shocklet caused by the disturbance was investigated. We analyzed the shape of the disturbance velocity profile on both sides of the shocklet, and found that the existence of shocklet affected appreciably the disturbance velocity. The effects on the high speed side and low speed side of the mixing layer were found to be different.

  12. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  13. Pulsed rotating supersonic source used with merged molecular beams

    CERN Document Server

    Sheffield, L; Krasovitskiy, V; Rathnayaka, K D D; Lyuksyutov, I F; Herschbach, D R

    2012-01-01

    We describe a pulsed rotating supersonic beam source, evolved from an ancestral device [M. Gupta and D. Herschbach, J. Phys. Chem. A 105, 1626 (2001)]. The beam emerges from a nozzle near the tip of a hollow rotor which can be spun at high-speed to shift the molecular velocity distribution downward or upward over a wide range. Here we consider mostly the slowing mode. Introducing a pulsed gas inlet system, cryocooling, and a shutter gate eliminated the main handicap of the original device, in which continuous gas flow imposed high background pressure. The new version provides intense pulses, of duration 0.1-0.6 ms (depending on rotor speed) and containing ~10^12 molecules at lab speeds as low as 35 m/s and ~ 10^15 molecules at 400 m/s. Beams of any molecule available as a gas can be slowed (or speeded); e.g., we have produced slow and fast beams of rare gases, O2, Cl2, NO2, NH3, and SF6. For collision experiments, the ability to scan the beam speed by merely adjusting the rotor is especially advantageous when...

  14. The IMF as a function of supersonic turbulence

    CERN Document Server

    Motta, Clio Bertelli; Glover, Simon C O; Klessen, Ralf S; Pasquali, Anna

    2016-01-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particles hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise...

  15. Turbulence characteristics in a supersonic cascade wake flow

    Energy Technology Data Exchange (ETDEWEB)

    Andrew, P.L.; Ng, W.F. (Virginia Polytechnic Inst. and State Univ., Blacksburg, VA (United States))

    1994-10-01

    The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 [times] 10[sup 6], respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties were found to be strongly influenced by upstream shock-boundary-layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23%, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.

  16. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.

  17. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    徐胜利; R.D.Archer; B.E.Milton; 岳朋涛

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj

  18. Linear and Nonlinear Evolution of Disturbances in Supersonic Streamwise Vortices

    Science.gov (United States)

    Khorrami, Mehdi R.; Chang, Chau-Lyan; Wie, Yong-Sun

    1997-11-01

    Effective control of compressible streamwise vortices play a significant role in both external and internal aerodynamics. In this study, evolution of disturbances in a supersonic vortex is studied by using quasi-cylindrical linear stability analysis and parabolized stability equations (PSE)footnote M. R. Malik and C.-L. Chang, AIAA Paper 97-0758. formulation. Appropriate mean-flow profilesfootnote M. K. Smart, I. M. Kalkhoran, and J. Bentson, AIAA Paper 94-2576. suitable for stability analysis were identified and modeled successfully. Using linear stability analysis, the stability characteristics of axisymmetric vortices were mapped thoroughly. The results indicate that viscosity has very little effect while increasing Mach number significantly stabilizes the disturbance. Linear PSE analysis shows that the effect of streamwise mean flow variation is small for the case considered here. Nonlinear evolution of helical modes is also studied by using PSE. The growth of the disturbances results in the appearance of coherent large scale motion and significant mean flow distortion in the axial velocity and temperature fields. In the end, nonlinear effects tend to stabilize the vortex.

  19. Aerodynamics characteristic of axisymmetric surface protuberance in supersonic regime

    KAUST Repository

    Qamar, Adnan

    2012-01-01

    The present work deals with the problem of an axi-symmetric surface protuberance mounted on a spherical nosed body of revolution. The numerical computations are carried out for laminar supersonic viscous flow for trapezoidal shape axi-symmetric protuberances. A free stream Mach number ranging from 3 to 8 in steps of 1 at a fixed free stream Reynolds number of 1.8x10(4) has been used in the present study. The steady solutions are obtained using a time marching approach. A newly developed Particle Velocity Upwinding (PVU) scheme has been used for the computation. The spatial flow pattern exhibits a strong bow shock in front of the hemispherical nose, which engulfs the entire base body. Near the protuberance, the fluid particle decelerates due to the adverse pressure created by the protuberance and thus the flow separates in front of the protuberance. This point of separation is found to be a function of Mach number and the protuberance shape. A low-pressure expansion region dominates the base region of the obstacle. The reattachment point for the base separation is also a function of Mach number. As the Mach number is increased the reattachment point shifts toward the protuberances base. A weak recompression shock is also seen in the base, which affects the separated zone behind the protuberance. The important design parameters such as skin friction, heat transfer, drag, and surface pressure coefficients are reported extensively.

  20. A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project

    Science.gov (United States)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf

    2016-01-01

    An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.

  1. Fatigue of titanium alloys in a supersonic-cruise airplane environment

    Science.gov (United States)

    Imig, L. A.

    1976-01-01

    The test programs conducted by several aerospace companies and NASA, summarized in this paper, studied several titanium materials previously identified as having high potential for application to supersonic cruise airplane structures. These studies demonstrate that the temperature (560 K) by itself produced no significant degradation of the materials. However, the fatigue resistance of titanium-alloy structures, in which thermal and loading effects are combined, has been studied insufficiently. The predominant topic for future study of fatigue problems in Mach 3 structures should be the influences of thermal stress particularly, the effects of thermal stress on failure location.

  2. Computer-aided methods for analysis and synthesis of supersonic cruise aircraft structures

    Science.gov (United States)

    Giles, G. L.

    1976-01-01

    Computer-aided methods are reviewed which are being developed by Langley Research Center in-house work and by related grants and contracts. Synthesis methods to size structural members to meet strength and stiffness (flutter) requirements are emphasized and described. Because of the strong interaction among the aerodynamic loads, structural stiffness, and member sizes of supersonic cruise aircraft structures, these methods are combined into systems of computer programs to perform design studies. The approaches used in organizing these systems to provide efficiency, flexibility of use in an iterative process, and ease of system modification are discussed.

  3. Numerical Simulation of Reactive Flows in Overexpanded Supersonic Nozzle with Film Cooling

    Directory of Open Access Journals (Sweden)

    Mohamed Sellam

    2015-01-01

    Full Text Available Reignition phenomena occurring in a supersonic nozzle flow may present a crucial safety issue for rocket propulsion systems. These phenomena concern mainly rocket engines which use H2 gas (GH2 in the film cooling device, particularly when the nozzle operates under over expanded flow conditions at sea level or at low altitudes. Consequently, the induced wall thermal loads can lead to the nozzle geometry alteration, which in turn, leads to the appearance of strong side loads that may be detrimental to the rocket engine structural integrity. It is therefore necessary to understand both aerodynamic and chemical mechanisms that are at the origin of these processes. This paper is a numerical contribution which reports results from CFD analysis carried out for supersonic reactive flows in a planar nozzle cooled with GH2 film. Like the experimental observations, CFD simulations showed their ability to highlight these phenomena for the same nozzle flow conditions. Induced thermal load are also analyzed in terms of cooling efficiency and the results already give an idea on their magnitude. It was also shown that slightly increasing the film injection pressure can avoid the reignition phenomena by moving the separation shock towards the nozzle exit section.

  4. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    Science.gov (United States)

    Thun, Daniel; Kuiper, Rolf; Schmidt, Franziska; Kley, Wilhelm

    2016-05-01

    Context. The supersonic motion of gravitating objects through a gaseous ambient medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planetesimals, planets, and all kind of stars up to galaxies and black holes. In particular, the dynamical friction caused by the wake that forms behind the object plays an important role for the dynamics of the system. To calculate the dynamical friction for a particular system, standard formulae based on linear theory are often used. Aims: It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem: first, the mass, radius, and velocity of the perturber; second, the gas mass density, soundspeed, and adiabatic index of the gaseous medium; and finally, the size of the forming wake. Methods: We perform dedicated sequences of high-resolution numerical studies of rigid bodies moving supersonically through a homogeneous ambient medium and calculate the total drag acting on the object, which is the sum of gravitational and hydrodynamical drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. In various numerical experiments, we determine the drag force acting on the moving body and its dependence on the basic physical parameters of the problem, as given above. From the final equilibrium state of the simulations, for gravitating objects we compute the dynamical friction by direct numerical integration of the gravitational pull acting on the embedded object. Results: The numerical experiments confirm the known scaling laws for the dependence of the dynamical friction on the basic physical parameters as derived in earlier semi-analytical studies. As a new important result we find that the shock's stand-off distance is revealed as the minimum spatial interaction scale of

  5. Comparing Numerical Methods for Isothermal Magnetized Supersonic Turbulence

    Science.gov (United States)

    Kritsuk, Alexei G.; Nordlund, Åke; Collins, David; Padoan, Paolo; Norman, Michael L.; Abel, Tom; Banerjee, Robi; Federrath, Christoph; Flock, Mario; Lee, Dongwook; Li, Pak Shing; Müller, Wolf-Christian; Teyssier, Romain; Ustyugov, Sergey D.; Vogel, Christian; Xu, Hao

    2011-08-01

    Many astrophysical applications involve magnetized turbulent flows with shock waves. Ab initio star formation simulations require a robust representation of supersonic turbulence in molecular clouds on a wide range of scales imposing stringent demands on the quality of numerical algorithms. We employ simulations of supersonic super-Alfvénic turbulence decay as a benchmark test problem to assess and compare the performance of nine popular astrophysical MHD methods actively used to model star formation. The set of nine codes includes: ENZO, FLASH, KT-MHD, LL-MHD, PLUTO, PPML, RAMSES, STAGGER, and ZEUS. These applications employ a variety of numerical approaches, including both split and unsplit, finite difference and finite volume, divergence preserving and divergence cleaning, a variety of Riemann solvers, and a range of spatial reconstruction and time integration techniques. We present a comprehensive set of statistical measures designed to quantify the effects of numerical dissipation in these MHD solvers. We compare power spectra for basic fields to determine the effective spectral bandwidth of the methods and rank them based on their relative effective Reynolds numbers. We also compare numerical dissipation for solenoidal and dilatational velocity components to check for possible impacts of the numerics on small-scale density statistics. Finally, we discuss the convergence of various characteristics for the turbulence decay test and the impact of various components of numerical schemes on the accuracy of solutions. The nine codes gave qualitatively the same results, implying that they are all performing reasonably well and are useful for scientific applications. We show that the best performing codes employ a consistently high order of accuracy for spatial reconstruction of the evolved fields, transverse gradient interpolation, conservation law update step, and Lorentz force computation. The best results are achieved with divergence-free evolution of the

  6. Characteristics of Supersonic Closed Loop with Disk CCMHD Generator

    Science.gov (United States)

    Yamasaki, Hiroyuki; Murakami, Tomoyuki; Okuno, Yoshihiro

    Results of experimental study on performance of the supersonic closed loop with a disk MHD generator are described. The high temperature (> 1900K) argon circulation was carried out successfully during 2.4 hours. The heat gain and loss of argon was investigated, and a large heat loss was found at the diffuser and the exhausting duct although an energy efficiency of recuperator was high. The large heat loss was ascribed to water cooling at the diffuser and the exhausting duct. At the same time, the enhancement of heat transfer coefficient was suggested. The argon temperature and the heat loss calculated under an assumption of four times larger heat transfer coefficient have shown a good agreement with experimental ones. The pressure ratio inside the loop was discussed, and the result has indicated that the total pressure at the upstream of nozzle throat is decided by the total temperature and the mass flow. On the other hand, the total pressure at the downstream is determined by the total mass in the loop and the total pressure at the upstream. The first power generation was carried out, and a good correlation between the load resistance and the Hall voltage was observed. However, the power output remained very small.

  7. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  8. Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance

    Science.gov (United States)

    Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong

    2017-02-01

    The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.

  9. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  10. Numerical simulation of supersonic gap flow.

    Science.gov (United States)

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  11. Numerical simulation of supersonic gap flow.

    Directory of Open Access Journals (Sweden)

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  12. Coupling dynamic of twin supersonic jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2015-11-01

    In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.

  13. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms

  14. Effect of atomization gas pressure variation on gas flow field in supersonic gas atomization

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    In this paper, a computational fluid flow model was adopted to investigate the effect of varying atomization gas pressure (P0) on the gas flow field in supersonic gas atomization. The influence of P0 on static pressure and velocity magnitude of the central axis of the flow field was also examined. The numerical results indicate that the maximum gas velocity within the gas field increases with increasing P0. The aspiration pressure (ΔP) is found to decrease as P0 increases at a lower atomization gas pressure. However, at a higher atomization gas pressure increasing P0 causes the opposite: the higher atomization gas pressure, the higher aspiration pressure. The alternation of ΔP is caused by the variations of stagnation point pressure and location of Mach disk, while hardly by the location of stagnation point. A radical pressure gradient is formed along the tip of the delivery tube and increases as P0 increases.

  15. Supersonic Fe beam source for chromatic aberration-free laser focusing of atoms

    CERN Document Server

    Bosch, R C M; Van der Straten, P; Leeuwen, K A H

    2002-01-01

    A monochromatic Fe beam is generated by heated supersonic expansion of argon seeded with Fe vapor. At a nozzle temperature of 1930 K and 800 torr argon inlet pressure the Fe beam has an axial velocity spread of 8% and intensity of 3 x 10 sup 1 sup 5 s sup - sup 1 sr sup - sup 1 , corresponding to a deposition rate of 10 nm/h at 150 mm from the nozzle. The two-chamber alumina crucibles are chemically stable for liquid Fe. With 400 mm sup 3 Fe we have operated for more than 200 hours without reloading. The power consumption at 1930 K is 750 W. Temperature stability at constant power (without feedback) is better than 30 K. The source is intended for deposition of nano-structures by laser focusing of the Fe beam. The small axial velocity spread virtually eliminates the increase in focal spot size due to chromatic aberration. (authors)

  16. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  17. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  18. Hybrid Simulation of Supersonic Flow of Weakly Ionized Plasma along Open Field Magnetic Line Effect of Background Pressure

    Science.gov (United States)

    Laosunthara, Ampan; Akatsuka, Hiroshi

    2016-09-01

    In previous study, we experimentally examined physical properties of supersonic flow of weakly ionized expanding arc-jet plasma through an open magnetic field line (Bmax 0.16T). We found supersonic velocity of helium plasma up to Mach 3 and the space potential drop at the end of the magnets. To understand the plasma in numerical point of view, the flows of ion and neutral are treated by particle-based Direct Simulation Monte Carlo (DSMC) method, electron is treated as a fluid. The previous numerical study, we assumed 2 conditions. Ion and electron temperatures were the same (LTE condition). Ion and electron velocities were the same (current-free condition). We found that ion velocity decreased by collision with residual gas molecules (background pressure). We also found that space potential changing with background pressure. In other words, it was indicated that electric field exists and the current-free assumption is not proper. In this study, we add electron continuity and electron momentum equations to obtain electron velocity and space potential. We find that space potential changing with background pressure slightly. It is indicated that electron is essential to space potential formation than ion.

  19. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  20. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  1. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  2. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  3. The IMF as a function of supersonic turbulence

    Science.gov (United States)

    Bertelli Motta, C.; Clark, P. C.; Glover, S. C. O.; Klessen, R. S.; Pasquali, A.

    2016-11-01

    Recent studies seem to suggest that the stellar initial mass function (IMF) in early-type galaxies might be different from a classical Kroupa or Chabrier IMF, i.e. contain a larger fraction of the total mass in low-mass stars. From a theoretical point of view, supersonic turbulence has been the subject of interest in many analytical theories proposing a strong correlation with the characteristic mass of the core mass function (CMF) in star-forming regions, and as a consequence with the stellar IMF. Performing two suites of smoothed particle hydrodynamics (SPH) simulations with different mass resolutions, we aim at testing the effects of variations in the turbulent properties of a dense, star-forming molecular cloud on the shape of the system mass function in different density regimes. While analytical theories predict a shift of the peak of the CMF towards lower masses with increasing velocity dispersion of the cloud, we observe in the low-density regime the opposite trend, with high Mach numbers giving rise to a top-heavy mass distribution. For the high-density regime we do not find any trend correlating the Mach number with the characteristic mass of the resulting IMF, implying that the dynamics of protostellar accretion discs and fragmentation on small scales is not strongly affected by turbulence driven at the scale of the cloud. Furthermore, we suggest that a significant fraction of dense cores are disrupted by turbulence before stars can be formed in their interior through gravitational collapse. Although this particular study has limitations in its numerical resolution, we suggest that our results, along with those from other studies, cast doubt on the turbulent fragmentation models on the IMF that simply map the CMF to the IMF.

  4. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  5. Review and prospect of supersonic business jet design

    Science.gov (United States)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  6. Molecular relaxation in supersonic free jets of N2 and CH4 from stimulated Raman spectroscopy and time-of-flight measurements

    OpenAIRE

    Abad, Laura; Bermejo, Dionisio; Herrero, Víctor J.; Santos, J.; Tanarro, Isabel

    1997-01-01

    The relaxation of the energy stored in the translational and rotational degrees of freedom of N2 and CH4 in the course of free jet expansions has been experimentally studied. Rotational temperatures along the expansion axis were obtained by means of stimulated Raman spectroscopy, and terminal flow velocities and translational temperatures were determined from supersonic beam time-of-flight measurements. From these measurements low-temperature cross sections for rotational relaxation have been...

  7. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  8. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  9. CFD Analysis of Supersonic Coaxial Jets on Effect of Spreading Rates

    Directory of Open Access Journals (Sweden)

    K. Kathiresan

    2014-04-01

    Full Text Available Prevailing high-speed air-breathing propulsion systems invariably banks on coaxial jets which plays a vigorous role in stabilization of flames and combustion emission. Coaxial jets have applications in supersonic ejectors, noise control techniques and enhancement of mixing. Coaxial jet nozzles regulate spreading rates by developing virtuous mean flow and shortening primary flow potential core length. In the present paper, two-dimensional coaxial jet profiles of different area ratios are designed and analyzed. The models were designed in ANSYS Design Modeler and the numerical simulation was done in ANSYS FLUENT 14.5 using the two dimensional density based energy equation and k- ε turbulence model with primary supersonic flow and secondary subsonic flow. The contours of turbulence intensity, acoustics power level and axial-velocity are investigated along the flow direction. This study shows that increasing the area ratio results in less turbulence which in turn increases the potential core length,acoustics power level, turbulent kinetic energy and generates more noise.

  10. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    Science.gov (United States)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  11. Computational investigation of powder coating of nanoparticles in supersonic and hypersonic impactors

    Institute of Scientific and Technical Information of China (English)

    Nima Niksefat; Mousa Farhadi; Kurosh Sedighi; Salman Nourouzi

    2013-01-01

    In this study,numerical simulation of flow field in a supersonic/hypersonic impactor with one or two nozzles was carried out using a commercial computational fluid dynamics (CFD) software FLUENT.The objective was to investigate the effects of working parameters such as pressure ratio (50 < Po/Pb < 800),nozzle diameters (D=0.23,0.27,0.45 mm),nozzle to plate distance (0.5 < L/D< 50),particle diameter (1 nm< dp < 100 nm) and angle between two nozzles.A single-phase 3D unsteady-state model was implemented by the software.For this purpose,a user-defined function (UDF) was employed to implement nanoparticles for different assumptions of Cunningham correction factor.An axisymmetric form of the compressible Navier-Stokes and energy equations was used for both fluid flow and temperature;Lagrangian particle trajectory analysis was used for particle motion.Using the variable Cunningham correction factor showed suitable agreement with experimental data in comparison with other methods.Results show that increase of the distance between nozzle and impaction plate causes increase of Mach number,the distance between bow shock and impaction plate,and the collection efficiency.Maximum jet velocity,distance between bow shock and impaction plate and collection efficiency increase by using two nozzles in supersonic and hypersonic impactors.

  12. Experimental investigations on cavity-actuated under-expanded supersonic oscillating jet

    Directory of Open Access Journals (Sweden)

    Sun Bo

    2015-10-01

    Full Text Available As one type of potential flow control actuators, cavity-actuated supersonic jet oscillators, which consist of a 2-D convergent nozzle and two face to face cavities, need to be investigated deeply to get the knowledge of their oscillating feature and underlying mechanism. Wind tunnel testing are conducted under different back pressures in a vacuum-type wind tunnel for two supersonic jet oscillators, to obtain their characteristics and the conditions for jet oscillating. The experimental results show that the continuous, nearly symmetric or asymmetric flipping between the two cavities appears over certain nozzle pressure ratio (NPR range for both oscillators according to schlieren visualizations. Compared to the free jet, the oscillating jet with large exit achieves larger mixing; the oscillating jet with small exit has less mixing, based on the analysis of jet axial peak velocity and the entrainment. The cross-junction mode for estimating the resonance frequency in a pipe with two closed side branches is modified and obtained comparable estimations of the frequency of jet flipping with experimental data, but further investigations are needed to discover the underlying mechanism for the jet flipping.

  13. Experimental investigations on cavity-actuated under-expanded supersonic oscillating jet

    Institute of Scientific and Technical Information of China (English)

    Sun Bo; Luo Xiaochen; Feng Feng; Wu Xiaosong

    2015-01-01

    As one type of potential flow control actuators, cavity-actuated supersonic jet oscillators, which consist of a 2-D convergent nozzle and two face to face cavities, need to be investigated dee-ply to get the knowledge of their oscillating feature and underlying mechanism. Wind tunnel testing are conducted under different back pressures in a vacuum-type wind tunnel for two supersonic jet oscillators, to obtain their characteristics and the conditions for jet oscillating. The experimental results show that the continuous, nearly symmetric or asymmetric flipping between the two cavities appears over certain nozzle pressure ratio (NPR) range for both oscillators according to schlieren visualizations. Compared to the free jet, the oscillating jet with large exit achieves larger mixing;the oscillating jet with small exit has less mixing, based on the analysis of jet axial peak velocity and the entrainment. The cross-junction mode for estimating the resonance frequency in a pipe with two closed side branches is modified and obtained comparable estimations of the frequency of jet flip-ping with experimental data, but further investigations are needed to discover the underlying mechanism for the jet flipping.

  14. Supersonic turbulence, filamentary accretion,and the rapid assembly of massive stars and disks

    CERN Document Server

    Banerjee, R; Anderson, D W; Banerjee, Robi; Pudritz, Ralph E.; Anderson, Dave W.

    2006-01-01

    We present a detailed computational study of the assembly of protostellar disks and massive stars in molecular clouds with supersonic turbulence. We follow the evolution of large scale filamentary structures in a cluster-forming clump down to protostellar length scales by means of very highly resolved, 3D adaptive mesh refined (AMR) simulations, and show how accretion disks and massive stars form in such environments. We find that an initially elongated cloud core which has a slight spin from oblique shocks collapses first to a filament and later develops a turbulent disk close to the center of the filament. The continued large scale flow that shocks with the filament maintains the high density and pressure within it. Material within the cooling filament undergoes gravitational collapse and an outside-in assembly of a massive protostar. Our simulations show that very high mass accretion rates of up to 10^-2 Msol/yr and high, supersonic, infall velocities result from such filamentary accretion. Accretion at th...

  15. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  16. Recovery of a supersonic turbulent boundary layer after an expansion corner

    Science.gov (United States)

    Sun, Ming-bo; Hu, Zhiwei; Sandham, Neil D.

    2017-07-01

    Supersonic turbulent flows at Mach 2.7 over expansion corners with deflection angles of 0° (flat plate), 2°, and 4° have been studied using direct numerical simulation. Distributions of skin friction, pressure, velocity, and boundary layer growth show that the turbulent boundary layer experiences a recovery from a non-equilibrium to an equilibrium state downstream of the expansion corner. Analysis of velocity profiles indicates that the streamwise velocity undergoes a reduction in the near-wall region even though the velocity in the core part of the boundary layer is accelerated after the expansion corner. Growth of the boundary layer was evaluated and a higher shape factor was found in the expansion cases. Turbulence was found to be mostly suppressed downstream of the corner, and throughout the recovery region, even though turbulence is regenerated in the near-wall region. The expansion ramp increases the near-wall streak spacing compared to a flat plate, and turbulent kinetic energy profiles and budgets exhibit a characteristic two-layer structure. Near-wall turbulence recovers to a balance between the local production and dissipation equilibrium more quickly in the inner layer than in the outer layer. The two-layer structure is due to a history effect of turbulence decay in the outer part of the boundary layer downstream of the expansion corner, with limited momentum and energy exchange between the inner layer and the main stream.

  17. Dynamics of fluid-conveying pipes: effects of velocity profiles

    DEFF Research Database (Denmark)

    Enz, Stephanie; Thomsen, Jon Juel

    Varying velocity profiles and internal fluid loads on fluid-conveying pipes are investigated. Different geometric layouts of the fluid domain and inflow velocity profiles are considered. It is found that the variation of the velocity profiles along the bended pipe is considerable. A determination...... of the resulting fluid loads on the pipe walls is of interest e.g, for evaluating the dynamical behaviour of lightly damped structures like Coriolis flow meters....

  18. Velocity anticipation in the optimal velocity model

    Institute of Scientific and Technical Information of China (English)

    DONG Li-yun; WENG Xu-dan; LI Qing-ding

    2009-01-01

    In this paper,the velocity anticipation in the optimal velocity model (OVM) is investigated.The driver adjusts the velocity of his vehicle by the desired headway,which depends on both instantaneous headway and relative velocity.The effect of relative velocity is measured by a sensitivity function.A specific form of the sensitivity function is supposed and the involved parameters are determined by the both numerical simulation and empirical data.It is shown that inclusion of velocity anticipation enhances the stability of traffic flow.Numerical simulations show a good agreement with empirical data.This model provides a better description of real traffic,including the acceleration process from standing states and the deceleration process approaching a stopped car.

  19. Gait phase varies over velocities.

    Science.gov (United States)

    Liu, Yancheng; Lu, Kun; Yan, Songhua; Sun, Ming; Lester, D Kevin; Zhang, Kuan

    2014-02-01

    We sought to characterize the percent (PT) of the phases of a gait cycle (GC) as velocity changes to establish norms for pathological gait characteristics with higher resolution technology. Ninety five healthy subjects (49 males and 46 females with age 34.9 ± 11.8 yrs, body weight 64.0 ± 11.7 kg and BMI 23.5 ± 3.6) were enrolled and walked comfortably on a 10-m walkway at self-selected slower, normal, and faster velocities. Walking was recorded with a high speed camera (250 frames per second) and the eight phases of a GC were determined by examination of individual frames for each subject. The correlation coefficients between the mean PT of the phases of the three velocities gaits and PT defined by previous publications were all greater than 0.99. The correlation coefficient between velocity and PT of gait phases is -0.83 for loading response (LR), -0.75 for mid stance (MSt), and -0.84 for pre-swing (PSw). While the PT of the phases of three velocities from this study are highly correlated with PT described by Dr. Jacquenlin Perry decades ago, actual PT of each phase varied amongst these individuals with the largest coefficient variation of 24.31% for IC with slower velocity. From slower to faster walk, the mean PT of MSt diminished from 35.30% to 25.33%. High resolution recording revealed ambiguity of some gait phase definitions, and these data may benefit GC characterization of normal and pathological gait in clinical practice. The study results indicate that one should consider individual variations and walking velocity when evaluating gaits of subjects using standard gait phase classification.

  20. Flutter and thermal buckling control for composite laminated panels in supersonic flow

    Science.gov (United States)

    Li, Feng-Ming; Song, Zhi-Guang

    2013-10-01

    Aerothermoelastic analysis for composite laminated panels in supersonic flow is carried out. The flutter and thermal buckling control for the panels are also investigated. In the modeling for the equation of motion, the influences of in-plane thermal load on the transverse bending deflection are taken into account, and the unsteady aerodynamic pressure in supersonic flow is evaluated by the linear piston theory. The governing equation of the structural system is developed applying the Hamilton's principle. In order to study the influences of aerodynamic pressure on the vibration mode shape of the panel, both the assumed mode method (AMM) and the finite element method (FEM) are used to derive the equation of motion. The proportional feedback control method and the linear quadratic regulator (LQR) are used to design the controller. The aeroelastic stability of the structural system is analyzed using the frequency-domain method. The effects of ply angle of the laminated panel on the critical flutter aerodynamic pressure and the critical buckling temperature change are researched. The flutter and thermal buckling control effects using the proportional feedback control and the LQR are compared. An effective method which can suppress the flutter and thermal buckling simultaneously is proposed.

  1. Aeroelastic passive control optimization of supersonic composite wing with external stores

    Science.gov (United States)

    Sulaeman, E.; Abdullah, N. A.; Kashif, S. M.

    2017-03-01

    This paper provides a study on passive aeroelastic control optimization, by means of aeroelastic tailoring, of a composite supersonic wing equipped with external stores. The objective of the optimization is to minimize wing weight by considering the aeroelastic flutter and divergence instability speeds as constraints at several flight altitudes. The optimization variables are the composite ply angle and skin thickness of the wing box, wing rib and its control surfaces. The aeroelastic instability speed is set as constraint such that it should be higher than the flutter speed of a metallic base line model of supersonic wing having previously published. A finite element analysis is applied to determine the stiffness and mass matric of the wing and its multi stores. The boundary element method in the form of doublet lattice method is used to model the unsteady aerodynamic load. The results indicate that, for the present wing configuration, the high modulus Graphite/Epoxy composite provides a desired higher flutter speed and lower wing weight compare to that of Kevlar/Epoxy composite as well as the base line metallic wing materials. The aeroelastic boundary thus can be enlarged to higher speed zone and in the same time reduce the structural weight which is important for a further optimization process.

  2. Supersonic Jet Noise Reduction Using Microjets

    Science.gov (United States)

    Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra

    2013-11-01

    Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.

  3. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  4. Accretion of Supersonic Winds on Boson Stars

    CERN Document Server

    Gracia-Linares, M

    2016-01-01

    We present the evolution of a supersonic wind interacting with a Boson Star (BS) and compare the resulting wind density profile with that of the shock cone formed when the wind is accreted by a non-rotating Black Hole (BH) of the same mass. The physical differences between these accretors are that a BS, unlike a BH has no horizon, it does not have a mechanical surface either and thus the wind is expected to trespass the BS. Despite these conditions, on the BS space-time the gas achieves a stationary flux with the gas accumulating in a high density elongated structure comparable to the shock cone formed behind a BH. The highest density resides in the center of the BS whereas in the case of the BH it is found on the downstream part of the BH near the event horizon. The maximum density of the gas is smaller in the BS than in the BH case. Our results indicate that the highest density of the wind is more similar on the BS to that on the BH when the BS has high self-interaction, when it is more compact and when the...

  5. Supersonic collisions between two gas streams

    CERN Document Server

    Lee, H M; Ryu, D; Lee, Hyung Mok; Kang, Hyesung; Ryu, Dongsu

    1995-01-01

    A star around a massive black hole can be disrupted tidally by the gravity of the black hole. Then, its debris may form a precessing stream which may even collide with itself. In order to understand the dynamical effects of the stream-stream collision on the eventual accretion of the stellar debris onto the black hole, we have studied how gas flow behaves when the outgoing stream collides supersonically with the incoming stream. We have investigated the problem analytically with one-dimensional plane-parallel streams and numerically with more realistic three-dimensional streams. A shock formed around the contact surface converts the bulk of the orbital streaming kinetic energy into thermal energy. In three-dimensional simulations, the accumulated hot post-shock gas then expands adiabatically and drives another shock into the low density ambient region. Through this expansion, thermal energy is converted back to the kinetic energy associated with the expanding motion. Thus, in the end, only a small fraction of...

  6. External-Compression Supersonic Inlet Design Code

    Science.gov (United States)

    Slater, John W.

    2011-01-01

    A computer code named SUPIN has been developed to perform aerodynamic design and analysis of external-compression, supersonic inlets. The baseline set of inlets include axisymmetric pitot, two-dimensional single-duct, axisymmetric outward-turning, and two-dimensional bifurcated-duct inlets. The aerodynamic methods are based on low-fidelity analytical and numerical procedures. The geometric methods are based on planar geometry elements. SUPIN has three modes of operation: 1) generate the inlet geometry from a explicit set of geometry information, 2) size and design the inlet geometry and analyze the aerodynamic performance, and 3) compute the aerodynamic performance of a specified inlet geometry. The aerodynamic performance quantities includes inlet flow rates, total pressure recovery, and drag. The geometry output from SUPIN includes inlet dimensions, cross-sectional areas, coordinates of planar profiles, and surface grids suitable for input to grid generators for analysis by computational fluid dynamics (CFD) methods. The input data file for SUPIN and the output file from SUPIN are text (ASCII) files. The surface grid files are output as formatted Plot3D or stereolithography (STL) files. SUPIN executes in batch mode and is available as a Microsoft Windows executable and Fortran95 source code with a makefile for Linux.

  7. 高血压患者脉搏波传导速度与血压负荷关系的研究%Study on the relationship between brachial-ankle pulse wave velocity and blood pressure load in hypertensive patients

    Institute of Scientific and Technical Information of China (English)

    王宁; 余振球

    2012-01-01

    Objective;To explore the relationship between brachial-ankle pulse wave velocity and blood pressure load in hypertensive patients. Methods: 348 patients were enrolled in this study. Ambulatory blood pressure (ABP) and brachial-ankle pulse wave velocity (BAPWV) were measured. According to the value of BAPWV, all patients were divided into two groups; BAPWV normal group (bapwv < 1400 cm/s, n = 121) and BAPWV elevated group (bapwv ^ 1400 cm/s, n = 227). The patients' age, gender ratio, fasting blood glucose (FBG), triglyceride (TG), cholesterol (CHO), low density lipoprotein cholesterol (LDL), high density lipc-protein cholesterol (HDL) , creatinine ( Cr) , uric acid ( UA) , blood pressure level and blood pressure load were measured. Results: Univariate analysies revealed that age, TG, CHO, LDL, blood pressure and blood pressure load in BAPWV elevated group were significantly higher than those in BAPWV normal group ( P < 0.05). Logistic multivariate regression analysis indicated that age, nighttime systolic blood pressure load and nighttime diastolic blood pressure load were independent influencing factors of BAPWV. Conclusion: nighttime systolic blood pressure load and nighttime diastolic blood pressure load of hypertensive patients were independent influencing factors of BAPWV.%[目的]:探讨高血压患者臂踝脉搏波传导速度(BAPOWV)与血压负荷的关系.[方法]:入选原发性高血压患者348例,进行24h动态血压监测和BAPWV测定,根据BAPWV的值,将其分为2组:BAPWV正常组(BAPWV< 1400cm/s)121例,BAPWV升高组(BAPWV≥1400 cm/s)227例.比较2组患者年龄、性别构成比、血糖、血脂、血肌酐、血尿酸、血压及血压负荷.结果:单因素分析显示,BAPWV升高组患者的年龄、三酰甘油、胆固醇、低密度脂蛋白、血压及血压负荷均显著高于BAPWV正常组(P<0.05).Logistic回归分析表明年龄、夜间收缩压负荷及夜间舒张压负荷是影响BAPWV的独立因素(P<0.05).结论:高

  8. Characterization of a seeded pulsed molecular beam using the velocity map imaging technique

    Science.gov (United States)

    Lietard, Aude; Poisson, Lionel; Mestdagh, Jean-Michel; Gaveau, Marc-André

    2016-11-01

    An experimental study has been performed to characterize the density and the velocity distribution in a pulsed molecular beam generated by a source associating a pulsed valve and an oven placed just downstream. In its operating mode, the flow is alternatively in a supersonic and effusive regime. The Velocity Map Imaging (VMI) technique associated with laser ionization allows measuring the velocity distribution and the density of molecules as a function of time during the expansion. It gives us a very precise insight into the structure of the molecule bunch, and therefore into the nature of the expansion from which the molecular beam is extracted.

  9. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    CERN Document Server

    Merritt, Elizabeth C; Hsu, Scott C; Adams, Colin S; Gilmore, Mark A

    2013-01-01

    We report spatially resolved experimental measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density $\\sim 10^{14}$ cm$^{-3}$, electron temperature $\\approx 1.4$ eV, ionization fraction near unity, and velocity $\\approx 40$ km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)]. The observed stagnation layer emission morphology is consistent with hydrodynamic oblique shock theory at early times, and then undergoes an evolution at later times that is coincident with the theoretically predicted transition to detached shock formation.

  10. Nonlinear unsteady supersonic flow analysis for slender bodies of revolution: Theory

    Directory of Open Access Journals (Sweden)

    D. E. Panayotounakos

    1997-01-01

    Full Text Available We construct analytical solutions for the problem of nonlinear supersonic flow past slender bodies of revolution due to small amplitude oscillations. The method employed is based on the splitting of the time dependent small perturbation equation to a nonlinear time independent partial differential equation (P.D.E. concerning the steady flow, and a linear time dependent one, concerning the unsteady flow. Solutions in the form of three parameters family of surfaces for the first equation are constructed, while solutions including one arbitrary function for the second equation are extracted. As an application the evaluation of the small perturbation velocity resultants for a flow past a right circular cone is obtained making use of convenient boundary and initial conditions in accordance with the physical problem.

  11. Analysis of flow structures in supersonic plane mixing layers using the POD method

    Institute of Scientific and Technical Information of China (English)

    YANG Qin; FU Song

    2008-01-01

    The proper orthogonal decomposition (POD) method was applied to analyzing the database obtained from the direct numerical simulation (DNS) of supersonic plane mixing layers. The effect of different forms of the inner products in the POD method was investigated. It was observed that the mean flow contributes to a predominant part of the total flow energy, and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes. The patterns of leading (high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls, as well as oblique vortices. These flow patterns are insensitive to the velocity of the observer. As the convective Mach number increases, the energy spectrum be-comes wider, the leading POD modes contain more complicated structures, and the flow becomes more chaotic.

  12. Analysis of flow structures in supersonic plane mixing layers using the POD method

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The proper orthogonal decomposition(POD) method was applied to analyzing the database obtained from the direct numerical simulation(DNS) of supersonic plane mixing layers.The effect of different forms of the inner products in the POD method was investigated.It was observed that the mean flow contributes to a predominant part of the total flow energy,and the energy spectrum of the turbulence fluctuations covers a wide range of POD modes.The patterns of leading(high energy) POD modes reveal that the flow structures exhibit spanwise counter rotating rolls,as well as oblique vortices.These flow patterns are insensitive to the velocity of the observer.As the convective Mach number increases,the energy spectrum be-comes wider,the leading POD modes contain more complicated structures,and the flow becomes more chaotic.

  13. Effect of Seeding Particles on the Shock Structure of a Supersonic Jet

    Science.gov (United States)

    Porta, David; Echeverría, Carlos; Stern, Catalina

    2012-11-01

    The original goal of our work was to measure. With PIV, the velocity field of a supersonic flow produced by the discharge of air through a 4mm cylindrical nozzle. The results were superposed to a shadowgraph and combined with previous density measurements made with a Rayleigh scattering technique. The idea was to see if there were any changes in the flow field, close to the high density areas near the shocks. Shadowgraphs were made with and without seeding particles, (spheres of titanium dioxide). Surprisingly, it was observed that the flow structure with particles was shifted in the direction opposite to the flow with respect to the flow structure obtained without seeds. This result might contradict the belief that the seeding particles do not affect the flow and that the speed of the seeds correspond to the local speed of the flow. We acknowledge support from DGAPA UNAM through project IN117712 and from Facultad de Ciencias UNAM.

  14. Direct Numerical Simulation of Supersonic Turbulent Boundary Layer with Spanwise Wall Oscillation

    Directory of Open Access Journals (Sweden)

    Weidan Ni

    2016-03-01

    Full Text Available Direct numerical simulations (DNS of Mach = 2.9 supersonic turbulent boundary layers with spanwise wall oscillation (SWO are conducted to investigate the turbulent heat transport mechanism and its relation with the turbulent momentum transport. The turbulent coherent structures are suppressed by SWO and the drag is reduced. Although the velocity and temperature statistics are disturbed by SWO differently, the turbulence transports of momentum and heat are simultaneously suppressed. The Reynolds analogy and the strong Reynolds analogy are also preserved in all the controlled flows, proving the consistent mechanisms of momentum transport and heat transport in the turbulent boundary layer with SWO. Despite the extra dissipation and heat induced by SWO, a net wall heat flux reduction can be achieved with the proper selected SWO parameters. The consistent mechanism of momentum and heat transports supports the application of turbulent drag reduction technologies to wall heat flux controls in high-speed vehicles.

  15. Aeroballistic Range Tests of the Basic Finner Reference Projectile at Supersonic Velocities

    Science.gov (United States)

    1997-08-01

    CmdB Cmg ex CYp CYg...0.00 -18.240 0.000 (*) ( 0.\\) (*I 0.00 0.288 0.000 (*I ( 0.\\) (*) Cmda I CmdB I 0.021 4.\\) O.Oll 4. \\I 0.000 I • I 0.000 (*) Probable...CZga3 CYga3 Clga2 Cmga3 Cnga3 Cnsm Clp Cld CNda CNdB I Crn<ia I CmdB I 0.0 (*) 0.0 (*) 0.0 (.) o.o (*) o.o (*) 0.0 (*)

  16. Computer programs for calculating pressure distributions including vortex effects on supersonic monoplane or cruciform wing-body-tail combinations with round or elliptical bodies

    Science.gov (United States)

    Dillenius, M. F. E.; Nielsen, J. N.

    1979-01-01

    Computer programs are presented which are capable of calculating detailed aerodynamic loadings and pressure distributions acting on pitched and rolled supersonic missile configurations which utilize bodies of circular or elliptical cross sections. The applicable range of angle of attack is up to 20 deg, and the Mach number range is 1.3 to about 2.5. Effects of body and fin vortices are included in the methods, as well as arbitrary deflections of canard or fin panels.

  17. High Altitude Supersonic Target (HAST), Phase 2

    Science.gov (United States)

    1974-08-01

    prelaunch load is less for the payload configuration due to a reduction in TM syjtcm readout This load exists from safety pin pull until launch...the safe position with a two-position safety pin . The rotor is also secured internally with a solenoid operated pin. In this locked position, the... safety pin is pulled out, the rotor is unlocked and is allowed to rotate 13°, where the solenoid pin holds it. At this point the solenoid circuit is

  18. Dispersion of Own Frequency of Ion-Dipole by Supersonic Transverse Wave in Solid

    Directory of Open Access Journals (Sweden)

    Minasyan V.

    2010-10-01

    Full Text Available First, we predict an existence of transverse electromagnetic field formed by supersonic transverse wave in solid. This electromagnetic wave acquires frequency and speed of sound, and it propagates along of direction propagation of supersonic wave. We also show that own frequency of ion-dipole depends on frequency of supersonic transverse wave.

  19. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    Science.gov (United States)

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  20. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  1. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  2. The Turbulent Dynamo in Highly Compressible Supersonic Plasmas

    CERN Document Server

    Federrath, Christoph; Bovino, Stefano; Schleicher, Dominik R G

    2014-01-01

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly-compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early Universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024^3 cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = nu/eta = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm >= 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm_crit = 129 (+43, -31), showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present a...

  3. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  4. An experimental investigation of the supersonic turbulent boundary layer subjected to concave curvature

    Science.gov (United States)

    Wang, Qian-cheng; Wang, Zhen-guo; Zhao, Yu-xin

    2016-09-01

    By employing particle image velocimetry, the response of a Mach 2.95 turbulent boundary layer to the concave curvature is experimentally investigated. The radius of the concave wall is 350 mm, and the turning angle is 20∘. Logarithmic law is well preserved in the profile of streamwise velocity at all streamwise positions despite the impact of curvature. The varying trend of principal strain rate is found to be different at different heights within the boundary layer, which cannot be explained by the suggestion given by former researchers. Based on the three-layer model proposed in this paper, distribution of the principal strain rate is carefully analyzed. The streamwise increase of wall friction is suggested to be brought by the increase of velocity gradient in the thin subsonic layer. Increases of the static temperature and the related sound speed are responsible for that. Larger correlated turbulent motions could be introduced by the concave curvature. The probability density histograms of streamwise velocity reveal that the large scale hairpin packets are statistically well organized. The concave curvature is found to have the potential of reinforcing the organization, which explains the increase of turbulent level in the supersonic concave boundary layer.

  5. The impact of emerging technologies on an advanced supersonic transport

    Science.gov (United States)

    Driver, C.; Maglieri, D. J.

    1986-01-01

    The effects of advances in propulsion systems, structure and materials, aerodynamics, and systems on the design and development of supersonic transport aircraft are analyzed. Efficient propulsion systems with variable-cycle engines provide the basis for improved propulsion systems; the propulsion efficienies of supersonic and subsonic engines are compared. Material advances consist of long-life damage-tolerant structures, advanced material development, aeroelastic tailoring, and low-cost fabrication. Improvements in the areas of aerodynamics and systems are examined. The environmental problems caused by engine emissions, airport noise, and sonic boom are studied. The characteristics of the aircraft designed to include these technical advances are described.

  6. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    Science.gov (United States)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  7. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  8. Supersonic Turbulent Convection and the Origin of the Planets

    Science.gov (United States)

    Prentice, A. J. R.; Dyt, C. P.

    2000-10-01

    We report a new set of calculations which support the view that supersonic turbulent convection played a major role in the formation of the solar system. A flux-corrected transport scheme (Zalesak, J. Comp. Phys.} 31 335 1979) is used to numerically simulate thermal convection in a 2D ideal gas layer that is heated from below and is stratified gravitationally across many scale heights. The temperature T0 at the top boundary and the temperature gradient (∂ T/∂ z)1 at the lower boundary are kept constant during the computation. The initial atmosphere is superadiabatic with polytropic index m = 1, specific heats ratio γ = 1.4 and temperature contrast T1}/T{0 = 11. This layer mimics a section of the outer layer of the proto-solar cloud (Dyt & Prentice, MNRAS 296 56 1998). Because the Reynolds number of the real atmosphere is so large, motions whose scale is less than the computational grid size are represented with a Smagorinsky sub-grid scale turbulence approximation (Chan et al, Ap.J.} 263 935 1982). That is, a velocity-dependent turbulent viscosity ν t and thermal diffusivity κ t are chosen so that the high wavenumber kinetic energy spectrum follows Kolmogorov's -5/3 law. The flow soon evolves to a configuration consisting of a network of giant convective cells. At cell boundaries, the downflows are spatially concentrated and rapid. Turbulent pressures t range up to 3 times the local gas pressure pgas. The convection eliminates nearly all of the superadiabaticity in the lower 90% of the atmosphere. In the top 10%, ∂ T/∂ z increases sharply and a steep density inversion occurs, with ρ increasing by a factor of 3-4. This result gives new credibility to the modern Laplacian theory of solar system origin (Moon & Planets} 19 341 1978; ibid 73 237 1996; Phys. Lett. A} 213 253 1996). Even so, we need t ≈ 10 pgas if the proto-solar cloud is to shed discrete gas rings whose orbits match the mean planetary spacings and whose chemical condensates match the

  9. Supersonic Mass Flux Measurements via Tunable Diode Laser Absorption and Non-Uniform Flow Modeling

    Science.gov (United States)

    Chang, Leyen S.; Strand, Christopher L.; Jeffries, Jay B.; Hanson, Ronald K.; Diskin, Glenn S.; Gaffney, Richard L.; Capriotti, Diego P.

    2011-01-01

    Measurements of mass flux are obtained in a vitiated supersonic ground test facility using a sensor based on line-of-sight (LOS) diode laser absorption of water vapor. Mass flux is determined from the product of measured velocity and density. The relative Doppler shift of an absorption transition for beams directed upstream and downstream in the flow is used to measure velocity. Temperature is determined from the ratio of absorption signals of two transitions (lambda(sub 1)=1349 nm and lambda(sub 2)=1341.5 nm) and is coupled with a facility pressure measurement to obtain density. The sensor exploits wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f) for large signal-to-noise ratios and normalization with the 1f signal for rejection of non-absorption related transmission fluctuations. The sensor line-of-sight is translated both vertically and horizontally across the test section for spatially-resolved measurements. Time-resolved measurements of mass flux are used to assess the stability of flow conditions produced by the facility. Measurements of mass flux are within 1.5% of the value obtained using a facility predictive code. The distortion of the WMS lineshape caused by boundary layers along the laser line-of-sight is examined and the subsequent effect on the measured velocity is discussed. A method for correcting measured velocities for flow non-uniformities is introduced and application of this correction brings measured velocities within 4 m/s of the predicted value in a 1630 m/s flow.

  10. High-velocity clouds

    NARCIS (Netherlands)

    Wakker, BP; vanWoerden, H

    1997-01-01

    High-velocity clouds (HVCs) consist of neutral hydrogen (HI) at velocities incompatible with a simple model of differential galactic rotation; in practice one uses \\v(LSR)\\ greater than or equal to 90 km/s to define HVCs. This review describes the main features of the sky and velocity distributions,

  11. Transverse Spectral Velocity Estimation

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2014-01-01

    A transverse oscillation (TO)-based method for calculating the velocity spectrum for fully transverse flow is described. Current methods yield the mean velocity at one position, whereas the new method reveals the transverse velocity spectrum as a function of time at one spatial location. A convex...

  12. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    OpenAIRE

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-01-01

    International audience; Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a superson...

  13. Final Report for the Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period, N+3 Supersonic Program

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Stelmack, Marc; Skoch, Craig

    2010-01-01

    The N+3 Final Report documents the work and progress made by Lockheed Martin Aeronautics in response to the NASA sponsored program "N+3 NRA Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2030 to 2035 Period." The key technical objective of this effort was to generate promising supersonic concepts for the 2030 to 2035 timeframe and to develop plans for maturing the technologies required to make those concepts a reality. The N+3 program is aligned with NASA's Supersonic Project and is focused on providing alternative system-level solutions capable of overcoming the efficiency, environmental, and performance barriers to practical supersonic flight

  14. Shock wave loading of a magnetic guide

    Science.gov (United States)

    Kindt, L.

    2011-10-01

    The atom laser has long been a holy grail within atom physics and with the creation of an atom laser we hope to bring a similar revolution in to the field of atom optics. With the creation of the Bose-Einstein Condensate (BEC) in 1995 the path to an atom laser was initiated. An atom laser is continues source of BEC. In a Bose condensate all the atoms occupy the same quantum state and can be described by the same wave function and phase. With an atom laser the De Broglie wavelength of atoms can be much smaller than the wavelength of light. Due to the ultimate control over the atoms the atom laser is very interesting for atom optics, lithography, metrology, etching and deposition of atoms on a surface. All previous atom lasers have been created from atoms coupled out from an existing Bose-Einstein Condensate. There are different approaches but common to them all is that the duration of the output of the atom laser is limited by the size of the initial BEC and they all have a low flux. This leaves the quest to build a continuous high flux atom laser. An alternative approach to a continuous BEC beam is to channel a continuous ultra cold atomic beam into a magnetic guide and then cool this beam down to degeneracy. Cooling down a continuous beam of atoms faces three large problems: The collision rate has to be large enough for effective rethermalization, since evaporative cooling in 2D is not as effective as in 3D and a large thermal conductivity due to atoms with a high angular momentum causes heating downstream in the guide. We have built a 4 meter magnetic guide that is placed on a downward slope with a magnetic barrier in the end. In the guide we load packets of ultra cold rubidium atoms with a frequency rate large enough for the packets to merge together to form a continuous atomic beam. The atomic beam is supersonic and when the beam reaches the end barrier it will return and collide with itself. The collisions lowers the velocity of the beam into subsonic

  15. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...... the fatigue loads, the rotor, blades and tower moments are presented. The fatigue loads are evaluated using rainflow counting described in detail in Ref. [1]. The 1Hz equivalent load ranges are calculated at different wind speeds. All information regarding the instrumentation is collected in [ref 4] and [ref...

  16. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  17. Titanium honeycomb structure. [for supersonic aircraft wing structure

    Science.gov (United States)

    Davis, R. A.; Elrod, S. D.; Lovell, D. T.

    1972-01-01

    A brazed titanium honeycomb sandwich system for supersonic transport wing cover panels provides the most efficient structure spanwise, chordwise, and loadwise. Flutter testing shows that high wing stiffness is most efficient in a sandwich structure. This structure also provides good thermal insulation if liquid fuel is carried in direct contact with the wing structure in integral fuel tanks.

  18. 76 FR 30231 - Civil Supersonic Aircraft Panel Discussion

    Science.gov (United States)

    2011-05-24

    ... for attendees. The purpose of the meeting is to raise public awareness of the continuing technological... joint meeting of the 159th Acoustical Society of America and NOISE-CON 2010 in Baltimore, Maryland 21202. The purpose of these meetings is to raise public awareness on advances in supersonic technology,...

  19. Experimental study of mixing enhancement using pylon in supersonic flow

    Science.gov (United States)

    Vishwakarma, Manmohan; Vaidyanathan, Aravind

    2016-01-01

    The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.

  20. NASA F-16XL supersonic laminar flow control program overview

    Science.gov (United States)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  1. Multiresolution analysis of density fluctuation in supersonic mixing layer

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Due to the difficulties in measuring supersonic density field, the multiresolution analysis of supersonic mixing layer based on experimental images is still a formidable challenge. By utilizing the recently developed nanoparticle based planar laser scattering method, the density field of a supersonic mixing layer was measured at high spatiotemporal resolution. According to the dynamic behavior of coherent structures, the multiresolution characteristics of density fluctuation signals and density field images were studied based on Taylor’s hypothesis of space-time conversion and wavelet analysis. The wavelet coefficients reflect the characteristics of density fluctuation signals at different scales, and the detailed coefficients reflect the differences of approximation at adjacent levels. The density fluctuation signals of supersonic mixing layer differ from the periodic sine signal and exhibit similarity to the fractal Koch signal. The similarity at different scales reveals the fractal characteristic of mixing layer flowfield. The two-dimensional wavelet decomposition and reconstruction of density field images extract the approximate and detailed signals at different scales, which effectively resolve the characteristic structures of the flowfield at different scales.

  2. A flamelet model for turbulent diffusion combustion in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.

  3. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-02-15

    applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close

  4. Research of low boom and low drag supersonic aircraft design

    Directory of Open Access Journals (Sweden)

    Feng Xiaoqiang

    2014-06-01

    Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.

  5. Implementation of a constant load method, for determination of crack growth velocities in MEX-03 system of National Institute of Nuclear Research; Implementacion de un metodo de carga constante, para la determinacion de velocidades de crecimiento de grieta en el sistema MEX-03 del ININ

    Energy Technology Data Exchange (ETDEWEB)

    Diaz S, A.; Fuentes C, P.; Merino C, F. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)], e-mail: angeles.diaz@inin.gob.mx

    2009-10-15

    Whit the objective of to complete the existent techniques for susceptibility evaluation to phenomenon of stress corrosion cracking in laboratories of Applied Sciences Area of National Institute of Nuclear Research; was realized and documented the modification of a high pressure and temperature equipment, identified as MEX-03 to carry out the implementation of a growth and crack propagation assay, using a constant load method. The assay was realized to a specimen of stainless steel AISI 304l type CT of an inch, which was previously thermally sensitize, simulating the typical degradation of this materials type below operation conditions in a BWR. The MEX-03 system, consist from an annexed auto key to a load system which originally was controlled by displacement; therefore were carried out modifications to achieve the control by load. The realized adjustments allowed to maintain a constant load during all the experiment, and as much the temperature conditions (T = 288 C) as of pressure (P = 8 Mpa) were controlled during the assay realization. The steel was exposed to a conditioned ambient with hydrogen gas addition; simulating a well-known alternative chemistry as hydrogen water chemistry that is used to mitigate the phenomenon of stress corrosion cracking, main degradation mechanism of austenitic stainless steels. The continuation of the crack behavior was realized by means of electric potential fall technique and later was validated of visual form through the fractographic analysis of cracked surface. The modification and control of equipment for realization of this experiment is necessary, for what should be carried out new assays, whose results will allow to establish the effect of dynamic and static methods in velocity determination of crack growth to laboratory level; to be considered in the existent models of crack propagation in systems and components in operation. (Author)

  6. Mean velocity scaling for compressible wall turbulence with heat transfer

    Science.gov (United States)

    Trettel, Andrew; Larsson, Johan

    2016-02-01

    The current state-of-the-art in accounting for mean property variations in compressible turbulent wall-bounded flows is the Van Driest transformation, which is inaccurate for non-adiabatic walls. An alternative transformation is derived, based on arguments about log-layer scaling and near-wall momentum conservation. The transformation is tested on supersonic turbulent channel flows and boundary layers, and it is found to produce an excellent collapse of the mean velocity profile at different Reynolds numbers, Mach numbers, and rates of wall heat transfer. In addition, the proposed transformation mathematically derives the semi-local scaling of the wall-normal coordinate and unifies the scaling of the velocity, the Reynolds stresses, and the wall-normal coordinate.

  7. Load Measurements

    DEFF Research Database (Denmark)

    Vesth, Allan; Kock, Carsten Weber

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regardi...

  8. Load Measurements

    DEFF Research Database (Denmark)

    Kock, Carsten Weber; Vesth, Allan

    The report describes Load measurements carried out on a given wind turbine. The aim of the measurement program regarding the loads on the turbine is to verify the basic characteristics of the wind turbine and loads on the blades, the rotor and the tower, using [Ref 1], [Ref2] and [Ref 3]. Regarding...

  9. Thermal Design and Analysis of the Supersonic Flight Dynamics Test Vehicle for the Low Density Supersonic Decelerator Project

    Science.gov (United States)

    Mastropietro, A. J.; Pauken, Michael; Sunada, Eric; Gray, Sandria

    2013-01-01

    The thermal design and analysis of the experimental Supersonic Flight Dynamics Test (SFDT) vehicle is presented. The SFDT vehicle is currently being designed as a platform to help demonstrate key technologies for NASA's Low Density Supersonic Decelerator (LDSD) project. The LDSD project is charged by NASA's Office of the Chief Technologist (OCT) with the task of advancing the state of the art in Mars Entry, Descent, and Landing (EDL) systems by developing and testing three new technologies required for landing heavier payloads on Mars. The enabling technologies under development consist of a large 33.5 meter diameter Supersonic Ringsail (SSRS) parachute and two different types of Supersonic Inflatable Aerodynamic Decelerator (SIAD) devices - a robotic class, SIAD-R, that inflates to a 6 meter diameter torus, and an exploration class, SIAD-E, that inflates to an 8 meter diameter isotensoid. As part of the technology development effort, the various elements of the new supersonic decelerator system must be tested in a Mars-like environment. This is currently planned to be accomplished by sending a series of SFDT vehicles into Earth's stratosphere. Each SFDT vehicle will be lifted to a stable float altitude by a large helium carrier balloon. Once at altitude, the SFDT vehicles will be released from their carrier balloon and spun up via spin motors to provide trajectory stability. An onboard third stage solid rocket motor will propel each test vehicle to supersonic flight in the upper atmosphere. After main engine burnout, each vehicle will be despun and testing of the deceleration system will begin: first an inflatable decelerator will be deployed around the aeroshell to increase the drag surface area, and then the large parachute will be deployed to continue the deceleration and return the vehicle back to the Earth's surface. The SFDT vehicle thermal system must passively protect the vehicle structure and its components from cold temperatures experienced during the

  10. Instability of Supersonic Cold Streams Feeding Galaxies I: Linear Kelvin-Helmholtz Instability with Body Modes

    Science.gov (United States)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-09-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star-formation rate and morphology. We present here the first step, where we analyze the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium, and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the nonlinear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  11. Instability of supersonic cold streams feeding galaxies - I. Linear Kelvin-Helmholtz instability with body modes

    Science.gov (United States)

    Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad

    2016-12-01

    Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.

  12. Velocity selective optical pumping

    OpenAIRE

    Aminoff, C. G.; Pinard, M.

    1982-01-01

    We consider optical pumping with a quasi monochromatic tunable light beam, in the low intensity limit where a rate equation regime is obtained The velocity selective optical pumping (V.S.O.P.) introduces a correlation between atomic velocity and internal variables in the ground (or metastable) state. The aim of this article is to evaluate these atomic observables (orientation, alignment, population) as a function of velocity, using a phenomenological description of the relaxation effect of co...

  13. Numerical investigation of scale effect of various injection diameters on interaction in cold kerosene-fueled supersonic flow

    Science.gov (United States)

    Zhu, Lin; Qi, Yin-Yin; Liu, Wei-Lai; Xu, Bao-Jian; Ge, Jia-Ru; Xuan, Xiang-Chun; Jen, Tien-Chien

    2016-12-01

    The incident shock wave generally has a strong effect on the transversal injection field in cold kerosene-fueled supersonic flow, possibly due to its affecting the interaction between incoming flow and fuel through various operation conditions. This study is to address scale effect of various injection diameters on the interaction between incident shock wave and transversal cavity injection in a cold kerosene-fueled scramjet combustor. The injection diameters are separately specified as from 0.5 to 1.5 mm in 0.5 mm increments when other performance parameters, including the injection angle, velocity and pressure drop are all constant. A combined three dimensional Couple Level Set & Volume of Fluids (CLSVOF) approach with an improved K-H & R-T model is used to characterize penetration height, span expansion area, angle of shock wave and sauter mean diameter (SMD) distribution of the kerosene droplets with/without considering evaporation. Our results show that the injection orifice surely has a great scale effect on the transversal injection field in cold kerosene-fueled supersonic flows. Our findings show that the penetration depth, span angle and span expansion area of the transverse cavity jet are increased with the injection diameter, and that the kerosene droplets are more prone to breakup and atomization at the outlet of the combustor for the orifice diameter of 1.5 mm. The calculation predictions are compared against the reported experimental measurements and literatures with good qualitative agreement. The simulation results obtained in this study can provide the evidences for better understanding the underlying mechanism of kerosene atomization in cold supersonic flow and scramjet design improvement.

  14. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  15. Estimation of vector velocity

    DEFF Research Database (Denmark)

    2000-01-01

    Using a pulsed ultrasound field, the two-dimensional velocity vector can be determined with the invention. The method uses a transversally modulated ultrasound field for probing the moving medium under investigation. A modified autocorrelation approach is used in the velocity estimation. The new...

  16. Cryogenic Testing of High-Velocity Spoke Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Hopper, Christopher S. [Old Dominion University; Delayen, Jean R. [Old Dominion University; Park, HyeKyoung [JLAB

    2014-12-01

    Spoke-loaded cavities are being investigated for the high-velocity regime. The relative compactness at low-frequency makes them attractive for applications requiring, or benefiting from, 4 K operation. Additionally, the large velocity acceptance makes them good candidates for the acceleration of high-velocity protons and ions. Here we present the results of cryogenic testing of a 325 MHz, β0= 0.82 single-spoke cavity and a 500 MHz, β0 = 1 double-spoke cavity.

  17. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  18. Dynamical friction for supersonic motion in a homogeneous gaseous medium

    CERN Document Server

    Thun, Daniel; Schmidt, Franziska; Kley, Wilhelm

    2016-01-01

    The supersonic motion of gravitating objects through a gaseous medium constitutes a classical problem in theoretical astrophysics. Its application covers a broad range of objects and scales from planets up to galaxies. Especially the dynamical friction, caused by the forming wake behind the object, plays an important role for the dynamics of the system. To calculate the dynamical friction, standard formulae, based on linear theory are often used. It is our goal to check the general validity of these formulae and provide suitable expressions for the dynamical friction acting on the moving object, based on the basic physical parameters of the problem. We perform sequences of high resolution numerical studies of rigid bodies moving supersonically through a homogeneous medium, and calculate the total drag acting on the object, which is the sum of gravitational and hydro drag. We study cases without gravity with purely hydrodynamical drag, as well as gravitating objects. From the final equilibrium state of the sim...

  19. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  20. Flight Research and Validation Formerly Experimental Capabilities Supersonic Project

    Science.gov (United States)

    Banks, Daniel

    2009-01-01

    This slide presentation reviews the work of the Experimental Capabilities Supersonic project, that is being reorganized into Flight Research and Validation. The work of Experimental Capabilities Project in FY '09 is reviewed, and the specific centers that is assigned to do the work is given. The portfolio of the newly formed Flight Research and Validation (FRV) group is also reviewed. The various projects for FY '10 for the FRV are detailed. These projects include: Eagle Probe, Channeled Centerbody Inlet Experiment (CCIE), Supersonic Boundary layer Transition test (SBLT), Aero-elastic Test Wing-2 (ATW-2), G-V External Vision Systems (G5 XVS), Air-to-Air Schlieren (A2A), In Flight Background Oriented Schlieren (BOS), Dynamic Inertia Measurement Technique (DIM), and Advanced In-Flight IR Thermography (AIR-T).

  1. Conceptual design of high speed supersonic aircraft: A brief review on SR-71 (Blackbird) aircraft

    Science.gov (United States)

    Xue, Hui; Khawaja, H.; Moatamedi, M.

    2014-12-01

    The paper presents the conceptual design of high-speed supersonic aircraft. The study focuses on SR-71 (Blackbird) aircraft. The input to the conceptual design is a mission profile. Mission profile is a flight profile of the aircraft defined by the customer. This paper gives the SR-71 aircraft mission profile specified by US air force. Mission profile helps in defining the attributes the aircraft such as wing profile, vertical tail configuration, propulsion system, etc. Wing profile and vertical tail configurations have direct impact on lift, drag, stability, performance and maneuverability of the aircraft. A propulsion system directly influences the performance of the aircraft. By combining the wing profile and the propulsion system, two important parameters, known as wing loading and thrust to weight ratio can be calculated. In this work, conceptual design procedure given by D. P. Raymer (AIAA Educational Series) is applied to calculate wing loading and thrust to weight ratio. The calculated values are compared against the actual values of the SR-71 aircraft. Results indicates that the values are in agreement with the trend of developments in aviation.

  2. Hypersonic Engine Leading Edge Experiments in a High Heat Flux, Supersonic Flow Environment

    Science.gov (United States)

    Gladden, Herbert J.; Melis, Matthew E.

    1994-01-01

    A major concern in advancing the state-of-the-art technologies for hypersonic vehicles is the development of an aeropropulsion system capable of withstanding the sustained high thermal loads expected during hypersonic flight. Three aerothermal load related concerns are the boundary layer transition from laminar to turbulent flow, articulating panel seals in high temperature environments, and strut (or cowl) leading edges with shock-on-shock interactions. A multidisciplinary approach is required to address these technical concerns. A hydrogen/oxygen rocket engine heat source has been developed at the NASA Lewis Research Center as one element in a series of facilities at national laboratories designed to experimentally evaluate the heat transfer and structural response of the strut (or cowl) leading edge. A recent experimental program conducted in this facility is discussed and related to cooling technology capability. The specific objective of the experiment discussed is to evaluate the erosion and oxidation characteristics of a coating on a cowl leading edge (or strut leading edge) in a supersonic, high heat flux environment. Heat transfer analyses of a similar leading edge concept cooled with gaseous hydrogen is included to demonstrate the complexity of the problem resulting from plastic deformation of the structures. Macro-photographic data from a coated leading edge model show progressive degradation over several thermal cycles at aerothermal conditions representative of high Mach number flight.

  3. Supersonic Vortex Gerdien Arc with Magnetic Thermal Insulation

    Science.gov (United States)

    Winterberg, F.

    1988-02-01

    Temperatures up to ~ 5 x 104 oK have been obtained with water vortex Gerdien arcs, and temperatures of ~ 105oK have been reached in hydrogen plasma arcs with magnetic thermal insulation through an externally applied strong magnetic field. It is suggested that a further increase in arc temperatures up to 106oK can conceivably be attained by a combination of both techniques, using a Gerdien arc with a supersonic hydrogen gas vortex.

  4. Wave-driven Rotation in Supersonically Rotating Mirrors

    Energy Technology Data Exchange (ETDEWEB)

    A. Fetterman and N.J. Fisch

    2010-02-15

    Supersonic rotation in mirrors may be produced by radio frequency waves. The waves produce coupled diffusion in ion kinetic and potential energy. A population inversion along the diffusion path then produces rotation. Waves may be designed to exploit a natural kinetic energy source or may provide the rotation energy on their own. Centrifugal traps for fusion and isotope separation may benefit from this wave-driven rotation.

  5. Aeroelastic coupling in sonic boom optimization of a supersonic aircraft

    OpenAIRE

    Vázquez, Mariano; Dervieux, Alain; Koobus, Bruno

    2003-01-01

    In this paper, we consider a multi-disciplinary optimization problem where the initial shape of a wing is sought in order to cope, after elastic deformation by the flow, with some optimality conditions. We propose a medium-strong coupling which allows to consider different softwares communicating a small number of times. Applications to the optimization of the AGARD Wing 445.6 and a flexible supersonic aircraft wing are presented.

  6. Study on the Characteristics of Supersonic Coanda Jet

    Institute of Scientific and Technical Information of China (English)

    ShigeruMatsuo; ShenYu; 等

    1998-01-01

    Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.

  7. Research on the mechanics of underwater supersonic gas jets

    Science.gov (United States)

    Shi, Honghui; Wang, Boyi; Dai, Zhenqing

    2010-03-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

  8. Technical and environmental challenges for the next generation supersonic transport

    Energy Technology Data Exchange (ETDEWEB)

    Pacull, M. [Aerospatiale (France); Hume, Ch. [British Aerospace (United Kingdom)

    1994-12-31

    The next century will be marked by the entry into service of new supersonic transport. The real question concerning the next generation supersonic transport is not will it happen, but when, and how. There is a general agreement that such an airplane will result from a worldwide venture. Who will participate, to what extend and how we will put the vehicle and partners together, are an interesting concern that will need some time to resolve. The other challenges will be to design, build and market an aircraft that will be a viable product: for the passenger, who wants the service of a fast airliner with a reasonable surcharge; for the airline which wants competitive operating cost so that it will make sense to introduce such an airplane in its fleet; for the manufacturer, which not only does not want to go bankruptcy, but seeks to make a profit in the long term within the environmental constraints: no adverse impact on high atmosphere ozone; compliance with noise requirements, operations compatible with sonic boom. This paper does not try to answer all these question, but rather highlight major technical and environmental issues for the next generation supersonic transport. The topics discussed are: general specification, noise, atmospheric emissions, sonic boom, aerodynamics, structures, engine integration, systems. (authors)

  9. Hydrogen tube vehicle for supersonic transport: 2. Speed and energy

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Arnold R. [Vehicle Projects Inc and Supersonic Tubevehicle LLC, 200 Violet St, Suite 100, Golden, CO 80401 (United States)

    2010-06-15

    The central concept of a new idea in high-speed transport is that operation of a vehicle in a hydrogen atmosphere, because of the low density of hydrogen, would increase sonic speed by a factor of 3.8 and decrease drag by 15 relative to air. A hydrogen atmosphere requires that the vehicle operate within a hydrogen-filled tube or pipeline, which serves as a phase separator. The supersonic tube vehicle (STV) can be supersonic with respect to air outside the tube while remaining subsonic inside. It breathes hydrogen fuel for its propulsion fuel cells from the tube itself. This paper, second in a series on the scientific foundations of the supersonic tube vehicle, tests the hypothesis that the STV will be simultaneously fast and energy efficient by comparing its predicted speed and energy consumption with that of four long-haul passenger transport modes: road, rail, maglev, and air. The study establishes the speed ranking STV >> airplane > maglev > train > coach (intercity bus) and the normalized energy consumption ranking Airplane >> coach > maglev > train > STV. Consistent with the hypothesis, the concept vehicle is both the fastest and lowest energy consuming mode. In theory, the vehicle can cruise at Mach 2.8 while consuming less than half the energy per passenger of a Boeing 747 at a cruise speed of Mach 0.81. (author)

  10. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-03-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  11. Research on the mechanics of underwater supersonic gas jets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.

  12. Interaction of a swept shock wave and a supersonic wake

    Science.gov (United States)

    He, G.; Zhao, Y. X.; Zhou, J.

    2017-09-01

    The interaction of a swept shock wave and a supersonic wake has been studied. The swept shock wave is generated by a swept compression sidewall, and the supersonic wake is generated by a wake generator. The flow field is visualized with the nanoparticle-based planar laser scattering method, and a supplementary numerical simulation is conducted by solving the Reynolds-averaged Navier-Stokes equations. The results show that the pressure rise induced by the swept shock wave can propagate upstream in the wake, which makes the location where vortices are generated move upstream, thickens the laminar section of the wake, and enlarges the generated vortices. The wake is swept away from the swept compression sidewall by the pressure gradient of the swept shock wave. This pressure gradient is not aligned with the density gradient of the supersonic wake, so the baroclinic torque generates streamwise vorticity and changes the distribution of the spanwise vorticity. The wake shock is curved, so the flow downstream of it is non-uniform, leaving the swept shock wave being distorted. A three-dimensional Mach disk structure is generated when the wake shock interacts with the swept shock wave.

  13. Manufacturing of A micro probe using supersonic aided electrolysis process

    CERN Document Server

    Shyu, R F; Ho, Chi-Ting

    2008-01-01

    In this paper, a practical micromachining technology was applied for the fabrication of a micro probe using a complex nontraditional machining process. A series process was combined to machine tungsten carbide rods from original dimension. The original dimension of tungsten carbide rods was 3mm ; the rods were ground to a fixed-dimension of 50 micrometers using precision grinding machine in first step. And then, the rod could be machined to a middle-dimension of 20 micrometers by electrolysis. A final desired micro dimension can be achieved using supersonic aided electrolysis. High-aspect-ratio of micro tungsten carbide rod was easily obtained by this process. Surface roughness of the sample with supersonic aided agitation was compared with that with no agitation in electrolysis. The machined surface of the sample is very smooth due to ionized particles of anode could be removed by supersonic aided agitation during electrolysis. Deep micro holes can also be achieved by the machined high-aspect-rati tungsten c...

  14. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  15. Mass flow and its pulsation measurements in supersonic wing wake

    Science.gov (United States)

    Shmakov, A. S.; Shevchenko, A. M.; Yatskikh, A. A.; Yermolaev, Yu. G.

    2016-10-01

    The results of experimental study of the flow in the wing wake are presented. Experiments were carried out in supersonic wind tunnel T-325 of ITAM SB RAS. Rectangle half-wing with sharp edges with a chord length of 30 mm and semispan of 95 mm was used to generate vortex wake. Experimental data were obtained in the cross section located 6 chord length downstream of the trailing edge at Mach numbers of 2.5 and 4 and at wing angles of attack of 4 and 10 degrees. Constant temperature hot-wire anemometer was used to measure disturbances in supersonic flow. Hot-wire was made of a tungsten wire with a diameter of 10 μm and length of 1.5 mm. Shlieren flow visualization were performed. As a result, the position and size of the vortex core in the wake of a rectangular wing were determined. For the first time experimental data on the mass flow distribution and its pulsations in the supersonic longitudinal vortex were obtained.

  16. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  17. Integrated parametric study of a hybrid-stabilized argon-water arc under subsonic, transonic and supersonic plasma flow regimes

    Science.gov (United States)

    Jeništa, J.; Takana, H.; Nishiyama, H.; Bartlová, M.; Aubrecht, V.; Křenek, P.; Hrabovský, M.; Kavka, T.; Sember, V.; Mašláni, A.

    2011-11-01

    This paper presents a numerical investigation of characteristics and processes in the worldwide unique type of thermal plasma generator with combined stabilization of arc by argon flow and water vortex, the so-called hybrid-stabilized arc. The arc has been used for spraying of ceramic or metallic particles and for pyrolysis of biomass. The net emission coefficients as well as the partial characteristics methods for radiation losses from the argon-water arc are employed. Calculations for 300-600 A with 22.5-40 standard litres per minute (slm) of argon reveal transition from a transonic plasma flow for 400 A to a supersonic one for 600 A with a maximum Mach number of 1.6 near the exit nozzle of the plasma torch. A comparison with available experimental data near the exit nozzle shows very good agreement for the radial temperature profiles. Radial velocity profiles calculated 2 mm downstream of the nozzle exit show good agreement with the profiles determined from the combination of calculation and experiment (the so-called integrated approach). A recent evaluation of the Mach number from the experimental data for 500 and 600 A confirmed the existence of the supersonic flow regime.

  18. PIV Validation of 3D Multicomponent Model for Cold Spray Within Nitrogen and Helium Supersonic Flow Field

    Science.gov (United States)

    Faizan-Ur-Rab, M.; Zahiri, S. H.; Masood, S. H.; Jahedi, M.; Nagarajah, R.

    2017-06-01

    This study presents the validation of a developed three-dimensional multicomponent model for cold spray process using two particle image velocimetry (PIV) experiments. The k- ɛ type 3D model developed for spherical titanium particles was validated with the measured titanium particle velocity within a nitrogen and helium supersonic jet. The 3D model predicted lower values of particle velocity than the PIV experimental study that used irregularly shaped titanium particles. The results of the 3D model were consistent with the PIV experiment that used spherical titanium powder. The 3D model simulation of particle velocity within the helium and nitrogen jet was coupled with an estimation of titanium particle temperature. This was achieved with the consideration of the fact that cold spray particle temperature is difficult and expensive to measure due to considerably lower temperature of particles than thermal spray. The model predicted an interesting pattern of particle size distribution with respect to the location of impact with a concentration of finer particles close to the jet center. It is believed that the 3D model outcomes for particle velocity, temperature and location could be a useful tool to optimize system design, deposition process and mechanical properties of the additively manufactured cold spray structures.

  19. Aeroacoustic Properties of Moderate Reynolds Number Elliptic and Rectangular Supersonic Jets.

    Science.gov (United States)

    Kinzie, Kevin Wayne

    1995-01-01

    The aerodynamic and acoustic properties of supersonic elliptic, rectangular, and circular jets are experimentally investigated. All three jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25,000 to 50,000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high velocity and low density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve high enough convective velocity to radiate noise through the Mach wave emission process. Experiments in the present work focus on comparisons between the cold and simulated heated jet conditions and on the beneficial aeroacoustic properties of non-circular jets. Comparisons are also made between the elliptic and rectangular jets. When helium is added to the jets, the instability wave phase velocity is found to approach or exceed the ambient sound speed. The radiated noise is also louder and directed at a higher angle from the jet axis. In addition, near field hot-wire spectra are found to match the far-field acoustic spectra only for the helium/air mixture case. These results demonstrate that there are significant differences between unheated and heated asymmetric jets in the Mach 1.5 speed range, many of which have been found previously for circular jets. The asymmetric jets were also found to radiate less noise than the round jet at comparable operating conditions. Strong similarities were also found between the aerodynamic and acoustic properties of the elliptic and rectangular jets.

  20. Experimental investigation of the structure of supersonic two-dimensional air microjets

    Science.gov (United States)

    Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey

    2016-10-01

    We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.

  1. An experimental study of the structure of supersonic flat underexpanded microjets

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.

    2015-05-01

    We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.

  2. Development of supersonic intensity in reverberant environments (sire) with applications in underwater acoustics

    Science.gov (United States)

    Barnard, Andrew R.

    A new measurement technique, Supersonic Intensity in Reverberant Environments (SIRE), has been developed analytically, and validated numerically and experimentally. The SIRE technique permits the measurement of narrowband radiated sound power and directivity in an environment with unknown field conditions. This type of measurement has previously been limited to environments with exact field conditions, such as the free field. Due to long acoustic wavelengths, underwater anechoic tanks are not cost-effective for low frequency measurements, nor are at-sea measurements time- or cost-effective. Unlike SIRE, techniques like nearfield acoustic holography (NAH) rely on knowledge of exact field conditions, which are usually unknown in a realistic measurement environment. SIRE is a cost effective, repeatable laboratory technique for narrowband evaluation of complex structural acoustic sources submerged in water. The technique leverages underwater acoustic intensity vector sensors in the near field of a source and allows the outgoing acoustic waves to be separated from unwanted incoming acoustic waves. Supersonic wavenumber filtering rejects the evanescent potions of the acoustic pressure and particle velocity from the separated, outward-propagating sound pressure and particle velocity. The SIRE technique was applied to a monopole source, dipole source, and point-driven, thin-walled cylinder with massive end caps. All sources were placed in an underwater reverberant tank and measured using custom underwater vector sensors specifically designed and built to reduce electromagnetic interference (EMI). The results are compared with theory, the ANSI S12.51 standard one-third-octave reverberation room method, and free field NAH. SIRE is shown to accurately measure radiated sound power to within the limits of ANSI S12.51. SIRE is also shown to accurately measure the directivity indices of simple sources to within +/-3 dB. Finally, a coupled finite element/boundary element (FE

  3. Pressure distribution and aerodynamic coefficients associated with heat addition to supersonic air stream adjacent to two-dimensional supersonic wing

    Science.gov (United States)

    Pinkel, I Irving; Serafini, John S; Gregg, John L

    1952-01-01

    The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.

  4. Robust velocity and load control of a steam turbine in a combined cycle thermoelectric power station; Control robusto de velocidad y carga de una turbina de vapor en una central termoelectrica de ciclo combinado

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Archundia, Enrique

    1998-12-31

    This research work is oriented to design, develop and validate an algorithm of modern control, that allows obtaining better performances in the control of speed of a steam turbine pertaining to a combined cycle thermoelectric power station, in all the operation interval, as well as obtaining better performances in the control of the amount of generated megawatts by the same when it is connected to an electric power generator, comparing the performance with the one obtained by means of the existing conventional controller. The changes in the speed reference or load are at the request of the operator and they always occur in incline form, indicating the rapidity with which it is desired to carry out the change of value in the reference. This is the reason for why the main objective of the control to design is to make a good follow up to references of the incline type. In the subsystem of the existing steam turbine the disadvantage is that the valves that regulate the steam flow to the turbine present a connection with the bypass valve that allows to derive the steam flow towards the main condenser without going through the turbine. It is for this reason that a multi-variable control that contemplates the interaction that occurs among the valves just mentioned, departing from a single variable design. The robust control H{infinity} has the following characteristics that allow it to be applied to the steam turbine process: the design can be made to have two poles in the origin, with which a good follow up to references of incline type is obtained; it allows the uncertainty handling, with which good results in everything are expected an entire operation interval; and it allows the design of multi-variable controllers, with which the existing interaction between the valves of control and bypass is considered. It is very difficult to be able to make tests with the real process, due to the cost and risks that it implies, nevertheless, the developments achieved in the areas

  5. Galaxy formation from annihilation-generated supersonic turbulence in the baryon-symmetric big-bang cosmology and the gamma ray background spectrum

    Science.gov (United States)

    Stecker, F. W.; Puget, J. L.

    1972-01-01

    Following the big-bang baryon symmetric cosmology of Omnes, the redshift was calculated to be on the order of 500-600. It is show that, at these redshifts, annihilation pressure at the boundaries between regions of matter and antimatter drives large scale supersonic turbulence which can trigger galaxy formation. This picture is consistent with the gamma-ray background observations discussed previously. Gravitational binding of galaxies then occurs at a redshift of about 70, at which time vortical turbulent velocities of about 3 x 10 to the 7th power cm/s lead to angular momenta for galaxies comparable with measured values.

  6. Structure of velocity distributions in shock waves in granular gases with extension to molecular gases

    Science.gov (United States)

    Vilquin, A.; Boudet, J. F.; Kellay, H.

    2016-08-01

    Velocity distributions in normal shock waves obtained in dilute granular flows are studied. These distributions cannot be described by a simple functional shape and are believed to be bimodal. Our results show that these distributions are not strictly bimodal but a trimodal distribution is shown to be sufficient. The usual Mott-Smith bimodal description of these distributions, developed for molecular gases, and based on the coexistence of two subpopulations (a supersonic and a subsonic population) in the shock front, can be modified by adding a third subpopulation. Our experiments show that this additional population results from collisions between the supersonic and subsonic subpopulations. We propose a simple approach incorporating the role of this third intermediate population to model the measured probability distributions and apply it to granular shocks as well as shocks in molecular gases.

  7. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  8. Superluminal Recession Velocities

    CERN Document Server

    Davis, T M; Davis, Tamara M.; Lineweaver, Charles H.

    2000-01-01

    Hubble's Law, v=HD (recession velocity is proportional to distance), is a theoretical result derived from the Friedmann-Robertson-Walker metric. v=HD applies at least as far as the particle horizon and in principle for all distances. Thus, galaxies with distances greater than D=c/H are receding from us with velocities greater than the speed of light and superluminal recession is a fundamental part of the general relativistic description of the expanding universe. This apparent contradiction of special relativity (SR) is often mistakenly remedied by converting redshift to velocity using SR. Here we show that galaxies with recession velocities faster than the speed of light are observable and that in all viable cosmological models, galaxies above a redshift of three are receding superluminally.

  9. Extreme Velocity Wind Sensor

    Science.gov (United States)

    Perotti, Jose; Voska, Ned (Technical Monitor)

    2002-01-01

    This presentation provides an overview of the development of new hurricane wind sensor (Extreme Velocity Wind Sensor) for the Kennedy Space Center (KSC) which is designed to withstand winds of up to three hundred miles an hour. The proposed Extreme Velocity Wind Sensor contains no moveable components that would be exposed to extreme wind conditions. Topics covered include: need for new hurricane wind sensor, conceptual design, software applications, computational fluid dynamic simulations of design concept, preliminary performance tests, and project status.

  10. A method for calculating the lift and center of pressure of wing-body-tail combinations at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Nielsen, Jack N; Kaattari, George E; Anastasio, Robert F

    1953-01-01

    A method is presented for calculating the lift and pitching-moment characteristics of circular cylindrical bodies in combination with triangular, rectangular, or trapezoidal wings or tails through the subsonic, transonic, and supersonic speed ranges. The method covers unbanked wings, sweptback leading edges or sweptforward trailing edges, low angles of attack, and the effects of wing and tail incidence. The wing-body interference is handled by the method presented in NACA RM's A51J04 and A52B06, and the wing-tail interference is treated by assuming one completely rolled-up vortex per wing panel and evaluating the tail load by strip theory. A computing table and set of design charts are presented which reduce the calculations to routine operations. Comparison is made between the estimated and experimental characteristics for a large number of wing-body and wing-body-tail combinations. Generally speaking, the lifts were estimated to within plus-or-minus 10 percent and the centers of pressure were estimated to within plus-or-minus 0.02 of the body length. The effect of wing deflection on wing-tail interference at supersonic speeds was not correctly predicted for triangular wings with supersonic leading edges.

  11. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    OpenAIRE

    Fu, Wen; Liang, Edison P.; Fatenejad, Milad; Lamb, Donald Q.; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations,...

  12. Non-adiabatic ab initio molecular dynamics of supersonic beam epitaxy of silicon carbide at room temperature.

    Science.gov (United States)

    Taioli, Simone; Garberoglio, Giovanni; Simonucci, Stefano; a Beccara, Silvio; Aversa, Lucrezia; Nardi, Marco; Verucchi, Roberto; Iannotta, Salvatore; Dapor, Maurizio; Alfè, Dario

    2013-01-28

    In this work, we investigate the processes leading to the room-temperature growth of silicon carbide thin films by supersonic molecular beam epitaxy technique. We present experimental data showing that the collision of fullerene on a silicon surface induces strong chemical-physical perturbations and, for sufficient velocity, disruption of molecular bonds, and cage breaking with formation of nanostructures with different stoichiometric character. We show that in these out-of-equilibrium conditions, it is necessary to go beyond the standard implementations of density functional theory, as ab initio methods based on the Born-Oppenheimer approximation fail to capture the excited-state dynamics. In particular, we analyse the Si-C(60) collision within the non-adiabatic nuclear dynamics framework, where stochastic hops occur between adiabatic surfaces calculated with time-dependent density functional theory. This theoretical description of the C(60) impact on the Si surface is in good agreement with our experimental findings.

  13. Iron load

    Directory of Open Access Journals (Sweden)

    Filippo Cassarà

    2013-03-01

    Full Text Available Recent research addressed the main role of hepcidin in the regulation of iron metabolism. However, while this mechanism could be relevant in causing iron load in Thalassemia Intermedia and Sickle-Cell Anemia, its role in Thalassemia Major (TM is marginal. This is mainly due to the high impact of transfusional requirement into the severe increase of body iron. Moreover, the damage of iron load may be worsened by infections, as HCV hepatitis, or liver and endocrinological damage. One of the most relevant associations was found between splenectomy and increase of risk for mortality due,probably, to more severe iron load. These issues suggest as morbidity and mortality of this group of patients they do not depend only by our ability in controlling heart damage but even in preventing or treating particular infections and complications. This finding is supported by the impairment of survival curves in patients with complications different from heart damage. However, because, during recent years different direct and indirect methods to detect iron overload in patients affected by secondary hemochromatosis have been implemented, our ability to maintain under control iron load is significantly improved. Anyway, the future in iron load management remains to be able to have an iron load map of our body for targeting chelation and other medical treatment according to the single organ damage.

  14. Velocities in Solar Pores

    Science.gov (United States)

    Balasubramaniam, K. S.; Keil, S. L.; Smaldone, L. A.

    1996-05-01

    We investigate the three dimensional structure of solar pores and their surroundings using high spatial and spectral resolution data. We present evidence that surface velocities decrease around pores with a corresponding increase in the line-of-sight (LOS) velocities. LOS velocities in pores increase with the strength of the magnetic field. Surface velocities show convergence toward a weak downflow which appear to trace boundaries resembling meso-granular and super granular flows. The observed magnetic fields in the pores appear near these boundaries. We analyze the vertical velocity structure in pores and show that they generally have downflows decreasing exponentially with height, with a scale height of about 90 km. Evidence is also presented for the expanding nature of flux tubes. Finally we describe a phenomenological model for pores. This work was supported by AFOSR Task 2311G3. LAS was partially supported by the Progetto Nazionale Astrofisica e Fisica Cosmica of MURST and Scambi Internazionali of the Universita degli Studi di Napoli Frederico II. National Solar Observatory, NOAO, is operated for the National Science Foundation by AURA, Inc.

  15. Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period

    Science.gov (United States)

    Morgenstern, John; Norstrud, Nicole; Sokhey, Jack; Martens, Steve; Alonso, Juan J.

    2013-01-01

    Lockheed Martin Aeronautics Company (LM), working in conjunction with General Electric Global Research (GE GR), Rolls-Royce Liberty Works (RRLW), and Stanford University, herein presents results from the "N+2 Supersonic Validations" contract s initial 22 month phase, addressing the NASA solicitation "Advanced Concept Studies for Supersonic Commercial Transports Entering Service in the 2018 to 2020 Period." This report version adds documentation of an additional three month low boom test task. The key technical objective of this effort was to validate integrated airframe and propulsion technologies and design methodologies. These capabilities aspired to produce a viable supersonic vehicle design with environmental and performance characteristics. Supersonic testing of both airframe and propulsion technologies (including LM3: 97-023 low boom testing and April-June nozzle acoustic testing) verified LM s supersonic low-boom design methodologies and both GE and RRLW's nozzle technologies for future implementation. The N+2 program is aligned with NASA s Supersonic Project and is focused on providing system-level solutions capable of overcoming the environmental and performance/efficiency barriers to practical supersonic flight. NASA proposed "Initial Environmental Targets and Performance Goals for Future Supersonic Civil Aircraft". The LM N+2 studies are built upon LM s prior N+3 100 passenger design studies. The LM N+2 program addresses low boom design and methodology validations with wind tunnel testing, performance and efficiency goals with system level analysis, and low noise validations with two nozzle (GE and RRLW) acoustic tests.

  16. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  17. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    Science.gov (United States)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  18. Multi-chord fiber-coupled interferometry of supersonic plasma jets and comparisons with synthetic data

    CERN Document Server

    Merritt, Elizabeth C; Gilmore, Mark A; Thoma, Carsten; Loverich, John; Hsu, Scott C

    2012-01-01

    A multi-chord fiber-coupled interferometer [Merritt et al., Rev. Sci. Instrum. 83, 033506 (2012)] is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment [Hsu et al., Bull. Amer. Phys. Soc. 56, 307 (2011)]. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which an initially positive phase shift becomes negative when the ionization fraction drops below a certain threshold. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity (~15-50 km/s), jet length (~20-100 cm), and 3D expansion.

  19. Hybrid Large-Eddy/Reynolds-Averaged Simulation of a Supersonic Cavity Using VULCAN

    Science.gov (United States)

    Quinlan, Jesse; McDaniel, James; Baurle, Robert A.

    2013-01-01

    Simulations of a supersonic recessed-cavity flow are performed using a hybrid large-eddy/Reynolds-averaged simulation approach utilizing an inflow turbulence recycling procedure and hybridized inviscid flux scheme. Calorically perfect air enters a three-dimensional domain at a free stream Mach number of 2.92. Simulations are performed to assess grid sensitivity of the solution, efficacy of the turbulence recycling, and the effect of the shock sensor used with the hybridized inviscid flux scheme. Analysis of the turbulent boundary layer upstream of the rearward-facing step for each case indicates excellent agreement with theoretical predictions. Mean velocity and pressure results are compared to Reynolds-averaged simulations and experimental data for each case and indicate good agreement on the finest grid. Simulations are repeated on a coarsened grid, and results indicate strong grid density sensitivity. Simulations are performed with and without inflow turbulence recycling on the coarse grid to isolate the effect of the recycling procedure, which is demonstrably critical to capturing the relevant shear layer dynamics. Shock sensor formulations of Ducros and Larsson are found to predict mean flow statistics equally well.

  20. Supersonic flow about cone eith ijection of gas through its surface described by power law

    Science.gov (United States)

    Antonov, A. M.; Zakrevskiy, V. A.

    1986-01-01

    The influence of intensive mass transfer on the supersonic flow of gas about a cone of finite length is investigated. The mathematical model describing the interaction of the primary flow and the transverse flow formed by injection is the boundary problem for a system of equations presented with boundary conditions on the cone and on the contact discontinuity. It is found that the contact surface is nonrectilinear when the injected gas is described by a power law and that the thickness of the layer coming in contact with the cone increases as the intensity of the injection becomes higher. The distribution of the pressure coefficient along a finite cone is calculated as a function of the parameter(s) associated with the injection flow rate, and the Mach number of the oncoming stream. It is found that the pressure coefficient drops off along the generatrix of a cone for all velocities of injection and oncoming stream when the injection is distributed. As the injection intensity increases, the pressure coefficient on the surface increases.

  1. Supersonic shear flows in laser driven high-energy-density plasmas created by the Nike laser

    Science.gov (United States)

    Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Ditmar, J. R.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.

    2008-11-01

    In high-energy-density (HED) plasmas the Kelvin-Helmholtz (KH) instability plays an important role in the evolution of Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) unstable interfaces, as well as material interfaces that experience the passage one or multiple oblique shocks. Despite the potentially important role of the KH instability few experiments have been carried out to explore its behavior in the high-energy-density regime. We report on the evolution of a supersonic shear flow that is generated by the release of a high velocity (>100 km/s) aluminum plasma onto a CRF foam (ρ = 0.1 g/cc) surface. In order to seed the Kelvin-Helmholtz (KH) instability various two-dimensional sinusoidal perturbations (λ = 100, 200, and 300 μm with peak-to-valley amplitudes of 10, 20, and 30 μm respectively) have been machined into the foam surface. This experiment was performed using the Nike laser at the Naval Research Laboratory.

  2. A computational study of supersonic combustion behind a wedge-shaped flameholder

    Science.gov (United States)

    Fureby, C.; Fedina, E.; Tegnér, J.

    2014-01-01

    In this study, large eddy simulation (LES) has been used to examine supersonic flow, mixing, self-ignition and combustion in a model scramjet combustor and has been compared against the experimental data. The LES model is based on an unstructured finite-volume discretization, using monotonicity-preserving flux reconstruction of the filtered mass, momentum, species and energy equations. Both a two-step and a seven-step hydrogen-air mechanism are used to describe the chemical reactions. Additional comparisons are made with results from a previously presented flamelet model. The subgrid flow terms are modeled using a mixed model, whereas the subgrid turbulence-chemistry interaction terms are modeled using the partially stirred reactor model. Simulations are carried out on a scramjet model experimentally studied at Deutsches Zentrum für Luft- und Raumfahrt consisting of a one-sided divergent channel with a wedge-shaped flame holder at the base of which hydrogen is injected. The LES predictions are compared with experimental data for velocity, temperature, wall pressure at different cross sections as well as schlieren images, showing good agreement for both first- and second-order statistics. In addition, the LES results are used to illustrate and explain the intrinsic flow, and mixing and combustion features of this combustor.

  3. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    Science.gov (United States)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  4. Modernized scheme of thermal ignition and flame stabilization at flow supersonic speeds in channel

    Science.gov (United States)

    Goldfeld, M. A.; Nalivaychenko, D. G.; Starov, A. V.; Timofeev, K. Yu.

    2016-10-01

    For providing fuel ignition at the high supersonic flow velocity original device was developed. Main element of this device in the form of wall slotted channel has to provide the high flow temperature in the area of mixture. Numerical simulation has been performed based on solving the full averaged Navier-Stokes equations, supplemented k-ɛ turbulence model. The experiments were carried out in the hotshot wind tunnel IT-302M at the mode of the attached pipe. The flow parameters at the model entrance were following: M = 2 - 5.8, p0 = 12 - 390bar, T0 = 1170 - 2930K at equivalence ratio of hydrogen from 0.6 to 1.1. Self-ignition of the hydrogen in the slotted channel has occurred at total flow temperature of 2250K at the combustor entrance. The combustion process is extended to the entire channel of the combustor. When the facility worked with decreasing parameters of the flow, combustion continued until drop of the static temperature of about 230K at the entrance of the combustor.

  5. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  6. Solidification analysis of micro-scale metallic particles in the laser supersonic heating technique

    Science.gov (United States)

    Lin, Shih-Lung; Lin, Jehnming

    2004-04-01

    In this paper, the authors analysed the solidification phenomenon in the laser supersonic heating technique used for producing metallic particles. A mathematical model was established to predict the velocity, temperature and solidification situation of metallic particles leaving a spray nozzle. The numerical analysis method was used to simulate the flow field structure of shock waves and to proceed with related experiment. In the experiment, a pulsed Nd-YAG laser was used as the heat source on a carbon steel target within the nozzle, and carbon steel particles were ejected by high pressure air. The solidification problem of carbon steel particles with radii of 1-50 µm in the compressible flow field was calculated and compared with experimental results. The result shows that the shock wave flow fields are generated at different entrance pressures (3-7 bar), and there is no significant difference in the radii of carbon steel particles produced by a fixed laser energy; however, in the flow field without the shock wave effect, the cooling effect is less evident in the solidification process.

  7. DETECTION OF SUPERSONIC DOWNFLOWS AND ASSOCIATED HEATING EVENTS IN THE TRANSITION REGION ABOVE SUNSPOTS

    Energy Technology Data Exchange (ETDEWEB)

    Kleint, L.; Martínez-Sykora, J. [Bay Area Environmental Research Institute, 625 2nd Street, Ste. 209, Petaluma, CA (United States); Antolin, P. [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tian, H.; Testa, P.; Reeves, K. K.; McKillop, S.; Saar, S.; Golub, L. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Judge, P. [High Altitude Observatory/NCAR, P.O. Box 3000, Boulder, CO 80307 (United States); De Pontieu, B.; Wuelser, J. P.; Boerner, P.; Hurlburt, N.; Lemen, J.; Tarbell, T. D.; Title, A. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St., Org. ADBS, Bldg. 252, Palo Alto, CA 94304 (United States); Carlsson, M.; Hansteen, V. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway); Jaeggli, S., E-mail: lucia.kleint@fhnw.ch [Department of Physics, Montana State University, Bozeman, P.O. Box 173840, Bozeman, MT 59717 (United States); and others

    2014-07-10

    Interface Region Imaging Spectrograph data allow us to study the solar transition region (TR) with an unprecedented spatial resolution of 0.''33. On 2013 August 30, we observed bursts of high Doppler shifts suggesting strong supersonic downflows of up to 200 km s{sup –1} and weaker, slightly slower upflows in the spectral lines Mg II h and k, C II 1336, Si IV 1394 Å, and 1403 Å, that are correlated with brightenings in the slitjaw images (SJIs). The bursty behavior lasts throughout the 2 hr observation, with average burst durations of about 20 s. The locations of these short-lived events appear to be the umbral and penumbral footpoints of EUV loops. Fast apparent downflows are observed along these loops in the SJIs and in the Atmospheric Imaging Assembly, suggesting that the loops are thermally unstable. We interpret the observations as cool material falling from coronal heights, and especially coronal rain produced along the thermally unstable loops, which leads to an increase of intensity at the loop footpoints, probably indicating an increase of density and temperature in the TR. The rain speeds are on the higher end of previously reported speeds for this phenomenon, and possibly higher than the free-fall velocity along the loops. On other observing days, similar bright dots are sometimes aligned into ribbons, resembling small flare ribbons. These observations provide a first insight into small-scale heating events in sunspots in the TR.

  8. Theoretical prediction of interference loading on aircraft stores: Part II - Supersonic speeds

    Science.gov (United States)

    Fox, C. H., Jr.; Fernandes, F.

    1973-01-01

    Linear theory is used, without two dimensional or slender body assumptions, to predict flow field produced by aircraft wing, nose, inlet, and pylons. Aircraft shock wave locations are predicted, and their effect on flow field is included through transformation of aircraft geometry. Program was written in FORTRAN IV for CDC 6400 computer.

  9. 3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NO

    Science.gov (United States)

    1956-01-01

    3 TUNNELS IN THE ENGINE RESEARCH BUILDING ERB - IN CELL CE-26 VARIABLE REYNOLDS NUMBER SUPERSONIC NOZZLE - CELL CE-4 6X6 INCH MACH NUMBER 2.96 SUPERSONIC AIRPLANE - CELL 1-NW 1X1 FOOT MACH 3.12 SUPERSONIC TUNNEL

  10. Quantitative velocity modulation spectroscopy

    Science.gov (United States)

    Hodges, James N.; McCall, Benjamin J.

    2016-05-01

    Velocity Modulation Spectroscopy (VMS) is arguably the most important development in the 20th century for spectroscopic study of molecular ions. For decades, interpretation of VMS lineshapes has presented challenges due to the intrinsic covariance of fit parameters including velocity modulation amplitude, linewidth, and intensity. This limitation has stifled the growth of this technique into the quantitative realm. In this work, we show that subtle changes in the lineshape can be used to help address this complexity. This allows for determination of the linewidth, intensity relative to other transitions, velocity modulation amplitude, and electric field strength in the positive column of a glow discharge. Additionally, we explain the large homogeneous component of the linewidth that has been previously described. Using this component, the ion mobility can be determined.

  11. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet – results from the EU-project SCENIC

    Directory of Open Access Journals (Sweden)

    L. Gulstad

    2007-05-01

    Full Text Available The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level, cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emissions scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g. economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft. However, model differences are smaller when comparing the different options for a supersonic fleet. The base scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, lead in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm²in 2050, with an uncertainty between 9 and 29 mWm². A reduced supersonic cruise altitude or speed (from March 2 to Mach 1.6 reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at lower latitudes since more routes to SE Asia are taken into account, which increases ozone depletion, but

  12. The first results of divertor discharge and supersonic molecular beam injection on the HL-2A tokamak

    Institute of Scientific and Technical Information of China (English)

    Yao Liang-Hua; Yuan Bau-Shan; Feng Bei-Bin; Chen Cheng-Yuan; Hong Wen-Yu; Li Ying-Liang

    2007-01-01

    HL-2A tokamak is the first tokamak with divertors in China. The plasma boundary and the position of the striking point on the target plates of the HL-2A closed divertor were simulated by the current filament code and they were in agreement with the diagnostic results in the divertor. Supersonic molecular beam injection (SMBI) system was first installed and tested on the HL-2A tokamak in 2004. In the present experiment low pressure SMBI fuelling on the HL-2A and during the period of SMB pulse injection into the HL-2A plasma the power density convected at the target plate surfaces was 0.4 times of that before or after the beam injection. It is a useful fuelling method for decreasing the heat load on the neutralizer plates of the divertor.

  13. Flying qualities design criteria applicable to supersonic cruise aircraft

    Science.gov (United States)

    Chalk, C. R.

    1980-01-01

    A comprehensive set of flying qualities design criteria was prepared for use in the supersonic cruise research program. The framework for stating the design criteria is established and design criteria are included which address specific failures, approach to dangerous flight conditions, flight at high angle of attack, longitudinal and lateral directional stability and control, the primary flight control system, and secondary flight controls. Examples are given of lateral directional design criteria limiting lateral accelerations at the cockpit, time to roll through 30 deg of bank, and time delay in the pilot's command path. Flight test data from the Concorde certification program are used to substantiate a number of the proposed design criteria.

  14. Development of air to air ejector for supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2014-03-01

    Full Text Available The contribution deals with the development of design of new conception of ejector with twelve primary annular nozzles arranged around the inlet part of the mixing chamber. The ejector is proposed to be used for propulsion of supersonic experimental wind tunnel with variable test section, which is now in development. The ejector is considered to be placed on outlet of this wind tunnel. The original design of the ejector has been modified to ensure its manufacturability. Software Ansys Fluent 14.0 was used for numerical verification of earlier work. The new design and dissimilarities of numerical results are presented in this work.

  15. Direct formulation of the supersonic acoustic intensity in space domain

    DEFF Research Database (Denmark)

    Fernandez Grande, Efren; Jacobsen, Finn; Leclre, Quentin

    2012-01-01

    This paper proposes and examines a direct formulation in space domain of the so-called supersonic acoustic intensity. This quantity differs from the usual (active) intensity by excluding the circulating energy in the near-field of the source, providing a map of the acoustic energy that is radiated...... by means of a two-dimensional convolution between the acoustic field and a spatial filter mask that corresponds to the space domain representation of the radiation circle. Therefore, the acoustic field that propagates effectively to the far field is calculated via direct filtering in space domain...

  16. Accuracy Of Hot-Wire Anemometry In Supersonic Turbulence

    Science.gov (United States)

    Logan, Pamela; Mckenzie, Robert L.; Bershader, Daniel

    1989-01-01

    Sensitivity of hot-wire probe compared to laser-induced-florescence measurements. Report discusses factors affecting readings of hot-wire anemometer in turbulent supersonic boundary layer. Presents theoretical analysis of responses of hot-wire probe to changes in flow; also compares measurements by hot-wire probe with measurements of same flows by laser-induced fluorescence (LIF). Because LIF provides spatially and temporally resolved data on temperature, density, and pressure, provides independent means to determine responses of hot-wire anemometers to these quantities.

  17. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  18. The Prescribed Velocity Method

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The- velocity level in a room ventilated by jet ventilation is strongly influenced by the supply conditions. The momentum flow in the supply jets controls the air movement in the room and, therefore, it is very important that the inlet conditions and the numerical method can generate a satisfactory...... description of this momentum flow. The Prescribed Velocity Method is a practical method for the description of an Air Terminal Device which will save grid points close to the opening and ensure the right level of the momentum flow....

  19. Cirrus Crystal Terminal Velocities.

    Science.gov (United States)

    Heymsfield, Andrew J.; Iaquinta, Jean

    2000-04-01

    Cirrus crystal terminal velocities are of primary importance in determining the rate of transport of condensate from upper- to middle-tropospheric levels and profoundly influence the earth's radiation balance through their effect on the rate of buildup or decay of cirrus clouds. In this study, laboratory and field-based cirrus crystal drag coefficient data, as well as analytical descriptions of cirrus crystal shapes, are used to derive more physically based expressions for the velocities of cirrus crystals than have been available in the past.Polycrystals-often bullet rosettes-are shown to be the dominant crystal types in synoptically generated cirrus, with columns present in varying but relatively large percentages, depending on the cloud. The two critical parameters needed to calculate terminal velocity are the drag coefficient and the ratio of mass to cross-sectional area normal to their fall direction. Using measurements and calculations, it is shown that drag coefficients from theory and laboratory studies are applicable to crystals of the types found in cirrus. The ratio of the mass to area, which is shown to be relatively independent of the number of bullets in the rosette, is derived from an analytic model that represents bullet rosettes containing one to eight bullets in 19 primary geometric configurations. The ratio is also derived for columns. Using this information, a general set of equations is developed to calculate the terminal velocities and masses in terms of the aspect ratio (width divided by length), ice density, and rosette maximum dimension. Simple expressions for terminal velocity and mass as a function of bullet rosette maximum dimension are developed by incorporating new information on bullet aspect ratios.The general terminal velocity and mass relations are then applied to a case from the First International Satellite Cloud Climatology Project (ISCCP) Research Experiment (FIRE) 2, when size spectra from a balloon-borne ice crystal

  20. On the impact of adverse pressure gradient on the supersonic turbulent boundary layer

    Science.gov (United States)

    Wang, Qian-Cheng; Wang, Zhen-Guo; Zhao, Yu-Xin

    2016-11-01

    By employing the particle image velocimetry, the mean and turbulent characteristics of a Mach 2.95 turbulent boundary layer are experimentally investigated without the impact of curvature. The physical mechanism with which the streamwise adverse pressure gradient affects the supersonic boundary layer is revealed. The data are compared to that of the concave boundary layer with similar streamwise distributions of wall static pressure to clarify the separate impacts of the adverse pressure gradient and the concave curvature. The logarithmic law is observed to be well preserved for both of the cases. The dip below the logarithmic law is not observed in present investigation. Theoretical analysis indicates that it could be the result of compromise between the opposite impacts of the compression wave and the increased turbulent intensity. Compared to the zero pressure gradient boundary layer, the principal strain rate and the turbulent intensities are increased by the adverse pressure gradient. The shear layer formed due the hairpin packets could be sharpened by the compression wave, which leads to higher principal strain rate and the associated turbulent level. Due to the additional impact of the centrifugal instability brought by the concave wall, even higher turbulent intensities than that of the adverse pressure gradient case are introduced. The existence of velocity modes within the zero pressure gradient boundary layer suggests that the large scale motions are statistically well organized. The generation of new velocity modes due to the adverse pressure gradient indicates that the turbulent structure is changed by the adverse pressure gradient, through which more turbulence production that cannot be effectively predicted by the Reynolds-stress transport equations could be brought.

  1. Wall pressure fluctuations in the reattachment region of a supersonic free shear layer

    Science.gov (United States)

    Smits, Alexander J.

    1994-01-01

    The primary aim of this research program was to investigate the mechanisms which cause the unsteady wall-pressure fluctuations in shock wave turbulent shear layer interactions. The secondary aim was to find means to reduce the magnitude of the fluctuating pressure loads by controlling the unsteady shock motion. The particular flow under study is the unsteady shock wave interaction formed in the reattachment zone of a separated supersonic flow. Similar flows are encountered in many practical situations, and they are associated with high levels of fluctuating wall pressure. The free shear layer is formed by the flow over a backward facing step, using an existing model, with the base pressure on the step adjusted so that there is no pressure discontinuity at the lip. The shear layer therefore develops in a zero pressure gradient. The primary advantage of this flow configuration is that the reattachment process can be studied in the absence of a separation shock. The mean flow data, and some preliminary hot-wire measurements of the mass-flux fluctuations were made by Baca and Settles, Baca, Williams and Bogdonoff, who showed that the shear layer became self-similar at about 17 delta(sub 0) downstream of the lip, and that it grew at a rate typical of the observed Mach number difference (about 1/3rd the incompressible growth rate). The turbulence measurements were later extended by Hayakawa, Smits and Bogdonoff under NASA Headquarters support.

  2. Microstructures and Tribological Properties of Fe-Based Amorphous Metallic Coatings Deposited via Supersonic Plasma Spraying

    Science.gov (United States)

    Zhou, Yang-yang; Ma, Guo-zheng; Wang, Hai-dou; Li, Guo-lu; Chen, Shu-ying; Fu, Bin-guo

    2017-08-01

    The effects of the Ar flow rate and spraying power of a supersonic plasma spraying process on the microstructures and amorphous phase contents of Fe48Cr15Mo14C15B6Y2 amorphous coatings were systematically investigated. The tribological properties of the coatings were evaluated in pin-on-disk mode using a sliding tribometer. The results show that the amorphous phase content and microhardness initially increase with the Ar flow rate and then gradually decrease. However, the amorphous phase content and microhardness increase with the power. In particular, the amorphous phase content of the coating reaches 96.78% with a spraying power of 62 kW and a 110 L min-1 Ar flow rate. Tribological testing demonstrates that the coatings exhibit similar steady-state coefficients of friction (0.75-0.82) with a total test time of 20 min and an applied load of 20 N. However, the wear rates vary with the spraying parameters. In particular, the relative wear rate of the coating can be enhanced up to sixfold under optimal spraying conditions, resulting in excellent wear resistance. Detailed analysis of the coating wear surfaces indicates that the dominant wear mechanisms are abrasive and oxidative wear. Moreover, delamination may occur during the wear process.

  3. Study of advanced composite structural design concepts for an arrow wing supersonic cruise configuration, task 3

    Science.gov (United States)

    1978-01-01

    A structural design study was conducted to assess the relative merits of structural concepts using advanced composite materials for an advanced supersonic aircraft cruising at Mach 2.7. The configuration and structural arrangement developed during Task I and II of the study, was used as the baseline configuration. Allowable stresses and strains were established for boron and advanced graphite fibers based on projected fiber properties available in the next decade. Structural concepts were designed and analyzed using graphite polyimide and boron polyimide, applied to stiffened panels and conventional sandwich panels. The conventional sandwich panels were selected as the structural concept to be used on the wing structure. The upper and lower surface panels of the Task I arrow wing were redesigned using high-strength graphite polyimide sandwich panels over the titanium spars and ribs. The ATLAS computer system was used as the basis for stress analysis and resizing the surface panels using the loads from the Task II study, without adjustment for change in aeroelastic deformation. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter analysis indicated a decrease in the flutter speed compared to the baseline titanium wing design. The flutter speed was increased to that of the titanium wing, with a weight penalty less than that of the metallic airplane.

  4. Modeling Terminal Velocity

    Science.gov (United States)

    Brand, Neal; Quintanilla, John A.

    2013-01-01

    Using a simultaneously falling softball as a stopwatch, the terminal velocity of a whiffle ball can be obtained to surprisingly high accuracy with only common household equipment. This classroom activity engages students in an apparently daunting task that nevertheless is tractable, using a simple model and mathematical techniques at their…

  5. The stress-induced surface wave velocity variations in concrete

    Science.gov (United States)

    Spalvier, Agustin; Bittner, James; Evani, Sai Kalyan; Popovics, John S.

    2017-02-01

    This investigation studies the behavior of surface wave velocity in concrete specimens subjected to low levels of compressive and tensile stress in beams from applied flexural loads. Beam specimen is loaded in a 4-point-load bending configuration, generating uniaxial compression and tension stress fields at the top and bottom surfaces of the beam, respectively. Surface waves are generated through contactless air-coupled transducers and received through contact accelerometers. Results show a clear distinction in responses from compression and tension zones, where velocity increases in the former and decreases in the latter, with increasing load levels. These trends agree with existing acoustoelastic literature. Surface wave velocity tends to decrease more under tension than it tends to increase under compression, for equal load levels. It is observed that even at low stress levels, surface wave velocity is affected by acoustoelastic effects, coupled with plastic effects (stress-induced damage). The acoustoelastic effect is isolated by means of considering the Kaiser effect and by experimentally mitigating the viscoelastic effects of concrete. Results of this ongoing investigation contribute to the overall knowledge of the acoustoelastic behavior of concrete. Applications of this knowledge may include structural health monitoring of members under flexural loads, improved high order modelling of materials, and validation of results seen in dynamic acoustoelasticity testing.

  6. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  7. Noise reduction in supersonic jets by nozzle fluidic inserts

    Science.gov (United States)

    Morris, Philip J.; McLaughlin, Dennis K.; Kuo, Ching-Wen

    2013-08-01

    Professor Philip Doak spent a very productive time as a consultant to the Lockheed-Georgia Company in the early 1970s. The focus of the overall research project was the prediction and reduction of noise from supersonic jets. Now, 40 years on, the present paper describes an innovative methodology and device for the reduction of supersonic jet noise. The goal is the development of a practical active noise reduction technique for low bypass ratio turbofan engines. This method introduces fluidic inserts installed in the divergent wall of a CD nozzle to replace hard-wall corrugation seals, which have been demonstrated to be effective by Seiner (2005) [1]. By altering the configuration and operating conditions of the fluidic inserts, active noise reduction for both mixing and shock noise has been obtained. Substantial noise reductions have been achieved for mixing noise in the maximum noise emission direction and in the forward arc for broadband shock-associated noise. To achieve these reductions (on the order of greater than 4 and 2 dB for the two main components respectively), practically achievable levels of injection mass flow rates have been used. The total injected mass flow rates are less than 4% of the core mass flow rate and the effective operating injection pressure ratio has been maintained at or below the same level as the nozzle pressure ratio of the core flow.

  8. Super-Sonic Turbulence in the Perseus Molecular Cloud

    CERN Document Server

    Padoan, P; Billawala, Y N; Juvela, M; Nordlund, A A; Padoan, Paolo; Bally, John; Billawala, Youssef; Juvela, Mika; Nordlund, AAke

    1999-01-01

    We compare the statistical properties of J=1-0 13CO spectra observed in the Perseus Molecular Cloud with synthetic J=1-0 13CO spectra, computed solving the non-LTE radiative transfer problem for a model cloud obtained as solutions of the three dimensional magneto-hydrodynamic (MHD) equations. The model cloud is a randomly forced super-Alfvenic and highly super-sonic turbulent isothermal flow. The purpose of the present work is to test if idealized turbulent flows, without self-gravity, stellar radiation, stellar outflows, or any other effect of star formation, are inconsistent or not with statistical properties of star forming molecular clouds. We present several statistical results that demonstrate remarkable similarity between real data and the synthetic cloud. Statistical properties of molecular clouds like Perseus are appropriately described by random super-sonic and super-Alfvenic MHD flows. Although the description of gravity and stellar radiation are essential to understand the formation of single prot...

  9. a Continuous Supersonic Expansion Discharge Nozzle for Rotationally Cold Ions

    Science.gov (United States)

    Kauffman, Carrie A.; Crabtree, Kyle N.; McCall, Benjamin J.

    2009-06-01

    Molecular ions play an important role in chemistry and astronomy. In particular, molecular ions are key reaction intermediates, and in the interstellar medium, where temperatures and densities are low, they dominate the chemistry. Studying these ions spectroscopically in the laboratory poses a difficult challenge due to their reactivity. In our effort to study molecular ions, our research group is building SCRIBES (Sensitive Cooled Resolved Ion BEam Spectroscopy), which combines a cold ion source, mass spectrometry, and cavity ring-down spectroscopy. With this apparatus, we will be able to record rotationally-resolved gas-phase spectra, enabling interstellar searches for these species. The SCRIBES instrument requires a source of rotationally cold ions, and this has been accomplished by coupling a supersonic expansion with an electric discharge. Other groups (e.g. Thaddeus and McCarthy at Harvard, Salama et. al at NASA-Ames) have produced cold ions in a similar fashion, but always with a pulsed discharge source. Due to our need for a continuous ion source for SCRIBES, we have designed a continuous supersonic expansion discharge nozzle. We will discuss the various design factors considered during the construction of our continuous self-aligning cold ion source.

  10. Experiments on supersonic turbulent flow development in a square duct

    Science.gov (United States)

    Gessner, F. B.; Ferguson, S. D.; Lo, C. H.

    1986-01-01

    The nature of supersonic, turbulent, adiabatic-wall flow in a square duct is investigated experimentally over a development length of x/D between 0 and 20 for a uniform flow, Mach 3.9 condition at the duct inlet. Initial discussion centers on the duct configuration itself, which was designed specifically to minimize wave effects and nozzle-induced distortion in the flow. Total pressure contours and local skin friction coefficient distributions are presented which show that the flow develops in a manner similar to that observed for the incompressible case. In particular, undulations exist in total pressure contours within the cross plane and in transverse skin friction coefficient distributions, which are indicative of the presence of a well-defined secondary flow superimposed upon the primary flow. The results are analyzed to show that local law-of-the-wall behavior extends well into the corner region, which implies that wall functions conventionally applied in two-equation type turbulence models, when suitably defined for compressible flow, may also be applied to supersonic streamwise corner flows.

  11. Supersonic Line Broadening within Young and Massive Super Star Clusters

    CERN Document Server

    Tenorio-Tagle, G; Silich, S; Munoz-Tunon, C; Palous, J

    2009-01-01

    The origin of supersonic infrared and radio recombination nebular lines often detected in young and massive superstar clusters are discussed. We suggest that these arise from a collection of repressurizing shocks (RSs), acting effectively to re-establish pressure balance within the cluster volume and from the cluster wind which leads to an even broader although much weaker component. The supersonic lines are here shown to occur in clusters that undergo a bimodal hydrodynamic solution (Tenorio-Tagle et al. 2007), that is within clusters that are above the threshold line in the mechanical luminosity or cluster mass vs the size of the cluster (Silich et al. 2004). The plethora of repressurizing shocks is due to frequent and recurrent thermal instabilities that take place within the matter reinserted by stellar winds and supernovae. We show that the maximum speed of the RSs and of the cluster wind, are both functions of the temperature reached at the stagnation radius. This temperature depends only on the cluster...

  12. A compressible multiphase framework for simulating supersonic atomization

    Science.gov (United States)

    Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark

    2016-11-01

    The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.

  13. Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System

    Science.gov (United States)

    Parrish, Lewis M.

    2009-01-01

    NASA Kennedy Space Center (KSC) recently entered into a nonexclusive license agreement with Applied Cryogenic Solutions (ACS), Inc. (Galveston, TX) to commercialize its Gas-Liquid Supersonic Cleaning and Cleaning Verification Spray System technology. This technology, developed by KSC, is a critical component of processes being developed and commercialized by ACS to replace current mechanical and chemical cleaning and descaling methods used by numerous industries. Pilot trials on heat exchanger tubing components have shown that the ACS technology provides for: Superior cleaning in a much shorter period of time. Lower energy and labor requirements for cleaning and de-scaling uper.ninih. Significant reductions in waste volumes by not using water, acidic or basic solutions, organic solvents, or nonvolatile solid abrasives as components in the cleaning process. Improved energy efficiency in post-cleaning heat exchanger operations. The ACS process consists of a spray head containing supersonic converging/diverging nozzles, a source of liquid gas; a novel, proprietary pumping system that permits pumping liquid nitrogen, liquid air, or supercritical carbon dioxide to pressures in the range of 20,000 to 60,000 psi; and various hoses, fittings, valves, and gauges. The size and number of nozzles can be varied so the system can be built in configurations ranging from small hand-held spray heads to large multinozzle cleaners. The system also can be used to verify if a part has been adequately cleaned.

  14. Structural concept trends for commercial supersonic cruise aircraft design

    Science.gov (United States)

    Sakat, I. F.; Davis, G. W.; Saelman, B.

    1980-01-01

    Structural concept trends for future commercial supersonic transport aircraft are considered. Highlights, including the more important design conditions and requirements, of two studies are discussed. Knowledge of these design parameters, as determined through studies involving the application of flexible mathematical models, enabled inclusion of aeroelastic considerations in the structural-material concepts evaluation. The design trends and weight data of the previous contractual study of Mach 2.7 cruise aircraft were used as the basis for incorporating advanced materials and manufacturing approaches to the airframe for reduced weight and cost. Structural studies of design concepts employing advanced aluminum alloys, advanced composites, and advanced titanium alloy and manufacturing techniques are compared for a Mach 2.0 arrow-wing configuration concept. Appraisals of the impact of these new materials and manufacturing concepts to the airframe design are shown and compared. The research and development to validate the potential sources of weight and cost reduction identified as necessary to attain a viable advanced commercial supersonic transport are discussed.

  15. Flow Simulation of Supersonic Inlet with Bypass Annular Duct

    Science.gov (United States)

    Kim, HyoungJin; Kumano, Takayasu; Liou, Meng-Sing; Povinelli, Louis A.; Conners, Timothy R.

    2011-01-01

    A relaxed isentropic compression supersonic inlet is a new concept that produces smaller cowl drag than a conventional inlet, but incurs lower total pressure recovery and increased flow distortion in the (radially) outer flowpath. A supersonic inlet comprising a bypass annulus to the relaxed isentropic compression inlet dumps out airflow of low quality through the bypass duct. A reliable computational fluid dynamics solution can provide considerable useful information to ascertain quantitatively relative merits of the concept, and further provide a basis for optimizing the design. For a fast and reliable performance evaluation of the inlet performance, an equivalent axisymmetric model whose area changes accounts for geometric and physical (blockage) effects resulting from the original complex three-dimensional configuration is proposed. In addition, full three-dimensional calculations are conducted for studying flow phenomena and verifying the validity of the equivalent model. The inlet-engine coupling is carried out by embedding numerical propulsion system simulation engine data into the flow solver for interactive boundary conditions at the engine fan face and exhaust plane. It was found that the blockage resulting from complex three-dimensional geometries in the bypass duct causes significant degradation of inlet performance by pushing the terminal normal shock upstream.

  16. Molecular Rayleigh Scattering Techniques Developed for Measuring Gas Flow Velocity, Density, Temperature, and Turbulence

    Science.gov (United States)

    Mielke, Amy F.; Seasholtz, Richard G.; Elam, Kristie A.; Panda, Jayanta

    2005-01-01

    Nonintrusive optical point-wise measurement techniques utilizing the principles of molecular Rayleigh scattering have been developed at the NASA Glenn Research Center to obtain time-averaged information about gas velocity, density, temperature, and turbulence, or dynamic information about gas velocity and density in unseeded flows. These techniques enable measurements that are necessary for validating computational fluid dynamics (CFD) and computational aeroacoustic (CAA) codes. Dynamic measurements allow the calculation of power spectra for the various flow properties. This type of information is currently being used in jet noise studies, correlating sound pressure fluctuations with velocity and density fluctuations to determine noise sources in jets. These nonintrusive techniques are particularly useful in supersonic flows, where seeding the flow with particles is not an option, and where the environment is too harsh for hot-wire measurements.

  17. SONIC SPEED AND SHOCK WAVE IN HIGH VELOCITY AERATED FLOWS FROM HIGH HEAD DISCHARGE STRUCTURES

    Institute of Scientific and Technical Information of China (English)

    Dong Zhi-yong

    2003-01-01

    The compressible characteristics in aerated flows at the high velocity of about 50m/s were analyzed. Based on the theory of compressible the relations between the sonic speed and shock wave in high-velocity aerated flow were theoretically deduced. And comparisons with measured data were made. The theoretical and experimental results show the sonic speed in aerated flow is merely of the order of several-dozen meters per second, and its minimum value is only 20m/s, which is far much less than that in water or air alone. So high subsonic flow, supersonic flow and transonic flow as well as compression wave, shock wave and expansion wave similarly to aerodnamics may be produced in high velocity aerated flow at the speed of the order of 50m/s. Hence the influences of these compressible characteristics on high head discharge structures can not be neglected, especially on super high dams over 200m high.

  18. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  19. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder for

  20. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  1. Wave propagation and group velocity

    CERN Document Server

    Brillouin, Léon

    1960-01-01

    Wave Propagation and Group Velocity contains papers on group velocity which were published during the First World War and are missing in many libraries. It introduces three different definitions of velocities: the group velocity of Lord Rayleigh, the signal velocity of Sommerfeld, and the velocity of energy transfer, which yields the rate of energy flow through a continuous wave and is strongly related to the characteristic impedance. These three velocities are identical for nonabsorbing media, but they differ considerably in an absorption band. Some examples are discussed in the last chapter

  2. Velocity Anisotropy in Self-gravitating Molecular Clouds. I. Simulation

    Science.gov (United States)

    Otto, Frank; Ji, Weiguang; Li, Hua-bai

    2017-02-01

    The complex interplay between turbulence, magnetic fields, and self-gravity leads to the formation of molecular clouds out of the diffuse interstellar medium (ISM). One avenue of studying this interplay is by analyzing statistical features derived from observations, where the interpretation of these features is greatly facilitated by comparisons with numerical simulations. Here we focus on the statistical anisotropy present in synthetic maps of velocity centroid data, which we derive from three-dimensional magnetohydrodynamic simulations of a turbulent, magnetized, self-gravitating patch of ISM. We study how the orientation and magnitude of the velocity anisotropy correlate with the magnetic field and with the structures generated by gravitational collapse. Motivated by recent observational constraints, our simulations focus on the supersonic (sonic Mach number { M }≈ 2{--}17) but sub- to trans-alfvénic (alfvénic Mach number {{ M }}{{A}}≈ 0.2{--}1.2) turbulence regime, and we consider clouds that are barely to mildly magnetically supercritical (mass-to-flux ratio equal to once or twice the critical value). Additionally we explore the impact of the turbulence driving mechanism (solenoidal or compressive) on the velocity anisotropy. While we confirm previous findings that the velocity anisotropy generally aligns well with the plane-of-sky magnetic field, our inclusion of the effects of self-gravity reveals that in regions of higher column density, the velocity anisotropy may be destroyed or even reoriented to align with the gravitationally formed structures. We provide evidence that this effect is not necessarily due to the increase of {{ M }}{{A}} inside the high-density regions.

  3. Experimental and numerical investigation of an air to air supersonic ejector for propulsion of a small supersonic wind tunnel

    Directory of Open Access Journals (Sweden)

    Kracík Jan

    2015-01-01

    Full Text Available The article deals with experimental and numerical investigation of an air to air supersonic ejector with twelve primary nozzles. The ejector is supposed to be used for propulsion of a small experimental supersonic wind tunnel which is situated in laboratories of Technical University of Liberec. A novel arrangement with 12 primary nozzles is used. The nozzles are placed at the periphery of the mixing chamber. The secondary stream enters the ejector through the free centre of the mixing chamber and is sucked into the space between the primary nozzles. Moreover the declination of the primary nozzles towards to ejector axis is 8.2° and the shape of the mixing chamber and diffuser walls is given by normal cubic spline function, which was investigated in previous work. The declination of the primary nozzles is supposed to eliminate reversal flow in the centre of the mixing chamber. Experimental results for different numbers of simultaneously activated primary nozzles are carried out. Experimental results are compared to the numerical simulation made with the help of Ansys Fluent software.

  4. Radial Velocities with PARAS

    Science.gov (United States)

    Roy, Arpita; Mahadevan, S.; Chakraborty, A.; Pathan, F. M.; Anandarao, B. G.

    2010-01-01

    The Physical Research Laboratory Advanced Radial-velocity All-sky Search (PARAS) is an efficient fiber-fed cross-dispersed high-resolution echelle spectrograph that will see first light in early 2010. This instrument is being built at the Physical Research laboratory (PRL) and will be attached to the 1.2m telescope at Gurushikhar Observatory at Mt. Abu, India. PARAS has a single-shot wavelength coverage of 370nm to 850nm at a spectral resolution of R 70000 and will be housed in a vacuum chamber (at 1x10-2 mbar pressure) in a highly temperature controlled environment. This renders the spectrograph extremely suitable for exoplanet searches with high velocity precision using the simultaneous Thorium-Argon wavelength calibration method. We are in the process of developing an automated data analysis pipeline for echelle data reduction and precise radial velocity extraction based on the REDUCE package of Piskunov & Valenti (2002), which is especially careful in dealing with CCD defects, extraneous noise, and cosmic ray spikes. Here we discuss the current status of the PARAS project and details and tests of the data analysis procedure, as well as results from ongoing PARAS commissioning activities.

  5. Effects of axial load and structural damping on wave propagation in periodic Timoshenko beams on elastic foundations under moving loads

    Science.gov (United States)

    Ding, Lan; Zhu, Hong-Ping; Wu, Li

    2016-07-01

    The propagation and attenuation properties of waves in ordered and disordered periodic composite Timoshenko beams, which consider the effects of axial static load and structural damping, resting on elastic foundations are studied when the system is subjected to moving loads of constant amplitude with a constant velocity. The transfer matrix methodology is adopted to formulate the model in a reference coordinate system moving with the load. The localization factor is calculated to determine the wave velocity pass bands and stop bands. The interactions between the static axial load and moving load, structural damping and disorder on the bands are analyzed.

  6. Constant-temperature hot-wire anemometer practice in supersonic flows. II - The inclined wire

    Science.gov (United States)

    Smits, A. J.; Muck, K. C.

    1983-01-01

    The performance of a constant-temperature inclined hot-wire in a supersonic flow is critically examined. It is shown that calibration techniques applicable to subsonic flow, such as the cosine cooling law cannot be used when the flow is supersonic. Calibration and measurement procedures appropriate to supersonic flow are suggested, together with the possible limits on their validity. Experimental results for different wires indicate that the sensitivities do not seem to depend on flow direction according to any simple correlation. When the sensitivity exhibits a strong dependence on flow direction, the wire should be discarded to avoid errors due to nonlinear effects.

  7. Effect of swirling device on flow behavior in a supersonic separator for natural gas dehydration

    DEFF Research Database (Denmark)

    Wen, Chuang; Li, Anqi; Walther, Jens Honore;

    2016-01-01

    The supersonic separator is a revolutionary device to remove the condensable components from gas mixtures. One of the key issues for this novel technology is the complex supersonic swirling flow that is not well understood. A swirling device composed of an ellipsoid and several helical blades is ...... the separation performance. When the swirling flow passes through the annular nozzle, it will damage the expansion characteristics of the annular nozzle. The blade angles and numbers are both optimized by evaluating the swirling and expansion effects for the supersonic separation....

  8. Radiative forcing from particle emissions by future supersonic aircraft

    Directory of Open Access Journals (Sweden)

    G. Pitari

    2008-07-01

    Full Text Available In this work we focus on the direct radiative forcing (RF of black carbon (BC and sulphuric acid particles emitted by future supersonic aircraft, as well as on the ozone RF due to changes produced by emissions of both gas species (NOx, H2O and aerosol particles capable of affecting stratospheric ozone chemistry. Heterogeneous chemical reactions on the surface of sulphuric acid stratospheric particles (SSA-SAD are the main link between ozone chemistry and supersonic aircraft emissions of sulphur precursors (SO2 and particles (H2O–H2SO4. Photochemical O3 changes are compared from four independent 3-D atmosphere-chemistry models (ACMs, using as input the perturbation of SSA-SAD calculated in the University of L'Aquila model, which includes on-line a microphysics code for aerosol formation and growth. The ACMs in this study use aircraft emission scenarios for the year 2050 developed by AIRBUS as a part of the EU project SCENIC, assessing options for fleet size, engine technology (NOx emission index, Mach number, range and cruising altitude. From our baseline modeling simulation, the impact of supersonic aircraft on sulphuric acid aerosol and BC mass burdens is 53 and 1.5 μg/m2, respectively, with a direct RF of −11.4 and 4.6 mW/m2 (net RF=−6.8 mW/m2. This paper discusses the similarities and differences amongst the participating models in terms of changes to O3 precursors due to aircraft emissions (NOx, HOx,Clx,Brx and the stratospheric ozone sensitivity to them. In the baseline case, the calculated global ozone change is −0.4 ±0.3 DU, with a net radiative forcing (IR+UV of −2.5± 2 mW/m2. The fraction of this O3-RF attributable to SSA-SAD changes is, however, highly variable among the models, depending on the NOx removal

  9. Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse

    Science.gov (United States)

    Latif, M. A.; Niemeyer, J. C.; Schleicher, D. R. G.

    2014-06-01

    Baryonic streaming motions produced prior to the epoch of recombination became supersonic during the cosmic dark ages. Various studies suggest that such streaming velocities change the halo statistics and also influence the formation of Population III stars. In this study, we aim to explore the impact of streaming velocities on the formation of supermassive black holes at z>10 via the direct collapse scenario. To accomplish this goal, we perform cosmological large eddy simulations for two haloes of a few times 107M⊙ with initial streaming velocities of 3, 6 and 9 km s-1. These massive primordial haloes illuminated by the strong Lyman-Werner flux are the potential cradles for the formation of direct collapse seed black holes. To study the evolution for longer times, we employ sink particles and track the accretion for 10 000 years. Our findings show that higher streaming velocities increase the circular velocities from about 14 to 16 km s-1. They also delay the collapse of haloes for a few million years, but do not have any significant impact on the halo properties such as turbulent energy, radial velocity, density and accretion rates. Sink particles of about ˜105M⊙ are formed at the end of our simulations and no clear distribution of sink masses is observed in the presence of streaming motions. It is further found that the impact of streaming velocities is less severe in massive haloes compared to the minihaloes as reported in the previous studies.

  10. Transverse velocity shifts in protostellar jets: rotation or velocity asymmetries?

    CERN Document Server

    De Colle, Fabio; Riera, Angels

    2016-01-01

    Observations of several protostellar jets show systematic differences in radial velocity transverse to the jet propagation direction, which have been interpreted as evidence of rotation in the jets. In this paper we discuss the origin of these velocity shifts, and show that they could be originated by rotation in the flow, or by side to side asymmetries in the shock velocity, which could be due to asymmetries in the jet ejection velocity/density or in the ambient medium. For typical poloidal jet velocities (~ 100-200 km/s), an asymmetry >~ 10% can produce velocity shifts comparable to those observed. We also present three dimensional numerical simulations of rotating, precessing and asymmetric jets, and show that, even though for a given jet there is a clear degeneracy between these effects, a statistical analysis of jets with different inclination angles can help to distinguish between the alternative origins of transverse velocity shifts. Our analysis indicate that side to side velocities asymmetries could ...

  11. Performance of Several High Order Numerical Methods for Supersonic Combustion

    Science.gov (United States)

    Sjoegreen, Bjoern; Yee, H. C.; Don, Wai Sun; Mansour, Nagi N. (Technical Monitor)

    2001-01-01

    The performance of two recently developed numerical methods by Yee et al. and Sjoegreen and Yee using postprocessing nonlinear filters is examined for a 2-D multiscale viscous supersonic react-live flow. These nonlinear filters can improve nonlinear instabilities and at the same time can capture shock/shear waves accurately. They do not, belong to the class of TVD, ENO or WENO schemes. Nevertheless, they combine stable behavior at discontinuities and detonation without smearing the smooth parts of the flow field. For the present study, we employ a fourth-order Runge-Kutta in time and a sixth-order non-dissipative spatial base scheme for the convection and viscous terms. We denote the resulting nonlinear filter schemes ACM466-RK4 and WAV66-RK4.

  12. Optical wavefront distortion due to supersonic flow fields

    Institute of Scientific and Technical Information of China (English)

    CHEN ZhiQiang; FU Song

    2009-01-01

    The optical wavefront distortion caused by a supersonic flow field around a half model of blunt nose cone was studied in a wind tunnel. A Shack-Hartmann wavefront sensor was used to measure the dis-totted optical wavefront. Interesting optical parameters including the peak variation (PV), root of mean square (RMS) and Strehl ratio were obtained under different test conditions during the experiment. During the establishing process of the flow field in the wind tunnel test section, the wavefront shape was unstable. However after the flow field reached the steady flow state, the wavefront shape kept sta-ble, and the relative error of wavefront aberration was found small. The Shack-Hartmann wavefront sensor developed was proved to be credible in measuring quantitatively the optical phase change of light traveling through the flow field around model window.

  13. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  14. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  15. Survey of supersonic combustion ramjet research at Langley

    Science.gov (United States)

    Northam, G. B.; Anderson, G. Y.

    1986-01-01

    The Hypersonic Propulsion Branch at NASA Langley Research Center has maintained an active research program in supersonic combustion ramjet (scramjet) and high speed ramjet propulsion since the 1960s. The focus for this research has centered on propulsion for manned reuseable vehicles with cryogenic hydrogen fuel. This paper presents some highlights of this research. The design philosophy of the Langley fixed-geometry airframe-integrated modular scramjet is discussed. The component development and research programs that have supported the successful demonstration of the engine concept using subscale engine module hardware is reviewed and a brief summary of the engine tests presented. An extensive bibliography of research supported by the Langley program is also included.

  16. Vortex development on slender missiles at supersonic speeds

    Science.gov (United States)

    Allen, J. M.; Dillenius, M. F. E.

    1979-01-01

    A theoretical and experimental effort has been made to develop a vortex-prediction capability on circular and noncircular missiles at supersonic speeds. Predicted vortex patterns are computed by two linear-theory computer codes. One calculates the strengths and initial locations of the vortices, and the other calculates their trajectories. A short color motion picture has been produced from the calculations to illustrate the predicted vortex patterns on a typical missile. Experimental vapor-screen photographs are presented to show the longitudinal development of the vortices on a fin-control missile. Comparisons are made between these data and the predicted vortices to assess the accuracy of the theory. The theory appears to be fairly accurate in predicting the number, locations, and relative strengths of individual vortices which develop over the missile, but cannot predict vortex sheets or diffuse vorticity whenever they occur.

  17. Supersonic flutter analysis of thin cracked functionally graded material plates

    CERN Document Server

    Natarajan, S; Bordas, S

    2012-01-01

    In this paper, the flutter behaviour of simply supported square functionally graded material plates immersed in a supersonic flow is studied. An enriched 4-noded quadrilateral element based on field consistency approach is used for this study and the crack is modelled independent of the underlying mesh. The material properties are assumed to be temperature dependent and graded only in the thickness direction. The effective material properties are estimated using the rule of mixtures. The formulation is based on the first order shear deformation theory and the shear correction factors are evaluated employing the energy equivalence principle. The influence of the crack length, the crack orientation, the flow angle and the gradient index on the aerodynamic pressure and the frequency are numerically studied. The results obtained here reveal that the critical frequency and the critical pressure decreases with increase in crack length and it is minimum when the crack is aligned to the flow angle.

  18. Modeling supersonic combustion using a fully-implicit numerical method

    Science.gov (United States)

    Maccormack, Robert W.; Wilson, Gregory J.

    1990-01-01

    A fully-implicit finite-volume algorithm for two-dimensional axisymmetric flows has been coupled to a detailed hydrogen-air reaction mechanism (13 species and 33 reactions) so that supersonic combustion phenomena may be investigated. Numerical computations are compared with ballistic-range shadowgraphs of Lehr (1972) that exhibit two discontinuities caused by a blunt body as it passes through a premixed stoichiometric hydrogen-air mixture. The suitability of the numerical procedure for simulating these double-front flows is shown. The requirements for the physical formulation and the numerical modeling of these flowfields are discussed. Finally, the sensitivity of these external flowfields to changes in certain key reaction rate constants is examined.

  19. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  20. High-frequency supersonic heating of hydrogen for propulsion

    Energy Technology Data Exchange (ETDEWEB)

    Bonneville, Jacques M.

    1963-03-15

    The possibility of increasing the specific impulse of hydrogen by supersonic heating is shown on the basis of thermodynamics. The application of high-frequency electric fields to heat the gas permits a control over the heating rates in the nozzle, and results in a reduction in energy losses to walls, electrodes, etc. The efficiencies of the various energy transfer processes are considered in some detail. A simple process of expansion and heating is presented. Results of calculations of heat transfer rates to the nozzle wall are given. A consistent set of electron densities and electric fields are also calculated and presented. Some qualitative results of experimental work previously carried out are included. It is concluded that the process should increase the specific impulse of hydrogen appreciably, in a reasonably efficient manner, and that further experimental work is indicated. (auth)

  1. Fluid-structure interaction of panel in supersonic fluid passage

    Institute of Scientific and Technical Information of China (English)

    LIU Zhan-sheng; ZHANG Yun-feng; TIAN Xin

    2008-01-01

    Fluid-structure interaction of panel in supersonic fluid passage is studied with subcycling and spline interpolation based predict-correct scheme.The passage is formed with two parallel panels,one is risid and the other is flexible.The interaction between fluid flows and flexible panel is numerically studied,mainly focused on the effect of dynamic pressure and distance between two parallel panels.Subcycling and spline interpolation based predict-correct scheme is utihzed to combine the vibration and fluid analysis and to stabilize long-term calculations to get accurate resuhs.It's demonstrated that the flutter characteristic of flexible panel is more complex with the increase of dynamic pressure and the decrease of distance between two parallel panels.Via analyzing the propagation and reflection of disturbance in passage,it's determined as a main cause of the variations.

  2. An analytical theory of heated duct flows in supersonic combustors

    Directory of Open Access Journals (Sweden)

    Chenxi Wu

    2014-01-01

    Full Text Available One-dimensional analytical theory is developed for supersonic duct flow with variation of cross section, wall friction, heat addition, and relations between the inlet and outlet flow parameters are obtained. By introducing a selfsimilar parameter, effects of heat releasing, wall friction, and change in cross section area on the flow can be normalized and a self-similar solution of the flow equations can be found. Based on the result of self-similar solution, the sufficient and necessary condition for the occurrence of thermal choking is derived. A relation of the maximum heat addition leading to thermal choking of the duct flow is derived as functions of area ratio, wall friction, and mass addition, which is an extension of the classic Rayleigh flow theory, where the effects of wall friction and mass addition are not considered. The present work is expected to provide fundamentals for developing an integral analytical theory for ramjets and scramjets.

  3. The impact of primordial supersonic flows on early structure formation, reionization and the lowest-mass dwarf galaxies

    CERN Document Server

    Maio, Umberto; Ciardi, Benedetta

    2010-01-01

    Tseliakhovich & Hirata recently discovered that higher-order corrections to the cosmological linear-perturbation theory lead to supersonic coherent baryonic flows just after recombination (i.e.\\ $z \\approx 1020$), with rms velocities of $\\sim$30 km/s relative to the underlying dark-matter distribution, on comoving scales of $\\la 3$ Mpc\\,$h^{-1}$. To study the impact of these coherent flows we performed high-resolution N-body plus SPH simulations in boxes of 5.0 and 0.7 Mpc\\,$h^{-1}$, for bulk-flow velocities of 0 (as reference), 30 and 60 km/s. The simulations follow the evolution of cosmic structures by taking into account detailed, primordial, non-equilibrium gas chemistry (i.e.\\ H, He, H$_2$, HD, HeH, etc.), cooling, star formation, and feedback effects from stellar evolution. We find that these bulk flows suppress star formation in low-mass haloes (i.e.\\ $M_{\\rm vir} \\la 10^8$M$_{\\odot}$ until $z\\sim 13$), lower the abundance of the first objects by $\\sim 1%-20%$, and, as consequence, delay cosmic sta...

  4. Dark Matter Velocity Spectroscopy.

    Science.gov (United States)

    Speckhard, Eric G; Ng, Kenny C Y; Beacom, John F; Laha, Ranjan

    2016-01-22

    Dark matter decays or annihilations that produce linelike spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming experiments will have the precision needed. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  5. Minimum Length - Maximum Velocity

    CERN Document Server

    Panes, Boris

    2011-01-01

    We study a framework where the hypothesis of a minimum length in space-time is complemented with the notion of reference frame invariance. It turns out natural to interpret the action of the obtained reference frame transformations in the context of doubly special relativity. As a consequence of this formalism we find interesting connections between the minimum length properties and the modified velocity-energy relation for ultra-relativistic particles. For example we can predict the ratio between the minimum lengths in space and time using the results from OPERA about superluminal neutrinos.

  6. Dark Matter Velocity Spectroscopy

    CERN Document Server

    Speckhard, Eric G; Beacom, John F; Laha, Ranjan

    2016-01-01

    Dark matter decays or annihilations that produce line-like spectra may be smoking-gun signals. However, even such distinctive signatures can be mimicked by astrophysical or instrumental causes. We show that velocity spectroscopy-the measurement of energy shifts induced by relative motion of source and observer-can separate these three causes with minimal theoretical uncertainties. The principal obstacle has been energy resolution, but upcoming and proposed experiments will make significant improvements. As an example, we show that the imminent Astro-H mission can use Milky Way observations to separate possible causes of the 3.5-keV line. We discuss other applications.

  7. Bulk sound velocity of porous materials at high pressures

    Institute of Scientific and Technical Information of China (English)

    耿华运; 吴强; 谭华; 蔡灵仓; 经福谦

    2002-01-01

    A correction of Walsh's method for bulk sound velocity calculation for shocked porous materials is accomplishedbased on the Wu-Jing thermodynamic equation of state. The corrected bulk velocities for solid and porous sampleswith low porosities are in good agreement with the corresponding experimental data published previously. On the basisof this corrected equation, the influence of thermoelectrons on the bulk velocity of shocked materials is discussed indetail at pressures of 50, 70 and 200 GPa. Some interesting phenomena are revealed, which seem to be the uniquefeatures of a dynamic-pressure-loading process and could not be found in static experiments.

  8. Plasma-enhanced mixing and flameholding in supersonic flow

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  9. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  10. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  11. Zeroth-order flutter prediction for cantilevered plates in supersonic flow

    CSIR Research Space (South Africa)

    Meijer, M-C

    2015-08-01

    Full Text Available An aeroelastic prediction framework in MATLAB with modularity in the quasi-steady aerodynamic methodology is developed. Local piston theory (LPT) is integrated with quasi-steady methods including shock-expansion theory and the Supersonic Hypersonic...

  12. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison between numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated. It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  13. Numerical simulation of carbon dioxide removal from natural gas using supersonic nozzles

    Science.gov (United States)

    Sun, Wenjuan; Cao, Xuewen; Yang, Wen; Jin, Xuetang

    2017-03-01

    Supersonic separation is a technology potentially applicable to natural gas decarbonation process. Preliminary research on the performance of supersonic nozzle in the removal of carbon dioxide from natural gas is presented in this study. Computational Fluid Dynamics (CFD) technique is used to simulate the flow behavior inside the supersonic nozzle. The CFD model is validated successfully by comparing its results to the data borrowed from the literature. The results indicate that the liquefaction of carbon dioxide can be achieved in the properly designed nozzle. Shock wave occurs in the divergent section of the nozzle with the increase of the back pressure, destroying the liquefaction process. In the supersonic separator, the shock wave should be kept outside of the nozzle.

  14. Energy-Deposition to Reduce Skin Friction in Supersonic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has drawn attention to an impending need to improve energy-efficiency in low supersonic (M<~3) platforms. Aerodynamic efficiency is the foundation of...

  15. Experimental Investigation on Noise Suppression in Supersonic Jets from Convergent-Divergent Nozzles with Baffles

    Institute of Scientific and Technical Information of China (English)

    Yoshiaki Miyazato; Yong-Hun Kweon; Toshiyuki Aoki; Mitsuharu Masuda; Kwon-Hee Lee; Heuy-Dong Kim; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were conducted in a carefully designed anechoic room providing a free-field environment. A new approach for screech noise suppression by a cross-wire is proposed. Schlieren photographs were taken to visualize the shock wave patterns in the supersonic jet with and without the cross-wire. The effects of the baffle and the cross-wire on acoustic properties are discussed. It is shown that the baffle has little effect on the screech frequency for the underexpanded supersonic jet without the cross-wire. Also, the cross-wire introduced in supersonic jets is found to lead to a significant reduction in overall sound pressure level.

  16. Sting Supported Bell XS-2 in the 9 Inch Supersonic Tunnel

    Science.gov (United States)

    1947-01-01

    A sting supported model of the Bell XS-2 was tested in the 9 Inch Supersonic Tunnel. Photograph published in Engineer in Charge: A History of the Langley Aeronautical Laboratory, 1917-1958 by James R. Hansen. Page 316.

  17. Effect of Nonequilibrium Homogenous COndensation on Flow Fields in a Supersonic Nozzle

    Institute of Scientific and Technical Information of China (English)

    ToshiakiSetoguchi; ShenYu; 等

    1997-01-01

    When condensation occurs in a supersonic flow field,the flow is affected by the latent heat released.In the present study,a condensing flow was produced by an expansion of moist air in a supersonic circular nozzle,and,by inserting a wedge-type shock generator placed in the supersonic part of the nozzle,the experimental investigations were carried out to clarify the effect of condensation on the normal shock wave and the boundary layer.As a result,the position of the shock wave relative to the condensation zone was discussed,together with the effect of condensation on pressure fluctuations.Furthermore,a compressible viscous two-phase flow of moist air in a supersonic half nozzle was calculated to investigate the effect of condensation on boundary layer.

  18. Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body

    Institute of Scientific and Technical Information of China (English)

    HideoKashimura; ShenYu; 等

    1998-01-01

    The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.

  19. Sub-scale Direct Connect Supersonic Combustion Facility (Research Cell 18)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC18 is a continuous-flow, direct-connect, supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  20. Influences of friction drag on spontaneous condensation in water vapor supersonic flows

    Institute of Scientific and Technical Information of China (English)

    JIANG WenMing; LIU ZhongLiang; LIU HengWei; PANG HuiZhong; BAO LingLing

    2009-01-01

    A mathematical model was developed to investigate the water vapor spontaneous condensation under supersonic flow conditions. A numerical simulation was performed for the water vapor condensable supersonic flows through Laval nozzles under different flow friction conditions. The comparison be-tween numerical and experimental results shows that the model is accurate enough to investigate the supersonic spontaneous condensation flow of water vapor inside Laval nozzles. The influences of flow friction drag on supersonic spontaneous condensation flow of water vapor inside Laval nozzles were investigated, It was found that the flow friction has a direct effect on the spontaneous condensation process and therefore it is important for an accurate friction prediction in designing this kind of Laval nozzles.

  1. Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts

    Science.gov (United States)

    Powers, Russell William Walter

    The noise produced by the supersonic, high temperature jets that exhaust from military aircraft is becoming a hazard to naval personnel and a disturbance to communities near military bases. Methods to reduce the noise produced from these jets in a practical full-scale environment are difficult. The development and analysis of distributed nozzle blowing for the reduction of radiated noise from supersonic jets is described. Model scale experiments of jets that simulate the exhaust jets from typical low-bypass ratio military jet aircraft engines during takeoff are performed. Fluidic inserts are created that use distributed blowing in the divergent section of the nozzle to simulate mechanical, hardwall corrugations, while having the advantage of being an active control method. This research focuses on model scale experiments to better understand the fluidic insert noise reduction method. Distributed blowing within the divergent section of the military-style convergent divergent nozzle alters the shock structure of the jet in addition to creating streamwise vorticity for the reduction of mixing noise. Enhancements to the fluidic insert design have been performed along with experiments over a large number of injection parameters and core jet conditions. Primarily military-style round nozzles have been used, with preliminary measurements of hardwall corrugations and fluidic inserts in rectangular nozzle geometries also performed. It has been shown that the noise reduction of the fluidic inserts is most heavily dependent upon the momentum flux ratio between the injector and core jet. Maximum reductions of approximately 5.5 dB OASPL have been observed with practical mass flow rates and injection pressures. The first measurements with fluidic inserts in the presence of a forward flight stream have been performed. Optimal noise reduction occurs at similar injector parameters in the presence of forward flight. Fluidic inserts in the presence of a forward flight stream were

  2. A Preliminary Evaluation of Supersonic Transport Category Vehicle Operations in the National Airspace System

    Science.gov (United States)

    Underwood, Matthew C.; Guminsky, Michael D.

    2015-01-01

    Several public sector businesses and government agencies, including the National Aeronautics and Space Administration are currently working on solving key technological barriers that must be overcome in order to realize the vision of low-boom supersonic flights conducted over land. However, once these challenges are met, the manner in which this class of aircraft is integrated in the National Airspace System may become a potential constraint due to the significant environmental, efficiency, and economic repercussions that their integration may cause. Background research was performed on historic supersonic operations in the National Airspace System, including both flight deck procedures and air traffic controller procedures. Using this information, an experiment was created to test some of these historic procedures in a current-day, emerging Next Generation Air Transportation System (NextGen) environment and observe the interactions between commercial supersonic transport aircraft and modern-day air traffic. Data was gathered through batch simulations of supersonic commercial transport category aircraft operating in present-day traffic scenarios as a base-lining study to identify the magnitude of the integration problems and begin the exploration of new air traffic management technologies and architectures which will be needed to seamlessly integrate subsonic and supersonic transport aircraft operations. The data gathered include information about encounters between subsonic and supersonic aircraft that may occur when supersonic commercial transport aircraft are integrated into the National Airspace System, as well as flight time data. This initial investigation is being used to inform the creation and refinement of a preliminary Concept of Operations and for the subsequent development of technologies that will enable overland supersonic flight.

  3. A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight

    Science.gov (United States)

    2014-07-01

    motions of the projectile about the trajectory due to the angular motion of the projectile . For a stable projectile , these motions are typically small...A Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight by Paul Weinacht ARL-TR-6998 July 2014...Direct-Fire Trajectory Model for Supersonic, Transonic, and Subsonic Projectile Flight Paul Weinacht Weapons and Materials Research Directorate, ARL

  4. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  5. Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion wall

    Science.gov (United States)

    Liu, Chaoyang; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2016-12-01

    Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion plate are investigated using large eddy simulation (LES), where the expansion effects on the mixing are analyzed emphatically by comparing to the flat-plate counterpart. An adaptive central-upwind weighted essentially non-oscillatory (WENO) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and efficiency of the calculations. Progressive mesh refinement study is performed to assess the grid resolution and solution convergence. Statistic results obtained are compared to the experimental data and recently performed classical numerical simulation, which validates the reliability of the present LES codes. Firstly, the jet mixing mechanisms in the flowfield with expansion plate are revealed. It indicates that the large-scale vortices in the windward side of jet plume induced by Kelvin-Helmholtz (K-H) instability contribute to the mixing in the near-field, while the entrainment by the counter-rotating vortices and molecular diffusion dominate the mixing process in the far-field. Furthermore, the effects of wall expansion on the flow and mixing characteristics are discussed. The boundary layer across the expansion corner is relaminarized and the profiles of streamwise velocity are distinctly changed. Then the separation region ahead of jet plume is more close to the wall, and the breaking process of large-scale vortices in the windward side of jet plume starts earlier. However, the favorable pressure gradient generated by wall expansion reduces the mixing efficiency and brings a greater total pressure loss.

  6. The Calculation of Supersonic Flows with Strong Viscous-Inviscid Interaction Using the Parabolized Navier - Equations

    Science.gov (United States)

    Barnett, Mark

    This investigation is concerned with calculating strong viscous-inviscid interactions in two-dimensional laminar supersonic flows with and without separation. The equations solved are the so-called parabolized Navier-Stokes equations. The streamwise pressure gradient term is written as a combination of a forward and a backward difference to provide a path for upstream propogation of information. Global iteration is employed to repeatedly update the solution from an initial guess until convergence is achieved. Interacting boundary layer theory is discussed in order to provide some essential background information for the development of the present calculation technique. The numerical scheme used is an alternating direction explicit (ADE) procedure which is adapted from the Saul'yev method. This technique is chosen as an alternative to the more difficult to program multigrid strategy used by other investigators and the slower converging Gauss-Seidel method. Separated flows are computed using the ADE method. Only small or moderate separation bubbles are considered. This restriction permits simple approximations to the convective terms in reversed flow regions without introducing severe error since the reversed flow velocities are small. Results are presented for a number of geometries including compression ramps and humps on flat plates with separation. The present results are compared with those obtained by other investigators using the full Navier-Stokes equations and interacting boundary layer theory. Comparisons were found to be qualitatively good. The quantitative comparisons varied, however mesh refinement studies indicated that the parabolized Navier-Stokes solutions tended towards second-order accurate full Navier-Stokes solutions as well as interacting boundary layer solutions for which mesh refinement studies were also executed.

  7. 二维超音速喷管型线设计仿真研究%Design and Numerical Simulation on the Two-Dimensional Supersonic Nozzle Profile

    Institute of Scientific and Technical Information of China (English)

    刘晓东; 高丽敏; 李永增

    2014-01-01

    采用计算软件FLUENT,对四种经典收缩段型线下的流场特性进行数值模拟,为选择超声速风洞收缩段的型线提供依据。基于特征线理论,利用解析法完成超音速喷管膨胀段型线设计,通过分析总压恢复系数及均匀度等流场参数,确定型线膨胀角角度及喷管长度。结果表明,收缩段型线选用双三次曲线,膨胀角度3.5°的情况下,超音速喷管出口达到了设计要求马赫数,并获得了较好的气流品质。%In this paper, the research results about numerical simulation on the flow field of four classic convergent curves are gained by computational software FLUENT, which provides basis for selecting a kind of optimal curve to design the supersonic nozzle convergent profile. Based on the theory of characteristics line, the curve of supersonic nozzle expansion is designed with analytical method. Finally, comparing total pressure recovery coefficient and uniformity of flow field parameters, the angle of expansion curve and nozzle length are confirmed. The results show that exit velocity of the supersonic nozzle achieves the design requirements for Mach number and uniformity when Bipartite Cubic is the method of the contraction profile and the angle of expansion profile is 3.5°.

  8. 超-超引射器多目标优化设计%Multi-objective optimization of supersonic-supersonic ejector

    Institute of Scientific and Technical Information of China (English)

    陈钦; 陈吉明; 蔡光明; 任泽斌

    2012-01-01

    推导出了超-超引射器性能计算和优化设计模型,借助Pareto优胜、Pareto最优解和Pareto前端等概念,采用基于多目标进化/分解算法(MOEA/D)的多目标优化方法,计算得到超-超引射器多目标优化问题的Pareto前端,解决了超-超引射器多目标优化设计问题,并与常规参数分析方法进行了比较.结果表明:超超引射器性能影响参数相互关系复杂,增压比和引射系数作为引射器主要性能参数相互冲突,通过常规分析难以得到较清晰的设计准则,利用多目标优化设计方法可有效地辅助多属性决策和系统优化设计.%For supersonic-supersonic ejector, the design model and corresponding analysis were presented, and the relation of design parameters and the performance was partly revealed. The results revealed the confliction of two performance objectives and the complexity of the design problem. To clarify the entangled relation of design parameters and objectives and to afford facilities for the design process, the Pareto front(PF) concept was introduced and an MOEA/D algorithm was programmed to calculate the PFs of specific supersonic-supersonic ejector multi-objective optimization problems. The methodology adopted here proved to be effective and efficient for the supersonic-supersonic ejector design problem.

  9. Statistics of Velocity from Spectral Data Modified Velocity Centroids

    CERN Document Server

    Lazarian, A

    2003-01-01

    We address the problem of studying interstellar (ISM) turbulence using spectral line data. We construct a measure that we term modified velocity centroids (MVCs) and derive an analytical solution that relates the 2D spectra of the modified centroids with the underlying 3D velocity spectrum. We test our results using synthetic maps constructed with data obtained through simulations of compressible MHD turbulence. We prove that the MVCs are able to restore the underlying spectrum of turbulent velocity. We show that the modified velocity centroids (MVCs) are complementary to the the Velocity Channel Analysis (VCA) technique that we introduced earlier. Employed together they make determining of the velocity spectral index more reliable. At the same time we show that MVCs allow to determine velocity spectra when the underlying statistics is not a power law and/or the turbulence is subsonic.

  10. Climate impact of supersonic air traffic: an approach to optimize a potential future supersonic fleet - results from the EU-project SCENIC

    Science.gov (United States)

    Grewe, V.; Stenke, A.; Ponater, M.; Sausen, R.; Pitari, G.; Iachetti, D.; Rogers, H.; Dessens, O.; Pyle, J.; Isaksen, I. S. A.; Gulstad, L.; Søvde, O. A.; Marizy, C.; Pascuillo, E.

    2007-10-01

    The demand for intercontinental transportation is increasing and people are requesting short travel times, which supersonic air transportation would enable. However, besides noise and sonic boom issues, which we are not referring to in this investigation, emissions from supersonic aircraft are known to alter the atmospheric composition, in particular the ozone layer, and hence affect climate significantly more than subsonic aircraft. Here, we suggest a metric to quantitatively assess different options for supersonic transport with regard to the potential destruction of the ozone layer and climate impacts. Options for fleet size, engine technology (nitrogen oxide emission level), cruising speed, range, and cruising altitude, are analyzed, based on SCENIC emission scenarios for 2050, which underlay the requirements to be as realistic as possible in terms of e.g., economic markets and profitable market penetration. This methodology is based on a number of atmosphere-chemistry and climate models to reduce model dependencies. The model results differ significantly in terms of the response to a replacement of subsonic aircraft by supersonic aircraft, e.g., concerning the ozone impact. However, model differences are smaller when comparing the different options for a supersonic fleet. Those uncertainties were taken into account to make sure that our findings are robust. The base case scenario, where supersonic aircraft get in service in 2015, a first fleet fully operational in 2025 and a second in 2050, leads in our simulations to a near surface temperature increase in 2050 of around 7 mK and with constant emissions afterwards to around 21 mK in 2100. The related total radiative forcing amounts to 22 mWm2 in 2050, with an uncertainty between 9 and 29 mWm2. A reduced supersonic cruise altitude or speed (from Mach 2 to Mach 1.6) reduces both, climate impact and ozone destruction, by around 40%. An increase in the range of the supersonic aircraft leads to more emissions at

  11. Minimal information in velocity space

    CERN Document Server

    Evrard, Guillaume

    1995-01-01

    Jaynes' transformation group principle is used to derive the objective prior for the velocity of a non-zero rest-mass particle. In the case of classical mechanics, invariance under the classical law of addition of velocities, leads to an improper constant prior over the unbounded velocity space of classical mechanics. The application of the relativistic law of addition of velocities leads to a less simple prior. It can however be rewritten as a uniform volumetric distribution if the relativistic velocity space is given a non-trivial metric.

  12. Validation of Methods to Predict Vibration of a Panel in the Near Field of a Hot Supersonic Rocket Plume

    Science.gov (United States)

    Bremner, P. G.; Blelloch, P. A.; Hutchings, A.; Shah, P.; Streett, C. L.; Larsen, C. E.

    2011-01-01

    This paper describes the measurement and analysis of surface fluctuating pressure level (FPL) data and vibration data from a plume impingement aero-acoustic and vibration (PIAAV) test to validate NASA s physics-based modeling methods for prediction of panel vibration in the near field of a hot supersonic rocket plume. For this test - reported more fully in a companion paper by Osterholt & Knox at 26th Aerospace Testing Seminar, 2011 - the flexible panel was located 2.4 nozzle diameters from the plume centerline and 4.3 nozzle diameters downstream from the nozzle exit. The FPL loading is analyzed in terms of its auto spectrum, its cross spectrum, its spatial correlation parameters and its statistical properties. The panel vibration data is used to estimate the in-situ damping under plume FPL loading conditions and to validate both finite element analysis (FEA) and statistical energy analysis (SEA) methods for prediction of panel response. An assessment is also made of the effects of non-linearity in the panel elasticity.

  13. Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    Science.gov (United States)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1986-01-01

    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0.

  14. Visual control of walking velocity.

    Science.gov (United States)

    François, Matthieu; Morice, Antoine H P; Bootsma, Reinoud J; Montagne, Gilles

    2011-06-01

    Even if optical correlates of self-motion velocity have already been identified, their contribution to the control of displacement velocity remains to be established. In this study, we used a virtual reality set-up coupled to a treadmill to test the role of both Global Optic Flow Rate (GOFR) and Edge Rate (ER) in the regulation of walking velocity. Participants were required to walk at a constant velocity, corresponding to their preferred walking velocity, while eye height and texture density were manipulated. This manipulation perturbed the natural relationship between the actual walking velocity and its optical specification by GOFR and ER, respectively. Results revealed that both these sources of information are indeed used by participants to control walking speed, as demonstrated by a slowing down of actual walking velocity when the optical specification of velocity by either GOFR or ER gives rise to an overestimation of actual velocity, and vice versa. Gait analyses showed that these walking velocity adjustments result from simultaneous adaptations in both step length and step duration. The role of visual information in the control of self-motion velocity is discussed in relation with other factors.

  15. Enceladus' Supersonic Gas Jets' Role in Diurnal Variability of Particle Flux

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry W.; Portyankina, Ganna; Hendrix, Amanda; Colwell, Joshua E.; Aye, Klaus-Michael

    2016-10-01

    Introduction: The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed 6 occultations of stars by Enceladus' plume from 2005 to 2011 [1]. Supersonic gas jets were detected, imbedded in the overall expulsion of gas at escape velocity along the tiger stripe fissures that cross Enceladus' south pole [2]. The gas flux can be calculated [1], and is observed to vary just 15% in over 6 years, representing a steady output of ~200 kg/sec. In contrast, the brightness of the particle jets, a proxy for the amount of particles expelled, varies 3x with orbital longitude [3], implicating tidal stresses. This is not necessarily inconsistent with the steady gas flux, which had not been measured at apokrone until now.2016 epsilon Orionis Occultation: In order to investigate whether gas flow increases dramatically at apokrone an occultation observation was inserted into the Cassini tour on March 11, 2016 on orbit 233. Enceladus was at a mean anomaly of 208 at the time of the occultation. Using the same methodology as previously employed the column density has been determined to be 1.5 x 1016 cm-2, giving a gas flux of 250 kg/sec. This value is 20% higher than the average 210 kg/sec, but only 15% higher than the occultations at a mean anomaly of 236; i.e. higher than the others but not by a factor of 2 or 3. The overall expulsion of gas from the south pole of Enceladus thus does not seem to change dramatically with orbital position.Jets: The line of sight to the star pierced the Baghdad I gas jet. The jet data, in contrast to the integrated plume, look significantly different in this dataset. The column density of the jet is higher than observed in previous occultations. The collimation of the jet is more pronounced and from that we derive a mach number of 8-9, compared to a previous value for this jet of 6. We conclude that the higher velocity and increased quantity of gas in the jet close to apokrone indicate that the jets are the primary contributors to the increased

  16. Measurements of leading edge vortices in a supersonic stream

    Science.gov (United States)

    Milanovic, Ivana Milija

    An experimental investigation of the leading edge vortices from a 75° sweptback, sharp edge delta wing has been carried out in a Mach 2.49 stream. Five-hole conical probe traverses were conducted vertically and horizontally through the primary vortices at the trailing edge and at one half chord downstream station for 7° and 12° angles of attack. The main objective was to determine the Mach number and pressure distributions in the primary vortex and to present comparisons of flow properties at different survey stations. In response to the continued interest in efficient supersonic flight vehicles, particularly in the missile arena, the motivation for this research has been to provide the quantitative details of supersonic leading edge vortices, the understanding of which up to now has been largely based on flow visualizations and presumed similarity to low speed flows. As a prerequisite to the measurement campaign, the employed five-hole conical probe was numerically calibrated using a three-dimensional Thin Layer Navier-Stokes solver in order to circumvent the traditional experimental approach vastly demanding on resources. The pressure readings at the probe orifices were computed for a range of Mach numbers and pitch angles, and subsequently verified in wind tunnel tests. The calibration phase also demonstrated the profound influence of the probe bluntness on the nearby static pressure ports, its relevance to the ultimate modeling strategy and the resulting calibration charts. Flow diagnostics of the leading edge vortices included both qualitative flow visualizations, as well as quantitative measurements. Shadowgraphs provided information regarding the trajectory and relative size of the generated vortices while assuring that no probe-induced vortex breakdown occurred. Surface oil patterns revealed the general spanwise locations of leeward vortices, and confirmed topological similarity to their low speed counterparts. The probe measurements revealed substantial

  17. Structure and Chemistry of Atomic Clusters from Supersonic Beams.

    Science.gov (United States)

    Yang, Shi-He.

    A tandem time-of-flight (TOF) apparatus was designed to study the structure and chemistry of cold transition metal cluster ions from supersonic beams. By means of a photodissociation laser fluence dependence technique, binding energies of Nb_{rm x }^{+} (x = 2 - 20), Co_{rm x}^{+ } (x = 4 - 20) and etc. were found to generally increase with cluster size. The desorption energies of Nb_{rm x}N _2^{+} (x = 2 - 17) and Nb_{rm x} CO^{+} (x = 2 - 10) also increase with cluster size with some oscillations similar to the size dependent reactivities of these clusters. Photodetachment studies revealed that electron affinities of copper clusters increase with cluster size with a sharp even/odd alternation. Unlike other noble metals, Ag_{rm x}^ {-} clusters display two competing processes: photodissociation and photodetachment. Relative reactivities of cluster ions of Nb, Co, Ag, and etc. have been measured using a fast flow cluster reactor, displaying a similar function of cluster size to that of the neutrals. In addition, preliminary photoelectron experiments have been performed on Cu_{ rm x}^{-} and Nb _{rm x}^{-}. A magnetic Time-of-flight ultraviolet photoelectron spectrometer (MTOFUPS) has been developed to study electronic structures of cold metal and semiconductor cluster anions prepared in supersonic beams. Application of this spectrometer to carbon clusters with a F_2 laser (7.9 eV) allowed their electron affinities and UPS patterns to be measured,demonstrating a remarkable structural evolution of these clusters: Chains (C_2^{ -}-C_9^{-} ) - Rings (C_{10}^ {-}-C_{29}^ {-}) - Cages (C_{38 }^{-}-C_{84 }^{-}). In particular, the UPS of C_{60}^{-} is in excellent agreement with the CNDO/S calculation, providing a striking spectral evidence for the highly symmetric icosahedral soccer ball structure--Buckminsterfullerene. For comparison, the UPS of Si_ {rm x}^{-} and Ge_{rm x}^{ -} are presented. Unlike carbon clusters which prefer structures of low dimensionality, these

  18. Investigation on low velocity impact resistance of SMA composite material

    Science.gov (United States)

    Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong

    2016-04-01

    A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.

  19. Load testing circuit

    DEFF Research Database (Denmark)

    2009-01-01

    A load testing circuit a circuit tests the load impedance of a load connected to an amplifier. The load impedance includes a first terminal and a second terminal, the load testing circuit comprising a signal generator providing a test signal of a defined bandwidth to the first terminal of the load...

  20. Development of an optimal velocity selection method with velocity obstacle

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Min Geuk; Oh, Jun Ho [KAIST, Daejeon (Korea, Republic of)

    2015-08-15

    The Velocity obstacle (VO) method is one of the most well-known methods for local path planning, allowing consideration of dynamic obstacles and unexpected obstacles. Typical VO methods separate a velocity map into a collision area and a collision-free area. A robot can avoid collisions by selecting its velocity from within the collision-free area. However, if there are numerous obstacles near a robot, the robot will have very few velocity candidates. In this paper, a method for choosing optimal velocity components using the concept of pass-time and vertical clearance is proposed for the efficient movement of a robot. The pass-time is the time required for a robot to pass by an obstacle. By generating a latticized available velocity map for a robot, each velocity component can be evaluated using a cost function that considers the pass-time and other aspects. From the output of the cost function, even a velocity component that will cause a collision in the future can be chosen as a final velocity if the pass-time is sufficiently long enough.

  1. Velocity dependant splash behaviour

    Science.gov (United States)

    Hamlett, C. A. E.; Shirtcliffe, N. J.; McHale, G.; Ahn, S.; Doerr, S. H.; Bryant, R.; Newton, M. I.

    2012-04-01

    Extreme soil water repellency can occur in nature via condensation of volatile organic compounds released during wildfires and can lead to increased erosion rate. Such extreme water repellent soil can be classified as superhydrophobic and shares similar chemical and topographical features to specifically designed superhydrophobic surfaces. Previous studies using high speed videography to investigate single droplet impact behaviour on artificial superhydrophobic have revealed three distinct modes of splash behaviour (rebound, pinned and fragmentation) which are dependent on the impact velocity of the droplet. In our studies, using high-speed videography, we show that such splash behaviour can be replicated on fixed 'model' water repellent soils (hydrophobic glass beads/particles). We show that the type of splash behaviour is dependent on both the size and chemical nature of the fixed particles. The particle shape also influences the splash behaviour as shown by drop impact experiments on fixed sand samples. We have also studied soil samples, as collected from the field, which shows that the type of droplet splash behaviour can lead to enhanced soil particle transport.

  2. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  3. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  4. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  5. Quasi-DC electrical discharge characterization in a supersonic flow

    Science.gov (United States)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  6. Effects of streamwise vortex breakdown on supersonic combustion.

    Science.gov (United States)

    Hiejima, Toshihiko

    2016-04-01

    This paper presents a numerical simulation study of the combustion structure of streamwise vortex breakdown at Mach number 2.48. Hydrogen fuel is injected into a combustor at sonic speed from the rear of a hypermixer strut that can generate streamwise vortices. The results show that the burning behavior is enhanced at the points of the shock waves that are incident on the vortex and therefore the vortex breakdown in the subsonic region occurs due to combustion. The breakdown domain in the mainstream is found to form a flame-holding region suited to combustion and to lead to a stable combustion field with detached flames. In this way, streamwise vortex breakdown has an essential role in combustion enhancement and the formation of flames that hold under supersonic inflow conditions. Finally, the combustion property defined here is shown to coincide with the produced-water mass flow. This property shows that the amount of combustion is saturated at equivalence ratios over 0.4, although there is a slight increase beyond 1.

  7. Damping insert materials for settling chambers of supersonic wind tunnels

    Science.gov (United States)

    Wu, Jie; Radespiel, Rolf

    2017-03-01

    This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.

  8. Studies of the unsteady supersonic base flows around three afterbodies

    Institute of Scientific and Technical Information of China (English)

    Zhixiang Xiao; Song Fu

    2009-01-01

    Unsteady supersonic base flows around three afterbodies, cylindrical (Cy), boattailed (BT) and three-step (MS), are investigated in this paper. Reynolds-averaged Navier-Stokes (RANS) and two RANS/LES (large-eddy simulation) hybrid methods, detached eddy simulation (DES) and delayed-DES (DDES), are used to predict the base flow characteristics around the baseline Cy afterbody. All the RANS and hybrid methods are based on the two-equation SST (shear-stress transport) model with compressible corrections (CC). According to the comparison of measurements, both DES and DDES can produce more satisfactory results than RANS. RANS can only present the "stable" flow patterns, while the hybrid methods can demonstrate unsteady flow structures. DDES and DES results are little different from one another although the latter exhibits better agreement with the experiment. DES is taken to investigate the 5 BT and three-step afterbodies. The mean flow data and the instantaneous turbulent coherent structures are compared against available measurements.

  9. Flight tests of a supersonic natural laminar flow airfoil

    Science.gov (United States)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  10. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  11. Examples of Vector Velocity Imaging

    DEFF Research Database (Denmark)

    Hansen, Peter M.; Pedersen, Mads M.; Hansen, Kristoffer L.

    2011-01-01

    To measure blood flow velocity in vessels with conventional ultrasound, the velocity is estimated along the direction of the emitted ultrasound wave. It is therefore impossible to obtain accurate information on blood flow velocity and direction, when the angle between blood flow and ultrasound wa...... with a 90° angle on the vessel. Moreover secondary flow in the abdominal aorta is illustrated by scanning on the transversal axis....

  12. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    A simple model of the wave load on slender members of offshore structures is described. The wave elevation of the sea state is modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first-passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...

  13. Modelling and Simulation of Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Thoft-Christensen, Palle

    1985-01-01

    A simple model of the wave load on stender members of offshore structures is described . The wave elevation of the sea stateis modelled by a stationary Gaussian process. A new procedure to simulate realizations of the wave loads is developed. The simulation method assumes that the wave particle...... velocity can be approximated by a Gaussian Markov process. Known approximate results for the first passage density or equivalently, the distribution of the extremes of wave loads are presented and compared with rather precise simulation results. It is demonstrated that the approximate results...

  14. Loads and loads and loads: The influence of prospective load, retrospective load, and ongoing task load in prospective memory

    Directory of Open Access Journals (Sweden)

    Beat eMeier

    2015-06-01

    Full Text Available In prospective memory tasks different kinds of load can occur. Adding a prospective memory task can impose a load on ongoing task performance. Adding ongoing task load can affect prospective memory performance. The existence of multiple target events increases prospective load and adding complexity to the to-be-remembered action increases retrospective load. In two experiments, we systematically examined the effects of these different types of load on prospective memory performance. Results showed an effect of prospective load on costs in the ongoing task for categorical targets (Experiment 2, but not for specific targets (Experiment 1. Retrospective load and ongoing task load both affected remembering the retrospective component of the prospective memory task. We suggest that prospective load can enhance costs in the ongoing task due to additional monitoring requirements. Retrospective load and ongoing task load seem to impact the division of resources between the ongoing task and retrieval of the retrospective component, which may affect disengagement from the ongoing task. In general, the results demonstrate that the different types of load affect prospective memory differentially.

  15. Dust Load on Surfaces in Animal Buildings

    DEFF Research Database (Denmark)

    Lengweiler, P.; Strøm, J. S.; Takai, H.

    To investigate the physical process of particle deposition on and resuspension from surfaces in animal buildings, a test facility and a sampling method is established. The influences of surface orientation and air turbulence and velocity just as other parameters on the dust load on a surface...

  16. Semi-analytical and 3D CFD DPAL modeling: feasibility of supersonic operation

    Science.gov (United States)

    Rosenwaks, Salman; Barmashenko, Boris D.; Waichman, Karol

    2014-02-01

    The feasibility of operating diode pumped alkali lasers (DPALs) with supersonic expansion of the gaseous laser mixture, consisting of alkali atoms, He atoms and (frequently) hydrocarbon molecules, is explored. Taking into account fluid dynamics and kinetic processes, both semi-analytical and three-dimensional (3D) computational fluid dynamics (CFD) modeling of supersonic DPALs is reported. Using the semi-analytical model, the operation of supersonic DPALs is compared with that measured and modeled in subsonic lasers for both Cs and K. The maximum power of supersonic Cs and K lasers is found to be higher than that of subsonic lasers with the same resonator and alkali density at the laser inlet by 25% and 70%, respectively. Using the 3D CFD model, the flow pattern and spatial distributions of the pump and laser intensities in the resonator are calculated for Cs DPALs. Comparison between the semi-analytical and 3D CFD models for Cs shows that the latter predicts much larger maximum achievable laser power than the former. These results indicate that for scaling-up the power of DPALs, supersonic expansion should be considered.

  17. Payload mass improvements of supersonic retropropulsive flight for human class missions to Mars

    Science.gov (United States)

    Fagin, Maxwell H.

    Supersonic retropropulsion (SRP) is the use of retrorockets to decelerate during atmospheric flight while the vehicle is still traveling in the supersonic/hypersonic flight regime. In the context of Mars exploration, subsonic retropropulsion has a robust flight heritage for terminal landing guidance and control, but all supersonic deceleration has, to date, been performed by non-propulsive (i.e. purely aerodynamic) methods, such as aeroshells and parachutes. Extending the use of retropropulsion from the subsonic to the supersonic regime has been identified as an enabling technology for high mass humans-to-Mars architectures. However, supersonic retropropulsion still poses significant design and control challenges, stemming mainly from the complex interactions between the hypersonic engine plumes, the oncoming air flow, and the vehicle's exterior surface. These interactions lead to flow fields that are difficult to model and produce counter intuitive behaviors that are not present in purely propulsive or purely aerodynamic flight. This study will provide an overview of the work done in the design of SRP systems. Optimal throttle laws for certain trajectories will be derived that leverage aero/propulsive effects to decrease propellant requirements and increase total useful landing mass. A study of the mass savings will be made for a 10 mT reference vehicle based on a propulsive version of the Orion capsule, followed by the 100 mT ellipsoid vehicle assumed by NASA's Mars Design Reference Architecture.

  18. Study of density field measurement based on NPLS technique in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to the influence of shock wave and turbulence, supersonic density field exhibits strongly inhomogeneous and unsteady characteristics. Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution, limitation of measuring 3D density field, and low signal to noise ratio (SNR). A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field. This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles, which would display the density fluctuation due to the influence of shock waves and vortexes. The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper, and the results reveal shock wave, turbulent boundary layer in the flow with the spatial resolution of 93.2 μm/pixel. By analyzing the results at interval of 5 μs, temporal evolution of density field can be observed.

  19. Fundamental Aeronautics Program: Overview of Propulsion Work in the Supersonic Cruise Efficiency Technical Challenge

    Science.gov (United States)

    Castner, Ray

    2012-01-01

    The Supersonics Project, part of NASA's Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2012) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  20. Fundamental Aeronautics Program: Overview of Project Work in Supersonic Cruise Efficiency

    Science.gov (United States)

    Castner, Raymond

    2011-01-01

    The Supersonics Project, part of NASA?s Fundamental Aeronautics Program, contains a number of technical challenge areas which include sonic boom community response, airport noise, high altitude emissions, cruise efficiency, light weight durable engines/airframes, and integrated multi-discipline system design. This presentation provides an overview of the current (2011) activities in the supersonic cruise efficiency technical challenge, and is focused specifically on propulsion technologies. The intent is to develop and validate high-performance supersonic inlet and nozzle technologies. Additional work is planned for design and analysis tools for highly-integrated low-noise, low-boom applications. If successful, the payoffs include improved technologies and tools for optimized propulsion systems, propulsion technologies for a minimized sonic boom signature, and a balanced approach to meeting efficiency and community noise goals. In this propulsion area, the work is divided into advanced supersonic inlet concepts, advanced supersonic nozzle concepts, low fidelity computational tool development, high fidelity computational tools, and improved sensors and measurement capability. The current work in each area is summarized.

  1. Study of density field measurement based on NPLS technique in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    TIAN LiFeng; YI ShiHe; ZHAO YuXin; HE Lin; CHENG ZhongYu

    2009-01-01

    Due to the influence of shock wave and turbulence,supersonic density field exhibits strongly inho-mogeneous and unsteady characteristics.Applying traditional density field measurement techniques to supersonic flows yields three problems: low spatiotemporal resolution,limitation of measuring 3D density field,and low signal to noise ratio (SNR).A new method based on Nano-based Planar Laser Scattering (NPLS) technique is proposed in this paper to measure supersonic density field.This method measures planar transient density field in 3D supersonic flow by calibrating the relationship between density and concentration of tracer particles,which would display the density fluctuation due to the influence of shock waves and vortexes.The application of this new method to density field measurement of supersonic optical bow cap is introduced in this paper,and the results reveal shock wave,turbulent boundary layer in the flow with the spatial resolution of 93.2 pm/pixel.By analyzing the results at interval of 5 μs,temporal evolution of density field can be observed.

  2. Impact of baryonic streaming velocities on the formation of supermassive black holes via direct collapse

    CERN Document Server

    Latif, M A; Schleicher, D R G

    2013-01-01

    Baryonic streaming motions produced prior to the epoch of recombination became supersonic during the cosmic dark ages. Various studies suggest that such streaming velocities change the halo statistics and also influence the formation of Population III stars. In this study, we aim to explore the impact of streaming velocities on the formation of supermassive black holes at $z>10$ via the direct collapse scenario. To accomplish this goal, we perform cosmological large eddy simulations for two halos of a few times $\\rm 10^{7} M_{\\odot}$ with initial streaming velocities of 3, 6 and 9 $\\rm km/s$. These massive primordial halos illuminated by the strong Lyman Werner flux are the potential cradles for the formation of direct collapse seed black holes. To study the evolution for longer times, we employ sink particles and track the accretion for 10,000 years. Our findings show that higher streaming velocities increase the circular velocities from about 14 $\\rm km/s$ to 16 $\\rm km/s$. They also delay the collapse of h...

  3. The Musca cloud: a 6 pc-long velocity-coherent, sonic filament

    CERN Document Server

    Hacar, A; Tafalla, M; Beuther, H; Alves, J

    2015-01-01

    Filaments play a key role in the molecular clouds' evolution, but their internal dynamical properties remain poorly characterized. To further explore the physical state of these structures, we have investigated the kinematic properties of the Musca cloud. We have sampled the main axis of this filamentary cloud in $^{13}$CO and C$^{18}$O (2--1) lines using APEX observations. The different line profiles in Musca shows that this cloud presents a continuous and quiescent velocity field along its $\\sim$6.5 pc of length. With an internal gas kinematics dominated by thermal motions (i.e. $\\sigma_{NT}/c_s\\lesssim1$) and large-scale velocity gradients, these results reveal Musca as the longest velocity-coherent, sonic-like object identified so far in the ISM. The (tran-)sonic properties of Musca present a clear departure from the predicted supersonic velocity dispersions expected in the Larson's velocity dispersion-size relationship, and constitute the first observational evidence of a filament fully decoupled from th...

  4. Sodium Velocity Maps on Mercury

    Science.gov (United States)

    Potter, A. E.; Killen, R. M.

    2011-01-01

    The objective of the current work was to measure two-dimensional maps of sodium velocities on the Mercury surface and examine the maps for evidence of sources or sinks of sodium on the surface. The McMath-Pierce Solar Telescope and the Stellar Spectrograph were used to measure Mercury spectra that were sampled at 7 milliAngstrom intervals. Observations were made each day during the period October 5-9, 2010. The dawn terminator was in view during that time. The velocity shift of the centroid of the Mercury emission line was measured relative to the solar sodium Fraunhofer line corrected for radial velocity of the Earth. The difference between the observed and calculated velocity shift was taken to be the velocity vector of the sodium relative to Earth. For each position of the spectrograph slit, a line of velocities across the planet was measured. Then, the spectrograph slit was stepped over the surface of Mercury at 1 arc second intervals. The position of Mercury was stabilized by an adaptive optics system. The collection of lines were assembled into an images of surface reflection, sodium emission intensities, and Earthward velocities over the surface of Mercury. The velocity map shows patches of higher velocity in the southern hemisphere, suggesting the existence of sodium sources there. The peak earthward velocity occurs in the equatorial region, and extends to the terminator. Since this was a dawn terminator, this might be an indication of dawn evaporation of sodium. Leblanc et al. (2008) have published a velocity map that is similar.

  5. Consideration of wear rates at high velocity

    Science.gov (United States)

    Hale, Chad S.

    The development of the research presented here is one in which high velocity relative sliding motion between two bodies in contact has been considered. Overall, the wear environment is truly three-dimensional. The attempt to characterize three-dimensional wear was not economically feasible because it must be analyzed at the micro-mechanical level to get results. Thus, an engineering approximation was carried out. This approximation was based on a metallographic study identifying the need to include viscoplasticity constitutive material models, coefficient of friction, relationships between the normal load and velocity, and the need to understand wave propagation. A sled test run at the Holloman High Speed Test Track (HHSTT) was considered for the determination of high velocity wear rates. In order to adequately characterize high velocity wear, it was necessary to formulate a numerical model that contained all of the physical events present. The experimental results of a VascoMax 300 maraging steel slipper sliding on an AISI 1080 steel rail during a January 2008 sled test mission were analyzed. During this rocket sled test, the slipper traveled 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s. This type of environment was never considered previously in terms of wear evaluation. Each of the features of the metallography were obtained through micro-mechanical experimental techniques. The byproduct of this analysis is that it is now possible to formulate a model that contains viscoplasticity, asperity collisions, temperature and frictional features. Based on the observations of the metallographic analysis, these necessary features have been included in the numerical model, which makes use of a time-dynamic program which follows the movement of a slipper during its experimental test run. The resulting velocity and pressure functions of time have been implemented in the explicit finite element code, ABAQUS. Two-dimensional, plane strain models

  6. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M

    2016-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar medium. A fraction of interstellar neutral hydrogen atoms penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of relativistic flow we find that if a relatively small density of neutral hydrogen, as low as $10^{-4}$ cm$^{-3}$, penetrate inside the pulsar wind, this is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  7. Mass-loading of bow shock pulsar wind nebulae

    CERN Document Server

    Morlino, G; Vorster, M J

    2015-01-01

    We investigate the dynamics of bow shock nebulae created by pulsars moving supersonically through a partially ionized interstellar. A fraction of interstellar neutrals penetrating into the tail region of a pulsar wind will undergo photo-ionization due to the UV light emitted by the nebula, with the resulting mass loading dramatically changing the flow dynamics of the light leptonic pulsar wind. Using a quasi 1-D hydrodynamic model of both non-relativistic and relativistic flow, and focusing on scales much larger than the stand-off distance, we find that a relatively small density of neutrals, as low as $n_{\\rm ISM}=10^{-4}\\,\\text{cm}^{-3}$, is sufficient to strongly affect the tail flow. Mass loading leads to the fast expansion of the pulsar wind tail, making the tail flow intrinsically non-stationary. The shapes predicted for the bow shock nebulae compare well with observations, both in H$\\alpha$ and X-rays.

  8. How the Density Environment Changes the Influence of the Dark Matter–Baryon Streaming Velocity on Cosmological Structure Formation

    Science.gov (United States)

    Ahn, Kyungjin

    2016-10-01

    We study the dynamical effect of the relative velocity between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata, in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be that of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakhovich & Hirata. Correspondingly, the conditional mass function of cosmological halos and the halo bias parameter are both affected in a similar way. The discrepancy between our prediction and that of Tseliakhovich & Hirata is significant, and therefore, the related cosmology and high-redshift astrophysics should be revisited. The mathematical formalism of this study can be used for generating cosmological initial conditions of small-scale perturbations in generic, overdense (underdense) background patches.

  9. How Density Environment Changes the Influence of the Dark Matter-Baryon Streaming Velocity on the Cosmological Structure Formation

    CERN Document Server

    Ahn, Kyungjin

    2016-01-01

    We study the dynamical effect of relative velocities between dark matter and baryonic fluids, which remained supersonic after the epoch of recombination. The impact of this supersonic motion on the formation of cosmological structures was first formulated by Tseliakhovich & Hirata (2010), in terms of the linear theory of small-scale fluctuations coupled to large-scale, relative velocities in mean-density regions. In their formalism, they limited the large-scale density environment to be those of the global mean density. We improve on their formulation by allowing variation in the density environment as well as the relative velocities. This leads to a new type of coupling between large-scale and small-scale modes. We find that the small-scale fluctuation grows in a biased way: faster in the overdense environment and slower in the underdense environment. We also find that the net effect on the global power spectrum of the density fluctuation is to boost its overall amplitude from the prediction by Tseliakho...

  10. Recording of particles velocity spectrum at the shock impact on different viscosity interface of liquids

    Directory of Open Access Journals (Sweden)

    Fedorov A.V.

    2015-01-01

    Full Text Available The results of experiments concerning the study of cavitational mechanism of liquid failure in a wide range of shock loading are presented in this paper. Free surface velocity of liquids and velocity spectrum of particles and jets were recorded using PDV method [1], their size was also determined. The value of spall strength of distilled water was defined.

  11. Introduction to vector velocity imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Udesen, Jesper; Hansen, Kristoffer Lindskov;

    Current ultrasound scanners can only estimate the velocity along the ultrasound beam and this gives rise to the cos() factor on all velocity estimates. This is a major limitation as most vessels are close to perpendicular to the beam. Also the angle varies as a function of space and time making...

  12. Instantaneous Velocity Using Photogate Timers

    Science.gov (United States)

    Wolbeck, John

    2010-01-01

    Photogate timers are commonly used in physics laboratories to determine the velocity of a passing object. In this application a card attached to a moving object breaks the beam of the photogate timer providing the time for the card to pass. The length L of the passing card can then be divided by this time to yield the average velocity (or speed)…

  13. Kriging Interpolating Cosmic Velocity Field

    CERN Document Server

    Yu, Yu; Jing, Yipeng; Zhang, Pengjie

    2015-01-01

    [abridge] Volume-weighted statistics of large scale peculiar velocity is preferred by peculiar velocity cosmology, since it is free of uncertainties of galaxy density bias entangled in mass-weighted statistics. However, measuring the volume-weighted velocity statistics from galaxy (halo/simulation particle) velocity data is challenging. For the first time, we apply the Kriging interpolation to obtain the volume-weighted velocity field. Kriging is a minimum variance estimator. It predicts the most likely velocity for each place based on the velocity at other places. We test the performance of Kriging quantified by the E-mode velocity power spectrum from simulations. Dependences on the variogram prior used in Kriging, the number $n_k$ of the nearby particles to interpolate and the density $n_P$ of the observed sample are investigated. (1) We find that Kriging induces $1\\%$ and $3\\%$ systematics at $k\\sim 0.1h{\\rm Mpc}^{-1}$ when $n_P\\sim 6\\times 10^{-2} ({\\rm Mpc}/h)^{-3}$ and $n_P\\sim 6\\times 10^{-3} ({\\rm Mpc...

  14. Some influences of approximate values for velocity, density and total temperature sensitivities on hot wire anemometer results

    Science.gov (United States)

    Stainback, P. C.

    1986-01-01

    There is a renewed interest in hot wire anemometry at transonic speeds. Recent results were published which indicate that at transonic speeds a heated wire is sensitive only to mass flow and total temperature, results similar to those obtained for supersonic flows. Other results were obtained to show that the sensitivity is a function of velocity, density, and total temperature, results in agreement with many of those obtained in the 1950s. An analysis of anemometry results was made to evaluate possible errors when various assumptions were made concerning the sensitivity of a heated wire to fluid flow variables.

  15. Numerical Investigation of Wall Cooling and Suction Effects on Supersonic Flat-Plate Boundary Layer Transition Using Large Eddy Simulation

    Directory of Open Access Journals (Sweden)

    Suozhu Wang

    2015-02-01

    Full Text Available Reducing friction resistance and aerodynamic heating has important engineering significance to improve the performances of super/hypersonic aircraft, so the purpose of transition control and turbulent drag reduction becomes one of the cutting edges in turbulence research. In order to investigate the influences of wall cooling and suction on the transition process and fully developed turbulence, the large eddy simulation of spatially evolving supersonic boundary layer transition over a flat-plate with freestream Mach number 4.5 at different wall temperature and suction intensity is performed in the present work. It is found that the wall cooling and suction are capable of changing the mean velocity profile within the boundary layer and improving the stability of the flow field, thus delaying the onset of the spatial transition process. The transition control will become more effective as the wall temperature decreases, while there is an optimal wall suction intensity under the given conditions. Moreover, the development of large-scale coherent structures can be suppressed effectively via wall cooling, but wall suction has no influence.

  16. The very slow expansion of an ultracold plasma formed in a seeded supersonic molecular beam of NO

    CERN Document Server

    Morrison, J P; Grant, E R

    2008-01-01

    The double-resonant laser excitation of nitric oxide, cooled to 1 K in a seeded supersonic molecular beam, yields a gas of $\\approx10^{12}$ molecules cm$^{-3}$ in a single selected Ryberg state. This population evolves to produce prompt free electrons and a durable cold plasma of electrons and intact NO$^{+}$ ions. This plasma travels with the molecular beam through a field free region to encounter a grid. The atomic weight of the expansion gas controls the beam velocity and hence the flight time from the interaction region to the grid. Monitoring electron production as the plasma traverses this grid measures its longitudinal width as a function of flight time. Comparing these widths to the width of the laser beam that defines the initial size of the illuminated volume allows us to gauge the rate of expansion of the plasma. We find that the plasma created from the evolution of a Rydberg gas of NO expands at a small but measurable rate, and that this rate of expansion accords with the Vlasov equations for an i...

  17. Supersonic Plasma Spray Deposition of CoNiCrAlY Coatings on Ti-6Al-4V Alloy

    Science.gov (United States)

    Caliari, F. R.; Miranda, F. S.; Reis, D. A. P.; Essiptchouk, A. M.; Filho, G. P.

    2017-06-01

    Plasma spray is a versatile technology used for production of environmental and thermal barrier coatings, mainly in the aerospace, gas turbine, and automotive industries, with potential application in the renewable energy industry. New plasma spray technologies have been developed recently to produce high-quality coatings as an alternative to the costly low-pressure plasma-spray process. In this work, we studied the properties of as-sprayed CoNiCrAlY coatings deposited on Ti-6Al-4V substrate with smooth surface ( R a = 0.8 μm) by means of a plasma torch operating in supersonic regime at atmospheric pressure. The CoNiCrAlY coatings were evaluated in terms of their surface roughness, microstructure, instrumented indentation, and phase content. Static and dynamic depositions were investigated to examine their effect on coating characteristics. Results show that the substrate surface velocity has a major influence on the coating properties. The sprayed CoNiCrAlY coatings exhibit low roughness ( R a of 5.7 μm), low porosity (0.8%), excellent mechanical properties ( H it = 6.1 GPa, E it = 155 GPa), and elevated interface toughness (2.4 MPa m1/2).

  18. Electrical load detection aparatus

    DEFF Research Database (Denmark)

    2010-01-01

    A load detection technique for a load comprising multiple frequency-dependant sub-loads comprises measuring a representation of the impedance characteristic of the load; providing stored representations of a multiplicity of impedance characteristics of the load; each one of the stored representat...

  19. The fractal measurement of experimental images of supersonic turbulent mixing layer

    Institute of Scientific and Technical Information of China (English)

    ZHAO YuXin; YI ShiHe; TIAN LiFeng; HE Lin; CHENG ZhongYu

    2008-01-01

    Flow Visualization of supersonic mixing layer has been studied based on the high spatiotemporal resolution Nano-based Planar Laser Scattering (NPLS) method in SML-1 wind tunnel. The corresponding images distinctly reproduced the flow structure of laminar, transitional and turbulent region, with which the fractal meas-urement can be implemented. Two methods of measuring fractal dimension wereintroduced and compared. The fractal dimension of the transitional region and the fully developing turbulence region of supersonic mixing layer were measured based on the box-counting method. In the transitional region, the fractal dimension will increase with turbulent intensity. In the fully developing turbulent region, the fractal dimension will not vary apparently for different flow structures, which em-bodies the self-similarity of supersonic turbulence.

  20. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    Science.gov (United States)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.