WorldWideScience

Sample records for supersonic jet spectroscopy

  1. Laser Desorption Supersonic Jet Spectroscopy of Hydrated Tyrosine

    Science.gov (United States)

    Oba, Hikari; Shimozono, Yoko; Ishiuchi, Shun-Ichi; Fujii, Masaaki; Carcabal, Pierre

    2013-06-01

    The structure of tyrosine (tyr) consists of amino-acid chain and phenol, and it has roughly two possible binding sites for water, amino-acid site and phenolic OH site. Investigating how water molecule binds to tyr will give fundamental information for hydrations of peptide and protein. Resonance enhanced multi photon ionization (REMPI) spectrum of tyr-water 1:1 cluster has already been reported by de Vries and co-workers, however, no analysis on the hydrated structures has been reported. In the REMPI spectrum, two clusters of bands are observed; one appears at ˜35600 cm^{-1} energy region which is the almost same with 0-0 transitions of tyr monomer, and another is observed at ˜300 cm^{-1} lower than the former. Based on the electronic transition energy of phenylalanine and the hydrated clusters, the former is expected to be derived from a structure that water binds to amino acid site. On the other hand, it is plausibly predicted that the latter originates from a structure that water binds to phenolic OH group, because the electronic transition of mono hydrated phenol is ˜300 cm^{-1} red-shifted from the monomer. We applied IR dip spectroscopy which can measure conformer selective IR spectra to the tyr-(H_{2}O)_{1} clusters by using laser desorption supersonic jet technique to confirm the assignments. Especially in the phenolic OH bound isomer, it was found that the intra molecular hydrogen bond within amino-acid chain, which is far from the water molecule and cannot interact directly with each other, is strengthened by the hydration. A. Abio-Riziq et al., J. Phys. Chem. A, 115, 6077 (2011). Y. Shimozono, et al., Phys. Chem. Chem. Phys., (2013) DOI: 10.1039/c3cp43573c. T. Ebata et al., Phys. Chem. Chem. Phys., 8, 4783 (2006). T. Watanabe et al., J. Chem. Phys., 105, 408 (1996).

  2. Towards high-resolution laser ionization spectroscopy of the heaviest elements in supersonic gas jet expansion

    Science.gov (United States)

    Ferrer, R.; Barzakh, A.; Bastin, B.; Beerwerth, R.; Block, M.; Creemers, P.; Grawe, H.; de Groote, R.; Delahaye, P.; Fléchard, X.; Franchoo, S.; Fritzsche, S.; Gaffney, L. P.; Ghys, L.; Gins, W.; Granados, C.; Heinke, R.; Hijazi, L.; Huyse, M.; Kron, T.; Kudryavtsev, Yu.; Laatiaoui, M.; Lecesne, N.; Loiselet, M.; Lutton, F.; Moore, I. D.; Martínez, Y.; Mogilevskiy, E.; Naubereit, P.; Piot, J.; Raeder, S.; Rothe, S.; Savajols, H.; Sels, S.; Sonnenschein, V.; Thomas, J-C; Traykov, E.; Van Beveren, C.; Van den Bergh, P.; Van Duppen, P.; Wendt, K.; Zadvornaya, A.

    2017-01-01

    Resonant laser ionization and spectroscopy are widely used techniques at radioactive ion beam facilities to produce pure beams of exotic nuclei and measure the shape, size, spin and electromagnetic multipole moments of these nuclei. However, in such measurements it is difficult to combine a high efficiency with a high spectral resolution. Here we demonstrate the on-line application of atomic laser ionization spectroscopy in a supersonic gas jet, a technique suited for high-precision studies of the ground- and isomeric-state properties of nuclei located at the extremes of stability. The technique is characterized in a measurement on actinium isotopes around the N=126 neutron shell closure. A significant improvement in the spectral resolution by more than one order of magnitude is achieved in these experiments without loss in efficiency. PMID:28224987

  3. Electronic absorption spectroscopy of PAHs in supersonic jets and ultracold liquid helium droplets

    Science.gov (United States)

    Huisken, Friedrich; Staicu, Angela; Krasnokutski, Serge; Henning, Thomas

    Neutral and cationic polycyclic aromatic hydrocarbons (PAHs) are discussed as possible carriers of the diffuse interstellar bands (DIBs), still unassigned astrophysical absorption features observed in the spectra of reddened stars (Salama et al. 1999). Despite the importance of this class of molecules for astrophysics and nanophysics (PAHs can be regarded as nanoscale fragments of a sheet of graphite), the spectroscopic characterization of PAHs under well-defined conditions (low temperature and collision-free environment) has remained a challenge. Recently we have set up a cavity ring-down spectrometer combined with a pulsed supersonic jet expansion to study neutral and cationic PAHs under astrophysical conditions. PAHs studied so far include the neutral molecules anthracene (Staicu et al. 2004) and pyrene (Rouillé et al. 2004) as well as the cationic species naphthalene+ and anthracene+ (Sukhorukov et al. 2004). Employing another molecular beam apparatus, the same molecules (except of the cationic species) were also studied in liquid helium droplets (Krasnokutski et al. 2005, Rouillé et al. 2004). This novel technique combines several advantages of conventional matrix spectroscopy with those of gas phase spectroscopy. Notable advantages are the possibility to study molecules with low vapor pressure and to use a mass spectrometer facilitating spectral assignments. The most recent studies were devoted to phenanthrene and the more complicated (2,3)-benzofluorene. These molecules were investigated in the gas phase by cavity ring-down spectroscopy and in liquid helium droplets using depletion spectroscopy. For benzofluorene the present studies constitute the first reported measurements both in the gas phase and in helium droplets. The origin of the S1 ← S0 gas phase transition could be located at 29 894.3 cm-1, and a series of vibronic bands was recorded below 31 500 cm-1. In contrast to previously studied PAHs, the shift induced by the helium droplets was very

  4. UV–UV hole burning and IR dip spectroscopy of homophenylalanine by laser desorption supersonic jet technique

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Woon Yong; Ishiuchi, Shun-ichi [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Çarçabal, Pierre [Institut des Sciences Moléculaires d’Orsay, CNRS, Université Paris Sud XI, Bâtiment 210, 91405 Orsay (France); Oba, Hikari [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan); Fujii, Masaaki, E-mail: mfujii@res.titech.ac.jp [Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2014-12-05

    Highlights: • Homophenylalanine was measured by laser desorption supersonic jet spectroscopy. • Ten conformers were found by UV–UV hole burning spectroscopy. • The observed conformers were assigned by the combination of UV and IR spectra. • Franck–Condon simulations were employed to assign the flexible molecule. - Abstract: Conformer selected electronic and vibrational spectra of homophenylalanine, phenylalanine analogue molecule, were measured by UV–UV hole burning and IR dip spectroscopy combined with laser desorption technique. 10 conformers were found by UV–UV hole burning spectroscopy and their structures were assigned by IR dip and UV absorption spectra with aid of quantum chemical calculations in both S{sub 0} and S{sub 1}. This study shows that the combination of simulated IR and UV spectra is powerful to assign flexible molecules.

  5. A pulsed supersonic gas jet target for precision spectroscopy at the HITRAP facility at GSI

    Energy Technology Data Exchange (ETDEWEB)

    Tiedemann, D. [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Stiebing, K.E., E-mail: stiebing@em.uni-frankfurt.de [Institut für Kernphysik der Goethe Universität, Max von Laue Straße 1, D-60438, Frankfurt am Main (Germany); Winters, D.F.A. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Quint, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisches Institut der Universität Heidelberg, Im Neuenheimer Feld 226, D-69120, Heidelberg (Germany); Varentsov, V. [Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Facility for Antiproton and Ion Research in Europe (FAIR), Darmstadt (Germany); Warczak, A.; Malarz, A. [Institute of Physics, Jagiellonian University, Krakow (Poland); Stöhlker, Th. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, D-64291, Darmstadt (Germany); Physikalisch-Astronomische Fakultät der Friedrich-Schiller-Universität Jena, Helmholtz-Institut Jena, Fröbelstieg 3, D-07743, Jena (Germany)

    2014-11-11

    A pulsed supersonic gas jet target for experiments at the HITRAP facility at the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt has been designed and built as a multi-purpose installation for key experiments on fundamental atomic physics in strong fields. This setup is currently installed at the Institut für Kernphysik of Goethe-University, Frankfurt am Main (IKF), in order to explore its operation prior to its installation at the HITRAP facility. Design and performance of the target are described. The measured target densities of 5.9×10{sup 12} atoms/cm{sup 3} for helium and 8.1×10{sup 12} atoms/cm³ for argon at the stagnation pressure of 30 bar match the required values. The target-beam diameter of 0.9 mm and the pulsed operation mode (jet built-up-time ≤15 ms) are well suited for the use at HITRAP.

  6. Supersonic induction plasma jet modeling

    Energy Technology Data Exchange (ETDEWEB)

    Selezneva, S.E. E-mail: svetlana2@hermes.usherbS_Selezneva2@hermes.usherb; Boulos, M.I

    2001-06-01

    Numerical simulations have been applied to study the argon plasma flow downstream of the induction plasma torch. It is shown that by means of the convergent-divergent nozzle adjustment and chamber pressure reduction, a supersonic plasma jet can be obtained. We investigate the supersonic and a more traditional subsonic plasma jets impinging onto a normal substrate. Comparing to the subsonic jet, the supersonic one is narrower and much faster. Near-substrate velocity and temperature boundary layers are thinner, so the heat flux near the stagnation point is higher in the supersonic jet. The supersonic plasma jet is characterized by the electron overpopulation and the domination of the recombination over the dissociation, resulting into the heating of the electron gas. Because of these processes, the supersonic induction plasma permits to separate spatially different functions (dissociation and ionization, transport and deposition) and to optimize each of them. The considered configuration can be advantageous in some industrial applications, such as plasma-assisted chemical vapor deposition of diamond and polymer-like films and in plasma spraying of nanoscaled powders.

  7. Facile Formation of Acetic Sulfuric Anhydride in a Supersonic Jet: Characterization by Microwave Spectroscopy and Computational Chemistry

    Science.gov (United States)

    Huff, Anna; Smith, CJ; Mackenzie, Becca; Leopold, Ken

    2017-06-01

    Sulfur trioxide and acetic acid are shown to react under supersonic jet conditions to form acetic sulfuric anhydride, CH_{3}COOSO_{2}OH. Rotational spectra of the parent, ^{34}S, methyl ^{13}C, and fully deuterated isotopologues have been observed by chirped-pulse and conventional cavity microwave spectroscopy. A and E internal rotation states have been observed for each isotopologue studied and the methyl group internal rotation barriers have been determined (241.043(65) \\wn for the parent species). The reaction is analogous to that of our previous report on the reaction of sulfur trioxide and formic acid. DFT and CCSD calculations are also presented which indicate that the reaction proceeds via a π_{2} + π_{2} + σ_{2} cycloaddition reaction. These results support our previous conjecture that the reaction of SO_{3} with carboxylic acids is both facile and general. Possible implications for atmospheric aerosol formation are discussed.

  8. Molecular relaxation in supersonic free jets of N2 and CH4 from stimulated Raman spectroscopy and time-of-flight measurements

    OpenAIRE

    Abad, Laura; Bermejo, Dionisio; Herrero, Víctor J.; Santos, J.; Tanarro, Isabel

    1997-01-01

    The relaxation of the energy stored in the translational and rotational degrees of freedom of N2 and CH4 in the course of free jet expansions has been experimentally studied. Rotational temperatures along the expansion axis were obtained by means of stimulated Raman spectroscopy, and terminal flow velocities and translational temperatures were determined from supersonic beam time-of-flight measurements. From these measurements low-temperature cross sections for rotational relaxation have been...

  9. UV-visible spectroscopy of PAHs and PAHNs in supersonic jet. Astrophysical Implications

    Science.gov (United States)

    Salma, Bejaoui; Salama, Farid

    2017-06-01

    Polycyclic Aromatic Hydrocarbon (PAHs) molecules are attracting much attention of the astrophysical and astrochemical communities since they are ubiquitous presence in space and could survive in the harsh interstellar medium (ISM). They are proposed as plausible carriers of the still unassigned diffuse interstellar bands (DIBs) for more than two decades now. The so-called PAH - DIB proposal has been based on the abundance of PAHs in the ISM and their stability against the photo and thermo dissociation. Nitrogen is one of the most abundant elements after hydrogen, helium, and carbon [1]. PANHs exhibit spectral features similar to PAHs and may also contribute to unidentified spectral bands.To prove PAHs-DIBs hypothesis, laboratory absorption spectra of aromatic under astrophysical relevant conditions are of crucial importance to compare with the observed DIBs spectra. The most challenging task is to reproduce as closely as technically possible, the physical and chemical conditions that are present in space. Interstellar PAHs are expected to be present as free, cold, neutral molecules and/or charged species [2]. In our laboratory, comparable conditions are achieved using an excellent platform developed in NASA Ames. Our cosmic simulation chamber (COSmIC) allow the measurements of gas phase spectra of neutral and ionized interstellar PAHs analogs by associating a molecular beam with an ionizing discharge to generate a cold plasma expansion (˜ 100 K) [3]. Our approach to assign PAH as carriers of some DIBs is record the electronic spectra of cold PAHs in gas phase and systematic search for a possible correspondence in astronomical DIBs spectra. We report in this work UV-visible absorption spectra of neutral PAHs and PAHNs using the cavity ring down spectroscopy (CRDS) technique. We discuss the effect of the substitution of C-H bond(s) by a nitrogen atom(s) in spectroscopic features of PAHs and their astrophysical application.[1] L. Spitzer, 1978, Physical processes in

  10. Supersonic Injection of Aerated Liquid Jet

    Science.gov (United States)

    Choudhari, Abhijit; Sallam, Khaled

    2016-11-01

    A computational study of the exit flow of an aerated two-dimensional jet from an under-expanded supersonic nozzle is presented. The liquid sheet is operating within the annular flow regime and the study is motivated by the application of supersonic nozzles in air-breathing propulsion systems, e.g. scramjet engines, ramjet engines and afterburners. The simulation was conducted using VOF model and SST k- ω turbulence model. The test conditions included: jet exit of 1 mm and mass flow rate of 1.8 kg/s. The results show that air reaches transonic condition at the injector exit due to the Fanno flow effects in the injector passage. The aerated liquid jet is alternately expanded by Prandtl-Meyer expansion fan and compressed by oblique shock waves due to the difference between the back (chamber) pressure and the flow pressure. The process then repeats itself and shock (Mach) diamonds are formed at downstream of injector exit similar to those typical of exhaust plumes of propulsion system. The present results, however, indicate that the flow field of supersonic aerated liquid jet is different from supersonic gas jets due to the effects of water evaporation from the liquid sheet. The contours of the Mach number, static pressure of both cases are compared to the theory of gas dynamics.

  11. Coupling dynamic of twin supersonic jets

    Science.gov (United States)

    Kuo, Ching-Wen; Cluts, Jordan; Samimy, Mo

    2015-11-01

    In a supersonic shock-containing jet, the interaction of large-scale structures in the jet's shear layer with the shock waves generates acoustic waves. The waves propagate upstream, excite the jet initial shear layer instability, establish a feedback loop at certain conditions, and generate screech noise. The screech normally contains different modes of various strengths. Similarly, twin-jet plumes contain screech tones. If the dynamics of the two jet plumes are synchronized, the screech amplitude could be significantly amplified. There is a proposed analytical model in the literature for screech synchronization in twin rectangular jets. This model shows that with no phase difference in acoustic waves arriving at neighboring nozzle lips, twin-jet plumes feature a strong coupling with a significant level of screech tones. In this work the maximum nozzle separation distance for sustained screech synchronization and strong coupling is analytically derived. This model is used with our round twin-jet experiments and the predicted coupling level agrees well with the experimental results. Near-field microphone measurements and schlieren visualization along with the analytical model are used to investigate the coupling mechanisms of twin supersonic jets. Supported by ONR.

  12. Supersonic Jet Excitation using Flapping Injection

    CERN Document Server

    Hafsteinsson, Haukur; Andersson, Niklas; Cuppoletti, Daniel; Gutmark, Ephraim; Prisell, Erik

    2013-01-01

    Supersonic jet noise reduction is important for high speed military aircraft. Lower acoustic levels would reduce structural fatigue leading to longer lifetime of the jet aircraft. It is not solely structural aspects which are of importance, health issues of the pilot and the airfield per- sonnel are also very important, as high acoustic levels may result in severe hearing damage. It remains a major challenge to reduce the overall noise levels of the aircraft, where the supersonic exhaust is the main noise source for near ground operation. Fluidic injection into the supersonic jet at the nozzle exhaust has been shown as a promising method for noise reduction. It has been shown to speed up the mix- ing process of the main jet, hence reducing the kinetic energy level of the jet and the power of the total acoustic radiation. Furthermore, the interaction mechanism between the fluidic injection and the shock structure in the jet exhaust plays a crucial role in the total noise radia- tion. In this study, LES is used...

  13. Aeroacoustic properties of supersonic elliptic jets

    Science.gov (United States)

    Kinzie, Kevin W.; McLaughlin, Dennis K.

    1999-09-01

    The aerodynamic and acoustic properties of supersonic elliptic and circular jets are experimentally investigated. The jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25 000 to 50 000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high-velocity and low-density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve a high enough convective velocity to radiate noise through the Mach wave emission process.

  14. Conceptual Design of a Supersonic Jet Engine

    OpenAIRE

    Kareliusson, Joakim; Nordqvist, Melker

    2014-01-01

    This thesis is a response to the request for proposal issued by a joint collaboration between the AIAA Foundation and ASME/IGTI as a student competition to design a new turbofan engine intended for a conceptual supersonic business jet expected to enter service in 2025. Due to the increasing competition in the aircraft industry and the more stringent environmental legislations the new engine is expected to provide a lower fuel burn than the current engine intended for the aircraft to increase ...

  15. Supersonic Jet Noise Reduction Using Microjets

    Science.gov (United States)

    Gutmark, Ephraim; Cuppoletti, Dan; Malla, Bhupatindra

    2013-11-01

    Fluidic injection for jet noise reduction involves injecting secondary jets into a primary jet to alter the noise characteristics of the primary jet. A major challenge has been determining what mechanisms are responsible for noise reduction due to varying injector designs, injection parameters, and primary jets. The current study provides conclusive results on the effect of injector angle and momentum ux ratio on the acoustics and shock structure of a supersonic Md = 1.56 jet. It is shown that the turbulent mixing noise scales primarily with the injector momentum flux ratio. Increasing the injector momentum flux ratio increases streamwise vorticity generation and reduces peak turbulence levels. It is found that the shock-related noise components are most affected by the interaction of the shocks from the injectors with the primary shock structure of the jet. Increasing momentum flux ratio causes shock noise reduction until a limit where shock noise increases again. It is shown that the shock noise components and mixing noise components are reduced through fundamentally different mechanisms and maximum overall noise reduction is achieved by balancing the reduction of both components.

  16. Supersonic Jet Interactions in a Plenum Chamber

    Directory of Open Access Journals (Sweden)

    K. M. Venugopal

    2004-07-01

    Full Text Available Understanding thè supersonic jet interactions in a plenum chamber is essential for thè design of hot launch systems. Static tests were conducted in a small-scale rocket motor ioaded with a typical nitramine propellaiit to produce a nozzle exit Mach number of 3. This supersonic jet is made to interact with plenum chambers having both open and closed sides. The distance between thè nozzle exit and thè back piate of plenum chamber are varied from 2. 5 to 7. 0 times thè nozzle exit diameter. The pressure rise in thè plenum chamber was measured using pressure transducers mounted at different locatìons. The pressure-time data were analysed to obtain an insight into thè flow field in thè plenum chamber. The maximum pressure exerted on thè back piate of plenum chamber is about 25-35 per cent. of thè maximum stagnation pressure developed in thè rocket motor. Ten static tests were carried out to obtain thè effect of axial distance between thè nozzle exit and thè plenum chamber back piate, and stagnation pressure in thè rocket motoron thè flow field in thè open-sided and closed-sided plenum chambers configurations.

  17. Supersonic Jet Noise: Main Sources and Reduction Methodologies

    Directory of Open Access Journals (Sweden)

    Mohammadreza Azimi

    2014-07-01

    Full Text Available The large velocity ratio and the presence of Shocks in the exhaust plume from low bypass engines or supersonic jetliners cause jet noise to be dominant component of overall aircraft noise, and therefore is an important issue in design of the next generation of civil supersonic transport. Jet noise reduction technology also has application in the design of highperformance tactical aircraft. Jet noise is of particular concern on aircraft carriers where it is necessary for deck crew to be in relatively close proximity to the aircraft at takeoff and landing. In this paper, a brief discussion about supersonic jet noise sources and a review of the main passive technologies employed for the reduction of supersonic jet noise are presented.

  18. Linear stability analysis of supersonic axisymmetric jets

    Directory of Open Access Journals (Sweden)

    Zhenhua Wan

    2014-01-01

    Full Text Available Stabilities of supersonic jets are examined with different velocities, momentum thicknesses, and core temperatures. Amplification rates of instability waves at inlet are evaluated by linear stability theory (LST. It is found that increased velocity and core temperature would increase amplification rates substantially and such influence varies for different azimuthal wavenumbers. The most unstable modes in thin momentum thickness cases usually have higher frequencies and azimuthal wavenumbers. Mode switching is observed for low azimuthal wavenumbers, but it appears merely in high velocity cases. In addition, the results provided by linear parabolized stability equations show that the mean-flow divergence affects the spatial evolution of instability waves greatly. The most amplified instability waves globally are sometimes found to be different from that given by LST.

  19. Effect of Microjet Injection on Supersonic Jet Noise

    Science.gov (United States)

    Zaman, K. B. M. Q.; Podboy, G. G.

    2010-01-01

    The effect of microjet (jet) injection on the noise from supersonic jets is investigated. Three convergent-divergent (C-D) nozzles and one convergent nozzle, all having the same exit diameters, are used in the study. The jets are injected perpendicular to the primary jet close to the nozzle lip from six equally-spaced ports having a jet-to-primary-jet diameter ratio of 0.0054. Effects in the over-expanded, fully expanded as well as underexpanded flow regimes are explored. Relative to the effect on subsonic jets, larger reductions in the overall sound pressure level (OASPL) are achieved in most supersonic conditions. The largest reductions are typically associated with suppression of screech and transonic tones. For a shock-free, fully expanded case, the OASPL reductions achieved are comparable to that in the subsonic case; the same correlation, found for subsonic jet noise reduction at shallow observation angle, applies.

  20. Structure and intermolecular vibrations of 7-azaindole-water 2:1 complex in a supersonic jet expansion: Laser-induced fluorescence spectroscopy and quantum chemistry calculation

    Indian Academy of Sciences (India)

    Montu K Hazra; Moitrayee Mukherjee; V Ramanathan; Tapas Chakraborty

    2012-01-01

    Laser-induced fluorescence spectra of a 2:1 complex between 7-azaindole and water, known as `non-reactive dimer’ of the molecule, have been measured in a supersonic jet expansion. The dispersed fluorescence spectrum of the electronic origin band of the complex shows a very large number of low-frequency vibrational features corresponding to different intermolecular modes of the complex in the ground electronic state. Geometries of several possible isomeric structures of the complex and their vibrational frequencies at harmonic approximation were calculated by electronic structure theory method at MP2/6-31G∗∗ level. An excellent agreement is observed between the measured and calculated intermolecular vibrational mode frequencies for the energetically most favoured structure of the complex, where the water molecule is inserted within one of the two N$\\cdots$H-N hydrogen bonds of the 7AI dimer.

  1. Advanced Noise Abatement Procedures for a Supersonic Business Jet

    Science.gov (United States)

    Berton, Jeffrey J.; Jones, Scott M.; Seidel, Jonathan A.; Huff, Dennis L.

    2017-01-01

    Supersonic civil aircraft present a unique noise certification challenge. High specific thrust required for supersonic cruise results in high engine exhaust velocity and high levels of jet noise during takeoff. Aerodynamics of thin, low-aspect-ratio wings equipped with relatively simple flap systems deepen the challenge. Advanced noise abatement procedures have been proposed for supersonic aircraft. These procedures promise to reduce airport noise, but they may require departures from normal reference procedures defined in noise regulations. The subject of this report is a takeoff performance and noise assessment of a notional supersonic business jet. Analytical models of an airframe and a supersonic engine derived from a contemporary subsonic turbofan core are developed. These models are used to predict takeoff trajectories and noise. Results indicate advanced noise abatement takeoff procedures are helpful in reducing noise along lateral sidelines.

  2. Simulation of underexpanded supersonic jet flows with chemical reactions

    Directory of Open Access Journals (Sweden)

    Fu Debin

    2014-06-01

    Full Text Available To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD method. A program based on a total variation diminishing (TVD methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier–Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  3. Simulation of underexpanded supersonic jet flows with chemical reactions

    Institute of Scientific and Technical Information of China (English)

    Fu Debin; Yu Yong; Niu Qinglin

    2014-01-01

    To achieve a detailed understanding of underexpanded supersonic jet structures influenced by afterburning and other flow conditions, the underexpanded turbulent supersonic jet with and without combustions are investigated by computational fluid dynamics (CFD) method. A program based on a total variation diminishing (TVD) methodology capable of predicting complex shocks is created to solve the axisymmetric expanded Navier-Stokes equations containing transport equations of species. The finite-rate ratio model is employed to handle species sources in chemical reactions. CFD solutions indicate that the structure of underexpanded jet is typically influenced by the pressure ratio and afterburning. The shock reflection distance and maximum value of Mach number in the first shock cell increase with pressure ratio. Chemical reactions for the rocket exhaust mostly exist in the mixing layer of supersonic jet flows. This tends to reduce the intensity of shocks existing in the jet, responding to the variation of thermal parameters.

  4. Study of the shock structure of supersonic, dual, coaxial, jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K. H.; Lee, J. H.; Kim, H. D. [Andong National Univ., Andong (Korea, Republic of)

    2001-07-01

    The shock structure of supersonic, dual, coaxial jet is experimentally investigated. Eight different kinds of coaxial, dual nozzles are employed to observe the major features of the near field shock structure of the supersonic, coaxial, dual jets. Four convergent-divergent supersonic nozzles having the Mach number of 2.0 and 3.0, and are used to compare the coaxial jet flows discharging from two sonic nozzles. The primary pressure ratio is changed in the range between 4.0 and 10.0 and the assistant jet pressure ratio from 1.0 to 4.0. The results obtained show that the impinging angle, nozzle geometry and pressure ratio significantly affect the near field shock structure, Mach disk location and Mach disk diameter. The annular shock system is found depending the assistant and primary jet pressure ratios.

  5. Study of the flow characteristics of supersonic coaxial jets

    Energy Technology Data Exchange (ETDEWEB)

    Lee, K.H. [Andong National University, Andong (Korea); Koo, B.S. [Andong National University Graudate School, Andong (Korea)

    2001-12-01

    Supersonic coaxial jets are investigated numerically by using the axisymmetric, Navier-Stokes equations which are solved using a fully implicit finite volume method. Three different kinds of coaxial nozzles are employed to understand the flow physics involved in the supersonic coaxial jets. Two convergent-divergent supersonic nozzles are designed to have the same Mach number 2.0, and used to compare the coaxial jet flows with those discharging from one constant-area nozzle. The impingement angle of the annular jets are varied. The primary pressure ratio is changed in the range from 2.0 to 10.0 and the assistant jet ratio from 1.0 to 3.0. The results obtained show that the fluctuations of the total pressure and Mach number along the jet axis are much higher in the constant-area nozzle than those in the convergent-divergent nozzles, and the constant-area nozzle lead to higher total pressure losses, compared with the convergent-divergent nozzles. The assistant jets from the annular nozzle affect the coaxial jet flows within the distance less than about ten times the nozzle throat diameter, but beyond it the coaxial jet is conical with self-similar velocity profiles. Increasing both the primary jet pressure ratio and the assistant jet pressure ratio produces a longer coaxial jet core. (author). 14 refs., 9 figs.

  6. Subsonic and Supersonic Jet Noise Calculations Using PSE and DNS

    Science.gov (United States)

    Balakumar, P.; Owis, Farouk

    1999-01-01

    Noise radiated from a supersonic jet is computed using the Parabolized Stability Equations (PSE) method. The evolution of the instability waves inside the jet is computed using the PSE method and the noise radiated to the far field from these waves is calculated by solving the wave equation using the Fourier transform method. We performed the computations for a cold supersonic jet of Mach number 2.1 which is excited by disturbances with Strouhal numbers St=.2 and .4 and the azimuthal wavenumber m=l. Good agreement in the sound pressure level are observed between the computed and the measured (Troutt and McLaughlin 1980) results.

  7. Research on the mechanics of underwater supersonic gas jets

    Science.gov (United States)

    Shi, Honghui; Wang, Boyi; Dai, Zhenqing

    2010-03-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.

  8. Research on the mechanics of underwater supersonic gas jets

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full- and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5–10 Hz.

  9. Numerical study on the generation of a planar supersonic gas-jet

    Energy Technology Data Exchange (ETDEWEB)

    Putignano, M., E-mail: massimilianoputignano@quasar-group.org [Cockcroft Institute, Daresbury Laboratory, Warrington (United Kingdom); University of Liverpool, Liverpool (United Kingdom); Welsch, C.P. [University of Liverpool, Liverpool (United Kingdom)

    2012-03-01

    Planar supersonic gas-jets are valuable tools for different applications such as state of the art molecular spectroscopy and accelerator beam instrumentation; however, the details of their expansion and generation have not yet been analyzed extensively, despite numerous studies addressing these same questions for the simpler case of the axis-symmetric jet. In this paper, we investigate numerically the generation and evolution of planar supersonic gas-jets, extending the optimization studies done for axis-symmetric jets and focusing in particular on applications in accelerator beam instrumentation. We introduce a set of dedicated quality factors and use them to investigate the effects of changes to the geometry and thermodynamic state of the nozzle-skimmer system used to generate the planar jet. This analysis leads to an innovative, optimized nozzle-skimmer system design, which features advantages in terms of planar jet quality when compared to traditional setups. The proposed design also gives the possibility to modify, by variation of the thermodynamic quantities alone, the gas-jet characteristics in a wide range, including jet splitting and local density modulation. Density profiles of the generated jets are plotted for different parameter set.

  10. The effects of profiles on supersonic jet noise

    Science.gov (United States)

    Tiwari, S. N.; Bhat, T. R. S.

    1994-01-01

    The effect of velocity profiles on supersonic jet noise are studied by using stability calculations made for a shock-free coannular jet, with both the inner and outer flows supersonic. The Mach wave emission process is modeled as the noise generated by the large scale turbulent structures or the instability waves in the mixing region. Both the vortex-sheet and the realistic finite thickness shear layer models are considered. The stability calculations were performed for both inverted and normal velocity profiles. Comparisons are made with the results for an equivalent single jet, based on equal thrust, mass flow rate and exit area to that of the coannular jet. The advantages and disadvantages of these velocity profiles as far as noise radiation is concerned are discussed. It is shown that the Rayleigh's model prediction of the merits and demerits of different velocity profiles are in good agreement with the experimental data.

  11. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-02-15

    applied a double divergence directly to the incompressible Reynolds stress giving Ö U’UI dxgJ = -£ijk(sijUJk + ryWfc). (1) This neglected...SUPERSONIC JETS | QUARTERLY RPT. 6 ^ EXPERIMENTAL FACILITY j^i;r\\’ii Mo/ P I V • Page 6 • Prev • Wart • Last • Full Screen • Close

  12. Instability of a supersonic shock free elliptic jet

    Energy Technology Data Exchange (ETDEWEB)

    Baty, R.S. (Sandia National Labs., Albuquerque, NM (USA)); Seiner, J.M.; Ponton, M.K. (National Aeronautics and Space Administration, Hampton, VA (USA). Langley Research Center)

    1990-01-01

    This paper presents a comparison of the measured and the computed spatial stability properties of an aspect ratio 2 supersonic shock free elliptic jet. The shock free nature of the elliptic jet provides an ideal test of validity of modeling the large scale coherent structures in the initial mixing region of noncircular supersonic jets with linear hydrodynamic stability theory. Both aerodynamic and acoustic data were measured. The data are used to compute the mean velocity profiles and to provide a description of the spatial composition of pressure waves in the elliptic jet. A hybrid numerical scheme is applied to solve the Rayleigh problem governing the inviscid linear spatial stability of the jet. The measured mean velocity profiles are used to provide a qualitative model for the cross sectional geometry and the smooth velocity profiles used in the stability analysis. Computational results are presented for several modes of instability at two jet cross sections. The acoustic measurements show that a varicose instability is the jet's perferred mode of motion. The stability analysis predicts that the Strouhal number varies linearly as a function of axial distance in the jet's initial mixing region, which is in good qualitative agreement with previous measurements. 18 refs., 18 figs., 1 tab.

  13. On the Comparison of the Long Penetration Mode (LPM) Supersonic Counterflowing Jet to the Supersonic Screech Jet

    Science.gov (United States)

    Farr, Rebecca A.; Chang, Chau-Lyan.; Jones, Jess H.; Dougherty, N. Sam

    2015-01-01

    The authors provide a brief overview of the classic tonal screech noise problem created by underexpanded supersonic jets, briefly describing the fluid dynamic-acoustics feedback mechanism that has been long established as the basis for this well-known aeroacoustics problem. This is followed by a description of the Long Penetration Mode (LPM) supersonic underexpanded counterflowing jet phenomenon which has been demonstrated in several wind tunnel tests and modeled in several computational fluid dynamics (CFD) simulations. The authors provide evidence from test and CFD analysis of LPM that indicates that acoustics feedback and fluid interaction seen in LPM are analogous to the aeroacoustics interactions seen in screech jets. Finally, the authors propose applying certain methodologies to LPM which have been developed and successfully demonstrated in the study of screech jets and mechanically induced excitation in fluid oscillators for decades. The authors conclude that the large body of work done on jet screech, other aeroacoustic phenomena, and fluid oscillators can have direct application to the study and applications of LPM counterflowing supersonic cold flow jets.

  14. Study on the Characteristics of Supersonic Coanda Jet

    Institute of Scientific and Technical Information of China (English)

    ShigeruMatsuo; ShenYu; 等

    1998-01-01

    Techniques using coanda effect have been applied to the fluid control devices.In this field,experimental studies were so far performed for the spiral jet obtained by the Coanda jet issuing from a conical cylinder with an annular slit ,thrust vectoring of supersonic Coanda jets and so on,It is important from the viewpoints of effective applications to investigate the characteristics of the supersonic coanda jet in detail,In the present study,The effects of pressure rations and nozzle configurations on the characteristics of the supersonic COanda jet have been investigated.experimentally by a schlieren optical method and pressure measurements.Furthermore.Navier-Stokes equations were solved numerically using a 2nd-order TVD finite-volume scheme with a 3rd-order three stage Runge-Kutta method for time integration,κ-ε model was used in the computations.The effects of initial conditions on Coanda flow were investigated numerically.As a result,the simulated flow fields were compared with experimental data in good agreement qualitatively.

  15. Laboratory plasma physics experiments using merging supersonic plasma jets

    OpenAIRE

    Hsu, S C; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2014-01-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven rail guns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: $n_e\\approx n_i \\sim 10^{16}$ cm$^{-3}$, $T_e \\approx T_i \\approx 1.4$ eV, $V_{\\rm jet}\\approx 30$-100 km/s, mean charge $\\bar{Z}\\approx 1$...

  16. Review and prospect of supersonic business jet design

    Science.gov (United States)

    Sun, Yicheng; Smith, Howard

    2017-04-01

    This paper reviews the environmental issues and challenges appropriate to the design of supersonic business jets (SSBJs). There has been a renewed, worldwide interest in developing an environmentally friendly, economically viable and technologically feasible supersonic transport aircraft. A historical overview indicates that the SSBJ will be the pioneer for the next generation of supersonic airliners. As a high-end product itself, the SSBJ will likely take a market share in the future. The mission profile appropriate to this vehicle is explored considering the rigorous environmental constraints. Mitigation of the sonic boom and improvements aerodynamic efficiency in flight are the most challenging features of civil supersonic transport. Technical issues and challenges associated with this type of aircraft are identified, and methodologies for the SSBJ design are discussed. Due to the tightly coupled issues, a multidisciplinary design, analysis and optimization environment is regarded as the essential approach to the creation of a low-boom low-drag supersonic aircraft. Industrial and academic organizations have an interest in this type of vehicle are presented. Their investments in SSBJ design will hopefully get civil supersonic transport back soon.

  17. Gas dynamics of a supersonic radial jet. Part II

    Science.gov (United States)

    Kosarev, V. F.; Klinkov, S. V.; Zaikovskii, V. N.

    2016-05-01

    The paper presents the radial distributions of the pressure measured with a Pitot tube for the case of a radial jet with/without swirling of the input flow in the pre-chamber; the length of the supersonic part of the jet, dependency of the jet thickness as a function of the distance from the nozzle outlet, and approximating analytical formula for the jet thickness that generalizes the experimental data. Experimental data demonstrated that at the deposition distances lower than 4-6 gauges from the nozzle outlet, the solid particle velocity and temperature are almost uniform over the jet cross section. This means that the target surface can be allocated here without loss in coating quality and deposition coefficient. The maximal recommended distance where the deposition is still possible is the length of l s0 ~ 16 gauges.

  18. The flow feature of transverse hydrogen jet in presence of micro air jets in supersonic flow

    Science.gov (United States)

    Barzegar Gerdroodbary, M.; Amini, Younes; Ganji, D. D.; Takam, ​M. Rahimi

    2017-03-01

    Scramjet is found to be the efficient method for the space shuttle. In this paper, numerical simulation is performed to investigate the fundamental flow physics of the interaction between an array of fuel jets and multi air jets in a supersonic transverse flow. Hydrogen as a fuel is released with a global equivalence ratio of 0.5 in presence of micro air jets on a flat plate into a Mach 4 crossflow. The fuel and air are injected through streamwise-aligned flush circular portholes. The hydrogen is injected through 4 holes with 7dj space when the air is injected in the interval of the hydrogen jets. The numerical simulation is performed by using the Reynolds-averaged Navier-Stokes equations with Menter's Shear Stress Transport (SST) turbulence model. Both the number of air jets and jet-to-freestream total pressure ratio are varied in a parametric study. The interaction of the fuel and air jet in the supersonic flow present extremely complex feature of fuel and air jet. The results present various flow features depending upon the number and mass flow rate of micro air jets. These flow features were found to have significant effects on the penetration of hydrogen jets. A variation of the number of air jets, along with the jet-to-freestream total pressure ratio, induced a variety of flow structure in the downstream of the fuel jets.

  19. Overexpanded viscous supersonic jet interacting with a unilateral barrier

    Science.gov (United States)

    Dobrynin, B. M.; Maslennikov, V. G.; Sakharov, V. A.; Serova, E. V.

    1986-07-01

    The interaction of a two-dimensional supersonic jet with a unilateral barrier parallel to the flow symmetry plane was studied to account for effects due to gas viscosity and backgound-gas ejection from the region into which the jet expands. In the present experiments, the incident shock wave was reflected at the end of a shock tube equipped with a nozzle. The jet emerged into a pressure chamber 6 cu m in volume and the environmental pressure ratio of the flow in the quasi-stationary phase remained constant. The light source was an OGM-20 laser operating in the giant-pulse mode. Due to background-gas ejection, the gas density in the vicinity of the barrier is much less than on the unconfined side of the jet. The resulting flow is characterized by two distinct environmental pressure ratios: the flow is underexpanded near the barrier, while on the other side it is overexpanded.

  20. Numerical Simulation of Jet Behavior and Impingement Characteristics of Preheating Shrouded Supersonic Jets

    Institute of Scientific and Technical Information of China (English)

    Guang-sheng WEI; Rong ZHU; Ting CHENG; Fei ZHAO

    2016-01-01

    As a novel supersonic j et technology,preheating shrouded supersonic j et was developed to deliver oxygen into molten bath efficiently and affordably.However,there has been limited research on the jet behavior and im-pingement characteristics of preheating shrouded supersonic j ets.Computational fluid dynamics (CFD)models were established to investigate the effects of main and shrouding gas temperatures on the characteristics of flow field and impingement of shrouded supersonic j et.The preheating shrouded supersonic j et behavior was simulated and meas-ured by numerical simulation and j et measurement experiment respectively.The influence of preheating shrouded su-personic j et on gas j et penetration and fluid flow in liquid bath was calculated by the CFD model which was validated against water model experiments.The results show that the uptrend of the potential core length of shrouded super-sonic j et would be accelerated with increasing the main and shrouding gas temperatures.Also,preheating supersonic j ets demonstrated significant advantages in penetrating and stirring the liquid bath.

  1. DIAMOND PORT JET INTERACTION WITH SUPERSONIC FLOW

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Interaction flow field of the sonic air jet through diamond shaped orifices at different incidence angles (10 degrees, 27.5 degrees, 45 degrees and 90 degrees) and total pressures (0.10 MPa and 0. 46 MPa) with a Mach 5.0 freestream was studied experimentally. A 90 degrees circular injector was examined for comparison. Crosssection Mach number contours were acquired by a Pitot-cone five-hole pressure probe.The results indicate that the low Mach semicircular region close to the wall is the wake region. The boundary layer thinning is in the areas adjacent to the wake. For the detached case, the interaction shock extends further into the freestream, and the shock shape has more curvature, also the low-Mach upwash region is larger. The vortices of the plume and the height of the jet interaction shock increase with increasing incidence angle and jet pressure. 90 degrees diamond and circular injector have stronger plume vorticity, and for the circular injector low-Mach region is smaller than that for the diamond injector. Tapered ramp increases the plume vorticity, and the double ramp reduces the level of vorticity. The three-dimensional interaction shock shape was modeled from the surface shock shape, the center plane shock shape, and crosssectional shock shape. The shock total pressure was estimated with the normal component of the Mach number using normal shock theory. The shock induced total pressure losses decrease with decreasing jet incidence angle and injection pressure,where the largest losses are incurred by the 90 degrees, circular injector.

  2. Experimental characterization of a transition from collisionless to collisional interaction between head-on-merging supersonic plasma jets

    CERN Document Server

    Moser, A L

    2014-01-01

    We present results from experiments on the head-on merging of two supersonic plasma jets in an initially collisionless regime for the counter-streaming ions [A. L. Moser & S. C. Hsu, Phys. Plasmas, submitted (2014)]. The plasma jets are of either an argon/impurity or hydrogen/impurity mixture and are produced by pulsed-power-driven railguns. Based on time- and space-resolved fast-imaging, multi-chord interferometry, and survey-spectroscopy measurements of the overlapping region between the merging jets, we observe that the jets initially interpenetrate, consistent with calculated inter-jet ion collision lengths, which are long. As the jets interpenetrate, a rising mean-charge state causes a rapid decrease in the inter-jet ion collision length. Finally, the interaction becomes collisional and the jets stagnate, eventually producing structures consistent with collisional shocks. These experimental observations can aid in the validation of plasma collisionality and ionization models for plasmas with complex ...

  3. Supersonic laser-induced jetting of aluminum micro-droplets

    Energy Technology Data Exchange (ETDEWEB)

    Zenou, M. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel); Sa' ar, A. [Racah Institute of Physics and the Harvey M. Kruger Family Center for Nano-science and Nanotechnology, The Hebrew University of Jerusalem, 91904 Jerusalem (Israel); Kotler, Z. [Additive Manufacturing Lab, Orbotech Ltd., P.O. Box 215, 81101 Yavne (Israel)

    2015-05-04

    The droplet velocity and the incubation time of pure aluminum micro-droplets, printed using the method of sub-nanosecond laser induced forward transfer, have been measured indicating the formation of supersonic laser-induced jetting. The incubation time and the droplet velocity were extracted by measuring a transient electrical signal associated with droplet landing on the surface of the acceptor substrate. This technique has been exploited for studying small volume droplets, in the range of 10–100 femto-litters for which supersonic velocities were measured. The results suggest elastic propagation of the droplets across the donor-to-acceptor gap, a nonlinear deposition dynamics on the surface of the acceptor and overall efficient energy transfer from the laser beam to the droplets.

  4. Mixed exhaust flow supersonic jet engine and method

    Energy Technology Data Exchange (ETDEWEB)

    Klees, G.W.

    1993-06-08

    A method of operating a supersonic jet engine installation is described comprising (a) providing an engine having a variable area air inlet means and an outlet to discharge engine exhaust; (b) providing a secondary air passageway means; (c) receiving ambient air in the air inlet means and providing the ambient air as primary air to the engine inlet and secondary air to the secondary air passageway means; (d) providing a mixing section having an inlet portion and an exit portion, utilizing the mixing section in directing the exhaust from the engine to primary convergent/divergent exit passageway segments, where the exhaust is discharged at supersonic velocity as primary flow components, and directing secondary air flow from the secondary air passageway means to secondary exit passageway segments which are interspersed with the primary segments and from which the secondary air is discharged at subsonic velocity as secondary flow components; and (e) providing an exhaust section to receive the primary and secondary flow components in a mixing region and causing the primary and secondary flow components to mix to create a supersonic mixed flow, the exhaust section having a variable area final nozzle through which the mixed flow is discharged.

  5. Noise reduction in supersonic jets by nozzle fluidic inserts

    Science.gov (United States)

    Morris, Philip J.; McLaughlin, Dennis K.; Kuo, Ching-Wen

    2013-08-01

    Professor Philip Doak spent a very productive time as a consultant to the Lockheed-Georgia Company in the early 1970s. The focus of the overall research project was the prediction and reduction of noise from supersonic jets. Now, 40 years on, the present paper describes an innovative methodology and device for the reduction of supersonic jet noise. The goal is the development of a practical active noise reduction technique for low bypass ratio turbofan engines. This method introduces fluidic inserts installed in the divergent wall of a CD nozzle to replace hard-wall corrugation seals, which have been demonstrated to be effective by Seiner (2005) [1]. By altering the configuration and operating conditions of the fluidic inserts, active noise reduction for both mixing and shock noise has been obtained. Substantial noise reductions have been achieved for mixing noise in the maximum noise emission direction and in the forward arc for broadband shock-associated noise. To achieve these reductions (on the order of greater than 4 and 2 dB for the two main components respectively), practically achievable levels of injection mass flow rates have been used. The total injected mass flow rates are less than 4% of the core mass flow rate and the effective operating injection pressure ratio has been maintained at or below the same level as the nozzle pressure ratio of the core flow.

  6. Acoustic measurements of models of military style supersonic nozzle jets

    Directory of Open Access Journals (Sweden)

    Ching-Wen Kuo

    2014-02-01

    Full Text Available Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small- and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  7. Acoustic measurements of models of military style supersonic nozzle jets

    Institute of Scientific and Technical Information of China (English)

    Ching-Wen Kuo; Jérémy Veltin; Dennis K. McLaughlin

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. How-ever, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometries of these nozzles. Thus the present effort at Pennsylvania State University (PSU) in partnership with GE Aviation and the NASA Glenn Research Center is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles, and to identify and test promising noise reduction techniques. An equally important objective is to develop methodology for using data obtained from small-and moderate-scale experiments to reliably predict the full-scale engine noise. The experimental results presented show reasonable agreement between small-scale and medium-scale jets, as well as between heated jets and heat-simulated ones.

  8. Numerical Study for Hysteresis Phenomena of Shock Wave Reflection in Overexpanded Axisymmetric Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Tsuyoshi Yasunobu; Ken Matsuoka; Hideo Kashimura; Shigeru Matsuo; Toshiaki Setoguchi

    2006-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the supersonic nozzle, the overexpanded supersonic jet is formed at specific condition. In two-dimensional supersonic jet, furthermore, it is known that the hysteresis phenomena for the reflection type of shock wave in the flow field is occurred under the quasi-steady flow and for instance, the transitional pressure ratio between the regular reflection (RR) and Mach reflection (MR) is affected by this phenomenon. Many papers have described the hysteresis phenomena for underexpanded supersonic jet, but this phenomenon under the overexpanded axisymmetric jet has not been detailed in the past papers. The purpose of this study is to clear the hysteresis phenomena for the reflection type of shock wave at the overexpanded axisymmetric jet using the TVD method and to discuss the characteristic of hysteresis phenomena.

  9. LPWA using supersonic gas jet with tailored density profile

    Science.gov (United States)

    Kononenko, O.; Bohlen, S.; Dale, J.; D'Arcy, R.; Dinter, M.; Erbe, J. H.; Indorf, G.; di Lucchio, L.; Goldberg, L.; Gruse, J. N.; Karstensen, S.; Libov, V.; Ludwig, K.; Martinez de La Ossa, A.; Marutzky, F.; Niroula, A.; Osterhoff, J.; Quast, M.; Schaper, L.; Schwinkendorf, J.-P.; Streeter, M.; Tauscher, G.; Weichert, S.; Palmer, C.; Horbatiuk, Taras

    2016-10-01

    Laser driven plasma wakefield accelerators have been explored as a potential compact, reproducible source of relativistic electron bunches, utilising an electric field of many GV/m. Control over injection of electrons into the wakefield is of crucial importance in producing stable, mono-energetic electron bunches. Density tailoring of the target, to control the acceleration process, can also be used to improve the quality of the bunch. By using gas jets to provide tailored targets it is possible to provide good access for plasma diagnostics while also producing sharp density gradients for density down-ramp injection. OpenFOAM hydrodynamic simulations were used to investigate the possibility of producing tailored density targets in a supersonic gas jet. Particle-in-cell simulations of the resulting density profiles modelled the effect of the tailored density on the properties of the accelerated electron bunch. Here, we present the simulation results together with preliminary experimental measurements of electron and x-ray properties from LPWA experiments using gas jet targets and a 25 TW, 25 fs Ti:Sa laser system at DESY.

  10. Experimental Investigation on Noise Suppression in Supersonic Jets from Convergent-Divergent Nozzles with Baffles

    Institute of Scientific and Technical Information of China (English)

    Yoshiaki Miyazato; Yong-Hun Kweon; Toshiyuki Aoki; Mitsuharu Masuda; Kwon-Hee Lee; Heuy-Dong Kim; Toshiaki Setoguchi; Kazuyasu Matsuo

    2003-01-01

    The acoustic properties of supersonic jet noise from a convergent-divergent nozzle with a baffle have been studied experimentally over the range of nozzle pressure ratios from 2.0 to 8.0. Acoustic measurements were conducted in a carefully designed anechoic room providing a free-field environment. A new approach for screech noise suppression by a cross-wire is proposed. Schlieren photographs were taken to visualize the shock wave patterns in the supersonic jet with and without the cross-wire. The effects of the baffle and the cross-wire on acoustic properties are discussed. It is shown that the baffle has little effect on the screech frequency for the underexpanded supersonic jet without the cross-wire. Also, the cross-wire introduced in supersonic jets is found to lead to a significant reduction in overall sound pressure level.

  11. Self—Induced Oscillation of Supersonic Jet During Impingement on Cylindrical Body

    Institute of Scientific and Technical Information of China (English)

    HideoKashimura; ShenYu; 等

    1998-01-01

    The phenomena of the interaction between a supersonic jet and an obstacle are related to the problems of the aeronautical and other industrial engineerings.When a supersonic jet impinges on an obstacle,the self induced oscillation occurs under several conditions.The flow charactersitics caused by the impingement of underexpanded supersonic jet on an obstacle have been investigated.However,it seems that the mechanism of self induced oscillation and the factor which dominates if have not been detailed in the published papers,The characteristics of the self induced oscillation of the supersonic jet during the impingement on a cylindrical body are investigated using the visualization of flow fields and the numerical calculations in this study.

  12. High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods

    Science.gov (United States)

    2016-08-24

    decades, however methods of measurably controlling -reducing jet noise in an efficient and robust manner remain evasive. Previous research has shown...2016 1-May-2013 30-Apr-2016 High Temperature Supersonic Jet Noise - Fundamental Studies and Control using Advanced Actuation Methods The views...and Control using Advanced Actuation Methods Report Title Understanding and controlling jet noise has been the focus of analytical, computational and

  13. Azimuthally Varying Noise Reduction Techniques Applied to Supersonic Jets

    Science.gov (United States)

    Heeb, Nicholas S.

    An experimental investigation into the effect of azimuthal variance of chevrons and fluidically enhanced chevrons applied to supersonic jets is presented. Flow field measurements of streamwise and cross-stream particle imaging velocimetry were employed to determine the causes of noise reduction, which was demonstrated through acoustic measurements. Results were obtained in the over- and under- expanded regimes, and at the design condition, though emphasis was placed on the overexpanded regime due to practical application. Surveys of chevron geometry, number, and arrangement were undertaken in an effort to reduce noise and/or incurred performance penalties. Penetration was found to be positively correlated with noise reduction in the overexpanded regime, and negatively correlated in underexpanded operation due to increased effective penetration and high frequency penalty, respectively. The effect of arrangement indicated the beveled configuration achieved optimal abatement in the ideally and underexpanded regimes due to superior BSAN reduction. The symmetric configuration achieved optimal overexpanded noise reduction due to LSS suppression from improved vortex persistence. Increases in chevron number generally improved reduction of all noise components for lower penetration configurations. Higher penetration configurations reached levels of saturation in the four chevron range, with the potential to introduce secondary shock structures and generate additional noise with higher number. Alternation of penetration generated limited benefit, with slight reduction of the high frequency penalty caused by increased shock spacing. The combination of alternating penetration with beveled and clustered configurations achieved comparable noise reduction to the standard counterparts. Analysis of the entire data set indicated initial improvements with projected area that saturated after a given level and either plateaued or degraded with additional increases. Optimal reductions

  14. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Institute of Scientific and Technical Information of China (English)

    Jin Di; Cui Wei; Li Yinghong; Li Fanyu; Jia Min; Sun Quan; Zhang Bailing

    2015-01-01

    The plasma synthetic jet is a novel flow control approach which is currently being stud-ied. In this paper its characteristic and control effect on supersonic flow is investigated both exper-imentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after chang-ing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heat-ing efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 · 1012 W/m3. For more details on the interaction between plasma syn-thetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  15. Characteristics of pulsed plasma synthetic jet and its control effect on supersonic flow

    Directory of Open Access Journals (Sweden)

    Jin Di

    2015-02-01

    Full Text Available The plasma synthetic jet is a novel flow control approach which is currently being studied. In this paper its characteristic and control effect on supersonic flow is investigated both experimentally and numerically. In the experiment, the formation of plasma synthetic jet and its propagation velocity in quiescent air are recorded and calculated with time resolved schlieren method. The jet velocity is up to 100 m/s and no remarkable difference has been found after changing discharge parameters. When applied in Mach 2 supersonic flow, an obvious shockwave can be observed. In the modeling of electrical heating, the arc domain is not defined as an initial condition with fixed temperature or pressure, but a source term with time-varying input power density, which is expected to better describe the influence of heating process. Velocity variation with different heating efficiencies is presented and discussed and a peak velocity of 850 m/s is achieved in still air with heating power density of 5.0 × 1012 W/m3. For more details on the interaction between plasma synthetic jet and supersonic flow, the plasma synthetic jet induced shockwave and the disturbances in the boundary layer are numerically researched. All the results have demonstrated the control authority of plasma synthetic jet onto supersonic flow.

  16. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    Science.gov (United States)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.

  17. Experimental Study of Ignition over Impact-Driven Supersonic Liquid Fuel Jet

    Directory of Open Access Journals (Sweden)

    Anirut Matthujak

    2013-01-01

    Full Text Available This study experimentally investigates the mechanism of the ignition of the supersonic liquid fuel jet by the visualization. N-Hexadecane having the cetane number of 100 was used as a liquid for the jet in order to enhance the ignition potential of the liquid fuel jet. Moreover, the heat column and the high intensity CO2 laser were applied to initiate the ignition. The ignition over the liquid fuel jet was visualized by a high-speed digital video camera with a shadowgraph system. From the shadowgraph images, the autoignition or ignition of the supersonic liquid fuel jet, at the velocity of 1,186 m/s which is a Mach number relative to the air of 3.41, did not take place. The ignition still did not occur, even though the heat column or the high intensity CO2 laser was alone applied. The attempt to initiate the ignition over the liquid fuel jet was achieved by applying both the heat column and the high intensity CO2 laser. Observing the signs of luminous spots or flames in the shadowgraph would readily indicate the presence of ignitions. The mechanism of the ignition and combustion over the liquid fuel jet was clearly clarified. Moreover, it was found that the ignition over the supersonic liquid fuel jet in this study was rather the force ignition than being the auto-ignition induced by shock wave heating.

  18. On the Scaling Law for Broadband Shock Noise Intensity in Supersonic Jets

    Science.gov (United States)

    Kanudula, Max

    2009-01-01

    A theoretical model for the scaling of broadband shock noise intensity in supersonic jets was formulated on the basis of linear shock-shear wave interaction. An hypothesis has been postulated that the peak angle of incidence (closer to the critical angle) for the shear wave primarily governs the generation of sound in the interaction process rather than the noise generation contribution from off-peak incident angles. The proposed theory satisfactorily explains the well-known scaling law for the broadband shock -associated noise in supersonic jets.

  19. Effects of the jet-to-crossflow momentum ratio on a sonic jet into a supersonic crossflow

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Numerical investigation of a transverse sonic jet injected into a supersonic crossflow was carried out using large-eddy simulation for a free-stream Mach number M = 1.6 and a Reynolds number Re = 1.38×10~5 based on the jet diameter.Effects of the jet-to-crossflow momentum ratio on various fundamental mechanisms dictating the intricate flow phenomena,including flow structures, turbulent characters and frequency behaviors,have been studied.The complex flow structures and the relevant flow features are disc...

  20. Experimental investigations on cavity-actuated under-expanded supersonic oscillating jet

    Directory of Open Access Journals (Sweden)

    Sun Bo

    2015-10-01

    Full Text Available As one type of potential flow control actuators, cavity-actuated supersonic jet oscillators, which consist of a 2-D convergent nozzle and two face to face cavities, need to be investigated deeply to get the knowledge of their oscillating feature and underlying mechanism. Wind tunnel testing are conducted under different back pressures in a vacuum-type wind tunnel for two supersonic jet oscillators, to obtain their characteristics and the conditions for jet oscillating. The experimental results show that the continuous, nearly symmetric or asymmetric flipping between the two cavities appears over certain nozzle pressure ratio (NPR range for both oscillators according to schlieren visualizations. Compared to the free jet, the oscillating jet with large exit achieves larger mixing; the oscillating jet with small exit has less mixing, based on the analysis of jet axial peak velocity and the entrainment. The cross-junction mode for estimating the resonance frequency in a pipe with two closed side branches is modified and obtained comparable estimations of the frequency of jet flipping with experimental data, but further investigations are needed to discover the underlying mechanism for the jet flipping.

  1. Experimental investigations on cavity-actuated under-expanded supersonic oscillating jet

    Institute of Scientific and Technical Information of China (English)

    Sun Bo; Luo Xiaochen; Feng Feng; Wu Xiaosong

    2015-01-01

    As one type of potential flow control actuators, cavity-actuated supersonic jet oscillators, which consist of a 2-D convergent nozzle and two face to face cavities, need to be investigated dee-ply to get the knowledge of their oscillating feature and underlying mechanism. Wind tunnel testing are conducted under different back pressures in a vacuum-type wind tunnel for two supersonic jet oscillators, to obtain their characteristics and the conditions for jet oscillating. The experimental results show that the continuous, nearly symmetric or asymmetric flipping between the two cavities appears over certain nozzle pressure ratio (NPR) range for both oscillators according to schlieren visualizations. Compared to the free jet, the oscillating jet with large exit achieves larger mixing;the oscillating jet with small exit has less mixing, based on the analysis of jet axial peak velocity and the entrainment. The cross-junction mode for estimating the resonance frequency in a pipe with two closed side branches is modified and obtained comparable estimations of the frequency of jet flip-ping with experimental data, but further investigations are needed to discover the underlying mechanism for the jet flipping.

  2. Lateral Reaction Jet Flow Interaction Effects on a Generic Fin-Stabilized Munition in Supersonic Crossflows

    Science.gov (United States)

    2013-11-01

    269–275. 9. Stahl, B.; Edmunds , H.; Gulhan, A. Experimental Investigation of Hot and Cold Side Jet Interaction With a Supersonic Cross Flow...LICHTENBERG-SCANLAN G MALEJKO T RECCHIA C STOUT W TOLEDO J TRAVAILLE E VAZQUEZ C WILSON 4 PM CAS (PDF) M BURKE R KIEBLER

  3. Study on Turbulent Behavior of Water Jet in Supersonic Steam Injector

    Science.gov (United States)

    Fukuichi, Akira; Abe, Yutaka; Fujiwara, Akiko; Kawamoto, Yujiro; Iwaki, Chikako; Narabayashi, Tadashi; Mori, Michitsugu; Ohmori, Shuichi

    One of the most interesting devices for light water reactor systems aimed at simplified system, improvement of safety and reliability is a supersonic steam injector. Supersonic steam injector is a passive jet pump without rotating machine and high efficient heat exchanger because of direct contact condensation between supersonic steam and a subcooled water jet. It is considered that flow behavior in the supersonic steam injector is related to complicated turbulent flow with large shear stress induced by velocity difference between steam and water and direct contact condensation. However, studies about turbulent flow under large shear stress with direct contact condensation are not enough. Especially, mechanisms of momentum and heat transfer are not clarified in detail. Objective of the present study is to investigate turbulent behaviors of a water jet and interface that play an important role in heat transfer and momentum transfer. Radial distribution of streamwise velocity and fluctuation of total pressure are measured by a pitot measurement. Visual measurement of the turbulent water jet is conducted by a high speed camera in order to identify location of unstable interface and its behavior. It is found that streamwise velocity increases as it approaches downstream of the mixing nozzle. Fluctuation of total pressure is large at water-steam mixture region. It is confirmed that waves propagated on the interface. And its velocity is obtained.

  4. Application of POD on time-resolved schlieren in supersonic multi-stream rectangular jets

    Science.gov (United States)

    Berry, M. G.; Magstadt, A. S.; Glauser, M. N.

    2017-02-01

    In this paper, we present an experimental investigation of a supersonic rectangular nozzle with aft deck used for three-stream engines. The jet utilizes a single expansion ramp nozzle (SERN) configuration along with multiple streams, operating at a bulk flow Mj,1 = 1.6 and bypass stream Mj,3 = 1.0. This idealized representation consists of two canonical flows: a supersonic convergent-divergent (CD) jet and a sonic wall jet. Time-resolved schlieren experiments were performed up to 100 kHz. Proper orthogonal decomposition (POD), as suggested by Lumley for structure identification in turbulent flows, is applied to the schlieren images and the spatial eigenfunctions and time-dependent coefficients are related to the flow structures. This research seeks to lay a foundation for fundamental testing of multi-stream SERNs and the identification of the flow physics that dominate these modern military nozzles.

  5. Computer simulation and visualization of supersonic jet for gas cluster equipment

    Science.gov (United States)

    Ieshkin, A.; Ermakov, Y.; Chernysh, V.; Ivanov, I.; Kryukov, I.; Alekseev, K.; Kargin, N.; Insepov, Z.

    2015-09-01

    Supersonic nozzle is a key component of a gas cluster condensation system. We describe a flow visualization system using glow discharge with annular or plane electrodes. The geometric parameters of a supersonic jet under typical conditions used in a gas cluster ion beam accelerator are investigated. As well numerical simulations were performed. Dependence of inlet and ambient pressures and nozzle throat diameter on the shock bottle dimensions is described for different working gases. Influence of condensation rate on shock bottle axial size is discussed.

  6. Computer simulation and visualization of supersonic jet for gas cluster equipment

    Energy Technology Data Exchange (ETDEWEB)

    Ieshkin, A. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Ermakov, Y. [Scobeltsyn Nuclear Physics Research Institute, Lomonosov State Moscow University, GSP-1, Leninskiye Gory, Moscow 119991 (Russian Federation); Chernysh, V.; Ivanov, I. [Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory, Moscow 119991 (Russian Federation); Kryukov, I. [Institute for Problems in Mechanics, Russian Academy of Sciences, prosp. Vernadskogo, 101, Block 1, Moscow 119526 (Russian Federation); Alekseev, K.; Kargin, N. [National Research Nuclear University «MEPhI», Kashirskoye shosse 31, Moscow 115409 (Russian Federation); Insepov, Z., E-mail: zinsepov@purdue.edu [Purdue University, 500 Central Drive, West Lafayette, IN (United States); Nazarbayev University Research and Innovation System, Kabanbay Batyr Avenue 53, Astana (Kazakhstan)

    2015-09-21

    Supersonic nozzle is a key component of a gas cluster condensation system. We describe a flow visualization system using glow discharge with annular or plane electrodes. The geometric parameters of a supersonic jet under typical conditions used in a gas cluster ion beam accelerator are investigated. As well numerical simulations were performed. Dependence of inlet and ambient pressures and nozzle throat diameter on the shock bottle dimensions is described for different working gases. Influence of condensation rate on shock bottle axial size is discussed.

  7. Computational Investigation of Swirling Supersonic Jets Generated Through a Nozzle-Twisted Lance

    Science.gov (United States)

    Li, Mingming; Li, Qiang; Zou, Zongshu; An, Xizhong

    2017-02-01

    The dynamic characteristics of supersonic swirling jets generated through a nozzle-twisted lance are numerically studied. The essential features of the swirling jets are identified by defining a deviation angle. The effects of nozzle twist angle (NTA) on swirling flow intensity, coalescence characteristics, and dynamic parameter distributions of the jets are discussed. The rotational flow characteristics are revealed. The results show that the jets from the nozzle-twisted lance are imparted to a circumferential rotating movement around the lance axis, and such swirling flow is enhanced by increasing NTA. The enhanced swirling flow causes weaker coalescence of the jets, faster attenuations of the axial velocity, and higher heat transfer rate between the jets and surroundings. The supersonic core length, however, is found to be less sensitive to the swirling flow intensity. The radial spreading of the jets, changing non-monotonically with NTA, arrives at its maximum at 5 deg of NTA. Furthermore, the swirling flow induces a considerable tangential velocity component, and as a result, a holistic and effective horizontal swirling flow field develops. The y-vorticity distribution range and the corresponding magnitude turn larger with increasing NTA, which promote the vortex motion of the local fluid element and thus intensify the local mixing.

  8. Aeroacoustic Properties of Moderate Reynolds Number Elliptic and Rectangular Supersonic Jets.

    Science.gov (United States)

    Kinzie, Kevin Wayne

    1995-01-01

    The aerodynamic and acoustic properties of supersonic elliptic, rectangular, and circular jets are experimentally investigated. All three jets are perfectly expanded with an exit Mach number of approximately 1.5 and are operated in the Reynolds number range of 25,000 to 50,000. The reduced Reynolds number facilitates the use of conventional hot-wire anemometry and a glow discharge excitation technique which preferentially excites the varicose or flapping modes in the jets. In order to simulate the high velocity and low density effects of heated jets, helium is mixed with the air jets. This allows the large-scale structures in the jet shear layer to achieve high enough convective velocity to radiate noise through the Mach wave emission process. Experiments in the present work focus on comparisons between the cold and simulated heated jet conditions and on the beneficial aeroacoustic properties of non-circular jets. Comparisons are also made between the elliptic and rectangular jets. When helium is added to the jets, the instability wave phase velocity is found to approach or exceed the ambient sound speed. The radiated noise is also louder and directed at a higher angle from the jet axis. In addition, near field hot-wire spectra are found to match the far-field acoustic spectra only for the helium/air mixture case. These results demonstrate that there are significant differences between unheated and heated asymmetric jets in the Mach 1.5 speed range, many of which have been found previously for circular jets. The asymmetric jets were also found to radiate less noise than the round jet at comparable operating conditions. Strong similarities were also found between the aerodynamic and acoustic properties of the elliptic and rectangular jets.

  9. The Effect of Reflector with Sound-Absorbing Material on Supersonic Jet Noise

    Institute of Scientific and Technical Information of China (English)

    Y.-H. KWEON; M. TSUCHIDA; Y. MIYAZATO; T. AOKI; H.-D. KIM; T. SETOGUCHI

    2005-01-01

    This paper describes an experimental work to investigate the effect of a reflector on supersonic jet noise radiated from a convergent-divergent nozzle with a design Mach number 2.0. In the present study, a metal reflector and reflectors made of three different sound-absorbing materials (grass wool and polyurethane foam) were employed,and the reflector size was varied. Acoustic measurement is carried out to obtain the acoustic characteristics such as frequency, amplitude of screech tone and overall sound pressure level (OASPL). A high-quality schlieren optical system is used to visualize the detailed structure of supersonic jet. The results obtained show that the acoustic characteristics of supersonic jet noise are strongly dependent upon the jet pressure ratio and the reflector size. It is also found that the reflector with sound-absorbing material reduces the screech tone amplitude by about 5-13dB and the overall sound pressure levels by about 2-5dB, compared with those of the metal reflector.

  10. LES of an inclined jet into a supersonic cross-flow

    CERN Document Server

    Ferrante, Antonino; Matheou, Georgios; Dimotakis, Paul E; Stephens, Mike; Adams, Paul; Walters, Richard; Hand, Randall

    2008-01-01

    This short article describes flow parameters, numerical method, and animations of the fluid dynamics video LES of an Inclined Jet into a Supersonic Cross-Flow (http://hdl.handle.net/1813/11480). Helium is injected through an inclined round jet into a supersonic air flow at Mach 3.6. The video shows 2D contours of Mach number and magnitude of density gradient, and 3D iso-surfaces of Helium mass-fraction and vortical structures. Large eddy simulation with the sub-grid scale (LES-SGS) stretched vortex model of turbulent and scalar transport captures the main flow features: bow shock, Mach disk, shear layers, counter-rotating vortices, and large-scale structures.

  11. Sound Radiation from a Supersonic Jet Passing Through a Partially Open Exhaust Duct

    Science.gov (United States)

    Kandula, Max

    2011-01-01

    The radiation of sound from a perfectly expanded Mach 2.5 cold supersonic jet of 25.4 mm exit diameter flowing through a partially open rigid-walled duct with an upstream i-deflector has been studied experimentally. In the experiments, the nozzle is mounted vertically, with the nozzle exit plane at a height of 73 jet diameters above ground level. Relative to the nozzle exit plane (NEP), the location of the duct inlet is varied at 10, 5, and -1 jet diameters. Far-field sound pressure levels were obtained at 54 jet diameters above ground with the aid of acoustic sensors equally spaced around a circular arc of radius equal to 80 jet diameters from the jet axis. Data on the jet acoustic field for the partially open duct were obtained and compared with those with a free jet and with a closed duct. The results suggest that for the partially open duct the overall sound pressure level (OASPL) decreases as the distance between the NEP and the duct inlet plane decreases, while the opposite trend is observed for the closed duct. It is also concluded that the observed peak frequency in the partially open duct increases above the free jet value as the angle from the duct axis is increased, and as the duct inlet plane becomes closer to the NEP.

  12. Supersonic Jet Noise Reduction Using Flapping Injection and Pulsed Injection

    Science.gov (United States)

    Hafsteinsson, Haukur; Eriksson, Lars-Erik; Cuppoletti, Daniel; Gutmark, Ephraim; Department of Applied Mechanics, Chalmers University of Technology Team; Department of Aerospace Engineering, University of Cincinatti Team; Swedish Defence Material Administration, Sweden Team

    2013-11-01

    Aircraft are in general noisy and there is a high demand for reducing their noise levels. The jet exhaust is in most cases the main noise source of the aircraft, especially for low bypass ratio jet engines. Fluidic injection affecting the shear layer close to the nozzle exit is a promising noise reduction technique as it can be turned of while not needed and thus the negative effect on the engine performance will be minimized. In the presented work, LES is used to compare steady-state mass flow injection with steady-state mass flow flapping jet injection. The work is a direct continuation of a previous LES study on pulsed injection which showed that the pulsed injection induced pressure pulses in the jet which caused increased tonal noise in the downstream directions. The injection system considered in the presented work consists of eight evenly distributed injectors at the nozzle exit plane with a 90° injection angle relative to the flow direction. Flapping jet injection is believed to minimize the creation of these pressure pulses since it provides steady-state mass flow. This work is funded by Swedish Defense Material Administration (FMV).

  13. PIV Measurements of Supersonic Internally-Mixed Dual-Stream Jets

    Science.gov (United States)

    Bridges, James E.; Wernet, Mark P.

    2012-01-01

    While externally mixed, or separate flow, nozzle systems are most common in high bypass-ratio aircraft, they are not as attractive for use in lower bypass-ratio systems and on aircraft that will fly supersonically. The noise of such propulsion systems is also dominated by jet noise, making the study and noise reduction of these exhaust systems very important, both for military aircraft and future civilian supersonic aircraft. This paper presents particle image velocimetry of internally mixed nozzle with different area ratios between core and bypass, and nozzles that are ideally expanded and convergent. Such configurations independently control the geometry of the internal mixing layer and of the external shock structure. These allow exploration of the impact of shocks on the turbulent mixing layers, the impact of bypass ratio on broadband shock noise and mixing noise, and the impact of temperature on the turbulent flow field. At the 2009 AIAA/CEAS Aeroacoustics Conference the authors presented data and analysis from a series of tests that looked at the acoustics of supersonic jets from internally mixed nozzles. In that paper the broadband shock and mixing noise components of the jet noise were independently manipulated by holding Mach number constant while varying bypass ratio and jet temperature. Significant portions of that analysis was predicated on assumptions regarding the flow fields of these jets, both shock structure and turbulence. In this paper we add to that analysis by presenting particle image velocimetry measurements of the flow fields of many of those jets. In addition, the turbulent velocity data documented here will be very useful for validation of computational flow codes that are being developed to design advanced nozzles for future aircraft.

  14. Nonlinear effects of energy sources and the jet at supersonic flow in the channel

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2016-10-01

    The work is devoted to the mathematical modeling of the influence of transversal jet and the near-wall energy sources on the shock wave structure of supersonic flow in channel with variable cross section. Stable regimes with the region of transonic velocities are obtained. Their stability is confirmed by the width of the corridor of the input power in the area of the regime existence.

  15. Measurement of Supersonic Jet Noise with Optical Wave Microphone System

    Institute of Scientific and Technical Information of China (English)

    Masataka KOSAKA; Kunisato SETO; MD. Tawhidul Islam KHAN; Yoichi NAKAZONO

    2005-01-01

    An optical wave microphone system is a new technique of sound measurement. This technique has been developed as a new plasma diagnostic technique to measure electron density fluctuations in the nuclear fusion research. Because the sound wave is a pressure or a density fluctuation, it is possible for this technique to measure the sound wave, too. The acoustical characteristics of the optical wave microphone system were examined by using a speaker as a first step. Next, feasibility of this device to measure jet noise was examined. It was found that the optical wave microphone system could measure the jet noise as well as a sound from speaker.Hence the optical wave microphone system can be considered one of the devices equivalent to condenser microphone. Because of these reason, this device is very convenient to scan the acoustic filed through jet flow from the inside to the out side and more preferable for not disturbing the observation field.

  16. Development of semi-free jet test facility for supersonic engine; Choonsoku engine shiken shisetsu semi free jet shiken sochi no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T.; Taguchi, H.; Omi, J.; Sakamoto, K. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    2000-01-01

    IHI has been developing the SETF (Supersonic Engine Test Facility) to aim at the research and development of engines for the next generation commercial supersonic transport in the NAL (National Aerospace Laboratory in Japan). The SETF will supply the functions to test the supersonic engine performance in high altitude flight condition and supersonic intake-engine matching. The semi-free jet test mode was adopted for the supersonic intake-engine matching test, but this test configuration has not been conducted previously in Japan and there were a large number of unknown factors. IHI has developed a sub-scale test model in cooperation with NAL to identify the test conditions and a start sequence of the semi-free jet test mode. In addition, the designs of facility component were optimized and verified by using the CFD (Computational Fluid Dynamics) method. (author)

  17. Generation of intense plasma jets and microparticle beams by an arc in a supersonic vortex

    Science.gov (United States)

    Winterberg, F.

    1990-04-01

    Temperatures up to 50000 have been reached in water vortex stabilized Gerdien arcs. In arcs confined within the cores of supersonic hydrogen vortices much higher temperatures should be possible. Furthermore if these arcs are thermally insulated by a strong magnetic field temperatures up to a 106 K may be attainable. At these temperatures and in passing through a Laval nozzle the arc plasma can reach jet velocities of 100km/sec. If small quantities of heavy elements are entrained by this high velocity plasma jet these heavy elements are carried along reaching the same speed and upon condensation can form beams of clusters and microparticles.

  18. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  19. Mode Decomposition of a Supersonic Jet Using Momentum Potential Theory

    Science.gov (United States)

    Sasidharan Nair, Unnikrishnan; Gaitonde, Datta

    2015-11-01

    We adopt Doak's momentum potential theory to investigate the acoustic, thermal and hydrodynamic modes in a Mach 1.3 cold jet. A statistically stationary LES of the jet is subjected to Helmholtz decomposition to yield the solenoidal and irrotational components of the momentum density. The irrotational component is further decomposed into acoustic and thermal modes. The data confirms the quantitative radial decay rates of the hydrodynamic and acoustic fields as well as the experimentally observed universal spectrum specific to the downstream and sideline directions. The irrotational field in the core exhibits an axially coherent jittering wave-packet with an internal frequency of St 0.4, yielding the highly directional downstream radiation at St 0.2. The intrusion of rolled up vortices from the expanding shear layer into the core induces a coherent perturbation zone in the irrotational component, which persists and propagates into the nearfield resulting in intermittent noise events. The interaction of the fluctuating solenoidal field with the fluctuating Lamb vector in the core of the jet is found to be the most prominent source, while its interaction with the fluctuating entropy gradient is found to be a sink in this cold jet.

  20. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and

  1. Acoustic measurements of models of military style supersonic nozzle jets

    NARCIS (Netherlands)

    Kuo, C.W.; Veltin, J.; McLaughlin, D.K.

    2014-01-01

    Modern military aircraft jet engines are designed with variable-geometry nozzles to provide optimal thrust in different operating conditions, depending on the flight envelope. However, acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and t

  2. Control of Penetration and Mixing of an Excited Supersonic Jet Into a Supersonic Cross Stream (Postprint)

    Science.gov (United States)

    2006-10-01

    1 identified jet- shear layer to be a primary location where combustion took place. Increasing the interracial contact would of course be beneficial...afforded by the injection scheme and de- fines the relationship between the perimeter and the area of a given contour compared to a perfect circle. A

  3. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James; Prozument, Kirill; Joalland, Baptiste; Park, Barratt; Field, Robert W.; Sims, Ian; Suits, Arthur; Zack, Lindsay

    2014-06-01

    We present preliminary results describing the development of a new instrument that combines two powerful techniques: Chirped Pulse-Fourier Transform MicroWave (CP-FTMW) spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates and perform unique spectroscopic, kinetics and dynamics measurements. We have constructed a new high-power K_a-band, 26-40 GHz, chirped pulse spectrometer with sub-MHz resolution, analogous to the revolutionary CP-FTMW spectroscopic technique developed in the Pate group at University of Virginia. In order to study smaller molecules, the E-band, 60-90 GHz, CP capability was added to our spectrometer. A novel strategy for generating uniform supersonic flow through a Laval nozzle is introduced. High throughput pulsed piezo-valve is used to produce cold (30 K) uniform flow with large volumes of 150 cm^3 and densities of 1014 molecules/cm3 with modest pumping facilities. The uniform flow conditions for a variety of noble gases extend as far as 20 cm from the Laval nozzle and a single compound turbo-molecular pump maintains the operating pressure. Two competing design considerations are critical to the performance of the system: a low temperature flow is needed to maximize the population difference between rotational levels, and high gas number densities are needed to ensure rapid cooling to achieve the uniform flow conditions. At the same time, collision times shorter than the chirp duration will give inaccurate intensities and reduced signal levels due to collisional dephasing of free induction decay. Details of the instrument and future directions and challenges will be discussed.

  4. H-mode fueling optimization with the supersonic deuterium jet in NSTX

    Energy Technology Data Exchange (ETDEWEB)

    Soukhanovskii, V A; Bell, M G; Bell, R E; Gates, D A; Kaita, R; Kugel, H W; LeBlanc, B P; Lundberg, D P; Maingi, R; Menard, J E; Raman, R; Roquemore, A L; Stotler, D P

    2008-06-18

    High-performance, long-pulse 0.7-1.2 MA 6-7 MW NBI-heated small-ELM H-mode plasma discharges are developed in the National Spherical Torus Experiment (NSTX) as prototypes for confinement and current drive extrapolations to future spherical tori. It is envisioned that innovative lithium coating techniques for H-mode density pumping and a supersonic deuterium jet for plasma refueling will be used to achieve the low pedestal collisionality and low n{sub e}/n{sub G} fractions (0.3-0.6), both of which being essential conditions for maximizing the non-inductive (bootstrap and beam driven) current fractions. The low field side supersonic gas injector (SGI) on NSTX consists of a small converging-diverging graphite Laval nozzle and a piezoelectric gas valve. The nozzle is capable of producing a deuterium jet with Mach number M {le} 4, estimated gas density at the nozzle exit n {le} 5 x 10{sup 23} m{sup -3}, estimated temperature T {ge} 70 K, and flow velocity v = 2:4 km/s. The nozzle Reynolds number Reis {approx_equal} 6000. The nozzle and the valve are enclosed in a protective carbon fiber composite shroud and mounted on a movable probe at a midplane port location. Despite the beneficial L-mode fueling experience with supersonic jets in limiter tokamaks, there is a limited experience with fueling of high-performance H-mode divertor discharges and the associated density, MHD stability, and MARFE limits. In initial supersonic deuterium jet fueling experiments in NSTX, a reliable H-mode access, a low NBI power threshold, P{sub LH} {le} 2 MW, and a high fueling efficiency (0.1-0.4) have been demonstrated. Progress has also been made toward a better control of the injected fueling gas by decreasing the uncontrolled high field side (HFS) injector fueling rate by up to 95 % and complementing it with the supersonic jet fueling. These results motivated recent upgrades to the SGI gas delivery and control systems. The new SGI-Upgrade (SGI-U) capabilities include multi-pulse ms

  5. Experimental investigation of the noise reduction of supersonic exhaust jets with fluidic inserts

    Science.gov (United States)

    Powers, Russell William Walter

    The noise produced by the supersonic, high temperature jets that exhaust from military aircraft is becoming a hazard to naval personnel and a disturbance to communities near military bases. Methods to reduce the noise produced from these jets in a practical full-scale environment are difficult. The development and analysis of distributed nozzle blowing for the reduction of radiated noise from supersonic jets is described. Model scale experiments of jets that simulate the exhaust jets from typical low-bypass ratio military jet aircraft engines during takeoff are performed. Fluidic inserts are created that use distributed blowing in the divergent section of the nozzle to simulate mechanical, hardwall corrugations, while having the advantage of being an active control method. This research focuses on model scale experiments to better understand the fluidic insert noise reduction method. Distributed blowing within the divergent section of the military-style convergent divergent nozzle alters the shock structure of the jet in addition to creating streamwise vorticity for the reduction of mixing noise. Enhancements to the fluidic insert design have been performed along with experiments over a large number of injection parameters and core jet conditions. Primarily military-style round nozzles have been used, with preliminary measurements of hardwall corrugations and fluidic inserts in rectangular nozzle geometries also performed. It has been shown that the noise reduction of the fluidic inserts is most heavily dependent upon the momentum flux ratio between the injector and core jet. Maximum reductions of approximately 5.5 dB OASPL have been observed with practical mass flow rates and injection pressures. The first measurements with fluidic inserts in the presence of a forward flight stream have been performed. Optimal noise reduction occurs at similar injector parameters in the presence of forward flight. Fluidic inserts in the presence of a forward flight stream were

  6. Sub-Doppler infrared spectroscopy and formation dynamics of triacetylene in a slit supersonic expansion.

    Science.gov (United States)

    Chang, Chih-Hsuan; Agarwal, Jay; Allen, Wesley D; Nesbitt, David J

    2016-02-21

    Infrared spectroscopy and formation dynamics of triacetylene are investigated in a slit jet supersonic discharge and probed with sub-Doppler resolution (≈60 MHz) on the fundamental antisymmetric CH stretch mode (ν5). The triacetylene is generated in the throat of the discharge by sequential attack of ethynyl radical with acetyelene and diacetylene: (i) HCCH → HCC + H, (ii) HCC + HCCH → HCCCCH + H, (iii) HCC + HCCCCH → HCCCCCCH + H, cooled rapidly in the slit expansion to 15 K, and probed by near shot-noise-limited absorption sensitivity with a tunable difference-frequency infrared laser. The combination of jet cooled temperatures (Trot = 15 K) and low spectral congestion permits (i) analysis of rotationally avoided crossings in the ν5 band ascribed to Coriolis interactions, as well as (ii) first detection of ν5 Π-Π hot band progressions built on the ν12 sym CC bend and definitively assigned via state-of-the-art ab initio vibration-rotation interaction parameters (αi), which make for interesting comparison with recent spectroscopic studies of Doney et al. [J. Mol. Spectrosc. 316, 54 (2015)]. The combined data provide direct evidence for significantly non-equilibrium populations in the CC bending manifold, dynamically consistent with a strongly bent radical intermediate and transition states for forming triacetylene product. The presence of intense triacetylene signals under cold, low density slit jet conditions provides support for (i) barrierless addition of HCC with HCCCCH and (ii) a high quantum yield for HCCCCCCH formation. Complete basis set calculations for energetics [CCSD(T)-f12/VnZ-f12, n = 2,3] and frequencies [CCSD(T)-f12/VdZ-f12] are presented for both radical intermediate and transition state species, predicting collision stabilization in the slit jet expansion to be competitive with unimolecular decomposition with increasing polyyne chain length.

  7. Numerical Simulations of Morphology, Flow Structures and Forces for a Sonic Jet Exhausting in Supersonic Crossflow

    Directory of Open Access Journals (Sweden)

    S.B.H Shah

    2012-01-01

    Full Text Available A numerical study is performed for a sonic jet issuing from a blunted cone to provide possible directional control in supersonic crossflow by solving the unsteady Reynolds-averaged Navier-Stokes (RANS equations with the twoequation k −ω turbulence model. Results are presented in the form of static aerodynamic coefficients, computed at a free stream Mach number 4.0, with varying pressure ratios, incidence angle and keeping zero yaw and roll angles. The morphology and flow structure for the jet exhausting in crossflow at various pressure ratios is described in detail. The Flight control of the projectile can be accomplished by taking advantage of a complex shock-boundary layer interaction produced by jet interacting with the oncoming crossflow by altering pressure distribution in vicinity of the jet, a net increase in the net force can be utilized for maneuvering of vehicle and possible flight control. Computed static aerodynamic coefficients and pressure distribution using CFD analyses is with an accuracy of ± 5% in the supersonic range.

  8. CFD Analysis of Supersonic Coaxial Jets on Effect of Spreading Rates

    Directory of Open Access Journals (Sweden)

    K. Kathiresan

    2014-04-01

    Full Text Available Prevailing high-speed air-breathing propulsion systems invariably banks on coaxial jets which plays a vigorous role in stabilization of flames and combustion emission. Coaxial jets have applications in supersonic ejectors, noise control techniques and enhancement of mixing. Coaxial jet nozzles regulate spreading rates by developing virtuous mean flow and shortening primary flow potential core length. In the present paper, two-dimensional coaxial jet profiles of different area ratios are designed and analyzed. The models were designed in ANSYS Design Modeler and the numerical simulation was done in ANSYS FLUENT 14.5 using the two dimensional density based energy equation and k- ε turbulence model with primary supersonic flow and secondary subsonic flow. The contours of turbulence intensity, acoustics power level and axial-velocity are investigated along the flow direction. This study shows that increasing the area ratio results in less turbulence which in turn increases the potential core length,acoustics power level, turbulent kinetic energy and generates more noise.

  9. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones

    Science.gov (United States)

    Li, X. D.; Gao, J. H.

    2005-08-01

    In this paper an axisymmetric computational aeroacoustic procedure is developed to investigate the generation mechanism of axisymmetric supersonic jet screech tones. The axisymmetric Navier-Stokes equations and the two equations standard k-ɛ turbulence model modified by Turpin and Troyes ["Validation of a two-equation turbulence model for axisymmetric reacting and non-reaction flows," AIAA Paper No. 2000-3463 (2000)] are solved in the generalized curvilinear coordinate system. A generalized wall function is applied in the nozzle exit wall region. The dispersion-relation-preserving scheme is applied for space discretization. The 2N storage low-dissipation and low-dispersion Runge-Kutta scheme is employed for time integration. Much attention is paid to far-field boundary conditions and turbulence model. The underexpanded axisymmetric supersonic jet screech tones are simulated over the Mach number from 1.05 to 1.2. Numerical results are presented and compared with the experimental data by other researchers. The simulated wavelengths of A0, A1, A2, and B modes and part of simulated amplitudes agree very well with the measurement data by Ponton and Seiner ["The effects of nozzle exit lip thickness on plume resonance," J. Sound Vib. 154, 531 (1992)]. In particular, the phenomena of modes jumping have been captured correctly although the numerical procedure has to be improved to predict the amplitudes of supersonic jet screech tones more accurately. Furthermore, the phenomena of shock motions are analyzed. The predicted splitting and combination of shock cells are similar with the experimental observations of Panda ["Shock oscillation in underexpanded screeching jets," J. Fluid. Mech. 363, 173 (1998)]. Finally, the receptivity process is numerically studied and analyzed. It is shown that the receptivity zone is associated with the initial thin shear layer, and the incoming and reflected sound waves.

  10. Experimental evidence for collisional shock formation via two obliquely merging supersonic plasma jets

    CERN Document Server

    Merritt, Elizabeth C; Hsu, Scott C; Adams, Colin S; Gilmore, Mark A

    2013-01-01

    We report spatially resolved experimental measurements of the oblique merging of two supersonic laboratory plasma jets. The jets are formed and launched by pulsed-power-driven railguns using injected argon, and have electron density $\\sim 10^{14}$ cm$^{-3}$, electron temperature $\\approx 1.4$ eV, ionization fraction near unity, and velocity $\\approx 40$ km/s just prior to merging. The jet merging produces a few-cm-thick stagnation layer, as observed in both fast-framing camera images and multi-chord interferometer data, consistent with collisional shock formation [E. C. Merritt et al., Phys. Rev. Lett. 111, 085003 (2013)]. The observed stagnation layer emission morphology is consistent with hydrodynamic oblique shock theory at early times, and then undergoes an evolution at later times that is coincident with the theoretically predicted transition to detached shock formation.

  11. Investigation of nonlinear effects in the instabilities and noise radiation of supersonic jets

    Science.gov (United States)

    Janjua, S. I.; McLaughlin, D. K.

    1985-01-01

    The nonlinear interactions of fluctuating components which produce noise in supersonic jet flows were studied experimentally. Attention was given to spectral components interactions and the spectral effects of increasing Re. A jet exhausted in perfectly expanded conditions was monitored by microphones in the maximum noise emission direction. Trials were run at Mach 1.4 and 2.1 and the Re was varied from 5000-20,000 and 9000-25,000, respectively. Hot-wire data were gathered to examine the mode-mode interactions and a point glow discharge was used to excite the jets. The noise was found to exhibit discrete frequency components and a single tone instability at Re below 10,000. Mode interactions were found to weaken after the instabilities reached a crescendo and then decayed, leading to a nonlinear spectral broadening effect.

  12. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet

    Science.gov (United States)

    Valentich, Griffin; Upadhyay, Puja; Kumar, Rajan

    2016-05-01

    Flow field characteristics of a moderate aspect ratio supersonic rectangular jet were examined at two overexpanded, a perfectly expanded, and an underexpanded jet conditions. The underexpanded and one overexpanded operating condition were of maximum screech, while the second overexpanded condition was of minimum screech intensity. Streamwise particle image velocimetry was performed along both major and minor axes of the jet and the measurements were made up to 30 nozzle heights, h, where h is the small dimension of the nozzle. Select cross planes were examined using stereoscopic particle image velocimetry to investigate the jet development and the role streamwise vortices play in jet spreading at each operating condition. The results show that streamwise vortices present at the nozzle corners along with vortices excited by screech tones play a major role in the jet evolution. All cases except for the perfectly expanded operating condition exhibited axis switching at streamwise locations ranging from 11 to 16 nozzle heights downstream of the exit. The overexpanded condition of maximum screech showed the most upstream switch over, while the underexpanded case showed the farthest downstream. Both of the maximum screeching cases developed into a diamond cross-sectional profile far downstream of the exit, while the ideally expanded case maintained a rectangular shape. The overexpanded minimum screeching case eventually decayed into an oblong profile.

  13. Experimental studies of collisional plasma shocks and plasma interpenetration via merging supersonic plasma jets

    Science.gov (United States)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.

    2015-11-01

    Over the past 4 years on the Plasma Liner Experiment (PLX) at LANL, we have studied obliquely and head-on-merging supersonic plasma jets of an argon/impurity or hydrogen/impurity mixture. The jets are formed/launched by pulsed-power-driven railguns. In successive experimental campaigns, we characterized the (a) evolution of plasma parameters of a single plasma jet as it propagated up to ~ 1 m away from the railgun nozzle, (b) density profiles and 2D morphology of the stagnation layer and oblique shocks that formed between obliquely merging jets, and (c) collisionless interpenetration transitioning to collisional stagnation between head-on-merging jets. Key plasma diagnostics included a fast-framing CCD camera, an 8-chord visible interferometer, a survey spectrometer, and a photodiode array. This talk summarizes the primary results mentioned above, and highlights analyses of inferred post-shock temperatures based on observations of density gradients that we attribute to shock-layer thickness. We also briefly describe more recent PLX experiments on Rayleigh-Taylor-instability evolution with magnetic and viscous effects, and potential future collisionless shock experiments enabled by low-impurity, higher-velocity plasma jets formed by contoured-gap coaxial guns. Supported by DOE Fusion Energy Sciences and LANL LDRD.

  14. Global mode decomposition of supersonic impinging jet noise

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2015-11-01

    We apply global stability analysis to an ideally expanded, Mach 1.5, turbulent jet that impinges on a flat surface. The analysis extracts axisymmetric and helical instability modes, involving coherent vortices, shocks, and acoustic feedback, which we use to help explain and predict the effectiveness of microjet control. High-fidelity large eddy simulations (LES) were performed at nozzle-to-wall distances of 4 and 4.5 throat diameters with and without sixteen microjets positioned uniformly around the nozzle lip. These flow configurations conform exactly to experiments performed at Florida State University. Stability analysis about LES mean fields predicted the least stable global mode with a frequency that matched the impingement tone observed in experiments at a nozzle-to-wall distance of 4 throat diameters. The Reynolds-averaged Navier-Stokes (RANS) equations were solved at five nozzle-to-wall distances to create base flows that were used to investigate the influence of this parameter. A comparison of the eigenvalue spectra computed from the stability analysis about LES and RANS base flows resulted in good agreement. We also investigate the effect of the boundary layer state as it emerges from the nozzle using a multi-block global mode solver. Computational resources were provided by the Argonne Leadership Computing Facility.

  15. Global Mode-Based Control of Supersonic Jet Noise

    Science.gov (United States)

    Natarajan, Mahesh; Freund, Jonathan; Bodony, Daniel

    2015-11-01

    The loudest source of high-speed jet noise appears to be describable by unsteady wavepackets that resemble instabilities. We seek to reduce their acoustic impact by developing a novel control strategy that uses global modes to model their dynamics and structural sensitivity of the linearized compressible Navier-Stokes operator to determine effective linear feedback control. Using co-located actuators and sensors we demonstrate the method on an axisymmetric Mach 1.5 fitted with a nozzle. Direct numerical simulations using this control show significant noise reduction, with additional reduction with increase in control gain. Eigenanalysis of the uncontrolled and controlled mean flows reveal fundamental changes in the spectrum at frequencies lower than that used by the control. The non-normality of the global modes is shown to enable this control to affect a wide range of frequencies. The low-frequency wavepacket components are made less acoustically efficient, which is reflected in the far-field noise spectrum. Mean flow alterations are minor near the nozzle and only become apparent further downstream. Office of Naval Research and National Science Foundation.

  16. Computational Comparison of the Interaction of a Lateral Jet on a Supersonic Generic Missile

    OpenAIRE

    Gnemmi, Patrick; Adeli, Reza; Longo, José Maria

    2008-01-01

    The paper deals with the comparison of computations made at DLR and ISL on the interaction between a lateral jet issuing from a generic missile body and the oncoming supersonic cross-flow. Steady-state numerical simulations are carried out by 3D, viscous, turbulent, Reynolds-Averaged Navier-Stokes Codes; at DLR, a hybrid mesh is used for the TAU calculation, whereas at ISL a hexahedral mesh is used for the CFX computation. Experimental data acquired in the DLR wind tunnel TMK in Cologne act a...

  17. Mixing of Supersonic Jets in a RBCC Strutjet Propulsion System

    Science.gov (United States)

    Muller, S.; Hawk, Clark W.; Bakker, P. G.; Parkinson, D.; Turner, M.

    1998-01-01

    The Strutjet approach to Rocket Based Combined Cycle (RBCC) propulsion depends upon fuel-rich flows from the rocket nozzles and turbine exhaust products mixing with the ingested air for successful operation in the ramjet and scramjet modes. It is desirable to delay this mixing process in the air-augmented mode of operation present during take-off and low speed flight. A scale model of the Strutjet device was built and tested to investigate the mixing of the streams as a function of distance from the Strut exit plane in simulated sea level take-off conditions. The Planar Laser Induced Fluorescence (PLIF) diagnostic method has been employed to observe the mixing of the turbine exhaust gas with the gases from both the primary rockets and the ingested air. The ratio of the pressure in the turbine exhaust to that in the rocket nozzle wall at the point where the two jets meet, is the independent variable in these experiments. Tests were accomplished at values of 1.0 (the original design point), 1.5 and 2.0 for this parameter at 8 locations downstream of the rocket nozzle exit. The results illustrate the development of the mixing zone from the exit plane of the strut to a distance of about 18 equivalent rocket nozzle exit diameters downstream (18"). These images show the turbine exhaust to be confined until a short distance downstream. The expansion into the ingested air is more pronounced at a pressure ratio of 1.0 and 1.5 and shows that mixing with this air would likely begin at a distance of 2" downstream of the nozzle exit plane. Of the pressure ratios tested in this research, 2.0 is the best value for delaying the mixing at the operating conditions considered.

  18. Dynamics and density distributions in a capillary-discharge waveguide with an embedded supersonic jet

    Energy Technology Data Exchange (ETDEWEB)

    Matlis, N. H., E-mail: nmatlis@gmail.com; Gonsalves, A. J.; Steinke, S.; Tilborg, J. van; Shaw, B.; Mittelberger, D. E.; Geddes, C. G. R. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Matlis, E. H. [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States); Leemans, W. P. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Department of Physics, University of California, Berkeley, California 94720 (United States)

    2015-11-28

    We present an analysis of the gas dynamics and density distributions within a capillary-discharge waveguide with an embedded supersonic jet. This device provides a target for a laser plasma accelerator which uses longitudinal structuring of the gas-density profile to enable control of electron trapping and acceleration. The functionality of the device depends sensitively on the details of the density profile, which are determined by the interaction between the pulsed gas in the jet and the continuously-flowing gas in the capillary. These dynamics are captured by spatially resolving recombination light from several emission lines of the plasma as a function of the delay between the jet and the discharge. We provide a phenomenological description of the gas dynamics as well as a quantitative evaluation of the density evolution. In particular, we show that the pressure difference between the jet and the capillary defines three regimes of operation with qualitatively different longitudinal density profiles and show that jet timing provides a sensitive method for tuning between these regimes.

  19. Cooling Effect of Water Injection on a High-Temperature Supersonic Jet

    Directory of Open Access Journals (Sweden)

    Jing Li

    2015-11-01

    Full Text Available The high temperature and high pressure supersonic jet is one of the key problems in the design of solid rocket motors. To reduce the jet temperature and noise, cooling water is typically injected into the exhaust plume. Numerical simulations for the gas-liquid multiphase flow field with mixture multiphase model were developed and a series of experiments were carried out. By introducing the energy source terms caused by the vaporization of liquid water into the energy equation, a coupling solution was developed to calculate the multiphase flow field. The temperature data predictions agreed well with the experimental results. When water was injected into the plume, the high temperature core region area was reduced, and the temperature on the head face was much lower than that without water. The relationship between the reduction of temperature on the bottom plate and the momentum ratio is developed, which can be used to predict the cooling effect of water injection in many cases.

  20. Effect of Homogeneous Condensation on the Interaction of Supersonic Moist Air Jets with Resonance Tube

    Directory of Open Access Journals (Sweden)

    M.M Ashraful.Alam

    2013-01-01

    Full Text Available The Hartmann tube, can use for flow-control, is a device which generates high intensity sound through the shock wave oscillations, are created by the interaction of the supersonic jet. In this study, two-phase flow simulations are carried out to characterize the effect of non-equilibrium condensation on the unsteady flowfield of the Hartmann resonance tube. This present numerical work provides a new insight on the flow dynamics and acoustics of the resonance tube – including the shock nature, the tube gas heating, and the effect of non-equilibrium condensation on the flow structure. A TVD numerical method is applied to the Reynolds and Favre-averaged Navier-Stokes equations, and droplet growth equation of liquid phase production. The simulations are performed over a range of nozzle pressure ratios. The numerically simulated flow structure of under-expanded supersonic jets is compared with experimental data. Moreover, the predicted frequency of end wall pressure fluctuations is compared with the experimental results.

  1. a Highly-Integrated Supersonic-Jet Fourier Transform Microwave Spectrometer

    Science.gov (United States)

    Gou, Qian; Feng, Gang; Grabow, Jens-Uwe

    2017-06-01

    A highly integrated supersonic-jet Fourier-transform microwave spectrometer of coaxially oriented beam-resonator arrangement (COBRA) type, covering 2-20GHz, has been recently built at Chongqing University, China. Built up almost entirely in an NI PXIe chassis, we take the advantage of the NI PXIe-5451 Dual-channel arbitrary waveform generator and the PXIe-5654 RF signal generator to create a spectrometer with wobbling capacity for fast resonator tuning. Based on the I/Q modulation, associate with PXI control and sequence boards built at the Leibniz Universitat Hannover, the design of the spectrometer is much simpler and very compact. The Fabry-Pérot resonator is semi-confocal with a spherical reflector of 630 mm diameter and a radius of 900 mm curvature and one circulator plate reflector of 630 mm diameter. The vacuum is effectuated by a three-stage mechanical (two-stage rotary vane and roots booster) pump at the fore line of a DN630 ISO-F 20000 L/s oil-diffusion pump. The supersonic-jet expansion is pulsed by a general valve Series 9 solenoid valve which is controlled by a general valve IOTA one driver governed by the experiment-sequence generation. First molecular examples to illustrate the performance of the new setup will include OCS and CF_3CHFCl.

  2. Developments towards in-gas-jet laser spectroscopy studies of actinium isotopes at LISOL

    Energy Technology Data Exchange (ETDEWEB)

    Raeder, S., E-mail: s.raeder@gsi.de [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Bastin, B. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Block, M. [Helmholtz-Institut Mainz, 55128 Mainz (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstraße 1, 64291 Darmstadt (Germany); Institut für Kernchemie, Johannes Gutenberg Universität, 55128 Mainz (Germany); Creemers, P. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Delahaye, P. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); Ferrer, R. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Fléchard, X. [LPC Caen, ENSICAEN, Université de Caen, CNRS/IN2P3, Caen (France); Franchoo, S. [Institute de Physique Nucléaire (IPN) d’Orsay, 91406 Orsay, Cedex (France); Ghys, L. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); SCK-CEN, Belgian Nuclear Research Center, Boeretang 200, 2400 Mol (Belgium); Gaffney, L.P.; Granados, C. [KU Leuven, Instituut voor Kern- en Stralingsfysica, Celestijnenlaan 200D, B-3001 Leuven (Belgium); Heinke, R. [Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz (Germany); Hijazi, L. [GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen (France); and others

    2016-06-01

    To study exotic nuclides at the borders of stability with laser ionization and spectroscopy techniques, highest efficiencies in combination with a high spectral resolution are required. These usually opposing requirements are reconciled by applying the in-gas-laser ionization and spectroscopy (IGLIS) technique in the supersonic gas jet produced by a de Laval nozzle installed at the exit of the stopping gas cell. Carrying out laser ionization in the low-temperature and low density supersonic gas jet eliminates pressure broadening, which will significantly improve the spectral resolution. This article presents the required modifications at the Leuven Isotope Separator On-Line (LISOL) facility that are needed for the first on-line studies of in-gas-jet laser spectroscopy. Different geometries for the gas outlet and extraction ion guides have been tested for their performance regarding the acceptance of laser ionized species as well as for their differential pumping capacities. The specifications and performance of the temporarily installed high repetition rate laser system, including a narrow bandwidth injection-locked Ti:sapphire laser, are discussed and first preliminary results on neutron-deficient actinium isotopes are presented indicating the high capability of this novel technique.

  3. Multi-chord fiber-coupled interferometry of supersonic plasma jets and comparisons with synthetic data

    CERN Document Server

    Merritt, Elizabeth C; Gilmore, Mark A; Thoma, Carsten; Loverich, John; Hsu, Scott C

    2012-01-01

    A multi-chord fiber-coupled interferometer [Merritt et al., Rev. Sci. Instrum. 83, 033506 (2012)] is being used to make time-resolved density measurements of supersonic argon plasma jets on the Plasma Liner Experiment [Hsu et al., Bull. Amer. Phys. Soc. 56, 307 (2011)]. The long coherence length of the laser (>10 m) allows signal and reference path lengths to be mismatched by many meters without signal degradation, making for a greatly simplified optical layout. Measured interferometry phase shifts are consistent with a partially ionized plasma in which an initially positive phase shift becomes negative when the ionization fraction drops below a certain threshold. In this case, both free electrons and bound electrons in ions and neutral atoms contribute to the index of refraction. This paper illustrates how the interferometry data, aided by numerical modeling, are used to derive total jet density, jet propagation velocity (~15-50 km/s), jet length (~20-100 cm), and 3D expansion.

  4. Ignition, Flame Structure and Near-Wall Burning in Transverse Hydrogen Jets in Supersonic Crossflow

    Science.gov (United States)

    Gamba, Mirko; Godfrey Mungal, M.; Hanson, Ronald K.

    2010-11-01

    The work aims at investigating near-wall ignition and flame structure in transverse underexpanded hydrogen jets in high-enthalpy supersonic crossflows generated in an expansion tube. Crossflow conditions are held fixed at M=2.4, p=40 kPa and T 1400 K, while jet-to-crossflow momentum flux ratios J in the range 0.3-5.0 are considered. Schlieren and OH^* chemiluminescence imaging are used to characterize flow structure, ignition and flame penetration, while the instantaneous reaction zone is identified with planar laser-induced fluorescence imaging of OH on side- and plan-view planes. The upstream separation length is found to scale as J^0.44D (D jet diameter). Similarly, the ignition point xig strongly depends on J: xig tends to a limiting value of ˜22D as J->0, and the flame is anchored in the upstream recirculation region and lee-side of the jet for J>3. Flame penetration is well described by the traditional form k(x/DJ)^m where both k and m are found to depend on J but these parameters reach a limiting value of k 1 and m 0.3 for J>2. The roles of the unsteady bow shock, the separation and recirculation regions on the near-wall ignition, stabilization and mixing at large J are discussed.

  5. The Effect of Spherical Surface on Noise Suppression of a Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    Md. Tawhidul Islam Khan; Kunisato Seto; Zhixiang Xu; H. Ohta

    2003-01-01

    Experiments were carried out to eliminate the screech tone generated from a supersonic jet.Compressed air was passed through a circular convergent nozzle preceded by a straight tube of same diameter. In order to reduce the jet screech a spherical reflector was used and placed at the nozzle exit. The placement of the spherical reflector at the nozzle exit controlled the location of the image source as well as minimized the sound pressure at the nozzle exit.The weak sound pressure did not excite the unstable disturbance at the exit.Thus the loop of the feedback mechanism could not be accomplished and the jet screech was eliminated. The technique of screech reduction with a flat plate was also examined and compared with the present method. A good and effective performance in canceling the screech component by the new method was found by the investigation. Experimental results indicate that the new system suppresses not only the screech tones but also the broadband noise components and reduces the overall noise of the jet flow. The spherical reflector was found very effective in reducing overall sound pressure level in the upstream region of the nozzle compared to a flat plate. The proposed spherical reflector can, accordingly, protect the upstream noise propagation.

  6. Impact of surface proximity on flow and acoustics of a rectangular supersonic jet

    Science.gov (United States)

    Gutmark, Ephraim; Baier, Florian; Mora, Pablo; Kailsanath, Kailas; Viswanath, Kamal; Johnson, Ryan

    2016-11-01

    Advances in jet technology have pushed towards faster aircraft, leading to more streamlined designs and configurations, pushing engines closer to the aircraft frame. This creates additional noise sources stemming from interactions between the jet flow and surfaces on the aircraft body, and interaction between the jet and the ground during takeoff and landing. The paper studies the impact of the presence of a flat plate on the flow structures and acoustics in an M =1.5 (NPR =3.67) supersonic jet exhausting from a rectangular C-D nozzle. Comparisons are drawn between baseline cases without a plate and varying nozzle-plate distance at NPRs from 2.5 to 4.5, and temperature ratios of up to 3.0. At the shielded side and sideline of the plate noise is mitigated only when the plate is at the nozzle lip (h =0). Low frequency mixing noise is increased in the downstream direction only for h =0. Screech tones that exist only for low NTR are fully suppressed by the plate at h =0. However, for h>0 the reflection enhances screech at both reflected side and sideline. Low frequency mixing noise is enhanced by the plate at the reflected side at all plate distances, while broad band shock associated noise is reduced only at the sideline for h =0. Increased temperature mitigates the screech tones across all test conditions. The results are compared to a circular nozzle of equivalent diameter with an adjacent plate.

  7. Relating a Jet-Surface Interaction Experiment to a Commercial Supersonic Transport Aircraft Using Numerical Simulations

    Science.gov (United States)

    Dippold, Vance F. III; Friedlander, David

    2017-01-01

    Reynolds-Averaged Navier-Stokes (RANS) simulations were performed for a commercial supersonic transport aircraft concept and experimental hardware models designed to represent the installed propulsion system of the conceptual aircraft in an upcoming test campaign. The purpose of the experiment is to determine the effects of jet-surface interactions from supersonic aircraft on airport community noise. RANS simulations of the commercial supersonic transport aircraft concept were performed to relate the representative experimental hardware to the actual aircraft. RANS screening simulations were performed on the proposed test hardware to verify that it would be free from potential rig noise and to predict the aerodynamic forces on the model hardware to assist with structural design. The simulations showed a large region of separated flow formed in a junction region of one of the experimental configurations. This was dissimilar with simulations of the aircraft and could invalidate the noise measurements. This configuration was modified and a subsequent RANS simulation showed that the size of the flow separation was greatly reduced. The aerodynamic forces found on the experimental models were found to be relatively small when compared to the expected loads from the model’s own weight.Reynolds-Averaged Navier-Stokes (RANS) simulations were completed for two configurations of a three-stream inverted velocity profile (IVP) nozzle and a baseline single-stream round nozzle (mixed-flow equivalent conditions). For the Sideline and Cutback flow conditions, while the IVP nozzles did not reduce the peak turbulent kinetic energy on the lower side of the jet plume, the IVP nozzles did significantly reduce the size of the region of peak turbulent kinetic energy when compared to the jet plume of the baseline nozzle cases. The IVP nozzle at Sideline conditions did suffer a region of separated flow from the inner stream nozzle splitter that did produce an intense, but small, region of

  8. A Design of Experiments Investigation of Offset Streams for Supersonic Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda; Papamoschou, Dimitri

    2014-01-01

    An experimental investigation into the noise characteristics of a dual-stream jet with four airfoils inserted in the fan nozzle was conducted. The intent of the airfoils was to deflect the fan stream relative to the core stream and, therefore, impact the development of the secondary potential core and noise radiated in the peak jet-noise direction. The experiments used a full-factorial Design of Experiments (DoE) approach to identify parameters and parameter interactions impacting noise radiation at two azimuthal microphone array locations, one of which represented a sideline viewing angle. The parameters studied included airfoil angle-of-attack, airfoil azimuthal location within the fan nozzle, and airfoil axial location relative to the fan-nozzle trailing edge. Jet conditions included subsonic and supersonic fan-stream Mach numbers. Heated jets conditions were simulated with a mixture of helium and air to replicate the exhaust velocity and density of the hot jets. The introduction of the airfoils was shown to impact noise radiated at polar angles in peak-jet noise direction and to have no impact on noise radiated at small and broadside polar angles and to have no impact on broadband-shock-associated noise. The DoE analysis showed the main effects impacting noise radiation at sideline-azimuthal-viewing angles included airfoil azimuthal angle for the airfoils on the lower side of the jet near the sideline array and airfoil trailing edge distance (with airfoils located at the nozzle trailing edge produced the lowest sound pressure levels). For an array located directly beneath the jet (and on the side of the jet from which the fan stream was deflected), the main effects impacting noise radiation included airfoil angle-of-attack and airfoil azimuthal angle for the airfoils located on the observation side of the jet as well and trailing edge distance. Interaction terms between multiple configuration parameters were shown to have significant impact on the radiated

  9. Enceladus' Supersonic Gas Jets' Role in Diurnal Variability of Particle Flux

    Science.gov (United States)

    Hansen, Candice; Esposito, Larry W.; Portyankina, Ganna; Hendrix, Amanda; Colwell, Joshua E.; Aye, Klaus-Michael

    2016-10-01

    Introduction: The Cassini Ultraviolet Imaging Spectrograph (UVIS) has observed 6 occultations of stars by Enceladus' plume from 2005 to 2011 [1]. Supersonic gas jets were detected, imbedded in the overall expulsion of gas at escape velocity along the tiger stripe fissures that cross Enceladus' south pole [2]. The gas flux can be calculated [1], and is observed to vary just 15% in over 6 years, representing a steady output of ~200 kg/sec. In contrast, the brightness of the particle jets, a proxy for the amount of particles expelled, varies 3x with orbital longitude [3], implicating tidal stresses. This is not necessarily inconsistent with the steady gas flux, which had not been measured at apokrone until now.2016 epsilon Orionis Occultation: In order to investigate whether gas flow increases dramatically at apokrone an occultation observation was inserted into the Cassini tour on March 11, 2016 on orbit 233. Enceladus was at a mean anomaly of 208 at the time of the occultation. Using the same methodology as previously employed the column density has been determined to be 1.5 x 1016 cm-2, giving a gas flux of 250 kg/sec. This value is 20% higher than the average 210 kg/sec, but only 15% higher than the occultations at a mean anomaly of 236; i.e. higher than the others but not by a factor of 2 or 3. The overall expulsion of gas from the south pole of Enceladus thus does not seem to change dramatically with orbital position.Jets: The line of sight to the star pierced the Baghdad I gas jet. The jet data, in contrast to the integrated plume, look significantly different in this dataset. The column density of the jet is higher than observed in previous occultations. The collimation of the jet is more pronounced and from that we derive a mach number of 8-9, compared to a previous value for this jet of 6. We conclude that the higher velocity and increased quantity of gas in the jet close to apokrone indicate that the jets are the primary contributors to the increased

  10. Towards the characterization of noise sources in a supersonic three-stream jet using advanced analysis tools

    Science.gov (United States)

    Ruscher, Christopher; Gogineni, Sivaram

    2016-11-01

    Strict noise regulation set by governing bodies currently make supersonic commercial aviation impractical. One of the many challenges that exist in developing practical supersonic commercial aircraft is the noise produced by the engine's exhaust jet. A promising method of jet noise reduction for supersonic applications is through the addition of extra exhaust streams. Data for an axisymmetric three-stream nozzle were generated using the Naval Research Laboratory's JENRE code. This data will be compared to experimental results obtained by NASA for validation purposes. Once the simulation results show satisfactory agreement to the experiments, advanced analysis tools will be applied to the simulation data to characterize potential noise sources. The tools to be applied include methods that are based on proper orthogonal decomposition, wavelet decomposition, and stochastic estimation. Additionally, techniques such as empirical mode decomposition and momentum potential theorem will be applied to the data as well.

  11. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  12. Supersonic micro-jets and their application to few-cycle laser-driven electron acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Karl

    2009-07-23

    This thesis covers the few-cycle laser-driven acceleration of electrons in a laser-generated plasma. The laser system employed in this work is a new development based on optical parametric chirped pulse amplification and is the only multi-TW few-cycle laser in the world. In the experiment, the laser beam is focused onto a supersonic helium gas jet which leads to the formation of a plasma channel. The laser pulse, having an intensity of 10{sup 19} W/cm{sup 2} propagates through the plasma with an electron density of 2 x 10{sup 19} cm{sup -3} and forms via a highly nonlinear interaction a strongly anharmonic plasma wave. The amplitude of the wave is so large that the wave breaks, thereby injecting electrons from the background plasma into the accelerating phase. The energy transfer from the laser pulse to the plasma is so strong that the maximum propagation distance is limited to the 100 m range. Therefore, gas jets specifically tuned to these requirements have to be employed. The properties of microscopic supersonic gas jets are thoroughly analyzed in this work. Based on numeric flow simulation, this study encompasses several extensive parameter studies that illuminate all relevant features of supersonic flows in microscopic gas nozzles. This allowed the optimized design of de Laval nozzles with exit diameters ranging from 150 {mu}m to 3 mm. The employment of these nozzles in the experiment greatly improved the electron beam quality. After these optimizations, the laser-driven electron accelerator now yields monoenergetic electron pulses with energies up to 50 MeV and charges between one and ten pC. The electron beam has a typical divergence of 5 mrad and comprises an energy spectrum that is virtually free from low energetic background. The electron pulse duration could not yet be determined experimentally but simulations point towards values in the range of 1 fs. The acceleration gradient is estimated from simulation and experiment to be approximately 0.5 TV/m. The

  13. Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion wall

    Science.gov (United States)

    Liu, Chaoyang; Wang, Zhenguo; Wang, Hongbo; Sun, Mingbo

    2016-12-01

    Mixing characteristics of a transverse jet injection into supersonic crossflows through an expansion plate are investigated using large eddy simulation (LES), where the expansion effects on the mixing are analyzed emphatically by comparing to the flat-plate counterpart. An adaptive central-upwind weighted essentially non-oscillatory (WENO) scheme along with multi-threaded and multi-process MPI/OpenMP parallel is adopted to improve the accuracy and efficiency of the calculations. Progressive mesh refinement study is performed to assess the grid resolution and solution convergence. Statistic results obtained are compared to the experimental data and recently performed classical numerical simulation, which validates the reliability of the present LES codes. Firstly, the jet mixing mechanisms in the flowfield with expansion plate are revealed. It indicates that the large-scale vortices in the windward side of jet plume induced by Kelvin-Helmholtz (K-H) instability contribute to the mixing in the near-field, while the entrainment by the counter-rotating vortices and molecular diffusion dominate the mixing process in the far-field. Furthermore, the effects of wall expansion on the flow and mixing characteristics are discussed. The boundary layer across the expansion corner is relaminarized and the profiles of streamwise velocity are distinctly changed. Then the separation region ahead of jet plume is more close to the wall, and the breaking process of large-scale vortices in the windward side of jet plume starts earlier. However, the favorable pressure gradient generated by wall expansion reduces the mixing efficiency and brings a greater total pressure loss.

  14. Mapping the Interactions between Shocks and Mixing Layers in a 3-Stream Supersonic Jet

    Science.gov (United States)

    Lewalle, Jacques; Ruscher, Christopher; Kan, Pinqing; Tenney, Andrew; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Pressure is obtained from an LES calculation of the supersonic jet (Ma1 = 1 . 6) issuing from a rectangular nozzle in a low-subsonic co-flow; a tertiary flow, also rectangular with Ma3 = 1 insulates the primary jet from an aft-deck plate. The developing jet exhibits complex three-dimensional interactions between oblique shocks, multiple mixing layers and corner vortices, which collectively act as a skeleton for the flow. Our study is based on several plane sections through the pressure field, with short signals (0.1 s duration at 80 kHz sampling rate). Using wavelet-based band-pass filtering and cross-correlations, we map the directions of propagation of information among the various ``bones'' in the skeleton. In particular, we identify upstream propagation in some frequency bands, 3-dimensional interactions between the various shear layers, and several key bones from which the pressure signals, when taken as reference, provide dramatic phase-locking for parts of the skeleton. We acknowledge the support of AFRL through an SBIR grant.

  15. Simulation and stability analysis of supersonic impinging jet noise with microjet control

    Science.gov (United States)

    Hildebrand, Nathaniel; Nichols, Joseph W.

    2014-11-01

    A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  16. Argon Nanoclusters with Fivefold Symmetry in Supersonic Gas Jets and Superfluid Helium

    Science.gov (United States)

    Danylchenko, O. G.; Boltnev, R. E.; Khmelenko, V. V.; Kiryukhin, V.; Konotop, O. P.; Lee, D. M.; Krainyukova, N. V.

    2017-04-01

    In this study argon nanoclusters (800 to ˜ 6500 atoms) formed in supersonic gas jets are compared to the nanoclusters stabilized in superfluid helium. High-energy electron and X-ray diffraction methods are utilized. Both techniques allow investigation of isolated clusters. It is shown that the theoretical prediction of the so-called multiply twinned particles with fivefold symmetry, such as icosahedra (ico) and decahedra (dec) is valid in the investigated cluster size interval. Around the point of the expected ico-to-dec size-dependent transformation at a cluster size of ˜ 2000 atoms, hexagonal ico and the statistical distribution of structures with a tendency for dec to replace ico are observed. Kinetic reasons, as well as temperature-related effects, could be responsible for the latter observations.

  17. Supersonic cluster jet source for debris-free extreme ultraviolet production

    Energy Technology Data Exchange (ETDEWEB)

    Kubiak, G.D.; Bernardez, L.J.

    1997-09-01

    The supersonic cluster jet has been developed and characterized for use as a target medium to produce a clean source of extreme ultraviolet radiation for extreme ultraviolet lithography and other applications. Spectroscopic characterization of the laser plasma emission produced from Xe, O{sub 2} and Kr cluster gas targets has been performed. Xe is the most efficient target gas, exhibiting a conversion efficiency at 13.5 nm of 0.8% into the relevant 2.5% spectral bandwidth. The other target gases are less efficient in the spectral region of interest and, in the case of oxygen, emit {approximately}5 times less off-band radiation. The angular distribution of the Xe plasma emission has also been characterized.

  18. Study of interfaces in an Axisymmetric Supersonic Jet using Background Oriented Schlieren (BOS)

    Science.gov (United States)

    Echeverría, Carlos; Porta, David; Aguayo, Alejandro; Cardoso, Hiroki; Stern, Catalina

    2014-11-01

    We have used several techniques to study a small axisymmetric supersonic jet: Rayleigh scattering, Schlieren Toepler and PIV. Each technique gives different kind of information. In this paper, a BOS set-up is used to study the structure of the shock pattern. A shadowgraph of a dot matrix is obtained with and without a flow. The displacement field of the dots is related to changes in the index of refraction, which can be related, through the Gladstone-Dale equation, to changes in density. Previous results with this technique were not conclusive because of the relative size of the dots compared to the diameter of the nozzle. Measurements have been taken for three different exit speeds. We acknowledge support from UNAM through DGAPA PAPIIT IN117712 and the Graduate Program in Mechanical Engineering.

  19. Two-color resonance photoionization spectrum of nickelocene in a supersonic jet

    Science.gov (United States)

    Ketkov, S. Yu.; Selzle, H. L.; Schlag, E. W.; Titova, S. N.; Kalakutskaya, L. V.

    2004-10-01

    Two-color photoionization of nickelocene molecules cooled in a supersonic jet is performed using a tunable nanosecond pulsed laser. The first stage of the multiphoton excitation is the transition from the highest occupied molecular orbital of nickelocene to the lowest Rydberg level. Conditions are found under which molecular ions (η 5-C5H5)2Ni+ are the only product of the multiphoton ionization in the one-color experiment. Irradiation of an excited molecule by an intense pulse of another laser increases significantly the yield of molecular ions. The dependence of the yield of (η5-C5H5)2Ni+ ions on the frequency of the second laser makes it possible to determine the adiabatic ionization potential of nickelocene as 6.138±0.012eV.

  20. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Coaxial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, Robert A.; Edwards, Jack R.

    2010-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment was designed to study compressible mixing flow phenomenon under conditions that are representative of those encountered in scramjet combustors. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The initial value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was observed when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid Reynolds-averaged/large-eddy simulations also over-predicted the mixing layer spreading rate for the helium case, while under-predicting the rate of mixing when argon was used as the injectant. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions were suggested as a remedy to this dilemma. Second-order turbulence statistics were also compared to their modeled Reynolds-averaged counterparts to evaluate the effectiveness of common turbulence closure

  1. Application of Tomo-PIV in a large-scale supersonic jet flow facility

    Science.gov (United States)

    Wernet, Mark P.

    2016-09-01

    Particle imaging velocimetry (PIV) has been used extensively at NASA GRC over the last 15 years to build a benchmark data set of hot and cold jet flow measurements in an effort to understand acoustic noise sources in high-speed jets. Identifying the noise sources in high-speed jets is critical for ultimately modifying the nozzle hardware design/operation and therefore reducing the jet noise. Tomographic PIV (Tomo-PIV) is an innovative approach for acquiring and extracting velocity information across extended volumes of a flow field, enabling the computation of additional fluid mechanical properties not typically available using traditional PIV techniques. The objective of this work was to develop and implement the Tomo-PIV measurement capability and apply it in a large-scale outdoor test facility, where seeding multiple flow streams and operating in the presence of daylight presents formidable challenges. The newly developed Tomo-PIV measurement capability was applied in both a subsonic M 0.9 flow and an under-expanded M 1.4 heated jet flow field. Measurements were also obtained using traditional two-component (2C) PIV and stereo PIV in the M 0.9 flow field for comparison and validation of the Tomo-PIV results. In the case of the M 1.4 flow, only the 2C PIV was applied to allow a comparison with the Tomo-PIV measurement. The Tomo-PIV fields-of-view covered 180 × 180 × 10 mm, and the reconstruction domains were 3500 × 3500 × 200 voxels. These Tomo-PIV measurements yielded all three components of vorticity across entire planes for the first time in heated supersonic jet flows and provided the first full 3D reconstruction of the Mach disk and oblique shock intersections inside of the barrel shocks. Measuring all three components of vorticity across multiple planes in the flow, potentially reduces the number of measurement configurations (streamwise and cross-stream PIV) required to fully characterize the mixing-enhanced nozzle flows routinely studied in

  2. Impact of chevron spacing and asymmetric distribution on supersonic jet acoustics and flow

    Science.gov (United States)

    Heeb, N.; Gutmark, E.; Kailasanath, K.

    2016-05-01

    An experimental investigation into the effect of chevron spacing and distribution on supersonic jets was performed. Cross-stream and streamwise particle imaging velocimetry measurements were used to relate flow field modification to sound field changes measured by far-field microphones in the overexpanded, ideally expanded, and underexpanded regimes. Drastic modification of the jet cross-section was achieved by the investigated configurations, with both elliptic and triangular shapes attained downstream. Consequently, screech was nearly eliminated with reductions in the range of 10-25 dB depending on the operating condition. Analysis of the streamwise velocity indicated that both the mean shock spacing and strength were reduced resulting in an increase in the broadband shock associated noise spectral peak frequency and a reduction in the amplitude, respectively. Maximum broadband shock associated noise amplitude reductions were in the 5-7 dB range. Chevron proximity was found to be the primary driver of peak vorticity production, though persistence followed the opposite trend. The integrated streamwise vorticity modulus was found to be correlated with peak large scale turbulent mixing noise reduction, though optimal overall sound pressure level reductions did not necessarily follow due to the shock/fine scale mixing noise sources. Optimal large scale mixing noise reductions were in the 5-6 dB range.

  3. Geometric factors affecting noise suppresion and thrust loss of divergent-lobe supersonic jet noise suppressor

    Science.gov (United States)

    Huff, R. G.; Groesbeck, D. E.

    1973-01-01

    The thrust loss and noise suppression of a divergent-lobe supersonic jet noise suppressor were experimentally determined over a range of nozzle pressure ratios of 1.5 to 4.0. These small-scale cold flow tests were made to determine the effect on thrust and noise of: suppressor length, rearward facing step height, suppressor divergence angle, and ejector shroud length and location. Noise suppression was achieved at nozzle pressure ratios of 2.5 and greater. Maximum lobe jet noise attenuation of 15 db with thrust loss differences of 1.5 percent compared to the convergent nozzle were obtained at a nozzle pressure ratio of 3.5 with an ejector shroud two nozzle diameters long. Without the ejector the attenuation was 13 db with thrust loss differences of 11 percent. Short suppressors approximately one primary nozzle throat diameter long performed as well as longer suppressors. Rearward facing step height had a significant effect on noise suppression. Ejector shrouds two nozzle diameters in length are feasible.

  4. Experimental investigation of acoustic self-oscillation influence on decay process for underexpanded supersonic jet in submerged space

    Science.gov (United States)

    Aleksandrov, V. Yu.; Arefyev, K. Yu.; Ilchenko, M. A.

    2016-07-01

    Intensification of mixing between the gaseous working body ejected through a jet nozzle with ambient medium is an important scientific and technical problem. Effective mixing can increase the total efficiency of power and propulsion apparatuses. The promising approach, although poorly studied, is generation of acoustic self-oscillation inside the jet nozzle: this impact might enhance the decay of a supersonic jet and improve the mixing parameters. The paper presents peculiar properties of acoustic self-excitation in jet nozzle. The paper presents results of experimental study performed for a model injector with a set of plates placed into the flow channel, enabling the excitation of acoustic self-oscillations. The study reveals the regularity of under-expanded supersonic jet decay in submerged space for different flow modes. Experimental data support the efficiency of using the jet nozzle with acoustic self-oscillation in application to the systems of gas fuel supply. Experimental results can be used for designing new power apparatuses for aviation and space industry and for process plants.

  5. Sub-Doppler infrared spectroscopy of propargyl radical (H{sub 2}CCCH) in a slit supersonic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chih-Hsuan; Nesbitt, David J. [JILA, National Institute of Standards and Technology, University of Colorado, Boulder, Colorado 80309, USA and Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, Colorado 80309 (United States)

    2015-06-28

    The acetylenic CH stretch mode (ν{sub 1}) of propargyl (H{sub 2}CCCH) radical has been studied at sub-Doppler resolution (∼60 MHz) via infrared laser absorption spectroscopy in a supersonic slit-jet discharge expansion, where low rotational temperatures (T{sub rot} = 13.5(4) K) and lack of spectral congestion permit improved determination of band origin and rotational constants for the excited state. For the lowest J states primarily populated in the slit jet cooled expansion, fine structure due to the unpaired electron spin is resolved completely, which permits accurate analysis of electron spin-rotation interactions in the vibrationally excited states (ε{sub aa} = − 518.1(1.8), ε{sub bb} = − 13.0(3), ε{sub cc} = − 1.8(3) MHz). In addition, hyperfine broadening in substantial excess of the sub-Doppler experimental linewidths is observed due to nuclear spin–electron spin contributions at the methylenic (—CH{sub 2}) and acetylenic (—CH) positions, which permits detailed modeling of the fine/hyperfine structure line contours. The results are consistent with a delocalized radical spin density extending over both methylenic and acetylenic C atoms, in excellent agreement with simple resonance structures as well as ab initio theoretical calculations.

  6. Computation of supersonic jet mixing noise for an axisymmetric convergent-divergent nozzle

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.; Kim, Chan M.

    1994-05-01

    The turbulent mixing noise of a supersonic jet is calculated for an axisymmetric convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy is adopted. The acoustics solution is based upon the methodology followed in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors (Ribner's assumption). Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The CFD solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  7. Design and first operation of a supersonic gas jet based beam profile monitor

    Directory of Open Access Journals (Sweden)

    Vasilis Tzoganis

    2017-06-01

    Full Text Available Noninterceptive beam profile monitors are of great importance for many particle accelerators worldwide. Extra challenges are posed by high energy, high intensity machines and low energy low intensity accelerators. For these applications, existing diagnostics are no longer suitable due to the high power of the beam or the very low intensity. In addition, many other accelerators, from medical to industrial will benefit from a noninvasive, real time beam profile monitor. In this paper we present a new beam profile monitor with a novel design for the nozzle and skimmer configuration to generate a supersonic gas jet meeting ultrahigh vacuum conditions and we describe the first results for such a beam profile monitor at the Cockcroft Institute. This monitor is able to measure two-dimensional profiles of the particle beam while causing negligible disturbance to the beam or to the accelerator vacuum. The ultimate goal for this diagnostic is to provide a versatile and universal beam profile monitor suitable for measuring any beams.

  8. Temperature Distribution on Inclined plate Caused by Interaction with Supersonic Jet

    Institute of Scientific and Technical Information of China (English)

    TsuyoshiYasunobu; ToshiakiSetoguchi; 等

    2000-01-01

    The phenomena of the interaction between a supersonic jet and an obstcle is a very interesting and important problem relating to the industrial engineering.This paper aims to investigate the characteristics of the two-dimensional temperature distribution on an inclined plate surface and the relation between the temperature distribution and some shock waves formed in the flow field,In this study,the measurement of temperature distribution on an inclined plate suface and the flow visualization has carried out for various conditions using the thermo-sensitive liquid crystal sheet and the schlieren method.The two dimensional temperature distribution on the plate surface is clearly obtained by the thermo-sensitive liquid crystal sheet,The relation between the temperature distribution on an inclined plate surface and some shock waves reached at a plate surface is discussed.In this paper,the characteristics of the temperature distribution and the maximum temperature,and some other experimental evidences are presented.

  9. Photodissociation of Isoxazole and Pyridine Studied Using Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Joalland, Baptiste; Mebel, Alexander M.; Suits, Arthur

    2016-06-01

    Chirped - Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (Chirped- Pulse/Uniform Flow: CPUF) has been applied to study the photodissociation of two atmospherically relevant N containing heterocyclic compounds; pyridine and isoxazole. Products were detected using rotational spectroscopy. HC3N, HCN were observed for pyridine and CH3CN, HCO and HCN were observed for isoxazole and we report the first detection of HNC for both of the systems. Key points in potential energy surface were explored and compared with the experimental observations. Branching ratios were calculated for all the possible channels and will be presented.

  10. Numerical simulations of transverse liquid jet to a supersonic crossflow using a pure two-fluid model

    Directory of Open Access Journals (Sweden)

    Haixu Liu

    2016-01-01

    Full Text Available A pure two-fluid model was used for investigating transverse liquid jet to a supersonic crossflow. The well-posedness problem of the droplet phase governing equations was solved by applying an equation of state in the kinetic theory. A k-ε-kp turbulence model was used to simulate the turbulent compressible multiphase flow. Separation of boundary layer in front of the liquid jet was predicted with a separation shock induced. A bow shock was found to interact with the separation shock in the simulation result, and the adjustment of shock structure caused by the interaction described the whipping phenomena. The predicted penetration height showed good agreement with the empirical correlations. In addition, the turbulent kinetic energies of both the gas and droplet phases were presented for comparison, and effects of the jet-to-air momentum flux ratio and droplet diameter on the penetration height were also examined in this work.

  11. Sound generated by instability waves of supersonic flows. I Two-dimensional mixing layers. II - Axisymmetric jets

    Science.gov (United States)

    Tam, C. K. W.; Burton, D. E.

    1984-01-01

    An investigation is conducted of the phenomenon of sound generation by spatially growing instability waves in high-speed flows. It is pointed out that this process of noise generation is most effective when the flow is supersonic relative to the ambient speed of sound. The inner and outer asymptotic expansions corresponding to an excited instability wave in a two-dimensional mixing layer and its associated acoustic fields are constructed in terms of the inner and outer spatial variables. In matching the solutions, the intermediate matching principle of Van Dyke and Cole is followed. The validity of the theory is tested by applying it to an axisymmetric supersonic jet and comparing the calculated results with experimental measurements. Very favorable agreements are found both in the calculated instability-wave amplitude distribution (the inner solution) and the near pressure field level contours (the outer solution) in each case.

  12. Low-Boom and Low-Drag Optimization of the Twin Engine Version of Silent Supersonic Business Jet

    Science.gov (United States)

    Sato, Koma; Kumano, Takayasu; Yonezawa, Masahito; Yamashita, Hiroshi; Jeong, Shinkyu; Obayashi, Shigeru

    Multi-Objective Optimization has been applied to a design problem of the twin engine concept for Silent Supersonic Business Jet (SSBJ). This problem aims to find main wing, body, tail wing and engine nacelle configurations, which can minimize both sonic boom and drag in a supersonic cruising flight. The multi-objective genetic algorithm (MOGA) coupled with the Kriging model has been used to globally and effectively search for optimal design candidates in the multi-objective problem. The drag and the sonic boom have been evaluated by the computational fluid dynamics (CFD) simulation and the waveform parameter method. As a result, the present optimization has successfully obtained low-boom and low-drag design candidates, which are better than the baseline design by more than 40% regarding each performance. Moreover, the structure of design space has been visualized by the self-organizing map (SOM).

  13. Effect of emerging technology on a convertible, business/interceptor, supersonic-cruise jet

    Science.gov (United States)

    Beissner, F. L., Jr.; Lovell, W. A.; Robins, A. W.; Swanson, E. E.

    1986-01-01

    This study was initiated to assess the feasibility of an eight-passenger, supersonic-cruise long range business jet aircraft that could be converted into a military missile carrying interceptor. The baseline passenger version has a flight crew of two with cabin space for four rows of two passenger seats plus baggage and lavatory room in the aft cabin. The ramp weight is 61,600 pounds with an internal fuel capacity of 30,904 pounds. Utilizing an improved version of a current technology low-bypass ratio turbofan engine, range is 3,622 nautical miles at Mach 2.0 cruise and standard day operating conditions. Balanced field takeoff distance is 6,600 feet and landing distance is 5,170 feet at 44,737 pounds. The passenger section from aft of the flight crew station to the aft pressure bulkhead in the cabin was modified for the interceptor version. Bomb bay type doors were added and volume is sufficient for four advanced air-to-air missiles mounted on a rotary launcher. Missile volume was based on a Phoenix type missile with a weight of 910 pounds per missile for a total payload weight of 3,640 pounds. Structural and equipment weights were adjusted and result in a ramp weight of 63,246 pounds with a fuel load of 30,938 pounds. Based on a typical intercept mission flight profile, the resulting radius is 1,609 nautical miles at a cruise Mach number of 2.0.

  14. Time-resolved schlieren POD and aft deck pressure correlations on a rectangular supersonic nozzle and sonic wall jet

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark

    2016-11-01

    A multi-stream single expansion ramp nozzle (SERN) with aft deck, based on three-stream engine concepts, is currently undergoing experimental tests at Syracuse University's Skytop Turbulence Laboratory. In the context of this study, we view this as an idealized representation consisting of two canonical flows; a supersonic convergent-divergent (CD) nozzle and a sonic wall jet (representing the 3rd stream). The jet operates at a bulk flow of Mj , 1 = 1 . 6 and wall jet Mj , 3 = 1 . 0 . Proper orthogonal decomposition (POD) is then performed on the schlieren images and the time-dependent coefficients are related to the near-field deck pressure. Structures within the flow field are correlated to particular flow events and help track the downstream evolution of the jet. A multitude of scales are seen within the flow corresponding to a wide range of coherent structures. High fidelity LES is also performed on the same nozzle geometry and relations are made back to the experiments. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  15. MODELING SUPERSONIC-JET DEFLECTION IN THE HERBIG–HARO 110-270 SYSTEM WITH HIGH-POWER LASERS

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Dawei; Li, Yutong; Lu, Xin; Yin, Chuanlei; Su, Luning; Liao, Guoqian; Zhang, Jie [National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100080 (China); Wu, Junfeng; Wang, Lifeng; He, Xiantu [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China); Zhong, Jiayong; Wei, Huigang; Zhang, Kai; Han, Bo; Zhao, Gang [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Jiang, Shaoen; Du, Kai; Ding, Yongkun [Research Center for Laser Fusion, China Academy of Engineering Physics, Mianyang 621900 (China); Zhu, Jianqiang, E-mail: ytli@iphy.ac.cn, E-mail: jzhang@sjtu.edu.cn [National Laboratory on High Power Lasers and Physics, Shanghai, 201800 (China)

    2015-12-10

    Herbig–Haro (HH) objects associated with newly born stars are typically characterized by two high Mach number jets ejected in opposite directions. However, HH 110 appears to only have a single jet instead of two. Recently, Kajdi et al. measured the proper motions of knots in the whole system and noted that HH 110 is a continuation of the nearby HH 270. It has been proved that the HH 270 collides with the surrounding mediums and is deflected by 58°, reshaping itself as HH 110. Although the scales of the astrophysical objects are very different from the plasmas created in the laboratory, similarity criteria of physical processes allow us to simulate the jet deflection in the HH 110/270 system in the laboratory with high power lasers. A controllable and repeatable laboratory experiment could give us insight into the deflection behavior. Here we show a well downscaled experiment in which a laser-produced supersonic-jet is deflected by 55° when colliding with a nearby orthogonal side-flow. We also present a two-dimensional hydrodynamic simulation with the Euler program, LARED-S, to reproduce the deflection. Both are in good agreement. Our results show that the large deflection angle formed in the HH 110/270 system is probably due to the ram pressure from a flow–flow collision model.

  16. Asymptotic structure of low frequency supersonic heated jet noise using LES data to re-construct a turbulence model

    Science.gov (United States)

    Afsar, Mohammed; Sescu, Adrian; Sassanis, Vasileios; Bres, Guillaume; Towne, Aaron; Lele, Sanjiva

    2016-11-01

    The Goldstein-Sescu-Afsar asymptotic theory postulated that the appropriate distinguished limit in which non-parallel mean flow effects introduces a leading order change in the 'propagator' (which is related adjoint linearized Euler Green's function) within Goldstein's acoustic analogy must be when the jet spread rate is the same order as Strouhal number. We analyze the low frequency structure of the acoustic spectrum using Large-eddy simulations of two axi-symmetric jets (heated & unheated) at constant supersonic jet Mach number to obtain the mean flow for the asymptotic theory. This approach provides excellent quantitative agreement for the peak jet noise when the coefficients of the turbulence model are tuned for good agreement with the far-field acoustic data. Our aim in this talk, however, is to show the predictive capability of the asymptotics when the turbulence model in the acoustic analogy is 'exactly' re-constructed by numerically matching the length scale coefficients of an algebraic-exponential model for the 1212-component of the Reynolds stress auto-covariance tensor (1 is streamwise & 2 is radial direction) with LES data at any spatial location and temporal frequency. In this way, all information is obtained from local unsteady flow. We thank Professor Parviz Moin for supporting this work as part of the Center for Turbulence Research Summer Program 2016.

  17. Ultra-high-speed digital in-line holography system applied to particle-laden supersonic underexpanded jet flows

    DEFF Research Database (Denmark)

    Ingvorsen, Kristian Mark; Buchmann, Nicolas A.; Soria, Julio

    2012-01-01

    for magnified digital in-line holography is created, using an ultra-high-speed camera capable of frame rates of up to 1.0MHz. To test the new technique an axisymmetric supersonic underexpanded particle-laden jet is investigated. The results show that the new technique allows for the acquisition of time resolved...

  18. Jet-Cooled Spectroscopy on the Ailes Infrared Beamline of the Synchrotron Radiation Facility Soleil

    Science.gov (United States)

    Georges, Robert

    2015-06-01

    The Advanced Infrared Line Exploited for Spectroscopy (AILES) extracts the bright far infrared (FIR) synchrotron continuum of the third generation radiation facility SOLEIL. This beamline is equipped with a high resolution (10-3 cm-1) Bruker IFS125 Fourier transform spectrometer which can be operated in the FIR but also in the mid and near infrared by using its internal conventional sources. The jet-AILES consortium (IPR, PhLAM, MONARIS, SOLEIL) has implemented a supersonic-jet apparatus on the beamline to record absorption spectra at very low temperature (5-50 K) and in highly supersaturated gaseous conditions. Heatable slit-nozzles of various lengths and widths are used to set properly the stagnation conditions. A mechanical pumping (roots pumps) was preferred for its ability to evacuate important mass flow rates and therefore to boost the experimental sensitivity of the set-up, the counterpart being a non-negligible consumption of both carrier (argon, helium or nitrogen) and spectroscopic gases. Various molecular systems were investigated up to now using the Jet-AILES apparatus. The very low temperature achieved in the gas expansion was either used to simplify the rotation-vibration structure of monomers, such as SF6, CF4 or naphthalene, or to stabilize the formation of weakly bonded molecular complexes such as the trimer of HF or the dimer of acetic acid. The nucleation of water vapor and the nuclear spin conversion of water were also investigated under free-jet conditions in the mid infrared. High-resolution spectroscopy and analysis of the νb{2} + νb{3} combination band of SF6 in a supersonic jet expansion. V. Boudon, P. Asselin, P. Soulard, M. Goubet, T. R. Huet, R. Georges, O. Pirali, P. Roy, Mol. Phys. 111, 2154-2162 (2013) The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations. O. Pirali, M. Goubet, T.R. Huet, R. Georges, P. Soulard, P. Asselin, J. Courbe, P. Roy and M

  19. Infrared absorption imaging of 2D supersonic jet expansions: Free expansion, cluster formation, and shock wave patterns.

    Science.gov (United States)

    Zischang, Julia; Suhm, Martin A

    2013-07-14

    N2O/He gas mixtures are expanded through a 10 × 0.5 mm(2) slit nozzle and imaged by direct absorption vibrational spectroscopy, employing a HgCdTe focal plane array detector after interferometric modulation. N2O cluster formation in the free supersonic expansion is visualized. The expansion structure behind the frontal shock is investigated as a function of background pressure. At high pressures, a sequence of stationary density peaks along a narrow directed flow channel is characterized. The potential of the technique for the elucidation of aggregation mechanisms is emphasized.

  20. Evidence for two forms, double hydrogen tunneling, and proximity of excited states in bridge-substituted porphycenes: supersonic jet studies.

    Science.gov (United States)

    Vdovin, Alexander; Sepioł, Jerzy; Urbańska, Natalia; Pietraszkiewicz, Marek; Mordziński, Andrzej; Waluk, Jacek

    2006-03-01

    Laser-induced fluorescence and dispersed fluorescence spectra measured in supersonic jets for 9,10,19,20-tetra-n-methylporphycene and 9,10,19,20-tetra-n-propylporphycene reveal, for both compounds, the presence of two different species which are assigned to trans and cis tautomeric forms. Doublet splitting of lines is observed, disappearing upon deuteration of the inner nitrogen atoms. This finding is interpreted as an indication of double hydrogen tunneling. The values of tunneling splitting are obtained for both ground and lowest singlet excited states. The splitting is similar for cis and trans forms, and the barrier for tautomerization is larger in the excited state. Due to the coupling of hydrogen motion with rotation of alkyl substituents, tautomerization occurs in an asymmetric double minimum potential, with the ordering of energy minima reversed upon excitation. The second singlet excited state is found to lie very close to S(1), thus facilitating an efficient radiationless depopulation.

  1. Multi-Measurement Correlations in the Near-Field of a Complex Supersonic Jet Using Time-Resolved Schlieren Imaging

    Science.gov (United States)

    Tenney, Andrew; Coleman, Thomas; Lewalle, Jacques; Glauser, Mark; Gogineni, Sivaram

    2016-11-01

    Supersonic flow from a three-stream non-axisymmetric jet is visualized using time resolved schlieren photography (up to 400,000 frames per second) while pressure on the aft deck plate of the nozzle is simultaneously sampled using kulites. Time series are constructed using the schlieren photographs and conditioned to reduce the effects of signal drift and clipping where necessary. The effect of this detrending and clipping reconstruction on signal statistics is examined. In addition, signals constructed from near field schlieren will be correlated with one another to visualize the propagation of information in the near field. The goal of utilizing space-time correlations is to assist in identifying and tracking the evolution of individual structures in the near field. The schlieren signals will also be correlated with the deck pressure traces to assist in unraveling the interaction of flow structures.

  2. Fourier transform infrared absorption spectroscopy of jet-cooled radicals

    Science.gov (United States)

    Rohrs, Henry W.; Wickham-Jones, C. Tom; Ellison, G. Barney; Berry, David; Argrow, Brian M.

    1995-03-01

    We describe an experiment that couples a high-resolution Fourier transform spectrometer (FTS) to a supersonic jet of radicals. A 1-mm-i.d. cylindrical SiC nozzle is resistively heated to 1500 K in order to decompose organic precursors and generate expansions of jet-cooled radicals. We have used this apparatus to pyrolyze alkyl nitrites to make alkoxy and nitric oxide radicals. The residence time of radicals in this hot nozzle is roughly 20 μs RONO→ΔRO+NO. We use the FTS to detect the IR absorption of the product NO (ν0=1876.1 cm-1) at resolutions as fine as 0.005 cm-1 FWHM. We observe the product NO from the pyrolysis of CH3CH2ONO to be rotationally cooled to roughly 50 K. The IR spectra indicate that the optical path length is about 3/4 cm and that the nitrites pyrolyze to produce approximately 1014 NO radicals cm-3 some 9 mm downstream from the nozzle. Our spectrometer is capable of detecting an absorption signal of 0.1% over a bandwidth of 100 cm-1 at 0.005 cm-1 resolution. Depending on the infrared cross section of the radical, this implies that we are able to monitor diatomic radical densities of roughly 5×1012 cm-3 (quantum state)-1.

  3. Hybrid Reynolds-Averaged/Large-Eddy Simulations of a Co-Axial Supersonic Free-Jet Experiment

    Science.gov (United States)

    Baurle, R. A.; Edwards, J. R.

    2009-01-01

    Reynolds-averaged and hybrid Reynolds-averaged/large-eddy simulations have been applied to a supersonic coaxial jet flow experiment. The experiment utilized either helium or argon as the inner jet nozzle fluid, and the outer jet nozzle fluid consisted of laboratory air. The inner and outer nozzles were designed and operated to produce nearly pressure-matched Mach 1.8 flow conditions at the jet exit. The purpose of the computational effort was to assess the state-of-the-art for each modeling approach, and to use the hybrid Reynolds-averaged/large-eddy simulations to gather insight into the deficiencies of the Reynolds-averaged closure models. The Reynolds-averaged simulations displayed a strong sensitivity to choice of turbulent Schmidt number. The baseline value chosen for this parameter resulted in an over-prediction of the mixing layer spreading rate for the helium case, but the opposite trend was noted when argon was used as the injectant. A larger turbulent Schmidt number greatly improved the comparison of the results with measurements for the helium simulations, but variations in the Schmidt number did not improve the argon comparisons. The hybrid simulation results showed the same trends as the baseline Reynolds-averaged predictions. The primary reason conjectured for the discrepancy between the hybrid simulation results and the measurements centered around issues related to the transition from a Reynolds-averaged state to one with resolved turbulent content. Improvements to the inflow conditions are suggested as a remedy to this dilemma. Comparisons between resolved second-order turbulence statistics and their modeled Reynolds-averaged counterparts were also performed.

  4. Equilibrium chemical reaction of supersonic hydrogen-air jets (the ALMA computer program)

    Science.gov (United States)

    Elghobashi, S.

    1977-01-01

    The ALMA (axi-symmetrical lateral momentum analyzer) program is concerned with the computation of two dimensional coaxial jets with large lateral pressure gradients. The jets may be free or confined, laminar or turbulent, reacting or non-reacting. Reaction chemistry is equilibrium.

  5. Cpuf: Chirped-Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Suits, Arthur; Abeysekera, Chamara; Zack, Lindsay N.; Joalland, Baptiste; Ariyasingha, Nuwandi M.; Park, Barratt; Field, Robert W.; Sims, Ian

    2015-06-01

    Chirped-pulse Fourier-transform microwave spectroscopy has stimulated a resurgence of interest in rotational spectroscopy owing to the dramatic reduction in spectral acquisition time it enjoys when compared to cavity-based instruments. This suggests that it might be possible to adapt the method to study chemical reaction dynamics and even chemical kinetics using rotational spectroscopy. The great advantage of this would be clear, quantifiable spectroscopic signatures for polyatomic products as well as the possibility to identify and characterize new radical reaction products and transient intermediates. To achieve this, however, several conditions must be met: 1) products must be thermalized at low temperature to maximize the population difference needed to achieve adequate signal levels and to permit product quantification based on the rotational line strength; 2) a large density and volume of reaction products is also needed to achieve adequate signal levels; and 3) for kinetics studies, a uniform density and temperature is needed throughout the course of the reaction. These conditions are all happily met by the uniform supersonic flow produced from a Laval nozzle expansion. In collaboration with the Field group at MIT we have developed a new instrument we term a CPUF (Chirped-pulse/Uniform Flow) spectrometer in which we can study reaction dynamics, photochemistry and kinetics using broadband microwave and millimeter wave spectroscopy as a product probe. We will illustrate the performance of the system with a few examples of photodissociation and reaction dynamics, and also discuss a number of challenges unique to the application of chirped-pulse microwave spectroscopy in the collisional environment of the flow. Future directions and opportunities for application of CPUF will also be explored.

  6. Continuous-Wave Cavity Ring-Down Spectroscopy in a Pulsed Uniform Supersonic Flow

    Science.gov (United States)

    Thawoos, Shameemah; Suas-David, Nicolas; Suits, Arthur

    2017-06-01

    We introduce a new approach that couples a pulsed uniform supersonic flow with high sensitivity continuous wave cavity ringdown spectroscopy (UF-CRDS) operated in the near infrared (NIR). This combination is related to the CRESU technique developed in France and used for many years to study reaction kinetics at low temperature, and to the microwave based chirped-pulse uniform supersonic flow spectrometer (CPUF) developed in our group which has successfully demonstrated the use of pulsed uniform supersonic flow to probe reaction dynamics at temperatures as low as 22 K. CRDS operated with NIR permits access to the first overtones of C-H and O-H stretching/bending which, in combination with its extraordinary sensitivity opens new experiments complementary to the CPUF technique. The UF-CRDS apparatus (Figure) utilizes the pulsed uniform flow produced by means of a piezo-electric stack valve in combination with a Laval nozzle. At present, two machined aluminum Laval nozzles designed for carrier gases Ar and He generate flows with a temperature of approximately 25 K and pressure around 0.15 mbar. This flow is probed by an external cavity diode laser in the NIR (1280-1380 nm). Laval nozzles designed using a newly developed MATLAB-based program will be used in the future. A detailed illustration of the novel UF-CRDS instrumentation and its performance will be presented along with future directions and applications. I. Sims, J. L. Queffelec, A. Defrance, C. Rebrion-Rowe, D. Travers, P. Bocherel, B. Rowe, I. W. Smith, J. Chem. Phys. 100, 4229-4241, (1994). C. Abeysekera, B. Joalland, N. Ariyasingha, L. N. Zack, I. R. Sims, R. W. Field, A. G. Suits, J. Phys. Chem. Lett. 6, 1599-1604, (2015). N. Suas-David, T. Vanfleteren, T. Foldes, S. Kassi, R. Georges, M. Herman, J. Phys. Chem.A, 119, 10022-10034, (2015). C. Abeysekera, B. Joalland, Y. Shi, A. Kamasah, J. M. Oldham, A. G. Suits, Rev. Sci. Instrum. 85, 116107, (2014).

  7. Electrochemical impedance spectroscopy on nanostructured carbon electrodes grown by supersonic cluster beam deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bettini, Luca Giacomo; Bardizza, Giorgio; Podesta, Alessandro; Milani, Paolo; Piseri, Paolo, E-mail: piseri@mi.infn.it [Universita degli Studi di Milano, Dipartimento di Fisica and CIMaINa (Italy)

    2013-02-15

    Nanostructured porous films of carbon with density of about 0.5 g/cm{sup 3} and 200 nm thickness were deposited at room temperature by supersonic cluster beam deposition (SCBD) from carbon clusters formed in the gas phase. Carbon film surface topography, determined by atomic force microscopy, reveals a surface roughness of 16 nm and a granular morphology arising from the low kinetic energy ballistic deposition regime. The material is characterized by a highly disordered carbon structure with predominant sp2 hybridization as evidenced by Raman spectroscopy. The interface properties of nanostructured carbon electrodes were investigated by cyclic voltammetry and electrochemical impedance spectroscopy employing KOH 1 M solution as aqueous electrolyte. An increase of the double layer capacitance is observed when the electrodes are heat treated in air or when a nanostructured nickel layer deposited by SCBD on top of a sputter deposited film of the same metal is employed as a current collector instead of a plain metallic film. This enhancement is consistent with an improved charge injection in the active material and is ascribed to the modification of the electrical contact at the interface between the carbon and the metal current collector. Specific capacitance values up to 120 F/g have been measured for the electrodes with nanostructured metal/carbon interface.

  8. Laser-Induced Fluorescence Velocity Measurements in Supersonic Underexpanded Impinging Jets

    Science.gov (United States)

    Inman, Jennifer A.; Danehy, Paul M.; Barthel, Brett; Alderfer, David W.; Novak, Robert J.

    2010-01-01

    We report on an application of nitric oxide (NO) flow-tagging velocimetry to impinging underexpanded jet flows issuing from a Mach 2.6 nozzle. The technique reported herein utilizes a single laser, single camera system to obtain planar maps of the streamwise component of velocity. Whereas typical applications of this technique involve comparing two images acquired at different time delays, this application uses a single image and time delay. The technique extracts velocity by assuming that particular regions outside the jet flowfield have negligible velocity and may therefore serve as a stationary reference against which to measure motion of the jet flowfield. By taking the average of measurements made in 100 single-shot images for each flow condition, streamwise velocities of between -200 and +1,000 m/s with accuracies of between 15 and 50 m/s are reported within the jets. Velocity measurements are shown to explain otherwise seemingly anomalous impingement surface pressure measurements.

  9. Predictions of a Supersonic Jet-in-Crossflow: Comparisons Among CFD Solvers and with Experiment

    Science.gov (United States)

    2014-09-01

    outflow boundaries were specified as modified Riemann invariants conditions at the freestream flow conditions. The computational inlet is a planar face and...jet-on cases. Figure 6. ARL computational mesh. Figure 7. ARL geometry and mesh in jet nozzle area. D ow nl oa de d by J am es D...The inviscid flux function was a second-order, upwind scheme using a Harten-Lax-van Leer-Contact (HLLC) Riemann solver and a multi- dimensional Total

  10. Multiobjective Design Optimization of Supersonic Jet Engine in Different Cruise Mach Numbers

    Science.gov (United States)

    Ogawa, Masamichi; Sato, Tetsuya; Kobayashi, Hiroaki; Taguchi, Hideyuki

    The aim of this paper is to apply a multi-objective optimization generic algorithm (MOGA) to the conceptual design of the hypersonic/supersonic vehicles with different cruise Mach number. The pre-cooled turbojet engine is employed as a propulsion system and some engine parameters such as the precooler size, compressor size, compression ratio and fuel type are varied in the analysis. The result shows that the optimum cruise Mach number is about 4 if hydrogen fuel is used. Methane fuel instead of hydrogen reduces the vehicle gross weight by 33% in case of the Mach 2 vehicle.

  11. Free-jet Tests of a 1.1-inch-diameter Supersonic Ram-jet Engine

    Science.gov (United States)

    Judd, Joseph H; Trout, Otto F , Jr

    1957-01-01

    Results are presented of free-jet tests of a 1.1-inch-diameter hydrogen-burning ram-jet engine over a Mach number range from 1.42 to 2.28 and a Reynolds number range from 6.01 times 10 to the 6th power to 15.78 times 10 to the 6th power. Tests demonstrated the reliability and wide operating range of the engine and showed its suitability for installation on wind-tunnel models of airplane and missile configurations. A comparison of engine operation with combustion-chamber lengths of 3.33 and 1.51 engine diameters was made at a Mach number of 2.06. A maximum test thrust coefficient of 0.905 was obtained at fuel-air ratio of 0.034 and a Mach number of 2.06 for the engine with the 3.33-diameter combustion chamber.

  12. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    CERN Document Server

    Hsu, S C; Moser, A L; Awe, T J; Brockington, S J E; Davis, J S; Adams, C S; Case, A; Cassibry, J T; Dunn, J P; Gilmore, M A; Lynn, A G; Messer, S J; Witherspoon, F D

    2012-01-01

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density \\approx 2 x 10^(16) cm^(-3), electron temperature \\approx 1.4 eV, velocity \\approx 30 km/s, M \\approx 14, ionization fraction \\approx 0.96, diameter \\approx 5 cm, and length \\approx 20 cm. These values approach the range needed by the Plasma Liner Experiment (PLX), which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is up to an order of magnitude less than the drop predicted by the ideal hydrodynamic theory of a constant-M jet.

  13. Experimental characterization of railgun-driven supersonic plasma jets motivated by high energy density physics applications

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, S. C.; Moser, A. L.; Awe, T. J.; Davis, J. S.; Dunn, J. P. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Merritt, E. C.; Adams, C. S. [Physics Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); University of New Mexico, Albuquerque, New Mexico 87131 (United States); Brockington, S. J. E.; Case, A.; Messer, S. J.; Witherspoon, F. D. [HyperV Technologies Corp., Chantilly, Virginia 20151 (United States); Cassibry, J. T. [Propulsion Research Center, University of Alabama in Huntsville, Huntsville, Alabama 35899 (United States); Gilmore, M. A.; Lynn, A. G. [University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2012-12-15

    We report experimental results on the parameters, structure, and evolution of high-Mach-number (M) argon plasma jets formed and launched by a pulsed-power-driven railgun. The nominal initial average jet parameters in the data set analyzed are density Almost-Equal-To 2 Multiplication-Sign 10{sup 16} cm{sup -3}, electron temperature Almost-Equal-To 1.4 eV, velocity Almost-Equal-To 30 km/s, M Almost-Equal-To 14, ionization fraction Almost-Equal-To 0.96, diameter Almost-Equal-To 5 cm, and length Almost-Equal-To 20 cm. These values approach the range needed by the Plasma Liner Experiment, which is designed to use merging plasma jets to form imploding spherical plasma liners that can reach peak pressures of 0.1-1 Mbar at stagnation. As these jets propagate a distance of approximately 40 cm, the average density drops by one order of magnitude, which is at the very low end of the 8-160 times drop predicted by ideal hydrodynamic theory of a constant-M jet.

  14. Heat flux reduction mechanism induced by a combinational opposing jet and cavity concept in supersonic flows

    Science.gov (United States)

    Huang, Wei; Jiang, Yan-ping; Yan, Li; Liu, Jun

    2016-04-01

    The thermal protection on the surface of hypersonic vehicles attracts an increasing attention worldwide, especially when the vehicle enters the atmosphere at high speed. In the current study, the Reynolds-averaged Navier-Stokes (RANS) equations coupled with the Menter's shear stress transport (SST) model have been employed to investigate the heat flux reduction mechanism induced by the variations of the cavity configuration, the jet pressure ratio and the injectant molecular weight in the combinational opposing jet and cavity concept. The length of the cavity is set to be 6 mm, 8 mm and 10 mm in order to make sure that the cavity configuration is the "open" cavity, and the jet pressure ratio is set to be 0.4, 0.6 and 0.8 in order to make sure that the flow field is steady. The injectant is set to be nitrogen and helium. The obtained results show that the aft angle of the cavity only has a slight impact on the heat flux reduction, and the heat flux peak decreases with the decrease of the length of the cavity. The design of the thermal protection system for the hypersonic blunt body is a multi-objective design exploration problem, and the heat flux distribution depends on the jet pressure ratio, the aft wall of the cavity and the injectant molecular weight. The heat flux peak decreases with the increase of the jet pressure ratio when the aft angle of the cavity is large enough, and this value is 45°.

  15. Computational study of a contoured plug-nozzle as a supersonic jet noise suppressor

    Science.gov (United States)

    Khavaran, A.; Das, A. P.; Das, I.S.

    1996-01-01

    The report summarizes a computational jet noise study of an ideal contoured plug-nozzle (CPN). The gasdynamics of the jet flows have been predicted using the CFD code, NPARC with k-epsilon turbulence model; these data are then used as inputs to perform the noise computations based on the modified version of General Electric MGB code. The study covers a range of operating pressure ratio, 2.0 less than xi less than 5.0 (shockless flow at design pressure ratio, xi(d) = 3.62). The agreement of the computational aeroacoustics results with the available experimental data may be considered to be favorable. The computational results indicate consistent noise reduction effectiveness of the CPN at all operating pressure ratios. At the design pressure ratio (shockless), the codes predict overall sound pressure levels within +3.O dB of the experimental data. But at the off-design pressure ratios (flaws with shocks), the agreement is rather mixed. The theory overpredicts the OASPL's at all pressure ratios except at lower angles to the jet axis in overexpanded mode (xi less than xi(d)), the deviations being within 4.5 dB. The mechanism of shock formations in the CPN jet flows is noted to be basically different from those in the convergent-divergent nozzle jet flows.

  16. Research on the noise produced by large scale structure in supersonic jets

    Science.gov (United States)

    Mclaughlin, D. K.; Lilley, D. G.

    1982-01-01

    Using a dual electrode glow discharge excitation device, a method of mode selection into either the n = 0 or n = + or - 1 azimuthal modes was developed and tested by Fourier analyzing experimental azimuthal phase and amplitude data. On a M = 2.1 moderate Reynolds number (Re = 68,000) jet with a laminar boundary layer, under n = 0 or n = +1 excitation, coherent axial wave evolution, mean flow, and sound pressure level directivity measurements were performed. The boundary layer of this same jet was excited usng a grit coating on the nozzle wall, and bandpassed axial wave evolution data obtained and compared to the masurements made by previous workers on a conventional high Reynolds number jet (Re = 5,000,000) using a hot-film type probe.

  17. Experimental investigation on structures and velocity of liquid jets in a supersonic crossflow

    Science.gov (United States)

    Wang, Zhen-guo; Wu, Liyin; Li, Qinglian; Li, Chun

    2014-09-01

    Particle image velocimetry was applied in the study focusing on the structure and velocity of water jets injected into a Ma = 2.1 crossflow. The instantaneous structures of the jet, including surface waves in the near-injector region and vortices in the far-field, were visualized clearly. Spray velocity increases rapidly to 66% of the mainstream velocity in the region of x/d AIAA J. 46, 2674-2686 (2008)] and Wang et al. [AIAA J. 50, 1360-1366 (2012)]), the atomization process involves very complex flow physics. These physical processes include strong vortical structures, small-scale wave formation, stripping of small droplets from the jet surface, formations of ligaments, and droplets with a wide range of sizes.

  18. Specific features of the radial distributions of plasma parameters in the initial segment of a supersonic jet generated by a pulsed capillary discharge

    Science.gov (United States)

    Pashchina, A. S.; Efimov, A. V.; Chinnov, V. F.; Ageev, A. G.

    2017-07-01

    Results are presented from spectroscopic studies of the initial segment of a supersonic plasma jet generated by a pulsed capillary discharge with an ablative carbon-containing polymer wall. Specific features of the spatial distributions of the electron density and intensities of spectral components caused, in particular, by the high electron temperature in the central zone, much exceeding the normal temperature, as well as by the high nonisobaricity of the initial segment of the supersonic jet, are revealed. Measurements of the radiative properties of the hot jet core (the intensity and profile of the Hα and Hβ Balmer lines and the relative intensities of C II lines) with high temporal (1-50 μs) and spatial (30-50 μm) resolutions made it possible to determine general features of the pressure and temperature distributions near the central shock. The presence of molecular components exhibiting their emission properties at the periphery of the plasma jet allowed the authors to estimate the parameters of the plasma in the jet region where "detached" shock waves form.

  19. Effect of Seeding Particles on the Shock Structure of a Supersonic Jet

    Science.gov (United States)

    Porta, David; Echeverría, Carlos; Stern, Catalina

    2012-11-01

    The original goal of our work was to measure. With PIV, the velocity field of a supersonic flow produced by the discharge of air through a 4mm cylindrical nozzle. The results were superposed to a shadowgraph and combined with previous density measurements made with a Rayleigh scattering technique. The idea was to see if there were any changes in the flow field, close to the high density areas near the shocks. Shadowgraphs were made with and without seeding particles, (spheres of titanium dioxide). Surprisingly, it was observed that the flow structure with particles was shifted in the direction opposite to the flow with respect to the flow structure obtained without seeds. This result might contradict the belief that the seeding particles do not affect the flow and that the speed of the seeds correspond to the local speed of the flow. We acknowledge support from DGAPA UNAM through project IN117712 and from Facultad de Ciencias UNAM.

  20. Ion-viscosity effects on plasma-liner formation and implosion via merging supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Samulyak, Roman; Shih, Wen; Hsu, Scott; PLX-Alpha Team

    2016-10-01

    The PLX- α project endeavors to study plasma-liner formation and implosion by merging a spherical array of plasma jets as a candidate standoff driver for MIF. Smoothed particle hydrodynamics is used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. Ion viscosity is anticipated to be an important mechanism for momentum transport during liner formation, implosion, and stagnation. To study this, ion viscosity was incorporated into the code. To provide confidence in the numerical output and to help identify the difference between numerical and physical diffusion, a series of test cases were performed, consisting of Couette flow, Gresho vortex, and a Taylor-Green vortex. An L2-norm analysis was performed to measure the error and convergence. Simulations of conical (6 jets) and 4 π (60 jets) liners with and without ion viscosity reveal potential effects of viscosity on ram pressure, Mach-number degradation, and evolution of liner perturbations during jet merging and liner implosion.

  1. Nonequilibrium Supersonic Freestream Studied Using Coherent Anti-Stokes Raman Spectroscopy

    Science.gov (United States)

    Cutler, Andrew D.; Cantu, Luca M.; Gallo, Emanuela C. A.; Baurle, Rob; Danehy, Paul M.; Rockwell, Robert; Goyne, Christopher; McDaniel, Jim

    2015-01-01

    Measurements were conducted at the University of Virginia Supersonic Combustion Facility of the flow in a constant-area duct downstream of a Mach 2 nozzle. The airflow was heated to approximately 1200 K in the facility heater upstream of the nozzle. Dual-pump coherent anti-Stokes Raman spectroscopy was used to measure the rotational and vibrational temperatures of N2 and O2 at two planes in the duct. The expectation was that the vibrational temperature would be in equilibrium, because most scramjet facilities are vitiated air facilities and are in vibrational equilibrium. However, with a flow of clean air, the vibrational temperature of N2 along a streamline remains approximately constant between the measurement plane and the facility heater, the vibrational temperature of O2 in the duct is about 1000 K, and the rotational temperature is consistent with the isentropic flow. The measurements of N2 vibrational temperature enabled cross-stream nonuniformities in the temperature exiting the facility heater to be documented. The measurements are in agreement with computational fluid dynamics models employing separate lumped vibrational and translational/rotational temperatures. Measurements and computations are also reported for a few percent steam addition to the air. The effect of the steam is to bring the flow to thermal equilibrium, also in agreement with the computational fluid dynamics.

  2. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I[alpha] photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a soft'' mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  3. High resolution photoelectron spectroscopy and femtosecond intramolecular dynamics using supersonic molecular beams

    Energy Technology Data Exchange (ETDEWEB)

    Niu, B.

    1992-09-01

    High resolution He I{alpha} photoelectron spectroscopy of formaldehyde and ketene and their deuterated compounds, are reported. The combination of a (H2CO) double-pass high-resolution electron-energy analyzer and effective rotational cooling of the sample by supersonic expansion enable the spectroscopy of these molecular cations. The vibrational autocorrelation functions are calculated from the high-resolution photoelectron spectra, shedding light on the ultrafast intramolecular dynamics of the molecular cations. This study reveals much more vibrational structural detail in the first electronic excited state of H2CO cations. The first electronic excited state of H2CO cations may have nonplanar equilibrium geometry. Strong isotope effects on vibronic (vibrational) coupling are observed in the second electronic excited state of H2CO. Vibrational autocorrelation functions are calculated for all four observed electronic states of H2CO. The correlation function of the first electronic excited state of H2CO shows a slow decay rate on the femtosecond time scale. The ultrafast decay of the H2CO cations in the third electronic excited state implies that dissociation and intramolecular processes are the main decay pathways. The present spectra of the ground states of ketene cations have more fine structure than before. The AIEs of the first and fifth excited states are determined unambiguously more accurately. The doublet-like fine structures present in the lint excited state of ketene implies the excitation of a ``soft`` mode not observed before. The vibrational autocorrelation functions are calculated for 4 of the 6 observed electronic states. The dynamics of the ground states of the cations are characterized by a wave packet oscillating with small amplitude around the minimum on the upper PES. The decay dynamics of the first and the fifth excited states of ketene are characterized by ultra-fast intramolecular processes like predissociation.

  4. Identifying Coherent Structures in a 3-Stream Supersonic Jet Flow using Time-Resolved Schlieren Imaging

    Science.gov (United States)

    Tenney, Andrew; Coleman, Thomas; Berry, Matthew; Magstadt, Andy; Gogineni, Sivaram; Kiel, Barry

    2015-11-01

    Shock cells and large scale structures present in a three-stream non-axisymmetric jet are studied both qualitatively and quantitatively. Large Eddy Simulation is utilized first to gain an understanding of the underlying physics of the flow and direct the focus of the physical experiment. The flow in the experiment is visualized using long exposure Schlieren photography, with time resolved Schlieren photography also a possibility. Velocity derivative diagnostics are calculated from the grey-scale Schlieren images are analyzed using continuous wavelet transforms. Pressure signals are also captured in the near-field of the jet to correlate with the velocity derivative diagnostics and assist in unraveling this complex flow. We acknowledge the support of AFRL through an SBIR grant.

  5. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    Science.gov (United States)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  6. The formation of interstellar jets by the convergence of supersonic conical flows

    Science.gov (United States)

    Canto, J.; Tenorio-Tagle, G.; Rozyczka, M.

    1988-01-01

    The interaction of a stellar wind with a nonuniform environment leads, under the assumption of steady state, to the formation of an ovoidal cavity with acute ending tips. The stellar wind recollected by the walls of the cavity ends up being deposited at the tips. Here, it is shown that this focusing effect leads to the formation of a narrow cylindrical stream or 'jet' of reshocked stellar wind matter moving directly away from the star with a large velocity. A 'typical' T Tauri star may produce jets with densities of 1000-10,000/cu cm, velocities about 100 km/s, widths about 0.00001-0.001 pc over a length of 0.001-0.01 pc. The opening angles are 7 deg or less.

  7. Reduction of shock induced noise in imperfectly expanded supersonic jets using convex optimization

    Science.gov (United States)

    Adhikari, Sam

    2007-11-01

    Imperfectly expanded jets generate screech noise. The imbalance between the backpressure and the exit pressure of the imperfectly expanded jets produce shock cells and expansion or compression waves from the nozzle. The instability waves and the shock cells interact to generate the screech sound. The mathematical model consists of cylindrical coordinate based full Navier-Stokes equations and large-eddy-simulation turbulence modeling. Analytical and computational analysis of the three-dimensional helical effects provide a model that relates several parameters with shock cell patterns, screech frequency and distribution of shock generation locations. Convex optimization techniques minimize the shock cell patterns and the instability waves. The objective functions are (convex) quadratic and the constraint functions are affine. In the quadratic optimization programs, minimization of the quadratic functions over a set of polyhedrons provides the optimal result. Various industry standard methods like regression analysis, distance between polyhedra, bounding variance, Markowitz optimization, and second order cone programming is used for Quadratic Optimization.

  8. Elevated Temperature Ballistic Impact Testing of PBO and Kevlar Fabrics for Application in Supersonic Jet Engine Fan Containment Systems

    Science.gov (United States)

    Pereira, J. Michael; Roberts Gary D.; Revilock, Duane M., Jr.

    1997-01-01

    Ballistic impact tests were conducted on fabric made from both Poly(phenylene benzobizoxazole) (PBO) and Kevlar 29 which were selected to be similar in weave pattern, areal density, and fiber denier. The projectiles were 2.54-cm- (1-in.-) long aluminum cylinders with a diameter of 1.27 cm (0.5 in.). The fabric specimens were clamped on four sides in a 30.5-cm- (12-in.-) square frame. Tests on PBO were conducted at room temperature and at 260 C (500 F). A number of PBO specimens were aged in air at 204 and 260 C (400 and 500 F) before impact testing. Kevlar specimens were tested only at room temperature and with no aging. The PBO absorbed significantly more energy than the Kevlar at both room and elevated temperatures. However, after aging at temperatures of 204 C (400 F) and above, the PBO fabric lost almost all of its energy absorbing ability. It was concluded that PBO fabric is not a feasible candidate for fan containment system applications in supersonic jet engines where operating temperatures exceed this level.

  9. Schlieren study of a sonic jet injected into a supersonic cross flow using high-current pulsed LEDs

    CERN Document Server

    Giskes, Ella; Segerink, Frans B; Venner, Cornelis H

    2016-01-01

    In the research of supersonic flows, flow visualization continues to be an important tool, and even today it is difficult to create high quality images. In this study we present a low-cost and easy-to use Schlieren setup. The setup makes use of LEDs, pulsed with high currents to increase the optical output to sufficient levels, exploiting the advantages of LED light over conventional light sources. As a test-case we study the interaction of a Mach 1.7 cross flow and a transverse underexpanded jet, which is commonly studied considering the mixing and combustion in scramjet engines. Using 130 nanosecond LED light pulses, we captured the flow structures sharply and in great detail. We observed a large-gradient wave, which was seen in numerical studies but hitherto not reported in experiments. Furthermore, we demonstrate that time-correlated images can be obtained with this Schlieren setup, so that also flow unsteadiness can be studied, such as the movement of shock waves and vortices.

  10. Computation of supersonic jet mixing noise for an axisymmetric CD nozzle using k-epsilon turbulence model

    Science.gov (United States)

    Khavaran, A.; Krejsa, E. A.; Kim, C. M.

    1992-01-01

    The turbulent mixing noise of a supersonic jet is calculated for a round convergent-divergent nozzle at the design pressure ratio. Aerodynamic computations are performed using the PARC code with a k-epsilon turbulence model. Lighthill's acoustic analogy combined with Ribner's assumption is adopted. The acoustics solution is based upon the methodology followed by GE in the MGB code. The source correlation function is expressed as a linear combination of second-order tensors. Assuming separable second-order correlations and incorporating Batchelor's isotropic turbulence model, the source term was calculated from the kinetic energy of turbulence. A Gaussian distribution for the time-delay of correlation was introduced. The computational fluid dynamics (CFD) solution was used to obtain the source strength as well as the characteristic time-delay of correlation. The effect of sound/flow interaction was incorporated using the high frequency asymptotic solution to Lilley's equation for axisymmetric geometries. Acoustic results include sound pressure level directivity and spectra at different polar angles. The aerodynamic and acoustic results demonstrate favorable agreement with experimental data.

  11. Aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space.

    Science.gov (United States)

    Guo, Guangming; Liu, Hong; Zhang, Bin

    2016-06-10

    The aero-optical effects of an optical seeker with a supersonic jet for hypersonic vehicles in near space were investigated by three suites of cases, in which the altitude, angle of attack, and Mach number were varied in a large range. The direct simulation Monte Carlo based on the Boltzmann equation was used for flow computations and the ray-tracing method was used to simulate beam transmission through the nonuniform flow field over the optical window. Both imaging displacement and phase deviation were proposed as evaluation parameters, and along with Strehl ratio they were used to quantitatively evaluate aero-optical effects. The results show that aero-optical effects are quite weak when the altitude is greater than 30 km, the imaging displacement is related to the incident angle of a beam, and it is minimal when the incident angle is approximately 15°. For reducing the aero-optical effects, the optimal location of an aperture should be in the middle of the optical window.

  12. Dynamics of the Coherent Structures in a Supersonic Rectangular Jet of Aspect Ratio 2

    Science.gov (United States)

    Viswanath, Kamal; Corrigan, Andrew; Johnson, Ryan; Kailasanath, Kazhikathra; Gutmark, Ephraim; University of Cincinnati Team; LaboratoriesComputational Physics; Fluid Dynamics Team

    2016-11-01

    Asymmetric exhaust nozzle configurations, in particular rectangular, are likely to become more important in the future for both civilian and military aircraft. Various nozzle geometry features including the presence of sharp corners impact the evolution of the cross-sectional shape of the jet and its mixing features. Asymmetric nozzles potentially offer a passive way of affecting mixing for low aspect ratio jets through both large-scale entrainment due to coherent structures and fine scale mixing at the corners. Data is presented that show the dynamic evolution of the coherent structures for an ideally expanded rectangular nozzle of aspect ratio 2. The sense of the vortex pairs setup through the self-induction at the corners and stretching of the azimuthal vortex ring into streamwise vortices results in diagonal elongation of the time-averaged jet cross-section and contraction at the sides. The phase averaged velocity contours further clearly show the effect of mixing at the sharp corners and the deformation of the rectangular exit cross-section as it propagates downstream. It is observed that the dominant vortex pairs in this case work against axis-switching.

  13. Doping He droplets by laser ablation with a pulsed supersonic jet source

    Energy Technology Data Exchange (ETDEWEB)

    Katzy, R.; Singer, M.; Izadnia, S.; LaForge, A. C., E-mail: aaron.laforge@physik.uni-freiburg.de; Stienkemeier, F. [Physikalisches Institut, Universität Freiburg, 79104 Freiburg (Germany)

    2016-01-15

    Laser ablation offers the possibility to study a rich number of atoms, molecules, and clusters in the gas phase. By attaching laser ablated materials to helium nanodroplets, one can gain highly resolved spectra of isolated species in a cold, weakly perturbed system. Here, we present a new setup for doping pulsed helium nanodroplet beams by means of laser ablation. In comparison to more well-established techniques using a continuous nozzle, pulsed nozzles show significant differences in the doping efficiency depending on certain experimental parameters (e.g., position of the ablation plume with respect to the droplet formation, nozzle design, and expansion conditions). In particular, we demonstrate that when the ablation region overlaps with the droplet formation region, one also creates a supersonic beam of helium atoms seeded with the sample material. The processes are characterized using a surface ionization detector. The overall doping signal is compared to that of conventional oven cell doping showing very similar dependence on helium stagnation conditions, indicating a comparable doping process. Finally, the ablated material was spectroscopically studied via laser induced fluorescence.

  14. A simple counter-flow cooling system for a supersonic free-jet beam source assembly.

    Science.gov (United States)

    Barr, M; Fahy, A; Martens, J; Dastoor, P C

    2016-05-01

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  15. A simple counter-flow cooling system for a supersonic free-jet beam source assembly

    Energy Technology Data Exchange (ETDEWEB)

    Barr, M.; Fahy, A.; Martens, J.; Dastoor, P. C., E-mail: Paul.Dastoor@newcastle.edu.au [Centre for Organic Electronics, University of Newcastle, Callaghan, NSW 2308 (Australia)

    2016-05-15

    A simple design for an inexpensive, cooled, free-jet beam source is described. The source assembly features an integrated cooling system as supplied by a counter-flow of chilled nitrogen, and is composed primarily of off-the-shelf tube fittings. The design facilitates rapid implementation and eases subsequent alignment with respect to any downstream beamline aperture. The source assembly outlined cools the full length of the stagnation volume, offering temperature control down to 100 K and long-term temperature stability better than ±1 K.

  16. Near Field Screech Noise Computation for an Underexpanded Supersonic Jet by the CE/SE Method

    Science.gov (United States)

    Loh, Ching Y.; Hultgren, Lennart S.; Jorgenson, Philip C. E.

    2001-01-01

    The space-time conservation element and solution element (CE/SE) method is employed to numerically study the near-field axisymmetric screech-tone noise of a typical underexpanded circular jet issuing from a sonic nozzle. For the computed cases, corresponding to fully expanded Mach numbers of 1.10, 1.15 and 1.19, the self-sustained feedback loop is automatically established. The computed shock-cell structure, acoustic wave length, screech tone frequencies, and sound pressure levels are in good agreement with experimental results.

  17. Characterization of cluster/monomer ratio in pulsed supersonic gas jets

    Science.gov (United States)

    Gao, Xiaohui; Shim, Bonggu; Wang, Xiaoming; Downer, Mike

    2008-11-01

    While Rayleigh scatter and interferometry are standard methods for determining average cluster size and total atomic density, respectively, in cluster gas jets, determination of cluster mass fraction has required additional input from gasdynamic simulations. Here we determine cluster mass fraction experimentally with fs-time-resolved measurement of refractive index using frequency domain interferometery (FDI) after ionization and heating by a pump pulse. The essence of this method is that the negative index contribution of monomer plasma appears immediately after ionization by the pump, whereas the positive contribution of clustered plasma becomes significant only after clusters expand to a Mie resonance condition, enabling separation of monomer and cluster densities in the time domain. This method allows us to investigate various influences (nozzle geometry, temperature, etc.) on cluster fraction, which varies widely in nominally identical gas jets, and is a critical parameter in realizing phase-matched harmonic generation at high laser intensity, which would lead to an efficient table-top soft X-ray source.

  18. Global-mode based linear feedback control of a supersonic jet for noise reduction

    Science.gov (United States)

    Natarajan, Mahesh; Freund, Jonathan; Bodony, Daniel

    2016-11-01

    The loudest source of high-speed jet noise appears to be describable by unsteady wavepackets that resemble instabilities. We seek to reduce their acoustic impact with a control strategy that uses global modes to model their dynamics and structural sensitivity of the linearized compressible Navier-Stokes operator to identify an effective linear feedback control. For a case with co-located actuators and sensors adjacent the nozzle, we demonstrate the method on an axisymmetric Mach 1.5 jet. Direct numerical simulations using this control show significant noise reduction. Eigenanalysis of the controlled mean flows reveal fundamental changes in the spectrum at frequencies lower than that used by the control, with the quieter flows having unstable eigenvalues that correspond to eigenfunctions without significant support in the acoustic field. A specific trend is observed in the mean flow quantities as the flow becomes quieter, with changes in the mean flow becoming significant only further downstream of the nozzle exit. The quieter flows also have a stable shock-cell structure that extends further downstream. A phase plot of the POD coefficients for the flows show that the quieter flows are more regular in time. Funded by the Office of Naval Research.

  19. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    Directory of Open Access Journals (Sweden)

    Guanglong Chen

    2015-10-01

    Full Text Available The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized deq in scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.

  20. Effects of real viscosity on plasma liner formation and implosion from supersonic plasma jets

    Science.gov (United States)

    Schillo, Kevin; Cassibry, Jason; Hsu, Scott; PLX-Alpha Team

    2015-11-01

    The PLX- α project endeavors to study plasma liner formation and implosion by merging of a spherical array of plasma jets as a candidate standoff driver for magneto-inertial fusion (MIF). Smoothed particle hydrodynamics (SPH) is being used to model the liner formation and implosion processes. SPH is a meshless Lagrangian method to simulate fluid flows by dividing a fluid into a set of particles and using a summation interpolant function to calculate the properties and gradients for each of these particles. The SPH code was used to simulate test cases in which the number of plasma guns and initial conditions for the plasma were varied. Linear stabilizations were observed, but the possibility exists that this stabilization was due to the implementation of artificial viscosity in the code. A real viscosity model was added to our SPHC model using the Braginskii ion viscosity. Preliminary results for test cases that incorporate real viscosity are presented.

  1. In-flight imaging of transverse gas jets injected into transonic and supersonic crossflows: Design and development. M.S. Thesis, Mar. 1993

    Science.gov (United States)

    Wang, Kon-Sheng Charles

    1994-01-01

    The design and development of an airborne flight-test experiment to study nonreacting gas jets injected transversely into transonic and supersonic crossflows is presented. Free-stream/crossflow Mach numbers range from 0.8 to 2.0. Planar laser-induced fluorescence (PLIF) of an iodine-seeded nitrogen jet is used to visualize the jet flow. Time-dependent images are obtained with a high-speed intensified video camera synchronized to the laser pulse rate. The entire experimental assembly is configured compactly inside a unique flight-test-fixture (FTF) mounted under the fuselage of the F-104G research aircraft, which serves as a 'flying wind tunnel' at NASA Dryden Flight Research Center. The aircraft is flown at predetermined speeds and altitudes to permit a perfectly expanded (or slightly underexpanded) gas jet to form just outside the FTF at each free-stream Mach number. Recorded gas jet images are then digitized to allow analysis of jet trajectory, spreading, and mixing characteristics. Comparisons will be made with analytical and numerical predictions. This study shows the viability of applying highly sophisticated groundbased flow diagnostic techniques to flight-test vehicle platforms that can achieve a wide range of thermo/fluid dynamic conditions. Realistic flow environments, high enthalpies, unconstrained flowfields, and moderate operating costs are also realized, in contrast to traditional wind-tunnel testing.

  2. Twin Jet

    Science.gov (United States)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  3. Effects of Nozzle Geometry and Intermittent Injection of Aerodynamic Tab on Supersonic Jet Noise

    Science.gov (United States)

    Araki, Mikiya; Sano, Takayuki; Fukuda, Masayuki; Kojima, Takayuki; Taguchi, Hideyuki; Shiga, Seiichi; Obokata, Tomio

    Effects of the nozzle geometry and intermittent injection of aerodynamic tabs on exhaust noise from a rectangular plug nozzle were investigated experimentally. In JAXA (Japan Aerospace Exploration Agency), a pre-cooled turbojet engine for an HST (Hypersonic transport) is planned. A 1/100-scaled model of the rectangular plug nozzle is manufactured, and the noise reduction performance of aerodynamic tabs, which is small air jet injection from the nozzle wall, was investigated. Compressed air is injected through the rectangular plug nozzle into the atmosphere at the nozzle pressure ratio of 2.7, which corresponds to the take-off condition of the vehicle. Aerodynamic tabs were installed at the sidewall ends, and 4 kinds of round nozzles and 2 kinds of wedge nozzles were applied. Using a high-frequency solenoid valve, intermittent gas injection is also applied. It is shown that, by use of wedge nozzles, the aerodynamic tab mass flow rate, necessary to gain 2.3dB reduction in OASPL (Overall sound pressure level), decreases by 29% when compared with round nozzles. It is also shown that, by use of intermittent injection, the aerodynamic tab mass flow rate, necessary to gain 2.3dB reduction in OASPL, decreases by about 40% when compared with steady injection. By combination of wedge nozzles and intermittent injection, the aerodynamic tab mass flow rate significantly decreases by 57% when compared with the conventional strategy.

  4. Threshold ionization spectroscopic investigation of supersonic jet-cooled, laser-desorbed Tryptophan

    Science.gov (United States)

    Taherkhani, Mehran; Armentano, Antonio; Černý, Jiří; Müller-Dethlefs, Klaus

    2016-07-01

    Tryptophan (Trp) was studied by two-colour Photoionization Efficiency (PIE) and Mass Analysed Threshold Ionization (MATI) spectroscopy using a laser desorption apparatus. Conformer A of Trp was excited into the S1 state (34,878 cm-1) and the second laser was scanned around the D0 cation ground and the D1 excited state. No ionization signal into the D0 state could be found, but a clear threshold was observed for the D1 state with an ionization energy of 66,704 ± 3 cm-1 (8.27 eV). This observation is explained in terms of the electronic configurations of the S1 and cationic states.

  5. Chirped Pulse Microwave Spectroscopy in Pulsed Uniform Supersonic Flows: Observation of K-Dependent Rates in the CL + Propyne Reaction

    Science.gov (United States)

    Ariyasingha, Nuwandi M.; Broderick, Bernadette M.; Thompson, James O. F.; Suits, Arthur

    2016-06-01

    Chirped-Pulse Fourier-transform microwave spectroscopy in uniform supersonic flows (CPUF) has been applied to study the reaction of Cl atoms with propyne. The approach utilizes broad-band microwave spectroscopy to extract structural information with MHz resolution and near universal detection, in conjunction with a Laval flow system, which offers thermalized conditions at low temperatures and high number densities. Our previous studies have exploited this approach to obtain multichannel product branching fractions in a number of polyatomic systems, with isomer and often vibrational level specificity. This report highlights an additional capability of the CPUF technique: here, the state-specific reactant depletion is directly monitored on a microsecond timescale. In doing so, a clear dependence on the rotational quantum number K in the rate of the reaction between Cl atoms and propyne is revealed. Future prospects for the technique will be discussed.

  6. High-resolution spectroscopy of jet-cooled CH{sub 5}{sup +}: Progress

    Energy Technology Data Exchange (ETDEWEB)

    Savage, C.; Dong, F.; Nesbitt, D. J. [JILA, University of Colorado and National Institute of Standards and Technology, and Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309-0440 (United States)

    2015-01-22

    Protonated methane (CH{sub 5}{sup +}) is thought to be a highly abundant molecular ion in interstellar medium, as well as a potentially bright μwave- mm wave emitter that could serve as a tracer for methane. This paper describes progress and first successful efforts to obtain a high resolution, supersonically cooled spectrum of CH{sub 5}{sup +} in the 2900-3100 cm{sup −1} region, formed in a slit supersonic discharge at low jet temperatures and with sub-Doppler resolution. Short term precision in frequency measurement (< 5 MHz on an hour time scale) is obtained from a thermally controlled optical transfer cavity servoloop locked onto a frequency stabilized HeNe laser. Long term precision (< 20 MHz day-to-day) due to pressure, temperature and humidity dependent index of refraction effects in the optical transfer cavity is also present and discussed.

  7. Development of Imaging Fourier-Transform Spectroscopy for the Characterization of Turbulent Jet Flames

    Science.gov (United States)

    2014-09-18

    DEVELOPMENT OF IMAGING FOURIER -TRANSFORM SPECTROSCOPY FOR THE CHARACTERIZATION OF TURBULENT JET FLAMES DISSERTATION Jacob L. Harley, Captain, USAF...work of the U.S. Government and is not subject to copyright protection in the United States. AFIT-ENP-DS-14-S-13 DEVELOPMENT OF IMAGING FOURIER -TRANSFORM...DISTRIBUTION UNLIMITED AFIT-ENP-DS-14-S-13 DEVELOPMENT OF IMAGING FOURIER -TRANSFORM SPECTROSCOPY FOR THE CHARACTERIZATION OF TURBULENT JET FLAMES Jacob L

  8. Sub-Doppler Slit Jet Discharge Spectroscopy of Jet Cooled Polyacetylenes: the Anti-Symmetric CH Stretch Mode of Triacetylene

    Science.gov (United States)

    Chang, Chih-Hsuan; Roberts, Melanie A.; Nesbitt, David J.

    2013-06-01

    Growth of polyacetylenic molecules in acetylene flames is thought to play a central role in combustion chemistry and formation of soot, as well as the chemistry of gas clouds in the interstellar medium. In this talk, we present results from first sub-Doppler, high resolution infrared spectroscopic studies on triacetylene. In particular, we explore the fundamental anti-symmetric CH stretching mode (v_5) of jet-cooled triacetylene in a pulsed slit discharge, where the "{in-situ} synthesis" arises from a discharge of trace(0.1-1%) acetylene/rare gas mixtures followed by rapid CCH + HCCH chemistry in the supersonic expansion environment. The band origin of this mode is determined to be 3329.0544(2) cm^{-1}. At high resolution, a series of avoided energy level crossings arising from rotational perturbations are observed and ascribed to perpendicular Coriolis mixing with a near degenerate manifold of Π vibrational symmetry. The energy level patterns are successfully analyzed to reveal spectroscopic constants and Coriolis coupling matrix elements for the perturbing manifold. In addition, a weak Π-Π hot band progression due to thermal population in the slit jet is observed and assigned. D. McNaughton and D. N. Bruget, J. Mol. Spectrosc.150, 620 (1991) K. Matsumura, K. Kawaguchi, D. McNaughton, and D. N. Bruget, J. Mol. Spectrosc.158, 489 (1993)

  9. Laser spectroscopy of jet-cooled CuF in visible region

    Institute of Scientific and Technical Information of China (English)

    张霄鹏; 郭静茹; 王婷婷; 裴林森; 陈从香; 陈旸

    2003-01-01

    The laser-induced fluorescence excitation spectra of jet-cooled CuF have been recorded in the range of 19000-21470cm-1, in which the CuF radicals were produced by the reaction of SF6 with copper atoms from a dc dischargesputtering source under supersonic jet conditions. Eight observed vibronic transition bands have been assigned as the all observed bands has been analysed at the estimated rotational temperature 80K. We determined the newly observed band to be the (1Ⅱ, v = 1)-X(1∑+ = 0) transition according to the character of the rotational structure and the isotopic shift analysis. In addition, the lifetimes of the states involved in these bands were measured.

  10. High-resolution electronic spectroscopy of the BODIPY chromophore in supersonic beam and superfluid helium droplets.

    Science.gov (United States)

    Stromeck-Faderl, Anja; Pentlehner, Dominik; Kensy, Uwe; Dick, Bernhard

    2011-07-11

    We present the fluorescence excitation and dispersed emission spectra of the parent compound of the boron dipyrromethene (BODIPY) dye class measured in a supersonic beam and isolated in superfluid helium nanodroplets. The gas-phase spectrum of the isolated molecules displays many low-frequency transitions that are assigned to a symmetry-breaking mode with a strongly nonharmonic potential, presumably the out-of-plane wagging mode of the BF(2) group. The data are in good agreement with transition energies and Franck-Condon factors calculated for a double minimum potential in the upper electronic state. The corresponding transitions do not appear in the helium droplet. This is explained with the quasi-rigid first layer of helium atoms attached to the dopant molecule by van der Waals forces. The spectral characteristics are those of a cyanine dye rather than that of an aromatic chromophore. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A supersonic jet target for the cross section measurement of the 12C(α, γ)16O reaction with the recoil mass separator ERNA

    Science.gov (United States)

    Rapagnani, D.; Buompane, R.; Di Leva, A.; Gialanella, L.; Busso, M.; De Cesare, M.; De Stefano, G.; Duarte, J. G.; Gasques, L. R.; Morales Gallegos, L.; Palmerini, S.; Romoli, M.; Tufariello, F.

    2017-09-01

    12C(α, γ)16O cross section plays a key-role in the stellar evolution and nucleosynthesis of massive stars. Hence, it must be determined with the precision of about 10% at the relevant Gamow energy of 300 keV. The ERNA (European Recoil mass separator for Nuclear Astrophysics) collaboration measured, for the first time, the total cross section of 12C(α, γ)16O by means of the direct detection of the 16O ions produced in the reaction down to an energy of Ecm = 1.9 MeV. To extend the measurement at lower energy, it is necessary to limit the extension of the He gas target. This can be achieved using a supersonic jet, where the oblique shock waves and expansion fans formed at its boundaries confine the gas, which can be efficiently collected using a catcher. A test version of such a system has been designed, constructed and experimentally characterized as a bench mark for a full numerical simulation using FV (Finite Volume) methods. The results of the commissioning of the jet test version and the design of the new system that will be used in combination with ERNA are presented and discussed.

  12. Spatially resolved spectroscopy of an atmospheric pressure microwave plasma jet used for surface treatment

    OpenAIRE

    Potočňáková Lucia; Hnilica Jaroslav; Kudrle Vít

    2014-01-01

    In this study, the variations of properties of a microwave plasma jet (surfatron) along the discharge axis have been investigated using optical emission spectroscopy. As the argon jet is not enclosed, the spatial distribution of individual species in effluent plasma is the result of rather complicated interplay between energy loss and gradual mixing with the air. Spatial 2D relative intensity profiles of atomic lines and molecular bands at 310 nm, 336 nm, 391 nm and 656 nm are presented in th...

  13. Rotationally inelastic scattering in CH4+He, Ne, and Ar: State-to-state cross sections via direct infrared laser absorption in crossed supersonic jets

    Science.gov (United States)

    Chapman, William B.; Schiffman, Aram; Hutson, Jeremy M.; Nesbitt, David J.

    1996-09-01

    Absolute integral state-to-state cross sections are reported for rotationally inelastic scattering in crossed jets of CH4 with the rare gases He, Ne, Ar, at center of mass collision energies of 460±90, 350±70, and 300±60 cm-1, respectively. CH4 seeded in Ar buffer gas is cooled in a pulsed supersonic expansion into the three lowest rotational levels allowed by nuclear spin statistics corresponding to A(J=0), F(J=1), and E(J=2) symmetry. Rotational excitation occurs in single collisions with rare gas atoms from a second pulsed supersonic jet. The column integrated densities of CH4 in both initial and final scattering states are subsequently probed in the jet intersection region via direct absorption of light from a narrow bandwidth (0.0001 cm-1), single mode color center laser. Total inelastic cross sections for collisional loss out of the J=0, 1, and 2 methane states are determined in absolute units from the linear decrease of infrared absorption signals as a function of collider gas concentration. Tuning of the ir laser source also permits probing of the collisionally excited rotational states with quantum state and velocity resolution; column integrated scattering densities are measured for all energetically accessible final states and used to infer absolute inelastic cross sections for state-to-state energy transfer. The observed trends are in good qualitative agreement with quantum state resolved pressure broadening studies; however, the dependences of the rotationally inelastic cross sections on nuclear spin modification (i.e., J) and rotational inelasticity (i.e., ΔJ) is not well predicted by conventional angular momentum or energy gap models. More rigorous comparison with the quantum state-resolved scattering data is obtained from full close coupled scattering calculations on trial potential energy surfaces by Buck and co-workers [Chem. Phys. Lett. 98, 199 (1983); Mol. Phys. 55, 1233, 1255 (1985)] for each of the three CH4+rare gas systems. Agreement

  14. The Marriage of Spectroscopy and Dynamics: Chirped-Pulse Fourier-Transform Mm-Wave Cp-Ft Spectroscopy in Pulsed Uniform Supersonic Flows

    Science.gov (United States)

    Abeysekera, Chamara; Oldham, James M.; Suits, Arthur G.; Park, G. Barratt; Field, Robert W.

    2012-06-01

    A new experimental scheme is presented that combines two powerful emerging technologies: chirped-pulse Fourier-transform mm-Wave spectroscopy and pulsed uniform supersonic flows. It promises a nearly universal detection method that can deliver quantitative isomer, conformer, and vibrational level specific detection, characterization of unstable reaction products and intermediates, and perform unique spectroscopic, kinetics, and dynamics measurements. Chirped-pulse Fourier-transform microwave (CP-FTMW) spectroscopy, pioneered by Pate and coworkers, allows rapid acquisition of broadband microwave spectrum through advancements in waveform generation and oscilloscope technology. This revolutionary approach has successfully been adapted to higher frequencies by the Field group at MIT. Our new apparatus will exploit amplified chirped pulses in the range of 26-40 GHz, in combination with a pulsed uniform supersonic flow from a Laval nozzle. This nozzle source, pioneered by Rowe, Sims, and Smith for low temperature kinetics studies, produces thermalized reactants at high densities and low temperatures perfectly suitable for reaction dynamics experiments studied using the CP-mmW approach. This combination of techniques shall enhance the thousand-fold improvement in data acquisition rate achieved in the CP method by a further 2-3 orders of magnitude. A pulsed flow alleviates the challenges of continuous uniform flow, e.g. large gas loads and reactant consumption rates. In contrast to other pulsed Laval systems currently in use, we will use a fast piezo valve and small chambers to achieve the desired pressures while minimizing the gas load, so that a 10 Hz repetition rate can be achieved with one turbomolecular pump. The proposed technique will be suitable for many diverse fields, including fundamental studies in spectroscopy and reaction dynamics, reaction kinetics, combustion, atmospheric chemistry, and astrochemistry. We expect a significant advancement in the ability to

  15. Advanced Jet Noise Exhaust Concepts in NASA's N+2 Supersonics Validation Study and the Environmentally Responsible Aviation Project's Upcoming Hybrid Wing Body Acoustics Test

    Science.gov (United States)

    Henderson, Brenda S.; Doty, Mike

    2012-01-01

    Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.

  16. High-Resolution Infrared Spectroscopy Slit-Jet Cooled Hydroxymethyl Radical (CH_2OH): CH Symmetric Stretching Mode

    Science.gov (United States)

    Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David

    2014-06-01

    Hydroxymethyl radical (CH_2OH) plays an important role in combustion and environmental chemistry as a reactive intermediate. Reisler's group published the first rotationally resolved spectroscopy of CH_2OH with determined band origins for fundamental CH symmetric stretch state, CH asymmetric stretch state and OH stretch state, respectively. Here CH_2OH was first studied via sub-Doppler infrared spectroscopy in a slit-jet supersonic discharge expansion source. Rotationally resolved direct absorption spectra in the CH symmetric stretching mode were recorded. As a result of the low rotational temperature and sub-Doppler linewidths, the tunneling splittings due to the large amplitude of COH torsion slightly complicate the spectra. Each of the ground vibration state and the CH symmetric stretch state includes two levels. One level, with a 3:1 nuclear spin statistic ratio for Ka=0+/Ka=1+, is labeled as ``+". The other tunneling level, labeled as ``-", has Ka=0-/Ka=1- states with 1:3 nuclear spin statistics. Except for the Ka=0+ ← 0+ band published before, more bands (Ka=1+ ← 1+, Ka=0- ← 0- and Ka=1- ← 1-) were identified. The assigned transitions were fit to a Watson A-reduced symmetric top Hamiltonian to improve the accuracy of the band origin of CH symmetric state. The rotational parameters for both ground and CH symmetric stretch state were well determined. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, Vol. 108. M. A. Roberts, E. N. Sharp-Williams and D. J. Nesbitt, J. Phys. Chem. A 2013, 117, 7042-7049

  17. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations

    Institute of Scientific and Technical Information of China (English)

    Wei HUANG

    2015-01-01

    题目:逆向喷流及其组合体在超声速气流中减阻防热功效研究进展  概总结归纳国内外逆向喷流及其组合体在超声速气流中减阻防热功效的研究进展,并给出逆向喷流在某些应用领域的建议,特别是喷流的不稳定性保护、减阻与热防护之间的权衡以及流动模态转换的工作参数和结构参数临界点选取等。%Drag reduction and thermal protection is very important for hypersonic vehicles, and a counterflowing jet and its combinations is one of the most promising drag and heat release reduction strategies. In the current survey, research progress on the drag and heat release reduction induced by a counterflowing jet and its combinations is summarized. Three combinatorial configurations are considered, namely the combination of the counterflowing jet and a forward-facing cavity, the combination of the counterflowing jet and an aerospike, and the combination of the counterflowing jet and energy deposition. In conclusion, some recommendations are provided, especially for jet instability protection, for the tradeoff between drag and heat release re-ductions, and for the critical points for the operational and geometric parameters in the flow mode transition.

  18. The Structure of the Inner HH 34 Jet from Optical Integral Field Spectroscopy

    CERN Document Server

    Beck, T L; Raga, A C; Reipurth, B; Beck, Tracy L.; Reipurth, Bo

    2006-01-01

    We present high spatial resolution optical integral field spectroscopy of a collimated Herbig-Haro jet viewed nearly edge-on. Maps of the line emission, velocity centroid, and velocity dispersion were generated for the H$\\alpha$ and [S II] emission features from the inner collimated jet and exciting source region of the HH 34 outflow. The kinematic structure of the jet shows several maxima and minima in both velocity centroid value and velocity dispersion along the jet axis. Perpendicular to the flow direction the velocity decreases outward from the axis to the limb of the jet, but the velocity dispersion increases. Maps of the electron density structure were derived from the line ratio of [S II] 6731/6716 emission. We have found that the jet exhibits a pronounced ``striped'' pattern in electron density; the high $n_e$ regions are at the leading side of each of the emission knots in the collimated jet, and low $n_e$ regions in the down-flow direction. On average, the measured electron density decreases outwar...

  19. High resolution spectroscopy of H II Galaxies Structure and Supersonic line widths

    CERN Document Server

    Telles, E; Tenorio-Tagle, G; Telles, Eduardo; Munoz-Tunon, Casiana; Tenorio-Tagle, Guillermo

    2001-01-01

    We present high resolution echelle spectroscopy of a sample of H II galaxies. In all galaxies we identify different H(alpha) emitting knots along the slit crossing the nucleus. All of these have been isolated and separately analyzed through luminosity and size vs diagnosis plots. We find that in all cases, for a particular galaxy, the bulk of emission comes from their main knot and therefore, at least for the compact class galaxies we are dealing with, luminosity and sigma values measured using single aperture observations would provide similar results to what is obtained with spatially resolved spectroscopy. In the size vs plots as expected there is a shift in the correlations depending on whether we are including all emission in a single point or we split it in its different emitting knots. The problem of a proper determination of the size of the emitting region so that it can be used to determine the mass of the system remains open. From the data set gathered, using the highest surface brightness points as...

  20. Suppression of unimolecular decay of laser desorbed peptide and protein ions by entrainment in rarefied supersonic gas jets under weak electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Hieke, Andreas, E-mail: andreas.hieke@stanford.edu [Department of Structural Biology, School of Medicine, Stanford University, 299 Campus Drive West, Fairchild Building, 148, Stanford, California 94305-5126 (United States)

    2014-01-21

    Unimolecular decay of sample ions imposes a limit on the usable laser fluence in matrix-assisted laser desorption/ionization (MALDI) ion sources. Traditionally, some modest degree of collisional sample ion cooling has been achieved by connecting MALDI ion sources directly to gas-filled radio frequency (RF) multipoles. It was also discovered in the early 1990s that gas-filled RF multipoles exhibit increased ion transmission efficiency due to collisional ion focusing effects. This unexpected experimental finding was later supported by elementary Monte Carlo simulations. Both experiments and simulations assumed a resting background gas with typical pressures of the order of 1 Pa. However, considerable additional improvements can be achieved if laser desorbed sample ions are introduced immediately after desorption, still within the ion source, in an axisymmetric rarefied supersonic gas jet with peak pressure of the order of 100 Pa and flow velocities >300 m/s, and under weak electric fields. We describe here the design principle and report performance data of an ion source coined “MALDI-2,” which incorporates elements of both rarefied aerodynamics and particle optics. Such a design allows superb suppression of metastable fragmentation due to rapid collisional cooling in <10 μs and nearly perfect injection efficiency into the attached RF ion guide, as numerous experiments have confirmed.

  1. Laser spectroscopy and dynamics of transient species

    Energy Technology Data Exchange (ETDEWEB)

    Clouthier, D.J. [Univ. of Kentucky, Lexington (United States)

    1993-12-01

    The goal of this program is to study the vibrational and electronic spectra and excited state dynamics of a number of transient sulfur and oxygen species. A variety of supersonic jet techniques, as well as high resolution FT-IR and intracavity dye laser spectroscopy, have been applied to these studies.

  2. Competition between hydrogen bonding and dispersion interactions in the indole···pyridine dimer and (indole)2···pyridine trimer studied in a supersonic jet.

    Science.gov (United States)

    Kumar, Sumit; Biswas, Partha; Kaul, Indu; Das, Aloke

    2011-07-01

    Structures of the indole···pyridine dimer and (indole)2···pyridine trimer have been investigated in a supersonic jet using resonant two-photon ionization (R2PI) and IR-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. R2PI spectra of the dimer and the trimer recorded by electronic excitation of the indole moiety show that the red-shift in the band origin of the dimer with respect to the 0(0)(0) band of the monomer is larger compared to that of the trimer. The presence of only one conformer in the case of both the dimer and the trimer has been confirmed from IR-UV hole-burning spectroscopy. The structures of the dimer and the trimer have been determined from resonant ion dip infrared (RIDIR) spectra combined with ab initio as well as DFT/M05-2X and DFT/M06-2X calculations. It has been found that the dimer, observed in the experiment, has a V-shaped geometry stabilized by N–H···N and C–H···N hydrogen bonding interactions, as well as C–H···π and π···π dispersion interactions. The geometry of the trimer has been found to be a cyclic one stabilized by N–H···N, N–H···π, C–H···π, and C–H···N interactions. The most important finding of this current study is the observation of the mixed dimer and trimer, which are stabilized by hydrogen bonding as well as dispersion interactions.

  3. Aerodynamic acceleration of heavy particles in a supersonic jet of a binary mixture of gases with disparate-mass components

    Science.gov (United States)

    Lazarev, Alexander V.; Tatarenko, Kira A.; Amerik, Alexander Yu.

    2017-08-01

    The method of moments for the ellipsoidal distribution function was used for solving the Boltzmann equation describing binary gas mixtures with large mass disparity and highly diluted heavy component. Analysis of the system of moment equations results in a simple analytic expression for the terminal slip velocities of components that depends on the conditions in the source of jet, composition of mixture, and C6 constant of the attractive branch of the interaction potential. The results are in good agreement with experimental data including low pressure conditions when the Miller-Andres correlation is unsatisfactory.

  4. Optical Emission Spectroscopy of an Atmospheric Pressure Plasma Jet During Tooth Bleaching Gel Treatment.

    Science.gov (United States)

    Šantak, Vedran; Zaplotnik, Rok; Tarle, Zrinka; Milošević, Slobodan

    2015-11-01

    Optical emission spectroscopy was performed during atmospheric pressure plasma needle helium jet treatment of various tooth-bleaching gels. When the gel sample was inserted under the plasma plume, the intensity of all the spectral features increased approximately two times near the plasma needle tip and up to two orders of magnitude near the sample surface. The color change of the hydroxylapatite pastille treated with bleaching gels in conjunction with the atmospheric pressure plasma jet was found to be in correlation with the intensity of OH emission band (309 nm). Using argon as an additive to helium flow (2 L/min), a linear increase (up to four times) of OH intensity and, consequently, whitening (up to 10%) of the pastilles was achieved. An atmospheric pressure plasma jet activates bleaching gel, accelerates OH production, and accelerates tooth bleaching (up to six times faster).

  5. Three Dimensional Structure Of A Complex Bipolar Jet: Transition Region Imaging-spectroscopy With MOSES

    Science.gov (United States)

    Fox, Lewis; Kankelborg, C. C.; Longcope, D.

    2007-05-01

    We report on an interesting transient brightening observed in He II 304 Å above a flux-canceling magnetic bipole during the MOSES (Multi-Order Solar EUV Spectrograph) sounding rocket flight, Feb. 8, 2006. The event resembles a bipolar jet and has characteristics of a transition region explosive event, but it is not a simple, linear structure at some angle to the line-of-sight. The jets curve away from the axis of a compact, bright core, and are not collinear. We observe transverse sky-plane motions and infer line-of-sight doppler shifts along the length of the jets, as well as non-thermal line broadening in the bright core, demonstrating the utility of simultaneous imaging-spectroscopy provided by MOSES. This work is supported by NASA LCAS and the Montana Space Grant Consortium.

  6. Supersonic free jet, molecular free regime; Fondamenti fisici dei fasci molecolari supersonici. Parte 7. Il getto libero supersonico

    Energy Technology Data Exchange (ETDEWEB)

    Sanna, G. [ENEA, Centro Ricerche Frascati, Rome (Italy). Dipt. Innovazione; Tomassetti, G. [L' Aquila Univ., L' Aquila (Italy). Dipt. di Fisica

    1999-07-01

    The structure of the free jet emitted by a converging nozzle as obtained by the method of characteristics by Ashkenas e Sherman is described in details. In particular the dependence of the field variable by the distance from the nozzle is given. The transition from continuum to molecular free regime is then considered and the sudden freeze approximation is introduced. The processing of monoatomic and polyatomic gasses is also considered. [Italian] Le caratteristiche del campo di flusso in regime continuo di un getto libero supersonico ottenute col metodo delle caratteristiche da Ashekanas e Sherman sono messe in evidenza. In paricolare le relazioni analitiche per i parametri di flusso in funzione della distanza dal nozzle sono riportate. Viene poi considerata la transizione al regime molecolare ed e' introdotta la sudden freeze approximation. Vengono anche considerate le situazioni di non equilibrio tra gradi di liberta' interni ed esterni.

  7. Atomic jet with ionization detection for laser spectroscopy of Rydberg atoms under collisions and fields

    Science.gov (United States)

    Philip, G.

    2008-03-01

    An efficient atomic jet setup offering many unprecedented advantages over a conventional heat pipe setup used in multi-photon spectroscopy, mainly of alkaline-earth metals, has been constructed by a scheme in which the sample material is encapsulated in a disposable cartridge oven located inside a thermally stabilised heat-pipe and is made to effuse in to a row of atomic beams merging to form a jet target. This novel scheme combines the advantages of both high density atomic beam with convenient geometry for orthogonal excitation and high sensitive ionisation detection capabilities of thermionic diodes, besides eliminating several problems inherent in the usual heat-pipe operation. Out of various designs, typical results are presented for a linear heat-pipe with vertical atomic jet used in two-photon spectroscopy of highly excited states of Sr I. Controlled excitations of both Rydberg and non-Rydberg states, which cannot otherwise be accessed from the ground state due to parity and spectroscopic selection rules, have been achieved by employing a weak electric field complimented by collisions. The atomic jet setup is also found very useful for the study of collisional broadening and shift of excited states and time evolution of Rydberg atoms.

  8. First neutron spectroscopy measurements with a pixelated diamond detector at JET

    Energy Technology Data Exchange (ETDEWEB)

    Muraro, A., E-mail: muraro@ifp.cnr.it; Giacomelli, L.; Grosso, G.; Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola,” CNR, Milano (Italy); Nocente, M.; Rebai, M.; Rigamonti, D.; Gorini, G. [Istituto di Fisica del Plasma “P. Caldirola,” CNR, Milano (Italy); University of Milano Bicocca, Piazza della Scienza 3, 20126 Milano (Italy); Belli, F. [Centro Ricerca ENEA-Frascati, Via E.Fermi 45, Frascati, Rome (Italy); Calvani, P.; Girolami, M.; Trucchi, D. M. [CNR—Istituto di Struttura della Materia (ISM), Via Salaria km 29.300, 00015 Monterotondo Scalo, Rome (Italy); Figueiredo, J. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); EUROfusion Programme Management Unit, Culham Science Centre, Abingdon (United Kingdom); Murari, A. [Culham Centre for Fusion Energy, Culham (United Kingdom); Consorzio RFX (CNR, ENEA, INFN, Università di Padova, Acciaierie Venete SpA), Padova (Italy); Popovichev, S. [Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Collaboration: EUROfusion Consortium, JET, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2016-11-15

    A prototype Single crystal Diamond Detector (SDD) was installed at the Joint European Torus (JET) in 2013 along an oblique line of sight and demonstrated the possibility to carry out neutron spectroscopy measurements with good energy resolution and detector stability in discharges heated by neutral beam injection and radio-frequency waves. Starting from these positive results, within the Vertical Neutron Spectrometer project of the Joint European Torus, we have developed a pixelated instrument consisting of a matrix of 12 independent SDDs, called the Diamond Vertical Neutron Spectrometer (DVNS), which boosts the detection efficiency of a single SDD by an order of magnitude. In this paper we describe the main features of the DVNS, including the detector design, energy resolution, and data acquisition system for on-line processing. Preliminary spectroscopy measurements of 2.5 MeV neutrons from the present deuterium plasma at JET are finally presented.

  9. First neutron spectroscopy measurements with a pixelated diamond detector at JET

    Science.gov (United States)

    Muraro, A.; Giacomelli, L.; Nocente, M.; Rebai, M.; Rigamonti, D.; Belli, F.; Calvani, P.; Figueiredo, J.; Girolami, M.; Gorini, G.; Grosso, G.; Murari, A.; Popovichev, S.; Trucchi, D. M.; Tardocchi, M.

    2016-11-01

    A prototype Single crystal Diamond Detector (SDD) was installed at the Joint European Torus (JET) in 2013 along an oblique line of sight and demonstrated the possibility to carry out neutron spectroscopy measurements with good energy resolution and detector stability in discharges heated by neutral beam injection and radio-frequency waves. Starting from these positive results, within the Vertical Neutron Spectrometer project of the Joint European Torus, we have developed a pixelated instrument consisting of a matrix of 12 independent SDDs, called the Diamond Vertical Neutron Spectrometer (DVNS), which boosts the detection efficiency of a single SDD by an order of magnitude. In this paper we describe the main features of the DVNS, including the detector design, energy resolution, and data acquisition system for on-line processing. Preliminary spectroscopy measurements of 2.5 MeV neutrons from the present deuterium plasma at JET are finally presented.

  10. A new visible spectroscopy diagnostic for the JET ITER-like wall main chamber.

    Science.gov (United States)

    Maggi, C F; Brezinsek, S; Stamp, M F; Griph, S; Heesterman, P; Hogben, C; Horton, A; Meigs, A; Morlock, C; Studholme, W; Zastrow, K-D

    2012-10-01

    In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW), whereby the main plasma facing components, previously of carbon, have been replaced by mainly Be in the main chamber and W in the divertor. As part of the many diagnostic enhancements, a new, survey, visible spectroscopy diagnostic has been installed for the characterization of the ILW. An array of eight lines-of-sight (LOS) view radially one of the two JET neutral beam shine through areas (W coated carbon fibre composite tiles) at the inner wall. In addition, one vertical LOS views the solid W tile at the outer divertor. The light emitted from the plasma is coupled to a series of compact overview spectrometers, with overall wavelength range of 380-960 nm and to one high resolution Echelle overview spectrometer covering the wavelength range 365-720 nm. The new survey diagnostic has been absolutely calibrated in situ by means of a radiometric light source placed inside the JET vessel in front of the whole optical path and operated by remote handling. The diagnostic is operated in every JET discharge, routinely monitoring photon fluxes from intrinsic and extrinsic impurities (e.g., Be, C, W, N, and Ne), molecules (e.g., BeD, D(2), ND) and main chamber and divertor recycling (typically Dα, Dβ, and Dγ). The paper presents a technical description of the diagnostic and first measurements during JET discharges.

  11. Where's the Bend? Locating the First Folded Structure in Straight Chain Alkylbenzenes in a Supersonic Jet Expansion

    Science.gov (United States)

    Hewett, Daniel M.; Bocklitz, Sebastian; Suhm, Martin A.; Zwier, Timothy S.

    2016-06-01

    Alkylbenzenes make up 20-30% of petroleum fuels and are important intermediates in combustion. In gasoline, these alkyl chains are relatively short, but extend to 20 or more carbons in length in diesel fuels. While one tends to think of these chains as extending out away from the phenyl ring in an all-trans configuration, dispersive interactions between segments of the alkyl chain and between the alkyl chain and the ring will stabilize more compact geometries in which the alkyl chain folds back on itself and extends over the aromatic π cloud. This talk seeks to answer the following question: How long must the alkyl chain be before it starts to fold back over itself? Studies of the pure n-alkanes by the Suhm group have shown the turn to favorably occur for a chain about 17 carbon atoms in length. The studies presented here focus on the affect the aromatic ring has on when this turn becomes favorable. Jet-cooled laser-induced fluorescence excitation and single-conformation IR spectra have been recorded in the alkyl CH stretch region for a series of alkylbenzenes with chain lengths ranging from two to ten carbon atoms. We show, through a combination of experiment, high level calculation, and theoretical modeling, that conformations begin to form that fold back over the aromatic ring at about n=8.

  12. Experiments on free and impinging supersonic microjets

    Energy Technology Data Exchange (ETDEWEB)

    Phalnikar, K.A.; Kumar, R.; Alvi, F.S. [Florida A and M University and Florida State University, Department of Mechanical Engineering, Tallahassee, FL (United States)

    2008-05-15

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 {mu}m in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets. (orig.)

  13. Experiments on free and impinging supersonic microjets

    Science.gov (United States)

    Phalnikar, K. A.; Kumar, R.; Alvi, F. S.

    2008-05-01

    The fluid dynamics of microflows has recently commanded considerable attention because of their potential applications. Until now, with a few exceptions, most of the studies have been limited to low speed flows. This experimental study examines supersonic microjets of 100-1,000 μm in size with exit velocities in the range of 300-500 m/s. Such microjets are presently being used to actively control larger supersonic impinging jets, which occur in STOVL (short takeoff and vertical landing) aircraft, cavity flows, and flow separation. Flow properties of free as well as impinging supersonic microjets have been experimentally investigated over a range of geometric and flow parameters. The flowfield is visualized using a micro-schlieren system with a high magnification. These schlieren images clearly show the characteristic shock cell structure typically observed in larger supersonic jets. Quantitative measurements of the jet decay and spreading rates as well as shock cell spacing are obtained using micro-pitot probe surveys. In general, the mean flow features of free microjets are similar to larger supersonic jets operating at higher Reynolds numbers. However, some differences are also observed, most likely due to pronounced viscous effects associated with jets at these small scales. Limited studies of impinging microjets were also conducted. They reveal that, similar to the behavior of free microjets, the flow structure of impinging microjets strongly resembles that of larger supersonic impinging jets.

  14. Emission Spectroscopy and Radiometric Measurements in the NASA Ames IHF Arc Jet Facility

    Science.gov (United States)

    Winter, Michael W.; Raiche, George A.; Prabhu, Dinesh K.

    2012-01-01

    Plasma diagnostic measurement campaigns in the NASA Ames Interaction Heating Facility (IHF) have been conducted over the last several years with a view towards characterizing the flow in the arc jet facility by providing data necessary for modeling and simulation. Optical emission spectroscopy has been used in the plenum and in the free jet of the nozzle. Radiation incident over a probe surface has also been measured using radiometry. Plenum measurements have shown distinct radial profiles of temperature over a range of operating conditions. For cases where large amounts of cold air are added radially to the main arc-heated stream, the temperature profiles are higher by as much as 1500 K than the profiles assumed in flow simulations. Optical measurements perpendicular to the flow direction in the free jet showed significant contributions to the molecule emission through inverse pre-dissociation, thus allowing determination of atom number densities from molecular emission. This has been preliminarily demonstrated with the N2 1st Positive System. Despite the use of older rate coefficients, the resulting atom densities are reasonable and surprisingly close to flow predictions.

  15. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J.

    2016-07-01

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (˜60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm-1 and 3062.264 80(7) cm-1, respectively, which both agree within 5 cm-1 with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm-1 blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm-1) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  16. High resolution spectroscopy of jet cooled phenyl radical: The ν1 and ν2 a1 symmetry C-H stretching modes.

    Science.gov (United States)

    Chang, Chih-Hsuan; Nesbitt, David J

    2016-07-28

    A series of CH stretch modes in phenyl radical (C6H5) has been investigated via high resolution infrared spectroscopy at sub-Doppler resolution (∼60 MHz) in a supersonic discharge slit jet expansion. Two fundamental vibrations of a1 symmetry, ν1 and ν2, are observed and rotationally analyzed for the first time, corresponding to in-phase and out-of-phase symmetric CH stretch excitation at the ortho/meta/para and ortho/para C atoms with respect to the radical center. The ν1 and ν2 band origins are determined to be 3073.968 50(8) cm(-1) and 3062.264 80(7) cm(-1), respectively, which both agree within 5 cm(-1) with theoretical anharmonic scaling predictions based on density functional B3LYP/6-311g++(3df,3dp) calculations. Integrated band strengths for each of the CH stretch bands are analyzed, with the relative intensities agreeing remarkably well with theoretical predictions. Frequency comparison with previous low resolution Ar-matrix spectroscopy [A. V. Friderichsen et al., J. Am. Chem. Soc. 123, 1977 (2001)] reveals a nearly uniform Δν ≈ + 10-12 cm(-1) blue shift between gas phase and Ar matrix values for ν1 and ν2. This differs substantially from the much smaller red shift (Δν ≈ - 1 cm(-1)) reported for the ν19 mode, and suggests a simple physical model in terms of vibrational mode symmetry and crowding due to the matrix environment. Finally, the infrared phenyl spectra are well described by a simple asymmetric rigid rotor Hamiltonian and show no evidence for spectral congestion due to intramolecular vibrational coupling, which bodes well for high resolution studies of other ring radicals and polycyclic aromatic hydrocarbons. In summary, the combination of slit jet discharge methods with high resolution infrared lasers enables spectroscopic investigation of even highly reactive combustion and interstellar radical intermediates under gas phase, jet-cooled (Trot ≈ 11 K) conditions.

  17. The Effect of the Recombination Shock behind a Backward Step on the Mixing Characteristics of an Inclined Sonic Methane Jet in a Supersonic Crossflow

    Science.gov (United States)

    Wen, A. C. Y.; Chang, B. Y. C.; Su, C. Y. H.; Yuan, D. H. F.

    The scramjet engines have been extensively studied for use in aircraft and future space transportation systems operating at speeds of about Mach 5 and above. At these high flight velocities, the incoming air is slowed down and maintained supersonic speed within the combustor

  18. Optimisation 3D du nez d'un SuperSonic Business Jet basée sur l'adaptation de maillages. Application à la réduction du bang sonique

    OpenAIRE

    Alauzet, Frédéric; Mohammadi, Bijan

    2003-01-01

    Ce rapport traite d'un problème d'optimisation de forme 3D du nez d'un SuperSonic Business Jet (SSBJ) sous des contraintes aérodynamiques et accoustiques. La contrainte accoustique concerne la génération du bang sonique par l'avion. On présente une méthode d'optimisation de faible dimension pour analyser l'impact du nez sur ces contraintes. Plus précisément, après avoir paramétrisé le nez de l'avion, on échantillonne l'espace de contrôle, puis on construit la surface de réponse qui nous donne...

  19. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis.

    Science.gov (United States)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  20. Optimization of liquid jet system for laser-induced breakdown spectroscopy analysis

    Science.gov (United States)

    Skočovská, Katarína; Novotný, Jan; Prochazka, David; Pořízka, Pavel; Novotný, Karel; Kaiser, Jozef

    2016-04-01

    A complex optimization of geometrical and temporal parameters of a jet system (developed in Laser-induced breakdown spectroscopy (LIBS) laboratory of Brno University of Technology) for direct elemental analysis of samples in a liquid state of matter using LIBS was carried out. First, the peristaltic pump was synchronized with the flashlamp of the ablation laser, which reduced variation of the ablated sample amount. Also, the fluctuation of the laser ray angle incident on the jet surface was diminished. Such synchronization reduced signal standard deviations and thus increased repeatability of the measurements. Then, laser energy and distance of the focusing lens from the sample were optimized. The gate delay time and the gate width were optimized for single pulse (SP) experiments; the gate delay time and the inter-pulse delay were optimized for the use of double pulse (DP) variant. Results were assessed according to the highest signal to noise ratios and the lowest relative standard deviations of the signal. The sensitivity of the single pulse and the double pulse LIBS for the detection of heavy metals traces, copper (Cu i at 324.754 nm) and lead (Pb i at 405.781 nm), in aqueous solution of copper (ii) sulfate and lead (ii) acetate, was estimated in terms of limits of detection (LODs). As a result, sensitivity improvement of DP LIBS system was observed, the LOD of Cu obtained with DP was calculated 40% lower than LOD gained from SP technique.

  1. Long-Slit Spectroscopy of Parsec-Scale Jets from DG Tauri

    Science.gov (United States)

    Oh, Heeyoung; Pyo, Tae-Soo; Yuk, In-Soo; Park, Byeong-Gon

    2015-04-01

    We present the observational results from optical long-slit spectroscopy of parsec-scale jets of DG Tau. From HH 158 and HH 702, the optical emission lines of Hα, OI λλ6300, 6363, NII λλ6548, 6584, and SII λλ6716, 6731 were obtained. The kinematics and physical properties (electron density, electron temperature, ionization fraction, and mass-loss rate) are investigated along the blueshifted jet up to 650 arcsec distance from the source. For the HH 158, the radial velocity range is -50 to -250 km s^{-1}. The proper motion of knots is 0.196 - 0.272 arcsec yr^{-1}. The electron density is ˜10^{4} cm^{-3} close to the star and decreases to ˜10^{2} cm^{-3} at 14 arcsec away from the star. Ionization fraction indicates that the gas is almost neutral in the vicinity of the source. It increases up to over 0.4 along the distance. The HH 702 is located at 650 arcsec from the source. It shows ˜ -80 km s^{-1} in the radial velccity. Its line ratios are similar to those at knot C of HH 158. The mass-loss rate is estimated about ˜ 10^{-7} M_{⊙} yr^{-1}, which is similar with the values from previous studies.

  2. HST/STIS results on circumstellar disks and jets, future coronography and technology for IR multi-object spectroscopy

    Science.gov (United States)

    Woodgate, Bruce E.

    2002-01-01

    Results of studies of circumstellar disks and jets obtained by HST/STIS visible coronagraphy and UV spectroscopy, and by ground-based Fabry-Perot coronagraphy will be presented. Future improvements in coronagraphy will be discussed. The development of microshutter arrays as programmable multi-object selectors for the NGST near IR spectrograph will be described.

  3. Supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.; Breidenthal, Robert E.

    2016-04-12

    A supersonic compressor including a rotor to deliver a gas at supersonic conditions to a diffuser. The diffuser includes a plurality of aerodynamic ducts that have converging and diverging portions, for deceleration of gas to subsonic conditions and then for expansion of subsonic gas, to change kinetic energy of the gas to static pressure. The aerodynamic ducts include vortex generating structures for controlling boundary layer, and structures for changing the effective contraction ratio to enable starting even when the aerodynamic ducts are designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of in excess of two to one, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  4. High Resolution Infrared Spectra of Plasma Jet-Cooled - and Triacetylene in the C-H Stretch Region by CW Cavity Ring-Down Spectroscopy

    Science.gov (United States)

    Zhao, D.; Guss, J.; Walsh, A.; Doney, K.; Linnartz, H.

    2013-06-01

    Polyacetylenes form an important series of unsaturated hydrocarbons that are of astrophysical interest. Small polyacetylenes have been detected from infrared observations in dense atmosphere of Titan and in a protoplanetary nebula CRL 618. We present here high-resolution mid-infrared spectra of diacetylene (HC_{4}H) and triacetylene (HC_{6}H) that are recorded in a supersonically expanded pulsed planar plasma using an ultra-sensitive detection technique. This method uses an all fiber-laser-based optical parametric oscillator (OPO), in combination with continuous wave cavity ring-down spectroscopy (cw-CRDS) as a direct absorption detection tool. A hardware-based multi-trigger concept is developed to apply cw-CRDS to pulsed plasmas. Vibrationally hot but rotationally cold HC_{4}H and HC_{6}H are produced by discharging a C_{2}H_{2}/He/Ar gas mixture which is supersonically expanded into a vacuum chamber through a slit discharge nozzle. Experimental spectra are recorded at a resolution of ˜100 MHz in the 3305-3340 cm^{-1} region, which is characteristic of the C-H stretch vibrations of HC_{4}H and HC_{6}H. Jet-cooling in our experiment reduces the rotational temperature of both HC_{4}H and HC_{6}H to <20 K. In total, ˜2000 lines are measured. More than fourteen (vibrationally hot) bands for HC_{4}H and four bands for HC_{6}H are assigned based on Loomis-Wood diagrams, and nearly half of these bands are analyzed for the first time. For both molecules improved and new molecular constants of a series of vibrational levels are presented. The accurate molecular data reported here, particularly those for low-lying (bending) vibrational levels may be used to interpret the ro-vibrational transitions in the FIR and submillimeter/THz region. D. Zhao, J. Guss, A. Walsh, H. Linnartz Chem. Phys. Lett., {dx.doi.org/10.1016/j.cplett.2013.02.025}, in press, 2013.

  5. Jet-cooled vibronic spectroscopy and asymmetric torsional potentials of phenylcyclopentene.

    Science.gov (United States)

    Newby, Josh J; Müller, Christian W; Liu, Ching-Ping; Zwier, Timothy S

    2009-10-01

    The ultraviolet spectroscopy of the S(1) laser-induced fluorescence (LIF) and single vibronic level fluorescence (SVLF). UV-UV hole-burning (UVHB) spectroscopy was used to determine that there is only one spectroscopically distinct conformer in the supersonic expansion. The excitation spectrum shows extensive vibronic structure extending to over 1000 cm(-1) above the electronic origin (34,646 cm(-1)). Much of the vibronic structure is similar to that of styrene and other singly substituted benzene derivatives, with Franck-Condon (FC) activity predominantly in substituent-sensitive benzene modes. Sizeable FC progressions were also found in the inter-ring torsion, reflecting a large displacement in the inter-ring angle upon electronic excitation. No evidence for FC activity in the ring-puckering coordinate is observed. The torsional potentials of the ground and excited states were determined from the experimental transition frequencies by fitting the calculated to the experimental torsional frequency spacings in an automated least-squares fitting procedure. The S(1) torsional potential is a symmetric single-well potential centered around a locally planar equilibrium geometry at a torsional angle of varphi = 0 degrees . The energy levels are reproduced by a cosine term potential function with torsional parameters V(2) = 3765 cm(-1) and V(4) = -183 cm(-1). The S(0) torsional potential possesses a twisted equilibrium geometry that is strongly asymmetric about varphi = 0 degrees due to the non-planarity of the cyclopentene ring. The best-fit potential parameters uses a sin/cos potential function (odd/even), with V = 948 cm(-1), V = -195 cm(-1), V = -162 cm(-1) and V = -268 cm(-1). The shape of the potentials are similar to those predicted by relaxed potential energy scans calculated at the DFT, CIS and TDDFT//CIS levels of theory. The change in the torsional angle varphi upon electronic excitation was determined to be approximately 15 degrees from fits of the

  6. Optical emission spectroscopy diagnostics of an atmospheric pressure direct current microplasma jet

    Energy Technology Data Exchange (ETDEWEB)

    Sismanoglu, B.N., E-mail: bogos@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Amorim, J., E-mail: jayr.amorim@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Souza-Correa, J.A., E-mail: jorge.correa@bioetanol.org.b [Centro de Ciencia e Tecnologia do Bioetanol - CTBE, Caixa Postal 6170, 13083-970 Campinas, Sao Paulo (Brazil); Oliveira, C., E-mail: carlosf@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil); Gomes, M.P., E-mail: gomesmp@ita.b [Departamento de Fisica, Instituto Tecnologico de Aeronautica, Comando-Geral de Tecnologia Aeroespacial, Pca Marechal Eduardo Gomes 50, 12 228-900, Sao Jose dos Campos, SP (Brazil)

    2009-11-15

    This paper is about the use of optical emission spectroscopy as a diagnostic tool to determine the gas discharge parameters of a direct current (98% Ar-2% H{sub 2}) non-thermal microplasma jet, operated at atmospheric pressure. The electrical and optical behaviors were studied to characterize this glow discharge. The microplasma jet was investigated in the normal and abnormal glow regimes, for current ranging from 10 to 130 mA, at approx 220 V of applied voltage for copper cathode. OH (A {sup 2}SIGMA{sup +}, nu = 0 -> X {sup 2}PI, nu' = 0) rotational bands at 306.357 nm and also the 603.213 nm Ar I line, which is sensitive to van der Waals broadening, were used to determine the gas temperature, which ranges from 550 to 800 K. The electron number densities, ranging from 6.0 x 10{sup 14} to 1.4 x 10{sup 15} cm{sup -3}, were determined through a careful analysis of the main broadening mechanisms of the H{sub beta} line. From both 603.213 nm and 565.070 nm Ar I line broadenings, it was possible to obtain simultaneously electron number density and temperature (approx 8000 K). Excitation temperatures were also measured from two methods: from two Cu I lines and from Boltzmann-plot of 4p-4s and 5p-4s Ar I transitions. By employing H{sub alpha} line, the hydrogen atoms' H temperature was estimated (approx 18,000 K) and found to be surprisingly hotter than the excitation temperature.

  7. Experimental investigation of the structure of supersonic two-dimensional air microjets

    Science.gov (United States)

    Timofeev, Ivan; Aniskin, Vladimir; Mironov, Sergey

    2016-10-01

    We have experimentally studied the structure of supersonic underexpanded room-temperature air jets escaping from micronozzles with characteristic heights from 47 to 175 µm and widths within 2410-3900 µm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has observed for air jets escaping from a 47µm high nozzle.

  8. An experimental study of the structure of supersonic flat underexpanded microjets

    Science.gov (United States)

    Aniskin, V. M.; Maslov, A. A.; Mironov, S. G.; Tsyryulnikov, I. S.; Timofeev, I. V.

    2015-05-01

    We have experimentally studied the structure of supersonic flat underexpanded room-temperature air jets escaping from micro nozzles with characteristic heights from 47 to 175 μm and widths within 2410-3900 μm in a range of Reynolds numbers of 1280-9460. The dimensions of the first shock cell are established. The supersonic core length of supersonic flat underexpanded air jets has been determined for the first time. A flow regime with a large supersonic core length has been observed for air jets escaping from a 47-μm-high nozzle.

  9. Detection of HO2 in an atmospheric pressure plasma jet using optical feedback cavity-enhanced absorption spectroscopy

    Science.gov (United States)

    Gianella, Michele; Reuter, Stephan; Lawry Aguila, Ana; Ritchie, Grant A. D.; van Helden, Jean-Pierre H.

    2016-11-01

    Cold non-equilibrium atmospheric pressure plasma jets are increasingly applied in material processing and plasma medicine. However, their small dimensions make diagnosing the fluxes of generated species a challenge. Here we report on the detection of the hydroperoxyl radical, HO2, in the effluent of a plasma jet by the use of optical feedback cavity-enhanced absorption spectroscopy. The spectrometer has a minimum detectable absorption coefficient {α }\\min of 2.25× {10}-10 cm-1 with a 100 second acquisition, equivalent to 5.5× {10}12 {{cm}}-3 of HO2 (under ideal conditions). Concentrations in the range of (3.1-7.8) × 1013 cm-3 were inferred in the 4 mm wide effluent of the plasma jet.

  10. Conformational analysis of quinine and its pseudo enantiomer quinidine: a combined jet-cooled spectroscopy and vibrational circular dichroism study.

    Science.gov (United States)

    Sen, Ananya; Bouchet, Aude; Lepère, Valeria; Le Barbu-Debus, Katia; Scuderi, D; Piuzzi, F; Zehnacker-Rentien, A

    2012-08-16

    Laser-desorbed quinine and quinidine have been studied in the gas phase by combining supersonic expansion with laser spectroscopy, namely, laser-induced fluorescence (LIF), resonance-enhanced multiphoton ionization (REMPI), and IR-UV double resonance experiments. Density funtional theory (DFT) calculations have been done in conjunction with the experimental work. The first electronic transition of quinine and quinidine is of π-π* nature, and the studied molecules weakly fluoresce in the gas phase, in contrast to what was observed in solution (Qin, W. W.; et al. J. Phys. Chem. C2009, 113, 11790). The two pseudo enantiomers quinine and quinidine show limited differences in the gas phase; their main conformation is of open type as it is in solution. However, vibrational circular dichroism (VCD) experiments in solution show that additional conformers exist in condensed phase for quinidine, which are not observed for quinine. This difference in behavior between the two pseudo enantiomers is discussed.

  11. Determination of divertor stray light in high-resolution main chamber H α spectroscopy in JET-ILW

    Science.gov (United States)

    Neverov, V. S.; Kukushkin, A. B.; Stamp, M. F.; Alekseev, A. G.; Brezinsek, S.; von Hellermann, M.; Contributors, JET

    2017-01-01

    The theoretical model suggested for ITER main chamber H α spectroscopy is applied to the high-resolution spectroscopy (HRS) data of recent JET ITER-like wall (ILW) experiments. The model is aimed at reconstructing the neutral hydrogen isotope density in the SOL, as well as the isotope ratio, by solving a multi-parametric inverse problem with allowance for (i) the strong divertor stray light (DSL) on the main-chamber lines of sight (LoS), (ii) substantial deviation of the neutral atom velocity distribution function (VDF) from a Maxwellian in the SOL, and (iii) data for the direct observation of the divertor. The JET-ILW HRS data on resolving the power at the deuterium and hydrogen spectral lines of the Balmer-alpha series is analysed, with direct observation of the divertor from the top and with observation of the inner wall along the tangential and radial LoS from the equatorial ports. This data allows the spectrum of the DSL and the signal-to-background ratio for the Balmer-alpha light emitted from the far SOL and divertor in the JET-ILW to be evaluated. The results support the expectation of the strong impact of the DSL upon the ITER main chamber H α (and visible light) spectroscopy diagnostics.

  12. The Spectroscopic Study of Estrogen and its Hydrated Clusters in a Super Sonic Jet

    Science.gov (United States)

    Morishima, Fumiya; Inokuchi, Yoshiya; Ebata, Takayuki

    2012-06-01

    Structures of estrogen and its hydrated clusters have been studied by several laser spectroscopies in supersonic jet. The electronic spectrum of estrogen shows several origin bands. By observing UV-UV hole-burning and IR-UV spectra, it is concluded they are due to different conformers originating from difference of orientation of OH group(s). We also observed electronic and IR spectra of estrogen-H_2O. By aids of DFT calculations, the conformations and hydrated structures are determined.

  13. IGRINS NEAR-IR HIGH-RESOLUTION SPECTROSCOPY OF MULTIPLE JETS AROUND LkHα 234

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Lee, Sungho [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Pyo, Tae-Soo [Subaru Telescope, National Astronomical Observatory of Japan, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Pak, Soojong; Lee, Hye-In; Le, Huynh Anh Nguyen [School of Space Research and Institute of Natural Sciences, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 17104 (Korea, Republic of); Kaplan, Kyle; Pavel, Michael; Mace, Gregory, E-mail: hyoh@kasi.re.kr [Department of Astronomy, University of Texas at Austin, Austin, TX (United States); and others

    2016-02-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star LkHα 234 using the Immersion Grating Infrared Spectrograph. Previous studies indicate that the region around LkHα 234 is complex, with several embedded young stellar objects and the outflows associated with them. In simultaneous H- and K-band spectra from HH 167, we detected 5 [Fe ii] and 14 H{sub 2} emission lines. We revealed a new [Fe ii] jet driven by radio continuum source VLA 3B. Position–velocity diagrams of the H{sub 2} 1−0 S(1) λ2.122 μm line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H{sub 2} emission at the systemic velocity (V{sub LSR} = −10.2 km s{sup −1}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity; [Fe ii] emission lines are detected farther from the systemic velocity, at V{sub LSR} = −100–−130 km s{sup −1}. We infer that the H{sub 2} emission arises from shocked gas entrained by a high-velocity outflow. Population diagrams of H{sub 2} lines imply that the gas is thermalized at a temperature of 2500–3000 K and the emission results from shock excitation.

  14. Two-Component Simultaneous LDV (Laser Doppler Velocimeter) Turbulence Measurements in an Axisymmetric Nozzle Afterbody Subsonic Flow Field with a Cold, Underexpanded Supersonic Jet

    Science.gov (United States)

    1983-06-01

    Diffracted Laser Vclocimeter to Turbulence Measurement in a Subsonic Jet." AEDC- TR-76-36 (AD-A025355), May 1976. . Knott , P. and Mossey, P. "Parametric...0 . 5 I 1 8 3 ~ . ~ 306 2 3 I I O0 V = = 7 1 3 . 0 f i / s e c T t = 6 4 0 . 3 ° R SEQ ~D fiB VjF’V. V/V. IVI/V. M S / V . SJV. S ~ S

  15. Compact radio sources and jet-driven AGN feedback in the early Universe: Constraints from integral-field spectroscopy

    CERN Document Server

    Nesvadba, N P H; De Breuck, C; Gilbert, A; Van Breugel, W

    2007-01-01

    To investigate the impact of radio jets during the formation epoch of their massive host galaxies, we present an analysis of two massive, log(M_stel/ M_sun)~10.6 and 11.3, compact radio galaxies at z=3.5, TNJ0205+2242 and TNJ0121+1320. Their small radio sizes (R<= 10 kpc) are most likely a sign of youth. We compare their radio properties and gas dynamics with those in well extended radio galaxies at high redshift, which show strong evidence for powerful, jet-driven outflows of significant gas masses (M 10^9-10 M_sun). Our analysis combines rest-frame optical integral-field spectroscopy with existing radio imaging, CO emission line spectra, and rest-frame UV spectroscopy. [OIII]5007 line emission is compact in both galaxies and lies within the region defined by the radio lobes. For TNJ0205+2242, the Ly-alpha profile narrows significantly outside the jet radius, indicating the presence of a quiescent halo. TNJ0121+1320 has two components separated by ~10 kpc and a velocity offset of ~300 km s^-1. If motions ...

  16. Optical emission spectroscopy of deuterium and helium plasma jets emitted from plasma focus discharges at the PF-1000U facility

    Science.gov (United States)

    Skladnik-Sadowska, E.; Dan'ko, S. A.; Kwiatkowski, R.; Sadowski, M. J.; Zaloga, D. R.; Paduch, M.; Zielinska, E.; Kharrasov, A. M.; Krauz, V. I.

    2016-12-01

    Optical emission spectroscopy techniques were used to investigate the spectra of dense deuterium-plasma jets generated by high-current pulse discharges within the large PF-1000U facility and to estimate parameters of plasma inside the jets and their surroundings. Time-resolved optical spectra were recorded by means of a Mechelle®900 spectrometer. From an analysis of the deuterium line broadening, it was estimated that the electron concentration at a distance 57 cm from the electrode outlets amounted to (0.4-3.7) × 1017 cm-3 depending on the initial gas distribution and the time interval of the spectrum registration after the instant of the plasma jet generation. From the re-absorption dip in the Dβ profile, it was assessed that the electron concentration in the surrounding gas was equal to about 1.5 × 1015 cm-3. On the basis of the measured ratio of He II 468.6 nm and He I 587.6 nm line intensities, it was estimated that the electron temperature amounted to about 5.3 eV. Also estimated were some dimensionless parameters of the investigated plasma jets.

  17. Supersonic gas shell for puff pinch experiments

    Science.gov (United States)

    Smith, R. S., III; Doggett, W. O.; Roth, I.; Stallings, C.

    1982-09-01

    An easy-to-fabricate, conical, annular supersonic nozzle has been developed for use in high-power, puff gas z-pinch experiments. A fast responding conical pressure probe has also been developed as an accurate supersonic gas flow diagnostic for evaluating the transient gas jet formed by the nozzle. Density profile measurements show that the magnitude and radial position of the gas annulus are fairly constant with distance from the nozzle, but the gas density in the center of the annulus increases with distance from the nozzle.

  18. Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Faye, C.B.; Amodeo, T.; Fréjafon, E. [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France); Delepine-Gilon, N. [Institut des Sciences Analytiques, 5 rue de la Doua, 69100 Villeurbanne (France); Dutouquet, C., E-mail: christophe.dutouquet@ineris.fr [Institut National de l' Environnement Industriel et des Risques (INERIS/DRC/CARA/NOVA), Parc Technologique Alata, BP 2, 60550 Verneuil-En-Halatte (France)

    2014-01-01

    Pollution of water is a matter of concern all over the earth. Particles are known to play an important role in the transportation of pollutants in this medium. In addition, the emergence of new materials such as NOAA (Nano-Objects, their Aggregates and their Agglomerates) emphasizes the need to develop adapted instruments for their detection. Surveillance of pollutants in particulate form in waste waters in industries involved in nanoparticle manufacturing and processing is a telling example of possible applications of such instrumental development. The LIBS (laser-induced breakdown spectroscopy) technique coupled with the liquid jet as sampling mode for suspensions was deemed as a potential candidate for on-line and real time monitoring. With the final aim in view to obtain the best detection limits, the interaction of nanosecond laser pulses with the liquid jet was examined. The evolution of the volume sampled by laser pulses was estimated as a function of the laser energy applying conditional analysis when analyzing a suspension of micrometric-sized particles of borosilicate glass. An estimation of the sampled depth was made. Along with the estimation of the sampled volume, the evolution of the SNR (signal to noise ratio) as a function of the laser energy was investigated as well. Eventually, the laser energy and the corresponding fluence optimizing both the sampling volume and the SNR were determined. The obtained results highlight intrinsic limitations of the liquid jet sampling mode when using 532 nm nanosecond laser pulses with suspensions. - Highlights: • Micrometric-sized particles in suspensions are analyzed using LIBS and a liquid jet. • The evolution of the sampling volume is estimated as a function of laser energy. • The sampling volume happens to saturate beyond a certain laser fluence. • Its value was found much lower than the beam diameter times the jet thickness. • Particles proved not to be entirely vaporized.

  19. Structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet: competition between N-H···N and N-H···F interactions.

    Science.gov (United States)

    Kumar, Sumit; Kaul, Indu; Biswas, Partha; Das, Aloke

    2011-09-22

    In the present work, we have investigated the structure of 7-azaindole···2-fluoropyridine dimer in a supersonic jet by employing resonant two photon ionization (R2PI), IR-UV, and UV-UV double resonance spectroscopic techniques combined with quantum chemistry calculations. The R2PI spectrum of the dimer is recorded by electronic excitation of the 7-azaindole moiety, and a few low frequency intermolecular vibrations of the dimer are clearly observed in the spectrum. The electronic origin band of the dimer is red-shifted by 1278 cm(-1) from the S(1) ← S(0) origin band of 7-azaindole monomer. The presence of a single conformer of the dimer is confirmed by IR-UV and UV-UV hole-burning spectroscopic techniques. RIDIR (Resonant ion dip infrared) spectrum of the dimer shows a red-shift of 265 cm(-1) in the N-H stretching frequency with respect to that of the 7-azaindole monomer. Two planar double hydrogen bonded cyclic structures of the dimer have been predicted from DFT calculations. Comparison of experimental and theoretical N-H stretching frequencies confirms that the observed dimer is stabilized by N-H···N and C-H···N hydrogen bonding interactions. The less stable conformer with N-H···F and C-H···N interactions are not observed in the experiment. The competition between N-H···N and N-H···F interactions in the two dimeric structures are discussed from natural bond orbital (NBO) analysis. The current results demonstrate that fluorine makes a hydrogen bond of intermediate strength through cooperative interaction of another hydrogen bond (C-H···N) present in the dimer, although fluorine is believed to be very weak hydrogen bond acceptor.

  20. Jet-Cooled High Resolution Infrared Spectroscopy of Small Van Der Waals SF_6 Clusters

    Science.gov (United States)

    Asselin, Pierre; Boudon, Vincent; Potapov, Alexey; Bruel, Laurent; Gaveau, Marc-André; Mons, Michel

    2016-06-01

    Using a pulsed slit nozzle multipass absorption spectrometer with a tunable quantum cascade laser we investigated van der Waals clusters involving sulfur hexafluoride in the spectral range near the νb{3} stretching vibration. Different sized homo-complexes were generated in a planar supersonic expansion with typically 0,5 % SF_6 diluted in 6 bar He. Firstly, several rotationally resolved parallel and perpendicular bands of (SF_6)_2, at 934,0 and 956,1 wn (#1 structure) in agreement with Takami et al. but also one band at 933,6 wn (#2 structure) never observed previously, were analyzed in light of a recent theoretical study predicting three nearly isoenergetic isomers of D2d, C2h and C_2 symmetry for the dimer. Furthermore, some broader bands were detected around 938 and 964 wn and assigned to (SF_6)_3 and (SF_6)_4 clusters on the grounds of concentration effects and/or ab initio calculations. Lastly, with 0,5 % rare gas Rg (Rg = Ne, Ar, Kr and Xe) added to the SF_6:He gas mixture, a series of van der Waals (SF_6)_2-Rg hetero-trimers were observed, which display a remarkable linear dependence of the vibrational shift with the polarizability of the rare gas atom provided that the initial SF_6 dimer structure is #2 . In the same time no transitions belonging to the binary complexes SF_6-Rg were found near the νb{3} monomer band. This result suggests a complex thermodynamics within the pulsed supersonic expansion leading to the preponderance of (SF_6)_2-Rg clusters over SF_6-Rg binary systems. R. D. Urban and M. Takami, J. Chem. Phys. 103, 9132 (1995). T. Vazhappily, A. Marjolin and K. D. Jordan, J. Phys. Chem. B, DOI: 10.1021/acs.jpcb.5b09419 (2015).

  1. NuSTAR spectroscopy of GRS 1915+105: Disk reflection, spin, and connections to jets

    DEFF Research Database (Denmark)

    Miller, J. M.; Parker, M. L.; Fuerst, F.

    2013-01-01

    We report on the results of spectral fits made to a NuSTAR observation of the black hole GRS 1915+105 in a “plateau” state. This state is of special interest because it is similar to the “low/hard” state seen in other black holes, especially in that compact, steady jets are launched in this phase...

  2. Flow and acoustic features of a supersonic tapered nozzle

    Science.gov (United States)

    Gutmark, E.; Bowman, H. L.; Schadow, K. C.

    1992-05-01

    The acoustic and flow characteristics of a supersonic tapered jet were measured for free and shrouded flow configurations. Measurements were performed for a full range of pressure ratios including over- and underexpanded and design conditions. The supersonic tapered jet is issued from a converging-diverging nozzle with a 3∶1 rectangular slotted throat and a conical diverging section leading to a circular exit. The jet was compared to circular and rectangular supersonic jets operating at identical conditions. The distinct feature of the jet is the absence of screech tones in the entire range of operation. Its near-field pressure fluctuations have a wide band spectrum in the entire range of measurements, for Mach numbers of 1 to 2.5, for over- and underexpanded conditions. The free jet's spreading rate is nearly constant and similar to the rectangular jet, and in a shroud, the pressure drop it is inducing is linearly proportional to the primary jet Mach number. This behavior persisted in high adverse pressure gradients at overexpanded conditions, and with nozzle divergence angles of up to 35°, no inside flow separation was observed.

  3. On supersonic combustion

    Institute of Scientific and Technical Information of China (English)

    袁生学

    1999-01-01

    Some basic concepts and features of supersonic combustion are explained from the view point of macroscopic aerodynamics. Two kinds of interpretations of supersonic combustion are proposed. The difference between supersonic combustion and subsonic combustion is discussed, and the mechanism of supersonic combustion propagation and the limitation of heat addition in supersonic flow are pointed out. The results of the calculation of deflagration in supersonic flow show that the entropy increment and the total pressure loss of the combustion products may decrease with the increase of combustion velocity. It is also demonstrated that the oblique detonation wave angle may not be controlled by the wedge angle under weak underdriven solution conditions and be determined only by combustion velocity. Therefore, the weak underdriven solution may become self-sustaining oblique detonation waves with a constant wave angle.

  4. Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

    CERN Document Server

    Meigs, A G; Clever, M; Huber, A; Marsen, S; Nicholas, C; Stamp, M; Zastrow, K-D; Contributors, JET EFDA

    2013-01-01

    For the ITER-like wall, the JET mirror link divertor spectroscopy system was redesigned to fully cover the tungsten horizontal strike plate with faster time resolution and improved near-UV performance. Since the ITER-like wall project involves a change in JET from a carbon dominated machine to a beryllium and tungsten dominated machine with residual carbon, the aim of the system is to provide the recycling flux, equivalent, to the impinging deuterium ion flux, the impurity fluxes (C, Be, O) and tungsten sputtering fluxes and hence give information on the tungsten divertor source. In order to do this self-consistently, the system also needs to provide plasma characterization through the deuterium Balmer spectra measurements of electron density and temperature during high density. L-Mode results at the density limit from Stark broadening/line ratio analysis will be presented and compared to Langmuir probe profiles and 2D-tomography of low-n Balmer emission [1]. Comparison with other diagnostics will be vital fo...

  5. Deuterium Balmer/Stark spectroscopy and impurity profiles: First results from mirror-link divertor spectroscopy system on the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Meigs, A.G., E-mail: Andrew.Meigs@ccfe.ac.uk [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Brezinsek, S.; Clever, M.; Huber, A. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich (Germany); Marsen, S. [Max-Planck-Institut for Plasma Physics, EURATOM Association, Greifswald (Germany); Nicholas, C. [Dept. of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stamp, M.; Zastrow, K.-D. [EURATOM/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2013-07-15

    For the ITER-like wall, the JET mirror link divertor spectroscopy system was redesigned to fully cover the tungsten horizontal strike plate with faster time resolution and improved near-UV performance. Since the ITER-like wall project involves a change in JET from a carbon dominated machine to a beryllium and tungsten machine with residual carbon, the aim of the system is to provide the recycling flux, equivalent to the impinging deuterium ion flux, the impurity fluxes (C, Be, O) and tungsten sputtering fluxes and hence give information on the tungsten divertor source. In order to do this self-consistently, the system provides plasma characterization through the deuterium Balmer spectra measurements of electron density and temperature during high density. L-mode results at the density limit from Stark broadening/line ratio analysis will be presented and compared to Langmuir probe profiles and 2D-tomography of low-n Balmer emission [1]. Comparison with other diagnostics will be vital for modeling attempts with the EDGE2D-EIRENE code [2] as the best possible data sets need to be provided to study detachment.

  6. Deuterium Balmer/Stark spectroscopy and impurity profiles: First results from mirror-link divertor spectroscopy system on the JET ITER-like wall

    Science.gov (United States)

    Meigs, A. G.; Brezinsek, S.; Clever, M.; Huber, A.; Marsen, S.; Nicholas, C.; Stamp, M.; Zastrow, K.-D.; JET EFDA Contributors

    2013-07-01

    For the ITER-like wall, the JET mirror link divertor spectroscopy system was redesigned to fully cover the tungsten horizontal strike plate with faster time resolution and improved near-UV performance. Since the ITER-like wall project involves a change in JET from a carbon dominated machine to a beryllium and tungsten machine with residual carbon, the aim of the system is to provide the recycling flux, equivalent to the impinging deuterium ion flux, the impurity fluxes (C, Be, O) and tungsten sputtering fluxes and hence give information on the tungsten divertor source. In order to do this self-consistently, the system provides plasma characterization through the deuterium Balmer spectra measurements of electron density and temperature during high density. L-mode results at the density limit from Stark broadening/line ratio analysis will be presented and compared to Langmuir probe profiles and 2D-tomography of low-n Balmer emission [1]. Comparison with other diagnostics will be vital for modeling attempts with the EDGE2D-EIRENE code [2] as the best possible data sets need to be provided to study detachment.

  7. Bibliography of Supersonic Cruise Research (SCR) program from 1980 to 1983

    Science.gov (United States)

    Hoffman, S.

    1984-01-01

    A bibliography for the Supersonic Cruise Research (SCR) and Variable Cycle Engine (VCE) Programs is presented. An annotated bibliography for the last 123 formal reports and a listing of titles for 44 articles and presentations is included. The studies identifies technologies for producing efficient supersonic commercial jet transports for cruise Mach numbers from 2.0 to 2.7.

  8. Experimental study of mixing enhancement using pylon in supersonic flow

    Science.gov (United States)

    Vishwakarma, Manmohan; Vaidyanathan, Aravind

    2016-01-01

    The Supersonic Combustion Ramjet (SCRAMJET) engine has been recognized as one of the most promising air breathing propulsion system for the supersonic/hypersonic flight mission requirements. Mixing and combustion of fuel inside scramjet engine is one of the major challenging tasks. In the current study the main focus has been to increase the penetration and mixing of the secondary jet inside the test chamber at supersonic speeds. In view of this, experiments are conducted to evaluate the effect of pylon on the mixing of secondary jet injection into supersonic mainstream flow at Mach 1.65. Two different pylons are investigated and the results are compared with those obtained by normal injection from a flat plate. The mixing studies are performed by varying the height of the pylon while keeping all other parameters the same. The study mainly focused on analyzing the area of spread and penetration depth achieved by different injection schemes based on the respective parameters. The measurements involved Mie scattering visualization and the flow features are analyzed using Schlieren images. The penetration height and spread area are the two parameters that are used for analyzing and comparing the performance of the pylons. It is observed that the secondary jet injection carried out from behind the big pylon resulted in maximum penetration and spread area of the jet as compared to the small pylon geometry. Moreover it is also evident that for obtaining maximum spreading and penetration of the jet, the same needs to be achieved at the injection location.

  9. Laser-Induced Fluorescence of 1-Methylnaphthalene in a Supersonic Jet Expansion%1-甲基萘的振动分辨激光诱导荧光光谱研究

    Institute of Scientific and Technical Information of China (English)

    王录飞; 吴其俊; 祖莉莉

    2011-01-01

    Laser-induced fluorescence excitation spectrum of So→S1 transition of 1-methylnaphthalene was obtained in supersonic jet condition. Theoretical calculations were conducted to study the geometry and energy of 1-methylnaphthalene at the ground and first excited state. Geometry optimization for the ground state was performed by DFT/B3LYP methods using 6-311 ++G

  10. Experimental study on characteristics of bubble growth and pressure wave propagation by supersonic gas jets under water%水下超声速燃气射流气泡的生长及压力波传播特性实验研究

    Institute of Scientific and Technical Information of China (English)

    汤龙生; 刘宇; 吴智锋; 赵文胜

    2011-01-01

    To investigate effects of supersonic gas jets under water, gas generator and underwater testing system is used to study the growth and evolution of gas bubble by supersonic gas jets and pressure pulse propagation characteristics under water. The characteristic of pressure pulse attenuation is investigated. The experimental results show that the growth and collapse of the gas bubble cause the pressure pulse, and the pulsation can quickly decay under water.%为获取燃气射流对上游水域的影响特性,采用燃气发生器和水下实验系统,研究了水下超声速燃气射流的气泡生长及演变过程,以及气泡压力波在水中的传播特性,并研究了压力波在水介质中的衰减规律.研究表明,燃气泡生长和"破碎"伴生着压力脉动在水介质中传播,气泡压力波的能量在水介质中快速衰减.

  11. On highly focused supersonic microjets

    CERN Document Server

    Tagawa, Yoshiyuki; Willem, Claas; Peters, Ivo R; van der Meer, Deveraj; Sun, Chao; Prosperetti, Andrea; Lohse, Detlef

    2011-01-01

    By focusing a laser pulse in a liquid-filled glass-microcapillary open at one end, a small mass of liquid is instantaneously vapourised. This leads to a shock wave which travels towards the concave free surface where it generates a high-speed microjet. The initial shape of the meniscus plays a dominant role in the process. The velocity of the jet can reach supersonic speeds up to 850\\,m/s while maintaining a very sharp geometry. The entire evolution of the jet is observed by high-speed recordings of up to $10^6\\,$fps. A parametric study of the jet velocity as a function of the contact angle of the liquid-glass interface, the energy absorbed by the liquid, the diameter of the capillary tube, and the distance between the laser focus and the free surface is performed, and the results are rationalised. The method could be used for needle-free injection of vaccines or drugs.

  12. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    Science.gov (United States)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  13. A new radiation-hard endoscope for divertor spectroscopy on JET

    Energy Technology Data Exchange (ETDEWEB)

    Huber, A., E-mail: A.Huber@fz-juelich.de [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Brezinsek, S.; Mertens, Ph.; Schweer, B.; Sergienko, G.; Terra, A. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Clever, M. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Edlingdon, T. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Egner, S. [Kayser-Threde GmbH, D-81379 Munich (Germany); Farthing, J. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Hartl, M. [Kayser-Threde GmbH, D-81379 Munich (Germany); Horton, L. [EFDA-JET Close Support Unit, Culham Science Centre, Culham OX14 3DB (United Kingdom); Kampf, D. [Kayser-Threde GmbH, D-81379 Munich (Germany); Klammer, J. [KRP-Mechatec Engineering GbR, D-85748 Garching b. Muenchen (Germany); Lambertz, H.T. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Jülich (Germany); Matthews, G.F. [Euratom-CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Morlock, C.; Murari, A. [EFDA-JET Close Support Unit, Culham Science Centre, Culham OX14 3DB (United Kingdom); and others

    2013-10-15

    Highlights: ► A new radiation-hard endoscope with optimised divertor view has been developed on JET. ► A high optical transmittance (≥30%) in the operating wavelength range from 390 nm to 2500 nm has been achieved. ► The endoscope delivers high spatial resolution ≤2 mm at the object plane and ≤3 mm over the whole depth of field (±0.7 m). ► The new optical design includes options for the in situ calibration of the endoscope transmittance. ► A new type of shutter based on pneumatic techniques has been developed in view of ITER and integrated into the endoscope. -- Abstract: In preparation for ITER, JET has been upgraded with a new ITER-like wall (ILW) whereby the main plasma-facing components, previously made of carbon, have been replaced by Be in the main chamber and W in the divertor. A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten, beryllium and the possibly remaining carbon in the tungsten divertor of the JET-ILW. It operates in the wavelength range from 390 nm to 2500 nm with high optical transmittance (≥30%) as well as high spatial resolution, that is ≤2 mm at the object plane and ≤3 mm over the whole depth of field (±0.7 m). The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. The endoscope has an optimised observation in the near ultraviolet and in the blue spectral region to ensure the detection of the W I-emission line at 400.8 nm. In parallel to the new optical design, a new type of ITER-like shutter system based on pneumatic techniques has been developed and integrated in the endoscope head. The new optical design includes options for an in situ calibration of the endoscope transmittance during the experimental campaign.

  14. Identification of Structural Motifs of Imidazolium Based Ionic Liquids from Jet-Cooled Infrared Spectroscopy.

    Science.gov (United States)

    Young, Justin W.; Booth, Ryan S.; Annesley, Christopher; Stearns, Jaime A.

    2016-06-01

    Highly variable and potentially revolutionary, ionic liquids (IL) are a class of molecules with potential for numerous Air Force applications such as satellite propulsion, but the complex nature of IL structure and intermolecular interactions makes it difficult to adequately predict structure-property relationships in order to make new IL-based technology a reality. For example, methylation of imidazolium ionic liquids leads to a substantial increase in viscosity but the underlying physical mechanism is not understood. In addition the role of hydrogen bonding in ILs, especially its relationship to macroscopic properties, is a matter of ongoing research. Here, structural motifs are identified from jet-cooled infrared spectra of different imidazolium based ionic liquids, such as 1-ethyl-3-methylimidazolium bis(trifluoromethyl-sulfonyl)imide. Measurements of the C-H stretches indicate three structural families present in the gas phase.

  15. Numerical and experimental investigations on supersonic ejectors

    Energy Technology Data Exchange (ETDEWEB)

    Bartosiewicz, Y.; Aidoun, Z. [CETC-Varennes, Natural Resources Canada (Canada); Desevaux, P. [CREST-UMR 6000, Belfort (France); Mercadier, Y. [Sherbrooke Univ. (Canada). THERMAUS

    2005-02-01

    Supersonic ejectors are widely used in a range of applications such as aerospace, propulsion and refrigeration. The primary interest of this study is to set up a reliable hydrodynamics model of a supersonic ejector, which may be extended to refrigeration applications. The first part of this work evaluated the performance of six well-known turbulence models for the study of supersonic ejectors. The validation concentrated on the shock location, shock strength and the average pressure recovery prediction. Axial pressure measurements with a capillary probe performed previously [Int. J. Turbo Jet Engines 19 (2002) 71; Conference Proc., 10th Int. Symp. Flow Visualization, Kyoto, Japan, 2002], were compared with numerical simulations while laser tomography pictures were used to evaluate the non-mixing length. The capillary probe has been included in the numerical model and the non-mixing length has been numerically evaluated by including an additional transport equation for a passive scalar, which acted as an ideal colorant in the flow. At this point, the results show that the k-omega-sst model agrees best with experiments. In the second part, the tested model was used to reproduce the different operation modes of a supersonic ejector, ranging from on-design point to off-design. In this respect, CFD turned out to be an efficient diagnosis tool of ejector analysis (mixing, flow separation), for design, and performance optimization (optimum entrainment and recompression ratios). (Author)

  16. Photoelectron spectroscopy of liquid water, some alcohols, and pure nonane in free micro jets

    Science.gov (United States)

    Faubel, Manfred; Steiner, Björn; Toennies, J. Peter

    1997-06-01

    The recently developed technique of accessing volatile liquids in a high vacuum environment by using a very thin liquid jet is implemented to carry out the first measurements of photoelectron spectra of pure liquid water, methanol, ethanol, 1-propanol, 1-butanol, and benzyl alcohol as well as of liquid n-nonane. The apparatus, which consists of a commercial hemispherical (10 cm mean radius) electron analyzer and a hollow cathode discharge He I light source is described in detail and the problems of the sampling of the photoelectrons in such an environment are discussed. For water and most of the alcohols up to six different electronic bands could be resolved. The spectra of 1-butanol and n-nonane show two weakly discernable peaks from which the threshold ionization potential could be determined. A deconvolution of the photoelectron spectra is used to extract ionization potentials of individual molecular bands of molecules near the surface of the liquid and shifts of the order of 1 eV compared to the gas phase are observed. A molecular orientation for water molecules at the surface of liquid water is inferred from a comparison of the relative band strengths with the gas phase. Similar effects are also observed for some of the alcohols. The results are discussed in terms of a simple "Born-solvation" model.

  17. NuSTAR Spectroscopy of GRS 1915+105: Disk Reflection, Spin, and Connections to Jets

    CERN Document Server

    Miller, J M; Fuerst, F; Bachetti, M; Harrison, F A; Barret, D; Boggs, S E; Chakrabarty, D; Christensen, F E; Craig, W W; Fabian, A C; Grefenstette, B W; Hailey, C J; King, A L; Stern, D K; Tomsick, J A; Walton, D J; Zhang, W W

    2013-01-01

    We report on the results of spectral fits made to a NuSTAR observation of the black hole GRS 1915+105 in a "plateau" state. This state is of special interest because it is similar to the "low/hard" state seen in other black holes, especially in that compact, steady jets are launched in this phase. The 3-79 keV bandpass of NuSTAR, and its ability to obtain moderate-resolution spectra free from distortions such as photon pile-up, are extremely well suited to studies of disk reflection in X-ray binaries. In only 15 ks of net exposure, an extraordinarily sensitive spectrum of GRS 1915+105 was measured across the full bandpass. Ionized reflection from a disk around a rapidly-spinning black hole is clearly required to fit the spectra; even hybrid Comptonization models including ionized reflection from a disk around a Schwarzschild black hole proved inadequate. A spin parameter of a = 0.98 +/- 0.01 (1-sigma statistical error) is measured via the best-fit model; low spins are ruled out at a high level of confidence. ...

  18. Supersonic unstalled flutter

    Science.gov (United States)

    Adamczyk, J. J.; Goldstein, M. E.; Hartmann, M. J.

    1978-01-01

    Recently two flutter analyses have been developed at NASA Lewis Research Center to predict the onset of supersonic unstalled flutter of a cascade of two-dimensional airfoils. The first of these analyzes the onset of supersonic flutter at low levels of aerodynamic loading (i.e., backpressure), while the second examines the occurrence of supersonic flutter at moderate levels of aerodynamic loading. Both of these analyses are based on the linearized unsteady inviscid equations of gas dynamics to model the flow field surrounding the cascade. The details of the development of the solution to each of these models have been published. The objective of the present paper is to utilize these analyses in a parametric study to show the effects of cascade geometry, inlet Mach number, and backpressure on the onset of single and multi degree of freedom unstalled supersonic flutter. Several of the results from this study are correlated against experimental qualitative observation to validate the models.

  19. Neutron spectroscopy as a fuel ion ratio diagnostic: lessons from JET and prospects for ITER.

    Science.gov (United States)

    Ericsson, G; Conroy, S; Gatu Johnson, M; Andersson Sundén, E; Cecconello, M; Eriksson, J; Hellesen, C; Sangaroon, S; Weiszflog, M

    2010-10-01

    The determination of the fuel ion ratio n(t)/n(d) in ITER is required at a precision of 20%, time resolution of 100 ms, spatial resolution of a/10, and over a range of 0.01ITER to assess the possibility to use neutron emission spectroscopy (NES) for such measurements. We show that NES meets the requirements for ion temperatures T(i)>6 keV and for n(T)/n(D)ITER due to beam-thermal and tritium-tritium reactions can further enhance the prospects for NES.

  20. Classification of jet fuel properties by near-infrared spectroscopy using fuzzy rule-building expert systems and support vector machines.

    Science.gov (United States)

    Xu, Zhanfeng; Bunker, Christopher E; Harrington, Peter de B

    2010-11-01

    Monitoring the changes of jet fuel physical properties is important because fuel used in high-performance aircraft must meet rigorous specifications. Near-infrared (NIR) spectroscopy is a fast method to characterize fuels. Because of the complexity of NIR spectral data, chemometric techniques are used to extract relevant information from spectral data to accurately classify physical properties of complex fuel samples. In this work, discrimination of fuel types and classification of flash point, freezing point, boiling point (10%, v/v), boiling point (50%, v/v), and boiling point (90%, v/v) of jet fuels (JP-5, JP-8, Jet A, and Jet A1) were investigated. Each physical property was divided into three classes, low, medium, and high ranges, using two evaluations with different class boundary definitions. The class boundaries function as the threshold to alarm when the fuel properties change. Optimal partial least squares discriminant analysis (oPLS-DA), fuzzy rule-building expert system (FuRES), and support vector machines (SVM) were used to build the calibration models between the NIR spectra and classes of physical property of jet fuels. OPLS-DA, FuRES, and SVM were compared with respect to prediction accuracy. The validation of the calibration model was conducted by applying bootstrap Latin partition (BLP), which gives a measure of precision. Prediction accuracy of 97 ± 2% of the flash point, 94 ± 2% of freezing point, 99 ± 1% of the boiling point (10%, v/v), 98 ± 2% of the boiling point (50%, v/v), and 96 ± 1% of the boiling point (90%, v/v) were obtained by FuRES in one boundaries definition. Both FuRES and SVM obtained statistically better prediction accuracy over those obtained by oPLS-DA. The results indicate that combined with chemometric classifiers NIR spectroscopy could be a fast method to monitor the changes of jet fuel physical properties.

  1. Atomic spectroscopy on fusion relevant ions and studies of light impurities in the JET tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Tunklev, M

    1999-03-01

    The spectrum and energy levels of C IV and the 3l-4l system of the Mg-like ions in the iron group elements have been investigated. This has led to several hundred identified transitions, many of them previously unknown. Using the Charge Exchange Diagnostic system at JET, ion temperatures, rotation velocities and densities have been derived from visible spectroscopic measurements on fully ionised light impurities, such as He, C, N and Ne. The existence of plume contribution from beam produced hydrogen-like ions has been proven beyond any doubt to affect the deduction of the active charge exchange signal of He II. In the case of C VI the plume signal was estimated to be at least a factor of five lower than the active charge exchange signal. Line integrated passive charge exchange emission between neutral background atoms and fully stripped impurity ions has been investigated and modelled. When the synthetic spectrum is fitted into the experimentally detected spectra the neutral background density can be deduced. The importance of including background atoms (H, D and T) as charge exchange donors, not only in state 2s, but also in state 1s, has shown to be crucial in high temperature shots. Transport of light impurities has been studied with gas puff injections into steady state H-mode plasmas. The results suggest that light impurities are transported as described by the neo-classical Pfirsch-Schlueter regime at the edge, whilst in the centre, sawtoothing, preferably to Banana transport, is mixing the plasma and increases the measured values on the diffusion. For the peaking of impurities in a steady state plasma an anomalous treatment was more in agreement with the experimental data. Certain confinement information, previously predicted theoretically as a part of the peaking equation, has been experimentally verified

  2. Coherent structures in a supersonic complex nozzle

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark

    2016-11-01

    The jet flow from a complex supersonic nozzle is studied through experimental measurements. The nozzle's geometry is motivated by future engine designs for high-performance civilian and military aircraft. This rectangular jet has a single plane of symmetry, an additional shear layer (referred to as a wall jet), and an aft deck representative of airframe integration. The core flow operates at a Mach number of Mj , c = 1 . 6 , and the wall jet is choked (Mj , w = 1 . 0). This high Reynolds number jet flow is comprised of intense turbulence levels, an intricate shock structure, shear and boundary layers, and powerful corner vortices. In the present study, stereo PIV measurements are simultaneously sampled with high-speed pressure measurements, which are embedded in the aft deck, and far-field acoustics in the anechoic chamber at Syracuse University. Time-resolved schlieren measurements have indicated the existence of strong flow events at high frequencies, at a Strouhal number of St = 3 . 4 . These appear to result from von Kàrmàn vortex shedding within the nozzle and pervade the entire flow and acoustic domain. Proper orthogonal decomposition is applied on the current data to identify coherent structures in the jet and study the influence of this vortex street. AFOSR Turbulence and Transition Program (Grant No. FA9550-15-1-0435) with program managers Dr. I. Leyva and Dr. R. Ponnappan.

  3. Reactive species output of a plasma jet with a shielding gas device—combination of FTIR absorption spectroscopy and gas phase modelling

    Science.gov (United States)

    Schmidt-Bleker, A.; Winter, J.; Iseni, S.; Dünnbier, M.; Weltmann, K.-D.; Reuter, S.

    2014-04-01

    In this work, a simple modelling approach combined with absorption spectroscopy of long living species generated by a cold atmospheric plasma jet yields insight into relevant gas phase chemistry. The reactive species output of the plasma jet is controlled using a shielding gas device. The shielding gas is varied using mixtures of oxygen and nitrogen at various humidity levels. Through the combination of Fourier transform infrared (FTIR) spectroscopy, computational fluid dynamics (CFD) simulations and zero dimensional kinetic modelling of the gas phase chemistry, insight into the underlying reaction mechanisms is gained. While the FTIR measurements yield absolute densities of ozone and nitrogen dioxide in the far field of the jet, the kinetic simulations give additional information on reaction pathways. The simulation is fitted to the experimentally obtained data, using the CFD simulations of the experimental setup to estimate the correct evaluation time for the kinetic simulation. It is shown that the ozone production of the plasma jet continuously rises with the oxygen content in the shielding gas, while it significantly drops as humidity is increased. The production of nitrogen dioxide reaches its maximum at about 30% oxygen content in the shielding gas. The underlying mechanisms are discussed based on the simulation results.

  4. The formation of interstellar jets

    Science.gov (United States)

    Tenorio-Tagle, G.; Canto, J.; Rozyczka, M.

    1988-01-01

    The formation of interstellar jets by convergence of supersonic conical flows and the further dynamical evolution of these jets are investigated theoretically by means of numerical simulations. The results are presented in extensive graphs and characterized in detail. Strong radiative cooling is shown to result in jets with Mach numbers 2.5-29 propagating to lengths 50-100 times their original widths, with condensation of swept-up interstellar matter at Mach 5 or greater. The characteristics of so-called molecular outflows are well reproduced by the simulations of low-Mach-number and quasi-adiabatic jets.

  5. IGRINS Near-IR High-Resolution Spectroscopy of Multiple Jets around LkH$\\alpha$ 234

    CERN Document Server

    Oh, Heeyoung; Yuk, In-Soo; Park, Byeong-Gon; Park, Chan; Chun, Moo-Young; Pak, Soojong; Kim, Kang-Min; Oh, Jae Sok; Jeong, Ueejeong; Yu, Young Sam; Lee, Jae-Joon; Kim, Hwihyun; Hwang, Narae; Kaplan, Kyle; Pavel, Michael; Mace, Gregory; Lee, Hye-In; Le, Huynh Anh Nguyen; Lee, Sungho; Jaffe, Daniel T

    2016-01-01

    We present the results of high-resolution near-IR spectroscopy toward the multiple outflows around the Herbig Be star Lk{\\Ha} 234 using the Immersion Grating Infrared Spectrograph (IGRINS). Previous studies indicate that the region around Lk{\\Ha} 234 is complex, with several embedded YSOs and the outflows associated with them. In simultaneous H$-$ and K$-$band spectra from HH 167, we detected 5 {\\FeII} and 14 H$_{2}$ emission lines. We revealed a new {\\FeII} jet driven by radio continuum source VLA 3B. Position-velocity diagrams of H$_{2}$ 1$-$0 S(1) $\\lambda$2.122 $\\micron$ line show multiple velocity peaks. The kinematics may be explained by a geometrical bow shock model. We detected a component of H$_{2}$ emission at the systemic velocity (V$_{LSR}$ $=$ $-$10.2 {\\kms}) along the whole slit in all slit positions, which may arise from the ambient photodissociation region. Low-velocity gas dominates the molecular hydrogen emission from knots A and B in HH 167, which is close to the systemic velocity, {\\FeII} ...

  6. Diagnosis of Methane Plasma Generated in an Atmospheric Pressure DBD Micro-Jet by Optical Emission Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-Feng; BIAN Xin-Chao; CHEN Qiang; LIU Fu-Ping; LIU Zhong-Wei

    2009-01-01

    Diagnosis of methane plasma,generated in an atmospheric pressure dielectric barrier discharge (DBD) microplasma jet with a quartz tube as dielectric material by a 25 kHz sinusoidal ac power source,is conducted by optical emission spectroscopy (OES).The reactive radicals in methane plasma such as CH,C2,and Ha are detected insitu by OES.The possible dissociation mechanism of methane in diluted Ar plasma is deduced from spectra.In addition,the density of CH radical,which is considered as one of the precursors in diamond-like (DLC) film formation,affected by the parameters of input voltage and the feed gas flow rate,is emphasized. With the Boltzmann plots,four Ar atomic spectral lines (located at 675.28nm,687.13nm,738.40nm and 794.82nm,respectively) are chosen to calculate the electron temperature,and the dependence of electron temperature on discharge parameters is also investigated.

  7. Molecular Structure and Chirality Determination from Pulsed-Jet Fourier Transform Microwave Spectroscopy

    Science.gov (United States)

    Lobsiger, Simon; Perez, Cristobal; Evangelisti, Luca; Seifert, Nathan A.; Pate, Brooks; Lehmann, Kevin

    2014-06-01

    Fourier transform microwave (FTMW) spectroscopy has been used for many years as one of the most accurate methods to determine gas-phase structures of molecules and small molecular clusters. In the last years two pioneering works ushered in a new era applications. First, by exploiting the reduced measurement time and the high sensitivity, the development of chirped-pulse CP-FTMW spectrometers enabled the full structural determination of molecules of increasing size as well as molecular clusters. Second, and more recently, Patterson et al. showed that rotational spectroscopy can also be used for enantiomer-specific detection. Here we present an experimental approach that combines both in a single spectrometer. This set-up is capable to rapidly obtain the full heavy-atom substitution structure using the CP-FTMW features. The inclusion of an extra set of broadband horns allows for a chirality-sensitive measurement of the sample. The measurement we implement is a three-wave mixing experiment that uses time-separated pulses to optimally create the chiral coherence - an approach that was proposed recently. Using samples of R-, S- and racemic Solketal, the physical properties of the three-wave mixing experiment were studied. This involved the measurement of the corresponding nutation curves (molecular signal intensity vs excitation pulse duration) to demonstrate the optimal pulse sequence. The phase stability of the chiral signal, required to assign the absolute stereochemistry, has been studied as a function of the measurement signal-to-noise ratio using a "phasogram" method. G. G. Brown, B. C. Dian, K. O. Douglass, S. M. Geyer, S. T. Shipman, B. H. Pate, Rev. Sci. Instrum. 2008, 79, 053103. D. Patterson, M. Schnell, J. M. Doyle, Nature 2013, 497, 475-477. D. Patterson, J. M. Doyle, Phys. Rev. Lett. 2013, 111, 023008. V. A. Shubert, D. Schmitz, D. Patterson, J. M. Doyle, M. Schnell, Angew. Chem. Int. Ed. 2014, 53, 1152-1155. J.-U. Grabow, Angew. Chem. 2013, 125, 11914

  8. Spectroscopy, Kinetics, and Dynamics of Combustion Radicals

    Energy Technology Data Exchange (ETDEWEB)

    Nesbitt, David J. [Research/Professor

    2013-08-06

    Spectroscopy, kinetics and dynamics of jet cooled hydrocarbon transients relevant to the DOE combustion mission have been explored, exploiting i) high resolution IR lasers, ii) slit discharge sources for formation of jet cooled radicals, and iii) high sensitivity detection with direct laser absorption methods and near the quantum shot noise limit. What makes this combination powerful is that such transients can be made under high concentrations and pressures characteristic of actual combustion conditions, and yet with the resulting species rapidly cooled (T ≈10-15K) in the slit supersonic expansion. Combined with the power of IR laser absorption methods, this provides novel access to spectral detection and study of many critical combustion species.

  9. The complexity of the coronal line region in AGNs: Gas-jet interactions and outflows revealed by NIR spectroscopy

    Science.gov (United States)

    Rodríguez-Ardila, Alberto; Prieto, Almudena; Mazzalay, Ximena

    2016-08-01

    Apart from the classical broad line region (BLR) at small core distances, and the extended classical narrow-line region (NLR), a subset of active galactic nuclei (AGN) show, in their spectra, lines from very highly ionised atoms, known as Coronal lines (CLs). The precise nature and origin of these CLs remain uncertain. Advances on this matter include the determination of the size and morphology of the CLR by means of optical HST and ground-based AO imaging/spectroscopy in a few AGNs. The results indicate CLRs with sizes varying from compact (~30 pc) to extended (~200 pc) emission and aligned preferentially with the direction of the lower ionisation cones seen in these sources. In this talk, we present results of a pioneering work aimed at studying the CLR in the near-infrared region on a selected sample of nearby AGNs. The excellent angular resolution of the data allowed us to resolve and map the extension of the coronal line gas and compare it to that emitting low- and mid-ionization lines. In most cases, the very good match between the radio emission and the CLR suggest that at least part of the high-ionization gas is jet-driven. Results from photoionization models where the central engine is the only source of energy input strongly fail at reproducing the observed line ratios, mainly at distances larger than 60 pc from the centre. We discuss here other processes that should be at work to enhance this energetic emission and suggest that the presence of coronal lines in AGNs is an unambiguous signature of feedback processes in these sources.

  10. Supersonic flows over cavities

    Institute of Scientific and Technical Information of China (English)

    Tianwen FANG; Meng DING; Jin ZHOU

    2008-01-01

    The characteristics of supersonic cold flows over cavities were investigated experimentally and numer-ically, and the effects of cavities of different sizes on super-sonic flow field were analyzed. The results indicate that the ratio of length to depth L/D within the range of 5-9 has little relevance to integral structures of cavity flow. The bevel angle of the rear wall does not alter the overall structure of the cavity flow within the range of 30°-60°, but it can exert obvious effect on the evolvement of shear layer and vortexes in cavities.

  11. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    Science.gov (United States)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  12. Infinitesimal Conical Supersonic Flow

    Science.gov (United States)

    Busemann, Adolf

    1947-01-01

    The calculation of infinitesimal conical supersonic flow has been applied first to the simplest examples that have also been calculated in another way. Except for the discovery of a miscalculation in an older report, there was found the expected conformity. The new method of calculation is limited more definitely to the conical case.

  13. Laser-induced fluorescence spectroscopy of TaN in free-jet: Observation of high-lying excited electronic states

    Science.gov (United States)

    Nakhate, S. G.; Mukund, Sheo; Bhattacharyya, Soumen

    2017-02-01

    Rotationally resolved excitation spectra of TaN molecules, produced in a free-jet, have been studied using laser-induced fluorescence spectroscopy. Thirteen excited electronic states in the energy region, 23,500-30,000 cm-1 have been observed. The molecular constants, Ω-quantum numbers and radiative lifetimes have been determined for these states. Because of the case (c) behavior and absence of the regular energy spacing, the assignments of the excited electronic states of TaN become difficult. The number of observed excited electronic states is significantly larger than currently predicted, indicated a need for additional ab initio calculations.

  14. Atomic oxygen in a cold argon plasma jet: TALIF spectroscopy in ambient air with modelling and measurements of ambient species diffusion

    Science.gov (United States)

    Reuter, S.; Winter, J.; Schmidt-Bleker, A.; Schroeder, D.; Lange, H.; Knake, N.; Schulz-von der Gathen, V.; Weltmann, K.-D.

    2012-04-01

    By investigating the atomic oxygen density in its effluent, two-photon absorption laser-induced fluorescence (TALIF) spectroscopy measurements are for the first time performed in a cold argon/oxygen atmospheric pressure plasma jet. The measurements are carried out in ambient air and quenching by inflowing air species is considered. We propose a novel absorption technique in the VUV spectral range, where emission originating from within the discharge is used as light source to determine the inflow of atmospheric oxygen into the effluent. Furthermore, we propose a modelling solution for the on-axis density of inflowing ambient air based on the stationary convection-diffusion equation.

  15. The Prediction of Broadband Shock-Associated Noise from Dualstream and Rectangular Jets Using RANS CFD

    Science.gov (United States)

    Miller, Steven A.; Morris, Philip J.

    2010-01-01

    Supersonic jets operating off-design produce broadband shock-associated noise. Broadband shock-associated noise is characterized by multiple broadband peaks in the far-field and is often the dominant source of noise towards the sideline and upstream direction relative to the jet axis. It is due to large scale coherent turbulence structures in the jet shear layers interacting with the shock cell structure. A broadband shock-associated noise model recently developed by the authors predicts this noise component from solutions to the Reynolds averaged Navier-Stokes equations using a two-equation turbulence model. The broadband shock-associated noise model is applied to dualstream and rectangular nozzles operating supersonically, heated, and off-design. The dualstream jet broadband shock-associated noise predictions are conducted for cases when the core jet is supersonic and the fan jet is subsonic, the core jet is subsonic and the fan jet is supersonic, and when both jet streams operate supersonically. Rectangular jet predictions are shown for a convergent-divergent nozzle operating both over- and under-expanded for cold and heated conditions. The original model implementation has been heavily modified to make accurate predictions for the dualstream jets. It is also argued that for over-expanded jets the oblique shock wave attached to the nozzle lip contributes little to broadband shock-associated noise. All predictions are compared with experiments.

  16. Tunable far-IR laser spectroscopy of jet-cooled carbon clusters: the nu 2 bending vibration of C3.

    Science.gov (United States)

    Schmuttenmaer, C A; Cohen, R C; Pugliano, N; Heath, J R; Cooksy, A L; Busarow, K L; Saykally, R J

    1990-08-24

    Seven rovibrational transitions of the (01(1)0) fundamental bending band of C3 have been measured with high precision with the use of a tunable far-infrared laser spectrometer. The C3 molecules were produced by laser vaporization of a graphite rod and cooled in a supersonic expansion. The astrophysically important nu 2 fundamental frequency is determined to be 63.416529(40) cm-1. These measurements provide the basis for studies of C3 in the interstellar medium with far-infrared astronomy.

  17. Laser-induced Fluorescence and Optical Emission Spectroscopy for the Determination of Reactive Species in the Effluent of Atmospheric Pressure Low Temperature Plasma Jets

    Science.gov (United States)

    Pei, Xuekai; Razavi, Hamid; Lu, Xinpei; Laroussi, Mounir

    2014-10-01

    OH radicals and O atoms are important active species in various applications of room temperature atmospheric pressure plasma jet (RT-APPJ). So the determination of absolute density of OH radicals and O atoms in RT-APPJs is necessary. In this work, the time and spatially resolved OH radicals density of a RT-APPJ are measured using the laser-induced fluorescence (LIF) technology. In addition, the spatial distribution of the emitting species along the axial direction of the jet is of interest and is measured using optical emission spectroscopy. The absolute OH density of the RT-APPJ is about 2.0 × 1013 cm-3 at 5 mm away from the plasma jet nozzle and 1 μs after the discharge. The OH density reaches a maximum when H2O concentration in helium gas flow is about 130ppm. In order to control the OH density, the effect of voltage polarity, applied voltage magnitude, pulse frequency, pulse width on the OH density are also investigated and discussed. O atoms are investigated by TA-LIF. It is demonstrated that the O atoms density reaches a maximum when O2 percent is about 0.3% in pure He and the lifetime of O atoms in RT-APPJ is much longer (up to dozens of ms) than OH radicals.

  18. Protostellar jets the best laboratories for investigating astrophysical jets

    CERN Document Server

    De Gouveia dal Pino, E M

    1995-01-01

    Highly collimated supersonic jets are observed to emerge from a wide variety of astrophysical objects, ranging from Active Nuclei of Galaxies (AGN's) to Young Stellar Objects (YSOs) within our own Galaxy. Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. Thanks to the proximity and relatively small timescales, which permit direct observations of evolutionary changes, YSO jets are, perhaps, the best laboratories for cosmic jet investigation. In this lecture, the formation, structure, and evolution of the YSO jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models to AGN jets are also addressed.

  19. Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Hal

    1968-01-01

    This booklet discusses spectroscopy, the study of absorption of radiation by matter, including X-ray, gamma-ray, microwave, mass spectroscopy, as well as others. Spectroscopy has produced more fundamental information to the study of the detailed structure of matter than any other tools.

  20. NATO Advanced Study Institute on Low Temperature Molecular Spectroscopy

    CERN Document Server

    1996-01-01

    Molecular spectroscopy has achieved rapid and significant progress in recent years, the low temperature techniques in particular having proved very useful for the study of reactive species, phase transitions, molecular clusters and crystals, superconductors and semiconductors, biochemical systems, astrophysical problems, etc. The widening range of applications has been accompanied by significant improvements in experimental methods, and low temperature molecular spectroscopy has been revealed as the best technique, in many cases, to establish the connection between experiment and theoretical calculations. This, in turn, has led to a rapidly increasing ability to predict molecular spectroscopic properties. The combination of an advanced tutorial standpoint with an emphasis on recent advances and new perspectives in both experimental and theoretical molecular spectroscopy contained in this book offers the reader insight into a wide range of techniques, particular emphasis being given to supersonic jet and matri...

  1. Jet-cooled infrared absorption spectrum of the v4 fundamental band of HCOOH and HCOOD

    Science.gov (United States)

    Luo, Wei; Zhang, Yulan; Li, Wenguang; Duan, Chuanxi

    2017-04-01

    The jet-cooled absorption spectrum of the v4 fundamental band of normal formic acid (HCOOH) and deuterated formic acid (HCOOD) was recorded in the frequency range of 1370-1392 cm-1 with distributed-feedback quantum cascade lasers (DFB-QCLs) as the tunable infrared radiations. A segmented rapid-scan data acquisition scheme was developed for pulsed supersonic jet infrared laser absorption spectroscopy based on DFB-QCLs with a moderate vacuum pumping capacity. The unperturbed band-origin and rotational constants in the excited vibrational state were determined for both HCOOH and HCOOD. The unperturbed band-origin locates at 1379.05447(11) cm-1 for HCOOH, and 1366.48430(39) cm-1 for HCOOD, respectively.

  2. Spectroscopy

    CERN Document Server

    Walker, S

    1976-01-01

    The three volumes of Spectroscopy constitute the one comprehensive text available on the principles, practice and applications of spectroscopy. By giving full accounts of those spectroscopic techniques only recently introduced into student courses - such as Mössbauer spectroscopy and photoelectron spectroscopy - in addition to those techniques long recognised as being essential in chemistry teaching - sucha as e.s.r. and infrared spectroscopy - the book caters for the complete requirements of undergraduate students and at the same time provides a sound introduction to special topics for graduate students.

  3. Jet engine. Strahltriebwerk

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.J.

    1990-11-15

    A gas turbine axial-flow compressor aggregate is mounted in a jet engine consisting of a high-temperature combustion chamber that is composed of conical rings forming slits and set together to a ring column and reaches up to the propelling nozzle, a compressed-air generator supplying the jet engine with compressed air at subsonic speeds and running into the propelling nozzle and a shell encasing the jet engine while leaving a certain intermediate space. The compressor aggregate has a relatively high fuel consumption and high emission rates, involves high production and maintenance costs and puts the blades at a high risk of overheating. The problem basic to the invention was to install a compressed-air generator in the jet engine that has lower fuel consumption and emission rates and is cheaper to manufacture and to service. The invention provides free-piston compressors for compressed-air generators arranged in a circle around the central high-temperature combustion chamber. The ring of compressors can rotate on bearings against the jet engine shell, so that each compressor can be turned to the bottom and serviced there. The jet engine is suitable as an engine for supersonic aircraft.

  4. HST\\/STIS Spectroscopy of the Optical Outflow from DG Tau Indications for Rotation in the Initial Jet Channel

    CERN Document Server

    Bacciotti, F; Mundt, R; Eislöffel, J; Solf, J

    2002-01-01

    We have carried out a kinematical, high angular resolution (~ 0".1) study of the jet from DG Tau within 0."5 from the source (or 110 AU along this flow). We analysed line profiles extracted from a set of seven spectra taken with STIS on board the Hubble Space Telescope, with the slits parallel to the jet axis but displaced transversely every 0".07. For the flow of moderate velocity (-70 km/s), we have found systematic differences in the radial velocities of lines emitted on alternate sides of the jet axis. The results are corrected for the effects due to uneven illumination of the slit. The relative Doppler shifts range from 5 to 20 km/s. If this is interpreted as rotation, the flow is then rotating clockwise looking from the jet towards the source and the derived toroidal velocities are in the range 6 - 15 km/s. Using recent estimates of the mass loss rate, one obtains for the considered velocity regime, an angular momentum flux of ~ 3.8x10E-5 M_sun/yr AU km/s. Our findings may constitute the first detection...

  5. Underexpanded Supersonic Plume Surface Interactions: Applications for Spacecraft Landings on Planetary Bodies

    Science.gov (United States)

    Mehta, M.; Sengupta, A.; Renno, N. O.; Norman, J. W.; Gulick, D. S.

    2011-01-01

    Numerical and experimental investigations of both far-field and near-field supersonic steady jet interactions with a flat surface at various atmospheric pressures are presented in this paper. These studies were done in assessing the landing hazards of both the NASA Mars Science Laboratory and Phoenix Mars spacecrafts. Temporal and spatial ground pressure measurements in conjunction with numerical solutions at altitudes of approx.35 nozzle exit diameters and jet expansion ratios (e) between 0.02 and 100 are used. Data from steady nitrogen jets are compared to both pulsed jets and rocket exhaust plumes at Mach approx.5. Due to engine cycling, overpressures and the plate shock dynamics are different between pulsed and steady supersonic impinging jets. In contrast to highly over-expanded (e plumes, results show that there is a relative ground pressure load maximum for moderately underexpanded (e approx.2-5) jets which demonstrate a long collimated plume shock structure. For plumes with e much >5 (lunar atmospheric regime), the ground pressure is minimal due to the development of a highly expansive shock structure. We show this is dependent on the stability of the plate shock, the length of the supersonic core and plume decay due to shear layer instability which are all a function of the jet expansion ratio. Asymmetry and large gradients in the spatial ground pressure profile and large transient overpressures are predominantly linked to the dynamics of the plate shock. More importantly, this study shows that thruster plumes exhausting into martian environments possess the largest surface pressure loads and can occur at high spacecraft altitudes in contrast to the jet interactions at terrestrial and lunar atmospheres. Theoretical and analytical results also show that subscale supersonic cold gas jets adequately simulate the flow field and loads due to rocket plume impingement provided important scaling parameters are in agreement. These studies indicate the critical

  6. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1968-01-01

    The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3......The B field configuration of a Q-device has been modified into a magnetic Laval nozzle. Continuous supersonic plasma flow is observed with M≈3...

  7. Continuous supersonic plasma wind tunnel

    DEFF Research Database (Denmark)

    Andersen, S.A.; Jensen, Vagn Orla; Nielsen, P.

    1969-01-01

    The normal magnetic field configuration of a Q device has been modified to obtain a 'magnetic Laval nozzle'. Continuous supersonic plasma 'winds' are obtained with Mach numbers ~3. The magnetic nozzle appears well suited for the study of the interaction of supersonic plasma 'winds' with either...

  8. The Edge supersonic transport

    Science.gov (United States)

    Agosta, Roxana; Bilbija, Dushan; Deutsch, Marc; Gallant, David; Rose, Don; Shreve, Gene; Smario, David; Suffredini, Brian

    1992-01-01

    As intercontinental business and tourism volumes continue their rapid expansion, the need to reduce travel times becomes increasingly acute. The Edge Supersonic Transport Aircraft is designed to meet this demand by the year 2015. With a maximum range of 5750 nm, a payload of 294 passengers and a cruising speed of M = 2.4, The Edge will cut current international flight durations in half, while maintaining competitive first class, business class, and economy class comfort levels. Moreover, this transport will render a minimal impact upon the environment, and will meet all Federal Aviation Administration Part 36, Stage III noise requirements. The cornerstone of The Edge's superior flight performance is its aerodynamically efficient, dual-configuration design incorporating variable-geometry wingtips. This arrangement combines the benefits of a high aspect ratio wing at takeoff and low cruising speeds with the high performance of an arrow-wing in supersonic cruise. And while the structural weight concerns relating to swinging wingtips are substantial, The Edge looks to ever-advancing material technologies to further increase its viability. Heeding well the lessons of the past, The Edge design holds economic feasibility as its primary focus. Therefore, in addition to its inherently superior aerodynamic performance, The Edge uses a lightweight, largely windowless configuration, relying on a synthetic vision system for outside viewing by both pilot and passengers. Additionally, a fly-by-light flight control system is incorporated to address aircraft supersonic cruise instability. The Edge will be produced at an estimated volume of 400 aircraft and will be offered to airlines in 2015 at $167 million per transport (1992 dollars).

  9. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    Science.gov (United States)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  10. Dual sightline measurements of MeV range deuterons with neutron and gamma-ray spectroscopy at JET

    DEFF Research Database (Denmark)

    Eriksson, J.; Nocente, M.; Binda, F.

    2015-01-01

    Observations made in a JET experiment aimed at accelerating deuterons to the MeV range by third harmonic radio-frequency (RF) heating coupled into a deuterium beam are reported. Measurements are based on a set of advanced neutron and gamma-ray spectrometers that, for the first time, observe the p......, more generally, to studies of the energy distribution of ions in the MeV range in high performance deuterium and deuterium-tritium plasmas....

  11. Electron density in amplitude modulated microwave atmospheric plasma jet as determined from microwave interferometry and emission spectroscopy

    Science.gov (United States)

    Faltýnek, J.; Hnilica, J.; Kudrle, V.

    2017-01-01

    Time resolved electron density in an atmospheric pressure amplitude modulated microwave plasma jet is determined using the microwave interferometry method, refined by numerical modelling of the propagation of non-planar electromagnetic waves in the vicinity of a small diameter, dense collisional plasma filament. The results are compared to those from the Stark broadening of the {{\\text{H}}β} emission line. Both techniques show, both qualitatively and quantitatively, a similar temporal evolution of electron density during one modulation period.

  12. The low-mass YSO CB230-A: investigating the protostar and its jet with NIR spectroscopy and Spitzer observations

    CERN Document Server

    Massi, Fabrizio; Brand, Jan; di Fabrizio, Luca; Wouterloot, Jan

    2008-01-01

    A jet from the low-mass YSO CB230-A had been discovered in NIR narrow-band images. We aim to investigate the physical properties of the region from where the jet is launched. Our analysis was carried out using low-resolution NIR spectra acquired with the camera NICS at the TNG telescope, with JH and HK grisms and a 1 arcsec-wide slit. These observational data were complemented with infrared photometric data from the Spitzer space telescope archive. The relevant physical properties of CB230-A were constrained by SED fitting of fluxes from the NIR to the mm. The YSO spectrum exhibits a significant number of atomic and molecular emission and absorption features. The characteristics of this spectrum suggest that we are observing a region in the close vicinity of CB230-A, i. e. its photosphere and/or an active accretion disk. The spectra of the knots in the jet contain a large number of emission lines, including a rich set of [FeII] lines. Emission due to H2 and [FeII] are not spatially correlated, confirming that...

  13. High Sensitivity 1-D and 2-D Microwave Spectroscopy via Cryogenic Buffer Gas Cooling

    Science.gov (United States)

    Patterson, David; Eibenberger, Sandra

    2017-06-01

    All rotationally resolved spectroscopic methods rely on sources of cold molecules. For the last three decades, the workhorse technique for producing highly supersaturated samples of cold molecules has been the pulsed supersonic jet. We present here progress on our alternative method, cryogenic buffer gas cooling. Our high density, continuous source, and low noise temperature allow us to record microwave spectra at unprecedented sensitivity, with a dynamic range in excess of 10^6 achievable in a few minutes of integration time. This high sensitivity enables new protocols in both 1-D and 2-D microwave spectroscopy, including sensitive chiral analysis via nonlinear three wave mixing and applications as an analytical chemistry tool

  14. Mixing in Supersonic Turbulence

    CERN Document Server

    Pan, Liubin

    2010-01-01

    In many astrophysical environments, mixing of heavy elements occurs in the presence of a supersonic turbulent velocity field. Here we carry out the first systematic numerical study of such passive scalar mixing in isothermal supersonic turbulence. Our simulations show that the ratio of the scalar mixing timescale, $\\tau_{\\rm c}$, to the flow dynamical time, $\\tau_{\\rm dyn}$ (defined as the flow driving scale divided by the rms velocity), increases with the Mach number, $M$, for $M \\lsim3$, and becomes essentially constant for $M \\gsim3.$ This trend suggests that compressible modes are less efficient in enhancing mixing than solenoidal modes. However, since the majority of kinetic energy is contained in solenoidal modes at all Mach numbers, the overall change in $\\tau_{\\rm c}/\\tau_{\\rm dyn}$ is less than 20\\% over the range $1 \\lsim M \\lsim 6$. At all Mach numbers, if pollutants are injected at around the flow driving scale, $\\tau_{\\rm c}$ is close to $\\tau_{\\rm dyn}.$ This suggests that scalar mixing is drive...

  15. Benzyl alcohol-ammonia (1:1) cluster structure investigated by combined IR-UV double resonance spectroscopy in jet and ab initio calculation

    Indian Academy of Sciences (India)

    Nikhil Guchhait

    2001-06-01

    Laser-induced fluorescence excitation and IR-UV double resonance spectroscopy have been used to determine the hydrogen-bonded structure of benzyl alcohol-ammonia (1:1) cluster in a jet-cooled molecular beam. In addition, ab initio quantum chemical calculations have been performed at HF/6-31G and HF/6-31G(d, p) levels for different ground state equilibrium structures of the cluster to correlate the calculated OH and NH frequencies and their intensities with experimental results. The broad red-shifted OH-stretching mode in the IR-UV double resonance spectrum suggests strong hydrogen bonding between the hydroxyl hydrogen and the lone pair of the ammonia nitrogen. The position and intensity distribution of the calculated NH and OH modes for the minimum-energy gauche form at HF/6-31 level have better correlation with the experimental results compared to other calculated ground state equilibrium conformers. These results lead to the conclusion that the minimum energy gauche form of the cluster is populated in the jet-cooled condition.

  16. Laser spectroscopy of jet-cooled NiF: Application of Hougen's approximate model for the low-lying electronic states

    Science.gov (United States)

    Arsenault, D. L.; Tokaryk, D. W.; Adam, A. G.; Linton, C.

    2016-06-01

    We have taken laser-induced fluorescence spectra of jet-cooled nickel monofluoride formed in a laser-ablation molecular beam source. Dispersed-fluorescence spectroscopy confirms predictions by Hougen (2011) that the parity assignments of levels in the Ω = 1 / 2 state 1570 cm-1 above the ground state should be reversed from those given in Krouti et al. (2002). The quality of the high-resolution spectra was sufficient to measure the [22.9]1.5-X1.5 band for five isotopologues of nickel and the [22.9]1.5-[0.25]0.5 band for molecules containing 58Ni and 60Ni. The spectral line positions for each isotopologue were fit to the Hamiltonian model given by Hougen, which was extended to allow for calculation of the parity-splitting parameter in the ground state.

  17. A flamelet model for turbulent diffusion combustion in supersonic flow

    Institute of Scientific and Technical Information of China (English)

    LEE; ChunHian

    2010-01-01

    In order to develop a turbulent diffusion combustion model for supersonic flow, the physical argument of the extension of the flamelet model to supersonic flow was presented, and the flow field of a hydrogen/air diffusion combustion generated by axisymmetric supersonic jets was numerically simulated by employing the flamelet model. Using the experimental data, value of the model coefficient of scalar dissipation in the flamelet model was revised specifically for supersonic flow. The computational results of the modified flamelet model were compared with the experimental results, and it was indicated that the precision of the modified flamelet model was satisfying. Based on the numerical results and flamelet theory, the influence mechanisms of turbulence fluctuation on the average state equation and chemical reaction rate were studied for the first time. It was found that the fluctuation correlation of species mass fractions and temperature has little effect on the averaged gas state equation; the temperature fluctuation decreases the product of H2O, but its effect is small; the fluctuation of species mass fractions increases the product of H2O in the region close to oxidizer while decreases the product of H2O in other regions; the fluctuation correlation of species mass fractions and temperature largely decreases the product of H2O.

  18. Spectroscopy

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules.......This introductory booklet covers the basics of molecular spectroscopy, infrared and Raman methods, instrumental considerations, symmetry analysis of molecules, group theory and selection rules, as well as assignments of fundamental vibrational modes in molecules....

  19. On the transfer of energy to an unstable liquid jet in a coflowing compressible airstream

    Science.gov (United States)

    Li, Hsi-Shang; Kelly, Robert E.

    1993-01-01

    The transfer of energy from a compressible airstream to a coflowing unstable liquid jet via the pressure perturbation at the interface is studied as the Mach number varies continuously from subsonic to supersonic values. The 'lift' component of the pressure perturbation has been demonstrated to predominate up to slightly supersonic free-stream Mach numbers, after which the 'drag' component predominates.

  20. Astrophysical Jets and Outflows

    CERN Document Server

    De Gouveia dal Pino, E M

    2004-01-01

    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical si...

  1. Ethylene tetrafluoroethylene nanofibers prepared by CO2 laser supersonic drawing

    Directory of Open Access Journals (Sweden)

    A. Suzuki

    2013-06-01

    Full Text Available Ethylene tetrafluoroethylene (ETFE nanofibers were prepared by carbon dioxide (CO2 laser irradiation of asspun ETFE fibers with four different melt flow rates (MFRs in a supersonic jet that was generated by blowing air into a vacuum chamber through the fiber injection orifice. The drawability and superstructure of fibers produced by CO2 laser supersonic drawing depend on the laser power, the chamber pressure, the fiber injection speed, and the MFR. Nanofibers obtained using a laser power of 20 W, a chamber pressure of 20 kPa, and an MFR of 308 g•10 min–1 had an average diameter of 0.303 µm and a degree of crystallinity of 54%.

  2. Experimental study on atomization phenomena of kerosene in supersonic cold flow

    Institute of Scientific and Technical Information of China (English)

    FEI LiSen; XU ShengLi; WANG ChangJian; LI Qiang; HUANG ShengHong

    2008-01-01

    Experiments were conducted to study the atomization phenomena of kerosene jet in supersonic flow. The kerosene jet was driven by compressed nitrogen. Meanwhile, the shadowgraph and planar laser-induced fluorescence (PLIF) were used to visualize the flow field in the case of different total pressure and jet pressure. The results imply the followings: The combination of shadowgraph and PLIF is a reasonable method to study the atomization phenomena in supersonic flow. PLIF can detect the distribution of kerosene droplets accurately. Shadowgraph can visualize the wave structure. Higher jet-to-freestream dynamic pressure initiates higher penetration height and the jet column will be easier to breakup and atomize, but it also induces stronger shock waves and aggravate total pressure lost. Three-dimensional, unsteady surface wave plays an important role in making the jet break up and atomize. Higher jet-to-freestream dynamic pressure will accelerate the development of surface wave and enlarge the amplitude of surface wave, while lower jet-to-freestream ratio will inhibit the development of surface wave.

  3. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene injected into a quiescent gas and a subsonic flow are also provided for comparison.

  4. Unsteady transverse injection of kerosene into a supersonic flow

    Institute of Scientific and Technical Information of China (English)

    徐胜利; R.D.Archer; B.E.Milton; 岳朋涛

    2000-01-01

    A shadowgraph and a new fuel injection system were used to study kerosene transversely injected into a supersonic flow. High pressure and velocity of injection can be attained. The pressure time histories were detected in oil-line and the shadowgraphs of the flow field were obtained at different time-delays. The inflow stagnation pressure was varied to change the local flow speed in test section. The results indicate that kerosene jet exhibits deep penetration and four regimes appear clearly during the fuel jet atomization in a high-speed flow. The jet disintegration is caused by surface waves propagating along the jet surface, and the breakup point is located at the wave trough. The surface waves are dominantly generated by aerodynamic force. The jet shock is close to windward surface of the jet. The shock reflects on and transmits in duct boundary layers. In the case of unsteady injection, the shock structure is very complicated and different from that of hydrogen injection. The results of kerosene inj

  5. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited).

    Science.gov (United States)

    Huber, A; Brezinsek, S; Mertens, Ph; Schweer, B; Sergienko, G; Terra, A; Arnoux, G; Balshaw, N; Clever, M; Edlingdon, T; Egner, S; Farthing, J; Hartl, M; Horton, L; Kampf, D; Klammer, J; Lambertz, H T; Matthews, G F; Morlock, C; Murari, A; Reindl, M; Riccardo, V; Samm, U; Sanders, S; Stamp, M; Williams, J; Zastrow, K D; Zauner, C

    2012-10-01

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥ 30% in the designed wavelength range) as well as high spatial resolution that is ≤ 2 mm at the object plane and ≤ 3 mm for the full depth of field (± 0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  6. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Huber, A.; Brezinsek, S.; Mertens, Ph.; Schweer, B.; Sergienko, G.; Terra, A.; Clever, M.; Lambertz, H. T.; Samm, U. [Institute of Energy and Climate Research - Plasma Physics, Forschungszentrum Juelich, EURATOM Association, Trilateral Euregio Cluster, D-52425 Juelich (Germany); Arnoux, G.; Balshaw, N.; Edlingdon, T.; Farthing, J.; Matthews, G. F.; Riccardo, V.; Sanders, S.; Stamp, M.; Williams, J.; Zastrow, K. D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, OX14 3DB (United Kingdom); Egner, S. [Kayser-Threde GmbH, D-81379 Munich (Germany); and others

    2012-10-15

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance ({>=}30% in the designed wavelength range) as well as high spatial resolution that is {<=}2 mm at the object plane and {<=}3 mm for the full depth of field ({+-}0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the {lambda} > 0.95 {mu}m range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  7. The complex, dusty narrow-line region of NGC 4388: gas-jet interactions, outflows and extinction revealed by near-IR spectroscopy

    Science.gov (United States)

    Rodríguez-Ardila, A.; Mason, R. E.; Martins, L.; Ramos Almeida, C.; Riffel, R. A.; Riffel, R.; Lira, P.; González Martín, O.; Dametto, N. Z.; Flohic, H.; Ho, L. C.; Ruschel-Dutra, D.; Thanjavur, K.; Colina, L.; McDermid, R. M.; Perlman, E.; Winge, C.

    2017-02-01

    We present Gemini/GNIRS (Gemini Near-Infrared Spectrograph) spectroscopy of the Seyfert 2 galaxy NGC 4388, with simultaneous coverage from 0.85 to 2.5 μm. Several spatially extended emission lines are detected for the first time, both in the obscured and unobscured portion of the optical narrow-line region (NLR), allowing us to assess the combined effects of the central continuum source, outflowing gas and shocks generated by the radio jet on the central 280 pc gas. The H I and [Fe II] lines allow us to map the extinction affecting the NLR. We found that the nuclear region is heavily obscured, with E(B - V) ˜ 1.9 mag. To the NE of the nucleus and up to ˜150 pc, the extinction remains large, ˜1 mag or larger, consistent with the system of dust lanes seen in optical imaging. We derived position-velocity diagrams for the most prominent lines as well as for the stellar component. Only the molecular gas and the stellar component display a well-organized pattern consistent with disc rotation. Other emission lines are kinematically perturbed or show little evidence of rotation. Extended high-ionization emission of sulphur, silicon and calcium is observed to distances of at least 200 pc both NE and SW of the nucleus. We compared flux ratios between these lines with photoionization models and conclude that radiation from the central source alone cannot explain the observed high-ionization spectrum. Shocks between the radio jet and the ambient gas are very likely an additional source of excitation. We conclude that NGC 4388 is a prime laboratory to study the interplay between all these mechanisms.

  8. The origin of the Narrow Line Region of Mrk 3 an overpressured jet cocoon

    CERN Document Server

    Capetti, A; Macchetto, F D; Marconi, A; Winge, C

    1999-01-01

    We have obtained HST FOC long-slit optical spectroscopy of the Narrow Line Region of the Seyfert 2 galaxy Mrk 3. In the region cospatial with the radio-jet the velocity field is highly perturbed and shows two velocity systems separated by as much as 1700 km/s. We interpret this to be the consequence of the rapid expansion of a cocoon of hot gas, shocked and heated by the radio-emitting outflow, which compresses and accelerates the ambient gas. The NLR itself is essentially a cylindrical shell expanding supersonically. From the size and velocity of the expanding region, we derive an upper limit to the radio-source age, ~ 2 E42 erg/s required to inflate the cocoon and estimate that the jet minimum advance speed is 3 E-3 pc per year. The total kinetic energy of the high velocity NLR gas can be estimated as ~6 E54 erg, comparable to the total energy carried by the jet over its lifetime and this quantitatively supports the idea that the NLR gas is accelerated by the jet. If the advance speed of Mrk 3 is representa...

  9. Tesseract supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary; Fellenstein, James; Botting, Mary; Hooper, Joan; Ryan, Michael; Struk, Peter; Taggart, Ben; Taillon, Maggie; Warzynski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range was chosen for the aircraft. A Mach number of 2.2 was chosen, too, because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2,500 lbs. was assumed corresponding to a complement of nine passengers and crew, plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft, while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and mid-chord length of 61.0 ft. A SNECMA MCV 99 variable-cycle engine design was chosen for this aircraft.

  10. Tesseract: Supersonic business transport

    Science.gov (United States)

    Reshotko, Eli; Garbinski, Gary

    1992-01-01

    This year, the senior level Aerospace Design class at Case Western Reserve University developed a conceptual design of a supersonic business transport. Due to the growing trade between Asia and the United States, a transpacific range has been chosen for the aircraft. A Mach number of 2.2 was chosen too because it provides reasonable block times and allows the use of a large range of materials without a need for active cooling. A payload of 2500 lbs. has been assumed corresponding to a complement of nine (passengers and crew) plus some light cargo. With these general requirements set, the class was broken down into three groups. The aerodynamics of the aircraft were the responsibility of the first group. The second developed the propulsion system. The efforts of both the aerodynamics and propulsion groups were monitored and reviewed for weight considerations and structural feasibility by the third group. Integration of the design required considerable interaction between the groups in the final stages. The fuselage length of the final conceptual design was 107.0 ft. while the diameter of the fuselage was 7.6 ft. The delta wing design consisted of an aspect ratio of 1.9 with a wing span of 47.75 ft and midcord length of 61.0 ft. A SNEMCA MCV 99 variable-cycle engine design was chosen for this aircraft.

  11. Photoelectron photoion molecular beam spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Trevor, D.J.

    1980-12-01

    The use of supersonic molecular beams in photoionization mass spectroscopy and photoelectron spectroscopy to assist in the understanding of photoexcitation in the vacuum ultraviolet is described. Rotational relaxation and condensation due to supersonic expansion were shown to offer new possibilities for molecular photoionization studies. Molecular beam photoionization mass spectroscopy has been extended above 21 eV photon energy by the use of Stanford Synchrotron Radiation Laboratory (SSRL) facilities. Design considerations are discussed that have advanced the state-of-the-art in high resolution vuv photoelectron spectroscopy. To extend gas-phase studies to 160 eV photon energy, a windowless vuv-xuv beam line design is proposed.

  12. Dispersed-Fluorescence Spectroscopy of Jet-Cooled Calcium Ethoxide Radical (CaOC_2H_5)

    Science.gov (United States)

    Paul, Anam C.; Reza, Md Asmaul; Liu, Jinjun

    2016-06-01

    Metal-containing free radicals are important intermediates in metal-surface reactions and in the interaction between metals and organic molecules. In the present work, dispersed fluorescence (DF) spectra of the calcium ethoxide radical (CaOC_2H_5) have been obtained by pumping the {tilde A^2}{A}' ← {tilde X^2}{A}' and the {tilde B^2}{A}'' ← {tilde X^2}{A}' origin bands in its laser-induced fluorescence (LIF) spectrum. CaOC_2H_5 radicals were produced by 1064 nm laser ablation of calcium grains in the presence of ethanol under jet-cooled conditions. Dominant transitions in the vibrationally resolved DF spectra are well reproduced using Franck-Condon factors predicted by complete active space self-consistent (CASSCF) calculations. Differences in transition intensities between the {tilde A^2}{A}' → {tilde X^2}{A}' and the {tilde B^2}{A}'' → {tilde X^2}{A}' DF spectra are attributed to the pseudo-Jahn-Teller interaction between the tilde A ^2 A' and the tilde B ^2 A'' states. Collision-induced population transfer between these two excited electronic states results in additional peaks in the DF spectra.

  13. Understanding and overcoming scene-change artifacts in imaging Fourier-transform spectroscopy of turbulent jet engine exhaust

    Science.gov (United States)

    Tremblay, Pierre; Gross, Kevin C.; Farley, Vincent; Chamberland, Martin; Villemaire, André; Perram, Glen P.

    2009-08-01

    Jet engine exhaust radiates strongly in the midwave infrared due to line emission from combustion byproducts such as CO2, CO, and H2O. Imaging Fourier-transform spectrometers (IFTS) have the potential to measure spatial variations in plume temperature and density. However, the turbulent flow yields rapid, stochastic fluctuations in radiance during interferometric measurements which corrupt corresponding spectra. A novel, statistics-based method of interpreting a time-sequence of interferograms collected from a stochastic blackbody source is presented which enables good estimation of the underlying temperature distribution. It is shown that the median (and various other quantiles) interferograms afford unbiased spectral estimates of temperature upon Fourier transformation, in contrast to temperature estimates based on spectra obtained from mean interferograms. This method is then applied to IFTS data (200×64 pixels at 1cm-1 resolution) of a turbulent exhaust plume from a small turbojet engine. Spatial maps of brightness temperature and estimates of turbulence-induced temperature distribution are presented.

  14. Supersonic Dislocation Bursts in Silicon

    Science.gov (United States)

    Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.

    2016-06-01

    Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm-2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.

  15. The complex, dusty narrow-line region of NGC 4388: Gas-jet interactions, outflows, and extinction revealed by near-IR spectroscopy

    CERN Document Server

    Rodriguez-Ardila, A; Martins, L; Almeida, C Ramos; Riffel, R A; Riffel, R; Lira, P; Martin, O Gonzalez; Dametto, N Z; Flohic, H; Ho, L C; Ruschel-Dutra, D; Thanjavur, K; Colina, L; McDermid, R M; Perlman, E; Winge, C

    2016-01-01

    We present Gemini/GNIRS spectroscopy of the Seyfert 2 galaxy NGC 4388, with simultaneous coverage from 0.85 - 2.5 $\\mu$m. Several spatially-extended emission lines are detected for the first time, both in the obscured and unobscured portion of the optical narrow line region (NLR), allowing us to assess the combined effects of the central continuum source, outflowing gas and shocks generated by the radio jet on the central 280 pc gas. The HI and [FeII] lines allow us to map the extinction affecting the NLR. We found that the nuclear region is heavily obscured, with E(B-V) ~1.9 mag. To the NE of the nucleus and up to ~150 pc, the extinction remains large, ~1 mag or larger, consistent with the system of dust lanes seen in optical imaging. We derived position-velocity diagrams for the most prominent lines as well as for the stellar component. Only the molecular gas and the stellar component display a well-organized pattern consistent with disk rotation. Other emission lines are kinematically perturbed or show lit...

  16. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    Science.gov (United States)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  17. Laser-induced fluorescence spectroscopy of jet-cooled TiC: Observation of low-lying 1Σ+ states

    Science.gov (United States)

    Nakhate, S. G.; Mukund, Sheo; Bhattacharyya, Soumen

    2017-07-01

    The TiC has been investigated using laser-induced fluorescence spectroscopy. The a1Σ+, b1Σ+, and c1Σ+ states are found to lie respectively at T0 = 319.3, 786.0, and 1407.2 cm-1 and have internuclear distances respectively of r0 = 1.6607, 1.6906, and 1.6927 Å. Similar r0 values of the b1Σ+ and c1Σ+ states with that of the X3Σ+ state (1.6953 Å) indicate that either of these states could be isocofigurational to the ground state. Dispersed fluorescence suggests reassignment of the 3Π1 state to a mixed state with dominant 1Π character. Higher spectral resolution of the 1Π-X3Σ+ band provided improved molecular constants.

  18. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    Science.gov (United States)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  19. Properties of Supersonic Evershed Downflows

    Science.gov (United States)

    Pozuelo, S. Esteban; Bellot Rubio, L. R.; de la Cruz Rodríguez, J.

    2016-12-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe i 617.3 nm line with the CRISP instrument at the Swedish 1 m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red-wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the line-of-sight velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid- and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filaments that resemble penumbral grains. The patches may undergo fragmentations and mergings during their lifetime; some of them are recurrent. Supersonic downflows are associated with strong and rather vertical magnetic fields with a reversed polarity compared to that of the sunspot. Our results suggest that downflows returning back to the solar surface with supersonic velocities are abruptly stopped in dense deep layers and produce a shock. Consequently, this shock enhances the temperature and is detected as a bright grain in the continuum filtergrams, which could explain the existence of outward-moving grains in the mid- and outer penumbra.

  20. Jet observables without jet algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Bertolini, Daniele; Chan, Tucker; Thaler, Jesse [Center for Theoretical Physics, Massachusetts Institute of Technology,Cambridge, MA 02139 (United States)

    2014-04-02

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables — jet multiplicity, summed scalar transverse momentum, and missing transverse momentum — have event shape counterparts that are closely correlated with their jet-based cousins. Due to their “local” computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applications do require knowledge about the jet constituents, we also build a hybrid event shape that incorporates (local) jet clustering information. As a straightforward application of our general technique, we derive an event-shape version of jet trimming, allowing event-wide jet grooming without explicit jet identification. Finally, we briefly mention possible applications of our method for jet substructure studies.

  1. THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)

    2014-12-20

    The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.

  2. A Combined Synchrotron-Based High Resolution FTIR and Diode Laser Jet Infrared Spectroscopy Study of the Chiral Molecule CDBrClF

    Science.gov (United States)

    Albert, S.; Albert, K. Keppler; Quack, M.; Lerch, Ph.; Boudon, V.

    2013-06-01

    The experimental detection of molecular parity violation Δ_{PV}E is of great interest because of its importance in the understanding of fundamental aspects of molecular dynamics and symmetries. One possible method for this is measuring rovibrational or rotational frequency shifts in the infrared or microwave spectra of enantiomers. For that reason we have measured and analysed the rotationally resolved infrared spectrum of CDBrClF as a prototype spectrum for a chiral molecule using three different techniques. The spectrum has been recorded at room temperature with the Zurich Bruker IFS spectrometer ZP 2001 and with the Bruker interferometer 2009 connected to the Swiss synchrotron using a resolution of 0.0007 cm^{-1}. In addition, the IR spectrum of CDBrClF has been measured at low temperature with our diode laser jet setup in the ν_5 region. The spectra of the two major isotopomers CD^{81}Br^{35}ClF and CD^{79}Br^{35}ClF have been analysed within the ν_5 (CCl-stretch), ν_4 (CF-stretch) and ν_3 (CDF-bend) regions. A detailed rovibrational analysis of these bands is presented. The role for possible experiments in the experimental detection of molecular parity violation shall be discussed. M. Quack, Fundamental symmetries and symmetry violations in Handbook of High Resolution Spectroscopy, Vol. 1(Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 659-722, M. Quack, J. Stohner and M. Willeke, Annu. Rev. Phys. Chem. 2008, 59, 741, A. Bakasov, T.K. Ha, and M. Quack, J. Chem. Phys. 1998, 109, 7263, R. Berger and M. Quack, J. Chem. Phys, 2000, 112, 3148. M. Quack and J. Stohner, Phys. Rev. Lett. 2000, 84, 3807, M. Quack and J. Stohner. J. Chem. Phys., 2003, 119, 11228. S. Albert, K. Keppler Albert and M. Quack, High Resolution Fourier Transform Infrared Spectroscopy in Handbook of High Resolution Spectroscopy, Vol. 2 (Eds. M. Quack and F. Merkt), Wiley, Chichester, New York 2011, 965-1019, S. Albert and M. Quack, ChemPhysChem, 2007, 8, 1271-1281. S. Albert

  3. New Insights into Color Confinement, Hadron Dynamics, Spectroscopy, and Jet Hadronization from Light-Front Holography and Superconformal Algebra

    Science.gov (United States)

    Brodsky, S. J.

    2017-07-01

    A fundamental problem in hadron physics is to obtain a relativistic color-confining, first approximation to QCD which can predict both hadron spectroscopy and the frame-independent light-front (LF) wavefunctions underlying hadron dynamics. The QCD Lagrangian with zero quark mass has no explicit mass scale; the classical theory is conformally invariant. Thus, a fundamental problem is to understand how the mass gap and ratios of masses - such as m ρ/m p - can arise in chiral QCD. De Alfaro, Fubini, and Furlan have made an important observation that a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator and rescales the time variable. If one applies the same procedure to the light-front Hamiltonian, it leads uniquely to a confinement potential κ 4 ζ 2 for mesons, where ζ 2 is the LF radial variable conjugate to the q\\overline{q} invariant mass squared. The same result, including spin terms, is obtained using light-front holography - the duality between light-front dynamics and AdS5, the space of isometries of the conformal group if one modifies the action of AdS5 by the dilaton {e}^{κ^2}{z}^2 in the fifth dimension z . When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions predict unified Regge spectroscopy of meson, baryon, and tetraquarks, including remarkable supersymmetric relations between the masses of mesons and baryons of the same parity. One also predicts observables such as hadron structure functions, transverse momentum distributions, and the distribution amplitudes defined from the hadronic light-front wavefunctions. The mass scale κ underlying confinement and hadron masses can be connected to the parameter {Λ}_{\\overline{MS}} in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The

  4. Simulation of mixing and ignition of hydrogen in channels at supersonic speeds

    Science.gov (United States)

    Vankova, O. S.; Valger, S. A.; Goldfeld, M. A.; Zakharova, Yu. V.; Fedorova, N. N.

    2016-10-01

    The paper presents the results of mathematical modeling of mixing and ignition of hydrogen jets in supersonic flow. Calculations were carried out on the basis of the Favre-averaged Navier-Stokes equations supplemented with k - ω SST turbulence model and detailed chemical kinetics. The solution was carried out in three stages. At the first stage, the kinetic schemes were tested by comparison with the experimental data on ignition of the hydrogen round jet supplied co axially with the M=2 air jet into the still air. The second 2D task was to study the process of mixing and ignition of hydrogen jets fed at various angles into the M=3 air flow at the channel with a cavity. At the third stage, the 3D problem of hydrogen jets supplied normally to a primary M=4 flow in the channel with backward-facing steps was computed under the condition of the experiments made at the hot-shot facility.

  5. Flow characteristic of in-flight particles in supersonic plasma spraying process

    Science.gov (United States)

    Wei, Pei; Wei, Zhengying; Zhao, Guangxi; Du, Jun; Bai, Y.

    2016-09-01

    In this paper, a computational model based on supersonic plasma spraying (SAPS) is developed to describe the plasma jet coupled with the injection of carrier gas and particles for SAPS. Based on a high-efficiency supersonic spraying gun, the 3D computational model of spraying gun was built to study the features of plasma jet and its interactions with the sprayed particles. Further the velocity and temperature of in-flight particles were measured by Spray Watch 2i, the shape of in-flight particles was observed by scanning electron microscope. Numerical results were compared with the experimental measurements and a good agreement has been achieved. The flight process of particles in plasma jet consists of three stages: accelerated stage, constant speed stage and decelerated stage. Numerical and experimental indicates that the H2 volume fraction in mixture gas of Ar + H2 should keep in the range of 23-26 %, and the distance of 100 mm is the optimal spraying distance in Supersonic atmosphere plasma spraying. Particles were melted and broken into small child particles by plasma jet and the diameters of most child particles were less than 30 μm. In general, increasing the particles impacting velocity and surface temperature can decrease the coating porosity.

  6. Astrophysical jets and outflows

    Science.gov (United States)

    de Gouveia Dal Pino, Elisabete M.

    Highly collimated supersonic jets and less collimated outflows are observed to emerge from a wide variety of astrophysical objects. They are seen in young stellar objects (YSOs), proto-planetary nebulae, compact objects (like galactic black holes or microquasars, and X-ray binary stars), and in the nuclei of active galaxies (AGNs). Despite their different physical scales (in size, velocity, and amount of energy transported), they have strong morphological similarities. What physics do they share? These systems are either hydrodynamic or magnetohydrodynamic (MHD) in nature and are, as such, governed by non-linear equations. While theoretical models helped us to understand the basic physics of these objects, numerical simulations have been allowing us to go beyond the one-dimensional, steady-state approach extracting vital information. In this lecture, the formation, structure, and evolution of the jets are reviewed with the help of observational information, MHD and purely hydrodynamical modeling, and numerical simulations. Possible applications of the models particularly to YSOs and AGN jets are addressed.

  7. Navier—Stokes Computations of the Supersonic Ejector—Diffuser System with a Second Throat

    Institute of Scientific and Technical Information of China (English)

    Heuy-DongKim; ToshiakiSetoguchi; 等

    1999-01-01

    The supersonic ejector-diffuser system with a second throat was simulated using CFD.An explicit finite volume scheme was applied to solve two-dimensional Navier-Stokes equations with standard κ-εturbulence model.The vacuum performance of the supersonic ejector-diffuser system was investigated by changing the ejector throat area ration and the operating pressure ratio.Two convergent-divergent nozzles with design Mach number of 2.11 and 3.41 were selected to give the supersonic operation of the ejector-diffuser system.The presence of a second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle.There were optimum values of the operating pressure ratio and ejector throat area ratio for the vacuum performance of the system to maximize.

  8. Properties of Supersonic Evershed Downflows

    CERN Document Server

    Pozuelo, Sara Esteban; Rodriguez, Jaime de la Cruz

    2016-01-01

    We study supersonic Evershed downflows in a sunspot penumbra by means of high spatial resolution spectropolarimetric data acquired in the Fe I 617.3 nm line with the CRISP instrument at the Swedish 1-m Solar Telescope. Physical observables, such as Dopplergrams calculated from line bisectors and Stokes V zero-crossing wavelengths, and Stokes V maps in the far red wing, are used to find regions where supersonic Evershed downflows may exist. We retrieve the LOS velocity and the magnetic field vector in these regions using two-component inversions of the observed Stokes profiles with the help of the SIR code. We follow these regions during their lifetime to study their temporal behavior. Finally, we carry out a statistical analysis of the detected supersonic downflows to characterize their physical properties. Supersonic downflows are contained in compact patches moving outward, which are located in the mid and outer penumbra. They are observed as bright, roundish structures at the outer end of penumbral filamen...

  9. Analyzing the structure of the optical path difference of the supersonic film cooling

    Science.gov (United States)

    Ding, Haolin; Yi, Shihe; Fu, Jia; He, Lin

    2016-10-01

    While high-speed aircraft are flying in the atmosphere, its optical-hood is subjected to severe aerodynamic heating. Supersonic film cooling method can effectively isolate external heating, but the flow structures formed by the supersonic film cooling can cause the beam degradation and affect the imaging quality. To research the aero-optics of supersonic film cooling, an experimental model was adopted in this paper, its mainstream Mach number 3.4, designed jet Mach number 2.5, measured jet Mach number 2.45. High-resolution images of flow were acquired by the nano-based planar laser scattering (NPLS) technique, by reconstructing the density field of supersonic film cooling, and then, the optical path difference (OPD) were acquired by the ray-tracing method. Depending on the comparison between K-H vortex and OPD distribution, the valleys of OPD correspond to the vortex `rollers' and the peaks to the `braids'. However, the corresponding relationship becomes quite irregular for the flow field with developed vortices, and cannot be summarized in this manner. And then, the OPD were analyzed by correlation function and structure function, show that, there is a relationship between the shape of OPD correlation function and the vortex structure, the correlation function type changed with the development of the vortex. The correctness that the mixing layer makes a main contribution to the aero-optics of supersonic film cooling was verified, and the structure function of aero-optical distortion has a power relationship that is similar to that of atmospheric optics. At last, the power spectrum corresponding to the typical region of supersonic film cooling were acquired by improved periodgram.

  10. Stationary flow conditions in pulsed supersonic beams.

    Science.gov (United States)

    Christen, Wolfgang

    2013-10-21

    We describe a generally applicable method for the experimental determination of stationary flow conditions in pulsed supersonic beams, utilizing time-resolved electron induced fluorescence measurements of high pressure jet expansions of helium. The detection of ultraviolet photons from electronically excited helium emitted very close to the nozzle exit images the valve opening behavior-with the decided advantage that a photon signal is not affected by beam-skimmer and beam-residual gas interactions; it thus allows to conclusively determine those operation parameters of a pulsed valve that yield complete opening. The studies reveal that a "flat-top" signal, indicating constant density and commonly considered as experimental criterion for continuous flow, is insufficient. Moreover, translational temperature and mean terminal flow velocity turn out to be significantly more sensitive in testing for the equivalent behavior of a continuous nozzle source. Based on the widely distributed Even-Lavie valve we demonstrate that, in principle, it is possible to achieve quasi-continuous flow conditions even with fast-acting valves; however, the two prerequisites are a minimum pulse duration that is much longer than standard practice and previous estimates, and a suitable tagging of the appropriate beam segment.

  11. Jet Formation and Dynamics: Comparison of Quasars and Microquasars

    Science.gov (United States)

    Kundt, Wolfgang

    Quasars and Microquasars share the following properties: (i) They have similar, elongated morphologies - reminiscent of being driven by supersonic beams - consisting of cores, knots, and heads, with jet-opening angles rams the jet channels and blows the cocoons (subsonically) after having been stalled in a head. The supersonic jets form on passing a central deLaval nozzle, first proposed by Blandford and Rees in 1974, which forms naturally due to the huge density contrast of 10^-8.3T_4 with respect to the ambient medium (of temperature T, T_4:=T/10^4 K). Beam stability and narrowness are likewise guaranteed by the density contrast (of jet fluid and CSM). Observed are both the (thermal) radiation of the rammed channel-wall material, and the synchrotron radiation of the deflected beam particles.

  12. Magnetized and collimated millimeter scale plasma jets with astrophysical relevance

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Parrish C.; Quevedo, Hernan J. [Texas Center for High Intensity Laser Science, University of Texas at Austin, Austin, Texas 78712 (United States); Valanju, Prashant M. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712-1060 (United States); Bengtson, Roger D.; Ditmire, Todd [Department of Physics, University of Texas at Austin, Austin, Texas 78712 (United States)

    2012-01-15

    Magnetized collimated plasma jets are created in the laboratory to extend our understanding of plasma jet acceleration and collimation mechanisms with particular connection to astrophysical jets. In this study, plasma collimated jets are formed from supersonic unmagnetized flows, mimicking a stellar wind, subject to currents and magnetohydrodynamic forces. It is found that an external poloidal magnetic field, like the ones found anchored to accretion disks, is essential to stabilize the jets against current-driven instabilities. The maximum jet length before instabilities develop is proportional to the field strength and the length threshold agrees well with Kruskal-Shafranov theory. The plasma evolution is modeled qualitatively using MHD theory of current-carrying flux tubes showing that jet acceleration and collimation arise as a result of electromagnetic forces.

  13. Analysis and testing of high entrainment single nozzle jet pumps with variable mixing tubes

    Science.gov (United States)

    Hickman, K. E.; Hill, P. G.; Gilbert, G. B.

    1972-01-01

    An analytical model was developed to predict the performance characteristics of axisymmetric single-nozzle jet pumps with variable area mixing tubes. The primary flow may be subsonic or supersonic. The computer program uses integral techniques to calculate the velocity profiles and the wall static pressures that result from the mixing of the supersonic primary jet and the subsonic secondary flow. An experimental program was conducted to measure mixing tube wall static pressure variations, velocity profiles, and temperature profiles in a variable area mixing tube with a supersonic primary jet. Static pressure variations were measured at four different secondary flow rates. These test results were used to evaluate the analytical model. The analytical results compared well to the experimental data. Therefore, the analysis is believed to be ready for use to relate jet pump performance characteristics to mixing tube design.

  14. Fuzzy jets

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, Lester [Department of Statistics, Stanford University,Stanford, CA 94305 (United States); Nachman, Benjamin [Department of Physics, Stanford University,Stanford, CA 94305 (United States); SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Schwartzman, Ariel [SLAC National Accelerator Laboratory, Stanford University,2575 Sand Hill Rd, Menlo Park, CA 94025 (United States); Stansbury, Conrad [Department of Physics, Stanford University,Stanford, CA 94305 (United States)

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets. To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets, are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variables in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.

  15. Experimental and numerical study of pulsating transversal jets

    Science.gov (United States)

    Goldfeld, M. A.; Fedorova, N. N.; Fedorchenko, I. A.; Pozdnyakov, G. A.; Timofeev, K. Yu.; Zhakharova, Yu. V.

    2015-06-01

    Paper presents results of joint experimental and numerical investigation of pulsating jet penetration into still air and supersonic flow. Goal of the study is to investigate two-dimensional (2D) Hartmann generator (HG) properties and clear up its possibilities in providing better mixing between air and secondary (injected) gases.

  16. Supersonic Plasma Flow Control Experiments

    Science.gov (United States)

    2005-12-01

    to liquid metals , for example, the conductivities of typical plasma and electrolyte flows are relatively low. Ref. 14 cites the conductivity of...heating is the dominant effect. 15. SUBJECT TERMS Supersonic, plasma , MHD , boundary-layer 16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE...horns in operation on Mach 5 wind tunnel with a plasma discharge. 31 Figure 17 Front view of a 100 mA DC discharge generated with upstream pointing

  17. Supersonic Chordwise Bending Flutter in Cascades

    Science.gov (United States)

    1975-05-31

    such a flutter boundary can be made by utilizing the trend lines predicted from a supersonic analysis based on supersonic cascade theory (Appendix I...bonding agent was injected via hypodermic needles after the blade tabs were properly inserted, The integrity and repeatability of the mounting of the indi...in conjunction with NASTRAN predictions and supersonic cascade aerodynamic computa- tions. Comparisons between theory and experiment are discussed. DD

  18. Twin Jet Effects on Noise of Round and Rectangular Jets: Experiment and Model

    Science.gov (United States)

    Bozak, Rick

    2014-01-01

    Many subsonic and supersonic aircraft concepts proposed by NASA's Fundamental Aeronautics Program have asymmetric, integrated propulsion systems. The asymmetries in the exhaust of these propulsion systems create an asymmetric acoustic field. The asymmetries investigated in the current study are from twin jets and rectangular nozzles. Each effect produces its own variation of the acoustic field. An empirical model was developed to predict the acoustic field variation from round twin jets with twin jet spacing from 2.6 to 5.6, where s is the center-to-center spacing over the jet diameter. The model includes parameters to account for the effects of twin jet spacing, jet static temperature ratio, flight Mach number, frequency, and observer angle (both polar and azimuthal angles). The model was then applied to twin 2:1 and 8:1 aspect ratio nozzles to determine the impact of jet aspect ratio. For the round and rectangular jets, the use of the model reduces the average magnitude of the error over all frequencies, observation angles, and jet spacings by approximately 0.5dB when compared against the assumption of adding two jets incoherently.

  19. Two-Dimensional Supersonic Jet Mixing of Air and Helium.

    Science.gov (United States)

    1978-12-01

    fraction of each gas in the bottle. The pressure of each sample was taken using a low volume U-tube mercury manometer . The accuracy of these pressure...Elfments of Gasdynamics. New York: Jehn Wiley and Sons, Inc., 1957. 41 Appendix A Gas Sample Pressure Calculation A low volume U-tube mercury ... manometer was used to measure the pressure in the gas sample bottles. However, the pressure read from the manometer was not the actual pressure in the

  20. Toward Active Control of Noise from Hot Supersonic Jets

    Science.gov (United States)

    2013-12-31

    control valves upstream of the nozzle through the use of a proportional-integral-derivative controller ( PID ) that allows to minimize the error by...adjusting the percentage of aperture of the tuning valve. The variability of the NPR over all the tests was found to be less "Jian 1%; Figure Ha shows the...36.7 : we first open the main valve to a value of 10%, and when ;he NPR gets high enough we open manually to 35% the tuning valve, and at t = 20s we

  1. Transonic Tones and Excess Broadband Noise in Overexpanded Supersonic Jets

    Science.gov (United States)

    Zaman, Khairul B. M. Q.

    2009-01-01

    Noise characteristics of convergent-divergent (C-D) nozzles in the overexpanded regime are the focus of this paper. The flow regime is encountered during takeoff and landing of certain airplanes and also with rocket nozzles in launch-pad environment. Experimental results from laboratory-scale single nozzles are discussed. The flow often undergoes a resonance accompanied by emission of tones (referred to as transonic tones). The phenomenon is different from the well-known screech tones. Unlike screech, the frequency increases with increasing supply pressure. There is a staging behavior odd harmonic stages occur at lower pressures while the fundamental occurs in a range of relatively higher pressures. A striking feature is that tripping of the nozzle s internal boundary layer tends to suppress the resonance. However, even in the absence of tones the broadband levels are found to be high. That is, relative to a convergent case and at same pressure ratio, the C-D nozzles are found to be noisier, often by more than 10dB. This excess broadband noise (referred to as EBBN) is further explored. Its characteristics are found to be different from the well-known broadband shockassociated noise ( BBSN ). For example, while the frequency of the BBSN peak varies with observation angle no such variation is noted with EBBN. The mechanisms of the transonic tone and the EBBN are not completely understood yet. They appear to be due to unsteady shock motion inside the nozzle. The shock drives the flow downstream like a vibrating diaphragm, and resonance takes place similarly as with acoustic resonance of a conical section having one end closed and the other end open. When the boundary layer is tripped, apparently a breakdown of azimuthal coherence suppresses the resonance. However, there is still unsteady shock motion albeit with superimposed randomness. Such random motion of the internal shock and its interaction with the separated boundary layer produces the EBBN.

  2. Supersonic flow imaging via nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Due to influence of compressibility,shock wave,instabilities,and turbulence on supersonic flows, current flow visualization and imaging techniques encounter some problems in high spatiotemporal resolution and high signal-to-noise ratio(SNR)measurements.Therefore,nanoparticle based planar laser scattering method(NPLS)is developed here.The nanoparticles are used as tracer,and pulse planar laser is used as light source in NPLS;by recording images of particles in flow field with CCD, high spatiotemporal resolution supersonic flow imaging is realized.The flow-following ability of nanoparticles in supersonic flows is studied according to multiphase flow theory and calibrating experiment of oblique shock wave.The laser scattering characteristics of nanoparticles are analyzed with light scattering theory.The results of theoretical and experimental studies show that the dynamic behavior and light scattering characteristics of nanoparticles highly enhance the spatiotemporal resolution and SNR of NPLS,with which the flow field involving shock wave,expansion,Mach disk,boundary layer,sliding-line,and mixing layer can be imaged clearly at high spatiotemporal resolution.

  3. Jet Observables Without Jet Algorithms

    CERN Document Server

    Bertolini, Daniele; Thaler, Jesse

    2013-01-01

    We introduce a new class of event shapes to characterize the jet-like structure of an event. Like traditional event shapes, our observables are infrared/collinear safe and involve a sum over all hadrons in an event, but like a jet clustering algorithm, they incorporate a jet radius parameter and a transverse momentum cut. Three of the ubiquitous jet-based observables---jet multiplicity, summed scalar transverse momentum, and missing transverse momentum---have event shape counterparts that are closely correlated with their jet-based cousins. Due to their "local" computational structure, these jet-like event shapes could potentially be used for trigger-level event selection at the LHC. Intriguingly, the jet multiplicity event shape typically takes on non-integer values, highlighting the inherent ambiguity in defining jets. By inverting jet multiplicity, we show how to characterize the transverse momentum of the n-th hardest jet without actually finding the constituents of that jet. Since many physics applicatio...

  4. Numerical investigation on jet interaction with a compression ramp

    Institute of Scientific and Technical Information of China (English)

    Zhen Huaping; Gao Zhenxun; Lee Chunhian

    2013-01-01

    A numerical investigation on jet interaction in supersonic laminar flow with a compression ramp is performed utilizing the AUSMDV scheme and a parallel solver.Several parameters dominating the interference flowfield are studied after defining the relative increment of normal force and the jet amplification factor as the evaluation criterion of jet control performance.The computational results show that most features of the interaction flowfield between the transverse jet and the ramp are similar to those between a jet and a flat plate,except that the flow structures are more complicated and the low-pressure region behind the jet is less extensive.The relative force increment and the jet amplification factor both increase with the distance between the jet and the ramp shortening till quintuple jet diameters.Inconspicuous difference is observed between the jet-before-ramp and jet-on-ramp cases.The variation of the injection angle changes the extent of the separation region,the plateau pressure,and the peak pressure near the jet.In the present computational conditions,120° is indicated relatively optimal among all the injection angles studied.For cold gas simulations,although little influence of the jet temperature on the pressure distribution near the jet is observed under the computation model and the flow parameters studied,reducing jet temperature somehow benefits the improvement of the normal force and the jet efficiency.When the pressure ratio of jet to freestream is fixed,the relative force increment varies little when increasing the freestream Mach number,while the jet amplification factor increases.

  5. Propulsive jet simulation with air and helium in launcher wake flows

    Science.gov (United States)

    Stephan, Sören; Radespiel, Rolf

    2016-12-01

    The influence on the turbulent wake of a generic space launcher model due to the presence of an under-expanded jet is investigated experimentally. Wake flow phenomena represent a significant source of uncertainties in the design of a space launcher. Especially critical are dynamic loads on the structure. The wake flow is investigated at supersonic (M=2.9 ) and hypersonic (M=5.9 ) flow regimes. The jet flow is simulated using air and helium as working gas. Due to the lower molar mass of helium, higher jet velocities are realized, and therefore, velocity ratios similar to space launchers can be simulated. The degree of under-expansion of the jet is moderate for the supersonic case (p_e/p_∞ ≈ 5 ) and high for the hypersonic case (p_e/p_∞ ≈ 90 ). The flow topology is described by Schlieren visualization and mean-pressure measurements. Unsteady pressure measurements are performed to describe the dynamic wake flow. The influences of the under-expanded jet and different jet velocities are reported. On the base fluctuations at a Strouhal number, around St_D ≈ 0.25 dominate for supersonic free-stream flows. With air jet, a fluctuation-level increase on the base is observed for Strouhal numbers above St_D ≈ 0.75 in hypersonic flow regime. With helium jet, distinct peaks at higher frequencies are found. This is attributed to the interactions of wake flow and jet.

  6. Experimental study on hydrodynamic behaviors of high-speed gas jets in still water

    Institute of Scientific and Technical Information of China (English)

    Zhenqing Dai; Boyi Wang; Longxi Qi; Honghui Shi

    2006-01-01

    The present paper describes experimental investigation on the flow pattern and hydrodynamic effect of underwater gas jets from supersonic and sonic nozzles operated in correct- and imperfect expansion conditions. The flow visualizations show that jetting is the flow regime for the submerged gas injection at a high speed in the parameter range under consideration. The obtained results indicate that high-speed gas jets in still water induce large pressure pulsations upstream of the nozzle exit and the presence of shock-cell structure in the over-and under-expanded jets leads to an increase in the intensity of the jet-induced hydrodynamic pressure.

  7. Experimental observations of a complex, supersonic nozzle concept

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Glauser, Mark; Ruscher, Christopher; Gogineni, Sivaram; Kiel, Barry; Skytop Turbulence Labs, Syracuse University Team; Spectral Energies, LLC. Team; Air Force Research Laboratory Team

    2015-11-01

    A complex nozzle concept, which fuses multiple canonical flows together, has been experimentally investigated via pressure, schlieren and PIV in the anechoic chamber at Syracuse University. Motivated by future engine designs of high-performance aircraft, the rectangular, supersonic jet under investigation has a single plane of symmetry, an additional shear layer (referred to as a wall jet) and an aft deck representative of airframe integration. Operating near a Reynolds number of 3 ×106 , the nozzle architecture creates an intricate flow field comprised of high turbulence levels, shocks, shear & boundary layers, and powerful corner vortices. Current data suggest that the wall jet, which is an order of magnitude less energetic than the core, has significant control authority over the acoustic power through some non-linear process. As sound is a direct product of turbulence, experimental and analytical efforts further explore this interesting phenomenon associated with the turbulent flow. The authors acknowledge the funding source, a SBIR Phase II project with Spectral Energies, LLC. and AFRL turbine engine branch under the direction of Dr. Barry Kiel.

  8. Management of the Acoustic Characteristics of Jet Streams

    Directory of Open Access Journals (Sweden)

    Bulat Pavel Viktorovich

    2014-07-01

    Full Text Available The objects of research are devices, which generate and suppress the acoustic and wave pressure oscillations. Purpose of the study is the classification of oscillations generating devices, description of the physical principles of acoustic waves generation. The schemes of the most common sound generators-whistles are discussed. The gas-jet sound generators are described separately. It is shown that a simple cylindrical head at the supersonic nozzle can both enhance the acoustic emission and serve as an effective silencer. The comparison of acoustic emission of a supersonic jet and a jet, flowing into a cylindrical head is given. The results presented in the study can be recommended by the developers of whistles, sirens, other acoustic generators, installations for thermo-acoustic hardening metals, metallurgical blast devices.

  9. Detonation in supersonic radial outflow

    KAUST Repository

    Kasimov, Aslan R.

    2014-11-07

    We report on the structure and dynamics of gaseous detonation stabilized in a supersonic flow emanating radially from a central source. The steady-state solutions are computed and their range of existence is investigated. Two-dimensional simulations are carried out in order to explore the stability of the steady-state solutions. It is found that both collapsing and expanding two-dimensional cellular detonations exist. The latter can be stabilized by putting several rigid obstacles in the flow downstream of the steady-state sonic locus. The problem of initiation of standing detonation stabilized in the radial flow is also investigated numerically. © 2014 Cambridge University Press.

  10. Magnetic energy dissipation in force-free jets

    Science.gov (United States)

    Choudhuri, Arnab Rai; Konigl, Arieh

    1986-01-01

    It is shown that a magnetic pressure-dominated, supersonic jet which expands or contracts in response to variations in the confining external pressure can dissipate magnetic energy through field-line reconnection as it relaxes to a minimum-energy configuration. In order for a continuous dissipation to occur, the effective reconnection time must be a fraction of the expansion time. The dissipation rate for the axisymmetric minimum-energy field configuration is analytically derived. The results indicate that the field relaxation process could be a viable mechanism for powering the synchrotron emission in extragalactic jets if the reconnection time is substantially shorter than the nominal resistive tearing time in the jet.

  11. Plasma-enhanced mixing and flameholding in supersonic flow

    Science.gov (United States)

    Firsov, Alexander; Savelkin, Konstantin V.; Yarantsev, Dmitry A.; Leonov, Sergey B.

    2015-01-01

    The results of experimental study of plasma-based mixing, ignition and flameholding in a supersonic model combustor are presented in the paper. The model combustor has a length of 600 mm and cross section of 72 mm width and 60 mm height. The fuel is directly injected into supersonic airflow (Mach number M=2, static pressure Pst=160–250 Torr) through wall orifices. Two series of tests are focused on flameholding and mixing correspondingly. In the first series, the near-surface quasi-DC electrical discharge is generated by flush-mounted electrodes at electrical power deposition of Wpl=3–24 kW. The scope includes parametric study of ignition and flame front dynamics, and comparison of three schemes of plasma generation: the first and the second layouts examine the location of plasma generators upstream and downstream from the fuel injectors. The third pattern follows a novel approach of combined mixing/ignition technique, where the electrical discharge distributes along the fuel jet. The last pattern demonstrates a significant advantage in terms of flameholding limit. In the second series of tests, a long discharge of submicrosecond duration is generated across the flow and along the fuel jet. A gasdynamic instability of thermal cavity developed after a deposition of high-power density in a thin plasma filament promotes the air–fuel mixing. The technique studied in this work has weighty potential for high-speed combustion applications, including cold start/restart of scramjet engines and support of transition regime in dual-mode scramjet and at off-design operation. PMID:26170434

  12. a Continuous Supersonic Expansion Discharge Nozzle for Rotationally Cold Ions

    Science.gov (United States)

    Kauffman, Carrie A.; Crabtree, Kyle N.; McCall, Benjamin J.

    2009-06-01

    Molecular ions play an important role in chemistry and astronomy. In particular, molecular ions are key reaction intermediates, and in the interstellar medium, where temperatures and densities are low, they dominate the chemistry. Studying these ions spectroscopically in the laboratory poses a difficult challenge due to their reactivity. In our effort to study molecular ions, our research group is building SCRIBES (Sensitive Cooled Resolved Ion BEam Spectroscopy), which combines a cold ion source, mass spectrometry, and cavity ring-down spectroscopy. With this apparatus, we will be able to record rotationally-resolved gas-phase spectra, enabling interstellar searches for these species. The SCRIBES instrument requires a source of rotationally cold ions, and this has been accomplished by coupling a supersonic expansion with an electric discharge. Other groups (e.g. Thaddeus and McCarthy at Harvard, Salama et. al at NASA-Ames) have produced cold ions in a similar fashion, but always with a pulsed discharge source. Due to our need for a continuous ion source for SCRIBES, we have designed a continuous supersonic expansion discharge nozzle. We will discuss the various design factors considered during the construction of our continuous self-aligning cold ion source.

  13. Estimation of aerodynamic noise generated by forced compressible round jets

    Science.gov (United States)

    Maidi, Mohamed

    2006-05-01

    An acoustic numerical code based on Ligthill's analogy is combined with large-eddy simulations techniques in order to evaluate the noise emitted by subsonic (M=0.7) and supersonic (M=1.4) round jets. We show first that, for centerline Mach number M=0.9 and Reynolds number Re=3.6×10, acoustic intensities compare satisfactorily with experimental data of the literature in terms of levels and directivity. Afterwards, high Reynolds number (Re=3.6×10) free and forced jets at Mach 0.7 and 1.4 are studied. Numerical results show that the jet noise intensity depends on the nature of the upstream mixing layer. Indeed, the subsonic jet is 4 dB quieter than the free jet when acting on this shear layer by superposing inlet varicose and flapping perturbations at preferred and first subharmonic frequency, respectively. The maximal acoustic level of the supersonic jet is, on the other hand, 3 dB lower than the free one with a flapping upstream perturbation at the second subharmonic. The results reported in this paper confirm previous works presented in the literature demonstrating that jet noise may be modified according to the inlet conditions. To cite this article: M. Maidi, C. R. Mecanique 334 (2006).

  14. Influence of rarefaction on the flow dynamics of a stationary supersonic hot-gas expansion.

    Science.gov (United States)

    Abbate, G; Kleijn, C R; Thijsse, B J; Engeln, R; van de Sanden, M C M; Schram, D C

    2008-03-01

    The gas dynamics of a stationary hot-gas jet supersonically expanding into a low pressure environment is studied through numerical simulations. A hybrid coupled continuum-molecular approach is used to model the flow field. Due to the low pressure and high thermodynamic gradients, continuum mechanics results are doubtful, while, because of its excessive time expenses, a full molecular method is not feasible. The results of the hybrid coupled continuum-molecular approach proposed have been successfully validated against experimental data by R. Engeln [Plasma Sources Sci. Technol. 10, 595 (2001)] obtained by means of laser induced fluorescence. Two main questions are addressed: the necessity of applying a molecular approach where rarefaction effects are present in order to correctly model the flow and the demonstration of an invasion of the supersonic part of the flow by background particles. A comparison between the hybrid method and full continuum simulations demonstrates the inadequacy of the latter, due to the influence of rarefaction effects on both velocity and temperature fields. An analysis of the particle velocity distribution in the expansion-shock region shows clear departure from thermodynamic equilibrium and confirms the invasion of the supersonic part of the flow by background particles. A study made through particles and collisions tracking in the supersonic region further proves the presence of background particles in this region and explains how they cause thermodynamic nonequilibrium by colliding and interacting with the local particles.

  15. Supersonic Virtual Valve Design for Numerical Simulation of a Large-Bore Natural Gas Engine

    Energy Technology Data Exchange (ETDEWEB)

    Kim, G.-H.; Kirkpatrick, A.; Mitchell, C.

    2007-10-01

    In many applications of supersonic injection devices, three-dimensional computation that can model a complex supersonic jet has become critical. However, in spite of its increasing necessity, it is computationally costly to capture the details of supersonic structures in intricate three-dimensional geometries with moving boundaries. In large-bore stationary natural gas fueled engine research, one of the most promising mixing enhancement technologies currently used for natural gas engines is high-pressure fuel injection. Consequently, this creates considerable interest in three-dimensional computational simulations that can examine the entire injection and mixing process in engines using high-pressure injection and can determine the impact of injector design on engine performance. However, the cost of three-dimensional engine simulations-including a moving piston and the kinetics of combustion and pollutant production quickly becomes considerable in terms of simulation time requirements. One limiting factor is the modeling of the small length scales of the poppet valve flow. Such length scales can be three orders of magnitude smaller than cylinder length scales. The objective of this paper is to describe the development of a methodology for the design of a simple geometry supersonic virtual valve that can be substituted in three-dimensional numerical models for the complex shrouded poppet valve injection system actually installed in the engine to be simulated.

  16. On the Importance of Very-light Internally-subsonic AGN Jets in Radio-mode AGN Feedback

    CERN Document Server

    Guo, Fulai

    2016-01-01

    Radio-mode active galactic nucleus (AGN) feedback plays a key role in the evolution of galaxy groups and clusters. Its physical origin lies in the kpc-scale interaction of AGN jets with the hot halo gas, where jet properties may play an important role. Large-scale jet simulations often initiate light internally-supersonic jets with density contrast $0.01<\\eta<1$. Here we argue for the importance of very-light ($\\eta<0.01$) internally-subsonic jets in AGN feedback. We investigated the shapes of young X-ray cavities produced by AGN jets in a suite of hydrodynamic simulations, and found that bottom-wide cavities are always produced by internally-subsonic jets, while internally-supersonic jets produce cylindrical, center-wide, or top-wide cavities. We found examples of real cavities inflated by internally-subsonic and internally-supersonic jets, suggesting a dichotomy of AGN jets according to their internal Mach numbers. We further studied the long-term cavity evolution, and found that old cavities resul...

  17. Parametric experimental studies on mixing characteristics within a low area ratio rectangular supersonic gaseous ejector

    Science.gov (United States)

    Karthick, S. K.; Rao, Srisha M. V.; Jagadeesh, G.; Reddy, K. P. J.

    2016-07-01

    We use the rectangular gaseous supersonic ejector as a platform to study the mixing characteristics of a confined supersonic jet. The entrainment ratio (ER) of the ejector, the non-mixed length (LNM), and potential core length (LPC) of the primary supersonic jet are measures to characterize mixing within the supersonic ejector. Experiments are carried out on a low area ratio rectangular supersonic ejector with air as the working fluid in both primary and secondary flows. The design Mach number of the nozzle (MPD = 1.5-3.0) and primary flow stagnation pressure (Pop = 4.89-9.89 bars) are the parameters that are varied during experimentation. Wall static pressure measurements are carried out to understand the performance of the ejector as well as to estimate the LNM (the spatial resolution is limited by the placement of pressure transducers). Well-resolved flow images (with a spatial resolution of 50 μm/pixel and temporal resolution of 1.25 ms) obtained through Planar Laser Mie Scattering (PLMS) show the flow dynamics within the ejector with clarity. The primary flow and secondary flow are seeded separately with acetone that makes the LNM and LPC clearly visible in the flow images. These parameters are extracted from the flow images using in-house image processing routines. A significant development in this work is the definition of new scaling parameters within the ejector. LNM, non-dimensionalized with respect to the fully expanded jet height hJ, is found to be a linear function of the Mach number ratio (Mach number ratio is defined as the ratio of design Mach number (MPD) and fully expanded Mach number (MPJ) of the primary jet). This definition also provides a clear demarcation of under-expanded and over-expanded regimes of operation according to [MPD/MPJ] > 1 and [MPD/MPJ] < 1, respectively. It is observed that the ER increased in over-expanded mode (to 120%) and decreased in under-expanded mode (to 68%). Similarly, LNM decreased (to 21.8%) in over-expanded mode

  18. Statistics of fully turbulent impinging jets

    CERN Document Server

    Wilke, Robert

    2016-01-01

    Direct numerical simulations of sub- and supersonic impinging jets with Reynolds numbers of 3300 and 8000 are carried out to analyse their statistical properties. The influence of the parameters Mach number, Reynolds number and ambient temperature on the mean velocity and temperature fields are studied. For the compressible subsonic cold impinging jets into a heated environment, different Reynolds analogies are assesses. It is shown, that the (original) Reynolds analogy as well as the Chilton Colburn analogy are in good agreement with the DNS data outside the impinging area. The generalised Reynolds analogy (GRA) and the Crocco-Busemann relation are not suited for the estimation of the mean temperature field based on the mean velocity field of impinging jets. Furthermore, the prediction of fluctuating temperatures according to the GRA fails. On the contrary, the linear relation between thermodynamic fluctuations of entropy, density and temperature as suggested by Lechner et al. (2001) can be confirmed for the...

  19. Pdf prediction of supersonic hydrogen flames

    Science.gov (United States)

    Eifler, P.; Kollmann, W.

    1993-01-01

    A hybrid method for the prediction of supersonic turbulent flows with combustion is developed consisting of a second order closure for the velocity field and a multi-scalar pdf method for the local thermodynamic state. It is shown that for non-premixed flames and chemical equilibrium mixture fraction, the logarithm of the (dimensionless) density, internal energy per unit mass and the divergence of the velocity have several advantages over other sets of scalars. The closure model is applied to a supersonic non-premixed flame burning hydrogen with air supplied by a supersonic coflow and the results are compared with a limited set of experimental data.

  20. Proton/hydrogen-transfer coordinate of 2,5-dihydroxybenzoic acid investigated in a supersonic beam: combined IR/UV spectroscopy in the S0, S1, and D0 states.

    Science.gov (United States)

    Fricke, Holger; Bartl, Kristina; Funk, Andreas; Gerlach, Andreas; Gerhards, Markus

    2008-12-01

    As a model system for intramolecular proton/hydrogen-transfer coordinates, the structure of 2,5-dihydroxybenzoic acid is investigated for the ground, first electronically excited and also the ionic state. Combined IR/UV spectroscopy in molecular-beam experiments is applied and the experimental results are interpreted by the application of DFT and CASPT2 methods. No proton or hydrogen transfer is observed, but evidence is given for a hydrogen dislocation of the intramolecular hydrogen bond in the S(1) state and to lesser extent in the D(0) state. To obtain direct information on the proton/hydrogen-transfer coordinate, IR spectra are recorded both in the region of the OH and especially the CO stretching vibrations by also applying two new variants of combined IR/UV spectroscopy for the S(1) and D(0) states. The CO groups are directly involved in the hydrogen bond and, in contrast to the hydrogen-bonded OH groups, the CO stretching frequencies can be observed in all electronic states.

  1. High-Resolution Spectroscopy of Jet-Cooled 1,1 '-Diphenylethylene: Electronically Excited and Ionic States of a Prototypical Cross-Conjugated System

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C. A.; Zgierski, M. Z.; Buma, W. J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated pi-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations

  2. High-resolution spectroscopy of jet-cooled 1,1 '-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system

    NARCIS (Netherlands)

    Smolarek, S.; Vdovin, A.; Rijs, A.; van Walree, C.A.; Zgierski, M.Z.; Buma, W.J.

    2011-01-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1′-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We f

  3. Precessing jets and molecular outflows a 3-D numerical study

    CERN Document Server

    Cliffe, J A; Frank, Adam

    1996-01-01

    We present 3-D numerical hydrodynamical simulations of precessing supersonic heavy jets to explore how well they serve as a model for generating molecular outflows from Young Stellar Objects. The dynamics are studied with a number of high resolution simulations on a Cartesian grid (128x128x128 zones) using a high order finite difference method. A range of cone angles and precession rates were included in the study. Two higher resolution runs (256x256x256 zones) were made for comparison in order to confirm numerical convergence of global flow characteristics. Morphological, kinematical and dynamical characteristics of precessing jets are described and compared to important properties of straight jets and also to observations of YSOs. In order to examine the robustness of precessing jets as a mean to produce molecular outflows around Young Stellar Objects, ``synthetic observations'' of the momentum distributions of the simulated precessing jets are compared to observations of molecular outflows. It is found tha...

  4. Advanced Supersonic Nozzle Concepts: Experimental Flow Visualization Results Paired With LES

    Science.gov (United States)

    Berry, Matthew; Magstadt, Andrew; Stack, Cory; Gaitonde, Datta; Glauser, Mark; Syracuse University Team; The Ohio State University Team

    2015-11-01

    Advanced supersonic nozzle concepts are currently under investigation, utilizing multiple bypass streams and airframe integration to bolster performance and efficiency. This work focuses on the parametric study of a supersonic, multi-stream jet with aft deck. The single plane of symmetry, rectangular nozzle, displays very complex and unique flow characteristics. Flow visualization techniques in the form of PIV and schlieren capture flow features at various deck lengths and Mach numbers. LES is compared to the experimental results to both validate the computational model and identify limitations of the simulation. By comparing experimental results to LES, this study will help create a foundation of knowledge for advanced nozzle designs in future aircraft. SBIR Phase II with Spectral Energies, LLC under direction of Barry Kiel.

  5. Conformational analysis of ethyl-substituted Criegee intermediate by FTMW spectroscopy

    Science.gov (United States)

    Cabezas, Carlos; Guillemin, Jean-Claude; Endo, Yasuki

    2016-12-01

    Ethyl-substituted Criegee intermediate, C2H5CHOO, has been generated in the discharged plasma of a 1,1-diiodopropane/O2 gas mixture and spectroscopically characterized by Fourier transform microwave spectroscopy in a pulsed supersonic jet. The comparison between the experimental rotational constants and those calculated ab initio unambiguously confirms the identification of three conformers, providing the definitive probe for their molecular structures. Some of the observed pure rotational transitions show small splittings corresponding to the A/E components due to the threefold methyl internal rotation, which made it possible to determine the barrier heights of the hindered methyl rotation. The conformational abundances as well as the non observation of a plausible fourth conformer have been rationalized in terms of interconversion processes between conformers and interactions between the terminal oxygen and the protons of the ethyl moiety.

  6. Fourier transform microwave and millimeter wave spectroscopy of quinazoline, quinoxaline, and phthalazine

    Science.gov (United States)

    McNaughton, Don; Godfrey, Peter D.; Jahn, Michaela K.; Dewald, David A.; Grabow, Jens-Uwe

    2011-04-01

    The pure rotational spectra of the bicyclic aromatic nitrogen heterocycle molecules, quinazoline, quinoxaline, and phthalazine, have been recorded and assigned in the region 13-87 GHz. An analysis, guided by ab initio molecular orbital predictions, of frequency-scanned Stark modulated, jet-cooled millimeter wave absorption spectra (48-87 GHz) yielded a preliminary set of rotational and centrifugal distortion constants. Subsequent spectral analysis at higher resolution was carried out with Fourier transform microwave (FT-MW) spectroscopy (13-18 GHz) of a supersonic rotationally cold molecular beam. The high spectral resolution of the FT-MW instrument provided an improved set of rotational and centrifugal distortion constants together with nitrogen quadrupole coupling constants for all three species. Density functional theory calculations at the B3LYP/6-311+G** level of theory closely predict rotational constants and are useful in predicting quadrupole coupling constants and dipole moments for such species.

  7. GK Per (Nova Persei 1901): HUBBLE SPACE TELESCOPE IMAGERY AND SPECTROSCOPY OF THE EJECTA, AND FIRST SPECTRUM OF THE JET-LIKE FEATURE

    Energy Technology Data Exchange (ETDEWEB)

    Shara, Michael M.; Zurek, David; Mizusawa, Trisha [Department of Astrophysics, American Museum of Natural History, Central Park West and 79th street, New York, NY 10024-5192 (United States); De Marco, Orsola [Department of Physics, Macquarie University, Sydney (Australia); Williams, Robert; Livio, Mario [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-06-15

    We have imaged the ejecta of GK Persei (Nova Persei 1901 A.D.) with the Hubble Space Telescope (HST), whose 0.1 arcsec resolution reveals hundreds of cometary-like structures with long axes aligned toward GK Per. One or both ends of the structures often show a brightness enhancement relative to the structures' middle sections, but there is no simple regularity to their morphologies (in contrast with, for example, the Helix nebula). Some of structures' morphologies suggest the presence of slow-moving or stationary material with which the ejecta is colliding, while others suggest shaping from a wind emanating from GK Per itself. The most detailed expansion map of any classical nova's ejecta was created by comparing HST images taken in successive years. Wide Field and Planetary Camera 2 narrowband images and Space Telescope Imaging Spectrograph spectra demonstrate that the physical conditions in this nova's ejecta vary strongly on spatial scales much smaller than those of the ejecta. Directly measuring accurate densities and compositions, and hence masses of this and other nova shells, will demand data at least as resolved spatially as those presented here. The filling factor of the ejecta is 1% or less, and the nova ejecta mass must be less than 10{sup -4} M{sub Sun }. A modest fraction of the emission nebulosities vary in brightness by up to a factor of two on timescales of one year. Finally, we present the deepest images yet obtained of a jet-like feature outside the main body of GK Per nebulosity, and the first spectrum of that feature. Dominated by strong, narrow emission lines of [N II], [O II], [O III], and [S II], this feature is probably a shock due to ejected material running into stationary interstellar matter, slowly moving ejecta from a previous nova episode, or circumbinary matter present before 1901. An upper limit to the mass of the jet is of order a few times 10{sup -6} M{sub Sun }. If the jet mass is close to this limit then the

  8. 光腔衰荡光谱研究PH2自由基在465-555nm的光谱%Cavity Ringdown Spectroscopy of PH2 Radical in 465-555 nm

    Institute of Scientific and Technical Information of China (English)

    赵东锋; 秦成兵; 张群; 陈旸

    2011-01-01

    Absorption spectra of jet-cooled PH2 radicals were recorded in the wavelength range of 465-555 nm using cavity ringdown spectroscopy. The PH2 radicals were produced in a supersonic jet by pulsed direct current discharge of a mixture of PH3 and SF6 in argon. Seven vibronic bands with fine rotational structures have been observed and assigned as 000 , 2n0, and 2n1 (n=1-3) bands of the (A)2A1-(X)2B1 electronic transition. Rotational assignments and rotational term values for each band were re-identified, and the molecular parameters including rotational constants, centrifugal distortion constants, and spin-rotation interaction constants were also improved with reasonably high precision. In addition, large perturbations observed in each quantum number of total angular momentum of the a axis level of the excited vibronic states were briefly discussed.

  9. A PIV Study of Slotted Air Injection for Jet Noise Reduction

    Science.gov (United States)

    Henderson, Brenda S.; Wernet, Mark P.

    2012-01-01

    Results from acoustic and Particle Image Velocimetry (PIV) measurements are presented for single and dual-stream jets with fluidic injection on the core stream. The fluidic injection nozzles delivered air to the jet through slots on the interior of the nozzle at the nozzle trailing edge. The investigations include subsonic and supersonic jet conditions. Reductions in broadband shock noise and low frequency mixing noise were obtained with the introduction of fluidic injection on single stream jets. Fluidic injection was found to eliminate shock cells, increase jet mixing, and reduce turbulent kinetic energy levels near the end of the potential core. For dual-stream subsonic jets, the introduction of fluidic injection reduced low frequency noise in the peak jet noise direction and enhanced jet mixing. For dual-stream jets with supersonic fan streams and subsonic core streams, the introduction of fluidic injection in the core stream impacted the jet shock cell structure but had little effect on mixing between the core and fan streams.

  10. SiO mass spectrometry and Si-2p photoemission spectroscopy for the study of oxidation reaction dynamics of Si(001) surface by supersonic O sub 2 molecular beams under 1000K

    CERN Document Server

    Teraoka, Y; Moritani, K

    2003-01-01

    The Si sup 1 sup 8 O desorption yield was measured in the Si(001) surface temperature region from 900K to 1300K at the sup 1 sup 8 O sub 2 incident energies of 0.7eV, 2.2eV and 3.3eV. The Si sup 1 sup 8 O desorption yield in a surface temperature region higher than 1000K increased with increasing incident energy, indicating the incident-energy-induced oxidation and the variation of angular distribution of Si sup 1 sup 8 O desorption. Inversely, the Si sup 1 sup 8 O desorption yield decreased with increasing incident energy in the region from 900K to 1000K, indicating the coexistence of the passive and the active oxidation. In order to clarify the reaction mechanisms of the later phenomenon, real-time in-situ Si-2p photoemission spectroscopy has been performed. The obtained Si-2p spectra showed the variation of the oxide-nuclei quality from the sub-oxide-rich structure to the SiO sub 2 -rich structure. The formation of the SiO sub 2 structure suppresses the SiO desorption due to the enhanced O sub 2 sticking a...

  11. Jet quenching via jet collimation

    CERN Document Server

    Casalderrey-Solana, J; Wiedemann, U

    2011-01-01

    The strong modifications of dijet properties in heavy ion collisions measured by ATLAS and CMS provide important constraints on the dynamical mechanisms underlying jet quenching. In this work, we show that the transport of soft gluons away from the jet cone - jet collimation - can account for the observed dijet asymmetry with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude. Further, we show that the energy loss attained through this mechanism results in a very mild distortion of the azimuthal angle dijet distribution.

  12. Emerging jets

    Energy Technology Data Exchange (ETDEWEB)

    Schwaller, Pedro; Stolarski, Daniel [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Weiler, Andreas [European Organization for Nuclear Research (CERN), Geneva (Switzerland). TH-PH Div.; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2015-02-15

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilities for discovery at LHCb are also discussed.

  13. Emerging Jets

    CERN Document Server

    Schwaller, Pedro; Weiler, Andreas

    2015-01-01

    In this work, we propose a novel search strategy for new physics at the LHC that utilizes calorimeter jets that (i) are composed dominantly of displaced tracks and (ii) have many different vertices within the jet cone. Such emerging jet signatures are smoking guns for models with a composite dark sector where a parton shower in the dark sector is followed by displaced decays of dark pions back to SM jets. No current LHC searches are sensitive to this type of phenomenology. We perform a detailed simulation for a benchmark signal with two regular and two emerging jets, and present and implement strategies to suppress QCD backgrounds by up to six orders of magnitude. At the 14 TeV LHC, this signature can be probed with mediator masses as large as 1.5 TeV for a range of dark pion lifetimes, and the reach is increased further at the high-luminosity LHC. The emerging jet search is also sensitive to a broad class of long-lived phenomena, and we show this for a supersymmetric model with R-parity violation. Possibilit...

  14. Fluid velocity measurement of supersonic wind tunnel with tunable diode laser absorption spectroscopy%可调谐二极管激光吸收光谱技术测量风洞流速

    Institute of Scientific and Technical Information of China (English)

    谷俊青; 徐胜利

    2014-01-01

    Tunable diode laser absorption spectroscopic (TDLAS)technology applies the wavelength tunable character-istics of diode lasers to the absorption spectroscopy of the selected absorption line.Based on the absorption line of wa-ter vapor,combined with HITRAN database,the frequency is chosen which fits the current environment (71 81.1 558cm-1 ),experiment equipments are set up,the according frequency shift of the chosen frequency is meas-ured and the fluid velocity is calculated.Experiments results show that velocity measurement is 563.06m/s,with the linear error of 5.09%,which builds good foundation for the next series of experiments under transient environments of high velocity such as shock tube.%基于对水蒸气的吸收谱线在超音速流场的多普勒效应,结合HITRAN数据库,选取适合当前环境的吸收谱线7181.1558 cm-1,结合超音速风洞装置建立起一套基于可调谐二极管激光吸收光谱(TDLAS )技术的实验装置,测量对应频移,分析反演出流场速度,实验结果表明,在高速环境下,系统测量流速为563.06 m/s,线性误差为5.09%,效果良好,从而为对激波管等高速脉冲设备的进一步测量实验打下了良好基础。

  15. Jet-cooled laser-induced dispersed fluorescence spectroscopy of NiC: Observation of low-lying Ω = 0+ state

    Science.gov (United States)

    Mukund, Sheo; Yarlagadda, Suresh; Bhattacharyya, Soumen; Nakhate, S. G.

    2014-01-01

    Laser-induced dispersed fluorescence spectra of 58Ni12C molecules, produced in a free-jet apparatus, have been studied. A new low-lying Ω = 0+ state has been observed at Te = 5178 (6) cm-1. Based on previous ab initio calculations this state is plausibly assigned as 0+ spin-orbit component of the first excited 3 Π state. The term energies of vibrational levels up to v = 10 for X1Σ+ ground and v = 3 for Ω = 0+ states have been determined. The harmonic and anharmonic wavenumbers respectively equal to 833 (4) and 6.7 (13) cm-1 for Ω = 0+ state have been measured.

  16. Characteristics of High Speed Electro-thermal Jet Activated by Pulsed DC Discharge

    Institute of Scientific and Technical Information of China (English)

    Jichul Shin

    2010-01-01

    Experimental study of synthetic jet produced by pulsed direct current (DC) discharge is presented.High velocity jet is activated electro-thermally by high frequency pulsed DC discharge in small cavity.A cavity of 2.38 mm diameter cylinder bounded by circular electrode is made in a ceramic plate and a small orifice of 1.78 mm diameter is drilled in the middle of cavity.High frequency pulsed DC discharge instantaneously heats air in the cavity and produces high velocity jet at the exit of the orifice.Schlieren imaging at high framing rate of 100 kHz reveals the presence of supersonic precursor shock followed by the jet emerging from the orifice.The jet velocity reaches as high as about 300 m/s.Jet with smaller cavity volume produces lesser effect and jet velocity reaches maximum at certain cavity volume with given discharge current and orifice size.As duty time of pulse increases from 5 to 20 μs at fixed frequency of 5 kHz,the jet velocity also increases and becomes nearly constant with further increase in duty time.At fixed duty time of 20 μs,higher frequency pulsing of 10 kHz produces degradation of the jet as the discharge pulse continues.The jet developed in this study is demonstrated to be strong enough to penetrate deep into supersonic boundary layer and to produce a bow shock when the jet is issued into Math 3 supersonic flow.

  17. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  18. Coupling hydrodynamics and radiation calculations for star-jet interactions in AGN

    CERN Document Server

    de la Cita, Víctor M; Paredes-Fortuny, Xavier; Khangulyan, Dmitry; Perucho, Manel

    2016-01-01

    Stars and their winds can contribute to the non-thermal (NT) emission in extragalactic jets. Given the complexity of jet-star interactions, the properties of the resulting emission are strongly linked to those of the emitting flows. We simulate the interaction between a stellar wind and a relativistic extragalactic jet and use the hydrodynamic results to compute the NT emission under different conditions. We perform relativistic axisymmetric hydrodynamical simulations of a relativistic jet interacting with a supersonic, non-relativistic stellar wind. We compute the corresponding streamlines out of the simulation results, and calculate the injection, evolution, and emission of NT particles accelerated in the jet shock, focusing on electrons or $e^\\pm$-pairs. Several cases are explored, considering different jet-star interaction locations, magnetic fields and observer lines of sight. The jet luminosity and star properties are fixed, but the results are easily scalable under changes of these parameters. Individu...

  19. Design project: LONGBOW supersonic interceptor

    Science.gov (United States)

    Stoney, Robert; Baker, Matt; Capstaff, Joseph G.; Dishman, Robert; Fick, Gregory; Frick, Stephen N.; Kelly, Mark

    1993-01-01

    A recent white paper entitled 'From the Sea' has spotlighted the need for Naval Aviation to provide overland support to joint operations. The base for this support, the Aircraft Carrier (CVN), will frequently be unable to operate within close range of the battleground because of littoral land-based air and subsurface threats. A high speed, long range, carrier capable aircraft would allow the CVN to provide timely support to distant battleground operations. Such an aircraft, operating as a Deck-Launched Interceptor (DLI), would also be an excellent counter to Next Generation Russian Naval Aviation (NGRNA) threats consisting of supersonic bombers, such as the Backfire, equipped with the next generation of high-speed, long-range missiles. Additionally, it would serve as an excellent high speed Reconnaissance airplane, capable of providing Battle Force commanders with timely, accurate pre-mission targeting information and post-mission Bomb Damage Assessment (BDA). Recent advances in computational hypersonic airflow modeling has produced a method of defining aircraft shapes that fit a conical shock flow model to maximize the efficiency of the vehicle. This 'Waverider' concept provides one means of achieving long ranges at high speeds. A Request for Proposal (RFP) was issued by Professor Conrad Newberry that contained design requirements for an aircraft to accomplish the above stated missions, utilizing Waverider technology.

  20. Supersonic Cloud Collision-II

    CERN Document Server

    Anathpindika, S

    2009-01-01

    In this, second paper of the sequel of two papers, we present five SPH simulations of fast head-on cloud collisions and study the evolution of the ram pressure confined gas slab. Anathpindika (2008) (hereafter paper I) considered highly supersonic cloud collisions and examined the effect of bending and shearing instabilities on the shocked gas slab. The post-collision shock here, as in paper I, is also modelled by a simple barotropic equation of state (EOS). However, a much stiffer EOS is used to model the shock resulting from a low velocity cloud collision. We explore the parameter space by varying the pre-collision velocity and the impact parameter. We observe that pressure confined gas slabs become Jeans unstable if the sound crossing time, $t_{cr}$, is much larger than the freefall time, $t_{ff}$, of putative clumps condensing out of them. Self gravitating clumps may spawn multiple/larger $N$-body star clusters. We also suggest that warmer gas slabs are unlikely to fragment and may end up as diffuse gas c...

  1. Condensed-Phase Mass Fraction in a Supersonic Molecular Beam Containing Clusters

    Science.gov (United States)

    Knuth, Eldon L.; Toennies, J. Peter

    2008-12-01

    For a supersonic molecular beam containing clusters, a relatively general and simple conservation-of-energy procedure for deducing from time-of-flight measurements the fraction of the beam in the condensed phase is developed. The procedure is applied to measurements for 4He beams formed by expansions which approach the two-phase region either near the critical point or to the liquid side of the critical point. The deduced values of the mass fraction are correlated using a scaling parameter which was used previously for correlating mean values of cluster sizes formed via fragmentation in free-jet expansions of liquid 4He.

  2. A Computer Program to Calculate the Supersonic Flow over a Solid Cone in Air or Water.

    Science.gov (United States)

    1984-06-01

    ix air or water. The rain objective is to calculate the ccne semi-vertei angle given prescribed initial ccndi- tions. The program is written in...tc the motion of the metal jet frcm an explczive shaped-charge fired underwater. A tiical result for supersonic flow over a ccne in water is as follcws...the ccne semi-vertex angle is calculated to be 7.23 degrees. Gene rally, pressures invclved in water flow are much larger than for air flow, and the

  3. Characterization of the supersonic wake of a generic space launcher

    Science.gov (United States)

    Schreyer, A.-M.; Stephan, S.; Radespiel, R.

    2017-03-01

    The wake flow of a generic axisymmetric space-launcher model is investigated experimentally for flow cases with and without propulsive jet to gain insight into the wake-flow phenomena at a supersonic stage of the flight trajectory which is especially critical with respect to dynamic loads on the structure. Measurements are performed at Mach 2.9 and a Reynolds number Re D = 1.3 × 106 based on model diameter D. The nozzle exit velocity of the jet is at Mach 2.5, and the flow is moderately underexpanded ( p e/ p ∞ = 5.7). The flow topology is described based on velocity measurements in the wake by means of particle image velocimetry and schlieren visualizations. Mean and fluctuating mass-flux profiles are obtained from hot-wire measurements, and unsteady wall-pressure measurements on the main-body base are performed simultaneously. This way, the evolution of the wake flow and its spectral content can be observed along with the footprint of this highly dynamic flow on the launcher main-body base. For the case without propulsive jet, a large separated zone is forming downstream of the main body shoulder, and the flow is reattaching further downstream on the afterbody. The afterexpanding propulsive jet (air) causes a displacement of the shear layer away from the wall, preventing the reattachment of the flow. In the spectral analysis of the baseline case, a dominant frequency around St D = 0.25 is found in the pressure-fluctuation signal at the main-body base of the launcher. This frequency is related to the shedding of the separation bubble and is less pronounced in the presence of the propulsive jet. In the shear layer itself, the spectra obtained from the hot-wire signal have a more broadband low-frequency content, which also reflects the characteristic frequency of turbulent structures convected in the shear layer, a swinging motion ( St D = 0.6), as well as the radial flapping motion of the shear layer ( St D = 0.85), respectively. Moving downstream along the

  4. Characteristics of the Mach Disk in the Underexpanded Jet in which the Back Pressure Continuously Changes with Time

    Institute of Scientific and Technical Information of China (English)

    T. Irie; T. Yasunobu; H. Kashimura; T. Setoguchi

    2003-01-01

    When the high-pressure gas is exhausted to the vacuum chamber from the nozzle, the underexpanded supersonic jet contained with the Mach disk is generally formed. The eventual purpose of this study is to clarify the unsteady phenomenon of the underexpanded free jet when the back pressure continuously changes with time. The characteristic of the Mach disk has been clarified in consideration of the diameter and position of it by the numerical analysis in this paper. The sonic jet of the exit Mach number Me=1 is assumed and the axisymmetric conservational equation is solved by the TVD method in the numerical calculation.The diameter and position of the Mach disk differs with the results of a steady jet and the influence on the continuously changing of the back pressure is evidenced from the comparison with the case of steady supersonic jet.

  5. Silent and Efficient Supersonic Bi-Directional Flying Wing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...

  6. No Neon, but Jets in the Remarkable Recurrent Nova M31N 2008-12a?—Hubble Space Telescope Spectroscopy of the 2015 Eruption

    Science.gov (United States)

    Darnley, M. J.; Hounsell, R.; Godon, P.; Perley, D. A.; Henze, M.; Kuin, N. P. M.; Williams, B. F.; Williams, S. C.; Bode, M. F.; Harman, D. J.; Hornoch, K.; Link, M.; Ness, J.-U.; Ribeiro, V. A. R. M.; Sion, E. M.; Shafter, A. W.; Shara, M. M.

    2017-09-01

    The 2008 discovery of an eruption of M31N 2008-12a began a journey on which the true nature of this remarkable recurrent nova continues to be revealed. M31N 2008-12a contains a white dwarf (WD) close to the Chandrasekhar limit, accreting at a high rate from its companion, and undergoes thermonuclear eruptions that are observed yearly and may even be twice as frequent. In this paper, we report on Hubble Space Telescope Space Telescope Imaging Spectrograph ultraviolet spectroscopy taken within days of the predicted 2015 eruption, coupled with Keck spectroscopy of the 2013 eruption. Together, this spectroscopy permits the reddening to be constrained to E(B-V)=0.10+/- 0.03. The UV spectroscopy reveals evidence for highly ionized, structured, and high-velocity ejecta at early times. No evidence for neon is seen in these spectra, however, but it may be that little insight can be gained regarding the composition of the WD (CO versus ONe).

  7. UV Imaging Spectroscopy of the Saturn System

    Science.gov (United States)

    Esposito, L. W.

    2014-12-01

    Highlights of the UVIS investigation on Cassini include the discovery of a neutral oxygen cloud surrounding Saturn and the determination that Saturn's magnetosphere is dominated by neutrals. Later, UVIS observed and measured the cause of these phenomena: that the icy moon Enceladus is erupting water molecules at about 200kg/sec from fissures in its south polar terrain. These eruptions also carry a fraction of small solid ice grains that are sufficient to produce Saturn's ethereal E ring. The morphology of the jets of vapor in the Enceladus plume imply supersonic flow velocities that loft the grains carried in the jets, consistent with theoretical models. UV occultations and spectroscopy define the constituents of Titan's upper atmosphere and explain its dayside and nightside emissions. UVIS sees Saturn's auroral oval evolve and has detected Enceladus' footprint. Self-Gravity Wakes in Saturn's rings were detected by comparing ring occultations with Voyager results and with multiple Cassini UVIS occultations at a range of viewing aspects. We developed a simple 'granola-bar model' to explain our observations and the azimuthal brightness asymmetry observed from the Earth and previous space missions. UVIS has detected numerous small structures in the rings: kittens, propellers and other embedded objects. Some are as small as meters across from UVIS 'tracking' occultations. Features preferentially form where the rings are stirred by resonances and nearby passing moons. This more active ring system seen by Cassini may explain bright haloes in the rings; how the ring system can recycle ring material so that the rings are much older than inferred from Voyager; and provide implications of how planets may form. Future observations will provide the best resolution on active features like edges of the rings, ring haloes and propeller bands.

  8. Creation of Magnetized Jet Using a Ring of Laser Beams

    CERN Document Server

    Fu, Wen; Tzeferacos, Petros; Lamb, Donald Q

    2014-01-01

    We propose a new way of generating magnetized supersonic jets using a ring laser to irradiate a flat surface target. Using 2D FLASH code simulations which include the Biermann Battery term, we demonstrate that strong toroidal fields can be generated and sustained downstream in the collimated jet outflow far from the target surface. The field strength can be controlled by varying the ring laser separation, thereby providing a versatile laboratory platform for studying the effects of magnetic field in a variety of astrophysical settings.

  9. Deuterium cluster jet produced at moderate backing pressures

    Institute of Scientific and Technical Information of China (English)

    Hongbin Wang; Tianshu Wen; Yingling He; Chunye Jiao; Shuanggen Zhang; Xiangxian Wang; Fangfang Ge; Hongjie Liu; Guoquan Ni; Xiangdong Yang; Yuqiu Gu; Xianlun Wen; Weimin Zhou; Guangchang Wang

    2006-01-01

    @@ A deuterium cluster jet produced in the supersonic expansion into vacuum of deuterium gas at liquid nitrogen temperature and moderate backing pressures are studied by Rayleigh scattering techniques. The experimental results show that deuterium clusters can be created at moderate gas backing pressures ranging from 8 to 23 bar, and a maximum average cluster size of 350 atoms per cluster is estimated. The temporal evolution of the cluster jet generated at the backing pressure of 20 bar demonstrates a two-plateau structure. The possible mechanism responsible for this structure is discussed. The former plateau with higher average atom and cluster densities is more suitable for the general laser-cluster interaction experiments.

  10. Development of a mirror-based endoscope for divertor spectroscopy on JET with the new ITER-like wall (invited)a)

    Science.gov (United States)

    Huber, A.; Brezinsek, S.; Mertens, Ph.; Schweer, B.; Sergienko, G.; Terra, A.; Arnoux, G.; Balshaw, N.; Clever, M.; Edlingdon, T.; Egner, S.; Farthing, J.; Hartl, M.; Horton, L.; Kampf, D.; Klammer, J.; Lambertz, H. T.; Matthews, G. F.; Morlock, C.; Murari, A.; Reindl, M.; Riccardo, V.; Samm, U.; Sanders, S.; Stamp, M.; Williams, J.; Zastrow, K. D.; Zauner, C.; JET-EFDA Contributors

    2012-10-01

    A new endoscope with optimised divertor view has been developed in order to survey and monitor the emission of specific impurities such as tungsten and the remaining carbon as well as beryllium in the tungsten divertor of JET after the implementation of the ITER-like wall in 2011. The endoscope is a prototype for testing an ITER relevant design concept based on reflective optics only. It may be subject to high neutron fluxes as expected in ITER. The operating wavelength range, from 390 nm to 2500 nm, allows the measurements of the emission of all expected impurities (W I, Be II, C I, C II, C III) with high optical transmittance (≥30% in the designed wavelength range) as well as high spatial resolution that is ≤2 mm at the object plane and ≤3 mm for the full depth of field (±0.7 m). The new optical design includes options for in situ calibration of the endoscope transmittance during the experimental campaign, which allows the continuous tracing of possible transmittance degradation with time due to impurity deposition and erosion by fast neutral particles. In parallel to the new optical design, a new type of possibly ITER relevant shutter system based on pneumatic techniques has been developed and integrated into the endoscope head. The endoscope is equipped with four digital CCD cameras, each combined with two filter wheels for narrow band interference and neutral density filters. Additionally, two protection cameras in the λ > 0.95 μm range have been integrated in the optical design for the real time wall protection during the plasma operation of JET.

  11. Supersonic combustion engine testbed, heat lightning

    Science.gov (United States)

    Hoying, D.; Kelble, C.; Langenbahn, A.; Stahl, M.; Tincher, M.; Walsh, M.; Wisler, S.

    1990-01-01

    The design of a supersonic combustion engine testbed (SCET) aircraft is presented. The hypersonic waverider will utilize both supersonic combustion ramjet (SCRAMjet) and turbofan-ramjet engines. The waverider concept, system integration, electrical power, weight analysis, cockpit, landing skids, and configuration modeling are addressed in the configuration considerations. The subsonic, supersonic and hypersonic aerodynamics are presented along with the aerodynamic stability and landing analysis of the aircraft. The propulsion design considerations include: engine selection, turbofan ramjet inlets, SCRAMjet inlets and the SCRAMjet diffuser. The cooling requirements and system are covered along with the topics of materials and the hydrogen fuel tanks and insulation system. A cost analysis is presented and the appendices include: information about the subsonic wind tunnel test, shock expansion calculations, and an aerodynamic heat flux program.

  12. Simulating Supersonic Turbulence in Galaxy Outflows

    CERN Document Server

    Scannapieco, Evan

    2010-01-01

    We present three-dimensional, adaptive mesh simulations of dwarf galaxy out- flows driven by supersonic turbulence. Here we develop a subgrid model to track not only the thermal and bulk velocities of the gas, but also its turbulent velocities and length scales. This allows us to deposit energy from supernovae directly into supersonic turbulence, which acts on scales much larger than a particle mean free path, but much smaller than resolved large-scale flows. Unlike previous approaches, we are able to simulate a starbursting galaxy modeled after NGC 1569, with realistic radiative cooling throughout the simulation. Pockets of hot, diffuse gas around individual OB associations sweep up thick shells of material that persist for long times due to the cooling instability. The overlapping of high-pressure, rarefied regions leads to a collective central outflow that escapes the galaxy by eating away at the exterior gas through turbulent mixing, rather than gathering it into a thin, unstable shell. Supersonic, turbul...

  13. FOUR WAVE MIXING SPECTROSCOPY OF THE NO_3 tilde{B} ^2E' - tilde{X} ^2A_2' transition

    Science.gov (United States)

    Fukushima, Masaru; Ishiwata, Takashi

    2014-06-01

    The tilde{B} ^2E' - tilde{X} ^2A_2' electronic transition of NO_3 generated in a supersonic free jet expansion was investigated by four wave mixing ( 4WM ) spectroscopy. The degenerated 4WM and laser induced fluorescence ( LIF ) spectra around the 0_0^0 band region were measured simultaneously. The D4WM spectrum shows broad band features for the 0_0^0 band similar to that of the LIF spectrum. The broad 0_0^0 band does not consist of one sub-band, but of several bands. The intensity distribution of the sub-bands of the D4WM spectrum is similar, but not identical to that of the LIF spectrum.

  14. [Kelvin-Helmholtz instability in protostellar jets

    Science.gov (United States)

    Stone, James; Hardee, Philip

    1996-01-01

    surface and/or body waves could accelerate the ambient gas to low velocity. This latter effect represents a new mechanism by which supersonic jets can accelerate low velocity outflows.

  15. Molecular Spectroscopy in Astrophysics: The Case of Polycyclic Aromatic Hydrocarbons

    Science.gov (United States)

    Salama, Farid; DeVincent, Donald L. (Technical Monitor)

    2000-01-01

    The role of molecular spectroscopy in astrophysics and astrochemistry is discussed in the context of the study of large, complex, carbon-bearing molecules, namely, Polycyclic Aromatic Hydrocarbons or PAHs. These molecular species are now thought to be widespread in the interstellar medium in their neutral and ionized forms. Identifying the carriers responsible for unidentified interstellar spectral bands will allow to derive important information on cosmic elemental abundances as well as information on the physical conditions (density, temperature) reigning in specific interstellar environments. These, in turn, are key elements for a correct understanding of the energetic mechanisms that govern the origin and the evolution of the interstellar medium. A multidisciplinary approach - combining astronomical observations with laboratory simulations and theoretical modeling - is required to address these complex issues. Laboratory spectra of several PAHs, isolated at low temperature in inert gas matrices or seeded in a supersonic jet expansion, are discussed here and compared to the astronomical spectra of reddened, early type, stars. The electronic spectroscopy of PAHs in the ultraviolet, visible, and near-infrared domains is reviewed and an assessment of the potential contribution of PAHs to the interstellar extinction in the ultraviolet and in the visible is discussed.

  16. Supersonic Flutter of Laminated Curved Panels

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-04-01

    Full Text Available Supersonic flutter analysis of laminated composite curved panels is investigated using doubly-curved, quadrilateral, shear flexible, shell element based on field-consistency approach. The formulation includes transverse shear deformation, in-plane and rotary inertias. The aerodynamic force is evaluated using two-dimensional static aerodynamic approximation for high supersonic flow. Initially, the model developed here is verified for the flutter analysis of flat plates. Numerical results are presented for isotropic, orthotropic and laminated anisotropic curved panels. A detailed parametric study is carried out to observe the effects of aspect and thickness ratios, number of layers, lamination scheme, and boundary conditions on flutter boundary.

  17. On the origin of Fanaroff-Riley classification of radio galaxies: Deceleration of supersonic radio lobes

    CERN Document Server

    Kawakatu, Nozomu; Nagai, Hiroshi

    2009-01-01

    We argue that the origin of "FRI/FRI{-.1em}I dichotomy" -- the division between Fanaroff-Riley class I (FRI) with subsonic lobes and class I{-.1em}I (FRI{-.1em}I) radio sources with supersonic lobes is sharp in the radio-optical luminosity plane (Owen-White diagram) -- can be explained by the deceleration of advancing radio lobes. The deceleration is caused by the growth of the effective cross-sectional area of radio lobes. We derive the condition in which an initially supersonic lobe turns into a subsonic lobe, combining the ram-pressure equilibrium between the hot spots and the ambient medium with the relation between "the hot spot radius" and "the linear size of radio sources" obtained from the radio observations. We find that the dividing line between the supersonic lobes and subsonic ones is determined by the ratio of the jet power $L_{\\rm j}$ to the number density of the ambient matter at the core radius of the host galaxy $\\bar{n}_{\\rm a}$. It is also found that there exists the maximal ratio of $(L_{\\...

  18. On the Origin of Fanaroff-Riley Classification of Radio Galaxies: Deceleration of Supersonic Radio Lobes

    Science.gov (United States)

    Kawakatu, Nozomu; Kino, Motoki; Nagai, Hiroshi

    2009-06-01

    We argue that the origin of "FRI/FRII dichotomy"—the division between Fanaroff-Riley class I (FRI) with subsonic lobes and class II (FRII) radio sources with supersonic lobes is sharp in the radio-optical luminosity plane (Owen-White diagram)—can be explained by the deceleration of advancing radio lobes. The deceleration is caused by the growth of the effective cross-sectional area of radio lobes. We derive the condition in which an initially supersonic lobe turns into a subsonic lobe, combining the ram pressure equilibrium between the hot spots and the ambient medium with the relation between "the hot spot radius" and "the linear size of radio sources" obtained from the radio observations. We find that the dividing line between the supersonic lobes and subsonic ones is determined by the ratio of the jet power L j to the number density of the ambient matter at the core radius of the host galaxy \\bar{n}_a. It is also found that the maximal ratio of (L_j/\\bar{n}_a) exists and its value resides in (L_j/\\bar{n}_a)_max≈ 10^{44-47} erg s^{-1} cm^{3}, taking into account considerable uncertainties. This suggests that the maximal value (L_j/\\bar{n}_a)_max separates between FRIs and FRIIs.

  19. Surface destructive mechanism on high-temperature ablation, supersonic-erosion, dreg-adherence and corrosion

    Institute of Scientific and Technical Information of China (English)

    XIAO Jun; CHEN Jian-min; ZHOU Hui-di; LI Tie-hu; ZHANG Qiu-yu

    2004-01-01

    The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide track, causing serious problems to the operation and decreasing the lifetime of the launcher. Therefore, it is imperative to study the destructive mechanism so as to guarantee the smooth operation and increase the lifetime of military equipments. Accordingly, HTASED and corrosion were systematically observed and analyzed with the emphasis placed on the mechanism investigations making use of a series evaluation tests, typical missile engine simulation tests, national military standard methods, scanning electron microscopy and electrochemical corrosion tests. It is found that the thermal impact of high-temperature flame and supersonic erosion of corrosive melting particle jet of the SAMHSE lead to surface defects of micro-cracks, denudation and corrosive residue. Some defects reach to metal base becoming to "corrosive channels". Repetitive HTASED may cause ablation-adhesion fatigue stress, which enhances the surface corrosion and destruction. HTASED and corrosion are related to the type of a SAMHSE fuel and experience of the launcher. Surface destruction is related to synergistic effects of the HTASED. The ablated and failed Al or steel surface is liable to electrochemical corrosion characterized by pitting in humid and salt-spray environment.

  20. The Two-Dimensional Supersonic Flow and Mixing with a Perpendicular Injection in a Scramjet Combustor

    Institute of Scientific and Technical Information of China (English)

    Mohammad Ali; S.Ahmed; A.K.M.Sadrul Islam

    2003-01-01

    A numerical investigation has been performed on supersonic mixing of hydrogen with air in a Scramjet(Supersonic Combustion Ramjet) combustor and its flame holding capability by solving Two-Dimensional full Navier-Stokes equations. The main flow is air entering through a finite width of inlet and gaseous hydrogen is injected perpendicularly from the side wall. An explicit Harten-Yee Non-MUSCL Modified-flux-type TVD scheme has been used to solve the system of equations, and a zero-equation algebraic turbulence model to calculate the eddy viscosity coefficient. In this study the enhancement of mixing and good flame holding capability of a supersonic combustor have been investigated by varying the distance of injector position from left boundary keeping constant the backward-facing step height and other calculation parameters. The results show that the configuration for small distance of injector position has high mixing efficiency but the upstream recirculation can not evolved properly which is an important factor for flame holding capability. On the other hand, the configuration for very long distance has lower mixing efficiency due to lower gradient of hydrogen mass concentration on the top of injector caused by the expansion of side jet in both upstream and downstream of injector. For moderate distance of injector position, large and elongated upstream recirculation can evolve which might be activated as a good flame holder.

  1. High-resolution spectroscopy of jet-cooled 1,1'-diphenylethylene: electronically excited and ionic states of a prototypical cross-conjugated system.

    Science.gov (United States)

    Smolarek, Szymon; Vdovin, Alexander; Rijs, Anouk; van Walree, Cornelis A; Zgierski, Marek Z; Buma, Wybren J

    2011-09-01

    The photophysics of a prototypical cross-conjugated π-system, 1,1'-diphenylethylene, have been studied using high-resolution resonance enhanced multiphoton ionization excitation spectroscopy and zero kinetic energy photoelectron spectroscopy, in combination with advanced ab initio calculations. We find that the excitation spectrum of S(1) displays extensive vibrational progressions that we identify to arise from large changes in the torsional angles of the phenyl rings upon electronic excitation. The extensive activity of the antisymmetric inter-ring torsional vibration provides conclusive evidence for a loss of symmetry upon excitation, leading to an inequivalence of the two phenyl rings. Nonresonant zero kinetic energy photoelectron spectroscopy from the ground state of the neutral molecule to the ground state of the radical cation, on the other hand, demonstrates that upon ionization symmetry is retained, and that the geometry changes are considerably smaller. Apart from elucidating how removal of an electron affects the structure of the molecule, these measurements provide an accurate value for the adiabatic ionization energy (65274 ± 1 cm(-1) (8.093 eV)). Zero kinetic energy photoelectron spectra obtained after excitation of vibronic levels in S(1) confirm these conclusions and provide us with an extensive atlas of ionic vibronic energy levels. For higher excitation energies the excitation spectrum of S(1) becomes quite congested and shows unexpected large intensities. Ab initio calculations strongly suggest that this is caused by a conical intersection between S(1) and S(2). © 2011 American Chemical Society

  2. Jet Quenching via Jet Collimation

    CERN Document Server

    Casalderrey-Solana, Jorge; Wiedemann, Urs Achim

    2011-01-01

    The ATLAS Collaboration recently reported strong modifications of dijet properties in heavy ion collisions. In this work, we discuss to what extent these first data constrain already the microscopic mechanism underlying jet quenching. Simple kinematic arguments lead us to identify a frequency collimation mechanism via which the medium efficiently trims away the soft components of the jet parton shower. Through this mechanism, the observed dijet asymmetry can be accomodated with values of $\\hat{q}\\, L$ that lie in the expected order of magnitude.

  3. Volcanic jet noise: infrasonic source processes and atmospheric propagation

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; Ogden, D. E.

    2011-12-01

    Volcanic eruption columns are complex flows consisting of (possibly supersonic) injections of ash-gas mixtures into the atmosphere. A volcanic eruption column can be modeled as a lower momentum-driven jet (the gas-thrust region), which transitions with altitude into a thermally buoyant plume. Matoza et al. [2009] proposed that broadband infrasonic signals recorded during this type of volcanic activity represent a low-frequency form of jet noise. Jet noise is produced at higher acoustic frequencies by smaller-scale man-made jet flows (e.g., turbulent jet flow from jet engines and rockets). Jet noise generation processes could operate at larger spatial scales and produce infrasonic frequencies in the lower gas-thrust portion of the eruption column. Jet-noise-like infrasonic signals have been observed at ranges of tens to thousands of kilometers from sustained volcanic explosions at Mount St. Helens, WA; Tungurahua, Ecuador; Redoubt, AK; and Sarychev Peak, Kuril Islands. Over such distances, the atmosphere cannot be considered homogeneous. Long-range infrasound propagation takes place primarily in waveguides formed by vertical gradients in temperature and horizontal winds, and exhibits strong spatiotemporal variability. The timing and location of volcanic explosions can be estimated from remote infrasonic data and could be used with ash cloud dispersion forecasts for hazard mitigation. Source studies of infrasonic volcanic jet noise, coupled with infrasound propagation modeling, hold promise for being able to constrain more detailed eruption jet parameters with remote, ground-based geophysical data. Here we present recent work on the generation and propagation of volcanic jet noise. Matoza, R. S., D. Fee, M. A. Garcés, J. M. Seiner, P. A. Ramón, and M. A. H. Hedlin (2009), Infrasonic jet noise from volcanic eruptions, Geophys. Res. Lett., 36, L08303, doi:10.1029/2008GL036486.

  4. Fast, high temperature and thermolabile GC--MS in supersonic molecular beams

    Science.gov (United States)

    Dagan, Shai; Amirav, Aviv

    1994-05-01

    This work describes and evaluates the coupling of a fast gas chromatograph (GC) based on a short column and high carrier gas flow rate to a supersonic molecular beam mass spectrometer (MS). A 50 cm long megabore column serves for fast GC separation and connects the injector to the supersonic nozzle source. Sampling is achieved with a conventional syringe based splitless sample injection. The injector contains no septum and is open to the atmosphere. The linear velocity of the carrier gas is controlled by a by-pass (make-up) gas flow introduced after the column and prior to the supersonic nozzle. The supersonic expansion serves as a jet separator and the skimmed supersonic molecular beam (SMB) is highly enriched with the heavier organic molecules. The supersonic molecular beam constituents are ionized either by electron impact (EI) or hyperthermal surface ionization (HSI) and mass analyzed. A 1 s fast GC--MS of four aromatic molecules in methanol is demonstrated and some fundamental aspects of fast GC--MS with time limit constraints are outlined. The flow control (programming) of the speed of analysis is shown and the analysis of thermolabile and relatively non-volatile molecules is demonstrated and discussed. The tail-free, fast GC--MS of several mixtures is shown and peak tailing of caffeine is compared with that of conventional GC--MS. The improvement of the peak shapes with the SMB--MS is analyzed with the respect to the elimination of thermal vacuum chamber background. The extrapolated minimum detected amount was about 400 ag of anthracence-d10, with an elution time which was shorter than 2s. Repetitive injections could be performed within less than 10 s. The fast GC--MS in SMB seems to be ideal for fast target compound analysis even in real world, complex mixtures. The few seconds GC--MS separation and quantification of lead (as tetraethyllead) in gasoline, caffeine in coffee, and codeine in a drug is demonstrated. Controlled HSI selectivity is demonstrated in

  5. Investigation of Efficient Turbulence Model for Two-Dimensional Nozzle Designed for Supersonic Cruise Using STAR-CCM+

    Directory of Open Access Journals (Sweden)

    Karthik Mummidisetti

    2013-08-01

    Full Text Available In the present work, investigation of various turbulence models has been carried out for predicting the efficient turbulence model for a two-dimensional nozzle designed for a supersonic cruise nozzle. Initially, a computational domain was created for a two-dimensional nozzle for a supersonic cruise, then, with an appropriate mesh size, various turbulence models has been used for simulations. The main objective of the present work is to determine the efficient turbulence model for nozzle designs. As till date, commercial software’s are implementing many advanced technique, the test of turbulence model is very much needed for today’s research. The results obtained from the computational approach were compared with experimental approach which was conducted in the Langley 16-Foot Transonic Tunnel at Mach numbers from 0.8 to 1.2 by NASA Langley Research Centre, Virginia. These supersonic cruise nozzles have a wide range of applications in designing Fighter jets and supersonic cruise aircraft's. The present work was conducted by using the commercial Computational Fluid Dynamics Software, STAR-CCM+. Initially, Nozzle at a free stream Mach number 0.9 was designed and all the initial and boundary conditions were calculated. From the results obtained in the present investigation, we can conclude that there was an excellent correlation between the experimental and computational data for K-Epsilon turbulence model.

  6. Conditions for supersonic bent Marshak waves

    CERN Document Server

    Xu, Qiang; Li, Jing; Dan, Jia-kun; Wang, Kun-lun; Zhou, Shao-tong

    2014-01-01

    Supersonic radiation diffusion approximation is a useful way to study the radiation transportation. Considering the bent Marshak wave theory in 2-dimensions, and an invariable source temperature, we get the supersonic radiation diffusion conditions which are about the Mach number $M>8(1+\\sqrt{\\ep})/3$, and the optical depth $\\tau>1$. A large Mach number requires a high temperature, while a large optical depth requires a low temperature. Only when the source temperature is in a proper region these conditions can be satisfied. Assuming the material opacity and the specific internal energy depend on the temperature and the density as a form of power law, for a given density, these conditions correspond to a region about source temperature and the length of the sample. This supersonic diffusion region involves both lower and upper limit of source temperature, while that in 1-dimension only gives a lower limit. Taking $\\rm SiO_2$ and the Au for example, we show the supersonic region numerically.

  7. Dielectric barrier discharge source for supersonic beams

    Energy Technology Data Exchange (ETDEWEB)

    Luria, K.; Lavie, N.; Even, U. [Sackler School of Chemistry, Tel Aviv University, Tel Aviv 69978 (Israel)

    2009-10-15

    We present a new excitation source for pulsed supersonic beams. The excitation is based on dielectric barrier discharge in the beam. It produces cold beams of metastable atoms, dissociated neutral atoms from molecular precursors, and both positive and negative ions with high efficiency and reliability.

  8. Effects of injection pressure variation on mixing in a cold supersonic combustor with kerosene fuel

    Science.gov (United States)

    Liu, Wei-Lai; Zhu, Lin; Qi, Yin-Yin; Ge, Jia-Ru; Luo, Feng; Zou, Hao-Ran; Wei, Min; Jen, Tien-Chien

    2017-10-01

    Spray jet in cold kerosene-fueled supersonic flow has been characterized under different injection pressures to assess the effects of the pressure variation on the mixing between incident shock wave and transverse cavity injection. Based on the real scramjet combustor, a detailed computational fluid dynamics model is developed. The injection pressures are specified as 0.5, 1.0, 2.0, 3.0 and 4.0 MPa, respectively, with the other constant operation parameters (such as the injection diameter, angle and velocity). A three dimensional Couple Level Set & Volume of Fluids approach incorporating an improved Kelvin-Helmholtz & Rayleigh-Taylor model is used to investigate the interaction between kerosene and supersonic air. The numerical simulations primarily concentrate on penetration depth, span expansion area, angle of shock wave and sauter mean diameter distribution of the kerosene droplets with/without evaporation. Validation has been implemented by comparing the calculated against the measured in literature with good qualitative agreement. Results show that the penetration depth, span-wise angle and expansion area of the transverse cavity jet are all increased with the injection pressure. However, when the injection pressure is further increased, the value in either penetration depth or expansion area increases appreciably. This study demonstrates the feasibility and effectiveness of the combination of Couple Level Set & Volume of Fluids approach and an improved Kelvin-Helmholtz & Rayleigh-Taylor model, in turn providing insights into scramjet design improvement.

  9. Spectroscopy of jet-cooled AlMn and trends in the electronic structure of the 3d transition metal aluminides

    Science.gov (United States)

    Behm, Jane M.; Morse, Michael D.

    1994-10-01

    Jet-cooled diatomic AlMn has been spectroscopically investigated and is shown to possess a 5Πi ground state deriving from the Al (3s23p1,2P0)+Mn (3d54s2,6S) separated atom limit. This implies that the aluminum atom favors a 3pπ approach to the manganese atom, a result that is in agreement with previous studies on the related AlCa and AlZn molecules. The ground state bond length has been measured as 2.6384±0.0010 Å, a value which includes corrections due to spin-uncoupling effects in the X 5Πi state. It is suggested that the 5Πi state emerges as the ground state due to a particularly favorable configuration interaction with a low-lying 5Πi state that derives from the interaction of Al (3s23p1,2P0)+Mn [3d6(5D)4s1,6D]. Combination of the atoms in this excited state leads to a strong σ2 covalent bond via a 3pσAl-4sσMn interaction, which causes this excited electronic state to drop in energy so that it is expected to lie within a few thousand cm-1 of the ground electronic state. Following a discussion of the spectroscopic results on AlMn, an overall summary of the spectroscopic results on the 3d series of transition metal aluminides is presented, along with predictions of the ground electronic states of the as yet unobserved AlSc, AlTi, and AlFe molecules.

  10. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    Science.gov (United States)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  11. Using an energized oxygen micro-jet for improved graphene etching by focused electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Songkil; Henry, Mathias [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Fedorov, Andrei G., E-mail: agf@gatech.edu [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2015-12-07

    We report on an improved Focused Electron Beam Induced Etching (FEBIE) process, which exploits heated oxygen delivery via a continuous supersonic micro-jet resulting in faster graphene patterning and better etch feature definition. Positioning a micro-jet in close proximity to a graphene surface with minimal jet spreading due to a continuous regime of gas flow at the exit of the 10 μm inner diameter capillary allows for focused exposure of the surface to reactive oxygen at high mass flux and impingement energy of a supersonic gas stream localized to a small etching area exposed to electron beam. These unique benefits of focused supersonic oxygen delivery to the surface enable a dramatic increase in the etch rate of graphene with no parasitic carbon “halo” deposition due to secondary electrons from backscattered electrons (BSE) in the area surrounding the etched regions. Increase of jet temperature via local nozzle heating provides means for enhancing kinetic energy of impinging oxygen molecules, which further speed up the etch, thus minimizing the beam exposure time and required electron dose, before parasitic carbon film deposition due to BSE mediated decomposition of adsorbed hydrocarbon contaminants has a measurable impact on quality of graphene etched features. Interplay of different physical mechanisms underlying an oxygen micro-jet assisted FEBIE process is discussed with support from experimental observations.

  12. Laboratory modeling of standing shocks and radiatively cooled jets with angular momentum

    CERN Document Server

    Ampleford, D J; Ciardi, A; Bland, S N; Bott, S C; Hall, G N; Naz, N; Jennings, C A; Sherlock, M; Chittenden, J P; Palmer, J B A; Frank, A; Blackman, E

    2007-01-01

    The first laboratory astrophysics experiments to produce a radiatively cooled plasma jet with dynamically significant angular momentum are discussed. A new configuration of wire array z-pinch, the twisted conical wire array, is used to produce convergent plasma flows each rotating about the central axis. Collision of the flows produces a standing shock and jet that each have supersonic azimuthal velocities. By varying the twist angle of the array, the rotation velocity of the system can be controlled, with jet rotation velocities ~18% of the propagation velocity directly measured.

  13. Magnetic Probe to Study Plasma Jets for Magneto-Inertial Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Martens, Daniel [Los Alamos National Laboratory; Hsu, Scott C. [Los Alamos National Laboratory

    2012-08-16

    A probe has been constructed to measure the magnetic field of a plasma jet generated by a pulsed plasma rail-gun. The probe consists of two sets of three orthogonally-oriented commercial chip inductors to measure the three-dimensional magnetic field vector at two separate positions in order to give information about the magnetic field evolution within the jet. The strength and evolution of the magnetic field is one of many factors important in evaluating the use of supersonic plasma jets for forming imploding spherical plasma liners as a standoff driver for magneto-inertial fusion.

  14. Numerical study of jet noise radiated by turbulent coherent structures

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, F.

    1995-08-01

    a numerical approach of jet mixing noise prediction is presented, based on the assumption that the radiated sound field is essentially due to large-scale coherent turbulent structures. A semi-deterministic turbulence modelling is used to obtain the flow coherent fluctuations. This model is derived from the k-{epsilon} model and validated on the 2-D compressible shear layer case. Three plane jets at Mach 0.5, 1.33 and 2 are calculated. The semi-deterministic modelling yields a realistic unsteady representation of plane jets but not appropriate for axisymmetric jet computations. Lighthill`s analogy is used to estimate the noise radiated by the flow. Three integral formulations of the theory are compared and the most suitable one is expressed in space-time Fourier space. This formulation is associated to a geometrical interpretation of acoustic computations in (k, {omega}) plane. The only contribution of coherent structures cannot account for the high-frequency radiation of a subsonic jet and thus, the initial assumption is not verified in the subsonic range. The interpretation of Lighthill`s analogy in (k, {omega}) plane allows to conclude that the missing high-frequency components are due to the inner structure of the coherent motion. For supersonic jets, full acoustic spectra are obtained, at least in the forward arc where the dominant radiation is emitted. For the fastest jet (M = 2), no Mach waves are observed, which may be explained by a ratio of the structures convection velocity to the jet exit velocity lower in plane than in circular jets. This point is confirmed by instability theory calculations. Large eddy simulations (LES) were performed for subsonic jets. Data obtained in the plane jet case show that this technique allows only a slight improvement of acoustic results. To obtain a satisfactory high-frequency radiation, very fine grids should be considered, and the 2-D approximation could not be justified anymore. (Abstract Truncated)

  15. Acoustics of dual-stream high-speed jets

    Science.gov (United States)

    Debiasi, Marco Tullio

    2000-10-01

    This work presents the results of noise measurements in high-speed, round jets whose Mach number and velocity simulate the conditions of jet engines at take-off. The Mach number of the jet potential core ranged from 1.27 to 1.77 and the velocity ranged from 550 m/s to 1010 m/s. Most of the jets were silenced with a coflow that prevented the formation of Mach waves, a dominant contribution to supersonic jet noise. This method, called Mach Wave Elimination, relies on the shielding effect of the coflow which makes the motion of the eddies subsonic with respect to the surrounding streams, thus impeding the creation of Mach waves. Schlieren photography and pitot probe surveys were used to detect the principal features and the growth rate of the jets. Microphone measurements were performed inside an anechoic chamber at many positions around the jet exit. The results were corrected for the microphone response and for the effect of human sensitivity to sound. Equal-thrust comparison of different experimental results shows that elimination of Mach waves is very effective in reducing noise in the direction of strongest emission. Except for localized shock-associated components, noise emission was found to be insensitive to nozzle exit pressure and to depend principally on the values of fully-expanded Mach number and velocity in the jet potential core. Jets with a shorter Mach wave emitting region exhibited better noise suppression. Best results were obtained with an eccentric coflow that allows the shear layer of the upper part of the jet to grow naturally while silencing the jet in the downward direction. Coflows are capable of reducing the near-field screech peaks by up to 10 dB in imperfectly-expanded jets. Scaling the experimental results to a fall-size engine shows that eccentric coflows reduce the noise perceived in the direction of peak emission by up to 11 dB. Preliminary analysis of the application of this silencing technique to engine design indicates that Mach

  16. Controlling laser-induced jet formation for bioprinting mesenchymal stem cells with high viability and high resolution.

    Science.gov (United States)

    Ali, Muhammad; Pages, Emeline; Ducom, Alexandre; Fontaine, Aurelien; Guillemot, Fabien

    2014-09-12

    Laser-assisted bioprinting is a versatile, non-contact, nozzle-free printing technique which has demonstrated high potential for cell printing with high resolution. Improving cell viability requires determining printing conditions which minimize shear stress for cells within the jet and cell impact at droplet landing. In this context, this study deals with laser-induced jet dynamics to determine conditions from which jets arise with minimum kinetic energies. The transition from a sub-threshold regime to jetting regime has been associated with a geometrical parameter (vertex angle) which can be harnessed to print mesenchymal stem cells with high viability using slow jet conditions. Finally, hydrodynamic jet stability is also studied for higher laser pulse energies which give rise to supersonic but turbulent jets.

  17. Increase of the Density, Temperature and Velocity of Plasma Jets driven by a Ring of High Energy Laser Beams

    OpenAIRE

    Fu, Wen; Liang, Edison P.; Fatenejad, Milad; Lamb, Donald Q.; Grosskopf, Michael; Park, Hye-Sook; Remington, Bruce; Spitkovsky, Anatoly

    2012-01-01

    Supersonic plasma outflows driven by multi-beam, high-energy lasers, such as Omega and NIF, have been and will be used as platforms for a variety of laboratory astrophysics experiments. Here we propose a new way of launching high density and high velocity, plasma jets using multiple intense laser beams in a hollow ring formation. We show that such jets provide a more flexible and versatile platform for future laboratory astrophysics experiments. Using high resolution hydrodynamic simulations,...

  18. Re-Educating Jet-Engine-Researchers to Stay Relevant

    Science.gov (United States)

    Gal-Or, Benjamin

    2016-06-01

    To stay relevantly supported, jet-engine researchers, designers and operators should follow changing uses of small and large jet engines, especially those anticipated to be used by/in the next generation, JET-ENGINE-STEERED ("JES") fleets of jet drones but fewer, JES-Stealth-Fighter/Strike Aircraft. In addition, some diminishing returns from isolated, non-integrating, jet-engine component studies, vs. relevant, supersonic, shock waves control in fluidic-JES-side-effects on compressor stall dynamics within Integrated Propulsion Flight Control ("IPFC"), and/or mechanical JES, constitute key relevant methods that currently move to China, India, South Korea and Japan. The central roles of the jet engine as primary or backup flight controller also constitute key relevant issues, especially under post stall conditions involving induced engine-stress while participating in crash prevention or minimal path-time maneuvers to target. And when proper instructors are absent, self-study of the JES-STVS REVOLUTION is an updating must, where STVS stands for wing-engine-airframe-integrated, embedded stealthy-jet-engine-inlets, restructured engines inside Stealth, Tailless, canard-less, Thrust Vectoring IFPC Systems. Anti-terror and Airliners Super-Flight-Safety are anticipated to overcome US legislation red-tape that obstructs JES-add-on-emergency-kits-use.

  19. Jet Car Track Site

    Data.gov (United States)

    Federal Laboratory Consortium — Located in Lakehurst, New Jersey, the Jet Car Track Site supports jet cars with J57 engines and has a maximum jet car thrust of 42,000 pounds with a maximum speed of...

  20. Jet-Surface Interaction Test: Phased Array Noise Source Localization Results

    Science.gov (United States)

    Podboy, Gary

    2012-01-01

    Subsonic jets are relatively simple. The peak noise source location gradually moves upstream toward the nozzle as frequency increases. 2) Supersonic jets are more complicated. The peak noise source location moves downstream as frequency increases through a BBSN hump. 3) In both subsonic and supersonic jets the peak noise source location corresponding to a given frequency of noise moves downstream as jet Mach number increases. 4) The noise generated at a given frequency in a BBSN hump is generated by a small number of shocks, not from all the shocks at the same time. 5) Single microphone spectrum levels decrease when the noise source locations measured with the phased array are blocked by a shielding surface. This consistency validates the phased array data and the stationary monopole source model used to process it. 6) Reflecting surface data illustrate that the law of reflection must be satisfied for noise to reflect off a surface toward an observer. Depending on the relative locations of the jet, the surface and the observer only some of the jet noise sources may satisfy this requirement. 7) The low frequency noise created when a jet flow impinges on a surface comes primarily from the trailing edge regardless of the axial extent impacted by the flow.

  1. Experimental characterization of an argon laminar plasma jet at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Langlois-Bertrand, Emilie; De Izarra, Charles, E-mail: charles.de_izarra@univ-orleans.fr [Groupe de Recherche sur l' Energetique des Milieux Ionises, UMR6606 Universite d' Orleans - CNRS, Faculte des Sciences, Site de Bourges, rue Gaston Berger, BP 4043, 18028 BOURGES Cedex (France)

    2011-10-19

    This paper deals with a dc laminar pure argon plasma jet operating at atmospheric pressure in ambient air that was experimentally studied in order to obtain temperature and velocity. Plasma jet temperature was evaluated by optical emission spectroscopy and the plasma jet velocity was determined by various methods using a pressure sensor. It is shown that the maximum plasma jet temperature is 15 000 K and the maximum plasma jet velocity is 250 m s{sup -1} at the plasma jet centre. Finally, a study of the ambient air amount entrained into the plasma jet is presented.

  2. Supersonic Turbulent Boundary Layer: DNS and RANS

    Institute of Scientific and Technical Information of China (English)

    XU Jing-Lei; MA Hui-Yang

    2007-01-01

    We assess the performance of a few turbulence models for Reynolds averaged Navier-Stokes (RANS) simulation of supersonic boundary layers, compared to the direct numerical simulations (DNS) of supersonic flat-plate turbulent boundary layers, carried out by Gao et al. [Chin. Phys. Lett. 22 (2005) 1709] and Huang et al. [Sci.Chin. 48 (2005) 614], as well as some available experimental data. The assessment is made for two test cases, with incoming Mach numbers and Reynolds numbers M = 2.25, Re = 365, 000/in, and M = 4.5, Re - 1.7 × 107/m,respectively. It is found that in the first case the prediction of RANS models agrees well with the DNS and the experimental data, while for the second case the agreement of the DNS models with experiment is less satisfactory.The compressibility effect on the RANS models is discussed.

  3. Turbulent Shear Layers in Supersonic Flow

    CERN Document Server

    Smits, Alexander J

    2006-01-01

    A good understanding of turbulent compressible flows is essential to the design and operation of high-speed vehicles. Such flows occur, for example, in the external flow over the surfaces of supersonic aircraft, and in the internal flow through the engines. Our ability to predict the aerodynamic lift, drag, propulsion and maneuverability of high-speed vehicles is crucially dependent on our knowledge of turbulent shear layers, and our understanding of their behavior in the presence of shock waves and regions of changing pressure. Turbulent Shear Layers in Supersonic Flow provides a comprehensive introduction to the field, and helps provide a basis for future work in this area. Wherever possible we use the available experimental work, and the results from numerical simulations to illustrate and develop a physical understanding of turbulent compressible flows.

  4. Study of active cooling for supersonic transports

    Science.gov (United States)

    Brewer, G. D.; Morris, R. E.

    1975-01-01

    The potential benefits of using the fuel heat sink of hydrogen fueled supersonic transports for cooling large portions of the aircraft wing and fuselage are examined. The heat transfer would be accomplished by using an intermediate fluid such as an ethylene glycol-water solution. Some of the advantages of the system are: (1) reduced costs by using aluminum in place of titanium, (2) reduced cabin heat loads, and (3) more favorable environmental conditions for the aircraft systems. A liquid hydrogen fueled, Mach 2.7 supersonic transport aircraft design was used for the reference uncooled vehicle. The cooled aircraft designs were analyzed to determine their heat sink capability, the extent and location of feasible cooled surfaces, and the coolant passage size and spacing.

  5. Supersonic Motions of Galaxies in Clusters

    CERN Document Server

    Faltenbacher, A; Nagai, D; Gottlöber, S; Faltenbacher, Andreas; Kravtsov, Andrey V.; Nagai, Daisuke; Gottloeber, Stefan

    2004-01-01

    We study motions of galaxies in galaxy clusters formed in the concordance LCDM cosmology. We use high-resolution cosmological simulations that follow dynamics of dark matter and gas and include various physical processes critical for galaxy formation: gas cooling, heating and star formation. Analysing motions of galaxies and the properties of intracluster gas in the sample of eight simulated clusters at z=0, we study velocity dispersion profiles of the dark matter, gas, and galaxies. We measure the mean velocity of galaxy motions and gas sound speed as a function of radius and calculate the average Mach number of galaxy motions. The simulations show that galaxies, on average, move supersonically with the average Mach number of ~1.4, approximately independent of the cluster-centric radius. The supersonic motions of galaxies may potentially provide an important source of heating for the intracluster gas by driving weak shocks and via dynamical friction, although these heating processes appear to be inefficient ...

  6. Control of star formation by supersonic turbulence

    CERN Document Server

    MacLow, M M; Low, Mordecai-Mark Mac; Klessen, Ralf S.

    2004-01-01

    Understanding the formation of stars in galaxies is central to much of modern astrophysics. For several decades it has been thought that stellar birth is primarily controlled by the interplay between gravity and magnetostatic support, modulated by ambipolar diffusion. Recently, however, both observational and numerical work has begun to suggest that support by supersonic turbulence rather than magnetic fields controls star formation. In this review we outline a new theory of star formation relying on the control by turbulence. We demonstrate that although supersonic turbulence can provide global support, it nevertheless produces density enhancements that allow local collapse. Inefficient, isolated star formation is a hallmark of turbulent support, while efficient, clustered star formation occurs in its absence. The consequences of this theory are then explored for both local star formation and galactic scale star formation. (Abstract abbreviated)

  7. Laser spectroscopy of hydrocarbon radicals

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P. [Harvard Univ., Cambridge, MA (United States)

    1993-12-01

    The author reports the application of supersonic jet flash pyrolysis to the specific preparation of a range of organic radicals, biradicals, and carbenes in a skimmed molecular beam. Each species was produced cleanly and specifically, with little or no secondary reactions by the thermal dissociation of appropriately designed and synthesized organic precursors. Photoelectron spectra of the three isomeric C{sub 3}H{sub 2} carbenes, ortho-benzyne, and the {alpha},3-dehydrotoluene biradical, were used to establish adiabatic ionization potentials for use in thermochemical determinations.

  8. Chemically reacting supersonic flow calculation using an assumed PDF model

    Science.gov (United States)

    Farshchi, M.

    1990-01-01

    This work is motivated by the need to develop accurate models for chemically reacting compressible turbulent flow fields that are present in a typical supersonic combustion ramjet (SCRAMJET) engine. In this paper the development of a new assumed probability density function (PDF) reaction model for supersonic turbulent diffusion flames and its implementation into an efficient Navier-Stokes solver are discussed. The application of this model to a supersonic hydrogen-air flame will be considered.

  9. Research of low boom and low drag supersonic aircraft design

    OpenAIRE

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment...

  10. On Stability of Targets for Plasma Jet Induced Magnetoinertial Fusion

    CERN Document Server

    Samulyak, Roman; Kim, Hyoungekun

    2015-01-01

    The compression and stability of plasma targets for the plasma jet-induced magneto-inertial fusion (PJMIF) have been investigated via large scale simulations using the FronTier code capable of explicit tracking of material interfaces. In the PJMIF concept, a plasma liner, formed by the merger of a large number of radial, highly supersonic plasma jets, implodes on a magnetized plasma target and compresses it to conditions of the fusion ignition. A multi-stage computational approach for simulations of the liner-target interaction and the compression of plasma targets has been developed to minimize computing time. Simulations revealed important features of the target compression process, including instability and disintegration of targets. The non-uniformity of the leading edge of the liner, caused by plasma jets as well as oblique shock waves between them, leads to instabilities during the target compression. By using front tracking, the evolution of targets has been studied in 3-dimensional simulations. Optimi...

  11. Supersonic and subsonic measurements of mesospheric ionization.

    Science.gov (United States)

    Hale, L. C.; Nickell, L. C.; Kennedy, B.; Powell, T. A.

    1972-01-01

    An Arcas rocket-parachute system was used at night to compare supersonic and subsonic ionization measurements below 75 km. A hemispherical nose-tip probe was used on ascent and a parachute-borne blunt probe on descent to measure polar conductivities, which were due entirely to positive and negative ions. The velocity of the supersonic probe was Mach 2.5 at 50 km and 1.75 at 70 km; the blunt probe was subsonic below 71 km. Between 65 and 75 km the ratio of negative to positive conductivities (and thus of mobilities) determined by the blunt probe was about 1.2, and it approached 1 below this altitude range. The ratio obtained by the nose-tip probe varied from 1.5 at 75 km to .6 at 65 km, thus indicating a rapid variation of the effects of the shock wave on the sampled ions. The absolute values of positive conductivity measured subsonically and supersonically were essentially identical from 60 to 75 km, indicating that the sampled ions were unchanged by the shock. However, below 60 km the shock apparently 'broke up' the positive ions, as indicated by higher measured conductivities.

  12. Supersonic Gas-Liquid Cleaning System

    Science.gov (United States)

    Kinney, Frank

    1996-01-01

    The Supersonic Gas-Liquid Cleaning System Research Project consisted mainly of a feasibility study, including theoretical and engineering analysis, of a proof-of-concept prototype of this particular cleaning system developed by NASA-KSC. The cleaning system utilizes gas-liquid supersonic nozzles to generate high impingement velocities at the surface of the device to be cleaned. The cleaning fluid being accelerated to these high velocities may consist of any solvent or liquid, including water. Compressed air or any inert gas is used to provide the conveying medium for the liquid, as well as substantially reduce the total amount of liquid needed to perform adequate surface cleaning and cleanliness verification. This type of aqueous cleaning system is considered to be an excellent way of conducting cleaning and cleanliness verification operations as replacements for the use of CFC 113 which must be discontinued by 1995. To utilize this particular cleaning system in various cleaning applications for both the Space Program and the commercial market, it is essential that the cleaning system, especially the supersonic nozzle, be characterized for such applications. This characterization consisted of performing theoretical and engineering analysis, identifying desirable modifications/extensions to the basic concept, evaluating effects of variations in operating parameters, and optimizing hardware design for specific applications.

  13. Skin Friction and Pressure Measurements in Supersonic Inlets Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Supersonic propulsion systems include internal ducts, and therefore, the flow often includes shock waves, shear layers, vortices, and separated flows. Passive flow...

  14. Inclusive Jets in PHP

    Science.gov (United States)

    Roloff, P.

    Differential inclusive-jet cross sections have been measured in photoproduction for boson virtualities Q^2 < 1 GeV^2 with the ZEUS detector at HERA using an integrated luminosity of 300 pb^-1. Jets were identified in the laboratory frame using the k_T, anti-k_T or SIScone jet algorithms. Cross sections are presented as functions of the jet pseudorapidity, eta(jet), and the jet transverse energy, E_T(jet). Next-to-leading-order QCD calculations give a good description of the measurements, except for jets with low E_T(jet) and high eta(jet). The cross sections have the potential to improve the determination of the PDFs in future QCD fits. Values of alpha_s(M_Z) have been extracted from the measurements based on different jet algorithms. In addition, the energy-scale dependence of the strong coupling was determined.

  15. Interaction between Two-Dimensional Sonic Jets and Supersonic Flow to Model Heat Addition in a Supersonic Combustor.

    Science.gov (United States)

    1987-12-01

    Systems Officer in the F-4 and Electronic Warfare Officer in the F- 4G , Wild Weasel with tours in Germany and tGeorge AFB, California. He attended Bible...Cape Canaveral, Florida. Permanent Address: 8400 Cascade Union Lake, Michigan 48085 98 UNCLASSIFIED SECURIT CLASSIFICATION OF THIS PAGE REPORT

  16. The Role of Tip Geometry in the Initiation of Explosives by Shaped Charge Jet

    Science.gov (United States)

    James, H. R.

    2004-07-01

    Shaped charge designs are shown to give a surprisingly consistent bimodal geometric effect when initiating bare or thinly cased explosives. Results from jets, when compared to those from regular projectile impacts, show that they behave either as a flat- or round-nosed rod. Experiments with TATB-based explosives confirm this dichotomy. This geometric divergence disappears for thick-cased targets, or for very small diameter jets. In those instances the jet requires a supersonic penetration regime in order to achieve initiation, and in this regime all jets behave as round-nosed rods, or (for small jets) show a tendency towards this behaviour. These changes in behaviour are consistent with a change of initiation mode in going from an impact shock mechanism for the geometry-dependent regime, to a bow shock for the mode that is independent of geometry.

  17. Correlations Between Large-scale Flow Structures and Acoustic Signatures in an Axisymmetric Jet

    Science.gov (United States)

    Magstadt, Andrew; Berry, Matthew; Berger, Zachary; Shea, Patrick; Glauser, Mark

    2014-11-01

    In a test campaign studying jet noise, simultaneous far-field acoustic measurements and near-field particle imaging velocimetry (PIV) data were sampled from a supersonic underexpanded axisymmetric jet operating at a Reynolds number of 1.3×106 . Using overlapping snapshots from three adjacent cameras, separate images of the velocity field were stitched together to form an uninterrupted window. Centered about the axis of the jet, the effective field of view spanned two jet diameters in the cross-stream direction (r) and seven diameters in the streamwise direction (z) . This area proved to be sufficiently large to capture important scales of supersonic flow relevant to noise generation. Specifically, Proper Orthogonal Decomposition (POD) has extracted particular energy modes thought to be associated with the large-scale instability wave, shock cells, and turbulent mixing characteristic of supersonic noise. As example, time-dependent modal correlations present evidence linking the existence of shock cells to screech tones. From the data gathered, these experimental and analytical techniques are believed to be valuable tools in isolating energy-based flow structures relevant to noise generation. The authors would like to thank Spectral Energies for their continued support of research at Syracuse University.

  18. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    Science.gov (United States)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  19. The Jet Experiments in Nuclear Structure and Astrophysics (JENSA) gas jet target

    Energy Technology Data Exchange (ETDEWEB)

    Chipps, K.A., E-mail: kchipps@nuclearemail.org [Physics Department, Colorado School of Mines, Golden, CO 80401 (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Greife, U. [Physics Department, Colorado School of Mines, Golden, CO 80401 (United States); Bardayan, D.W. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Physics Department, University of Notre Dame, Notre Dame, IN 46556 (United States); Blackmon, J.C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Kontos, A. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre Dame, IN 46556 (United States); Linhardt, L.E. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Matos, M. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pain, S.D. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Pittman, S.T.; Sachs, A. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Schatz, H. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Schmitt, K.T. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Smith, M.S. [Physics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Thompson, P. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States)

    2014-11-01

    New radioactive ion beam (RIB) facilities will push further away from stability and enable the next generation of nuclear physics experiments. Of great importance to the future of RIB physics are scattering, transfer, and capture reaction measurements of rare, exotic, and unstable nuclei on light targets such as hydrogen and helium. These measurements require targets that are dense, highly localized, and pure. Targets must also accommodate the use of large area silicon detector arrays, high-efficiency gamma arrays, and heavy ion detector systems to efficiently measure the reaction products. To address these issues, the Jet Experiments in Nuclear Structure and Astrophysics (JENSA) Collaboration has designed, built, and characterized a supersonic gas jet target, capable of providing gas areal densities on par with commonly used solid targets within a region of a few millimeters diameter. Densities of over 5×10{sup 18} atoms/cm{sup 2} of helium have been achieved, making the JENSA gas jet target the most dense helium jet achieved so far.

  20. On the Scaling of Small, Heat Simulated Jet Noise Measurements to Moderate Size Exhaust Jets

    Science.gov (United States)

    McLaughlin, Dennis K.; Bridges, James; Kuo, Ching-Wen

    2010-01-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions, depending on the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center- in partnership with GE Aviation is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to validate methodology for using data obtained from small and moderate scale experiments to reliably predict the most important components of full scale engine noise. The experimental results presented show reasonable agreement between small scale and moderate scale jet acoustic data, as well as between heated jets and heat-simulated ones. Unresolved issues however are identified that are currently receiving our attention, in particular the effect of the small bypass ratio airflow. Future activities will identify and test promising noise reduction techniques in an effort to predict how well such concepts will work with full scale engines in flight conditions.

  1. ?Linear Gas Jet with Tailored Density Profile"

    Energy Technology Data Exchange (ETDEWEB)

    KRISHNAN, Mahadevan

    2012-12-10

    Supersonic, highly collimated gas jets and gas-filled capillary discharge waveguides are two primary targets of choice for Laser Plasma Accelerators (LPA) . Present gas jets have lengths of only 2-4 mm at densities of 1-4E19 cm-3, sufficient for self trapping and electron acceleration to energies up to ~150 MeV. Capillary structures 3 cm long have been used to accelerate beams up to 1 GeV. Capillary discharges used in LPAs serve to guide the pump laser and optimize the energy gain. A wall-stabilized capillary discharge provides a transverse profile across the channel that helps guide the laser and combat diffraction. Gas injection via a fast nozzle at one end provides some longitudinal density control, to improve the coupling. Gas jets with uniform or controlled density profiles may be used to control electron bunch injection and are being integrated into capillary experiments to add tuning of density. The gas jet for electron injection has not yet been optimized. Our Ph-I results have provided the LPA community with an alternative path to realizing a 2-3GeV electron bunch using just a gas jet. For example, our slit/blade combination gives a 15-20mm long acceleration path with tunable density profile, serving as an alternative to a 20-mm long capillary discharge with gas injection at one end. In Ph-II, we will extend these results to longer nozzles, to see whether we can synthesize 30 or 40-mm long plasma channels for LPAs.

  2. Low Density Supersonic Decelerator (LDSD) Supersonic Flight Dynamics Test (SFDT) Plume Induced Environment Modelling

    Science.gov (United States)

    Mobley, B. L.; Smith, S. D.; Van Norman, J. W.; Muppidi, S.; Clark, I

    2016-01-01

    Provide plume induced heating (radiation & convection) predictions in support of the LDSD thermal design (pre-flight SFDT-1) Predict plume induced aerodynamics in support of flight dynamics, to achieve targeted freestream conditions to test supersonic deceleration technologies (post-flight SFDT-1, pre-flight SFDT-2)

  3. Investigation on the pressure matching performance of the constant area supersonic-supersonic ejector

    Directory of Open Access Journals (Sweden)

    Chen Jian

    2015-01-01

    Full Text Available The pressure matching performance of the constant area supersonic-supersonic ejector has been studied by varying the primary and secondary Mach numbers. The effect of the primary fluid injection configurations in ejector, namely peripheral and central, has been investigated as well. Schlieren pictures of flow structure in the former part of the mixing duct with different stagnation pressure ratio of the primary and secondary flows have been taken. Pressure ratios of the primary and secondary flows at the limiting condition have been obtained from the results of pressure and optical measurements. Additionally, a computational fluid dynamics analysis has been performed to clarify the physical meaning of the pressure matching performance diagram of the ejector. The obtained results show that the pressure matching performance of the constant area supersonic-supersonic ejector increases with the increase of the secondary Mach number, and the performance decreases slightly with the increase of the primary Mach number. The phenomenon of boundary layer separation induced by shock wave results in weaker pressure matching performance of the central ejector than that of the peripheral one. Furthermore, based on the observations of the experiment, a simplified analytical model has been proposed to predict the limiting pressure ratio, and the predicted values obtained by this model agree well with the experimental data.

  4. Spreading of Exhaust Jet from 16 Inch Ream Jet at Mach Number 2.0 / Fred Wilcox, Donald Pennington

    Science.gov (United States)

    Wilcox, Fred; Pennington, Donald

    1952-01-01

    An investigation of the jet-spreading characteristics of a 16 inch ram-jet engine was conducted in the 8 by 6 foot supersonic tunnel at a Mach number of 2.0; both a converging nozzle having a contraction ratio of 0.71 and a cylindrical extension to the combustion chamber were used. The jet boundaries determined by means of pitot pressure surveys were compared with boundaries calculated from one-dimensional continuity and momentum relations. For the cylindrical nozzle, the jet reaches its maximum diameter, 4 percent greater than calculated, about 0.6 nozzle-exit diameter downstream of the nozzle exit. The maximum diameter for the converging nozzle was 7 percent greater than calculated from one dimensional relations and occurred from 1 to 1.5 nozzle-exit diameters downstream of the exit. Non dimensional maximum jet diameters agreed closely with results of an investigation by Rousso and Baughman; these data were obtained with low-temperature jets exhausting into a stream at a Mach number of 1.91 from nozzles having exit diameters of 0.75 inch.

  5. The Giant Jet

    Science.gov (United States)

    Neubert, T.; Chanrion, O.; Arnone, E.; Zanotti, F.; Cummer, S.; Li, J.; Füllekrug, M.; van der Velde, O.

    2012-04-01

    Thunderstorm clouds may discharge directly to the ionosphere in spectacular luminous jets - the longest electric discharges on our planet. The electric properties of jets, such as their polarity, conductivity, and currents, have been predicted by models, but are poorly characterized by measurements. Here we present an analysis of the first gigantic jet that with certainty has a positive polarity. The jet region in the mesosphere was illuminated by an unusual sprite discharge generated by a positive cloud-to-ground lightning flash shortly after the onset of the jet. The sprite appeared with elements in a ring at ~40 km distance around the jet, the elements pointing curving away from the jet. This suggests that the field close the jet partially cancels the field driving the sprite. From a simple model of the event we conclude that a substantial portion of the positive cloud potential must be carried to ~50 km altitude, which is also consistent with the observed channel expansion and the electromagnetic radiation associated with the jet. It is further shown that blue jets are likely to substantially modify the free electron content in the lower ionosphere because of increased electron attachment driven by the jet electric field. The model further makes clear the relationship between jets, gigantic jets, and sprites. This is the first time that sprites are used for sounding the properties of the mesosphere. The observations presented here will allow evaluation of theories for jet and gigantic jet generation and of their influence on the atmosphere-ionosphere system.

  6. High speed titanium coating by Supersonic Laser Deposition

    OpenAIRE

    LUPOI, ROCCO

    2011-01-01

    PUBLISHED The importance of metal coating technologies drives the continuous improvement of metal deposition techniques for application in a wide range of industrial sectors. This work presents the foundations of a new process technology f or the deposition of t itanium coatings on steel tube substrates using supersonic powder streams and impact site laser heating , known as Supersonic Laser Deposition (SLD). M et...

  7. Quasi-DC electrical discharge characterization in a supersonic flow

    Science.gov (United States)

    Houpt, Alec; Hedlund, Brock; Leonov, Sergey; Ombrello, Timothy; Carter, Campbell

    2017-04-01

    A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M = 2, stagnation pressure P 0 = (0.9-2.6) × 105 Pa, stagnation temperature T 0 = 300 K, unit Reynolds number ReL = 7-25 × 106 m-1, and plasma power W pl = 3-21 kW. The plasma parameters are measured with current-voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave-boundary layer interaction.

  8. Ion heat transport studies in JET

    DEFF Research Database (Denmark)

    Mantica, P; Angioni, C; Baiocchi, B

    2011-01-01

    Detailed experimental studies of ion heat transport have been carried out in JET exploiting the upgrade of active charge exchange spectroscopy and the availability of multi-frequency ion cyclotron resonance heating with 3He minority. The determination of ion temperature gradient (ITG) threshold a...

  9. Computational investigation of powder coating of nanoparticles in supersonic and hypersonic impactors

    Institute of Scientific and Technical Information of China (English)

    Nima Niksefat; Mousa Farhadi; Kurosh Sedighi; Salman Nourouzi

    2013-01-01

    In this study,numerical simulation of flow field in a supersonic/hypersonic impactor with one or two nozzles was carried out using a commercial computational fluid dynamics (CFD) software FLUENT.The objective was to investigate the effects of working parameters such as pressure ratio (50 < Po/Pb < 800),nozzle diameters (D=0.23,0.27,0.45 mm),nozzle to plate distance (0.5 < L/D< 50),particle diameter (1 nm< dp < 100 nm) and angle between two nozzles.A single-phase 3D unsteady-state model was implemented by the software.For this purpose,a user-defined function (UDF) was employed to implement nanoparticles for different assumptions of Cunningham correction factor.An axisymmetric form of the compressible Navier-Stokes and energy equations was used for both fluid flow and temperature;Lagrangian particle trajectory analysis was used for particle motion.Using the variable Cunningham correction factor showed suitable agreement with experimental data in comparison with other methods.Results show that increase of the distance between nozzle and impaction plate causes increase of Mach number,the distance between bow shock and impaction plate,and the collection efficiency.Maximum jet velocity,distance between bow shock and impaction plate and collection efficiency increase by using two nozzles in supersonic and hypersonic impactors.

  10. Plume and Shock Interaction Effects on Sonic Boom in the 1-foot by 1-foot Supersonic Wind Tunnel

    Science.gov (United States)

    Castner, Raymond; Elmiligui, Alaa; Cliff, Susan; Winski, Courtney

    2015-01-01

    The desire to reduce or eliminate the operational restrictions of supersonic aircraft over populated areas has led to extensive research at NASA. Restrictions are due to the disturbance of the sonic boom, caused by the coalescence of shock waves formed by the aircraft. A study has been performed focused on reducing the magnitude of the sonic boom N-wave generated by airplane components with a focus on shock waves caused by the exhaust nozzle plume. Testing was completed in the 1-foot by 1-foot supersonic wind tunnel to study the effects of an exhaust nozzle plume and shock wave interaction. The plume and shock interaction study was developed to collect data for computational fluid dynamics (CFD) validation of a nozzle plume passing through the shock generated from the wing or tail of a supersonic vehicle. The wing or tail was simulated with a wedgeshaped shock generator. This test entry was the first of two phases to collect schlieren images and off-body static pressure profiles. Three wedge configurations were tested consisting of strut-mounted wedges of 2.5- degrees and 5-degrees. Three propulsion configurations were tested simulating the propulsion pod and aft deck from a low boom vehicle concept, which also provided a trailing edge shock and plume interaction. Findings include how the interaction of the jet plume caused a thickening of the shock generated by the wedge (or aft deck) and demonstrate how the shock location moved with increasing nozzle pressure ratio.

  11. Laser Induced Fluorescence Spectroscopy of Neutral and Ionized Polycyclic Aromatic Hydrocarbons in the Cosmic Simulation Chamber

    Science.gov (United States)

    Bejaoui, Salma; Salama, Farid; Contreras, Cesar; Sciamma O'Brien, Ella; Foing, Bernard; Pascale, Ehrenfreund

    2015-01-01

    Polycyclic aromatic hydrocarbon (PAH) molecules are considered the best carriers to account for the ubiquitous infrared emission bands. PAHs have also been proposed as candidates to explain the diffuse interstellar bands (DIBs), a series of absorption features seen on the interstellar extinction curve and are plausible carriers for the extended red emission (ERE), a photoluminescent process associated with a wide variety of interstellar environments. Extensive efforts have been devoted over the past two decades to characterize the physical and chemical properties of PAH molecules and ions in space. Absorption spectra of PAH molecules and ions trapped in solid matrices have been compared to the DIBs. Absorption spectra of several cold, isolated gas-phase PAHs have also been measured under experimental conditions that mimic the interstellar conditions. The purpose of this study is to provide a new dimension to the existing spectroscopic database of neutral and single ionized PAHs that is largely based on absorption spectra by adding emission spectroscopy data. The measurements are based on the laser induced fluorescence (LIF) technique and are performed with the Pulsed Discharge Nozzle (PDN) of the COSmIC laboratory facility at NASA Ames laboratory. The PDN generates a plasma in a free supersonic jet expansion to simulate the physical and the chemical conditions in interstellar environments. We focus, here, on the fluorescence spectra of large neutral PAHs and their cations where there is a lack of fluorescence spectroscopy data. The astronomical implications of the data (e.g., ERE) are examined.

  12. Review:Progress in research on mixing techniques for transverse injection flow fields in supersonic crossflows

    Institute of Scientific and Technical Information of China (English)

    Wei HUANG; Li YAN

    2013-01-01

    The transverse injection flow field has an important impact on the flowpath design of scramjet engines.At present a combination of the transverse injection scheme and any other flame holder has been widely employed in hypersonic propulsion systems to promote the mixing process between the fuel and the supersonic freestream;combustion efficiency has been improved thereby,as well as engine thrust.Research on mixing techniques for the transverse injection flow field is summarized from four aspects,namely the jet-to-crossflow pressure ratio,the geometric configuration of the injection port,the number of injection ports,and the injection angle.In conclusion,urgent investigations of mixing techniques of the transverse injection flow field are proposed,especially data mining in the quantitative analytical results for transverse injection flow field,based on results from multi-objective design optimization theory.

  13. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  14. The influence of boundary layers on supersonic inlet flow unstart induced by mass injection

    Science.gov (United States)

    Do, Hyungrok; Im, Seong-Kyun; Mungal, M. Godfrey; Cappelli, Mark A.

    2011-09-01

    A transverse jet is injected into a supersonic model inlet flow to induce unstart. Planar laser Rayleigh scattering from condensed CO2 particles is used to visualize flow dynamics during the unstart process, while in some cases, wall pressure traces are simultaneously recorded. Studies conducted over a range of inlet configurations reveal that the presence of turbulent wall boundary layers strongly affect the unstart dynamics. It is found that relatively thick turbulent boundary layers in asymmetric wall boundary layer conditions prompt the formation of unstart shocks; in symmetric boundary conditions lead to the propagation of pseudo-shocks; and in both cases facilitate fast inlet unstart, when compared with thin, laminar boundary layers. Incident shockwaves and associated reflections are found to affect the speed of pressure disturbances. These disturbances, which induce boundary layer separation, are found to precede the formation of unstart shocks. The results confirm the importance of and need to better understand shock-boundary layer interactions in inlet unstart dynamics.

  15. Design features of a low-disturbance supersonic wind tunnel for transition research at low supersonic Mach numbers

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.; King, Lyndell S.; Reda, Daniel C.

    1992-01-01

    A unique, low-disturbance supersonic wind tunnel is being developed at NASA-Ames to support supersonic laminar flow control research at cruise Mach numbers of the High Speed Civil Transport (HSCT). The distinctive design features of this new quiet tunnel are a low-disturbance settling chamber, laminar boundary layers along the nozzle/test section walls, and steady supersonic diffuser flow. This paper discusses these important aspects of our quiet tunnel design and the studies necessary to support this design. Experimental results from an 1/8th-scale pilot supersonic wind tunnel are presented and discussed in association with theoretical predictions. Natural laminar flow on the test section walls is demonstrated and both settling chamber and supersonic diffuser performance is examined. The full-scale wind tunnel should be commissioned by the end of 1993.

  16. Analysis of Nozzle Jet Plume Effects on Sonic Boom Signature

    Science.gov (United States)

    Bui, Trong

    2010-01-01

    An axisymmetric full Navier-Stokes computational fluid dynamics (CFD) study was conducted to examine nozzle exhaust jet plume effects on the sonic boom signature of a supersonic aircraft. A simplified axisymmetric nozzle geometry, representative of the nozzle on the NASA Dryden NF-15B Lift and Nozzle Change Effects on Tail Shock (LaNCETS) research airplane, was considered. The highly underexpanded nozzle flow is found to provide significantly more reduction in the tail shock strength in the sonic boom N-wave pressure signature than perfectly expanded and overexpanded nozzle flows. A tail shock train in the sonic boom signature, similar to what was observed in the LaNCETS flight data, is observed for the highly underexpanded nozzle flow. The CFD results provide a detailed description of the nozzle flow physics involved in the LaNCETS nozzle at different nozzle expansion conditions and help in interpreting LaNCETS flight data as well as in the eventual CFD analysis of a full LaNCETS aircraft. The current study also provided important information on proper modeling of the LaNCETS aircraft nozzle. The primary objective of the current CFD research effort was to support the LaNCETS flight research data analysis effort by studying the detailed nozzle exhaust jet plume s imperfect expansion effects on the sonic boom signature of a supersonic aircraft. Figure 1 illustrates the primary flow physics present in the interaction between the exhaust jet plume shock and the sonic boom coming off of an axisymmetric body in supersonic flight. The steeper tail shock from highly expanded jet plume reduces the dip of the sonic boom N-wave signature. A structured finite-volume compressible full Navier-Stokes CFD code was used in the current study. This approach is not limited by the simplifying assumptions inherent in previous sonic boom analysis efforts. Also, this study was the first known jet plume sonic boom CFD study in which the full viscous nozzle flow field was modeled, without

  17. Experimental study of jet gas-particle interaction generated during explosive volcanic eruptions

    Science.gov (United States)

    Medici, E. F.; Waite, G. P.

    2014-12-01

    During violent volcanic eruptions, a shock wave may be generated that is immediately followed by the formation of a supersonic jet. The overpressurized vapor-solid-liquid mixture being ejected begins to expand and accelerate. Oblique shock waves and rarefaction waves are generated at the edge of the crater. The oblique shock waves, inclined relatively to the flow axis, intersect forming a structure called a "Mach disk" or "Mach diamond". This pattern repeats until the jet decelerates into subsonic flow. In an explosive volcanic eruption, unlike other applications involving jets, a mixture of hot gas and solid particles is present. The mixture typically contains a relatively high percentage of solid particles of different sizes. The relationship between jet and particle is one the major parameters affecting the formation of ash plume dynamics and the pyroclastic flows. Therefore, a more comprehensive study is needed in order to understand the mixing occurring within the volcanic eruption jet, specifically, the effect of particle size and concentration. In this work, a series of analog explosive volcanic experiments using an atmospheric shock tube are performed to generate supersonic jets. High-speed video imaging of the expanding jet as well as the pressure evolution at different points in space are recorded for different values of initial energy and particle sizes and concentrations. Particles of different sizes and in various concentrations are placed inside the jet stream in which all the environmental conditions are monitored. Understanding of the coupling between the particles and the jet dynamics interaction is the first step toward a more thorough understanding of ash plume dynamics and the pyroclastic flows formation.

  18. Jet Cooled Rotational Studies of Dipeptides

    Science.gov (United States)

    Cabezas, C.; Mata, M. Varela S.; López, J. C.; Alonso, J. L.

    2011-06-01

    Rotational spectra of Gly-Pro and Pro-Gly dipeptides have been examined with laser ablation molecular beam Fourier transform microwave (LA-MB-FTMW) spectroscopy. Three conformers for Gly-Pro and one for Pro-Gly have been unequivocally identified in the supersonic expansion by the comparison of the experimental rotational and 14N (I=1) nuclear quadrupole coupling constants with those predicted by ab initio methods. The quadrupole hyperfine structure of two 14N nuclei has been totally resolved and it allows to experimentally characterize the main intramolecular forces which stabilize the assigned conformers. The biomimetic molecule Ac-Ala-NH_2 has been also studied. The C_7 and C_5 peptide conformations (intramolecularly hydrogen-bonded seven- or five-membered cycle, respectively) have been unequivocally identified in the supersonic expansion. The ability to identify peptide conformations suggest that it soon may be possible to explore the structures of larger peptides using LA-MB-FTMW spectroscopy. J. L. Alonso, C. Pérez, M. E. Sanz, J. C. López, S. Blanco, Phys. Chem. Chem. Phys. 11,617-627 (2009)and references therein

  19. Numerical simulation of supersonic gap flow.

    Science.gov (United States)

    Jing, Xu; Haiming, Huang; Guo, Huang; Song, Mo

    2015-01-01

    Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  20. Numerical simulation of supersonic gap flow.

    Directory of Open Access Journals (Sweden)

    Xu Jing

    Full Text Available Various gaps in the surface of the supersonic aircraft have a significant effect on airflows. In order to predict the effects of attack angle, Mach number and width-to-depth ratio of gap on the local aerodynamic heating environment of supersonic flow, two-dimensional compressible Navier-Stokes equations are solved by the finite volume method, where convective flux of space term adopts the Roe format, and discretization of time term is achieved by 5-step Runge-Kutta algorithm. The numerical results reveal that the heat flux ratio is U-shaped distribution on the gap wall and maximum at the windward corner of the gap. The heat flux ratio decreases as the gap depth and Mach number increase, however, it increases as the attack angle increases. In addition, it is important to find that chamfer in the windward corner can effectively reduce gap effect coefficient. The study will be helpful for the design of the thermal protection system in reentry vehicles.

  1. Transient analysis of counterflowing jet over highly blunt cone in hypersonic flow

    Science.gov (United States)

    Barzegar Gerdroodbary, M.; Bishehsari, Shervin; Hosseinalipour, S. M.; Sedighi, K.

    2012-04-01

    Understanding the characteristics of various Counterflowing jets exiting from a nose cone is crucial for determining heat load reduction and usage of this device in various conditions. Such jets can undergo several flow regimes during venting, from initial supersonic flow, to transonic, to subsonic flow regimes as the pressure of jet decreases. A bow shock wave is a characteristic flow structure during the initial stage of the jet development, and this paper focuses on the development of the bow shock wave and the jet structure behind it. The transient behavior of a sonic counterflow jet is investigated using unsteady, axisymmetric Navier-Stokes solved with SST turbulence model at free stream Mach number of 5.75. The coolant gas (Carbon Dioxide and Helium) is chosen to inject into the hypersonic air flow at the nose of the model. The gases are considered to be ideal, and the computational domain is axisymmetric. The jet structure, including the shock wave and flow separation due to an adverse pressure gradient at the nose is investigated with a focus on the differences between high diffusivity coolant jet (Helium) and low diffusivity coolant jet (CO2) flow scenarios.

  2. Rotationally-Resolved Infrared Spectroscopy of the νb{16} Band of 1,3,5-TRIOXANE

    Science.gov (United States)

    Gibson, Bradley M.; Koeppen, Nicole; McCall, Benjamin J.

    2015-06-01

    1,3,5-trioxane is the simplest cyclic form of polyoxymethylene (POM), a class of formaldehyde polymers that has been proposed as the origin of distributed formaldehyde formation in comet comae and a potential source of formaldehyde in prebiotic chemistry. Although claimed POM detections have since been proven to be inconclusive, laboratory simulations of cometary conditions have yielded trioxane and other POMs While the microwave spectrum of 1,3,5-trioxane has been studied extensively, 4-7.}, to date only one rotationally-resolved ro-vibrational spectrum has been published. Here, we present our studies of the νb{16} band of gas-phase trioxane centered at 1177 wn. Trioxane was entrained in a supersonic expansion of argon and characterized by continuous-wave cavity ringdown spectroscopy using an etalon-stabilized external-cavity quantum cascade laser. Rotationally resolved spectra were obtained with less than 15 MHz resolution. Cottin, H., Bénilan, Y., Gazeau, M-C., and Raulin, F. Origin of Cometary Extended Sources from Degradation of Refractory Organics on Grains: Polyoxymethylene as Formaldehyde Parent Molecule. Icarus 167 (2004), 397-416. Oka, T., Tsuchiya, K., Iwata, S., and Morino, Y. Microwave Spectrum of s-Trioxane. Bull. Chem. Soc. Jpn. 37 (1964), 4-7. Henninot, J-F., Bolvin, H., Demaison, J., and Lemoine, B. The Infrared Spectrum of Trioxane in a Supersonic Slit Jet. J. Mol. Spect. 152 (1992), 62-68. Gibson, B.M. and McCall, B.J., contribution TJ08, presented at the 69th International Symposium on Molecular Spectroscopy, Urbana, IL, USA, 2014.

  3. The far infrared spectrum of naphthalene characterized by high resolution synchrotron FTIR spectroscopy and anharmonic DFT calculations.

    Science.gov (United States)

    Pirali, O; Goubet, M; Huet, T R; Georges, R; Soulard, P; Asselin, P; Courbe, J; Roy, P; Vervloet, M

    2013-07-07

    Using synchrotron radiation, we performed the rotationally resolved Fourier transform infrared absorption spectroscopy of three bands of naphthalene C10H8, namely ν(46)-0 (centered at 782 cm(-1), 12.7 μm), ν(47)-0 (centered at 474 cm(-1), 21 μm), and ν(48)-0 (centered at 167 cm(-1), 60 μm). The intense CH bending out of plane ν(46)-0 band was recorded under supersonic jet-cooled conditions using a molecular beam (the Jet-AILES apparatus) and the low frequency ν(47)-0 and ν(48)-0 bands were measured at room temperature in a long absorption path cell. The simultaneous rotational analysis of these bands permitted us to refine the ground state (GS) and ν(46) rotational spectroscopic constants and to provide the first sets of constants for the ν(47) and ν(48) modes. The experimental rotational constants were then used as reference data to calibrate theoretical models in order to provide new insights into the accuracy of anharmonic calculations. The B97-1 functional associated with the cc-pVTZ and ANO-RCC basis sets gave a consistent set of results, for rotational constants and fundamental frequencies. The data presented here pave the way for the search of naphthalene through its far-infrared spectrum in different objects of the interstellar medium.

  4. Numerical prediction of flow induced noise in free jets of high Mach numbers

    OpenAIRE

    Schönrock, Olaf

    2009-01-01

    A direct aeroacoustic simulation methodology is developed on the basis of the numerical schemes implemented in the commercial tool ANSYS CFX. The focus lies upon the efficient and direct numerical prediction of the flow-induced noise generated by natural gas and pneumatic applications. The respective compressed gas related components are characterized by tiny supersonic gas jets, strong noise emissions, poor accessibility by measurement techniques and excessive simulation costs in particular...

  5. Experimental and Numerical Investigation of High Speed High-Temperature Jet Interaction Flowfields

    Science.gov (United States)

    2011-03-10

    appearance of a "Karman-vortex-street"[Perry et al (1993)]. Yasuhiro and Isaac [Kamotani et al (1972)] used hot - wire anemometry to map the velocity...et al (1993)] studied the entrainment and mixing processes of a low-speed jet in a cross flow. The results from the flying hot - wire and flow...34Combined Laser Doppler Velocimetry and Cross- Wire Anemometry Analysis for Supersonic Turbulent Flow," AIAA Journal, Vol. 34, No. 11, November 1996, pp. 2269

  6. Study of Water Jet Impulse in Water-Jet Looms

    Institute of Scientific and Technical Information of China (English)

    LI Ke-rang; MA Wei-wei; CHEN Ming

    2005-01-01

    The water jet impulse is brought forward to study the traction force of the water jet to the flying weft in water-jet looms. The distribution of the water jet impulse in the shed is tested by a sensor, and the influence of water jet parameters on the water jet impulse is analyzed.

  7. Variability and particle acceleration in the jet of Pictor A

    Science.gov (United States)

    Hardcastle, Martin

    2009-09-01

    Pictor A is one of the closest FRII radio galaxies and one of a very few to show a continuous, bright, 100-kpc-scale X-ray jet. It thus represents a crucial link between low-power FRIIs with weak discrete jet knots described by an X-ray synchrotron model and powerful core-dominated quasars whose X-ray jets are often modeled as beamed inverse-Compton. It is vital to understand the nature of the jet emission in this key object. We propose a long observation that will give us a substantial improvement in spectroscopy and imaging of the bright inner jet, and will in addition allow us to confirm the first, but so far only marginally significant detection, of variability in an FRII X-ray jet. Many additional projects can be carried out with these observations.

  8. Refraction of high frequency noise in an arbitrary jet flow

    Science.gov (United States)

    Khavaran, Abbas; Krejsa, Eugene A.

    1994-01-01

    Refraction of high frequency noise by mean flow gradients in a jet is studied using the ray-tracing methods of geometrical acoustics. Both the two-dimensional (2D) and three-dimensional (3D) formulations are considered. In the former case, the mean flow is assumed parallel and the governing propagation equations are described by a system of four first order ordinary differential equations. The 3D formulation, on the other hand, accounts for the jet spreading as well as the axial flow development. In this case, a system of six first order differential equations are solved to trace a ray from its source location to an observer in the far field. For subsonic jets with a small spreading angle both methods lead to similar results outside the zone of silence. However, with increasing jet speed the two prediction models diverge to the point where the parallel flow assumption is no longer justified. The Doppler factor of supersonic jets as influenced by the refraction effects is discussed and compared with the conventional modified Doppler factor.

  9. An Introduction to the Supersonic Molecular Beam Injection

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Recently a new fuelling method with supersonic molecular beam injection (MBI) has been developed and used in the tokamaks experiments successfully. It is economical to develop and maintain. The advantages of supersonic MBI compared with the conventional of gas-puffing method are as follows: deep deposition of fuel, better fuelling efficiency, reduced recycling and pure plasma. Particle and energy confinement can be improved and density limit extended. This review described the Laval nozzle molecular beam and a simple collective model for the injection of a supersonic MBI into the tokamak plasma.

  10. Magnetic geometry and particle source drive of supersonic divertor regimes

    Science.gov (United States)

    Bufferand, H.; Ciraolo, G.; Dif-Pradalier, G.; Ghendrih, P.; Tamain, Ph; Marandet, Y.; Serre, E.

    2014-12-01

    We present a comprehensive picture of the mechanisms driving the transition from subsonic to supersonic flows in tokamak plasmas. We demonstrate that supersonic parallel flows into the divertor volume are ubiquitous at low density and governed by the divertor magnetic geometry. As the density is increased, subsonic divertor plasmas are recovered. On detachment, we show the change in particle source can also drive the transition to a supersonic regime. The comprehensive theoretical analysis is completed by simulations in ITER geometry. Such results are essential in assessing the divertor performance and when interpreting measurements and experimental evidence.

  11. The Making of FR Is I. Numerical Hydrodynamic 3D Simulations of Low Power Jets

    CERN Document Server

    Massaglia, S; Rossi, P; Capetti, S; Mignone, A

    2016-01-01

    Extragalactic radiosources have been classified in two classes, Fanaroff-Riley I and II, which differ in morphology and radio power. Strongly emitting sources belong to the edge brightened FR II class while the weak ones to the edge darkened FR I class. The origin of this dichotomy is not yet fully understood. Numerical simulations are successful in generating FR~II morphologies but they fail to reproduce the diffuse structure of FR Is. By means of hydro-dynamical 3D simulations of supersonic jets, we investigate how the displayed morphologies depend on the jet parameters. Bow shocks and Mach disks at the jet's head, likely responsible for the presence of hot spots in the FR II sources, disappear for a jet kinetic power less than 10^43 erg/s. This threshold compares favorably with the luminosity at which the FR~I/FR~II transition is observed. The problem is addressed by numerical means carrying out three-dimensional HD simulations of supersonic jets that propagate in a non homogeneous medium with the ambient ...

  12. A Study of Under-expanded Moist Air Jet Impinging on a Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Yumiko OTOBE; Shigeru MATSUO; Masanori TANAKA; Hideo KASHIMURA; Heuy-Dong KIM; Toshiaki SETOGUCHI

    2005-01-01

    When a gas expands through a convergent nozzle in which the ratio of the ambient to the stagnation pressures is higher than that of the critical one, the issuing jet from the nozzle is under-expanded. If a flat plate is placed normal to the jet at a certain distance from the nozzle, a detached shock wave is formed at a region between the nozzle exit and the plate. In general, supersonic moist air jet technologies with non-equilibrium condensation are very often applied to industrial manufacturing processes. In spite of the importance in major characteristics of the supersonic moist air jets impinging to a solid body, its qualitative characteristics are not known satisfactorily. In the present study, the effect of the non-equilibrium condensation on the under-expanded air jet impinging on a vertical flat plate is investigated numerically in the case with non-equilibrium condensation, frequency of oscillation for the flow field becomes larger than that without the non-equilibrium condensation, and amplitudes of static pressure become small compared with those of dry air. Furthermore, the numerical results are compared with experimental ones.

  13. The helical jet of IGR J11014-6103: echoes of a core-collapse supernova

    CERN Document Server

    Pavan, L; Puehlhofer, G; Filipovic, M D; De Horta, A; O'Brien, A; Balbo, M; Walter, R; Bozzo, E; Ferrigno, C; Crawford, E; Stella, L

    2013-01-01

    Jets from rotation-powered pulsars have so far only been observed in systems moving subsonically trough their ambient medium and/or embedded in their progenitor supernova remnant (SNR). Supersonic runaway pulsars are also expected to produce jets, but they have not been confirmed so far. We investigated the nature of the jet-like structure associated to the INTEGRAL source IGR J11014-6103. The source is a neutron star escaping its parent SNR MSH 11-61A supersonically at a velocity exceeding 1000 km/s. We observed IGR J11014-6103 and its jet-like X-ray structure through dedicated high spatial resolution observations in X-rays (Chandra) and radio band (ATCA). Our results show that the feature is a true pulsar's jet. It extends highly collimated over 11pc, displays a clear precession-like modulation, and propagates nearly perpendicular to the system direction of motion, implying that the neutron star's spin axis in IGR J11014-6103 is almost perpendicular to the direction of the kick received during the supernova...

  14. Modelling X-ray emitting stationary shocks in magnetized protostellar jets

    Science.gov (United States)

    Ustamujic, S.; Orlando, S.; Bonito, R.; Miceli, M.; Gómez de Castro, A. I.; López-Santiago, J.

    2017-03-01

    The early stages of a star birth are characterized by a variety of mass ejection phenomena, including outflows and collimated jets that are strongly related to the accretion process developed in the context of the star-disc interaction. Jets move through the ambient medium producing complex structures observed at different wavelengths. In particular, X-ray observations show evidence of strong shocks heating the plasma up to a few million degrees. In some cases, the shocked features appear to be stationary. They are interpreted as shock diamonds. We aim at investigating the physical properties of the shocked plasma and the role of magnetic fields on the collimation of the jet and the formation of a stationary shock. We performed 2.5D MHD simulations modelling the propagation of a jet ramming with a supersonic speed into an initially isothermal and homogeneous magnetized medium and compared the results with observations.

  15. Jetting-Out Phenomenon Associated with Bonding of Warm-Sprayed Titanium Particles onto Steel Substrate

    Science.gov (United States)

    Kim, Keehyun; Watanabe, Makoto; Kuroda, Seiji

    2009-12-01

    Titanium powder particles accelerated and simultaneously heated by the supersonic gas flow were deposited onto steel substrate by the warm spraying process. The sprayed particles were heavily deformed and bonded to the substrate in solid state. Especially, all the deposited particles showed jetting-out of materials out of the particle-substrate interface triggered by the adiabatic shear instability known to occur under such shock impact conditions. High-magnified images showed that grain refinement occurred in the jetting-out region by dynamic recrystallization. Furthermore, the elemental analysis using the electron energy loss spectrum showed jetting-outs of the substrate as well as the particle. Numerical simulation based on the Johnson-Cook plastic deformation model showed that the jetting-out phenomenon commences about 10 ns after the initial contact of the particle with the substrate and at a position away from the center bottom of particle, where the highest compressive stress is experienced.

  16. Numerical Analysis of Supersonic Film Cooling in Supersonic Flow in Hypersonic Inlet with Isolator

    Directory of Open Access Journals (Sweden)

    Silong Zhang

    2014-02-01

    Full Text Available Supersonic film cooling is an efficient method to cool the engine with extremely high heat load. In order to study supersonic film cooling in a real advanced engine, a two-dimensional model of the hypersonic inlet in a scramjet engine with supersonic film cooling in the isolator is built and validated through experimental data. The simulation results show that the cooling effect under different coolant injection angles does not show clear differences; a small injection angle can ensure both the cooling effect and good aerodynamic performances (e.g., flow coefficient of the hypersonic inlet. Under selected coolant injection angle and inlet Mach number, the cooling efficiency increases along with the injection Mach number of the coolant flow, only causing a little total pressure loss in the isolator. Along with the increase of the inlet Mach number of the hypersonic inlet, the cooling efficiency does not present a monotonic change because of the complex shock waves. However, the wall temperature shows a monotonic increase when the inlet Mach number increases. The mass flow rate of coolant flow should be increased to cool the engine more efficiently according to the mass flow rate of the main stream when the inlet Mach number increases.

  17. Technical design note: differential infrared thermography of methane jets

    Science.gov (United States)

    Golzke, Hendrik; Leick, Philippe; Dreizler, Andreas

    2016-10-01

    In this note a novel approach for temperature measurements of methane jets is presented. Differential infrared thermography (DIT) is a contactless, tracer-free temperature determination method for semi-transparent objects, based on an infrared camera. DIT does not rely on a specific a priori value for the emissivity, but typically assumes constant emissivity within the relevant wavelength band. This is reasonable for complex hydrocarbons (i.e. as in liquid fuel sprays) but no longer justified for the discrete absorption spectrum of simple molecules such as methane. An alternative approximation is suggested and discussed, and the feasibility of DIT for the study of supercritical methane jets in a pressure chamber at conditions relevant for internal combustion engines is demonstrated. As DIT also determines the gas emissivity, a combined two-dimensional temperature and projected density visualisation becomes possible and is shown to highlight supersonic structurues such as Mach disks.

  18. Smoothed Particle Magnetohydrodynamics Simulations of Protostellar Jets and Turbulent Dynamos

    CERN Document Server

    Tricco, Terrence S; Federrath, Christoph; Bate, Matthew R

    2013-01-01

    We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have produced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout ...

  19. Gas turbine engine with supersonic compressor

    Science.gov (United States)

    Roberts, II, William Byron; Lawlor, Shawn P.

    2015-10-20

    A gas turbine engine having a compressor section using blades on a rotor to deliver a gas at supersonic conditions to a stator. The stator includes one or more of aerodynamic ducts that have converging and diverging portions for deceleration of the gas to subsonic conditions and to deliver a high pressure gas to combustors. The aerodynamic ducts include structures for changing the effective contraction ratio to enable starting even when designed for high pressure ratios, and structures for boundary layer control. In an embodiment, aerodynamic ducts are provided having an aspect ratio of two to one (2:1) or more, when viewed in cross-section orthogonal to flow direction at an entrance to the aerodynamic duct.

  20. The shock waves in decaying supersonic turbulence

    CERN Document Server

    Smith, M D; Zuev, J M; Smith, Michael D.; Low, Mordecai-Mark Mac; Zuev, Julia M.

    2000-01-01

    We here analyse numerical simulations of supersonic, hypersonic andmagnetohydrodynamic turbulence that is free to decay. Our goals are tounderstand the dynamics of the decay and the characteristic properties of theshock waves produced. This will be useful for interpretation of observations ofboth motions in molecular clouds and sources of non-thermal radiation. We find that decaying hypersonic turbulence possesses an exponential tail offast shocks and an exponential decay in time, i.e. the number of shocks isproportional to t exp (-ktv) for shock velocity jump v and mean initialwavenumber k. In contrast to the velocity gradients, the velocity ProbabilityDistribution Function remains Gaussian with a more complex decay law. The energy is dissipated not by fast shocks but by a large number of low Machnumber shocks. The power loss peaks near a low-speed turn-over in anexponential distribution. An analytical extension of the mapping closuretechnique is able to predict the basic decay features. Our analytic descrip...

  1. ARBITRARY INTERACTION OF PLANE SUPERSONIC FLOWS

    Directory of Open Access Journals (Sweden)

    P. V. Bulat

    2015-11-01

    Full Text Available Subject of study.We consider the Riemann problem for parameters at collision of two plane flows at a certain angle. The problem is solved in the exact statement. Most cases of interference, both stationary and non-stationary gas-dynamic discontinuities, followed by supersonic flows can be reduced to the problem of random interaction of two supersonic flows. Depending on the ratio of the parameters in the flows, outgoing discontinuities turn out to be shock waves, or rarefactionwaves. In some cases, there is no solution at all. It is important to know how to find the domain of existence for the relevant decisions, as the type of shock-wave structures in these domains is known in advance. The Riemann problem is used in numerical methods such as the method of Godunov. As a rule, approximate solution is used, known as the Osher solution, but for a number of problems with a high precision required, solution of this problem needs to be in the exact statement. Main results.Domains of existence for solutions with different types of shock-wave structure have been considered. Boundaries of existence for solutions with two outgoing shock waves are analytically defined, as well as with the outgoing shock wave and rarefaction wave. We identify the area of Mach numbers and angles at which the flows interact and there is no solution. Specific flows with two outgoing rarefaction waves are not considered. Practical significance. The results supplement interference theory of stationary gas-dynamic discontinuities and can be used to develop new methods of numerical calculation with extraction of discontinuities.

  2. Supersonic Wing Optimization Using SpaRibs

    Science.gov (United States)

    Locatelli, David; Mulani, Sameer B.; Liu, Qiang; Tamijani, Ali Y.; Kapania, Rakesh K.

    2014-01-01

    This research investigates the advantages of using curvilinear spars and ribs, termed SpaRibs, to design a supersonic aircraft wing-box in comparison to the use of classic design concepts that employ straight spars and ribs. The objective is to achieve a more efficient load-bearing mechanism and to passively control the deformation of the structure under the flight loads. Moreover, the use of SpaRibs broadens the design space and allows for natural frequencies and natural mode shape tailoring. The SpaRibs concept is implemented in a new optimization MATLAB-based framework referred to as EBF3SSWingOpt. This optimization scheme performs both the sizing and the shaping of the internal structural elements, connecting the optimizer with the analysis software. The shape of the SpaRibs is parametrically defined using the so called Linked Shape method. Each set of SpaRibs is placed in a one by one square domain of the natural space. The set of curves is subsequently transformed in the physical space for creating the wing structure geometry layout. The shape of each curve of each set is unique; however, mathematical relations link the curvature in an effort to reduce the number of design variables. The internal structure of a High Speed Commercial Transport aircraft concept developed by Boeing is optimized subjected to stress, subsonic flutter and supersonic flutter constraints. The results show that the use of the SpaRibs allows for the reduction of the aircraft's primary structure weight without violating the constraints. A weight reduction of about 15 percent is observed.

  3. 1 Ft. x 1 Ft. Supersonic Wind Tunnel, Bldg. 37

    Data.gov (United States)

    Federal Laboratory Consortium — The 1- by 1-Foot Supersonic Wind Tunnel (1x), located in the Engine Research Building, is one of the most active test facilities at the Glenn Research Center. Used...

  4. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  5. Direct Connect Supersonic Combustion Facility (Research Cell 22)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: RC22 is a continuous-flow, direct-connect supersonic-combustion research facility that is capable of simulating flight conditions from Mach 3.0 to Mach...

  6. Entropy Minimization Design Approach of Supersonic Internal Passages

    Directory of Open Access Journals (Sweden)

    Jorge Sousa

    2015-08-01

    Full Text Available Fluid machinery operating in the supersonic regime unveil avenues towards more compact technology. However, internal supersonic flows are associated with high aerodynamic and thermal penalties, which usually prevent their practical implementation. Indeed, both shock losses and the limited operational range represent particular challenges to aerodynamic designers that should be taken into account at the initial phase of the design process. This paper presents a design methodology for supersonic passages based on direct evaluations of the velocity field using the method of characteristics and computation of entropy generation across shock waves. This meshless function evaluation tool is then coupled to an optimization scheme, based on evolutionary algorithms that minimize the entropy generation across the supersonic passage. Finally, we assessed the results with 3D Reynolds Averaged Navier Stokes calculations.

  7. Jet substructure in ATLAS

    CERN Document Server

    Miller, David W

    2011-01-01

    Measurements are presented of the jet invariant mass and substructure in proton-proton collisions at $\\sqrt{s} = 7$ TeV with the ATLAS detector using an integrated luminosity of 37 pb$^{-1}$. These results exercise the tools for distinguishing the signatures of new boosted massive particles in the hadronic final state. Two "fat" jet algorithms are used, along with the filtering jet grooming technique that was pioneered in ATLAS. New jet substructure observables are compared for the first time to data at the LHC. Finally, a sample of candidate boosted top quark events collected in the 2010 data is analyzed in detail for the jet substructure properties of hadronic "top-jets" in the final state. These measurements demonstrate not only our excellent understanding of QCD in a new energy regime but open the path to using complex jet substructure observables in the search for new physics.

  8. Interactions of a Light Hypersonic Jet with a Non-Uniform Interstellar Medium

    CERN Document Server

    Sutherland, R S

    2007-01-01

    We present three dimensional simulations of the interaction of a light hypersonic jet with an inhomogeneous thermal and turbulently supported disk in an elliptical galaxy. We model the jet as a light, supersonic non-relativistic flow with parameters selected to be consistent with a relativistic jet with kinetic power just above the FR1/FR2 break. We identify four generic phases in the evolution of such a jet with the inhomogeneous interstellar medium: 1) an initial ``flood and channel'' phase, where progress is characterized by high pressure gas finding changing weak points in the ISM, flowing through channels that form and re-form over time, 2) a spherical, energy-driven bubble phase, were the bubble is larger than the disk scale, but the jet remains fully disrupted close to the nucleus, 3) a rapid, jet break--out phase the where jet breaks free of the last dense clouds, becomes collimated and pierces the spherical bubble, and 4) a classical phase, the jet propagates in a momentum-dominated fashion leading t...

  9. High throughput jet singlet oxygen generator for multi kilowatt SCOIL

    Science.gov (United States)

    Rajesh, R.; Singhal, Gaurav; Mainuddin; Tyagi, R. K.; Dawar, A. L.

    2010-06-01

    A jet flow singlet oxygen generator (JSOG) capable of handling chlorine flows of nearly 1.5 mol s -1 has been designed, developed, and tested. The generator is designed in a modular configuration taking into consideration the practical aspects of handling high throughput flows without catastrophic BHP carry over. While for such high flow rates a cross-flow configuration has been reported, the generator utilized in the present study is a counter flow configuration. A near vertical extraction of singlet oxygen is effected at the generator exit, followed by a 90° rotation of the flow forming a novel verti-horizontal COIL scheme. This allows the COIL to be operated with a vertical extraction SOG followed by the horizontal arrangement of subsequent COIL systems such as supersonic nozzle, cavity, supersonic diffuser, etc. This enables a more uniform weight distribution from point of view of mobile and other platform mounted systems, which is highly relevant for large scale systems. The present study discusses the design aspects of the jet singlet oxygen generator along with its test results for various operating ranges. Typically, for the intended design flow rates, the chlorine utilization and singlet oxygen yield have been observed to be ˜94% and ˜64%, respectively.

  10. Turbulent buoyant jets and plumes

    CERN Document Server

    Rodi, Wolfgang

    The Science & Applications of Heat and Mass Transfer: Reports, Reviews, & Computer Programs, Volume 6: Turbulent Buoyant Jets and Plumes focuses on the formation, properties, characteristics, and reactions of turbulent jets and plumes. The selection first offers information on the mechanics of turbulent buoyant jets and plumes and turbulent buoyant jets in shallow fluid layers. Discussions focus on submerged buoyant jets into shallow fluid, horizontal surface or interface jets into shallow layers, fundamental considerations, and turbulent buoyant jets (forced plumes). The manuscript then exami

  11. Jet Substructure Without Trees

    Energy Technology Data Exchange (ETDEWEB)

    Jankowiak, Martin; Larkoski, Andrew J.; /SLAC /Stanford U., ITP

    2011-08-19

    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods. In preparation for the LHC, the past several years have seen extensive work on various aspects of collider searches. With the excellent resolution of the ATLAS and CMS detectors as a catalyst, one area that has undergone significant development is jet substructure physics. The use of jet substructure techniques, which probe the fine-grained details of how energy is distributed in jets, has two broad goals. First, measuring more than just the bulk properties of jets allows for additional probes of QCD. For example, jet substructure measurements can be compared against precision perturbative QCD calculations or used to tune Monte Carlo event generators. Second, jet substructure allows for additional handles in event discrimination. These handles could play an important role at the LHC in discriminating between signal and background events in a wide variety of particle searches. For example, Monte Carlo studies indicate that jet substructure techniques allow for efficient reconstruction of boosted heavy objects such as the W{sup {+-}} and Z{sup 0} gauge bosons, the top quark, and the Higgs boson.

  12. A Numerical Comparison of Symmetric and Asymmetric Supersonic Wind Tunnels

    Science.gov (United States)

    Clark, Kylen D.

    Supersonic wind tunnels are a vital aspect to the aerospace industry. Both the design and testing processes of different aerospace components often include and depend upon utilization of supersonic test facilities. Engine inlets, wing shapes, and body aerodynamics, to name a few, are aspects of aircraft that are frequently subjected to supersonic conditions in use, and thus often require supersonic wind tunnel testing. There is a need for reliable and repeatable supersonic test facilities in order to help create these vital components. The option of building and using asymmetric supersonic converging-diverging nozzles may be appealing due in part to lower construction costs. There is a need, however, to investigate the differences, if any, in the flow characteristics and performance of asymmetric type supersonic wind tunnels in comparison to symmetric due to the fact that asymmetric configurations of CD nozzle are not as common. A computational fluid dynamics (CFD) study has been conducted on an existing University of Michigan (UM) asymmetric supersonic wind tunnel geometry in order to study the effects of asymmetry on supersonic wind tunnel performance. Simulations were made on both the existing asymmetrical tunnel geometry and two axisymmetric reflections (of differing aspect ratio) of that original tunnel geometry. The Reynolds Averaged Navier Stokes equations are solved via NASAs OVERFLOW code to model flow through these configurations. In this way, information has been gleaned on the effects of asymmetry on supersonic wind tunnel performance. Shock boundary layer interactions are paid particular attention since the test section integrity is greatly dependent upon these interactions. Boundary layer and overall flow characteristics are studied. The RANS study presented in this document shows that the UM asymmetric wind tunnel/nozzle configuration is not as well suited to producing uniform test section flow as that of a symmetric configuration, specifically one

  13. Design and construction of triplet atmospheric cold plasma jet for sterilization

    Directory of Open Access Journals (Sweden)

    F. Sohbatzadeh

    2014-03-01

    Full Text Available In this paper, construction of triplet atmospheric plasma jet using argon, air, oxygen and nitrogen gases is reported. Bactericidal effect of the plasma jet is also investigated. To that end, longitudinal geometric configuration for the electrodes was chosen because it would increase the jet length. Electrical characteristics, jet length dependencies on the applied voltage and gas flow rate were decided, experimentally. Relative concentrations of chemical reactive species such as ozone, atomic oxygen, NOx compounds and hydroxyl were measured using optical emission spectroscopy. It was seen that atomic oxygen and ozone concentrations with triplet plasma jet are more than the concentration of single plasma jet. Triplet plasma jet was also used for sterilization of solid and liquid surfaces to disinfect gram-negative and gram-positive Escherichia coli and Streptococcus pyogenes bacteria. The results verified the effectiveness of the triplet plasma jet for killing bacteria.

  14. TASI Lectures on Jet Substructure

    CERN Document Server

    Shelton, Jessie

    2013-01-01

    Jet physics is a rich and rapidly evolving field, with many applications to physics in and beyond the Standard Model. These notes, based on lectures delivered at the June 2012 Theoretical Advanced Study Institute, provide an introduction to jets at the Large Hadron Collider. Topics covered include sequential jet algorithms, jet shapes, jet grooming, and boosted Higgs and top tagging.

  15. Jet propagation and deceleration

    CERN Document Server

    Perucho, Manel

    2013-01-01

    Extragalactic jets in active galactic nuclei (AGN) are divided into two morphological types, namely Fanaroff-Riley I (FRI) and Fanaroff-Riley II (FRII). The former show decollimated structure at the kiloparsec scales and are thought to be decelerated by entrainment within the first kiloparsecs of evolution inside the host galaxy. The entrainment and deceleration can be, at least partly, due to the interaction of jets with stellar winds and gas clouds that enter in the jet as they orbit around the galactic centre. In this contribution, I review recent simulations to study the dynamic effect of entrainment from stellar winds in jets and the direct interaction of jets with gas clouds and stellar winds. I also briefly describe the importance of these interactions as a possible scenario of high-energy emission from extragalactic jets.

  16. What ignites optical jets?

    Energy Technology Data Exchange (ETDEWEB)

    Sebastian Jester

    2002-12-23

    The properties of radio galaxies and quasars with and without optical or X-ray jets are compared. The majority of jets from which high-frequency emission has been detected so far (13 with optical emission, 11 with X-rays, 13 with both) are associated with the most powerful radio sources at any given redshift. It is found that optical/X-ray jet sources are more strongly beamed than the average population of extragalactic radio sources. This suggests that the detection or non-detection of optical emission from jets has so far been dominated by surface brightness selection effects, not by jet physics. It implies that optical jets are much more common than is currently appreciated.

  17. Dust generation at interaction of plasma jet with surfaces

    Science.gov (United States)

    Ticos, Catalin; Toader, Dorina; Banu, Nicoleta; Scurtu, Adrian; Oane, Mihai

    2013-10-01

    Coatings of W and C with widths of a few microns will be exposed to plasma jet for studying the erosion of the surface and detachment of micron size dust particles. A coaxial plasma gun has been built inside a vacuum chamber for producing supersonic plasma jets. Its design is based on a 50 kJ coaxial plasma gun which has been successfully used for accelerating hypervelocity dust. Initial shots were carried out for a capacitor bank with C = 12 μF and charged up to 2 kV. Currents of tens of amps were measured with a Rogowsky coil and plasma flow speeds of 4 km/s were inferred from high-speed images of jet propagation. An upgrade consisting in adding capacitors in parallel will be performed in order to increase the energy up to 2 kJ. A coil will be installed at the gun muzzle to compress the plasma flow and increase the energy density of the jet on the sample surface. A CCD camera with a maximum recording speed of 100 k fps and a maximum resolution of 1024 × 1024 pixels was set for image acquisition of the plasma and dust. A laser system used to illuminate the ejected dust from the surface includes a laser diode emitting at 650 nm with a beam power of 25 mW. The authors acknowledge support from EURATOM WP13-IPH-A03-P2-02-BS22.

  18. A Study of the Gas Flow through Air Jet Loom

    Institute of Scientific and Technical Information of China (English)

    Heuy-Dong Kim; Chae-Min Lim; Ho-Joon Lee; Doo-Hwan Chun

    2007-01-01

    Air jet loom, as one of the shuttleless looms, transports a yarn into warps using viscosity and kinetic energy of an air jet. Performance of this picking system depends on the ability of instantaneous inhalation/exhaust, configuration of nozzle, operation characteristics of a check valve, etc. In the recent past, many studies have been reported on the air jet discharged from a nozzle exit, but studies for understanding the flow field characteristics associated with shear layer and shock wave/boundary layer interaction in the nozzle were not conducted enough. In this paper, a computational study was performed to explain the flow field in the air jet nozzle with an acceleration tube and validated with previous experimental data available. The results obtained from the computational study show that, in the supersonic flow regime, the flow field depends significantly on the length of acceleration tube. As nozzle pressure ratio increases, drag force acting on the string also increases. For a longer acceleration tube, the total pressure loss is large, owing to the frictional loss.

  19. Mini-Jet Controlled Turbulent Round Air Jet

    Institute of Scientific and Technical Information of China (English)

    杜诚; 米建春; 周裕; 詹杰

    2011-01-01

    We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets.The Reynolds number based on the jet exit velocity and diameter is 8000.It is found that once the continuous minijets are replaced with pulsed ones,the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet.For example,the K value is amplified by more than 50% with two(or four)pulsed mini-jets blowing,compared with the continuous mini-jets at the same ratio of the mass flow rate of the mini-jets to that of the main jet.%We report an investigation of the active control of a round air jet by multiple radial blowing mini-jets. The Reynolds number based on the jet exit velocity and diameter is 8000. It is found that once the continuous mini-jets are replaced with pulsed ones, the centerline velocity decay rate K can be greatly increased as the pulsing frequency of mini-jets approaches the natural vortex frequency of the main jet. For example, the K value is amplified by more than 50% with two (or four) pulsed mini-jets blowing, compared with the continuous mini-jets at the same ratio of the mass Sow rate of the mini-jets to that of the main jet.

  20. Hotspots, Jets and Environments

    Science.gov (United States)

    Hardcastle, M. J.

    2008-06-01

    I discuss the nature of `hotspots' and `jet knots' in the kpc-scale structures of powerful radio galaxies and their relationship to jet-environment interactions. I describe evidence for interaction between the jets of FRI sources and their local environments, and discuss its relationship to particle acceleration, but the main focus of the paper is the hotspots of FRIIs and on new observational evidence on the nature of the particle acceleration associated with them.